19.2.2一次函数(第1课时)优秀课件
合集下载
《一次函数》PPT课件(第1课时)
③ y=0.5x,
④y=x-6.
③
(1)其中过原点的直线是________;
④
( 2)函数y随x的增大而增大的是_______;
②
(3)函数y随x的增大而减小的________;
①
(4)图象在第一、二、三象限的________
.
(1.5,0)
3.直线y =2x-3 与x 轴交点的坐标为________;与y
2 了解分段函数的表示及其图象.
1
3
能初步应用一次函数模型解决现实生活中的
问题,体会一次函数的应用价值.(难点)
新课导入
1.复习
3
y
2
x
画出函数
和 y x 3 的图象.
2
2.反思
你在作这两个函数图象时,分别描了几个点?
你为何选取这几个点?有不同的取法吗?
3.思考
反过来,已知一个一次函数的图象经过
数学课件:www.1ppt.c om/keji an/shuxue/
美术课件:www.1ppt.c om/keji an/mei shu/
物理课件:www.1ppt.c om/keji an/wuli /
生物课件:www.1ppt.cc om/keji an/lishi /
科学课件:/keji an/kexue/
化学课件:/keji an/huaxue/
地理课件:/keji an/dili/
PPT素材:/s ucai/
PPT图表:/tubiao/
PPT教程: /powerpoint/
手抄报:/shouc haobao/
语文课件:/keji an/yuwen/
英语课件:/keji an/ying yu/
④y=x-6.
③
(1)其中过原点的直线是________;
④
( 2)函数y随x的增大而增大的是_______;
②
(3)函数y随x的增大而减小的________;
①
(4)图象在第一、二、三象限的________
.
(1.5,0)
3.直线y =2x-3 与x 轴交点的坐标为________;与y
2 了解分段函数的表示及其图象.
1
3
能初步应用一次函数模型解决现实生活中的
问题,体会一次函数的应用价值.(难点)
新课导入
1.复习
3
y
2
x
画出函数
和 y x 3 的图象.
2
2.反思
你在作这两个函数图象时,分别描了几个点?
你为何选取这几个点?有不同的取法吗?
3.思考
反过来,已知一个一次函数的图象经过
数学课件:www.1ppt.c om/keji an/shuxue/
美术课件:www.1ppt.c om/keji an/mei shu/
物理课件:www.1ppt.c om/keji an/wuli /
生物课件:www.1ppt.cc om/keji an/lishi /
科学课件:/keji an/kexue/
化学课件:/keji an/huaxue/
地理课件:/keji an/dili/
PPT素材:/s ucai/
PPT图表:/tubiao/
PPT教程: /powerpoint/
手抄报:/shouc haobao/
语文课件:/keji an/yuwen/
英语课件:/keji an/ying yu/
八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.2一次函数的图象与性质课件新人教版
初中数学(人教版)
八年级 下册
第十九章 一次函数
知识点一 正比例函数的定义
定义
举例
正比例 一般地,形如y=kx(k是常数,k≠0)的函数,叫做 函数 正比例函数,其中k叫做比例系数
如y=-3x,y= 12 x均为正比例函数,比例系数 分别为-3, 12
知识 详解
(1)如果两个变量的比值是一个常数,那么这两个变量之间的关系就是正比例函数关系. (2)正比例函数y=kx(k是常数,k≠0)必须满足两个条件:①比例系数k≠0;②自变量x的次数 是1
3
选项中符合条件的数只有2.故选B.
2.(2016浙江丽水中考)在平面直角坐标系中,点M,N在同一个正比例函 数图象上的是 ( ) A.M(2,-3),N(-4,6) B.M(-2,3),N(4,6) C.M(-2,-3),N(4,-6) D.M(2,3),N(-4,6)
答案 A 设过点M的正比例函数图象对应的解析式为y=kx(k≠0).
x
⑤y=-1+x,即y=x-1,也不能化为y=kx(k≠0)的形式.只有②是正比例函数. 故选B. 答案 B 解题归纳 (1)判断一个函数是不是正比例函数,就是判断该函数能否 化成y=kx(k≠0)的形式;(2)若一个函数是正比例函数,则必有k为常数,k ≠0且x的次数为1,关于自变量x的代数式必为单项式.
2
2
分析 先确定函数自变量的取值范围,然后依次列表、描点、连线,即 可得到函数图象,再进行比较.
解析 列表:
x
…
-4
-2
0
2
4
…
y= 1 x 2
…
-2
-1
0
1
2
…
y=-1 x
八年级 下册
第十九章 一次函数
知识点一 正比例函数的定义
定义
举例
正比例 一般地,形如y=kx(k是常数,k≠0)的函数,叫做 函数 正比例函数,其中k叫做比例系数
如y=-3x,y= 12 x均为正比例函数,比例系数 分别为-3, 12
知识 详解
(1)如果两个变量的比值是一个常数,那么这两个变量之间的关系就是正比例函数关系. (2)正比例函数y=kx(k是常数,k≠0)必须满足两个条件:①比例系数k≠0;②自变量x的次数 是1
3
选项中符合条件的数只有2.故选B.
