立体几何学案(四)
立体几何中点到直线的距离、点到平面的距离的计算 专题学案汇编
立体几何中点到直线的距离、点到平面的距离的计算 班级: 姓名: 小组:【学习目标】(1)理解立体几何中点到直线的距离、点到平面的距离的概念. (2)掌握各种距离的计算方法. 【重点、难点】重点:点到直线、点到平面距离公式的推导及应用. 难点:把空间距离转化为向量知识求解. 【学法指导】空间距离包括:点到点、点到线、点到面、线到线、线到面、面到面之间的距离.其中以点到面的距离最为重要,其他距离,如线到面、面到面的距离均可转化为点到面的距离,用向量法来求解。
【预习感知】1.两点间的距离的求法.设a =(a 1,a 2,a 3),则|a |=______________,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),则d AB =|AB→|=________________. 答案:a 21+a 22+a 23(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)22.点到直线距离的求法设l 是过点P 平行于向量s 的直线,A 是直线l 外定点.作AA ′⊥l ,垂足为A ′,则点A 到直线l 的距离d 等于线段AA ′的长度,而向量PA →在s 上的投影的大小|PA →·s 0|等于线段PA ′的长度,所以根据勾股定理有点A 到直线l 的距离d =_____________.d =|PA →|2-|PA →·s 0|2.3.点到平面的距离的求法设π是过点P 垂直于向量n 的平面,A 是平面π外一定点.作AA ′⊥π,垂足为A ′,则点A 到平面π的距离d 等于线段AA ′的长度,而向量PA→在n 上的投影的大小|PA →·n 0|等于线段AA ′的长度,所以点A 到平面π的距离d =____________. d =|PA →·n 0|.【预习检测】1.已知直线l 过定点A (2,3,1),且方向向量为n =(0,1,1),则点P (4,3,2)到l 的距离为( )A.322 B .22 C.102D . 2【解析】 PA →=(-2,0,-1),|PA →|=5,PA →·n |n |=-12,则点P 到直线l 的距离d =|PA →|2-|PA →·n |n ||2=5-12=322.【答案】 A图2-6-42.如图2-6-4所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面ABC 1D 1的距离是( )A.12 B .24【解析】 建立如图所示坐标系,则D (0,0,0),A 1(1,0,1), O (12,12,1), 则DA 1→=(1,0,1), A 1O →=(-12,12,0),由题意知DA 1→为平面ABC 1D 1的法向量,∴O 到平面ABC 1D 1的距离为 d =|DA 1→·A 1O →||DA 1→|=122=24.【答案】 B3.已知长方体ABCD -A 1B 1C 1D 1中,AB =6,BC =4,BB 1=3,则点B 1到平面A 1BC 1的距离为________.【解析】 如图所示建立空间直角坐标系, 则A 1(4,0,3),B 1(4,6,3),B (4,6,0),C 1(0,6,3),A 1C 1→=(-4,6,0),A 1B →=(0,6,-3), BC 1→=(-4,0,3),A 1B 1→=(0,6,0),设平面A 1BC 1的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1B →=0,解得n =(1,23,43).∴d =|A 1B 1→·n ||n |=122929.【答案】 122929【自主探究】 求点到直线的距离如图,在空间直角坐标系中有长方体ABCD -A ′B ′C ′D ′,AB =1,BC =1,AA ′=2,求点B 到直线A ′C 的距离.[分析] 可利用坐标向量法求出点B 到直线A ′C 的距离. [解析] 画出空间直角坐标系如图,因为AB =1,BC =1,AA ′=2, 所以A ′(0,0,2),C (1,1,0),B (1,0,0).计算直线A ′C 的方向向量A ′C →=(1,1,-2);找到直线A ′C 上一点C (1,1,0); 求点B (1,0,0)到直线A ′C 上一点C (1,1,0)的向量BC →=(0,1,0); BC →在A ′C →上的投影为BC →·A ′C →|A ′C →|=(0,1,0)·(1,1,-2)12+12+(-2)2=16; 所以点B 到直线A ′C 的距离为d =|B C →|2-|B C →·A ′C →|A ′C →||2=1-16=56=306.点面距已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且|GC |=2,求点B 到平面EFG 的距离.[分析] 在用向量方法求证垂直问题或求距离时,可以建立空间直角坐标系,通过坐标运算求解,也可直接通过向量运算进行求解.还可利用等积法求解. [解析] 解法一:(转化法)连接AC ,BD 交于点O ,设AC 与EF 交于H ,连接GH ,GO ,∵E 、F 分别为AB 、AD 的中点,∴EF ∥BD . ∵BD Ú平面GEF , ∴BD ∥平面GEF .∴点B 到平面EFG 的距离即为点O 到平面EFG 的距离. ∵ABCD 是正方形,∴AC ⊥BD ,∴EF ⊥AC . ∵GC ⊥平面ABCD ,又EF Ü平面ABCD ,∴GC ⊥EF ,∴EF ⊥平面GCH .∵EF 面GEF , ∴平面GEF ⊥平面GCH . 过O 点作OM ⊥GH 于M ,则OM ⊥平面GEF ,因此OM 是O 点到平面GEF 的距离,也等于B 点到平面GEF 的距离.∵正方形ABCD 边长为4, ∴|CH |=34|AC |=34×42=3 2.∵|GC |=2,且GC ⊥CA ,∴|GH |=4+18=22. ∵Rt △OMH ∽Rt △GCH , ∴|OM ||OH |=|GC ||GH |,∴|OM |=21111. ∴点B 到平面EFG 的距离为21111.解法二:(等体积法)连接BG ,BF ,可知V G -BEF =V B -GEF ,∵E 为AB 的中点,∴S △BEF =12S △ABF =12×12×2×4=2.连接AC 交EF 于H ,连接GH ,∵EF ⊥AC ,GC ⊥EF ,∴EF ⊥平面GCH ,∴EF ⊥GH . ∵|GC |=2,|AC |=42,∴|CH |=34×42=32,∴|GH |=GC 2+CH 2=4+18=22.∴S △GEF =12×|EF |×|GH |=12×22×22=211.设点B 到平面GEF 距离为h由V G -BEF =V B -GEF ,得13×|GC |×S △BEF =13×h ×S △GEF ,∴13×2×2=13×h ×211,解得h =21111. ∴B 点到平面GEF 的距离为21111.解法三:(向量法)如图所示,以C 为原点,分别以CD 、CB 、CG 所在的直线为x 轴、y 轴、z 轴建立坐标系,则B (0,4,0),E (2,4,0),F (4,2,0),G (0,0,2).∴GF →=(4,2,-2),EF →=(2,-2,0), 设平面GEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·GF →=0n ·EF →=0⇒⎩⎪⎨⎪⎧ 2x +y -z =0x -y =0⇒⎩⎪⎨⎪⎧y =x ,z =3x .令x =1,得n =(1,1,3).。
202新数学复习第七章立体几何7.4直线平面平行的判定及其性质学案含解析
第四节直线、平面平行的判定及其性质课标要求考情分析1。
以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.1.直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.2.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.知识点一直线与平面平行的判定定理和性质定理应用判定定理时,要注意“内”“外"“平行”三个条件必须都具备,缺一不可.知识点二平面与平面平行的判定定理和性质定理1。
平面与平面平行还有如下判定:如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.2.平面与平面平行还有如下性质:(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若直线a与平面α内无数条直线平行,则a∥α。
(×)(3)若直线a∥平面α,P∈平面α,则过点P且平行于a 的直线有无数条.(×)(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)2.小题热身(1)如果直线a∥平面α,那么直线a与平面α的(D) A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交(2)下列命题中正确的是(D)A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α(3)设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(4)如图,在正方体ABCD。
高中数学:第一章(立体几何初步)学案(新人教版B版必修2) 学案
数学:第一章《立体几何初步》学案(新人教版B 版必修2)第一章《立体几何初步》单元小结导航知识链接点击考点(1)了解柱,锥,台,球及简单组合体的结构特征。
(2) 能画出简单空间图形的三视图,能识别三视图所表示的立体模型,并会用斜二测法画出它们的直观图。
(3) 通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式。
(4) 理解柱,锥,台,球的表面积及体积公式。
(5) 理解平面的基本性质及确定平面的条件。
(6) 掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质。
(7) 掌握空间直线与平面,平面与平面垂直的判定及性质。
名师导航1.学习方法指导 (1) 空间几何体①空间图形直观描述了空间形体的特征,我们一般用斜二测画法来画空间图形的直观图。
②空间图形可以看作点的集合,用符号语言表述点,线,面的位置关系时,经常用到集合的有关符号,要注意文字语言,符号语言,图形语言的相互转化。
③柱,锥,台,球是简单的几何体,同学们可用列表的方法对它们的定义,性质,表面积及体积进行归纳整理。
④对于一个正棱台,当上底面扩展为下底面的全等形时,就变为一个直棱柱;当上底面收缩为中心点时,就变为一个正棱锥。
由1()2S c c h ''=+正棱台侧和()3hV s s '=正棱台,就可看出它们的侧面积与体积公式的联系。
(2) 点,线,面之间的位置关系①“确定平面”是将空间图形问题转化为平面图形问题来解决的重要条件,这种转化最基本的就是三个公理。
②空间中平行关系之间的转化:直线与直线平行 直线与平面平行平面与平面平行。
③空间中垂直关系之间的转化:直线与直线垂直 直线与平面垂直平面与平面垂直。
2.思想方法小结在本章中需要用到的数学思想方法有:观察法,数形结合思想,化归与转化思想等。
主要是立体几何问题转化为平面几何问题,平行与垂直的相互转化等。
3.综合例题分析例1:如图,P 是∆ABC 所在平面外一点,A ',B ',C '分别是PBC ∆,PCA ∆,PAB ∆的重心。
高中数学必修2——立体几何平行和垂直(学案)
立体几何平行和垂直知识讲解知识点1 点、线、面一、平面的基本性质二、空间直线的位置关系1.位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.2.平行公理平行于同一条直线的两条直线互相平行.3.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.异面直线所成的角(或夹角)(1)定义:设ba,是两条异面直线,经过空间中任一点O作直线bbaa//',//',把'a与'b所成的锐角(或直角)叫做异面直线a与b所成的角.I,,Pl P l且且三、直线与平面的位置关系llAα//l知识点2 线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。
三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭注意:⑴三垂线指AO PO PA ,,都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理⑵要考虑a 的位置,并注意两定理交替使用。
知识点3 线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面α的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。
直线l 与平面α垂直记作:α⊥l 。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
知识点4 面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。
届数学统考第二轮专题复习第12讲立体几何学案理含解析
第12讲立体几何高考年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2020证明线面垂直,求二面角的余弦值·T18证明线面平行、面面垂直,求线面角的正弦值·T20点面的位置关系,求二面角的正弦值·T192019证明线面平行,求二面角的正弦值·T18证明线面垂直,求二面角的正弦值·T17翻折问题,证明四点共面、面面垂直,求二面角的大小·T192018翻折问题,证明面面垂直,求线面角的正弦值·T18证明线面垂直,给出二面角求线面角的正弦值·T20证明面面垂直,求二面角的正弦值·T191。
[2020·全国卷Ⅱ]如图M4—12-1,已知三棱柱ABC—A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.图M4—12-12.[2020·全国卷Ⅰ]如图M4—12-2,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三DO.角形,P为DO上一点,PO=√66(1)证明:PA⊥平面PBC;(2)求二面角B-PC-E的余弦值。
图M4—12-23.[2019·全国卷Ⅲ]如图M4—12—3,图①是由矩形ADEB,Rt △ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②。
(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的二面角B—CG-A的大小.①②图M4-12—3平行、垂直关系的证明1如图M4—12-4,在四棱锥P—ABCD中,四边形ABCD为平行四边形,E为侧棱PD的中点,O为AC与BD的交点。
2020届高三数学复习专题三《立体几何》学案
专题三立体几何第1讲立体几何中的平行与垂直问题一、回归教材:1. (必修2P77习题1改编)设a,b,c表示不同的直线,α表示平面,下列命题中正确的是()A. 若a∥b,a∥α,则b∥αB. 若a⊥b,b⊥α,则a⊥αC. 若a⊥c,b⊥c,则a∥bD. 若a⊥α,b⊥α,则a∥b2. (必修2P53习题1改编)给出下列命题,其中错误命题的个数为()①若直线a与平面α不平行,则a与平面α内的所有直线都不平行;②若直线a与平面α不垂直,则a与平面α内的所有直线都不垂直;③若异面直线a,b不垂直,则过a的任何平面与b都不垂直;④若直线a和b共面,直线b和c共面,则直线a和直线c共面.A. 1B. 2C. 3D. 43. (必修2P82习题5改编)如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,给出下列四个结论:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC.其中恒成立的结论是()A. ①③B. ③④C. ①②D. ②③④二、举题故法例1.(1) (2019·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A. BM=EN,且直线BM,EN是相交直线B. BM≠EN,且直线BM,EN是相交直线C. BM=EN,且直线BM,EN是异面直线D. BM≠EN,且直线BM,EN是异面直线(2) 设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下面四个命题:①若α⊥β,β⊥γ,则α∥γ;②若α⊥β,m⊂α,n⊂β,则m⊥n;③若m∥α,n⊂α,则m∥n;④若α∥β,γ∩α=m,γ∩β=n,则m∥n. 其中正确命题的序号是()A. ①④B. ①②C. ④D. ②③④变式:(1) 已知互不重合的直线a,b,互不重合的平面α,β,给出下列四个命题,其中错误的命题是()A. 若a∥α,a∥β,α∩β=b,则a∥bB. 若α⊥β,a⊥α,b⊥β,则a⊥bC. 若α⊥β,α⊥γ,β∩γ=a,则a⊥αD. 若α∥β,a∥α,则a∥β(2) 在直三棱柱ABC-A′B′C′中,∠ABC=90°,AB=4,BC=2,BB′=5,则异面直线AC′与B′C所成角的余弦值为________.例2.如图,在三棱柱ABC-A1B1C1中,AB=AC,A1C⊥BC1,AB1⊥BC1,D,E分别是AB1和BC的中点.(1) 求证:DE∥平面ACC1A1;(2) 求证:AE⊥平面BCC1B1.变式:如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,AC=AA1,D是棱AB的中点.(1) 求证:BC1∥平面A1CD;(2) 求证:BC1⊥A1C.例3. (2019·皖南八校三联)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,点M 为PB 的中点,底面ABCD 为梯形,AB ∥CD ,AD ⊥CD ,AD =CD =PC =12AB .