2011年普通高等学校招生全国统一考试(福建卷)数学试题 (理科)(解析版)
2011年福建高考数学
2011年福建高考数学一、考试概况2011年福建高考数学考试是福建省普通高中毕业生统一招生考试中的一科。
该科目呈现了新课程标准的特点,突出了数学基本知识和能力的考查,注重考查学生的思维能力、创新能力和实际应用能力。
考试时间为120分钟,总分为150分。
二、试题分析2011年福建高考数学试题分为选择题和非选择题两部分,具体如下:选择题选择题共30道,每题4分,总分120分。
选择题包括四个选项,考生根据题目要求选择正确答案。
题目涉及了数学的各个方面,包括代数、几何、函数和图像、概率与统计等内容。
其中,几何和函数与图像的内容较多,要求考生掌握基本的几何和函数知识,并能够将其应用于实际问题中。
非选择题共四道,每题10分,总分40分。
非选择题要求考生进行解答和证明,需要运用数学的基本原理和方法,进行推理和计算。
非选择题的主要考点包括方程与不等式的求解、集合与运算、平面向量以及三角函数的应用等。
这些考点都是高中数学的重要内容,需要考生熟练掌握。
三、参考答案及解析以下是2011年福建高考数学试题的部分参考答案及解析:选择题1.答案:B 解析:根据题目要求,将方程两边同时开方得到 $x = \\sqrt{9} = 3$,故选项B正确。
2.答案:C 解析:根据题目要求,将多项式的系数与指数分别求和,得到系数和为7,指数和为10,故选项C正确。
1.解答:首先将方程两边开根号,得到 $\\sqrt{3x+1} - 3 = 1$,然后将方程两边移项得到 $\\sqrt{3x+1} = 4$,最后将方程两边再次平方,得到3x+1=16,解得x=5。
2.解答:首先将不等式两边乘以2,得到 $2\\sin^2x - 3\\cos x \\geq 0$,然后将不等式变形得到 $\\sin^2 x\\geq \\frac{3}{2} \\cos x$,由于 $\\sin^2 x + \\cos^2 x= 1$,所以 $\\cos x = \\sqrt{1-\\sin^2 x}$,代入得到$\\sin^2 x \\geq \\frac{3}{2} \\sqrt{1-\\sin^2 x}$,将不等式两边平方得到 $\\sin^4 x \\geq \\frac{9}{4} (1-\\sin^2 x)$,将不等式变形得到 $4\\sin^4 x + 9\\sin^2 x - 9 \\geq 0$,解得 $\\sin^2 x \\leq \\frac{-3}{4}$,由于$\\sin^2 x \\geq 0$,所以不等式成立,解集为$\\emptyset$。
2011福建高考考卷文科理科包答案
绝密☆启用前2011年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项: 1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3. 考试结束,考生必须将试题卷和答题卡一并交回。
参考公式:样本数据x 1,x 2,…,x a 的标准差 锥体体积公式13V S h =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位,若集合S=}{1.0.1-,则A.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i∈ 2.若a ∈R ,则a=2是(a-1)(a-2)=0的A.充分而不必要条件 B 必要而不充分条件C.充要条件 C.既不充分又不必要条件 3.若tan α=3,则2sin 2cos aα的值等于A.2B.3C.4D.64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A.14B.13 C.12 D.235.10⎰(e 2+2x )dx 等于A.1B.e-1C.eD.e+1 6.(1+2x)3的展开式中,x 2的系数等于A.80B.40C.20D.107.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A.1322或B.23或2C.12或2 D.2332或 8.已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域,上的一个动点,则OA ·的取值范围是A.[-1.0]B.[0.1]C.[0.2]D.[-1.2]9.对于函数f (x )=asinx+bx+c(其中,a,b ∈R,c ∈Z),选取a,b,c 的一组值计算f (1)和f (-1),所得出的正确结果一.定不可能....是 A.4和6 B.3和1 C.2和4 D.1和210.已知函数f(x)=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A.①③B.①④C. ②③D.②④2011年普通高等学校招生全国统一考试(福建卷)数 学(理工农医类)注意事项:用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。
2011年普通高等学校招生全国统一考试福建卷
2011年普通高等学校招生全国统一考试(福建卷)理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为必考题,第Ⅱ卷包括必考题和选考题两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至12。
满分300分。
注意事项:1.答卷前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码上的“准考证号、姓名”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案的标号。
第Ⅱ卷用0.5 毫米的黑色墨水签字笔在答题卡书写上作答,答案无效。
在试题上作答,答案无效。
3.考试结束,考生必须将本试题卷和答题卡一并交回。
以下数据仅供解题时参考:相对原子质量:H 1 C 12 N 14 O 16 S 32 Ca 40 Fe 56 Ba 137第Ⅰ卷(选择题共108分)本卷共18小题,每小题6分,共108分。
在每小题给出的四个选项中,只有一个是符合题目要求。
1.下列关于人体细胞代谢场所的叙述,正确的是A.乳酸产生的场所是线粒体B.雌性激素合成的场所是核糖体C.血红蛋白合成的场所是高尔基体D.胰岛素基因转录的场所是细胞核CO的量)的变化2.右图是夏季晴朗的白天,玉米和花生净光合速率(时间单位、单位叶面积吸收2曲线,下列叙述错误..的是A.在9:30~11:00之间,花生净光合率下降的原因是暗反应过程减缓B.在11:00~12:30之间,花生的单位叶面积有机物积累量比玉米得多O速率相同C.在17:00时,玉米和花生的单位叶面积释放2D.在18:30时,玉米即能进行光反应,也能进行暗反应3.正常人体内的激素、酶和神经递质均有特定的生物活性,这三类物质都是..A.在细胞内发挥作用B.由活细胞产生的蛋白质C.在特定分子结合后起作用D.在发挥作用后还能保持活性4.下表选项中,甲、乙、丙三者关系能用右下图表示的是5.火鸡的性别决定方式是ZW型。
2011年普通高等学校招生全国统一考试数学理试题(全国卷,含答案).doc
2011 年普通高等学校招生全国统一考试数学理试题(全国卷,含答案)本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分。
第Ⅰ卷 1 至 2 页。
第Ⅱ卷 3 至 4 页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前, 考生在答题卡上务必用直径0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
..........3.第Ⅰ卷共 l2 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是 符合题目要求的。
一、选择题(1) 复数 z 1i , z 为 z 的共轭复数,则 zz z 1( A ) 2i( B ) i( C ) i( D ) 2i【答案】 B(2) 函数 y 2 x( x 0) 的反函数为( A ) yx 2( x R)( B )4( C )y 4x 2( x R)( )Dyx 2( x 0)4y 4x 2 ( x 0) 【答案】 B(3) 下面四个条件中,使 a b 成立的充分而不必要的条件是( A ) a >b 1( B ) a >b 1(C ) a 2> b 2( D ) a 3> b 3【答案】 A(4) 设 S n 为等差数列a n 的前 n 项和,若 a 1 1,公差 d2 , S k 2 S k 24 ,则 k( A ) 8 (B ) 7( C ) 6( D ) 5【答案】 D(5) 设函数 f ( x) cos x(0) ,将 yf ( x) 的图像向右平移个单位长度后,所得的图3像与原图像重合,则的最小值等于( A )1(B ) 3(C ) 6( D ) 93【答案】 C(6) 已知直二面角l , 点 A , AC l , C 为垂足 , B , BD l , D 为垂足.若 AB2, AC BD 1,则 D 到平面 ABC 的距离等于2 (B) 36 (D) 1(A)3 (C)33【答案】 CA(7) 某同学有同样的画册 2 本,同样的集邮册 3 本,从中取出 4 本赠送给 4 位朋友每位朋友 1 本,则不同的赠送方法共有(A) 4 种(B)10 种(C)18 种(D)20 种lD【答案】 BCB E(8) 曲线 y e 2 x1在点 (0,2) 处的切线与直线 y 0 和 y x 围 成的三角形的面积为(A)1(B)1 (C)2 (D)1323【答案】 A(9) 设 f ( x) 是周期为 2 的奇函数,当 0x 1 时, f (x)2x(1 x) , 则 f (5 )11112(A) -(B)(C)(D)2442【答案】 A(10) 已知抛物线C : y 24x 的焦点为 F ,直线 y2x 4 与 C 交于 A , B 两点.则cos AFB(A)4(B)3 (C)3 (D)4 5555【答案】 D(11) 已知平面 α截一球面得圆 M ,过圆心 M 且与 α 成 600 二面角的平面 β 截该球面得圆 N .若该球面的半径为 4,圆 M 的面积为 4 ,则圆 N 的面积为(A) 7 (B) 9(C)11(D)13【答案】 D(12) r r rr rr r 1 rr r rr设向量 a , b , c 满足 | a | | b |1, agb, ac,bc60 ,则 | c | 的最大值2等于(A) 2 (B)3(c)2(D) 1【答案】 AB绝密★启用前2011 年普通高等学校招生全国统一考试ACD理科数学 ( 必修 +选修 II)第Ⅱ卷注意事项:1 答题前,考生先在答题卡上用直径0. 5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2011年高考福建省数学试卷-理科(含详细答案)
2011年普通高等学校招生全国统一考试(福建卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合{}1,0,1S =-,则( ). A .i S ∈ B .2i S ∈ C . 3i S ∈ D .2iS ∈ 【解】2i 1S =-∈.故选B .2.若a ∈R ,则2a =是()()120a a --=的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 C .既不充分又不必要条件【解】当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件, 但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A .3.若tan 3α=,则2sin 2cos αα的值等于( ). A .2 B .3 C .4 D .6【解】22sin 22sin cos 2tan 6cos cos ===αααααα.故选D . 4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ΔABE 内部的概率等于( ).A .14 B .13 C .12 D .23【解】因为Δ12ABE ABCD S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABCD S P S ==.故选C . 5.()1e2xx dx +⎰等于( ). A .1 B .e 1- C .e D .e 1+ 【解】()()11200e2e e 1e 0e xx x dx x+=+=+--=⎰.故选C .6.()512x +的展开式中,2x 的系数等于( ).A .80B .40C .20D .10DCBEA【解】15C 2r r r r T x +=,令2r =,则2x 的系数等于225C 240=.故选B .7.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::4:3:2P F F F P F =,则曲线Γ的离心率等于( ). A .12或32 B .23或2 C .12或2 D .23或32【解】因为1122::4:3:2PF FF PF =,所以设14PF λ=,123F F λ=,22PF λ=.若Γ为椭圆,则12122426,23,PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩所以12c e a ==.若Γ为双曲线,则12122422,23,PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩所以32c e a ==.故选A .8.已知O 是坐标原点,点()1,1A -,若点(),M x y 为平面区域2,1,2x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( ).A .[]1,0-B .[]0,1C .[]0,2D .[]1,2- 【解】设()()1,1,z OA OM x y x y =⋅=-⋅=-+. 作出可行域,如图.直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM ⋅的取值范围是[]0,2.故选C . 9.对于函数()sin f x a x bx c =++(其中,,a b ∈R ,c ∈Z ),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是( ).A .4和6B .3和1C .2和4D .1和2【解】()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ∈Z ,则()()11f f +-为偶数,四个选项中,只有D,123+=不是偶数. 故选D .10.已知函数()e x f x x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断:①ΔABC 一定是钝角三角形 ②ΔABC 可能是直角三角形 ③ΔABC 可能是等腰三角形 ④ΔABC 不可能是等腰三角形 其中,正确的判断是( ).A .