2.(2016浙江丽水中考)在平面直角坐标系中,点M,N在同一个正比例函 数图象上的是 ( ) A.M(2,-3),N(-4,6) B.M(-2,3),N(4,6) C.M(-2,-3),N(4,-6) D.M(2,3),N(-4,6)
答案 A 设过点M的正比例函数图象对应的解析式为y=kx(k≠0).
x
⑤y=-1+x,即y=x-1,也不能化为y=kx(k≠0)的形式.只有②是正比例函数. 故选B. 答案 B 解题归纳 (1)判断一个函数是不是正比例函数,就是判断该函数能否 化成y=kx(k≠0)的形式;(2)若一个函数是正比例函数,则必有k为常数,k ≠0且x的次数为1,关于自变量x的代数式必为单项式.
2
2
分析 先确定函数自变量的取值范围,然后依次列表、描点、连线,即 可得到函数图象,再进行比较.
解析 列表:
x
…
-4
-2
0
2
4
…
y= 1 x 2
…
-2
-1
0
1
2
…
y=-1 x
人教版八年级下册数学优质课件:19.2.2一次函数
(5)若图象不过第三象限,求m的取值范围; (6)若随的增大而增大,求m的取值范围 .
10. 已知一次函数 y x b 与
y 2x a的图像都经过A(-2,0),
且与轴分别交于B、C两点,求△ABC 的面积.
11. 若直线y=3x+b与两坐标轴 所围成的三角形的面积为6, 求b的值.
的方法,叫做待定系数法.
4.若一次函数y=x+b的图象过点A(1,-1),则
b=__-_2_______.
5.根据如图所示的条件,求直线的表达式.
y=2x
y 2x 3
6. 一次函数y=kx+b的图象如图所示,看图填空: (1)当x=0时,y=__4____;当x=__2___时,y=0.
(2)k=____-_2_____,b=__4__________.
的路程和时间,试在下列条件下:
①0≤t≤2 ②2<t≤4 ③4<t≤5.5
分别求出s与t的关系式,并在所给的坐标系中画
出它的图象; (2)若甲、乙两车在途中 恰好相遇两次(不含A、B两 地),试确定v的取值范围.
S (千米)
B 300
C
250
200
150
100
50
A012 34 56
D
T (小时)
例 某地长途汽车客运公司规定:旅客可 随身携带一定重量的行李,如果超过规定, 则需要购买行李票,行李票费用y(元)是 行李重量x(千克)的一次函数,其图象如 图所示.求(1)y与x之间的函数关系式; (2)旅客最多可免费携带行李的千克数.
例2 去年入夏以来,全国大部分地区发生严重
干旱,某市自来水公司为了鼓励市民节约用水,
采取分段收费标准,若某居民每月应交水费是
10. 已知一次函数 y x b 与
y 2x a的图像都经过A(-2,0),
且与轴分别交于B、C两点,求△ABC 的面积.
11. 若直线y=3x+b与两坐标轴 所围成的三角形的面积为6, 求b的值.
的方法,叫做待定系数法.
4.若一次函数y=x+b的图象过点A(1,-1),则
b=__-_2_______.
5.根据如图所示的条件,求直线的表达式.
y=2x
y 2x 3
6. 一次函数y=kx+b的图象如图所示,看图填空: (1)当x=0时,y=__4____;当x=__2___时,y=0.
(2)k=____-_2_____,b=__4__________.
的路程和时间,试在下列条件下:
①0≤t≤2 ②2<t≤4 ③4<t≤5.5
分别求出s与t的关系式,并在所给的坐标系中画
出它的图象; (2)若甲、乙两车在途中 恰好相遇两次(不含A、B两 地),试确定v的取值范围.
S (千米)
B 300
C
250
200
150
100
50
A012 34 56
D
T (小时)
例 某地长途汽车客运公司规定:旅客可 随身携带一定重量的行李,如果超过规定, 则需要购买行李票,行李票费用y(元)是 行李重量x(千克)的一次函数,其图象如 图所示.求(1)y与x之间的函数关系式; (2)旅客最多可免费携带行李的千克数.
例2 去年入夏以来,全国大部分地区发生严重
干旱,某市自来水公司为了鼓励市民节约用水,
采取分段收费标准,若某居民每月应交水费是
一次函数(1)PPT教学课件
y=k1x+ k2(x-2)
当x=1时,y=0,得:0=k1+k2(1-2)
①
当x=-3时,y=4,得:4=-3k1+k2(-3-2) ②
2020/12/10
16
①②组合得:
0k1k2(1-2) 4-31k k2(--32)
解之得:
k
1
-1 2
k2
-1
2
∴ y与x之间的函数关系式为: y=- x+1
y=0.3x+5
思考:这个函数是正比例函数吗?
2020/12/10
3
学习目标:
1、掌握一次函数解析式的特点及意义; 2、理解一次函数与正比例函数的关系。
2020/12/10
4
二、自主预习
1、正比例函数一般式: y=kx(k是常数,k≠0)
2、正比例函数的图象:
一条经过原点和(1,k)的直线
y y= kx (k>0)
( 3) y=-0.5x-1
( 4) y=5x26
2、下列说法正确的是 ① ③ (填序号)
①正比例函数一定是一次函数;
②一次函数一定是正比例函数;
③若y-1与x成正比例,则y是x的一次函数;
④若y=kx+b,则y是x的一次函数。
2020/12/10
13
3、 已知方程3x-2y=1,把它写成y是x的一次函数的形 式是_y__=_1.5x-_0_._5_ ,当 x = 1时, y =__1__;当 y = 4 时, x =__3__。
9
(3)某城市的市内电话的月收费额y(单位: 元)包括月租费22元和拨打电话x min的计时费
(按0.1元/min收取).
y = 0.1x + 22
19.2.2 一次函数的概念 课件(共23张PPT)
4.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒 增加2 m/s.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.