(1) 求证:CM ∥平面P AD ; (2) 若四棱锥P -ABCD 的体积为4,求点M 到平面P AD 的距离.变式:(2019·青岛二模)如图,在圆柱W 中,点O 1,O 2分别为上、下底面的圆心,平面MNFE 是轴截面,点H 在上底面圆周上(异于N ,F ),点G 为下底面圆弧ME 的中点,点H 与点G 在平面MNFE 的同侧,圆柱W 的底面半径为1,高为2.(1) 若平面FNH ⊥平面NHG ,求证:NG ⊥FH ;(2) 若直线O 1H ∥平面FGE ,求点H 到平面FGE 的距离.【巩固提升练习】1. (2019·全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是()A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面2. 设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A. 若α⊥β,m⊥α,则m∥βB. 若m∥α,nα,则m∥nC. 若α∩β=m,n∥α,n∥β,则m∥nD. 若α⊥β,且α∩β=m,点A∈α,直线AB⊥m,则AB⊥β3. (2019·西安三检)将正方形ABCD沿对角线AC折起,并使得平面ABC垂直于平面ACD,直线AB与CD所成的角为()A. 90°B. 60°C. 45°D. 30°4. (2019·安庆示范中学联考)在正方体ABCDA1B1C1D1中,E为棱CD上一点,且CE=2DE,F为棱AA1的中点,且平面BEF与DD1交于点G,则B1G与平面ABCD所成角的正切值为()A.212 B.26 C.5212 D.5265. 已知直线m,n和平面α,β,且mα,nβ,则“m∥β,n∥α”是“α∥β”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)6. 已知直线a,b表示两条不同的直线,α表示一个平面,有下列几个命题:①若在直线a上存在不同的两点到α的距离相等,则a∥α;②若a⊥b,b∥α,则a⊥α;③若a∥α,b α,则a∥b;④若a与α所成的角和b与α所成的角相等,则a∥b;⑤若a∥b,b⊥α,则a⊥α.其中正确的命题是________.(填序号)7. (2019·中原名校联考)如图,在正四面体ABCD中,E是棱AD上靠近点D的一个三等分点,则异面直线AB和CE所成角的余弦值为________.8. (2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图(1)).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图(2)是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.9. (2019·莆田二模)如图,在多面体ABCC1B1A1中,四边形BB1C1C为矩形,AB=BC=5,CC1⊥平面ABC,AA1∥CC1,2AA1=CC1=AC=2,E,F分别是A1C1,AC的中点,G是线段BB1上的任一点.(1) 求证:AC⊥EG;(2) 求三棱锥FEA1G的体积.10. (2019·蚌埠一检)如图,在四棱锥P ABCD中,AC与BD交于点O,△ABC为直角三角形,△ACD,△P AB,△PBC均为等边三角形.(1) 求证:PO⊥BD;(2) 求二面角APDC的余弦值.第2讲 立体几何中的计算问题一、回归教材:1. (选修2-1P92练习7)如图,在正三棱柱ABC -A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成角的大小为( )A. 60°B. 90°C. 105°D. 75°2. 2. (选修2-1P118复习题7)已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是( )A. 1B. 15C. 35D. 753. (选修2-1P107练习2)如图,60°的二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =2,AC =3,BD =4,则CD 的长为________.4. (选修2-1P105例1)如图,一个结晶体的形状为平行六面体,其中以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,则AC 1AB=________.第1题 第2题 第3题二、举题故法 例1.(2019·宣城二调)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥CB ,∠ADC =90°,平面P AD ⊥底面ABCD ,Q 为AD 的中点,BC =12AD ,M 是棱PC 上的点. (1) 求证:平面PQB ⊥平面P AD ;(2)若P A =PD =2,BC =1,CD =3,异面直线AP 与BM 所成角的余弦值为277,求PM PC的值.例2.(2019·深圳适应性测试)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD∥平面AMHN.(1) 求证:MN⊥PC;(2) 当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°时,求AD与平面AMHN所成角的正弦值.例3. (2019·全国卷Ⅰ)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1) 求证:MN∥平面C1DE;(2) 求二面角A-MA1-N的正弦值.变式:(2019·长沙一模)如图,圆O 的直径AB =6,C 为圆周上一点,BC =3,平面P AC 垂直于圆O 所在的平面,直线PC 与圆O 所在平面所成角为60°,P A ⊥PC .(1) 求证:AP ⊥平面PBC ;(2) 求二面角P -AB -C 的余弦值.例4. (2019·宁德二检)如图,在四棱锥P -ABCD 中,AB ∥DC ,∠ADC =π2,AB =AD =12CD =2,PD =PB =6,PD ⊥BC . (1) 求证:平面PBD ⊥平面PBC ;(2) 在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为π3?若存在,求CM CP的值;若不存在,请说明理由.【巩固提升练习】1. 如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE ⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥E C.(1) 求证:平面AEC⊥平面AFC;(2) 求直线AE与直线CF所成角的余弦值.2. (2019·郴州二检)如图,在四棱锥SABCD中,底面ABCD是正方形,对角线AC与BD交于点F,侧面SBC是边长为2的等边三角形,E为SB的中点.(1) 求证:SD∥平面AEC;(2) 若侧面SBC⊥底面ABCD,求斜线AE与平面SBD所成角的正弦值.3. 如图,在四棱锥P ABCD 中,底面ABCD 是边长为2的菱形,∠DAB =60°,∠ADP =90°,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(1) 在棱AB 上是否存在一点E ,使得AF ∥平面PCE ?并说明理由;(2) 当二面角DFCB 的余弦值为24时,求直线PB 与平面ABCD 所成的角.4. (2019·怀化三模)如图,在斜三棱柱ABCA 1B 1C 1中,侧面A 1ABB 1⊥底面ABC ,侧棱A 1A 与底面ABC 所成的角为60°,AA 1=AB =2,底面△ABC 是以∠ABC 为直角的等腰直角三角形,点G 为△ABC 的重心,点E 在BC 1上,且BE =13BC 1. (1) 求证:GE ∥平面A 1ABB 1;(2) 求平面B 1GE 与平面ABC 所成锐二面角的余弦值.115. 如图,在直三棱柱ABCA 1B 1C 1中,点D 是棱B 1C 1的中点.(1) 求证:AC 1∥平面A 1BD ;(2)若AB =AC =2 ,BC =BB 1=2,在棱AC 上是否存在点M ,使二面角BA 1DM 的大小为45°?若存在,求出AM AC的值;若不存在,请说明理由.6. (2019·长沙二模)如图,四棱锥P ABCD 的底面是直角梯形,AB ∥DC ,AB ⊥BC ,△P AB 和△PBC 是两个边长为2的正三角形,DC =4,O 为AC 的中点,E 为PB 的中点.(1) 求证:OE ∥平面PCD ;(2) 在线段DP 上是否存在一点Q ,使直线BQ 与平面PCD 所成角的正弦值为23?若存在,求出点Q 的位置;若不存在,请说明理由.。
2020届江苏省镇江市统一高考数学第一轮复习学案(解析答案版):学案4.立体几何(1)表面积与体积
立体几何复习(1)空间几何体的表面积与体积教学目标:1.掌握锥、台、柱、球体的表面积公式及表面积的求法;2.掌握锥、台、柱、球体的体积公式及体积的求法.教学重点:掌握锥体、台体、柱体、球体的表面积与体积的计算方法,能计算简单组合体的表面积与体积,以便从量的角度认识空间几何体.教学难点:锥体、台体、柱体、球体的表面积与体积公式的应用.【知识清单】 1.空间几何体的表面积球的表面积2=4S R π球,其中R 为球的半径.2.空间几何体的体积球的体积34=3V R π球,R 为球的半径. 【例题精讲】类型1:空间几何体的表面积与侧面积例1:1.若圆锥底面半径为1,高为2,则圆锥的侧面积为 .【解析】根据圆锥底面半径、高、母线长构成一个直角三角形,所以母线长l,在根据圆锥的侧面积公式S rl π=.2.将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27πcm 3,则该圆柱的侧面积为 cm 2. 【答案】18【解析】设正方体棱长为a ,则正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为2327a a a πππ⨯==,3a =,圆柱侧面积22218S a a a πππ=⨯==.3.若圆锥的底面直径和高都与一个球的直径相等,圆锥、球的表面积分别记为, ,则12S S 的值是 .【解析】设球的直径为2R ,由题意可知,2211)S R R R πππ=+=,224S R π=,所以12S S =1S 2S )h 圆台备选题1:正三棱锥中,,D、E分别是棱SA、SB上的点,为边的中点,,则三角形CDE的面积为 .【解析】根据题意在正三棱锥中,为边的中点,故可得AB SCQ⊥平面,则AB SQ⊥,又由,故//DE AB,假设DE SQ F=,又在SCQ∆中,SC CQ SQ===CF=,故112CDES∆=⨯=.备选题2:圆锥的母线长为L,过顶点的最大截面的面积为12L2,则圆锥底面半径与母线长的比rL的取值范围是 .【答案】【解析】由题意得轴截面的顶角θ不小于π2,因为sinθ2=rL≥sinπ4=22,所以22≤rL<1.【思想方法归纳】圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.(1)找准几何体中各元素间的位置关系及数量关系.(2)注意组合体的表面积问题中重合部分的处理.类型2:空间几何体的体积例2:1.已知圆锥的母线长为5cm,侧面积为215cmπ,则此圆锥的体积为3cm.S ABC-2BC=SB=Q AB SQ CDE⊥平面S ABC-Q ABSQ CDE⊥平面【答案】12π【解析】已知圆锥的母线长为5cm ,侧面积为215cm π,所以圆锥的底面周长26cm π,底面半径是3cm ,圆锥的高是4cm ,此圆锥的体积为194123ππ⨯⨯=3cm .2.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1-A 1BD 的体积为 cm3.(例2-2)【答案】32【解析】∵在正四棱柱ABCD -A 1B 1C 1D 1中,AB =3cm ,AA 1=1 cm ,∴三棱锥11D A BD -的体积:1111113113313362D A BD B A D D A D D V V S AB cm --∆==⋅⋅=⨯⨯⨯=.3.如图,在直四棱柱1111ABCD A B C D -中,点,E F 分别在11,AA CC 上,且134AE AA =,113CF CC =,点,A C 到BD 的距离之比为3:2,则三棱锥E BCD -和F ABD -的体积比E BCDF ABDV V --= .(例2-3)【答案】32【解析】点,A C 到BD 的距离之比为3:2,所以23BCD ABD S S ∆=∆,又直四棱柱1111ABCD A B C D -中,134AE AA =,113CF CC =,所以94AE CF =, 于是1293313423BCD E BCDF ABDABD S AEV V S CF ∆--∆⋅==⨯=⋅.备选题1:在直三棱柱ABC -A 1B 1C 1中,M ,N 分别为棱A 1B 1,A 1C 1的中点,则平面BMNC 将三棱柱分成的两部分的体积比为 . 【答案】7:5【解析】设直三棱柱ABC -A 1B 1C 1高为h ,底面积为4S ,则11111B C BMNC C B MNC M B BC V V V ---=+11111111534322233A B BC B ABC h S V Sh V hS h S Sh --=⨯⨯+=+=+⨯⋅=, 所以两部分的体积比为55(4):7:533Sh Sh Sh -=.备选题2:已知一个组合体是由圆锥与圆柱组合而成,下半部分是底面半径为1,高为4的圆柱,上半部分是底面半径为2,高为2的圆锥,则该几何体的体积为 3m . 【答案】203π【解析】由于该几何体是组合体,其中下半部分是底面半径为1,高为4的圆柱,上半部分是底面半径为2,高为2的圆锥,其体积为22120142233πππ⨯⨯+⨯⨯⨯=(3m ).备选题3:《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵ABC -A 1B 1C 1中,AC ⊥BC ,若A 1A =AB =2,当阳马B -A 1ACC 1体积最大时,则堑堵ABC -A 1B 1C 1的体积为 .备选题3【答案】2【解析】由阳马的定义知,VB -A 1ACC 1=13×A 1A ×AC ×BC =23AC ×BC ≤13(AC 2+BC 2)=13AB 2=43,当且仅当AC =BC =2时等号成立,所以当阳马B -A 1ACC 1体积最大时,则堑堵ABC -A 1B 1C 1的体积为12×2×2×2=2.【思想方法归纳】(1)计算柱、锥、台的体积关键是根据条件找出相应的底面积和高.(2)若所给几何体的体积不能直接利用公式得出,注意求体积的一些特殊方法:分割法、补体法、等体积转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.(3)注意组合体的组成形式及各部分几何体的特征.类型3:球内接几何体相关问题例3:1.正方体ABCD-A 1B 1C 1D 1的棱长为23,则四面体AB 1CD 1的外接球的体积为 . 【答案】36π【解析】四面体AB 1CD 1的外接球即为正方体ABCDA 1B 1C 1D 1的外接球,故正方体的外接球的直径为(23)2+(23)2+(23)2=6,故V =43πR 3=43π×(6÷2)3=36π.2.如图,在四棱锥P -ABCD 中,△PAB 为正三角形,四边形ABCD 为正方形且边长为2,平面PAB⊥平面ABCD ,四棱锥P -ABCD 的五个顶点都在一个球面上,则这个球的表面积是 .(例3-2)【答案】283π 【解析】由题意球的半径满足R 2-1+R 2-2=3⇒R 2=73,所以球的表面积是4πR 2=28π3.3.已知三棱柱ABC -A 1B 1C 1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为23,AB =2,AC =1,∠BAC =60°,则此球的表面积等于 . 【解析】20π【解析】由题意知三棱柱是直三棱柱,且底面是直角三角形,∠ACB =90°,设D ,D 1分别是AB ,A 1B 1的中点,O 是DD 1中点,可证O 就是三棱柱外接球球心,S △ABC =12×2×1×sin 60°=32,V =S △ABC ·h =32×DD 1=23,即DD 1=4,OA =AD 2+DO 2=12+22=5, 所以S =4π×OA 2=4π×(5)2=20π.备选题1:已知正三棱柱111A B C ABC -的所有棱长都为3,则该棱柱外接球的表面积为 . 【答案】21π【解析】如图,外接球的球心为上下底面中心连线1M M 的中点,连结1A O ,11A M ,所以三角形11A M O 为直角三角形, 132M O =,113A M =()()221213322AO =+ 所以该棱柱外接球的表面积为(2214π21π⨯=.备选题2:已知P -ABC 是正三棱锥,其外接球O 的表面积为16π,且∠APO =∠BPO =∠CPO =30°,则三棱锥的体积为 . 934【解析】设球的半径为R ,△ABC 的外接圆圆心为O ′,则由球的表面积为16π, 可知4πR 2=16π,所以R =2.设△ABC 的边长为2a , 因为∠APO =∠BPO =∠CPO =30°,OB =OP =2,所以BO ′=32R =3,OO ′=OB 2-BO ′2=1, PO ′=OO ′+OP =3.在△ABC 中,O ′B =23×32×2a =3, 所以a =32,所以三棱锥PABC 的体积为V =13×12×32×sin60°×3934【思想方法归纳】解决球与其他几何体的内切、外接问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径.类型4:综合应用例4:如图,四棱锥中,底面是边长为2的正方形,其它四个侧面都是侧棱长为的中点.(1)在侧棱上找一点,使∥平面,并证明你的结论;(2)在(1)的条件下求三棱锥的体积.【解析】(1)F为VC的中点,取CD的中点为H,连结BH,HF,ABCD为正方形,E为AB 的中点,//,DH DHBE BE=∴,//H DB E∴,又//VDFH,∴平面//BHF平面VDE,//BF∴平面VDE.