①,③B .①,④C .②,③D .②,④【解】设a b <.首先证明()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.()()22f a f b a b f ++⎛⎫- ⎪⎝⎭222a b a b e a e b a b e +++++=--22a ba b e e e ++=-2220a b a b a b eee+++≥=-=,当且仅当a b =时等号成立,由于a b <,所以等号不成立,于是()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭,()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ①设点(),A A A x y ,(),B B B x y ,(),C C C x y ,且,,A B C x x x 成等差数列,A B C x x x <<. 由()f x 是R 上的增函数,则A B C y y y <<, ② 如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ⊥交BN 于E ,作B F C P ⊥交CP 于F .因为()()22A C A C D f x f x y y y ++==,2ACB x x y f +⎛⎫= ⎪⎝⎭, 由①式,D B y y >,,D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 的内部,因而90DBA DEA ∠>∠=︒,又CBA DBA ∠>∠,所以ABC ∆一定是钝角三角形.结论①正确.若ABC ∆是等腰三角形,因为D 为AC 的中点,则BD AC ⊥,因而//AC x 轴,这是不可能的,所以ABC ∆不是等腰三角形.结论④正确;所以结论①,④正确.故选B.二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置. 11.运行如图所示的程序,输出的结果是_______.【解】3.123a =+=.所以输出的结果是3. 12.三棱锥P ABC -中,PA ABC ⊥底面,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于______.【解2Δ112333ABC V S PA =⋅=⨯=.13.何种装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______.【解】35. 所取出的2个球颜色不同的概率113225C C 233C 105P ⨯===. 14.如图,ΔABC 中,2AB AC ==,BC =点D 在BC 边上,45ADC ∠=︒,则AD 的长度等于______.【解解法1.由余弦定理222cos 22AC BC AB C AC BC +-===⋅⋅, 所以30C =︒.再由正弦定理s i n s i n A D A C C A D C =∠,即2sin 30sin 45AD =︒︒,所以AD = 解法2.作AE BC ⊥于E ,因为2AB AC ==,所以E 为BC的中点,因为BC =EC.BCAED BCA于是1AE =,因为ΔADE 为有一角为45︒的直角三角形.且1AE =,所以AD = 15.设V 是全体平面向量构成的集合,若映射:f V →R 满足:对任意向量()11,a x y V =∈,()22,b x y V =∈,以及任意λ∈R ,均有()()()()()11f a b f a f b +-=+-λλλλ则称映射f 具有性质P .先给出如下映射:① ()()11:,,,f V f m x y m x y V→=-=∈R ;② ()()222:,,,f V f m x y m x y V →=+=∈R ; ③ ()()33:,1,,f V f m x y m x y V →=++=∈R .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号).【解】①,③.设()11,a x y V =∈,()22,b x y V =∈,则()()()()()()()112212121,1,1,1a b x y x y x x y y +-=+-=+-+-λλλλλλλλ.对于①,()()()()()()1212111f a b x x y y +-=+--+-λλλλλλ()()()11221x y x y =-+--λλ,()()()()()()112211f a f b x y x y +-=-+--λλλλ,所以()()()()()11f a b f a f b +-=+-λλλλ成立,①是具有性质P 的映射; 对于②,()()()()()()21212111f a b x x y y +-=+-++-λλλλλλ()()()()2121211x x y y =+-++-λλλλ()()()22221122121121x y x y x x =++-+-+-λλλλλλ,()()()()()()22112211f a f b x y x y +-=++--λλλλ,显然,不是对任意λ∈R ,()()()()()11f a b f a f b +-=+-λλλλ成立, 所以②不是具有性质P 的映射; 对于③,()()()()()()12121111f a b x x y y +-=+-++-+λλλλλλ()()()112211x y x y =++-++λλ,()()()()()()11221111f a f b x y x y +-=+++-++λλλλ()()()()112211x y x y =++-+++-λλλλ ()()()112211x y x y =++-++λλ.所以()()()()()11f a b f a f b +-=+-λλλλ成立,③是具有性质P 的映射. 因此,具有性质P 的映射的序号为①,③.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若函数()sin(2)(0,0)f x A x A =+><<ϕϕπ在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.【解】(Ⅰ)由3q =,3133S =得()311313133a -=-,解得113a =.所以11211333n n n n a a q---==⨯=. (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =. 又因为函数()f x 在6x π=处取得最大值,则sin 216⎛⎫⨯+= ⎪⎝⎭πϕ,因为0<<ϕπ,所以6=πϕ.函数()f x 的解析式为()3sin 26f x x ⎛⎫=+⎪⎝⎭π. 17.(本小题满分13分)已知直线:l y x m =+,m ∈R .(Ⅰ)若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;(Ⅱ)若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由.【解】(Ⅰ)解法1.由题意,点P 的坐标为()0,m . 因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ⊥.01102MP l m k k -⋅=⋅=--,所以2m =. 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=,则r MP ===,所以,所求的圆的方程为()2228x y -+=. 解法2.设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224,,m r r ⎧+==解得2,m r =⎧⎪⎨=⎪⎩所以,所求的圆的方程为()2228x y -+=.(Ⅱ)解法1.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--.由24,,x y y x m ⎧=⎨=--⎩得2440x x m ++=, 2Δ4440m =-⨯=,解得1m =.所以,当1m =时,Δ0=,直线l '与抛物线2:4C x y =相切,当1m ≠时,Δ0≠,直线l '与抛物线2:4C x y =不相切.解法2.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:lyx m '=--.设直线l '与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x '=,则0112x =-,02x =-,()022y m m =---=-.所以切点为()2,2m --,窃电在抛物线214y x =上,则21m -=,1m =.所以,当1m =时,直线l '与抛物线2:4C x y =相切,当1m ≠时,直线l '与抛物线2:4C x y =不相切.18.(本小题满分13分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。
2011年高考理科数学(全国卷)(含答案)
2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效。
...... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i(2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13 (B )3 (C )6 (D )9(6)已知直二面角α –ι- β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)23 (B)33 (C)63(D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种(8)曲线y=2xe-+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为(A)13(B)12(C)23(D)1(9)设()f x是周期为2的奇函数,当0≤x≤1时,()f x=2(1)x x-,则5 ()2f-=(A) -12(B)14- (C)14(D)12(10)已知抛物线C:24y x=的焦点为F,直线24y x=-与C交于A,B两点.则cos AFB∠=(A)45(B)35(C)35- (D)45-(11)已知平面α截一球面得圆M,过圆心M且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4π,则圆N的面积为(A)7π (B)9π (C)11π (D)13π(12)设向量a,b,c满足a=b =1,a b =12-,,a cb c--=060,则c的最大值等于(A)2 (B)3 (c)2 (D)1第Ⅱ卷注意事项:1、答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2011年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)
2011年普通高等学校招生全国统一考试(全国新) 数学(理)试题解析第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)(2011全国新课标卷理)复数212i i+-的共轭复数是 ( ) (A )35i - (B )35i (C )i - (D )i 解析:212i i +-=(2)(12),5i i i ++=共轭复数为C(2)(2011全国新课标卷理)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )(A )3y x = (B ) 1y x =+ (C )21y x =-+ (D ) 2x y -=解析:由图像知选B(3)(2011全国新课标卷理)执行右面的程序框图,如果输入的N 是6,那么输出的p 是( )(A )120 (B )720(C )1440 (D )5040解析:框图表示1n n a n a -=⋅,且11a =所求6a =720选B(4)(2011全国新课标卷理)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )(A )13 (B )12 (C )23 (D )34解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=选A(5)(2011全国新课标卷理)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ= ( )(A )45-(B )35- (C )35 (D )45解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B(6)(2011全国新课标卷理)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。
2011年普通高等学校招生全国统一考试(福建卷)数学试题 (理科)(解析版)
绝密☆启用前2011年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项:1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3. 考试结束,考生必须将试题卷和答题卡一并交回。
参考公式:样本数据x 1,x 2,…,x a 的标准差 锥体体积公式13V S h =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位,若集合S=}{1.0.1-,则( )A.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i∈ 解析:由21i S =-∈得选项B 正确。
2.若a ∈R ,则a=2是(a-1)(a-2)=0的( )A.充分而不必要条件 B 必要而不充分条件C.充要条件 C.既不充分又不必要条件解析:由a=2可得(a-1)(a-2)=0成立,反之不一定成立,故选A.3.若tan α=3,则2sin 2cos aα的值等于( ) A.2 B.3 C.4 D.6 解析:2sin 22tan 6cos aαα==,选D 。
4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23解析:12ABE ABCD S P S ∆==,选C 。
2011年福建高考数学理科试卷(带详解)