八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件
5.(2017湖南邵阳一模)一次函数y=kx+2(k为常数,且k≠0)的图象如图19-
2-2-1-2所示,则k的可能值为
.(写出一个即可)
答案 -2(答案不唯一)
图19-2-2-1-2
解析 观察图象可知,OB<OA,k<0.
当x=0时,y=kx+2=2,∴OA=2,
令OB=1,则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.
4
4
故当k=-1时,直线与x轴交于点
3 4
,
0
.
(4)当
1 2k
3k 1
0, 即
0,
1 3
<k<
1 2
时,直线经过第二、三、四象限.
(5)当1-3k=-3,2k-1≠-5,
即k= 4 时,已知直线与直线y=-3x-5平行.
3
方法归纳 对于一次函数y=kx+b,(1)判断k值符号的方法:①增减性法, 当y随x增大而增大时,k>0;反之,k<0.②直线升降法,当直线从左到右上升 时,k>0;反之,k<0.③经过象限法,直线过第一、三象限时,k>0;直线过第 二、四象限时,k<0.(2)判断b值符号的方法:与y轴交点法,即直线y=kx+b 若与y轴交于正半轴,则b>0;若与y轴交于负半轴,则b<0;若与y轴交于原 点,则b=0.
例3 下列函数图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的 是( )
解析 一次函数y=mx-(m-3)中,x的系数m决定着直线从左至右呈上升或 下降的趋势,-(m-3)即3-m决定着直线与y轴的交点是在正半轴、负半轴 还是原点,这两个方面不得有矛盾之处,应该结合一次函数的图象进行 分析.
人教版数学八年级下册第十九章19.2.2《含两个一次函数的应用》课件
例1 “黄金1号”玉米种子的价格为5元/kg.如果一次
购买2 kg以上的种子,超过2 kg部分的种子价格打8
折.
(1购)填买写量/表kg. 0.5 1 1.5 2 2.5 3 3.5 4 …
付款金额/元
…
(2)写出付款金额关于购买量的函数解析式,并画 出
函数图象.
分析:付款金额与种子价格相关. 问题中种子价格不是固 定不变的,它与购买量有关. 设购买x kg种子,当 0≤x≤2时,种子价格为5元/kg;当x>2时,其中有 2kg种子按5元/kg计价,其余的(x-2)kg(即超出2 kg 部分) 种子按4元/kg (即8折)计价,因此,写函数解析 式与画函数图象时,应对 0≤x≤2和x>2分段讨论.
次性返还现金4元,则购买盒子所需要最少费用为
___2_9____元.
型号 单个盒子容量/升
单价/元
AB 23 56
合作探究
知识点 2 从图像中获取信息的应用
例3 游泳池常需进行换水清洗,图中的折线表示的是游泳池 换水清洗过程“排水——清洗——灌水”中 水量y(m3) 与时间t(min)之的函数图象. (1)根据图中提供的信息,求排水阶段和 清洗阶段游泳池中的水量y(m3)与时间 t(min)之间的函数关系式(不必写出t的 取值范围); (2)问:排水、清洗各花多少时间?
y=
___1_8_0_x___(x=1,2,…,10), ___1_8_0_x_+__7_2_0__ (x>10,且x为整数).
3 【中考·黄石】一食堂需要购买盒子存放食物,盒子
有A,B两种型号,单个盒子的容量和价格如表.现
有15升食物需要存放且要求每个盒子要装满,由于A
型号盒子正做促销活动:购买三个及三个以上可一
19.2.2一次函数第一课时(一次函数的概念)课件
课堂练习
五、一次函数的简单应用
1、 汽车油箱中原有油50升,如果汽车每行驶50千米耗油9升, 求油箱的油量y(单位:升)随行驶时间x(单位:时)变化的函
数关系式,并写出自变量的取值范围,y是x 的一次函数吗?
解:油量y与行驶时间x的函数关系式为:
y
=50-
9 50
x
自变量x的取值范围是 0≤x≤50.
D.y= x E.y=x2 +1 F.y= - x +1
3
2
3. 正比例函数y=kx,(1)若比例系数为 –5,则函数关系式为 y=-5x .
(2)若经过(5,1),则函数关系式 y x .
5
4. 已知 y=(m-2)x m 1,m= 0 时,y 是x 的正比例函数。
5. 函数y=–5x的图象在第二、四 象限,经过点(0 ,0 )与点(1,-5 ),
(2)若这个函数是正比例函数,求m的值.
解:(1)∵这个函数是一次函数
∴|m|=1
∴ m=±1.
(2)∵这个函数是正比例函数 ∴|m|=1 且 m+1=0. ∴m =±1且m=-1 ∴m=-1
新知讲解
五、典例精析
例2 :已知一次函数 y=kx+b,当 x=1时,y=1;当x=-1时,y=-5. 求 k 和 b 的值.
y=-2x+3
拓展提高
五、一次函数的简单应用
例3. 如果长方形的周长是30cm,长是xcm,宽是ycm.