(2)F为VC的中点,14BDE ABCDS S∆=,18E BDF F BDE V ABCDV V V---∴==,V ABCD-为正四棱锥,V∴在平面ABCD的射影为AC的中点O.5VA=AO=∴VO=2123V ABCDV-∴=⋅E BDFV-∴=【点睛】(1)为的中点,取的中点为,由三角形中位线性质得线线平行,再由线线平行证得面面平行,即得线面平行(2)因为为正四棱锥,所以可求V到底面距离,即得F到底面距离,再根据等体积法得,最后代入锥体体积公式即可.备选题1:如图,O是圆锥底面圆的圆心,圆锥的轴截面PAB为等腰直角三角形,C为底面圆周上一点.V ABCD-ABCDE ABVC F BF VDEE BDF-F VC CD HV ABCD-E BDF F BDEV V--=(1)若弧BC 的中点为D ,求证:AC ∥平面POD ; (2)如果△PAB 的面积是9,求此圆锥的表面积.【解析】(1)证明:方法一 设BC ∩OD =E ,∵D 是弧BC 的中点,∴E 是BC 的中点. 又∵O 是AB 的中点,∴AC ∥OE .又∵AC ⊄平面POD ,OE ⊂平面POD ,∴AC ∥平面POD .方法二 ∵AB 是底面圆的直径,∴AC ⊥BC .∵弧BC 的中点为D ,∴OD ⊥BC . 又AC ,OD 共面,∴AC ∥OD .又AC ⊄平面POD ,OD ⊂平面POD ,∴AC ∥平面POD . (2)解:设圆锥底面半径为r ,高为h ,母线长为l , ∵圆锥的轴截面PAB 为等腰直角三角形,∴h =r ,l =2r .由S △PAB =12×2r ×h =r 2=9,得r =3,∴S 表=πrl +πr 2=πr ×2r +πr 2=9(1+2)π.备选题2:如图,矩形ABCD 所在的平面和平面ABEF 互相垂直,等腰梯形ABEF 中,AB ∥EF ,AB =2,AD =AF =1,∠BAF =60°,O ,P 分别为AB ,CB 的中点,M 为底面△OBF 的重心.(1)求证:平面ADF ⊥平面CBF ; (2)求证:PM ∥平面AFC ; (3)求多面体CD -AFEB 的体积V .【解析】(1)证明:∵矩形ABCD 所在的平面和平面ABEF 互相垂直,且CB ⊥AB ,∴CB ⊥平面ABEF , 又AF ⊂平面ABEF ,所以CB ⊥AF ,又AB =2,AF =1,∠BAF =60°,由余弦定理知BF =3,∴AF 2+BF 2=AB 2,得AF ⊥BF , 又BF ∩CB =B ,∴AF ⊥平面CFB ,又∵AF ⊂平面ADF ,∴平面ADF ⊥平面CBF .(2)证明:连接OM 并延长交BF 于H ,则H 为BF 的中点,又P 为CB 的中点,∴PH ∥CF ,又∵CF ⊂平面AFC ,PH ⊄平面AFC ,∴PH ∥平面AFC , 连接PO ,则PO ∥AC ,又∵AC ⊂平面AFC ,PO ⊄平面AFC ,∴PO ∥平面AFC , 又∵PO ∩PH =P ,∴平面POH ∥平面AFC , 又∵PM ⊂平面POH ,∴PM ∥平面AFC .(3)解:多面体CD -AFEB 的体积可分成三棱锥C -BEF 与四棱锥F -ABCD 的体积之和. 在等腰梯形ABEF 中,计算得EF =1,两底间的距离EE 1=32. 所以V C -BEF =13S △BEF ×CB =13×12×1×32×1=312,V F -ABCD =13S 矩形ABCD ×EE 1=13×2×1×32=33,所以V =V C -BEF +V F -ABCD =5312.【课堂归纳总结】1.空间几何体表面积和体积的求法几何体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理.空间几何体体积问题的常见类型及解题策略:(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用等体积转换法、分割法、补形法等方法进行求解.2.多面体与球接、切问题的求解策略(1)涉及球与棱柱、棱锥的接、切问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内接、外切的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,则4R2=a2+b2+c2求解.【课后练习】1.已知圆锥的侧面展开图是半径为3,圆心角为23π的扇形,则这个圆锥的高为 .【答案】【解析】由题知圆锥的底面圆周长为2323ππ⋅=,所以半径为1r=,由题意圆锥的侧面展开图是半径为3即为圆锥的母线3l=,所以圆锥的高为h.2.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 .【答案】3π【解析】由题意得:1:(2)22rl h rππ⋅=2l h⇒=⇒母线与轴的夹角为3π.3.如图,在长方体中,,,则三棱锥的体积为.【答案】3 【解析】4.在ABC ∆中,2AB =, 1.5BC =,120ABC ∠=,若使ABC ∆绕直线BC 旋转一周,则所形成的几何体的体积是 . 【答案】32π【解析】过A 作AD 垂直BC 于点D ,则,AD =1BD =, 2.5CD =,因此所形成的几何体的体积是213(2.51)32ππ⨯⋅⋅-=.5.已知圆柱M 的底面半径为2,高为6,圆锥N 的底面直径和母线长相等,若圆柱M 和圆锥N 的体积相同,则圆锥N 的高为 . 【答案】6【解析】设圆锥N 的底面半径为r ,则它的母线长为2r ,高为3r ,由圆柱M 与圆锥N 的体积相同,得4π×6=13πr2×3r ,解得r =23,因此圆锥N 的高h =3r =6.6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 .【解析】由体积相等得:22221145+28=4833r r r ππππ⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯⇒=.7.如图,在正三棱柱111ABC A B C -中,已知13AB AA ==,点P 在棱1CC 上,则三棱锥1P ABA -的体积为 .(第7题)【解析】三棱锥的底面积1193322ABA S ∆=⨯⨯=,点P 到底面的距离为ABC ∆的高h =,故三棱锥的体积13V Sh ==.8.如图,圆形纸片的圆心为,半径为,该纸片上的正四边形的中心为.为圆上的点分别是以为底边的等腰三角形.沿线剪开后,别以为折痕折起,使得重合,得到四棱锥记该四棱锥的体积,表面积分别是,当,则 .(第8题)【解析】,则四棱锥的高,所以体积,所以9.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .O 4cm ABCD O ,,,E F G H O ,,,EAB FBC GCD HDA ∆∆∆∆,,,AB BC CD DA ,,,AB BC CD DA ,,,EAB FBC GCD HDA ∆∆∆∆,,,E F G H ,V S 2AB =VS=2AB =h =13V Sh ==44316S =+⨯=V S =【答案】【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为【点睛】:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.10.设直三棱柱ABC -A 1B 1C 1的所有顶点都在同一个球面上,且球的表面积是40π,AB =AC =AA 1,∠BAC =120°,则此直三棱柱的高是 . 【答案】2 2【解析】设AB =AC =AA 1=x ,在△ABC 中,∠BAC =120°,则由余弦定理可得BC =3x . 由正弦定理,可得△ABC 外接圆的半径为r =x , ∵球的表面积是40π,∴球的半径为R =10.设△ABC 外接圆的圆心为O ′,球心为O ,在Rt △OBO ′中,有221()102x x +=,解得x =22,即AA 1=22,即此直三棱柱的高是2 2.11.如图,已知四棱锥P -ABCD 的底面是边长为2的菱形,∠BCD =60°,点E 是BC 边 的中点,AC ,DE 交于点O ,PO =23,且PO ⊥平面ABCD . (1)求证:PD ⊥BC ;(2)在线段AP 上找一点F ,使得BF ∥平面PDE , 并求此时四面体PDEF 的体积.【解析】(1)由题可得△BCD 为正三角形,E 为BC 中点,故DE ⊥BC . 又PO ⊥平面ABCD ,BC ⊂平面ABCD ,则PO ⊥BC ,而DE ∩PO =O ,,DE PO ⊂平面PDE ,所以BC ⊥平面PDE .又PD ⊂平面PDE ,故PD ⊥BC . (2)取AP 中点为F ,再取PD 中点为G ,连结FG . 则FG 为△PAD 中位线,故FG =∥ 12AD , 又BE =∥ 12AD ,所以FG =∥BE ,于是四边形BFGE 为平行四边形, 因此BF ∥EG .又BF ⊄平面PDE ,EG ⊂平面PDE ,所以BF ∥平面PDE . 由(1)知,BC ⊥平面PDE .则有BC ⊥PE ,BC ⊥DE ,而BC ∥FG ,故FG ⊥PE ,FG ⊥DE ,且DE ∩PE =E ,所以FG ⊥平面PDE . 于是四面体PDEF 的体积为V=13S △PDE ·FG =13×12×23×3×1=1.另解(等体积转化):因为BF //面PDE ,则B ,F 两点到平面PDE 的距离相等, 所以四面体PDEF 的体积等于四面体PDEB , 因为PO ⊥平面ABCD ,所以V P-BDE =13·PO ·S △BDE =1.12.如图,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求棱锥E -DFC 的体积;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC的值;如果不存在,请说明理由.【解析】(1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD ,BD ⊥CD ,将△ABC 沿CD 翻折成直二面角A -DC -B ,∴AD ⊥BD ,∴AD ⊥平面BCD .取CD 的中点M ,这时EM ∥AD ,∴EM ⊥平面BCD ,EM =1.V E -DFC =13×1()2BDC S ×EM =13×12×12×2×23×1=33. (3)在线段BC 上存在点P ,使AP ⊥DE .证明如下:在线段BC 上取点P ,使BP =BC3,过P 作PQ ⊥CD 于Q .∵AD ⊥平面BCD ,PQ ⊂平面BCD ,∴AD ⊥PQ .又∵AD ∩CD =D ,∴PQ ⊥平面ACD , ∴DQ =DC 3=233,∴tan ∠DAQ =DQ AD =2332=33,∴∠DAQ =30°,在等边△ADE 中,∠DAQ =30°,∴AQ ⊥DE ,∵PQ ⊥平面ACD ,DE ⊂平面ACD ,∴PQ ⊥DE ,AQ ∩PQ =Q ,∴DE ⊥平面APQ ,∴AP ⊥DE .此时BP =BC 3,∴BP BC =13.13.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC的长为cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度.【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.因为40AC AM ==,所以30MC ==,从而 3sin 4MAC =∠,记AM 与水面的焦点为1P ,过1P 作P 1Q 1⊥AC , Q 1为垂足,则 P 1Q 1⊥平面 ABCD ,故P 1Q 1=12,从而 AP 1=1116sin P MACQ =∠. ( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm) (2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面 EFGH , 所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面 E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1.记玻璃棒的另一端落在GG 1上点N 处. 过G 作GK ⊥E 1G ,K 为垂足, 则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1= 6214242-=,从而140GG ===.设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是,sin sin()sin()NEG αβαβ=π--=+∠42473sin cos cos sin ()53525255αβαβ=+=⨯+-⨯=.记EN 与水面的交点为P 2,过 P 2作P 2Q 2⊥EG ,Q 2为垂足,则 P 2Q 2⊥平面 EFGH ,故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠.答:(1)玻璃棒l 没入水中部分的长度为16cm.(2)玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm)【点睛】空间几何体的考察,主要集中体积、表面积的计算和空间距离的距离,其实这些计算最后都得归结为平面中基本图形中的长度的计算,因此解三角形就是必要的工具.14.如图,圆柱体木材的横截面半径为1 dm ,从该木材中截取一段圆柱体,再加工制作成直四棱柱1111A B C D ABCD -,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心O 在梯形ABCD 内部,AB ∥CD ,DAB ∠=60°,1AA AD =,设DAO θ∠=. (1)求梯形ABCD 的面积;(2)当sin θ取何值时,四棱柱1111A B C D ABCD -的体积最大?并求出最大值. (注:木材的长度足够长)【解析】(1)由条件可得,2cos AD θ=, 所以梯形的高sin 603h AD θ==. 又2cos(60)AB θ=-,2cos(120)CD θ=-, 所以梯形ABCD 的面积为12cos(60)2cos(120)3cos 2S θθθ⎡⎤=-+-⨯⎣⎦ cos(60)cos(60)3cos θθθ⎡⎤=--+⨯⎣⎦(2sin 60sin )θθ=3sin 22θ=(2dm ).(2)设四棱柱1111A B C D ABCD -的体积为V ,因为12cos AA AD θ==, 所以123sin 22cos 6sin (1sin )2A V S A θθθθ=⋅⨯==-.设sin t θ=,因为060θ︒<<,所以0t ⎛∈ ⎝,所以23()6(1)6()V t t t t t =-=-+,0t ⎛∈ ⎝.由2()6(31)18(V t t t t '=-+=-+-,令()0V t '=,得t ,()V t 与()V t '的变化情况列表如下:由上表知,()V t在t =时取得极大值,即为最大值,且最大值V =答:当sin θ=时,四棱柱1111A B C D ABCD -3dm .【备选提高题】1.各棱长都为2的正四棱锥与正四棱柱的体积之比为m ,则m 的值为 . 【答案】12【解析】法一:正四棱柱的体积为8,底面积为4,故体积为3,所6,即6m =. 方法二:设正四棱锥与正四棱柱的高分别为12,h h .因为正四棱锥与正四棱柱的底面积相同,所以体积之比为121332h h ==.2.将一个半径为2的圆分成圆心角之比为1:2的两个扇形,且将这两个扇形分别围成圆锥的侧面,则所得体积较小的圆锥与较大圆锥的体积之比为 . 【答案】1【解析】因为圆分成圆心角之比为1:2的两个扇形,所以两个扇形圆心角分别为123lπ=和243l π=.1223r ππ=和2423r ππ=,解得123r =,243r =.13h ==, 2h ==.所以21112222114313r h v v r h πππ⋅===3.已知一球与一个正三棱柱的三个侧面及两个底面都相切.若该球的体积为4π3,则该三棱柱的体积是 . 【答案】6 3【解析】由体积得球半径R =1,三棱柱的高为2,底面边长为2 3.V =34(2 3)2×2=6 3.4.在三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V , 三棱锥P ABC -的体积为2V ,则12V V = . 【答案】14【解析】因为213C PAB PAB V V S h -∆==,121111323224E ABD DAB PAB h h V V S S V -∆∆==⋅=⨯⨯=,所以1214V V =.5.如图,四棱锥P ABCD -的底面ABCD 是矩形,PA ⊥底面ABCD ,E 为PD 上一点,且2PE ED =.设三棱锥P ACE -的体积为1V ,三棱锥P ABC -的体积为2V ,则12:V V = .【答案】23【解析】因为2PE ED =,所以三棱锥E ACD -的体积是三棱锥P ACD -体积的13,所以三棱锥P ACE -的体积是P ACD -体积的23.因为三棱锥P ABC -与三棱锥P ACD -体积相等,所以12:V V =23.6.在三棱锥D -ABC 中,AB =BC =DB =DC =1,当三棱锥体积最大时,其外接球的表面积为________. 【答案】7π3【解析】在三棱锥D -ABC 中,当且仅当AB ⊥平面BCD 时,三棱锥体积达到最大, 此时,设外接球的半径为R ,外接球的球心为O ,点F 为△BCD 的中心, 则有R 2=OB 2=OF 2+BF 2=221()2+=712,所以表面积S =4πR 2=7π3.7.已知三棱锥P -ABC 内接于球O ,PA =PB =PC =2,当三棱锥P -ABC 的三个侧面的面积之和最大时,球O 的表面积为 . 【答案】12π【解析】由于三条侧棱相等,根据三角形面积公式可知,当PA ,PB ,PC 两两垂直时,侧面积之和最大.此时PA ,PB ,PC 可看成正方体一个顶点的三条侧棱,其外接球直径为正方体的体对角线,即4R 2=3·22=12,故球的表面积为4πR 2=12π.8.已知正四面体P ABC -的棱长均为a ,O 为正四面体P ABC -的外接球的球心,过点O 作平行于底面ABC 的平面截正四面体P ABC -,得到三棱锥111P A B C -和三棱台111ABC A B C -,那么三棱锥111P A B C -的外接球的表面积为 . 【答案】22732a π 【解析】设底面ABC ∆的外接圆半径为r ,则2sin3a r π=,所以r ., 设正四面体的外接球半径为R,则222))R R =+-,∴R =.3:4=,所以三棱锥111P A B C -的外接球的表面积为2223274)()432a ππ⨯⨯=.。