2011福建理第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合{}1,0,1S =-,则,则( ) A .i S Î B .2i S Î C . 3i S ÎD .2iS Î 【测量目标】复数的基本概念、集合的含义.【测量目标】复数的基本概念、集合的含义.【考查方式】给出虚数单位和集合,判断它们之间的关系.【考查方式】给出虚数单位和集合,判断它们之间的关系. 【难易程度】容易【难易程度】容易 【参考答案】B【试题解析】22i 1S =-Î.故选B .2.若a ÎR ,则2a =是()()120a a --=的 ( ) A .充分而不必要条件.充分而不必要条件 B .必要而不充分条件.必要而不充分条件C .充要条件.充要条件 C .既不充分又不必要条件.既不充分又不必要条件 【测量目标】充分、必要条件.【测量目标】充分、必要条件.【考查方式】给出两个命题,判断两个命题的关系.【考查方式】给出两个命题,判断两个命题的关系. 【难易程度】容易【难易程度】容易 【参考答案】A【试题解析】当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件,但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A .3.若tan 3α=,则2sin 2cos aa的值等于的值等于 ( ) A .2 B .3 C .4D .6 【测量目标】同角三角函数的基本关系、二倍角公式.【测量目标】同角三角函数的基本关系、二倍角公式.【考查方式】给出式子和正切函数值,利用同角三角函数的基本关系和二倍角公式求解. 【难易程度】容易【难易程度】容易 【参考答案】D 【试题解析】22sin 22sin cos 2tan 6cos cos ===aa aa a a.故选D .4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE △内部的概率等于内部的概率等于 ( ) A .14 B .13 C .12D .23第4题图题图【测量目标】几何概型.【测量目标】几何概型.【考查方式】给出图形,利用几何概型求事件的概率.【考查方式】给出图形,利用几何概型求事件的概率. 【难易程度】容易【难易程度】容易 【参考答案】C 【试题解析】因为12ABE ABCD S S =△,则点Q 取自ABE △内部的概率12ABE ABCD S P S ==△.故选C . 5.()1e2xx dx +ò等于等于( ) A .1 B .e 1- C .eD .e 1+ 【测量目标】定积分.【测量目标】定积分.【考查方式】给出定积分,求解.【考查方式】给出定积分,求解. 【难易程度】容易【难易程度】容易 【参考答案】C【试题解析】()()11200e 2e e 1e 0e x x x dx x +=+=+--=ò.故选C . 6.()512x +的展开式中,2x 的系数等于的系数等于 ( ) A .80 B .40 C .20 D .10 【测量目标】二项式定理.【测量目标】二项式定理.【考查方式】给出二项式根据二项展开式的公式特点计算二项式系数.【考查方式】给出二项式根据二项展开式的公式特点计算二项式系数. 【难易程度】容易【难易程度】容易 【参考答案】B 【试题解析】15C 2rrr r Tx +=,令2r =,则2x 的系数等于225C 240=.故选B . 7.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::4:3:2P F F F P F =,则曲线Γ的离心率等于的离心率等于 ( ) A .12或32B .23或2C .12或2D .23或32【测量目标】圆锥曲线的定义.【测量目标】圆锥曲线的定义. 【考查方式】通过给出圆锥曲线上的点与两个交点之间的线段长度比例关系,求圆锥曲线的离心率.离心率.【难易程度】中等【难易程度】中等 【参考答案】A【试题解析】因为1122::4:3:2PF F F PF =,所以设14PF λ=,123F F λ=,22PF λ=.若Γ为椭圆,则12122426,23,PF PF a λλλF F c λì+==+=ïí==ïî所以12c e a ==.若Γ为双曲线,则12122422,23,PF PF a λλλF F c λì-==-=ïí==ïî所以32c e a ==.故选A . 8.已知O 是坐标原点,点()1,1A -,若点(),M x y 为平面区域212x y x y +ìïíïî………上的一个动点,则OA OM的取值范围是的取值范围是( ) A .[]1,0- B .[]0,1 C .[]0,2 D .[]1,2- 【测量目标】判断不等式组表示的平面区域、向量的数量积.【测量目标】判断不等式组表示的平面区域、向量的数量积.【考查方式】给出点的坐标和不等式组,判断两向量数量积的取值范围.【考查方式】给出点的坐标和不等式组,判断两向量数量积的取值范围. 【难易程度】中等【难易程度】中等 【参考答案】C【试题解析】设()()1,1,z OA OM x y x y ==-=-+ .作出可行域,如图,直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM 的取值范围是[]0,2.故选C .第8题图题图9.对于函数()sin f x a x bx c =++(其中,,a b ÎR ,c ÎZ ),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是 ( ) A .4和6 B .3和1 C .2和4D .1和2 【测量目标】函数的求值.【测量目标】函数的求值.【考查方式】给出函数式,判断两函数之和的结果.【考查方式】给出函数式,判断两函数之和的结果. 【难易程度】中等【难易程度】中等 【参考答案】D【试题解析】()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ÎZ ,则()()11f f +-为偶数,四个选项中,只有D ,123+=不是偶数.不是偶数.10.已知函数()e xf x x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断:给出以下判断:①ABC △一定是钝角三角形②ABC △可能是直角三角形可能是直角三角形 ③ABC △可能是等腰三角形可能是等腰三角形 ④ABC △不可能是等腰三角形不可能是等腰三角形 其中,正确的判断是其中,正确的判断是( ) A .①.①,,③ B .①.①,,④ C .②.②,,③ D .②.②,,④【测量目标】基本不等式、指数函数的性质、函数的单调性、等差数列的性质、函数图象的应用.应用.【考查方式】给出指数函数,判断其图象横坐标上的三个点所成的形状.【考查方式】给出指数函数,判断其图象横坐标上的三个点所成的形状. 【难易程度】较难【难易程度】较难 【参考答案】B【试题解析】设a b <.首先证明()()22f a f ba b f ++æö>ç÷èø.()()22f a f b a b f ++æö-ç÷èø2eee22a baba ba b +++++=--2e e e2a b ab++=-222e e e e e 0a ba ba bab+++-=-= …,(步骤1)当且仅当a b =时等号成立,由于a b <,所以等号不成立,于是,所以等号不成立,于是 ()()022f a f b a b f ++æö->ç÷èø, ()()22f a f b a b f ++æö>ç÷èø. ① (步骤2) 设点(),A A A x y ,(),B B B x y ,(),C C C C x x y y,且,,A B C x x x 成等差数列,A B C x x x <<.由()f x 是R 上的增函数,则A B C y y y <<, ② (步骤3) 如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ^交BN 于E ,作B F C P ^交CP 于F .因为()()22A C A CD f x f x y y y ++==,2A CB x x y f +æö=ç÷èø, 由①式,D B y y >,(步骤4)D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 内部,(步骤5)因而90DBA DEA °Ð>Ð=,又CB A D B A Ð>Ð,所以ABC △一定是钝角三角形.结论①正确.(步骤6)若ABC △是等腰三角形,因为D 为AC 的中点,则BD AC ^,因而AC x 轴,这是不可能的,所以ABC △不是等腰三角形.结论④正确;不是等腰三角形.结论④正确; 所以结论①,④正确.故选B .(步骤7)第10题图题图二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置. 11.运行如图所示的程序,输出的结果是_______.第11题图题图【测量目标】程序语句.【测量目标】程序语句.【考查方式】给出程序语句,计算求解.【考查方式】给出程序语句,计算求解. 【难易程度】容易【难易程度】容易【参考答案】3【试题解析】123a =+=.所以输出的结果是3.12.三棱锥P ABC -中,PA ABC ^底面,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于______. 【测量目标】三棱锥的体积.【测量目标】三棱锥的体积.【考查方式】给出三棱锥的底边边长和高,求其体积.【考查方式】给出三棱锥的底边边长和高,求其体积. 【难易程度】容易【难易程度】容易 【参考答案】3【试题解析】2113233334ABCV SPA ==´´´=△. 13.盒子装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______. 【测量目标】随机事件与概率.【测量目标】随机事件与概率.【考查方式】给出条件,利用随机概率求解.【考查方式】给出条件,利用随机概率求解. 【难易程度】中等【难易程度】中等 【参考答案】35【试题解析】所取出的2个球颜色不同的概率113225C C 233C 105P ´===. 14.如图,ABC △中,2AB AC ==,23BC =,点D 在BC 边上,45ADC °Ð=,则AD 的长度等于______.第14题图(1)【测量目标】余弦定理、正弦定理.【测量目标】余弦定理、正弦定理.【考查方式】给出三角形边长及角度,利用余弦定理和正弦定理求长度.【考查方式】给出三角形边长及角度,利用余弦定理和正弦定理求长度. 【难易程度】中等【难易程度】中等【参考答案】2【试题解析】解法一:由余弦定理【试题解析】解法一:由余弦定理22241243c o s 222223AC BC AB C AC BC +-+-===´´ ,(步骤1) 所以30C °=.(步骤2) 再由正弦定理再由正弦定理s i n s i n A D A C C A D C =Ð,即2sin 30sin 45AD °°=,所以2AD =.(步骤3) 解法二:作AE BC ^于E ,因为2AB AC ==,所以E 为BC 的中点,因为23BC =,则3EC =.(步骤1)于是221AE AC EC =-=,(步骤2)因为ADE △为有一角为45°的直角三角形.且1AE =,所以2AD =.(步骤3)第14题图(2) 15.设V 是全体平面向量构成的集合,若映射:f V ®R 满足:对任意向量()11,x y V =Îa ,()22,x y V =Îb ,以及任意λÎR ,均有,均有()()()()()11f f f l l l l +-=+-a b a b则称映射f 具有性质P .先给出如下映射:先给出如下映射:① ()()11:,,,f V f x y x y V®=-=ÎR m m ;② ()()222:,,,f V f x y x y V ®=+=ÎR m m ; ③ ()()33:,1,,f V f x y x y V ®=++=ÎR m m .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号). 【测量目标】向量的坐标运算、映射.【测量目标】向量的坐标运算、映射.【考查方式】给出三个映射,利用向量的坐标运算求出与f 具有相同性质的映射.具有相同性质的映射. 【难易程度】较难【难易程度】较难 【参考答案】①,③【参考答案】①,③【试题解析】设()11,x y V =Îa ,()22,x y V =Îb ,则,则()()()()11221,1,x y x y l l l l +-=+-a b()()()12121,1x x y y l l l l =+-+-.(步骤1) 对于①,对于①, ()()()()()()1212111fx x y y l l l l l l +-=+--+-a b()()()11221x y x y =-+--l l ,(步骤2)()()()()()()112211f f x y x y l l l l +-=-+--a b ,所以()()()()()11f f f l l l l +-=+-a b a b 成立,①是具有性质P 的映射;(步骤3)对于②,()()()()()()21212111f x x y y l l l l l l +-=+-++-a b()()()()2121211x x y y =+-++-l l l l()()()22221122121121x y x y x x =++-+-+-l l l l l l ,(步骤4) ()()()()()()22112211f f x y x y l l l l +-=++--a b , 显然,不是对任意λÎR ,()()()()()11ff f l l l l +-=+-a b a b 成立,成立,所以②不是具有性质P 的映射;(步骤5) 对于③,()()()()()()12121111fx x y y l l l l l l +-=+-++-+a b()()()112211x y x y =++-++l l ,(步骤6)()()()()()()11221111f f x y x y l l l l +-=+++-++a b()()()()112211x y x y =++-+++-l l l l ()()()112211x y x y =++-++l l . 所以()()()()()11ff f l l l l +-=+-a b a b 成立,③是具有性质P 的映射.的映射.(步骤7)因此,具有性质P 的映射的序号为①,③.(步骤8)三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16.已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ)求数列{{}}n a 的通项公式;的通项公式;(Ⅱ)若函数()sin(2)(0,0π)f x A x A j j =+><<在π6x =处取得最大值,且最大值为3a ,求函数()f x 的解析式.的解析式.【测量目标】等比数列的通项、性质及前n 项和、函数sin()y A x w j =+的图象及性质.的图象及性质. 【考查方式】给出等比数列的公比和前几项的和,给出等比数列的公比和前几项的和,求其通项公式;求其通项公式;求其通项公式;已知函数的最大值为数列已知函数的最大值为数列的一项,求其解析式.的一项,求其解析式. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)由3q =,3133S =Þ()311313133a -=-,解得113a =.(步骤1)所以11211333n n n n a a q---==´=.