(1)写出y与x之间的函数解析式,它是一次函数吗?
(2)若长是宽的2倍,求长方形的面积.
解:(1) y=15-x,是一次函数. (2)由题意可得x=2(15-x). 解得x=10,所以y=15-x=5. ∴长方形的面积为10×5=50(cm2).
人教版八年级下册19.2.2一次函数图像与性质课件(共52张ppt)
B.第10天销售一件
C.第12天与第30天这两天的日销售利润相等 D.第30天的 日销售利润是750元
函数应用
【答案】D 【解析】 根据图可知第24天的销售量为200件,故A正确; 设当0≤t<20,一件产品的销量利润与时间的函数关系,最终 求出函数表达式,B正确; C答案方法同上; 第30天的日销售利润为:150×5=750元,故正确。
知识回顾
3. 函数的定义: 一般地,在某个变化过程中,设有两个变量x,y,如果对于x的每一个 确定的值,y都有唯一确定的值与之对应,那么就说y是x的函数, x叫做自变量。 简单理解: (1)有两个变量; (2)一个变量的数值随着另一个变量的数值的变化而发生变化; (3)对于自变量的每一个确定的值,函数值有且只有一个值与之对 应。
如图3,连接AP,
∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABP=12 AB•PD,
S△ACP= 1AC•PE,S△ABC= 1AB•CF,
2
2
∵S△ABP﹣S△ACP=S△ABC,∴ 12AB•PD﹣ 12AC•PE= 12AB•CF,
又∵AB=AC,∴PD﹣PE=CF;
【结论运用】
由题意可求得A(﹣4,0),B(3,0),C(0,1),
函数应用
变式4.(中)如图是本地区一种产品30天的销售图象,图①是 产品日销售量y(单位:件)与时间t(单位;天)的函数关 系,图②是一件产品的销售利润z(单位:元)与时间t(单 位:天)的函数关系,已知日销售利润=日销售量×一件产 品的销售利润,下列结论错误的是( )
A.第24天的销售量为200件 产品的利润是15元
一次函数 的大致图象可能是( )
A.
B.
C.
D.
《一次函数》优秀ppt课件
ቤተ መጻሕፍቲ ባይዱ
《一次函数》优秀实用课件(PPT优秀 课件)
二、填空题(每小题 5 分,共 15 分) 12.已知一次函数 y=kx-4,当 x=2 时,y=-3,则这个一次函数的解析式 为__y_=__12_x_-__4___.
13.当 x=3 时,函数 y=x+k 和函数 y=kx-1 的值相等,那么 k 的值为__2__.
2 km 以上,每增加 1 km 1.40 元
(1)写出出租车行驶的里程数 x(x≥2 km)与费用 y(元)之间的函
数关系式;
(2)李伟同学身上仅有 9 元钱,乘出租车到科技馆车费够不够?
请说明理由.
解:(1)y=3+(x-2)×1.40=1.4x+0.2(x≥2)
(2)当 x=6 时,y=1.4×6+0.2=8.6<9,∴李伟的钱够付到科技馆的车费.
四清导航 《一次函数》优秀实用课件(PPT优秀 课件)
《一次函数》优秀实用课件(PPT优秀 课件)
1.(3 分)下列函数解析式:①y=-2x;②y=-2x;③y=-2x2;
④y=x3;⑤y=2x-1.其中是一次函数的是( B )
A.①⑤ B.①④⑤
C.②⑤ D.②④⑤
2.(4 分)下列函数中,是一次函数但不是正比例函数的是( C )
四清导航 《一次函数》优秀实用课件(PPT优秀 课件)
《一次函数》优秀实用课件(PPT优秀 课件)
【综合应用】 17.(13 分)小明受《乌鸦喝水》的故事启发,利用水桶和体积相 同的小球进行了如下操作: 请根据图中给出的信息,解答下列问题:
(1)放入一个小球后水桶中水面升高__2___cm;
(2)求放入小球后水桶中水面的高度 y(cm)与小球的个数 x(个)之间 的一次函数关系式;(不要求写出自变量的取值范围)
《一次函数》优秀实用课件(PPT优秀 课件)
二、填空题(每小题 5 分,共 15 分) 12.已知一次函数 y=kx-4,当 x=2 时,y=-3,则这个一次函数的解析式 为__y_=__12_x_-__4___.
13.当 x=3 时,函数 y=x+k 和函数 y=kx-1 的值相等,那么 k 的值为__2__.
2 km 以上,每增加 1 km 1.40 元
(1)写出出租车行驶的里程数 x(x≥2 km)与费用 y(元)之间的函
数关系式;
(2)李伟同学身上仅有 9 元钱,乘出租车到科技馆车费够不够?
请说明理由.
解:(1)y=3+(x-2)×1.40=1.4x+0.2(x≥2)
(2)当 x=6 时,y=1.4×6+0.2=8.6<9,∴李伟的钱够付到科技馆的车费.