高一数学立体几何教案设计 高一数学立体几何解题技巧(3篇)
高一数学立体几何教案设计高一数学立体几何解题技巧(3篇)高一数学立体几何教案设计高一数学立体几何解题技巧篇一教学环节教学内容师生互动设计意图课题引入让同学们观察几个几何体,从感性上对几何体有个初步的认识,并总结出空间立体几何研究的几个基本元素。
学生观察、讨论、总结,教师引导。
提高学生的学习兴趣新课讲解基础知识能力拓展探索研究一、构成几何体的基本元素。
点、线、面二、从集合的角度解释点、线、面、体之间的相互关系。
点是元素,直线是点的集合,平面是点的集合,直线是平面的子集。
三、从运动学的角度解释点、线、面、体之间的相互关系。
1、点运动成直线和曲线。
2、直线有两种运动方式:平行移动和绕点转动。
3、平行移动形成平面和曲面。
4、绕点转动形成平面和曲面。
5、注意直线的两种运动方式形成的曲面的区别。
6、面运动成体。
四、点、线、面、之间的相互位置关系。
1、点和线的位置关系。
点a2、点和面的位置关系。
3、直线和直线的位置关系。
4 、直线和平面的位置关系。
5、平面和平面的位置关系。
通过对几何体的观察、讨论由学生自己总结。
引领学生回忆元素、集合的相互关系,讨论、归纳点、线、面之间的相互关系。
通过课件演示及学生的讨论,得出从运动学的角度发现点、线、面之间的相互关系。
引导学生由生活中的实际例子总结出点、线、面之间的相互位置关系,让学生有个感性认识。
培养学生的观察能力。
培养学生将所学知识建立相互联系的能力。
让学生在观察中发现点、线、面之间的相互运动规律,为以后学习几何体奠定基础。
培养学生将学习联系实际的习惯,锻炼学生由感性认识上升为理性知识的能力。
课堂小结1、学习了构成几何体的基本元素。
2、掌握了点、线、面之间的`相互关系。
3、了解了点、线、面之间的相互的位置关系。
由学生总结归纳。
培养学生总结、归纳、反思的学习习惯。
课后作业试着画出点、线、面之间的几种位置关系。
学生课后研究完成。
检验学生上课的听课效果及观察能力。
附:1.1.1构成空间几何体的基本元素学案(一)、基础知识1、几何体:________________________________________________________________2、长方体:________________________________ ___________________________ _____3、长方体的面:____________________________________________________________4、长方体的棱:____________________________________________________________5、长方体的顶点:__________________________________________________________6、构成几何体的基本元素:__________________________________________________7、你能说出构成几何体的几个基本元素之)●(间的关系吗?(二)、能力拓展1、如果点做连续运动,运动出来的轨迹可能是______________________ 因此点是立体几何中的最基本的元素,如果点运动的方向不变,则运动的轨迹是_____________ 如果点运动的轨迹改变,则运动的轨迹是________ ____ 试举几个日常生活中点运动成线的例子___ ________________________________2、在空间中你认为直线有几种运动方式_______________________________________分别形成_______________________________________________________你能举几个日常生活中的例子吗?3、你知道直线和线段的区别吗?_______________________________________如果是线段做上述运动,结果如何?_______________________________________.现在你能总结出平面和面的区别吗?______________________________________________ (三)、探索与研究1、构成几何体的基本元素是_________,__________,____________.2、点和线能有几种位置关系_________________________你能画图说明吗?3、点和平面能有几种位置关系_______________________你能画图说明吗?4、直线和直线能有几种位置关系________________________你能画图说明吗?高一数学立体几何教案设计高一数学立体几何解题技巧篇二1.感知立体图形在空间的存在形式,正确点数立方体。
2019-2020高中数学 第一章 立体几何初步 1.1.2 简单多面体学案 北师大版必修2
1.2 简单多面体学习目标 1.通过对实物模型的观察,归纳认知简单多面体——棱柱、棱锥、棱台的结构特征(重点);2.能运用棱柱、棱锥、棱台的结构特征解决简单多面体的有关计算(重、难点).知识点一多面体我们把若干个平面多边形围成的几何体叫作多面体.其中棱柱、棱锥、棱台都是简单多面体. 【预习评价】(正确的打“√”,错误的打“×”)(1)多面体至少四个面.(√)(2)多面体的面都是平的,多面体没有曲面.(√)知识点二棱柱的结构特征定义图形及表示相关概念分类两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫作棱柱.如图可记作:棱柱ABCDEF-A′B′C′D′E′F′底面:两个互相平行的面.侧面:其余各面.侧棱:两个侧面的公共边.顶点:底面多边形与侧面的公共顶点.按底面多边形的边数分:三棱柱、四棱柱、……棱柱的侧面一定是平行四边形吗?提示根据棱柱的概念侧棱平行、底面平行可知,棱柱的侧面一定是平行四边形.知识点三棱锥的结构特征定义图形及表示相关概念分类有一个面是多边形,其余各面是有一个公共顶点的三角形,这些面围成的几何体叫作棱锥.如图可记作,棱锥S-ABCD底面:多边形面.侧面:有公共顶点的各个三角形面.侧棱:相邻侧面的公共边.顶点:各侧面的公共顶点.按底面多边形的边数分:三棱锥、四棱锥、……(1)五棱锥共有五个面.(×)(2)三棱锥也叫四面体.(√)(3)棱锥的侧棱长都相等.(×)知识点四棱台的结构特征定义图形及表示相关概念分类用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台.如图可记作:棱台ABCD-A′B′C′D′上底面:原棱锥的截面.下底面:原棱锥的底面.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点.由三棱锥、四棱锥、五棱锥…截得的棱台分别叫做三棱台、四棱台、五棱台……棱台的上下底面互相平行,各侧棱延长线一定相交于一点吗?提示根据棱台的定义可知其侧棱延长线一定交于一点.题型一棱柱的结构特征【例1】下列说法中,正确的是( )A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫作棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形解析A选项不符合棱柱的特点;B选项中,如图①,构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的特点.故选D.答案 D规律方法棱柱的结构特征:(1)两个面互相平行;(2)其余各面都是四边形;(3)每相邻两个四边形的公共边都互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.【训练1】根据下列关于空间几何体的描述,说出几何体名称:(1)由6个平行四边形围成的几何体.(2)由8个面围成,其中两个面是平行且全等的六边形,其余6个面都是平行四边形.解(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)该几何体是六棱柱.题型二棱锥、棱台的结构特征【例2】下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥.答案①②规律方法判断棱锥、棱台形状的两个方法:(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确. (2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点A.三棱锥B.四棱锥C.三棱台D.四棱柱解析剩余部分是四棱锥A′-BB′C′C.答案 B【探究1】画出如图所示的几何体的表面展开图.解表面展开图如图所示:【探究2】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.请将字母F,G,H标记在正方体相应的顶点处(不需说明理由).解点F,G,H的位置如图所示.【探究3】如图所示,已知三棱锥P-ABC的底面是正三角形且三条侧棱两两成30°角,侧棱长为18 cm,从点A引一条丝带绕侧面一周回到A点,设D,E分别为丝带经过PC,PB 时的交点,则△ADE周长的最小值为多少?解把三棱锥P-ABC的侧面沿侧棱PA剪开,并展开在平面上,得到平面图形PABCA′,如图所示,则当A,E,D,A′四点共线时,△ADE的周长取得最小值,即线段AA′的长度.∵∠APB=∠BPC=∠CPA′=30°,∴∠APA′=90°.又AP=A′P=18 cm,∴AA′=18 2 cm.则△ADE周长的最小值为18 2 cm.【探究4】长方体中,a,b,c为棱长,且a>b>c,求沿长方体表面从P到Q的最小距离(其中P,Q是长方体对角线的两个端点).解将长方体展开,有三种情况(如图).d1=a2+(b+c)2=a2+b2+c2+2bc,d2=c2+(a+b)2=a2+b2+c2+2ab,d3=b2+(a+c)2=a2+b2+c2+2ac,因为a>b>c,故d min=d1=a2+(b+c)2.规律方法多面体表面展开图问题的解题策略:(1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.(2)已知展开图:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.课堂达标1.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形解析由于三棱柱的侧面为平行四边形,故选项D错.答案 D2.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析形成的几何体前后两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,符合棱柱的定义.答案 A3.下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是菱形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中,正确的有( )A.0个B.1个C.2个D.3个解析①中的平面不一定平行于底面,故①错;②中侧面是菱形,所以侧棱互相平行,延长后无交点,故②错;③用反例验证(如图),故③错.答案 A4.对棱柱而言,下列说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等.③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫作侧棱.解析①正确,根据棱柱的定义可知;②错误,因为侧棱与底面上棱长不一定相等;③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,即棱柱中至少有两个面的形状完全相同;④错误,因为底面和侧面的交线不是侧棱.答案①③5.如图是三个几何体的侧面展开图,请问各是什么几何体?解 由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以(1)为五棱柱;(2)为五棱锥;(3)为三棱台.课堂小结1.棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).2.(1)各种棱柱之间的关系 ①棱柱的分类棱柱⎩⎪⎨⎪⎧直棱柱⎩⎪⎨⎪⎧正棱柱一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系(2)棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表: 名称 底面 侧面侧棱高平行于底面的截面 棱柱斜棱柱 平行且全等的两个多边形平行四边形 平行且相等与底面全等直棱柱平行且全等的两个多边形矩形平行、相等且垂直于底面等于侧棱与底面全等正棱柱平行且全等的两个正多边形全等的矩形平行、相等且垂直于底面等于侧棱与底面全等棱锥正棱锥一个正多边形全等的等腰三角形有一个公共顶点且相等过底面中心与底面相似其他棱锥一个多边形三角形有一个公共顶点与底面相似棱台正棱台平行且相似的两个正多边形全等的等腰梯形相等且延长后交于一点与底面相似其他棱台平行且相似的两个多边形梯形延长后交于一点与底面相似基础过关1.一般棱台不具有的性质是( )A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析当棱台是斜棱台时其侧棱不全相等.答案 C2.下列关于棱柱的说法错误的是( )A.所有的棱柱两个底面都平行B.所有的棱柱一定有两个面互相平行,其余各面每相邻面的公共边互相平行C.有两个面互相平行,其余各面都是四边形的几何体一定是棱柱D.棱柱至少有五个面解析对于A、B、D,显然是正确的;对于C,棱柱的定义是这样的:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫作棱柱,显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.如图所示的几何体就不是棱柱,所以C错误.答案 C3.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1解析由棱台的结构特征知,棱台上、下底面是相似多边形,面积比为对应边之比的平方,故选B.答案 B4.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析因棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为605=12 cm.答案125.一个无盖的正方体盒子展开后的平面图如图所示,A,B,C是展开图上的三点,则在正方体盒子中∠ABC=________.解析如图所示,将平面图折成正方体.很明显点A,B,C是上底面正方形的三个顶点,则∠ABC=90°.答案90°6.如图所示为长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′-CFC′,其中△BEB′和△CFC′是底面,EF,B′C′,BC是侧棱.截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′-DCFD′.其中四边形ABEA′和四边形DCFD′是底面,A′D′,EF,BC,AD为侧棱.7.如图所示,有12个小正方体,每个正方体6个面上分别写着数字1,9,9,8,4,5,用这12个小正方体拼成一个长方体,那么图中看不见的那些小正方体的面有多少个,并求这些面上的数字和.解这12个小正方体,共有6×12=72个面,图中看得见的面共有3+4×4=19个,故图中看不见的面有72-19=53个,12个小正方体各个面的数字的和为(1+9+9+8+4+5)×12=432.而图中看得见的数字的和为131,所以看不见的那些小正方体的面上的数字的和为432-131=301.能力提升8.如图所示,不是正四面体的展开图的是( )A.①③B.②④C.③④D.①②解析可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.答案 C9.下列命题中,真命题是( )A.顶点在底面上的投影到底面各顶点的距离相等的三棱锥是正三棱锥B.底面是正三角形,各侧面是等腰三角形的三棱锥是正三棱锥C.顶点在底面上的投影为底面三角形的垂心的三棱锥是正三棱锥D.底面是正三角形,并且侧棱都相等的三棱锥是正三棱锥解析对于选项A,到三角形各顶点距离相等的点为三角形外心,该三角形不一定为正三角形,故该命题是假命题;对于选项B,如图所示,△ABC为正三角形,若PA=PB=AB=BC=AC≠PC,△PAB,△PBC,△PAC都是等腰三角形,但它不是正三棱锥,故该命题是假命题;对于选项C,顶点在底面上的投影为底面三角形的垂心,底面为任意三角形皆可,故该命题是假命题;对于选项D,顶点在底面上的正投影是底面三角形的外心,又因为底面三角形为正三角形,所以外心即为中心,故该命题是真命题.答案 D10.如图所示,在所有棱长为1的直三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.解析 将三棱柱沿AA 1展开如图所示,则线段AD 1即为最短路线,即AD 1=AD 2+DD 21=10.答案 1011.在正方体上任意选择4个顶点,它们可能是如下各种几何体或几何图形的4个顶点,这些几何体或几何图形是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体. 解析 在正方体ABCD -A 1B 1C 1D 1上任意选择4个顶点,它们可能是如下各种几何体或几何图形的4个顶点,这些几何体或几何图形是:①矩形,如四边形ACC 1A 1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A -A 1BD ;④每个面都是等边三角形的四面体,如A -CB 1D 1;⑤每个面都是直角三角形的四面体,如A -A 1DC ,所以填①③④⑤. 答案 ①③④⑤12.如图,在边长为2a 的正方形ABCD 中,E ,F 分别为AB ,BC 的中点,沿图中虚线将3个三角形折起,使点A 、B 、C 重合,重合后记为点P .问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?解 (1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF 为等腰三角形,△PEF 为等腰直角三角形,△DPE 和△DPF 均为直角三角形.(3)S △PEF =12a 2, S △DPF =S △DPE =12×2a ×a =a 2,S △DEF =S 正方形ABCD -S △PEF -S △DPF -S △DPE=(2a )2-12a 2-a 2-a 2=32a 2. 13.(选做题)已知正四棱锥V -ABCD 如图所示,底面面积为16,侧棱长为211,求它的高和斜高.解 如图所示,设VO 为正四棱锥V -ABCD 的高,作VM ⊥BC 于点M ,则M 为BC 的中点.连接OB 、OM ,则VO ⊥OM ,VO ⊥OB .因为底面正方形ABCD 的面积为16,所以BC =4,所以BM =CM =OM =2,所以OB =BM 2+OM 2=22+22=2 2.又因为VB =211,所以在R t△VOB 中,VO =VB 2-OB 2=(211)2-(22)2=6,在Rt△VOM (或Rt△VBM )中,VM =62+22=210(或VM =(211)2-22=210).即正四棱锥的高为6,斜高为210.。