(步骤2) (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =.(步骤3) 又因为函数()f x 在π6x =处取得最大值,处取得最大值, 则πsin 216jæö´+=ç÷èø,因为0πj <<,所以π6j =.(步骤4) 函数()f x 的解析式为π()3sin 26f x x æö=+ç÷èø.(步骤5) 17.已知直线:l y x m =+,m ÎR .(Ⅰ)若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;方程;(Ⅱ)若直线l 关于x 轴对称的直线为l ¢,问直线l ¢与抛物线2:4C x y =是否相切?说明理由.明理由.【测量目标】圆的方程、直线与圆的位置关系、直线与抛物线的位置关系.【测量目标】圆的方程、直线与圆的位置关系、直线与抛物线的位置关系.【考查方式】给出直线方程,根据圆与直线的位置关系求圆的方程;根据圆与直线的位置关系求圆的方程;给出抛物线方程和直线给出抛物线方程和直线的条件,判断两者之间的位置关系.的条件,判断两者之间的位置关系. 【难易程度】较难【难易程度】较难【试题解析】(Ⅰ)解法一:由题意,点P 的坐标为(())0,m .因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ^.01102MP l m k k -==-- ,所以2m =.(步骤1) 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=, 则()()2202208r MP ==-+-=,(步骤2) 所以,所求的圆的方程为()2228x y -+=.(步骤3)第17题图(1)解法二:设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224202m r mr ì+=ï-+í=ïî,解得222m r =ìïí=ïî.(步骤1) 所以,所求的圆的方程为()2228x y -+=.(步骤2)(Ⅱ)解法一:因为直线:l y x m =+,且,且直线l ¢与直线l 关于x 轴对称,则:l y x m ¢=--.(步骤4)由24,,x y y x m ì=í=--î得2440x x m ++=, 2Δ4440m =-´=,解得1m =.(步骤5)所以,当1m =时,Δ0=,直线l ¢与抛物线2:4C x y =相切,当1m ¹时,Δ0¹,直线l ¢与抛物线2:4C x y =不相切.(步骤6)解法二:因为直线:l y x m =+,且直线l ¢与直线l 关于x 轴对称,则:l y x m ¢=--.设直线l ¢与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x ¢=,则0112x =-,02x =-, ()022y m m =---=-.(步骤3) 所以切点为()2,2m --,切点在抛物线214y x =上,则21m -=,1m =.(步骤4)所以,当1m =时,直线l ¢与抛物线2:4C x y =相切,当1m ¹时,直线l ¢与抛物线2:4C x y =不相切.(步骤5)第17题图(2)18.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.千克. (Ⅰ)求a 的值;的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.所获得的利润最大.【测量目标】一元二次函数模型,利用倒数求函数的最值.【测量目标】一元二次函数模型,利用倒数求函数的最值.【考查方式】给出函数关系式,根据条件求解,再利用导数求利润最大时的销售价格. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)因为5x =时,11y =,由函数式,由函数式210(6)3ay x x =+--得 11102a =+,所以2a =.(步骤1) (Ⅱ)因为2a =,所以该商品每日的销售量为2210(6)3y x x =+--,()36x <<.每日销售该商品所获得的利润为每日销售该商品所获得的利润为()()()222310(6)2103(6)3f xx x x x x éù=-+-=+--êú-ëû,()36x <<.(步骤2)()()()()()()21062363064f x x x x x x éù¢=-+--=--ëû.(步骤3) 于是,当x 变化时,()f x ¢,()f x 的变化情况如下表:的变化情况如下表:x()3,44()4,6()f x ¢+-()f x极大值由上表可以看出,4x =是函数在区间()3,6内的极大值点,也是最大值点.(步骤4) 所以,当4x =时,函数()f x 取得最大值42.因此当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.(步骤5) 19.某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,,8…,其中5X …为标准A ,3X …为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准行标准(Ⅰ)已知甲厂产品的等级系数1X 的概率分布列如下所示:的概率分布列如下所示:1X 5 6 7 8P0.4 a b0.1且1X 的数字期望16EX =,求,a b 的值;的值;(Ⅱ)为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 53 8 34 3 4 4 75 67 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望.的数学期望. (Ⅲ)在(Ⅰ),(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.可购买性?说明理由.注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.“性价比”大的产品更具可购买性. 【测量目标】离散型随机变量的期望和方差.【测量目标】离散型随机变量的期望和方差.【考查方式】给出分布列和期望,求分布列中的未知数;【考查方式】给出分布列和期望,求分布列中的未知数;根据样本数据求期望;给出产品性根据样本数据求期望;给出产品性价比的公式,判断购买性.价比的公式,判断购买性. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)因为16EX =,所以,所以50.46780.16a b ´+++´=,即67 3.2a b +=,(步骤1)又0.40.11a b +++=, 所以0.5a b +=,解方程组67 3.20.5a b a b +=ìí+=î解得0.3a =,0.2b =.(步骤2)(Ⅱ)由样本的数据,样本的频率分布表如下:(Ⅱ)由样本的数据,样本的频率分布表如下:2X3 45 6 7 8 f0.30.20.20.10.10.1(步骤3)用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数2X 的概率分布列如下表:列如下表:2X 345 6 7 8P0.3 0.20.2 0.1 0.1 0.1(步骤4) 所以230.340.250.260.170.180.1 4.8EX =´+´+´+´+´+´=.(步骤5) (Ⅲ)甲厂的产品的等级系数的数学期望为6,价格为6元/件,所以性价比为616=,(步骤6)甲厂的产品的等级系数的数学期望为4.8,价格为4元/件,所以性价比为4.81.214=>.所以,乙厂的产品更具可购买性.(步骤7)20.如图甲,四棱锥P ABCD -中,PA ABCD ^底面,四边形ABCD 中,AB AD ^,4AB AD +=,2CD =,45CDA °Ð=.(Ⅰ)求证:PAB ^平面平面P AD ; (Ⅱ)设AB AP =.(i )若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;的长;(ii )在线段AD 上是否存在一个点G ,使得点G 到点,,,P B C D 的距离都相等?说明理由.明理由.第20题图题图【测量目标】面面垂直的判定、线面角、立体几何中的探索性问题.【测量目标】面面垂直的判定、线面角、立体几何中的探索性问题.【考查方式】给出四棱锥及其边角关系和条件,证明面面垂直;根据线面角求解线段长度,探索点的存在性.探索点的存在性. 【难易程度】较难【难易程度】较难 【试题解析】(Ⅰ)因为PA ABCD ^底面,AB ABCD Ì底面,所以PA AB ^.(步骤1)又AB AD ^,PA AD A =∩,所以AB ^平面P AD ,又AB Ì平面P AB , PAB ^平面平面P AD .(步骤2)(Ⅱ)以A 为坐标原点,建立如图的空间直角坐标系A xyz -.在平面ABCD 内,作//CE AB 交AD 于E . 则CE AD ^.(步骤3)在Rt CDE △中,2cos 45212DE CD °===.(步骤4) 设AB AP t ==,则(),0,0B t ,()0,0,P t .由4AB AD +=,则4AD t =-,所以()0,3,0E t -,()0,4,0D t -,()1,3,0C t -.()1,1,0CD =- ,()0,4,PD t t =--,(步骤5)(i )设平面PCD 的法向量为(),,x y z =n ,由CD ^ n ,PD ^ n 得00CDPD ì=ïí=ïîn n , ()040x y t y tz -+=ìí--=î取x t =,则y t =,4z t =-.(),,4n t t t =- ,(步骤6) 又(),0,PB t t =-,由直线PB 与平面PCD 所成的角为30°,得,得22222241cos602(4)2PB t t PBt t t t °-===++- n n .(步骤7) 解得45t =或4t =(因为40,4AD t t =-><,故舍去),故舍去)所以45AB =.(步骤8)第20题图(1)(ii )假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,的距离都相等, 设()0,,0G m ,()04mt -剟.则()1,3,0GC t m =-- ,()0,4,0GD t m =-- ,()0,,GP m t =-,(步骤9)则由GC GD = 得()()22134t m t m +--=--,即3t m =-, ①由GP GD =得()2224t m m t --=+, ②(步骤10)从①,②消去t ,并化简得2340m m -+= ③方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.(步骤11)第20题图(2)解法二:假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,的距离都相等, 由GC GD =得45GCD GDC °Ð=Ð=, 从而90CGD °Ð=,则CG GD ^,(步骤9)设AB λ=,则由4AB AD +=,得4AD λ=-,(步骤10)3AG AD GD λ=-=-.(步骤11) 在Rt ABG △中,()222223932122GB ABAG λλλæö=+=+-=-+>ç÷èø. (步骤12)与1GB GD ==矛盾,矛盾,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B CD 的距离都相等.的距离都相等. (步骤13)第20题图(3)21.本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.号涂黑,并将所选题号填入括号中. (1)选修42-:矩阵与变换:矩阵与变换设矩阵设矩阵 00a Mb æö=ç÷èø(其中0a >, 0b >). (Ⅰ)若2,3a b ==,求矩阵M 的逆矩阵1M -;(Ⅱ)若曲线22:1C x y +=在矩阵M 所对应的线性变换作用下得到曲线22:14x C y ¢+=,求,a b 的值.的值.【测量目标】矩阵与行列式初步.【测量目标】矩阵与行列式初步.【考查方式】给出矩阵,求其逆矩阵;给出曲线方程及其在矩阵对应的线性变化作用下得到的曲线方程,求未知量.的曲线方程,求未知量. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)设矩阵M 的逆矩阵11122xy Mx y -æö=ç÷èø,则11001MM -æö=ç÷èø,(步骤1) 因为2003M æö=ç÷èø,所以112220100301x y x y æöæöæö=ç÷ç÷ç÷èøèøèø,(步骤2) 所以121x =,120y =,230x =,231y =, 即112x =,10y =,20x =.213y =,(步骤3) 所以1102103M -æöç÷=ç÷ç÷ç÷èø.(步骤4) (Ⅱ)设曲线C 上的任意一点为(),P x y ,在矩阵M 所对应的线性变换作用下得到点(),P x y ¢¢¢.则00a x x b y y ¢æöæöæö=ç÷ç÷ç÷¢èøèøèø,即ax x by y ¢=ìí¢=î,(步骤5) 又点(),P x y ¢¢¢在曲线22:14x C y ¢+=上,所以2214x y ¢¢+=,(步骤6) 即222214a xb y +=为曲线22:1C x y +=的方程,则24a =,21b =,(步骤7)又因为0,0a b >>,则2,1a b ==.(步骤8) (2)选修44-:坐标系与参数方程:坐标系与参数方程在直接坐标系x O y 中,直线l 的方程为40x y -+=,曲线C 的参数方程为3c o s s i nx θy θì=ïí=ïî(θ为参数).(Ⅰ)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为π4,2æöç÷èø,判断点P 与直线l 的位置关系;的位置关系; (Ⅱ)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【测量目标】坐标系与参数方程、点与直线的位置关系.【测量目标】坐标系与参数方程、点与直线的位置关系.【考查方式】给出直线方程和点的极坐标,判断点与直线的位置关系;给出曲线的参数方程,求曲线上的动点到直线的最小距离.求曲线上的动点到直线的最小距离. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)点P 的极坐标为π4,2æöç÷èø,则直角坐标为()0,4,把()0,4P 代入直线l 的方程40x y -+=,(步骤1)因为0440-+=,所以点P 在直线l 上.(步骤2)(Ⅱ)因为点Q 是曲线C 上的一个动点,则点Q 的坐标可设为()3cos ,sin Q αα.点Q 到直线l 的距离为的距离为π2cos 43cos sin 4π62cos 22622αααdαæö++ç÷-+æöèø===++ç÷èø.(步骤3) 所以当πcos 16αæö+=-ç÷èø时,d 取得最小值2.(步骤4) (3)选修45-:不等式选讲:不等式选讲设不等式211x -<的解集为M . (Ⅰ)求集合M ;(Ⅱ)若,a b M Î,试比较1ab +与a b +的大小.的大小.【测量目标】不等式选讲.【测量目标】不等式选讲.【考查方式】给出不等式,求其解集;给出关于集合两个元素的式子,比较它们的大小. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)由211x -<得1211x -<-<,解得01x <<, 所以{}01M x x =<<.(步骤1)(Ⅱ)因为,a b M Î,则01a <<,01b <<,(步骤2)()()()()1110ab a b a b +-+=-->,所以1ab a b +>+.(步骤3)。