四清导航 《一次函数》优秀实用课件(PPT优秀 课件)
《一次函数》优秀实用课件(PPT优秀 课件)
1.(3 分)下列函数解析式:①y=-2x;②y=-2x;③y=-2x2;
④y=x3;⑤y=2x-1.其中是一次函数的是( B )
A.①⑤ B.①④⑤
C.②⑤ D.②④⑤
2.(4 分)下列函数中,是一次函数但不是正比例函数的是( C )
四清导航 《一次函数》优秀实用课件(PPT优秀 课件)
《一次函数》优秀实用课件(PPT优秀 课件)
【综合应用】 17.(13 分)小明受《乌鸦喝水》的故事启发,利用水桶和体积相 同的小球进行了如下操作: 请根据图中给出的信息,解答下列问题:
(1)放入一个小球后水桶中水面升高__2___cm;
(2)求放入小球后水桶中水面的高度 y(cm)与小球的个数 x(个)之间 的一次函数关系式;(不要求写出自变量的取值范围)
人教版数学八年级下册19.2.2求一次函数的解析式课件
∵图象过点_(2_,__5_), _(_1_,__3)
因为一次函数的一般形式
∴
2 k +b = 5 1 k+b = 3
是y你=kx能+b归(k纳≠0)出,:要求
出一次函数的解析式,关
求一次函数解析式
键是要确定 k 和 b 的值.
解得 k=_2__ b=__1_
的基本步骤吗?
因为图象过(2,5)
把k=1,b=2 代入 y = kx+b 中,
k的值
一个条件
确定一次函数的解析式y=kx+b,需求哪个值?需 要几个条件?
K、b的值 两个条件
总结:在确定函数解析式时,要求几个系数 就需要知道几个条件。
整理归纳
No
从数到形
Imag
函数解 选取 析式: y=kx+b (k≠0) 求出
满足条件 画出
的两点: (x1,y1)与 (x2,y2) 选取
两点法——两点确定一条直线
解析式的方法,叫做待定系数法. 新人教版 • 八年 级 《 数 学 ( 下) 》
两点法——两点确定一条直线
例:已知一次函数的图象经过点(3,5) 与点(-4,-9).求这个一次函数的
解析式. 解:设这个一次函数的解析式为y=kx+b. 设
∵ 图象过点(3,5)与 点(-4,-9)
得一次函数解析式为__y__=__2_x_+_1_.
与(1,3)两点, 所以这两点的坐标必
适合解析式
解题的基本步骤: 1、已知一次函数y=kx+b,当x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.
函数解析式:y=kx+b(k≠0)
人教版初中数学八年级下册第19章19.2.2 一次函数(第1课时)优秀课件
(2)当k满足什么条件时,它是一次函数?
〔解析〕根据一次函数的定义可 知:k+2≠0确定k的值即可.
解:当k+2≠0,即k≠-2时,它是一次函数.
课堂小结
注意一次函数的定义,并且正确理解 它和正比例函数的关系,一次函数y=kx+b 中必须满足的条件是k≠0.当b=0时,一次函 数也为正比例函数.
1.一般地,形如 y=kx+b (k,b是常数,k≠0)的函数
y=-5x+50(0≤x<10). 想一想:
(1)上面的四个函数解析式,有什么共同特点?
(2)这种函数解析式的一般形式如何表达?它叫什
么函数?与正比例函数有何关系?
学习新知
京沪高速铁路全长1318 km,设列车的平均速 度为300 km/h.
(1) 列车从始发站北京南站到终点站上海虹桥 站,约需 4.4 小时.(结果保留一位小数)
当b=0时,y=kx+b,即y=kx.所以说正比例函数 是一种特殊的一次函数.
例:(补充)已知关于x的函数y=(k+2)x+k2-4, (1)当k满足什么条件时,它是正比例函数?
〔解析〕根据正比例函数的定义可 知:k2-4=0且k+2≠0确定k的值.
解:当k2-4=0且k+2≠0时,即k=2时, 它是正比例函数.
解析:一次函数y=kx+b的解析式中k≠0,自变量 的次数为1,常数项b可以为任意实数;正比例 函数的解析式中,比例系数k是常数,k≠0,自变 量的次数为1.
解:(1)根据一次函数的定义,得2-|m|=1,解得 m=±1.又∵m+1≠0,即m≠-1,∴当m=1,n为任意实数 时,这个函数是一次函数.
c=7t-35(20≤t≤25).
〔解析〕根据一次函数的定义可 知:k+2≠0确定k的值即可.
解:当k+2≠0,即k≠-2时,它是一次函数.
课堂小结
注意一次函数的定义,并且正确理解 它和正比例函数的关系,一次函数y=kx+b 中必须满足的条件是k≠0.当b=0时,一次函 数也为正比例函数.
1.一般地,形如 y=kx+b (k,b是常数,k≠0)的函数
y=-5x+50(0≤x<10). 想一想:
(1)上面的四个函数解析式,有什么共同特点?
(2)这种函数解析式的一般形式如何表达?它叫什
么函数?与正比例函数有何关系?
学习新知
京沪高速铁路全长1318 km,设列车的平均速 度为300 km/h.
(1) 列车从始发站北京南站到终点站上海虹桥 站,约需 4.4 小时.(结果保留一位小数)
当b=0时,y=kx+b,即y=kx.所以说正比例函数 是一种特殊的一次函数.
例:(补充)已知关于x的函数y=(k+2)x+k2-4, (1)当k满足什么条件时,它是正比例函数?