(新教材)人教A版高中数学必修第二册学案 立体几何导学案含含配套练习答案
8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征考点学习目标核心素养棱柱的结构特征理解棱柱的定义,知道棱柱的结构特征,并能识别直观想象棱锥、棱台的结构特征理解棱锥、棱台的定义,知道棱锥、棱台的结构特征,并能识别直观想象应用几何体的平面展开图能将棱柱、棱锥、棱台的表面展开成平面图形直观想象问题导学预习教材P97-P100的内容,思考以下问题:1.空间几何体的定义是什么?2.空间几何体分为哪几类?3.常见的多面体有哪些?4.棱柱、棱锥、棱台有哪些结构特征?1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体类别定义图示多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体一条平面曲线(包括直线)绕它所在平面内的这条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.这条定直线叫做旋转体的轴3.棱柱、棱锥、棱台的结构特征结构特征及分类图形及记法棱柱结构特征(1)有两个面(底面)互相平行(2)其余各面都是四边形(3)相邻两个四边形的公共边都互相平行记作棱柱ABCDEFA′B′C′D′E′F′分类按底面多边形的边数分为三棱柱、四棱柱…续表结构特征及分类图形及记法棱锥结构特征(1)有一个面(底面)是多边形(2)其余各面(侧面)都是有一个公共顶点的三角形记作棱锥S-ABCD 分类按底面多边形的边数分为三棱锥、四棱锥……棱台结构特征(1)上下底面互相平行,且是相似图形(2)各侧棱延长线相交于一点(或用一个平行于棱锥底面的平面去截棱锥,底面与截面之间那部分多面体叫做棱台)记作棱台ABCD-A′B′C′D′分类由三棱锥、四棱锥、五棱锥……截得的棱台分别为三棱台、四棱台、五棱台……(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系 ①棱柱的分类棱柱⎩⎪⎨⎪⎧直棱柱⎩⎪⎨⎪⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系判断(正确的打“√”,错误的打“×”) (1)棱柱的侧面都是平行四边形.( )(2)用一个平面去截棱锥,底面和截面之间的部分叫棱台. ( ) (3)将棱台的各侧棱延长可交于一点.( ) 答案:(1)√ (2)× (3)√下面多面体中,是棱柱的有( )A .1个B .2个C .3个D .4个解析:选D.根据棱柱的定义进行判定知,这4个都满足. 下面四个几何体中,是棱台的是( )解析:选C.A 项中的几何体是棱柱.B 项中的几何体是棱锥;D 项中的几何体的棱AA ′,BB′,CC′,DD′没有交于一点,则D项中的几何体不是棱台;很明显C项中的几何体是棱台.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1 B.2C.3 D.4解析:选D.每个面都可作为底面,有4个.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.因而正确的有①③.答案:①③棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.1.下列命题中正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫棱柱的底面C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形解析:选D.由棱柱的定义可知,选D.2.如图所示的三棱柱ABC-A1B1C1,其中E,F,G,H是三棱柱对应边上的中点,过此四点作截面EFGH,把三棱柱分成两部分,各部分形成的几何体是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:截面以上的几何体是三棱柱AEF-A1HG,截面以下的几何体是四棱柱BEFC-B1HGC1.棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点1.棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱长都相等D.侧棱延长后相交于一点解析:选C.由棱台的概念(棱台的产生过程)可知A,B,D都是棱台具有的性质,而侧棱长不一定相等.2.下列说法中,正确的是()①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④解析:选B.由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错;四面体就是由四个三角形所围成的封闭几何体,因此以四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错.空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选 B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.1.某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为()解析:选A.其展开图是沿盒子的棱剪开,无论从哪条棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻.相同的图案是盒子上相对的面,展开后不能相邻.2.根据如图所示的几何体的表面展开图,画出立体图形.解:如图是以四边形ABCD为底面,P为顶点的四棱锥.其图形如图所示.1.下面的几何体中是棱柱的有()A.3个B.4个C.5个D.6个解析:选C.棱柱有三个特征:(1)有两个面相互平行.(2)其余各面是四边形.(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是()A.①③B.③④C.①②④D.①②解析:选C.根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥解析:选D.根据棱锥的定义可知该几何体是三棱锥.4.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为__________cm.解析:因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为60 5=12(cm).答案:125.画一个三棱台,再把它分成:(1)一个三棱柱和另一个多面体.(2)三个三棱锥,并用字母表示.解:画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′AB″C″,另一个多面体是B′C′C″B″BC.(2)如图②所示,三个三棱锥分别是A′ABC,B′A′BC,C′A′B′C.[A基础达标]1.下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D.棱柱和棱锥的底面可以是任意多边形,故选项A、B均不正确;可沿棱锥的侧棱将其分割成两个棱锥,故C错误;用平行于棱柱底面的平面可将棱柱分割成两个棱柱.2.具备下列条件的多面体是棱台的是()A .两底面是相似多边形的多面体B .侧面是梯形的多面体C .两底面平行的多面体D .两底面平行,侧棱延长后交于一点的多面体解析:选D.由棱台的定义可知,棱台的两底面平行,侧棱延长后交于一点. 3.如图,能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C.根据棱台是由棱锥截成的进行判断.选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB =B 1C 1BC =A 1C 1AC,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C.4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( ) A .三棱锥 B .四棱锥 C .五棱锥D .六棱锥解析:选D.由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C.C 中,两个底面均在上面,因此不能折成三棱柱,其余均能折成三棱柱. 6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得). 答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱. 解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱. 答案:5 6 98.在下面的四个平面图形中,是侧棱都相等的四面体的展开图的为__________.(填序号)解析:由于③④中的图组不成四面体,只有①②可以.答案:①②9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.画出如图所示的几何体的表面展开图.解:表面展开图如图所示:(答案不唯一)[B能力提升]11.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线()A.20条B.15条C.12条D.10条解析:选D.如图,在五棱柱ABCDE A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共有2×5=10(条).12.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A.至多有一个是直角三角形B.至多有两个是直角三角形C.可能都是直角三角形D.必然都是非直角三角形解析:选C.注意到答案特征是研究侧面最多有几个直角三角形,这是一道开放性试题,需要研究在什么情况下侧面的直角三角形最多.在如图所示的长方体中,三棱锥AA1C1D1的三个侧面都是直角三角形.13.长方体ABCD-A1B1C1D1的长、宽、高分别为3,2,1,从A到C1沿长方体的表面的最短距离为________.解析:结合长方体的三种展开图不难求得AC1的长分别是:32,25,26,显然最小值是3 2.答案:3 214.如图,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB1FCC1E和棱柱ABF A1DCED1.[C拓展探究]15.如图,在一个长方体的容器中装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中:(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,试着讨论水面和水的形状.解:(1)不对,水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而是矩形,不可能是其他非矩形的平行四边形.(2)不对,水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征考点学习目标核心素养圆柱、圆锥、圆台、球的概念理解圆柱、圆锥、圆台、球的定义,知道这四种几何体的结构特征,能够识别和区分这些几何体直观想象简单组合体的结构特征了解简单组合体的概念和基本形式直观想象旋转体中的计算问题会根据旋转体的几何体特征进行相关运算直观想象、数学运算问题导学预习教材P101-P104的内容,思考以下问题:1.常见的旋转体有哪些?是怎样形成的?2.这些旋转体有哪些结构特征?它们之间有什么关系?3.这些旋转体的侧面展开图和轴截面分别是什么图形?1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征定义以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆柱的轴底面:垂直于轴的边旋转而成的圆面侧面:平行于轴的边旋转而成的曲面母线:无论旋转到什么位置,平行于轴的边柱体:圆柱和棱柱统称为柱体■名师点拨(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征定义以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆锥的轴底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边锥体:圆锥和棱锥统称为锥体(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征定义用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分图示及相关概念轴:圆锥的轴底面:圆锥的底面和截面侧面:圆锥的侧面在底面和截面之间的部分母线:圆锥的母线在底面与截面之间的部分台体:圆台和棱台统称为台体■名师点拨(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征定义以半圆的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球图示及相关概念球心:半圆的圆心半径:半圆的半径直径:半圆的直径■名师点拨(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.判断(正确的打“√”,错误的打“×”)(1)直角三角形绕一边所在直线旋转得到的旋转体是圆锥.()(2)夹在圆柱的两个平行截面间的几何体是一圆柱.()(3)半圆绕其直径所在直线旋转一周形成球.()(4)圆柱、圆锥、圆台的底面都是圆面.()答案:(1)×(2)×(3)×(4)√下列几何体中不是旋转体的是()解析:选D.由旋转体的概念可知,选项D不是旋转体.过圆锥的轴作截面,则截面形状一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形答案:B可以旋转得到如图的图形的是()解析:选A.题图所示几何体上面是圆锥,下面是圆台,故平面图形应是由一个直角三角形和一个直角梯形构成.指出图中的几何体是由哪些简单几何体构成的.解:①是由一个圆锥和一个圆柱组合而成的;②是由一个圆柱和两个圆台组合而成的;③是由一个三棱柱和一个四棱柱组合而成的.圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.判断下列各命题是否正确.(1)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(2)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(3)到定点的距离等于定长的点的集合是球.解:(1)错误.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(2)正确.(3)错误.应为球面.简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】 A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.已知AB是直角梯形ABCD中与底边垂直的腰,如图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.解:(1)以AB 边所在的直线为轴旋转所得旋转体是圆台,如图①所示.(2)以BC 边所在的直线为轴旋转所得旋转体是一个组合体:下部为圆柱,上部为圆锥,如图②所示.(3)以CD 边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥,如图③所示.(4)以AD 边所在的直线为轴旋转所得旋转体是一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.旋转体中的计算问题如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.【解】 设圆台的母线长为l cm ,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm ,4r cm.过轴SO 作截面,如图所示,则△SO ′A ′∽△SOA ,SA ′=3 cm. 所以SA ′SA =O ′A ′OA ,所以33+l =r 4r =14.解得l =9,即圆台O ′O 的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.。