2011年高考理科数学试卷(福建卷) 免费下载-推荐下载
样本数据 x1 , x2 ,…, xn 的标准差
s
1[ n
(
x1
其中 x 为样本平均数
柱体体积公式
V Sh
其中 S 为底面面积, h 为高
x)2
(
x2
x)2
++(
xn
x)2
第Ⅰ卷(选择题 共 50 分)
]
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,
x2
三、解答题:本大题共 6 小题,共 80 分,解答应写出文字说明,证明过程或演算步骤。
13 16.(本小题满分 13 分)已知等比数列{ an }的公比 q =3,前 3 项和 S3 = 3 . (I)求数列{ an }的通项公式; (II)若函数 f (x) = Asin(2x ) ( A >0,0< < )在 x 处取得最大值,且最大
y)
D.10
为平面区域
C.2 和 4
23
D. 或
32
x y 2
x
y 2
1
D.[-1.2]
上的一个动
D.1 和 2
2 / 18
15.设V 是全体平面向量构成的集合,若映射
∈V , b =( x2 , y2 )∈V 以及任意 ∈ R ,均有 f (a+(1 )b) = f (a)+(1 ) f (b)
B 必要而不充分条件
C.既不充分又不必要条件
C.4
4.如图,矩形 ABCD 中,点 E 为边 CD 的中点,若在矩形 ABCD 内部随机取一个点 Q,则
点 Q 取自△ABE 内部的概率等于
2011年高考福建省数学试卷-理科(含详细答案)
2011年普通高等学校招生全国统一考试(福建卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合{}1,0,1S =-,则( ).A .i S ∈B .2i S ∈C . 3i S ∈D .2iS ∈ 【解】2i 1S =-∈.故选B .2.若a ∈R ,则2a =是()()120a a --=的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件 C .既不充分又不必要条件【解】当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件, 但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A . 3.若tan 3α=,则2sin 2cos αα的值等于( ). A .2 B .3 C .4 D .6【解】22sin 22sin cos 2tan 6cos cos ===αααααα.故选D . 4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ΔABE 内部的概率等于( ).A .14B .13C .12D .23 【解】因为Δ12ABE ABCD S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABCD S P S ==.故选C . 5.()10e 2x x dx +⎰等于( ).A .1B .e 1-C .eD .e 1+【解】()()112000e 2e e 1e 0e x x x dx x +=+=+--=⎰.故选C . 6.()512x +的展开式中,2x 的系数等于( ).A .80B .40C .20D .10D C BE A【解】15C 2r r r r T x +=,令2r =,则2x 的系数等于225C 240=.故选B .7.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::4:3:2PF F F PF =,则曲线Γ的离心率等于( ). A .12或32 B .23或2 C .12或2 D .23或32【解】因为1122::4:3:2PF F F PF =,所以设14PF λ=,123F F λ=,22PF λ=.若Γ为椭圆,则12122426,23,PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩所以12c e a ==. 若Γ为双曲线,则12122422,23,PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩所以32c e a ==.故选A . 8.已知O 是坐标原点,点()1,1A -,若点(),M x y 为平面区域2,1,2x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( ).A .[]1,0-B .[]0,1C .[]0,2D .[]1,2-【解】设()()1,1,z OA OM x y x y =⋅=-⋅=-+.作出可行域,如图.直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM ⋅的取值范围是[]0,2.故选C .9.对于函数()sin f x a x bx c =++(其中,,a b ∈R ,c ∈Z ),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能是( ).A .4和6B .3和1C .2和4D .1和2【解】()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ∈Z ,则()()11f f +-为偶数,四个选项中,只有D,123+=不是偶数.故选D .10.已知函数()e x f x x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断:①ΔABC 一定是钝角三角形②ΔABC 可能是直角三角形③ΔABC 可能是等腰三角形④ΔABC 不可能是等腰三角形其中,正确的判断是( ).A .①,③B .①,④C .②,③D .②,④【解】设a b <.首先证明()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ()()22f a f b a b f ++⎛⎫- ⎪⎝⎭222a b a b e a e b a b e +++++=-- 22a b a be e e ++=-2220a ba b a b e e e +++≥=-=,当且仅当a b =时等号成立,由于a b <,所以等号不成立,于是()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭, ()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ① 设点(),A A A x y ,(),B B B x y ,(),C C C x y ,且,,A B C x x x 成等差数列,A B C x x x <<.由()f x 是R 上的增函数,则A B C y y y <<, ②如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ⊥交BN 于E ,作B FC P ⊥交CP 于F . 因为()()22A C A CD f x f x y y y ++==,2AC B x x y f +⎛⎫= ⎪⎝⎭, 由①式,D B y y >,,D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 的内部, 因而90DBA DEA ∠>∠=︒,又CBA DBA ∠>∠,所以ABC ∆一定是钝角三角形.结论①正确.若ABC ∆是等腰三角形,因为D 为AC 的中点,则BD AC ⊥,因而//AC x 轴,这是不可能的,所以ABC ∆不是等腰三角形.结论④正确;所以结论①,④正确.故选B.二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置.11.运行如图所示的程序,输出的结果是_______.【解】3.123a =+=.所以输出的结果是3.12.三棱锥P ABC -中,PA ABC ⊥底面,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于______.【解2Δ1123334ABC V S PA =⋅=⨯⨯= 13.何种装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______.【解】35. 所取出的2个球颜色不同的概率113225C C 233C 105P ⨯===. 14.如图,ΔABC 中,2AB AC ==,BC =点D 在BC边上,45ADC ∠=︒,则AD 的长度等于______.【解.解法1.由余弦定理222cos 22AC BC AB C AC BC +-===⋅⋅, 所以30C =︒.再由正弦定理s i n s i n A D A C C A D C =∠,即2sin 30sin 45AD =︒︒,所以AD = 解法2.作AE BC ⊥于E ,因为2AB AC ==,所以E 为BC的中点,因为BC =,则EC =.D B C AE D B CA于是1AE ==,因为ΔADE 为有一角为45︒的直角三角形.且1AE =,所以AD =15.设V 是全体平面向量构成的集合,若映射:f V →R 满足:对任意向量()11,a x y V =∈,()22,b x y V =∈,以及任意λ∈R ,均有()()()()()11f a b f a f b +-=+-λλλλ则称映射f 具有性质P .先给出如下映射:① ()()11:,,,f V f m x y m x y V→=-=∈R ; ② ()()222:,,,f V f m x y m x y V →=+=∈R ;③ ()()33:,1,,f V f m x y m x y V →=++=∈R .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号).【解】①,③.设()11,a x y V =∈,()22,b x y V =∈,则()()()()()()()112212121,1,1,1a b x y x y x x y y +-=+-=+-+-λλλλλλλλ. 对于①,()()()()()()1212111f a b x x y y +-=+--+-λλλλλλ()()()11221x y x y =-+--λλ, ()()()()()()112211f a f b x y x y +-=-+--λλλλ,所以()()()()()11f a b f a f b +-=+-λλλλ成立,①是具有性质P 的映射; 对于②, ()()()()()()21212111f a b x x y y +-=+-++-λλλλλλ()()()()2121211x x y y =+-++-λλλλ ()()()22221122121121x y x y x x =++-+-+-λλλλλλ, ()()()()()()22112211f a f b x y x y +-=++--λλλλ,显然,不是对任意λ∈R ,()()()()()11f a b f a f b +-=+-λλλλ成立,所以②不是具有性质P 的映射;对于③, ()()()()()()12121111f a b x x y y +-=+-++-+λλλλλλ()()()112211x y x y =++-++λλ, ()()()()()()11221111f a f b x y x y +-=+++-++λλλλ()()()()112211x y x y =++-+++-λλλλ()()()112211x y x y =++-++λλ.所以()()()()()11f a b f a f b +-=+-λλλλ成立,③是具有性质P 的映射. 因此,具有性质P 的映射的序号为①,③.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若函数()sin(2)(0,0)f x A x A =+><<ϕϕπ在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.【解】(Ⅰ)由3q =,3133S =得()311313133a -=-,解得113a =. 所以11211333n n n n a a q ---==⨯=. (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =.又因为函数()f x 在6x π=处取得最大值, 则sin 216⎛⎫⨯+= ⎪⎝⎭πϕ,因为0<<ϕπ,所以6=πϕ. 函数()f x 的解析式为()3sin 26f x x ⎛⎫=+ ⎪⎝⎭π. 17.(本小题满分13分)已知直线:l y x m =+,m ∈R .(Ⅰ)若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;(Ⅱ)若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由.【解】(Ⅰ)解法1.由题意,点P 的坐标为()0,m .因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ⊥.01102MP l m k k -⋅=⋅=--,所以2m =. 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=, 则r MP === 所以,所求的圆的方程为()2228x y -+=.解法2.设圆的方程为()2222x y r -+=, 因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224,,m r r ⎧+==解得2,m r =⎧⎪⎨=⎪⎩ 所以,所求的圆的方程为()2228x y -+=. (Ⅱ)解法1.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--.由24,,x y y x m ⎧=⎨=--⎩得2440x x m ++=,2Δ4440m =-⨯=,解得1m =.所以,当1m =时,Δ0=,直线l '与抛物线2:4C x y =相切,当1m ≠时,Δ0≠,直线l '与抛物线2:4C x y =不相切.解法2.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:ly xm '=--.设直线l '与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x '=,则0112x =-,02x =-,()022y m m =---=-. 所以切点为()2,2m --,窃电在抛物线214y x =上,则21m -=,1m =. 所以,当1m =时,直线l '与抛物线2:4C x y =相切,当1m ≠时,直线l '与抛物线2:4C x y =不相切.18.(本小题满分13分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3a y x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。