〔解析〕根据正比例函数的定义可 知:k2-4=0且k+2≠0确定k的值.
解:当k2-4=0且k+2≠0时,即k=2时, 它是正比例函数.
解析:一次函数y=kx+b的解析式中k≠0,自变量 的次数为1,常数项b可以为任意实数;正比例 函数的解析式中,比例系数k是常数,k≠0,自变 量的次数为1.
解:(1)根据一次函数的定义,得2-|m|=1,解得 m=±1.又∵m+1≠0,即m≠-1,∴当m=1,n为任意实数 时,这个函数是一次函数.
c=7t-35(20≤t≤25).
初中数学-19.2.2一次函数第1课时课件
思考: 正比例函数与一次函数有什么
区别和联系呢?
区别: 一次函数有常数项,正比例函 数没有常数项。
联系: 正比例函数是特殊的一次函数, 一次函数不一定是正比例函数。
一次函数 正比例函数
例1.下列函数关系式中,哪些是一次函数? 哪些是正比例函数?
(1)y=2πx
(3)y 1 x
(2)y=-x-4 (4)y=x2 -3x
复习:Байду номын сангаас
正比例函数y=kx(k是常数,k≠0) 的图象和性质
k的正负性
k>0
k<0
y=kx(k是常数, k≠0)的图像
直线y=kx经过 的象限
性质
一、三象限 y随x的增大而增大
二、四象限 y随x的增大而减小
图象必经过的点 图象必经过(0,0)和(1,k)这两个点
概念:
一般地,形如y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数。
3 3
m 3
∴一次函数的表达式为 y 6x 3
注意:利用定义求一次函数 y kx b 表达式时,
必须保证:(1)k ≠ 0,
(2)自变量x的指数是“1”
1、在一次函数y=-3x-5中,k =_-_3_,b =__-_5_.
2、若函数y=(m-3)x+2-m是一次函数,则 m_≠__3___ .
3、在一次函数y=-2x+3中,当x=3时,y=_-_3_ ; 当x=__-1__时,y=5。
4.若函数y=mx-(4m-4)的图象过原点,则 m=_1__,此时函数是 _正_比__例__函数.若函数 y=mx-(4m-4)的图象经过(1,3)点, 则m=__1_/_3__,此时函数是_一__次___函数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 8
15
11、一个小球由静止开始在一个斜坡上向下滚动,
其速度每秒增加2 m/s,到达坡底时,小球速度 达到40m/s. (1)求小球速度v(m/s )与时间t(s)之间的 函数解析式; (2)求t的取值范围; (3)求3.5 s时,小球的速度; (4)当t为何值时,小球的速度为16m/s.
解:(1)小球速度v与时间t之间的函数解 析式为:v=2t; (2)t的取值范围为:2≤t≤20; (3)当t=3.5 s时,小球的速度v=7m/s; (4)由v=16,得2t=16 t=8. 当t=8s时,小球的速度为16m/s
y =-5 x+50 (0≤x≤10)
观察以上出现的四个函数解析 式,很显然它们不是正比例函数, 这些函数关系式有什么特点?
(1) c = 7t-35 (3) y=0.1x+22
(2)
(4)
G=h-105
y=-5x+50
这些函数都是用自变量的K(常数)倍与 一个常数的和来表示。
一般地,形如y=kx+b (k, b 是常数, k≠0)的函数,叫做一次函数。
19.2.2
一次函数
第1课时
正比例函数
解析式: y=kx(k是常数,k≠0) 图象:一条经过原点和(1,k)的直线 y y=kx (k>0) y=kx(k<0)
性质:
x
当k>0时,直线y=kx经过第一、三象限,从左向 右上升,即随着x的增大y也增大;
当k<0时,直线y=kx经过第二、四象限,从左向 右下降,即随着x的增大y反而减小。
必须保证: (1)k ≠ 0,
(2)自变量x的指数是“1”
-5 -3 ,b =____. 1、在一次函数y=-3x-5中,k =___
2、若函数y=(m-3)x+2-m是一次函数,则 m______ . ≠3 -3 ; 3、在一次函数y=-2x+3中,当x=3时,y=___ -1 时,y=5。 当x=____
4.若函数y=mx-(4m-4)的图象过原点,则 正比例 函数.若函数 m=___ 1 ,此时函数是 ______ y=mx-(4m-4)的图象经过(1,3)点, 一次 函数. 则m=______ 1/3 ,此时函数是______
5.仓库内原有粉笔400盒,如果每个星期领出 36盒,则仓库内余下的粉笔盒数Q与星期数t 之间的函数关系式是________________ , Q=400-36t 一次 它是__________ 函数。
x 3 y 2
例2.已知函数 y (m 3) x 是一次函数,求其解析式。
2 解: 由题意得: m 8 1 m 3 0 m 3
m2 8
3
m 3 m 3
∴一次函数的表达式为
y 3x 3
表达式时,
注意:利用定义求一次函数 y kx b
概念:
一般地,形如y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数。 当b=0时,y=kx+b就变成了y=kx,所以 说正比例函数是一种特殊的一次函数。
正比例函数
一次函数
概念:
一般地,形如y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数。
特别注意: (1)自变量x的系数 k ≠ 0; (2)自变量x的指数是“1”; (3)自变量的取值范围是全体实数,但在实际 问题中要根据函数的实际意义来确定。
y=-6x+5
这个函数是正比例函数吗? 它与正比例函数有什么不同? 这种形式的函数还会有吗?