高二数学空间向量与立体几何
第一章 空间向量与立体几何1.1 空间向量及其运算 1.1.1空间向量及其线性运算学习目标1.理解空间向量的概念、空间向量的线性运算、共线向量定理、共面向量定理2.经历由平面向量推广到空间向量的过程,了解空间向量的概念.3.经历由平面向量的运算及其法则推广到空间向量的过程. 学习重点:空间向量的线性运算 学习难点:共线向量定理、共面向量定理 二、知识探究 1空间向量的概念(1)定义:在空间,具有大小和方向的量叫做 . (2)长度或模:空间向量的大小叫做空间向量的 (3)表示方法:①几何表示法:空间向量用有向线段表示; ②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →, 其模记为|a |或|AB →|.2.几类常见的空间向量名称 方向 模 记法 零向量 任意 0 0 单位向量 任意 1相反向量 相反 相等 a 的相反向量:-a AB →的相反向量:BA →相等向量相同相等a =b【注意】:单位向量方向虽然不一定相同,但它们的长度都是1.单位向量的模都相等且为1,而模相等的向量未必是相等向量.3 .空间向量的线性运算 运算 定义 法则(或几何意义)运算律加法求两个向量加法的运算三角形法则平行四边形法则(1)加法交换律:a +b=b +a(2)加法结合律:(a+b )+c=a +(b+c )减法 减去一个向量相当于加上这个向量的相反向量三角形法则a-b= a +(-b )数乘 实数λ与向量a 的积是一个向量 ,这种运算叫作向量的数乘运算 ,记作λa (1)|λa |= |λ|·|a| (2)当λ>0时,λa 与a 的方向相同 ;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0(1)对向量加法的分配律:λ(a+b )= λa+λb(2)对实数加法的分配律: (λ1+λ2)a=λ1a+λ2a【注意】:空间向量加法的运算的小技巧:①首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量, 即:12233411n n n A A A A A A A A A A -++++=②首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量, 即:122334110n n n A A A A A A A A A A -+++++=;4.共线向量与共面向量 (1)平行(共线)向量① 定义: ② 方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为 规定:零向量与任意向量平行,即对任意向量a ,都有0∥a . ③ 共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .④ 如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .【注意】:1.零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.2. 共线向量定理的用途:① 判定两条直线平行;进而证线面平行; ② 证明三点共线. (2) 共面向量① 定义:平行于同一个平面的向量叫做 .② 共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使③ 空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →. 【注意】:(1) 共面向量定理的用途:① 证明四点共面; ②线面平行(进而证面面平行).(2) 空间任意两个向量都可以平移到同一个平面内,成为同一个平面内的两个向量,因而空间任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加、减法运算. 三、理论迁移题型一 空间向量中的概念辨析 例1 (1)给出下列命题:①零向量没有确定的方向;②在正方体ABCD -A 1B 1C 1D 1中,AA 1→=-C 1C →;③若向量a 与向量b 的模相等,则a ,b 的方向相同或相反; ④在四边形ABCD 中,必有AB →+AD →=AC →. 其中正确命题的序号是________.(2)如图所示的平行六面体ABCD -A 1B 1C 1D 1中,给定的下列各对向量:①AC 1→与A 1C → ②AD 1→与B 1D → ③AC →与C 1A 1→ ④CC 1→与A 1A → 其中是相反向量的有________对.[变式1]如图,在长、宽、高分别为AB =3,AD =2,AA 1=1的长方体ABCD ﹣A 1B 1C 1D 1的八个顶点的两点为起点和终点的向量中, (1)单位向量共有多少个? (2)试写出模为的所有向量; (3)试写出与相等的所有向量; (4)试写出的相反向量.题型二 空间向量的线性运算例2 (1)如图,已知长方体ABCD -A ′B ′C ′D ′,化简下列向量表达式,并标出化简结果的向量:(1)AA ′→-CB →; (2)AB ′→+B ′C ′→+C ′D ′→; (3)12AD →+12AB →-12A ′A →.变式引申:本例条件不变,化简(AB →-CD →)-(AC →-BD →).(2)(2020-2021福建龙岩高二期末期末)如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,,,,M 是D 1D 的中点,点N 是AC 1上的点,且,用表示向量的结果是( )A .B .C .D .[变式2](1) (多选题)如图,在长方体ABCD -A 1B 1C 1D 1中,下列各式运算结果为BD 1→的是( )A.A 1D 1→-A 1A →-AB →;B.BC →+BB 1→-D 1C 1→;C.AD →-AB →-DD 1→;D.B 1D 1→-A 1A →+DD 1→.(2)已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB →B .3MG →C .3GM →D .2MG →题型三 共线向量定理的应用例3 如图所示,在空间四边形ABCD 中,点E ,F 分别是AB ,CD 的中点,请判断向量EF →与AD →+BC →是否共线?【变式3】(1)(2020-2021天津南开中学高二月考)设e 1,e 2是空间两个不共线的向量,已知AB →=e 1+k e 2,BC →=5e 1+4e 2,DC →=-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图,已知M,N分别为四面体A-BCD的面BCD与面ACD的重心,G为AM上一点,且GM∶GA =1∶3.求证:B,G,N三点共线.题型四向量共面问题例4正方体ABCD-A1B1C1D1中,M、N、P、Q分别为A1D1、D1C1、AA1、CC1的中点,用向量方法证明M、N、P、Q四点共面.【变式4】(1)(2020-2021北京朝阳区高二期末)若向量,,不共面,则下列选项中三个向量不共面的是()A.B.C.D.(2)(多选题)(2020-2021江苏常州高二期中)下列条件中,使点P与A,B,C三点一定共面的是()A.=+B.=++C.=++D.+++=四、课堂小结:本节是空间向量的基础内容,一般不单独命题,常以简单几何体为载体;以解答题的形式出现,考查平行、垂直关系的判断和证明及空间角的计算,解题要求有较强的运算能力.1.1空间向量及其运算 1.1.2空间向量的数量积运算学习目标1.理解空间向量夹角的概念、空间向量的数量积的定义、性质、运算律、投影向量的概念.2.经历由平面向量推广到空间向量的过程,了解空间向量的概念.3.经历由平面向量的运算及其法则推广到空间向量的过程. 学习重点:空间向量数量积的定义 学习难点:投影向量的概念 二、知识探究 1. 空间向量的夹角 (1)夹角的定义:已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做 ,记作〈a ,b 〉.(2)夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π]. 特别地,当θ=0时,两向量同向共线;当θ=π时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π; 当〈a ,b 〉=π2时,两向量垂直,记作a ⊥b .2.空间向量的数量积(1)定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做 ,记作a ·b .即a ·b =①特别地,零向量与任何向量的数量积为零. ②由向量的数量积定义,可以得到:a ⊥b ⇔a ·b =0;a · a =|a ||a |cos 〈a ,a 〉=|a |2(2)数量积的运算律:【注意】1、两个向量的数量积是数量,而不是向量,它可以是正数、负数或零;2、特别注意:向量数量积的运算不满足消去律、作商和乘法的结合律 , 即a ·b =a ·c ⇒b =c ,a ·b =k ⇒b =ka,(a ·b )·c =a ·(b·c )都不成立.(3)常用结论(a ,b 为非零向量)① θ为a ,b 的夹角,则cos θ=a ·b|a ||b |.② 若a ,b 同向,则a ·b =|a |·|b |;若a ,b 反向,则a ·b =-|a |·|b |. ③ |a |=a ·a ; |a ·b |≤|a |·|b |. 3.投影向量 (1) 投影向量在空间,向量a 向向量b 投影,可以先将它们平移到同一个平面内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,则向量c 称为 ,同理向量b 在向量a 上的投影向量是|b |cos 〈a ,b 〉a|a |.(2) 向量a 在平面β上的投影向量向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′→,则向量A ′B ′→称为 .这时,向量a ,A ′B ′→的夹角就是向量a 所在直线与平面β所成的角.三、理论迁移题型一 空间向量的数量积运算例1 如下图所示,已知正三棱锥A -BCD 的侧棱长和底面边长都是a ,点E 、F 、G 分别是AB 、AD 、DC 的中点.求下列向量的数量积. (1)AB →·AC →; (2)AD →·BD →; (3)GF →·AC →; (4)EF →·BC →.【变式5】(1)已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a =________.(2)如图,已知正四面体OABC 的棱长为1.求:(1)OA →·OB →;(2)(OA →+OB →)·(CA →+CB →).题型二 利用数量积求夹角例2 如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =1,AA 1=2,求异面直线BA 1与AC 所成角的余弦值.【变式2】如图所示,在正方体ABCD -A 1B 1C 1D 1中,求异面直线A 1B 与AC 所成的角.题型三 利用数量积求距离例3 在正四面体ABCD 中,棱长为a .M ,N 分别是棱AB ,CD 上的点,且|MB |=2|AM |,|CN |=12|ND |,求|MN |.【变式3】(2020-2021陕西渭南市高二期中)正三棱柱(底面是正三角形的直三棱柱)ABC-A1B1C1的各棱长都为2,E,F分别是AB,A1C1的中点,求EF的长.题型四利用数量积证明空间的垂直关系例4(1)已知a,b是异面直线,且a⊥b,e1,e2分别为取自直线a,b上的单位向量,且a=2e1+3e2,b=k e1-4e2,a⊥b,则实数k的值为________.(2)如图所示,在正方体ABCD-A1B1C1D1中,O为AC与BD的交点,G为CC1的中点,求证:A1O⊥平面GBD.小结:用向量法证明垂直关系的步骤:(1)把几何问题转化为向量问题. (2)用已知向量表示所证向量.(3)结合数量积公式和运算律证明数量积为0.(4)将向量问题回归到几何问题.【变式4】已知空间四边形OABC中,M、N、P、Q分别为BC、AC、OA、OB的中点,若AB=OC,求证:PM⊥QN.四、课堂小结:本节是空间向量的基础内容,一般不单独命题,常以简单几何体为载体;以解答题的形式出现,考查平行、垂直关系的判断和证明及空间角的计算,解题要求有较强的运算能力.。
人教B版高中同步学案数学必修第四册精品课件第十一章立体几何初步 构成空间几何体的基本元素 分层作业册
A.1
B.2
C.3
D.4
解析 如图, 在长方体中,侧棱与底面ABCD均垂直,所以长方体侧面 与底面ABCD垂直. 即平面A1ABB1、平面BCC1B1、平面CDD1C1、平面 DAA1D1均与平面ABCD垂直. 故选D.
对于D,不重合的两个平面,若它们有公共点,则它们有无数个公共点,都在
它们的交线上,故命题D为真命题.
123456789
6.[探究点二·2023山东高一练习]若a和b是异面直线,b和c是异面直线,则a 和c的位置关系是( D ) A.异面或平行 B.异面或相交 C.异面 D.相交、平行或异面
123456789
123456789
解析 如图,在正方体ABCD-A1B1C1D1中,对于A,在平面 A1D1DA中,AD∥平面A1B1C1D1,分别取AA1,DD1的中点E,F, 连接EF,则知EF∥平面A1B1C1D1.但平面AA1D1D与平面 A1B1C1D1是相交的,交线为A1D1,故命题A为真命题;
对于B,在正方体ABCD-A1B1C1D1的面AA1D1D中,与平面 A1B1C1D1平行的直线有无数条,但平面AA1D1D与平面A1B1C1D1不平行,而 是相交于直线A1D1,故命题B为假命题; 对于C,在正方体ABCD-A1B1C1D1中,分别取AA1,DD1,BB1,CC1的中点 E,F,G,H.A1,B,C到平面EFHG的距离相等,而△A1BC与平面EFHG相交,故命 题C为假命题;
123456789
解(1)点P在直线AB上,所以P∈AB; (2)点C不在直线AB上,所以C∉AB; (3)点M在平面ABCD上,所以M∈平面ABCD; (4)点A1不在平面ABCD上,所以A1∉平面ABCD; (5)直线AB与直线BC交于点B,所以AB∩BC=B; (6)直线AB在平面ABCD上,所以AB⊂平面ABCD; (7)平面A1ABB1与平面ABCD交于直线AB,所以平面A1ABB1∩平面 ABCD=AB.
人教B版高中同步学案数学必修第四册精品课件 第十一章 立体几何初步 本章总结提升
4 5
故 VP-ABCD= ×2×2× 5 =
,故 A 正确;
3
3
1
1
S=2×2+2× 2 ×2× 5+2× 2 ×2×3=10+2 5,故
B 正确;
△PCB,△PDC,△PAC 都是以 PC 为斜边的直角三角形,所以 P,A,B,C,D 都在
以 PC 为直径的球上,则外接球的直径为 22 + 22 + 5 = 13,故 C 错误;
∵AC⊥平面B1C1CB,
∴AC⊥BC1.
在斜三棱柱ABC-A1B1C1中,
∵BC=CC1,
∴四边形B1C1CB是菱形,∴B1C⊥BC1.
又B1C∩AC=C,∴BC1⊥平面ACB1,∴BC1⊥AB1.
规律方法
线线垂直、线面垂直、面面垂直相互间的转化
变式训练3[北师大版教材习题]如图,已知四棱锥P-ABCD的底面为直角梯
线垂直、线面垂直、面面垂直三者之间的联系与转化.
2.通过线线垂直、线面垂直、面面垂直三者之间的转化,提升逻辑推理和
直观想象素养.
【例3】 如图,斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,点B1
在底面ABC上的射影恰好是BC的中点,且BC=CA=AA1.
(1)求证:平面ACC1A1⊥平面B1C1CB;
又PO⊥底面☉O,AC⊂底面☉O,所以AC⊥PO.
又OD∩PO=O,所以AC⊥平面POD.
(2)解由(1)知AC⊥平面POD,又PD⊂平面POD,所以PD⊥AC.
又OD⊥AC,所以∠PDO为二面角P-AC-O的平面角.
在Rt△ODA中,因为∠DAB=30°,OA=1,
所以
1
1
立体几何之平面的性质 空间的两直线学案
§9.1平面的性质 空间的两直线知识要点平面基本性质的三条公理、三条推论,异面直线的概念。
基础训练1.给出下列四个命题①空间四点不共面,则其中任何三点不共线;②空间四点连成空间四边形,则这四点必不共面;③空间四点中有三点共线,则这四点必共面;④空间四点无任何三点共线,则这四点不共面,其中不正确的命题有 ( ) A .0个 B .1个 C .2个 D .3个2.两条直线的位置关系有 ( ) A .共面、异面、共点、不共点 B .相交、平行、异面、重合 C .平行、异面、相交、垂直 D .相交、平行、异面3.两条异面直线指的是 ( ) A .在空间不相交的两条直线 B .某平面内的一条直线和这个平面外的一条直线 C .分别位于两个不同平面内的两条直线 D .不同在任何一个平面内的两条直线 4.两两相交的四条直线可确定的平面的个数最多是_______个。
5.一个平面可把空间分成______个部分,两个平面可把空间分成_________个部分,三个平面可把空 间分成___________________个部分。
典型例题【例1】如图,空间四边形ABCD ,E 、F 、G 、H 为所在边上的点,且EH ∩FG=P ,求证:P 点在直线BD 上。
【例2】若互相平行的n 条直线l 1,l 2,…l n 都与直线l 相交,求证:l 1,l 2,…l n ,l 必共面。
【例3】已知△ABC 在平面α外,它的三边所在直线分别交α于P 、Q 、R ,求证:P 、Q 、R 三点共线。
归纳小结1.证明共面、共点、共线的基本方法是:共面——先由有关元素确定一个基本平面,再证其它的点(或线)在这个平面内(或分别过某些点、线确定若干个平面,再证这些平面重合);共点——先确定一个基本点,再证有关的直线通过该点;共线——先考虑两个平面的交线,再证有关的点都是这两个平面的公共点。
论证过程都要注意严密性与逻辑性。