2011年福建高考数学试题(理科)
新型家庭人口文化建设半年小结根据国家和省婚育新风进万家第四阶段活动方案及市人口发(2011)13号文件《关于在“十二五”期间全面推进婚育新风进万家活动的实施意见》的要求,围绕省人口计生委“三晋康家”工程实施意见和市人口计生委《关于进一步推进“宜人宜家”服务的实施意见》,为了创新推进家庭人口文化建设,搭建丰富多彩的宣传教育平台服务群众,我们重点做了以下几项工作:一、大力实施“十佳百项工程”。
今年我县以“十佳百项工程”为抓手,建成了十佳家庭人口文化示范户、十佳人口文化大院、十佳人口文化活动室、十佳人口文化宣传队、十佳示范图书角、十佳优秀村级服务室、十佳示范人口学校、十佳村级早教服务室、十佳人口文化先进个人、十佳村级婚育文明村。
(1)坚持宣教引路,努力创新家庭人口文化建设平台。
开展“我与计生协会的故事”巡回演讲活动、青少年生殖健康特色教育、家庭人口文化进社区进农村进企业活动,营造良好的人口文化发展氛围。
(2)注重阵地建设,打造特色人口文化载体。
在程家庄、北汪等村创建人口文化广场,营造人文新风。
以村级功能齐全的人口学校为载体,增强家庭人口文化的渗透力。
在新村、贾堡等村人口文化学校配齐人口文化宣传资料和有关生产、生活、生育方面的书籍,定期组织村民学习致富技术、计生政策、家庭保健等知识。
(3)发挥典型作用,弘扬新型家庭人口文化新风。
充分发挥人口文化示范户的模范带头作用,做到典型带动,逐步推开。
程家庄的科技示范户王玉梅、文化示范户程新等全县一大批示范户,带领周边群众学以致用,促进了家庭人口文化建设的深入开展。
二、注重宣传品味,强化结合渗透。
(1)环境宣传做“精”。
投资40万元制作电线杆标牌200块,在人口集中的繁华小区设立大型宣传牌5块,优化户外宣传标语230条,文化墙40面,印制围裙、健康家园系列宣传资料5万份,大力宣传婚育新风进万家和幸福家庭行动。
(2)节日宣传做“大”。
以我们的节日为主线,以乡村庙会为载体,利用重大节日,在集贸市场和人口密集的地方开展集中宣传活动:“人口文化—社区行”、“人口文化---集市行”活动。
2011年福建高考数学答案(理科)
2010年普通高等学校招生统一考试(福建卷)数学试题(理工农医类)Daan一、选择题:本大题考查基础知识和基本运算。
每小题5分,满分50分。
1.A 2.D 3.A 4.C 5.C 6.D 7.B 8.B 9.B 10.C 二、填空题:本大题考查基础知识和基本运算。
每小题4分,满分20分。
11. 14-n 12. 326+ 13. 128.0 14. ⎥⎦⎤⎢⎣⎡-3,2315.①②④ 三、解答题:本大题共6小题,共80分。
解答应写出文字说明,证明过程或演算步骤。
16.本小题主要考查概率与统计、不等式等基础知识,考查运算求解能力、应用意识,考查分类与整合思想、必然与或然思想、化归与转化思想。
满分13分。
解:(I )由062≤--x x 得32≤≤-x ,即{}32|≤≤-=x x S由于Z n m ∈,,S n m ∈,且0=+n m ,所以A 包含的基本事件为: )2,2(-,)2,2(-,)1,1(-,)1,1(-,)0,0( (II )由于m 的所有不同取值为-2,-1,0,1,2,3, 所以2m =ξ的所有不同取值为0,1,4,9, 且有()610==ξP ,()31621===ξP ,()31624===ξP ,()619==ξP故ξ的分布列为: ξ149P61 31 31 61所以619619314311610=⨯+⨯+⨯+⨯=ξE17.本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。
满分13分。
解法一:(I )依题意,可设椭圆C 的方程为12222=+by ax (a>b>0),且可知左焦点为)0,2(-'F 2=c2=c 解得从而有853||||2=+='+=F A AF a , 4=a又222c b a =+,所以122=b ,故椭圆C 的方程为 1121622=+yx(II )假设存在符合题意的直线l ,其方程为t x y +=23t x y +=23 得0123322=-++t tx x由1121622=+yx因为直线l 与椭圆C 有公共点,所以()()01234322≥-⨯-=∆t t , 解得3434≤≤-t另一方面,由直线OA 与l 的距离4=d 可得4149||=+t ,从而132±=t 。
2011年福建高考理科数学试卷及答案解析(Word)
2011年普通高等学校招生全国统一考试【福建卷】(理科数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页.全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(每小题5分,共60分)【2011⋅福建理,1】1.i 是虚数单位,若集合=S {1,0,1}-,则( ). A .i S ∈ B .2i S ∈ C .3i S ∈ D .2S i∈ 【答案】B .【解析】2i 1S =-∈.故选B .【2011⋅福建理,2】2.若a R ∈,则2a =是()()120a a --=的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件 【答案】A .【解析】 当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件, 但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A . 【2011⋅福建理,3】3.若tan 3α=,则2sin 2cos aα的值等于( ). A .2 B .3 C .4 D .6 【答案】D . 【解析】22sin 22sin cos 2tan 6cos cos ===αααααα.故选D .【2011⋅福建理,4】4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE ∆内部的概率等于( ).A .14 B .13 C .12 D .23【答案】C . 【解析】因为Δ12ABE ABCD S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABCD S P S ==.故选C .【2011⋅福建理,5】5.1⎰()2xe x dx +等于( ).A .1B .1e -C .eD .1e + 【答案】C . 【解析】()()11200210xxex dx e xe e e +=+=+--=⎰.故选C .【2011⋅福建理,6】6.()312x + 的展开式中,2x 的系数等于( ). A .80 B .40 C .20 D .10 【答案】B .【解析】 15C 2r r r r T x +=,令2r =,则2x 的系数等于225C 240=.故选B .【2011⋅福建理,7】7.设圆锥曲线Γ的两个焦点分别为1F ,2F ,若曲线Γ上存在点P 满足1PF :12F F :2PF 4:3:2=,则曲线Γ的离心率等于( ).A .1322或B .223或C .122或D .2332或 【答案】A .【解析】 因为1122::4:3:2PF F F PF =,所以设14PF λ=,123F F λ=,22PF λ=. 若Γ为椭圆,则1212242623PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩ , 所以12c e a ==.若Γ为双曲线,则1212242223PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩ , 所以32c e a ==.故选A .【2011⋅福建理,8】8.已知O 是坐标原点,点(1,1)A -若点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅u u u r u u u u r的取值范围是( ).A .[-1.0]B .[0.1]C .[0.2]D .[-1.2] 【答案】C .【解析】 设()()1,1,z OA OM x y x y =⋅=-⋅=-+u u u r u u u u r.作出可行域,如图.直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM ⋅u u u r u u u u r的取值范围是[]0,2.故选C .解析二:【2011⋅福建理,9】9.对于函数()sin f x a x bx c =++(其中,,a b R ∈,c Z ∈),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是( ). A .4和6 B ..3和1 C .2和4 D .1和2 【答案】D .【解析】 ()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ∈Z ,(1,1)(1,2)21BAOy C则()()11f f +-为偶数,四个选项中,只有D,123+=不是偶数.故选D .【2011⋅福建理,10】10.已知函数()xf x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A,B,C ,给出以下判断: ①△ABC 一定是钝角三角形; ②△ABC 可能是直角三角形; ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形. 其中,正确的判断是 ( ).A .①③B .①④C .②③D .②④ 【答案】B .【解析】设a b <.首先证明()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.()()22f a f b a b f ++⎛⎫- ⎪⎝⎭222a b a b e a e b a b e +++++=--22a ba b e e e ++=-2220a b a b a b a be e eee+++≥⋅-=-=,当且仅当a b =时等号成立,由于a b <,所以等号不成立, 于是()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭,()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ①设点(),A A A x y ,(),B B B x y ,(),C C C x y ,且,,A B C x x x 成等差数列,A B C x x x <<. 由()f x 是R 上的增函数,则A B C y y y <<, ②如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ⊥交BN 于E ,作BF CP ⊥交CP 于F . 因为()()22AC A CD f x f x y y y ++==,2AC B x x y f +⎛⎫= ⎪⎝⎭, 由①式,D B y y >,,D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 的内部,因而90DBA DEA ∠>∠=︒,又CBA DBA ∠>∠,所以ABC ∆一定是钝角三角形.结论①正确.若ABC ∆是等腰三角形,因为D 为AC 的中点,则BD AC ⊥,因而//AC x 轴,这是不可能的,所以ABC ∆不是等腰三角形.结论④正确; 所以结论①,④正确.故选B.第Ⅱ卷(非选择题 共90分)二、填空题:(每小题4分,共16分)【2011⋅福建理,11】11.运行如图所示的程序,输出的结果是 .【答案】 3.【解析】 123a =+=.所以输出的结果是3.【2011⋅福建理,12】12.三棱锥P ABC -中,PA ⊥底面ABC ,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于 .【解析】2Δ1123334ABC V S PA =⋅=⨯⨯⨯=ED BCA【2011⋅福建理,13】13.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于 . 【答案】35. 【解析】所取出的2个球颜色不同的概率113225C C 233C 105P ⨯===. 【2011⋅福建理,14】14.如图,ABC ∆中,2AB AC ==,3BC =D 在BC 边上,ADC ∠=45o ,则AD 的长度等于 .2.【解析】解法1:由余弦定理2223cos 22223AC BC AB C AC BC +-===⋅⋅⨯⨯所以30C =︒. 再由正弦定理sin sin AD AC C ADC =∠,即2sin 30sin 45AD =︒︒,所以2AD = 解法2:作AE BC ⊥于E ,因为2AB AC ==,所以E 为BC 的 中点,因为23BC =3EC =. 于是221AE AC EC -=,因为ΔADE 为有一角为45︒的直角三角形.且1AE =,所以2AD =【2011⋅福建理,15】15.设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量1122(,),(,),a x y V b x y V =∈=∈以及任意R λ∈,均有((1))()(1)(),f a b f a f b λλλλ=-=+-则称映射f 具有性质P .先给出如下映射:① 1:f V R → ()1f m x y =- (),m x y V =∈;② 2:f V R → ()2f m x y =+ (),m x y V =∈; ③ 3:f V R → ()31f m x y =++ (),m x y V =∈.其中,具有性质P 的映射的序号为 .(写出所有具有性质P 的映射的序号) 【答案】①③.【解析】设()11,a x y V =∈r,()22,b x y V =∈r ,则()()()()()()()112212121,1,1,1a b x y x y x x y y +-=+-=+-+-λλλλλλλλr r.