问题2 下列问题中,变量之间的对应关系是函数关 系吗?如果是,请写出函数解析式,这些函数解析式有 哪些共同特征? (1)有人发现,在20 ℃~25 ℃时蟋蟀每分鸣叫次数 c 与温度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35 的差; c=7t -35 (20≤t≤25) (2)一种计算成年人标准体重G(单位:kg)的方 法是,以厘米为单位量出身高值 h ,再减常数105,所得 差是G 的值; G=h-105
(5) y=8x2+x(1-8x)
试一试 下列函数中哪些是一次函数,哪些 又是正比例函数?
(1) y 8 x (2) y 5x 6
2
8 (4) y 0.5 x 1 (3) y x 2 x 13 (5) y 1 (6) y x 2
(7)y=2(x-4)
8、已知一次函数 y=kx+b,当 x=1时,y=5; 当x=-1时,y=1.求 k 和 b 的值.
K=2,b=3。
9.已知函数y=(2-m)x+2m-3.求当m为何值时, (1)此函数为正比例函数? (2)此函数为一次函数? 解:(1)当m=1.5时,此函数是正比例 函数。 (2)当m ≠ 2时,此函数是一次函数。
10、梯形的上底长x,下底长15,高8; (1)写出梯形的面积y与上底x的关系式,是 一次函数吗? (2)当x每增加1时, y是如何变化的? (3)当x=8时, y等于多少?此时y的意义是 什么?
x 8
15
解:(1)y=8(x+15)/2=4x+60; 此函数是一次函数; (2)y增加4; (3)x=8,y=92; 此时的意义是梯形面积是92。
问题1 某登山队大本营所在地的气温为5℃,海
拔每升高1㎞气温下降6 ℃,登山队员由大本营 向上登高x㎞时,他们所在位置的气温是y ℃, 试用解析式表示y与x的关系。
y=5-6x
这个函数也可以写成
y=-6x+5
当登山队员由大本营向上登高0.5千米时, 他们所在位置的气温是多少?
当x=0.5时,y=-6×0.5+5=2
怎样的函数是一次函数? 一般地,形如y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数。 当b=0时,y=kx+b就变成了y=kx,所以 说正比例函数是一种特殊的一次函数。
6、下列说法正确的是( C ) A、y=kx+b是一次函数 B、一次函数是正比例函数 C、正比例函数是一次函数 D、不是正比例函数就一定不是一次函数
7、下列说法不正确的是( D ) (A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数 (C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数
思考:
正比例函数与一次函数有什么 区别和联系呢?
区别: 一次函数有常数项,正比例函 数没有常数项。
联系: 正比例函数是特殊的一次函数, 一次函数不一定是正比例函数。
例1.下列函数关系式中,那些是一次函数? 哪些是正比例函数?
(1)y=2πx
(2)y=-x-4 (4)y=x2 -3x
1 ( 3) y x
问题2 下列问题中,变量之间的对应关系是函数关 系吗?如果是,请写出函数解析式,这些函数解析式有 哪些共同特征? (3)某城市的市内电话的月收费额 y(单位:元)包 括月租费22元和拨打电话 x min 的计时费(按0.1元/min 收取); y =0.1x+ 22 (4)把一个长10 cm,宽5 cm的矩形的长减少 x cm, 宽不变,矩形面积 y(单位:cm2)随x的值而变化.
(8)
x 3 y 2
试一试 下列函数中哪些是一次函数,哪些 又是正比例函数?
(1) y 8 x (2) y 5x 6
2
8 (4) y 0.5 x 1 (3) y x 2 x 13 (5) y 1 (6) y x 次函数的例子吗?
15
11、一个小球由静止开始在一个斜坡上向下滚动,
其速度每秒增加2 m/s,到达坡底时,小球速度 达到40m/s. (1)求小球速度v(m/s )与时间t(s)之间的 函数解析式; (2)求t的取值范围; (3)求3.5 s时,小球的速度; (4)当t为何值时,小球的速度为16m/s.
解:(1)小球速度v与时间t之间的函数解 析式为:v=2t; (2)t的取值范围为:2≤t≤20; (3)当t=3.5 s时,小球的速度v=7m/s; (4)由v=16,得2t=16 t=8. 当t=8s时,小球的速度为16m/s
y =-5 x+50 (0≤x≤10)
观察以上出现的四个函数解析 式,很显然它们不是正比例函数, 这些函数关系式有什么特点?