2.证明两条直线异面,通常都使用反证法和定理——平面的一条斜线和平面内不过斜足的直线是异面直线A B A l E F G H P A BCQPRα· 《立体几何》练习一一、选择题:1.一条直线和这条直线外不共线的三个点能够确定的平面的个数是 ( ) A .1或3 B .4 C .1或3或4 D .32.异面直线a,b 分别在平面α和平面β上,α∩β=c ,则直线c ( ) A .与a,b 都相交 B .至多与a,b 中的一条相交 C .与a,b 都不相交 D .至少与a,b 中的一条相交 3.已知点P 、Q ∈平面α,点M ∈平面β,α∩β=l ,直线PQ ∩l =R ,过P 、Q 、M 的平面为γ,则β∩γ是直线 ( ) A .PM B .QM C .RM D .PQ4.直线a,b 与异面直线c,d 都相交,则a,b,c,d 四条直线可确定的平面的个数为 ( ) A .2个 B .3个 C .4个 D .3个或4个 二、填空题:5.四条直线顺次首尾相接,它们所在的直线最多可确定平面的个数是_______个。
高考数学一轮复习高考大题规范解答系列四_立体几何学案含解析新人教版
高考大题规范解答系列(四)——立体几何考点一 线面的位置关系与体积计算例1 (2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD . (1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.【分析】 ①看到证明线线垂直(AC ⊥BD ),想到证明线面垂直,通过线面垂直证明线线垂直.②看到求四面体ABCE 与四面体ACDE 的体积比,想到确定同一平面,转化为求高的比. 【标准答案】——规范答题 步步得分 (1)取AC 的中点O ,连接DO ,BO .1分得分点①因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形, 所以AC ⊥BO . 又因为DO ∩BO =O , 从而AC ⊥平面DOB , 3分得分点② 故AC ⊥BD . 4分得分点③ (2)连接EO .5分得分点④由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.7分得分点⑤由题设知△AEC 为直角三角形, 所以EO =12AC .8分得分点⑥又△ABC 是正三角形,且AB =BD , 所以EO =12BD .故E 为BD 的中点,9分得分点⑦从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1. 【评分细则】①作出辅助线,并用语言正确表述得1分.②得出AC ⊥DO 和AC ⊥BO 得1分,由线面垂直的判定写出AC ⊥平面DOB ,再得1分. ③由线面垂直的性质得出结论得1分. ④作出辅助线,并用语言正确表述得1分. ⑤由勾股定理逆定理得到∠DOB =90°得2分. ⑥由直角三角形的性质得出EO =12AC 得1分.⑦由等边三角形的性质得出E 为BD 的中点,得1分. ⑧得出四面体ABCE 的体积为四面体ABCD 的体积的12得2分.⑨正确求出体积比得1分. 【名师点评】1.核心素养:空间几何体的体积及表面积问题是高考考查的重点题型,主要考查考生“逻辑推理”及“直观想象”的核心素养.2.解题技巧:(1)得步骤分:在立体几何类解答题中,对于证明与计算过程中的得分点的步骤,有则给分,无则没分,所以,对于得分点步骤一定要写,如第(1)问中AC ⊥DO ,AC ⊥BO ;第(2)问中BO 2+DO 2=BO 2+AO 2=AB 2=BD 2等.(2)利用第(1)问的结果:如果第(1)问的结果对第(2)问的证明或计算用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决,如本题就是在第(1)问的基础上得到DO =AO .〔变式训练1〕(2020·课标Ⅰ,19)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. [解析] (1)证明:由题设可知,P A =PB =PC . 由于△ABC 是正三角形,故可得△P AC ≌△P AB ,△P AC ≌△PBC . 又∠APC =90°,故∠APB =90°,∠BPC =90°, 从而PB ⊥P A ,PB ⊥PC ,故PB ⊥平面P AC , 所以平面P AB ⊥平面P AC .(2)设圆锥的底面半径为r ,母线长为l .由题设可得rl =3,l 2-r 2=2.解得r =1,l =3. 从而AB =3.由(1)可得P A 2+PB 2=AB 2, 故P A =PB =PC =62. 所以三棱锥P -ABC 的体积为13×12×P A ×PB ×PC =13×12×⎝⎛⎭⎫623=68.考点二 线面的位置关系与空间角计算(理)例2 (2021·山西省联考)如图,在直三棱柱ABC -A 1B 1C 1中,△ABC 是以BC 为斜边的等腰直角三角形,O ,M 分别为BC ,AA 1的中点.(1)证明:OM ∥平面CB 1A 1;(2)若四边形BB 1C 1C 为正方形,求平面MOB 1与平面CB 1A 1所成二面角的正弦值. 【分析】 ①在平面A 1B 1C 内构造与OM 平行的直线,并证明;②建立空间直角坐标系,分别求平面MOB 1、平面CB 1A 1的法向量,求两法向量夹角正弦值即可.【标准答案】——规范答题 步步得分 (1)证明:如图,连接BC 1,交CB 1于点N , 连接A 1N ,ON ,则N 为CB 1的中点. 因为O 为BC 的中点,所以ON ∥BB 1, 且ON =12BB 1,2分得分点①又MA 1∥BB 1,MA 1=12BB 1,所以四边形ONA 1M 为平行四边形,即OM ∥A 1N .4分得分点② 因为OM ⊄平面CB 1A 1,A 1N ⊂平面CB 1A 1, 所以OM ∥平面CB 1A 1.5分得分点③(2)解:连接OA ,令BC =2,因为AB =AC ,O 为BC 的中点,所以AO ⊥BC .又三棱柱ABC -A 1B 1C 1是直三棱柱,ON ∥BB 1,所以OA ,OB ,ON 两两垂直,分别以OB →,ON →,OA →的方向为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系O -xyz .6分得分点④因为AB =AC =2,BC =AA 1=2,所以O ()0,0,0,B 1()1,2,0,M ()0,1,1,C ()-1,0,0,所以OM →=NA 1→=()0,1,1,OB 1→=()1,2,0,CB 1→=()2,2,0.7分得分点⑤ 设平面MOB 1的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧OM →·m =0,OB 1→·m =0,即⎩⎪⎨⎪⎧y +z =0,x +2y =0,令z =1,可得y =-1,x =2,所以平面MOB 1的一个法向量为m =()2,-1,1.8分得分点⑥ 设平面CB 1A 1的法向量为n =()a ,b ,c ,则⎩⎪⎨⎪⎧NA 1→·n =0,CB 1→·n =0,即⎩⎪⎨⎪⎧b +c =0,2a +2b =0,令c =1,可得b =-1,a =1,所以平面CB 1A 1的一个法向量为n =()1,-1,1,9分得分点⑦ 所以cos 〈m ,n 〉=2×1-1×()-1+1×122+()-12+12×12+()-12+12=432=223,11分得分点⑧所以平面MOB 1与平面CB 1A 1所成二面角的正弦值为13.12分得分点⑨【评分细则】①第一问共5分,证出ON ∥BB 1和ON =12BB 1得2分,证出OM ∥A 1N 得2分,未说明OM⊄平面CB 1A 1,直接证出OM ∥平面CB 1A 1,扣1分.②第二问共7分,建立空间直角坐标系,并正确写出坐标得2分,写出平面MOB 1的法向量与平面CB 1A 1的法向量各得1分.③其他方法按步骤酌情给分. 【名师点评】1.核心素养:本题主要考查线面平行的证明以及空间二面角的求解,考查考生的逻辑推理能力与空间想象力,考查的核心素养是数学抽象、逻辑推理、直观想象、数学运算.2.解题技巧:(1)得步骤分:对于解题过程中得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写,如第(1)问中写出OM ∥平面CB 1A 1成立的条件,写不全则不能得全分.(2)思维发散:①注意到O 、M 分别为BC 、AA 1的中点,考虑构造三角形中位线证明(1).连BM 并延长与B 1A 1的延长线相交于H ,连CH ,由M 为AA 1的中点,∴AM =MA 1,又AB ∥A 1B 1,∴∠ABM =∠MHA 1,又∠AMB =∠HMA 1,∴△ABM ≌△A 1HM ,∴BM =MH ,又O 为BC 中点,∴MO ∥CH ,又MO ⊄平面CB 1A 1,CH ⊂平面CB 1A 1,∴OM ∥平面CB 1A 1.②注意到解答(2)需求平面CB 1A 1的法向量n ,故要证明OM ∥平面CB 1A 1,可直接建立空间直角坐标系,求出n ,证明n ·OM →=0,说明OM ⊄平面CB 1A 1即可得证.〔变式训练2〕(2020·浙江,19)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.[解析] (1)证明:如图,过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .由∠ACD =45°,DO ⊥AC 得CD =2CO ,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO ⊥BC . 由∠ACB =45°,BC =12CD =22CO 得BO ⊥BC .所以BC ⊥平面BDO ,故BC ⊥DB . 由三棱台ABC -DEF 得BC ∥EF , 所以EF ⊥DB .(2)解法一:过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由三棱台ABC -DEF 得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,由BC ⊥平面BDO 得OH ⊥BC ,故OH ⊥平面BCD , 所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,由DO =OC =2,BO =BC =2,得BD =6,OH =233,所以sin ∠OCH =OH OC =33,因此,直线DF 与平面DBC 所成角的正弦值为33. 解法二:由三棱台ABC -DEF 得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ. 如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴, 建立空间直角坐标系O -xyz . 设CD =22.由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面BCD 的法向量n =(x ,y ,z). 由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧-x +y =0,-2y +2z =0,可取n =(1,1,1).所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33. 考点二 线面位置关系与空间距离的计算(文)例2 (2021·全国新课改T8联考)如图,在四面体ABCD 中,△ABD 是等边三角形,且AC =BC .(1)证明:AB ⊥CD .(2)若AB =2,AC =3,BC ⊥CD ,求点B 到平面ACD 的距离.【分析】 ①利用线面垂直证线线垂直; ②利用体积法求点到平面的距离. 【标准答案】——规范答题 步步得分(1)证明:取AB 的中点E ,连接CE ,DE ,如图,1分因为△ABD 是等边三角形,所以DE ⊥AB , 又AC =BC ,所以CE ⊥AB .又DE ∩CE =E ,所以AB ⊥平面CDE ,4分 故AB ⊥CD .5分(2)因为BD =AB =2,BC =AC =3,BC ⊥CD , 所以CD =BD 2-BC 2=1.又AD =2,所以AC 2+CD 2=AD 2,即AC ⊥CD , 则S △ACD =32.由题可得CE =AC 2-⎝⎛⎭⎫AB 22=2,DE =AD 2-⎝⎛⎭⎫AB 22=3, 则CD 2+CE 2=DE 2,即CE ⊥CD ,则S △BCD =22. 设点B 到平面ACD 的距离为d ,因为AB ⊥平面CDE ,V B -ACD =V B -BCD +V A -ECD , 所以13·S △ACD ·d =13·S BCD ·AB ,11分即13×32d =13×22×2,解得d =263,即点B到平面ACD的距离为26 3.【名师点评】核心素养:本题主要考查线、面垂直的判定与性质及利用体积法求点到平面的距离,考查学生的逻辑推理能力、空间想象能力、数学运算能力.〔变式训练2〕(2021·黑龙江大庆铁人、鸡西一中、鹤岗一中联考)在直三棱柱ABC-A1B1C1中,AC=BC =2,AB=AA1=2,E是棱CC1的中点.(1)求证:A1B⊥AE;(2)求点A1到平面ABE的距离.[解析](1)取A1B中点F,联结AF,EF,AE,∵ABC-A1B1C1是直三棱柱,∴CC1⊥A1C1,CC1⊥CB,又∵E是CC1的中点,A1C1=BC,∴A1E=BE,又∵AB=AA1,∴A1B⊥EF,A1B⊥AF,∴A1B⊥平面AEF,∴A1B⊥AE;(2)VA1-ABE=VB-A1AE=13×12×2×2×2=23,设A1到平面ABE的距离为h,则13×h×S△ABE=23,由已知得AE=BE=3,∴S△ABE=2,∴h=2.考点三,立体几何中的折叠问题(理)例3(2021·启东模拟)如图,已知在等腰梯形ABCD中,AE⊥CD,BF⊥CD,AB =1,AD=2,∠ADE=60°,沿AE,BF折成三棱柱AED-BFC.(1)若M,N分别为AE,BC的中点,求证:MN∥平面CDEF;(2)若BD=5,求二面角E-AC-F的余弦值.【分析】①利用面面平行的判定和性质即可证明;②建立空间直角坐标系,分别求出二面角两个面的法向量,利用空间向量法求解.【标准答案】——规范答题步步得分(1)取AD的中点G,连接GM,GN,在三角形ADE中,∵M,G分别为AE,AD的中点,∴MG∥DE,∵DE⊂平面CDEF,MG⊄平面CDEF,∴MG∥平面CDEF.由于G,N分别为AD,BC的中点,由棱柱的性质可得GN∥DC,∵CD⊂平面CDEF,GN⊄平面CDEF,∴GN∥平面CDEF.又GM⊂平面GMN,GN⊂平面GMN,MG∩NG=G,∴平面GMN∥平面CDEF,∵MN⊂平面GMN,∴MN∥平面CDEF.(2)连接EB,在Rt△ABE中,AB=1,AE=3,∴BE=2,又ED=1,DB=5,∴EB2+ED2=DB2,∴DE⊥EB,又DE⊥AE且AE∩EB=E,∴DE ⊥平面ABFE .∴EA 、EF 、ED 两两垂直. 建立如图所示的空间直角坐标系,可得E (0,0,0),A (3,0,0),F (0,1,0),C (0,1,1), AC →=(-3,1,1),AE →=(-3,0,0),FC →=(0,0,1). 设平面AFC 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·AC →=-3x +y +z =0,m ·FC →=z =0,则z =0,令x =1,得y =3,则m =(1,3,0)为平面AFC 的一个法向量, 设平面ACE 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n ·AE →=-3x 1=0,n ·AC →=-3x 1+y 1+z 1=0,则x 1=0,令y 1=1,得z 1=-1,∴n =(0,1,-1)为平面ACE 的一个法向量. 设m ,n 所成的角为θ,则cos θ=m ·n |m |·|n |=322=64,由图可知二面角E -AC -F 的余弦值是64. 【评分细则】①由线线平行得到线面平行,给2分. ②同理再推出一个线面平行,给1分. ③由线面平行推出面面平行,给1分. ④由面面平行得到线面平行,给1分.⑤由线线垂直证出线面垂直,为建系作好准备,给2分. ⑥建立适当坐标系,写出相应点的坐标及向量坐标,给1分. ⑦正确求出平面的法向量,给2分.⑧利用公式求出两个向量夹角的余弦值,并正确写出二面角的余弦值,给2分. 【名师点评】1.核心素养:本题考查线面平行的判定与性质定理,考查二面角的求解,考查的数学核心素养是空间想象力、推理论证能力及数学运算能力.2.解题技巧:(1)得分步骤:第(1)问中的DE ⊂平面CDEF ,MG ⊄平面CDEF ,要写全. (2)得分关键:第(2)中,证明线面垂直从而得到线线垂直,才能建系.(3)折叠问题的求解,关键是分清折叠前后图形的位置和数量关系的变与不变.一般地,折叠前位于“折痕”同侧的点、线间的位置和数量关系折叠后不变,而折叠前位于“折痕”两侧的点、线间的位置关系折叠后会发生变化,对于不变的关系可在平面图形中处理,而对于变化的关系则要在立体图形中解决.〔变式训练3〕(2021·河北质检)如图1:在△ABC 中,AB ⊥BC ,AB =2BC =4,点E ,F 分别是线段AB 和AC 的中点.如图2:以EF 为折痕把△AEF 折起,使点A 到达点P 的位置.(1)证明:平面FPC ⊥平面BPC ;(2)若△PEB 为等边三角形,求二面角C -PF -E 的余弦值. [解析] (1)证明:如图,设M ,N 分别为线段PB ,PC 的中点,连接EM ,MN ,FN ,故MN 綊12BC .由E ,F 分别是线段AB 和AC 的中点,得 PE =BE ,PF =CF ,EF 綊12BC ,故EF 綊MN ,所以EM 綊FN .又M ,N 分别为线段PB ,PC 的中点, 所以EM ⊥PB ,FN ⊥PC .又EM 綊FN ,所以FN ⊥PB ,所以FN ⊥平面PBC . 又FN ⊂平面FPC ,所以平面FPC ⊥平面BPC . (2)解:因为BC ⊥AB ,所以翻折后有BC ⊥BE ,BC ⊥EP , 所以BC ⊥平面PBE , 故平面PBE ⊥平面BCFE .若△PEB 为等边三角形,则PB =2. 