对于①,()()()()()()1212111f a b x x y y +-=+--+-λλλλλλr r()()()11221x y x y =-+--λλ,()()()()()()112211f a f b x y x y +-=-+--λλλλr r,所以()()()()()11f a b f a f b +-=+-λλλλr r r r成立,①是具有性质P 的映射;对于②,()()()()()()21212111f a b x x y y +-=+-++-λλλλλλr r()()()()2121211x x y y =+-++-λλλλ()()()22221122121121x y x y x x =++-+-+-λλλλλλ,()()()()()()22112211f a f b x y x y +-=++--λλλλr r ,显然,不是对任意λ∈R ,()()()()()11f a b f a f b +-=+-λλλλr r r r成立,所以②不是具有性质P 的映射; 对于③,()()()()()()12121111f a b x x y y +-=+-++-+λλλλλλr r()()()112211x y x y =++-++λλ,()()()()()()11221111f a f b x y x y +-=+++-++λλλλr r()()()()112211x y x y =++-+++-λλλλ()()()112211x y x y =++-++λλ.所以()()()()()11f a b f a f b +-=+-λλλλr r r r成立,③是具有性质P 的映射.因此,具有性质P 的映射的序号为①、③.三、解答题:(本大题共6小题,共80分)【2011⋅福建理,16】16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和S 3=133. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 若函数()sin(2)(0,0)f x A x A p ϕϕπ=+><<<在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.【解析】本小题主要考查等比数列、三角函数等基础知识,考查运算求解能力,考查函数与方程思想.(Ⅰ)由3q =,3133S =得()311313133a -=-,解得113a =.所以11211333n n n n a a q---==⨯=. (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =.又因为函数()f x 在6x π=处取得最大值,则sin(2)16πϕ⨯+=,因为0<<ϕπ,所以6=πϕ.函数()f x 的解析式为()3sin(2)6f x x π=+.【2011⋅福建理,17】17.(本小题满分13分)已知直线:l y x m =+,m R ∈.(Ⅰ) 若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程; (Ⅱ) 若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由. 【解析】本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.(Ⅰ)解法1:由题意,点P 的坐标为()0,m . 因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ⊥.01102MP l m k k -⋅=⋅=--,所以2m =. 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=,则()()2202208r MP ==-+-=,所以,所求的圆的方程为()2228x y -+=. 解法2:设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224,20,2m r m r ⎧+=-+=解得2,2 2.m r =⎧⎪⎨=⎪⎩所以,所求的圆的方程为()2228x y -+=.(Ⅱ)解法1:因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--.由24,,x y y x m ⎧=⎨=--⎩得2440x x m ++=, 2Δ4440m =-⨯=,解得1m =.所以,当1m =时,Δ0=,直线l '与抛物线2:4C x y =相切,当1m ≠时,Δ0≠,直线l '与抛物线2:4C x y =不相切.解法2:因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--. 设直线l '与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x '=,则0112x =-,02x =-,()022y m m =---=-.所以切点为()2,2m --,窃电在抛物线214y x =上,则21m -=,1m =. 所以,当1m =时,直线l '与抛物线2:4C x y =相切,当1m ≠时,直线l '与抛物线2:4C x y =不相切.【2011⋅福建理,18】18.(本小题满分12分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ) 求a 的值;(Ⅱ) 若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.【解析】本小题主要考查函数、导数等基础知识,考查运算求解能力、应用意识,考查函数与方程思想、数形结合思想、化归与转化思想. (Ⅰ)因为5x =时,11y =,由函数式210(6)3ay x x =+-- 得 11102a=+,所以2a =. (Ⅱ)因为2a =,所以该商品每日的销售量为2210(6)3y x x =+--,()36x <<. 每日销售该商品所获得的利润为()()()222310(6)2103(6)3f x x x x x x ⎡⎤=-+-=+--⎢⎥-⎣⎦,()36x <<.()()()()()()21062363064f x x x x x x ⎡⎤'=-+--=--⎣⎦.于是,当x 变化时,()f x ',()f x 的变化情况如下表:x()3,44 ()4,6()f x ' +-()f x单调递增极大值42单调递减由上表可以看出,4x =是函数在区间()3,6内的极大值点,也是最大值点.所以,当4x =时,函数()f x 取得最大值42.因此当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【2011⋅福建理,19】19.(本小题满分13分)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,……,8,其中5X ≥为标准A ,3X ≥为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准.(Ⅰ) 已知甲厂产品的等级系数1X 的概率分布列如下所示:且1X 的数字期望16EX =,求,a b 的值;(Ⅱ) 为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 38 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望. (Ⅲ) 在(Ⅰ)、(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.【解析】本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想.(Ⅰ)因为16EX =,所以50.46780.16a b ⨯+++⨯=,即67 3.2a b +=, 又0.40.11a b +++=,所以0.5a b +=,解方程组67 3.2,0.5a b a b +=⎧⎨+=⎩解得0.3a =,0.2b =.(Ⅱ)由样本的数据,样本的频率分布表如下:2X3 4 5 6 7 8 f0.30.20.20.10.10.1用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数2X 的概率分布列如下表:2X3 4 5 6 7 8P 0.3 0.20.2 0.1 0.1 0.1所以230.340.250.260.170.180.1 4.8EX =⨯+⨯+⨯+⨯+⨯+⨯=. (Ⅲ)甲厂的产品的等级系数的数学期望为6,价格为6元/件,所以性价比为616=, 甲厂的产品的等级系数的数学期望为4.8,价格为4元/件,所以性价比为4.81.214=>. 所以,乙厂的产品更具可购买性.【2011⋅福建理,20】20.(本小题满分14分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,四边形ABCD 中,AB AD ⊥,4AB AD +=,2CD =,CDA ∠=45o .(Ⅰ) 求证:平面PAB ⊥平面PAD ; (Ⅱ) 设AB AP =.()i 若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长;()ii在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.【解析】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想.【解析二】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想.(Ⅰ)因为PA ABCD ⊥底面,AB ABCD ⊂底面,所以PA AB ⊥.又AB AD ⊥,PA AD A =∩,所以P AB AD ⊥面平,又P AB AB ⊂面平,P PAB AD ⊥面平面平.(Ⅱ)以A 为坐标原点,建立如图乙的空间直角坐 标系A xyz -.在平面ABCD 内,作//CE AB 交AD 于E . 则CE AD ⊥.在Rt ΔCDE 中,2sin 45212DE CD =︒=⋅=. 设AB AP t ==,则(),0,0B t ,()0,0,P t .由4AB AD +=,则4AD t =-,所以()0,3,0E t -,()0,4,0D t -,()1,3,0C t -.()1,1,0CD =-u u u r ,()0,4,PD t t =--u u u r,(i )设平面PCD 的法向量为(),,n x y z =r ,由n CD ⊥u u u r r ,n PD ⊥u u u r r 得0,0,n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u rr ()0,40,x y t y tz -+=⎧⎨--=⎩取x t =,则y t =,4z t =-.(),,4n t t t =-r, 又(),0,PB t t =-u u u r,由直线PB 与平面PCD 所成的角为︒30,得()22222241cos 60242t t n PB n PB t t t t -⋅︒===⋅++-⋅u u u r r u u u r r . 解得45t =或4t =(因为40,4AD t t =-><,故舍去) 所以45AB =. (ii )假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,设()0,,0G m ,()04m t ≤≤-.则()1,3,0GC t m =--u u u r, ()0,4,0GD t m =--u u u r ,()0,,GP m t =-u u u r,则由GC GD =u u u r u u u r 得()()22134t m t m +--=--,即3t m =-,① 由GP GD =u u u r u u u r 得()2224t m m t --=+, ②从①,②消去t ,并化简得2340m m -+= ③ 方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.解法2:假设线段AD 上存在一个点G ,使得点G 到 点,,,P B C D 的距离都相等,由GC GD =得45GCD GDC ∠=∠=︒, 从而90CGD ∠=︒,则CG GD ⊥,设AB λ=,则由4AB AD +=,得4AD λ=-,3AG AD GD λ=-=-.在Rt ΔABG 中,()222223932122GB AB AG λλλ⎛⎫=+=+-=-+> ⎪⎝⎭与1GB GD ==矛盾,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.【2011⋅福建理,21】21.(本小题满分14分)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4-2:矩阵与变换设矩阵 00a M b ⎛⎫= ⎪⎝⎭(其中0a >,0b >).(I )若2a =,3b =,求矩阵M 的逆矩阵1M -;(II )若曲线22:1C x y +=在矩阵M 所对应的线性变换作用下得到曲线C ':2214x y +=,求,a b 的值.【解析】本小题主要考查矩阵与交换等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)设矩阵M 的逆矩阵11122x y Mx y -⎛⎫= ⎪⎝⎭,则11001MM -⎛⎫= ⎪⎝⎭, 因为2003M ⎛⎫=⎪⎝⎭,所以112220100301x y x y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以121x =,120y =,230x =,231y =,即112x =,10y =,20x =.213y =, 所以1102103M -⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭. (Ⅱ)设曲线C 上的任意一点为(),P x y ,在矩阵M 所对应的线性变换作用下得到点(),P x y '''.则00a x x b y y '⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭,即,ax x by y'=⎧⎨'=⎩, 又点(),P x y '''在曲线22:14x C y '+=上,所以2214x y ''+=, 即222214a xb y +=为曲线22:1C x y +=的方程,则24a =,21b =, 又因为0,0a b >>,则2,1a b ==.(2)(本小题满分7分)选修4-4:坐标系与参数方程在直接坐标系xOy 中,直线l 的方程为40x y -+=,曲线C的参数方程为sin x ay a⎧=⎪⎨=⎪⎩.(I )已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π,判断点P 与直线l 的位置关系;(II )设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解析】本小题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)点P 的极坐标为(4,)2π,则直角坐标为()0,4,把()0,4P 代入直线l 的方程40x y -+=,因为0440-+=,所以点P 在直线l 上.(Ⅱ)因为点Q 是曲线C 上的一个动点,则点Q的坐标可设为,sin )Q αα. 点Q 到直线l 的距离为2cos()4)6d παπα++===++.所以当cos()16πα+=-时,d.(3)(本小题满分7分)选修4-5:不等式选讲 设不等式211x -<的解集为M . (I )求集合M ;(II )若,a b M ∈,试比较1ab +与a b +的大小.【解析】本小题主要考查绝对值不等式等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)由|21|1x -<得1211x -<-<,解得01x <<, 所以{}01M x x =<<.(Ⅱ)因为,a b M ∈,则01a <<,01b <<,(1)()(1)(1)0ab a b a b +-+=-->,所以1ab a b +>+.。