(1) c = 7t-35 (3) y=0.1x+22
(2)
(4)
G=h-105
y=-5x+50
这些函数都是用自变量的K(常数)倍与 一个常数的和来表示。
一般地,形如y=kx+b (k, b 是常数, k≠0)的函数,叫做一次函数。
19.2.2
一次函数
第1课时
正比例函数
解析式: y=kx(k是常数,k≠0) 图象:一条经过原点和(1,k)的直线 y y=kx (k>0) y=kx(k<0)
性质:
x
当k>0时,直线y=kx经过第一、三象限,从左向 右上升,即随着x的增大y也增大;
当k<0时,直线y=kx经过第二、四象限,从左向 右下降,即随着x的增大y反而减小。
必须保证: (1)k ≠ 0,
(2)自变量x的指数是“1”
-5 -3 ,b =____. 1、在一次函数y=-3x-5中,k =___
2、若函数y=(m-3)x+2-m是一次函数,则 m______ . ≠3 -3 ; 3、在一次函数y=-2x+3中,当x=3时,y=___ -1 时,y=5。 当x=____
4.若函数y=mx-(4m-4)的图象过原点,则 正比例 函数.若函数 m=___ 1 ,此时函数是 ______ y=mx-(4m-4)的图象经过(1,3)点, 一次 函数. 则m=______ 1/3 ,此时函数是______
5.仓库内原有粉笔400盒,如果每个星期领出 36盒,则仓库内余下的粉笔盒数Q与星期数t 之间的函数关系式是________________ , Q=400-36t 一次 它是__________ 函数。
x 3 y 2
例2.已知函数 y (m 3) x 是一次函数,求其解析式。
2 解: 由题意得: m 8 1 m 3 0 m 3
m2 8
3
m 3 m 3
∴一次函数的表达式为
y 3x 3
表达式时,
注意:利用定义求一次函数 y kx b
概念:
一般地,形如y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数。 当b=0时,y=kx+b就变成了y=kx,所以 说正比例函数是一种特殊的一次函数。
正比例函数
一次函数
概念:
一般地,形如y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数。
特别注意: (1)自变量x的系数 k ≠ 0; (2)自变量x的指数是“1”; (3)自变量的取值范围是全体实数,但在实际 问题中要根据函数的实际意义来确定。
y=-6x+5
这个函数是正比例函数吗? 它与正比例函数有什么不同? 这种形式的函数还会有吗?
问题2 下列问题中,变量之间的对应关系是函数关 系吗?如果是,请写出函数解析式,这些函数解析式有 哪些共同特征? (1)有人发现,在20 ℃~25 ℃时蟋蟀每分鸣叫次数 c 与温度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35 的差; c=7t -35 (20≤t≤25) (2)一种计算成年人标准体重G(单位:kg)的方 法是,以厘米为单位量出身高值 h ,再减常数105,所得 差是G 的值; G=h-105
(5) y=8x2+x(1-8x)
试一试 下列函数中哪些是一次函数,哪些 又是正比例函数?
(1) y 8 x (2) y 5x 6
2
8 (4) y 0.5 x 1 (3) y x 2 x 13 (5) y 1 (6) y x 2
(7)y=2(x-4)
8、已知一次函数 y=kx+b,当 x=1时,y=5; 当x=-1时,y=1.求 k 和 b 的值.
K=2,b=3。
9.已知函数y=(2-m)x+2m-3.求当m为何值时, (1)此函数为正比例函数? (2)此函数为一次函数? 解:(1)当m=1.5时,此函数是正比例 函数。 (2)当m ≠ 2时,此函数是一次函数。
10、梯形的上底长x,下底长15,高8; (1)写出梯形的面积y与上底x的关系式,是 一次函数吗? (2)当x每增加1时, y是如何变化的? (3)当x=8时, y等于多少?此时y的意义是 什么?
x 8
15
解:(1)y=8(x+15)/2=4x+60; 此函数是一次函数; (2)y增加4; (3)x=8,y=92; 此时的意义是梯形面积是92。
问题1 某登山队大本营所在地的气温为5℃,海
拔每升高1㎞气温下降6 ℃,登山队员由大本营 向上登高x㎞时,他们所在位置的气温是y ℃, 试用解析式表示y与x的关系。
y=5-6x
这个函数也可以写成
y=-6x+5
当登山队员由大本营向上登高0.5千米时, 他们所在位置的气温是多少?
当x=0.5时,y=-6×0.5+5=2
怎样的函数是一次函数? 一般地,形如y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数。 当b=0时,y=kx+b就变成了y=kx,所以 说正比例函数是一种特殊的一次函数。
6、下列说法正确的是( C ) A、y=kx+b是一次函数 B、一次函数是正比例函数 C、正比例函数是一次函数 D、不是正比例函数就一定不是一次函数
7、下列说法不正确的是( D ) (A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数 (C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数
思考:
正比例函数与一次函数有什么 区别和联系呢?
区别: 一次函数有常数项,正比例函 数没有常数项。
联系: 正比例函数是特殊的一次函数, 一次函数不一定是正比例函数。
例1.下列函数关系式中,那些是一次函数? 哪些是正比例函数?
(1)y=2πx
(2)y=-x-4 (4)y=x2 -3x
1 ( 3) y x
问题2 下列问题中,变量之间的对应关系是函数关 系吗?如果是,请写出函数解析式,这些函数解析式有 哪些共同特征? (3)某城市的市内电话的月收费额 y(单位:元)包 括月租费22元和拨打电话 x min 的计时费(按0.1元/min 收取); y =0.1x+ 22 (4)把一个长10 cm,宽5 cm的矩形的长减少 x cm, 宽不变,矩形面积 y(单位:cm2)随x的值而变化.
(8)
x 3 y 2
试一试 下列函数中哪些是一次函数,哪些 又是正比例函数?
(1) y 8 x (2) y 5x 6
2
8 (4) y 0.5 x 1 (3) y x 2 x 13 (5) y 1 (6) y x 次函数的例子吗?