设O 为BE 的中点,连接PO ,故PO ⊥BE , 故PO ⊥平面BCFE .以O 为坐标原点,OB 的方向为x 轴正方向,OP 的方向为z 轴正方向,建立如图所示的空间直角坐标系O -xyz .则C (1,2,0),F (-1,1,0),E (-1,0,0),P (0,0,3). 设n =(x 1,y 1,z 1)为平面PEF 的法向量, 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EP →=0,即⎩⎪⎨⎪⎧y 1=0,x 1+3z 1=0,可取n =(-3,0,1).设m =(x 2,y 2,z 2)为平面PCF 的法向量, 则⎩⎪⎨⎪⎧m ·CP →=0,m ·CF →=0,即⎩⎪⎨⎪⎧-x 2-2y 2+3z 2=0,-2x 2-y 2=0,可取m =(1,-2,-3).所以cos 〈n ,m 〉=n ·m |n ||m |=-234×8=-64,由题意,可知二面角C -PF -E 为钝角. 所以二面角C -PF -E 的余弦值为-64. 考点三,立体几何中的折叠问题(文)例3 (2018·课标全国Ⅰ卷)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM=90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.【分析】 ①线线垂直推出线面垂直,进而得到面面垂直; ②利用锥体的体积公式求解. 【标准答案】——规范答题 步步得分 (1)由已知可得,∠BAC =90°,BA ⊥AC . 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32. 又BP =DQ =23DA ,所以BP =22.作QE ⊥AC ,垂足为E ,则QE 綊13DC .由已知及(1)可得DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q-APB的体积为V Q-ABP=13×QE×S△ABP=13×1×12×3×22sin45°=1.【评分细则】①由线线垂直推出线面垂直,给3分.②由线面垂直得面面垂直,给2分.③根据已知,求出BP的长,给2分.④证明QE为三棱锥Q-APB的高,并求出它的值,给3分.⑤利用体积公式正确求解,给2分.【名师点评】1.核心素养:本题考查面面垂直的证明及三棱锥的体积计算,考查空间想象能力和逻辑推理能力.2.解题技巧:(1)解决翻折问题的关键①一般地,翻折后还在同一个平面上的性质不发生变化;②翻折后不在同一个平面上的性质可能会发生变化,翻折过程中长度、角度和平行、垂直关系是否发生改变是解决问题的关键.(2)计算几何体的体积时,关键是确定几何体的高,若是不方便求,要注意进行体积的转化.〔变式训练3〕(2021·河北省衡水中学调研)等边三角形ABC的边长为6,O为三角形的重心,EF过点O 且与BC平行,将△AEF沿直线EF折起,使得平面AEF⊥平面BCFE.(1)求证:BE⊥平面AOC;(2)求点O到平面ABC的距离.[解析](1)因为O为三角形ABC的重心,所以AO⊥BC,因为EF∥BC,所以AO⊥EF,因为平面AEF⊥平面BCFE,平面AEF∩平面BCFE=EF,AO⊂平面AEF,所以AO⊥平面BCFE,因为BE⊂平面BCFE,所以AO ⊥BE ,因为O 为三角形ABC 的重心,所以CO ⊥BE ,因为AO 、CO ⊂平面AOC ,AO ∩CO =O ,所以BE ⊥平面AOC .(2)∵等边三角形ABC 的边长为6,O 为三角形ABC 的重心,∴AO =BO =CO =23,S △OBC=12×6×3=33, 由(1)可知AO ⊥OC ,∴AC =26,同理AB =26, ∴S △ABC =12×6×15=315,V O -ABC =V A -OBC ,即13×315×h =13×33×23,解得h =2155. 即点O 到平面ABC 的距离为2155.考点四,立体几何中的探索性问题(理)例4 (2021·陕西省西安中学模拟)如图所示,四棱锥P -ABCD 中,底面ABCD 为菱形,且P A ⊥平面ABCD ,∠ABC =60°,E 是BC 中点,F 是PC 上的点.(1)求证:平面AEF ⊥平面P AD ;(2)若M 是PD 的中点,当AB =AP 时,是否存在点F ,使直线EM 与平面AEF 的所成角的正弦值为15?若存在,请求出PFPC的值;若不存在,请说明理由.【分析】 ①利用面面垂直的判定定理,证AE ⊥平面P AD 或证AD ⊥平面AEF 即可; ②建立空间直角坐标系,假设符合条件的点F 存在,且PF →=λPC →,利用向量法求解λ回答. 【标准答案】——规范答题 步步得分(1)连接AC ,因为底面ABCD 为菱形,∠ABC =60°,所以△ABC 是正三角形, ∵E 是BC 的中点,∴AE ⊥BC ,又AD ∥BC , ∴AE ⊥AD ,∵P A ⊥平面ABCD ,AE ⊂平面ABCD ,∴P A ⊥AE ,又P A ∩AD =A ,∴AE ⊥平面P AD ,又AE ⊂平面AEF ,所以平面AEF ⊥平面P AD . (2)又P A ⊥AD ,∴P A 、AE 、AD 两两垂直, 以A 为坐标原点建立如图所示空间直角坐标系,不妨设AB =AP =2,则AE =3,则A (0,0,0),C (3,1,0),D (0,2,0),P (0,0,2),E (3,0,0),M (0,1,1),7分得分点⑦ 设PF →=λPC →=λ()3,1,-2,0≤λ≤1,则AF →=AP →+PF →=(0,0,2)+λ(3,1,-2)=(3λ,λ,2-2λ), 又AE →=()3,0,0,设n =()x ,y ,z 是平面AEF 的一个法向量, 则⎩⎪⎨⎪⎧n ·AE →=3x =0n ·AF →=3λx +λy +()2-2λz =0,取z =λ,得n =(0,2λ-2,λ),设直线EM 与平面AEF 所成角为θ, 由EM →=()-3,1,1,得:sin θ=||cos 〈EM →,n 〉=|EM →·n ||EM →|·|n |=|3λ-2|5·(2λ-2)2+λ2=15. 化简得:10λ2-13λ+4=0, 解得λ=12或λ=45,故存在点F 满足题意,此时PF PC 为12或45. 【评分细则】①证出△ABC 是正三角形得1分. ②证出AE ⊥AD 得1分.③由线面垂直性质证出P A ⊥AE 得1分,不写AE ⊂平面ABCD 不得分. ④由线面垂直的判定证出AE ⊥平面P AD 得1分. ⑤证出平面AEF ⊥平面P AD 得1分,条件不全不得分. ⑥建出空间直角坐标系得1分. ⑦设出PF →=λPC →得1分.⑧求出平面AEF 的法向量得3分,算错但写出AE →,AF →坐标得1分. ⑨求出λ得2分,算错但写出sin θ=|cos 〈EM →,n 〉|=|EM →·n ||EM →||n |得1分.⑩得出正确结论得1分. 【名师点评】1.核心素养:本题考查线面的位置关系及线面角,考查学生转化与化归的思想,考查的核心素养是逻辑推理、直观想象、数学运算.2.解题技巧:(1)写全得分步骤:对于解题过程中得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写,如第(1)问中AE ⊂平面ABCD .(2)写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在解答时一定要写清得分关键点,如第(2)问中空间直角坐标系的建立;再如AF →=AP →+PF →等.(3)思维发散:也可通过证AD ⊥P A 、AD ⊥AE 证得AD ⊥平面AEF ,进而证得平面AEF ⊥平面P AD .〔变式训练4〕(2021·陕西省质检)如图所示,等腰梯形ABCD 的底角∠BAD =∠ADC =60°,直角梯形ADEF 所在的平面垂直于平面ABCD ,且∠EDA =90°,ED =AD =2AF =2AB =2.(1)证明:平面ABE ⊥平面EBD ;(2)点M 在线段EF 上,试确定点M 的位置,使平面MAB 与平面ECD 所成的锐二面角的余弦值为34. [解析] (1)证明:∵平面ABCD ⊥平面ADEF , 平面ABCD ∩平面ADEF =AD ,ED ⊥AD , ∴ED ⊥平面ABCD ,AB ⊂平面ABCD , ∴ED ⊥AB ,∵AB =1,AD =2,∠BAD =60°, ∴BD =1+4-2×1×2cos 60°=3,∴AB 2+BD 2=AD 2,∴AB ⊥BD ,又∴BD ⊂平面BDE ,BD ∩ED =D ,AB ⊥平面BDE ,AB ⊂平面ABE , ∴平面ABE ⊥平面EBD .(2)以B 为坐标原点,以BA ,BD 为x 轴,y 轴建立如图所示的空间直角坐标系B -xyz ,则A (1,0,0),B (0,0,0),C ⎝⎛⎭⎫-12,32,0,D (0,3,0),E (0,3,2),F (1,0,1),则CD →=⎝⎛⎭⎫12,32,0,DE →=(0,0,2),BA →=(1,0,0),EF →=(1,-3,-1), 设EM →=λEF →=(λ,-3λ,-λ),(0≤λ≤1), 则BM →=BE →+EM →=(λ,3-3λ,2-λ),设平面CDE 的法向量为m =(x 1,y 1,z 1),平面ABM 的法向量为n =(x 2,y 2,z 2),则⎩⎨⎧m ·CD →=12x 1+32y 1=0,m ·DE →=2z 1=0,即⎩⎪⎨⎪⎧x 1=-3y 1,z 1=0,不妨取y 1=1,则m =(-3,1,0), ⎩⎪⎨⎪⎧n ·BA →=x 2=0,n ·BM →=λx 2+(3-3λ)y 2+(2-λ)z 2=0不妨取y 2=2-λ,则n =(0,2-λ,3λ-3), ∴|cos θ|=|m ·n ||m |·|n |=|2-λ|24λ2-10λ+7=34, 即λ=12或λ=54(舍),即点M 为线段EF 的中点时,平面MAB 与平面ECD 所成的锐二面角的余弦值为34. 考点四,立体几何中的探索性问题(文)例4 (2018·全国Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【分析】 ①看到平面AMD ⊥平面BMC ,想到利用面面垂直的判定定理寻找条件证明; ②看到MC ∥平面PBD ,想到利用线面平行的定理进行分析. 【标准答案】——规范答题 步步得分(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD , 所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连接AC交BD于O.因为ABCD为矩形,所以O为AC中点,连接OP,因为P为AM中点,所以MC∥OP.MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.【评分细则】①由平面CMD⊥平面ABCD推出BC⊥DM,给3分.②由线线垂直得到DM⊥平面BMC,给2分.③由线面垂直得到,平面AMD⊥平面BMC,给1分.④点明P为中点时,MC∥平面PBD,给1分.⑤正确作出辅助线并证得MC∥OP,给3分.⑥由线线平行证得MC∥平面PBD,给2分.【名师点评】1.核心素养:探索性的立体几何问题在高考中虽不多见,但作为高考命题的一种题型,要求学生掌握其解决思路及解决问题的途径,此类问题主要考查考生“直观想象”的核心素养.2.解题技巧:(1)得分步骤要写全:如第(1)问中,面面垂直性质定理的应用,BC⊥CD,BC⊂平面ABCD,不能丢.(2)得分关键:明确探索性试题的解题要领是先假设存在,然后采用相关定理或性质进行论证;第(2)问中,把假设当作已知条件进行推理论证,会起到事半功倍之效.〔变式训练4〕如图所示,平面ABCD⊥平面BCE,四边形ABCD为矩形,BC=CE,点F为CE的中点.(1)证明:AE∥平面BDF;(2)点M为CD上任意一点,在线段AE上是否存在点P,使得PM⊥BE?若存在,确定点P的位置,并加以证明;若不存在,请说明理由.[解析](1)证明:连接AC交BD于点O,连接OF.∵四边形ABCD是矩形,∴O为AC的中点,又F为EC的中点,∴OF∥AE.又OF⊂平面BDF,AE⊄平面BDF,∴AE∥平面BDF.(2)当点P为AE的中点时,有PM⊥BE,证明如下:取BE的中点H,连接DP,PH,CH.∵P为AE的中点,H为BE的中点,∴PH∥AB.又AB∥CD,∴PH∥CD,∴P,H,C,D四点共面.∵平面ABCD⊥平面BCE,且平面ABCD∩平面BCE=BC,CD⊥BC,CD⊂平面ABCD,∴CD⊥平面BCE.又BE⊂平面BCE,∴CD⊥BE,∵BC=CE,且H为BE的中点,∴CH⊥BE.又CH∩CD=C,且CH,CD⊂平面DPHC,∴BE⊥平面DPHC.又PM⊂平面DPHC,∴PM⊥BE.。
人教B版高中同步学案数学选择性必修一 第一章 空间向量与立体几何 第1课时 空间向量的概念及线性运算
变式训练 2 如图,在正方体 ABCD-A1B1C1D1 中, =a,=b,1 =c,若 E 为
DD1 的中点,F 在 BD 上,且 BF=2FD,则 等于( B )
1 1 1
A.2a-2b-2c
1 1 1
B.3a-3b-2c
1 1
1
C.-3a-3b+2c
1 1
1
D.2a-3b+3c
内,则称这些向量共面,否则称这些向
量 不共面
名师点睛
1.平面向量的相关概念与约定,去掉“在平面内”的限定后,就都可以推广到
空间中.
2.易错点重温:
(1)向量的模可以比较大小,而两个向量可以相等但不可以比较大小.
(2)通常规定零向量与任意向量平行,研究向量平行(共线)问题时勿遗漏这
一特殊情况.例如,“a∥b,b∥c,则a∥c”这是一个假命题.
4.首尾相接的若干向量若构成一个封闭图形,它们的和向量为0.
过关自诊
1.判断正误.(正确的画√,错误的画×)
(1)空间中两个非零向量相加时,可以在空间中任取一点作为它们的共同始
点.( √ )
(2)若a=λb(b≠0),则λ=
.(
× )
2.[北师大版教材习题]已知空间任意四点 A,B,C,D,则 + −
相等向量 大小相等,方向相同 的向量称为相等向量
与向量a大小 相等
相反向量
向量,记作 -a
,方向
相反
的向量,称为a的相反
如果两个非零向量的方向 相同或者相反 ,则称这两个向量平
向量共线
行(也称为两个向量共线),记作a∥b
一般地,空间中的多个向量,如果表示它们的有向线段通过平移
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何学案(四)
一、用空间向量研究空间线面的平行与垂直关系
1.用向量方法研究两直线间的位置关系
设直线l 1、l 2的方向向量分别为a 、b .
(1)l 1∥l 2或l 1与l 2重合⇔a ∥b ⇔存在实数t ,使a =tb .
(2)l 1⊥l 2⇔a ⊥b ⇔a ·b =0.
2.用向量方法研究直线与平面的位置关系
设直线l 的方向向量为a ,平面α的法向量为n ,v 1、v 2是与α平行的两个不共线向量.
(1)l ∥α或l ⊂α⇔存在两个实数λ、μ,使a =λv 1+μv 2⇔a ·n =0.
(2)l ⊥α⇔a ∥n ⇔存在实数t ,使a =tn .
l ⊥α⇔⎩⎪⎨⎪⎧ a ⊥v 1a ⊥v 2⇔⎩⎪⎨⎪⎧ a ·v 1=0a ·v 2=0.
3.用向量方法研究两个平面的位置关系
设平面α、β的法向量分别为n 1、n 2.
(1)α∥β或α与β重合⇔n 1∥n 2⇔存在实数t ,使n 1=tn 2.
(2)α⊥β⇔n 1⊥n 2⇔n 1·n 2=0.
若v 1、v 2是与α平行的两个不共线向量,n 是平面β的法向量.
则①α∥β或α与β重合⇔v 1∥β且v 2∥β⇔存在实数λ、
μ,对β内任一向量a ,有a =λv 1+μv 2.
②α⊥β⇔⎩⎪⎨⎪⎧ n ⊥v 1n ⊥v 2⇔⎩⎪⎨⎪⎧ n ·v 1=0n ·v 2=0
二、用向量法求空间的角
1.求异面直线所成的角
设l 1与l 2是两异面直线,a 、b 分别为l 1、l 2的方向向量,l 1、
l 2所成的角为θ,则〈a ,b 〉与θ相等或互补,∴cos θ=|a ·b ||a |·|b |
. 2.求直线与平面所成的角
如右图,设l 为平面α的斜线,l ∩α
=A ,a 为l 的方向向量,n 为平面α的法
向量,φ为l 与α所成的角,则sin φ=
|cos 〈a ,n 〉|=|a ·n ||a ||n |
.
3.求二面角
平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,<n 1,n 2>=θ,则二面角α-l -β为θ或π-
θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1|·|n 2|
.
三、用向量法求空间距离
1.求点到平面的距离
如右图所示,已知点B (x 0,y 0,z 0),平面α
内一点A (x 1,y 1,z 1),平面α的一个法向量
n ,直线AB 与平面α所成的角为φ,θ=〈n ,AB →〉,则sin φ=
|cos 〈n ,AB →〉|=|cos θ|.由数量积的定义知,n ·AB →=|n ||AB
→|cos θ,∴点B 到平面α的距离d =|AB →|·sin φ=|AB →
|·|cos θ|
=|n ·AB →||n |
.
2.求异面直线间的距离
设直线a ∥平面α,A ∈a ,B ∈α,n 是平
面α的法向量,过A 作AC ⊥α,垂足为C ,
则AC →∥n ,
∵AB →·n =(AC →+CB →)·n =AC →·n , ∴|AB →·n |=|AC →
|·|n |.
∴|CD →|= |AB →·n ||n |∴两异面直线a 、b 间的距离为d =|AB →·n ||n |
.
3.求直线到平面的距离
设直线a ∥平面α,A ∈a ,B ∈α,n 是平面α的法向量,过A 作AC ⊥α,垂足为C ,则AC →
∥n ,
∵AB →·n =(AC →+CB →)·n =AC →·n ,
∴|AB →·n |=|AC →|·|n |.
∴直线a 到平面α的距离d =|AC →|=|AB →·n ||n |
∴直线a 到平面α的距离d =|AC →|=|AB →·n ||n |
. 4.求两平行平面间的距离
(1)用公式d =|AB →·n ||n |
求,n 为两平行平面的一个法向量,A 、B 分别为两平面上的任意两点.
(2)转化为点面距或线面距求解.。