2011年普通高等学校招生全国统一考试福建卷
2011年普通高等学校招生全国统一考试(福建卷)理科综合能力测试(物理部分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为必考题,第Ⅱ卷包括必考题和选考题两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至12。
满分300分。
注意事项:1.答卷前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码上的“准考证号、姓名”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案的标号。
第Ⅱ卷用0.5 毫米的黑色墨水签字笔在答题卡书写上作答,答案无效。
在试题上作答,答案无效。
3.考试结束,考生必须将本试题卷和答题卡一并交回。
本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷第1页至第页,第卷第页至第页。
全卷满分300分,时间150分钟。
第Ⅰ卷(选择题 共108分)本卷共18小题,每小题6分,共108分。
在每小题给出的四个选项中,只有一个是符合题目要求。
13.“嫦娥二号”是我国月球探测第二期工程的先导星。
若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期T ,已知引力常数G ,半径为R 的球体体积公式334V R π=,则可估算月球的A.密度B.质量C.半径D.自转周期14.如图,半圆形玻璃砖置于光屏PQ 的左下方。
一束白光沿半径方向从A 点射入玻璃砖,在O 点发生反射和折射,折射光在白光屏上呈现七色光带。
若入射点由A 向B 缓慢移动,并保持白光沿半径方向入射到O 点,观察到各色光在光屏上陆续消失。
在光带未完全消失之前,反射光的强度变化以及光屏上最先消失的光分别是A.减弱,紫光B.减弱,红光C.增强,紫光D.增强,红光15.图甲中理想变压器原、副线圈的匝数之比n 1:n 2=5:1,电阻R=20 Ω,L 1、L 2为规格相同的两只小灯泡,S 1为单刀双掷开关。
2011年福建高考数学试卷
2011年福建省高考数学理科试卷一、选择题:(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个项是符合题目要求的。
) 1. i 是虚数单位,若集合{1,0,1}S =-,则 ( ) A.i S ∈ B. 2i S ∈ C. 3i S ∈ D.2S i ∈2. 若a R ∈,则2a =是(1)(2)0a a --=的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件3. 若tan 3α=,则22cos sin αα的值是( )A.2B.3C.4D.64. 如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自A B C ∆内部的概率等于( ) A .14B. 13C. 12D. 235. 21(2)0e x dx +⎰等于 ( )A.1B.1e -C.eD. 1e + 6.5(12)x +的展开式中,2x 的系数是 ( ) A .80 B. 40 C. 20 D. 107. 设圆锥曲线Γ的两个焦点分别为F 1,F 2,若曲线Γ上存在点P 满足1PF :12F F :2P F =4:3:2,则曲线Γ的离心率等于 A.1322或 B.223或 C.122或 D.2332或8. 已知O 是坐标原点,点(1, 1)A -,若点(,)M x y 为平面区域Ω:x+y 2x 1y 2≥⎧⎪≤⎨⎪≤⎩上的一个动点,则O A O M的取值范围是 ( )A.[-1,0]B.[0,1]C.[0,2]D.[-1,2]9.对于函数()sin f x a x bx c =++(其中,,a b R c Z ∈∈),选取,,a b c 的一组值计算(1)f 和(1)f -,所得出的正确结果一定不可能的是 ( )A. 4和6B. 3和1C. 2和4D. 1和210. 对于函数()xf x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断①A B C ∆一定是钝角三角形; ②A B C ∆可能是直角三角形; ③A B C ∆可能是等腰三角形; ④A B C ∆不可能是等腰三角形.其中,正确的判断是 ( )A.①③B.①④C.②③D.②④二、填空题:共5小题,每小题4分,共20分.把答案填在题中横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密☆启用前2011年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项:1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3. 考试结束,考生必须将试题卷和答题卡一并交回。
参考公式:样本数据x 1,x 2,…,x a 的标准差 锥体体积公式13V S h =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位,若集合S=}{1.0.1-,则( )A.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i∈ 解析:由21i S =-∈得选项B 正确。
2.若a ∈R ,则a=2是(a-1)(a-2)=0的( )A.充分而不必要条件 B 必要而不充分条件C.充要条件 C.既不充分又不必要条件解析:由a=2可得(a-1)(a-2)=0成立,反之不一定成立,故选A.3.若tan α=3,则2sin 2cos aα的值等于( )A.2B.3C.4D.6 解析:2sin 22tan 6cos aαα==,选D 。
4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23解析:12ABE ABCD S P S ∆==,选C 。
5.1⎰(e x +2x )dx 等于( )A.1B.e-1 C .e D.e+1 解析:1⎰(e x +2x )dx 210()x e x e =+=,选C 。
6.(1+2x)3的展开式中,x 2的系数等于( ) A.80 B.40 C.20 D.10解析:(1+2x)5的展开式中含x 2的系数等于2225(2)40C x x =,系数为40.答案选B 。
7.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于( )A.1322或 B.23或2 C.12或2 D.2332或 解析:当曲线为椭圆时121231422F F e PF PF ===++;当曲线为双曲线时121233422F F e PF PF ===--,答案选A 。
8.已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域,上的一个动点,则OA ·的取值范围是( )A.[-1.0]B.[0.1]C.[0.2]D.[-1.2] 解析:OA OM x y ⋅=-+,平面的可行域为以(1,1),(0,2),(1,2)为顶点的三角形,则OA OM ⋅的取值范围是[0.2],答案应选C 。
9.对于函数f (x )=asinx+bx+c(其中,a,b ∈R,c ∈Z),选取a,b,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能.....是( ) A.4和6 B.3和1 C.2和4 D.1和2解析:(1)sin1,(1)sin1f a b c f a b c =++-=--+,则(1)(1)2f f c +-=为偶数,结合选项可知,答案应选D 。
10.已知函数f(x)=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断: ①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形其中,正确的判断是( )A.①③B.①④C. ②③D.②④解析:312112233(,),(,),(,)x x xA x e xB x e xC x e x +++,1322x x x +=312212123232(,()),C (,())x x x x BA x x e e x x B x x e e x x =--+-=--+- 312212321232C ()()[()][()]x x x x BA B x x x x e e x x e e x x ⋅=-⋅-+-+-⋅-+-不妨设13x x <,则123x x x <<,312xxxe e e <<,C 0BA B ⋅<,△ABC 一定是钝角三角形; 若BA BC =,则3122222212123232()[()]()[()]x x x x x x e e x x x x e e x x -+-+-=-+-+-331212222222112123233224()2()()24()2()()x x x x x x x x x x x e e e e x x x x x e e e e x x -+-+--=-+-+--即3311213[()()](2)0x x x x x e e x x e e e -+-+-=,而31312222220x x x x x x e e e ee ++->-=,则31130xxe e x x -+-=,即13()()f x f x =,与函数()f x 为单调增函数矛盾. 故只有①④判断正确,答案应选B 。
2011年普通高等学校招生全国统一考试(福建卷)数 学(理工农医类)注意事项:用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。
二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置。
11.运行如图所示的程序,输出的结果是_______。
解析:123a a b =+=+=,答案应填3.12.三棱锥P-ABC 中,PA ⊥底面ABC ,PA=3,底面ABC 是边长为2的正三角形,则三棱锥P-ABC 的体积等于______。
解析:111322sin 603332ABC V PA S ∆=⋅=⋅⋅⋅⋅⋅=,答案应填3.13.何种装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。
若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______。
解析:1132250.6C C P C ⋅==,答案应填0.6。
14.如图,△ABC 中,AB=AC=2,BC=23,点D 在BC 边上,∠ADC=45°,则AD 的长度等于______。
解析:在△ABC 中,AB=AC=2,BC=23中,30ACB ABC ∠=∠=,而∠ADC=45°,sin 45sin 30AC AD=,2AD =,答案应填2。
15.设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量1122(,),(,),a x y V b x y V =∈=∈以及任意λ∈R ,均有((1))()(1)(),a b a b λλλλ=-=⎰+-⎰⎰则称映射f 具有性质P 。
先给出如下映射:其中,具有性质P 的映射的序号为________。
(写出所有具有性质P 的映射的序号)解析:①1111212(),((1))((1),(1))f m x y f a b f x x y y λλλλλλ=-+-=+-+-12121122(1)(1)()(1)()x x y y x y x y λλλλλλ=+----=-+--()(1)()f a f b λλ=+-具有性质P 的映射,同理可验证③符合,②不符合,答案应填①③.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤。
16.(本小题满分13分)已知等比数列{a n }的公比q=3,前3项和S 3=133。
(I )求数列{a n }的通项公式;(II )若函数()sin(2)(0,0)f x A x A p ϕϕπ=+><<<在6x π=处取得最大值,且最大值为a 3,求函数f (x )的解析式。
16.本小题主要考查等比数列、三角函数等基础知识,考查运算求解能力,考查函数与方程思想,满分13分。
解:(I )由313(13)13133,,3133a q S -===-得 解得11.3a = 所以12133.3n n n a --=⨯=(II )由(I )可知233, 3.n n a a -==所以因为函数()f x 的最大值为3,所以A=3。
因为当6x π=时()f x 取得最大值,所以sin(2) 1.6πϕ⨯+=又0,.6πϕπϕ<<=故所以函数()f x 的解析式为()3sin(2)6f x x π=+17.(本小题满分13分)已知直线l :y=x+m ,m ∈R 。
(I )若以点M (2,0)为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程; (II )若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线C :x 2=4y 是否相切?说明理由。
17.本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想。
满分13分。
解法一:(I )依题意,点P 的坐标为(0,m ) 因为MP l ⊥,所以01120m-⨯=--, 解得m=2,即点P 的坐标为(0,2) 从而圆的半径22||(20)(02)22,r MP ==-+-=故所求圆的方程为22(2)8.x y -+= (II )因为直线l 的方程为,y x m =+ 所以直线'l 的方程为.y x m =-- 由22',4404y x m x x m x y=--⎧++=⎨=⎩得244416(1)m m ∆=-⨯=-(1)当1,0m =∆=即时,直线'l 与抛物线C 相切(2)当1m ≠,那0∆≠时,直线'l 与抛物线C 不相切。
综上,当m=1时,直线'l 与抛物线C 相切; 当1m ≠时,直线'l 与抛物线C 不相切。
解法二:(I )设所求圆的半径为r ,则圆的方程可设为22(2).x y r 2-+= 依题意,所求圆与直线:0l x y m -+=相切于点P (0,m ),则224,|20|,2m r m r ⎧+=⎪-+⎨=⎪⎩解得2,2 2.m r =⎧⎪⎨=⎪⎩所以所求圆的方程为22(2)8.x y -+= (II )同解法一。