Contact resistance in graphene-based devices
石墨烯包覆对球形Ni(OH)2电化学性能的影响
线衍射( X R D) 和扫描 电镜( S E M) 对其结构和表面形态进 行 了表征 。 结果发现 , 石墨 烯包覆在球 形氢氧化镍表 面 。 改变 了
其表面状态 , 并 未影响其结构 。运用循环伏 安、 线性极化 法和模 拟 电池充放 电实验等方 法研 究其电化学性能 , 结果表明
包覆石墨烯后 , 显著提高 了氢 氧化镍 电极反应的 交换 电流密度 , 降低 了极化 , 提 高 了氧析 出的过电位 , 使充放 电性能得 到 了明显的改善。电极的 0 . 2 C放电容 量提 高了 2 0 %。 放 电平台 电压提高 了 6 O mV; 1 . 0 C放电容量提高 了 3 9 %。 放 电
n i c k e l h y d r o x i d e
DONG Hu i — c h a o , L I Xi a o — f e n g , XI A T o n g — c h i , L I Ch a o
( He n a nP r o v i n c i a l Ke yL a b o r a t o r yo f S u r f a c e& I n t e r f a c e , De p a r t me n t o f Ma t e r i a l a n d C h e mi c a l E n g i n e e r i n g , Z h e n g z h o u U n i v e r s i t yo f L i g h t l n d u s t r y , Z h e n g z h O U H e n a n 4 5 0 0 0 2 , C h na i )
平台电压提高了 1 1 0 mV。 关键词 : 石墨烯 ; 氢氧化镍 ; 包覆 ; 电化学性能
石墨烯热学性能及表征技术
3.0 2.5 ⛁ᇐ⥛/(W.m-1.K-1) 2.0 1.5 1.0 0.5
Τ103 ⺇㒇㉇Βιβλιοθήκη ⛃0 50150
250 350 ⏽ᑺ K
450
550
图3 石墨烯和碳纳米管热导率与温度的关系 (Osman et al. 2001)
240
力
学
进
展
第 44 卷 : 201406
引起热导率下降. 在低温下, 主要的声子散射机制是缺陷散射, 不依赖于温度. 由于与
Hao 等 (2011) 利用分子动力学模拟, 研究了单原子缺陷和 Stone–Wales 位错对于
石墨烯力学和热学性能的影响. 研究发现, 含缺陷石墨烯的热导率强烈依赖于缺陷的 含量, 如 图 5 所示. 在低缺陷含量时, 热导率随缺陷增多急剧降低. 导致该现象的原 因是声子在缺陷处发生散射, 降低了声子平均自由程, 从而导致石墨烯热导率的下降. 针对石墨烯与 6H-SiC 形成的界面热传导问题, Xu 等 (2012) 开展了分子动力学模拟研 究. 发现界面导热是由初期几百皮秒时间的热耗散和随后的热稳定 2 个阶段组成. 热 耗散过程强烈依赖于产生的功率密度大小和界面的热导率, 热稳定阶段在界面处出现 显著的温度差. 通过建立的双电阻模型, 解释了在界面上的强烈声子散射可能是干扰 热传导和导致热扩散的机理. 他们还模拟了氩原子插层石墨烯热导率随插层原子密 度的变化规律 (如 图 6 所示). 进一步地, Wang 等 (2013) 将石墨烯层看做一个界面相, 发现热导率随石墨烯层厚度的增加而降低, 热流量随环境温度的升高而提高. 通过在
1.5
1.0
0.5
0
0
200
400
600 800 ⏽ᑺ K
掺杂Graphene纳米带基分子器件的整流特性
掺杂Graphene纳米带基分子器件的整流特性崔彬;杜威;刘德胜【摘要】采用紧束缚方法,研究了Zigzag型和Armchar型Graphene纳米带的能谱结构和电子态分布,得到了相应的带隙和边界态.然后,使用格林函数方法,计算了极/Graphene纳米带/电极三明治结构的分子结的输运性质,并在掺杂的纳米带分子结中得到了整流特性.%We investigate the electronic properties of Graphene Nanoribbon under a tight - binding frame, and further we get the edge state of the Zigzag Ribbon and the band gap of the Archair ribbon. Then, we calculate the transport properties of some devices based on the grapheme nanoribbon combining a Green' s function formulism, and we get a rectification in the doped nanoribon.【期刊名称】《济宁学院学报》【年(卷),期】2011(032)006【总页数】4页(P5-8)【关键词】Graphene纳米带;整流;分子器件【作者】崔彬;杜威;刘德胜【作者单位】山东大学物理学院,晶体材料国家重点实验室,山东济南250100;山东大学物理学院,晶体材料国家重点实验室,山东济南250100;山东大学物理学院,晶体材料国家重点实验室,山东济南250100;济宁学院物理与信息工程系,山东曲阜273155【正文语种】中文【中图分类】O469自2004年,K.S.Novoselov等人首次制备出单层 graphene[1],graphene迅速成为分子电子学和自旋电子学领域中的重要材料,graphene以它特有的电子电动力学特性,吸引了大量理论和实验物理学家对其进行设计、模拟和制备、测量,如我们熟知的它有平坦的二维晶格结构[1]、整数(2005-2007 年)[2]和分数(2009 年)[3]量子霍尔效应、高电子迁移率[1,4]等等.Armchair 和 Zigzag型graphene纳米带(GNR)也有诸多奇特的电子学、磁学性质如:半导体的电子结构[5]、Z-GNR自旋极化的边界态以及可能产生的半金属性[6,7]、自旋极化的自旋的注入和输运[8].随着理论模拟技术和实验技术的发展,通过物理吸附[9]、化学修饰[10,11]、替换碳原子[12、13]以及改变几何对称性[14],实现了GNR器件的非线性输运,如:NDR 效应[15、16]、场效应管[14]等,这为在分子电子学中应用、制备graphene基分子器件等提供了理论和实验方面的依据.最近,Lijie Ci等人在Nature Materials文章中[12]报道了,他们把 CH3与NH3-BH3气体,通过CVD方法,制备出了一系列六边形二维晶格材料(h-BNC),C原子浓度在10%-100%之间,并测量了不同温度下各种浓度比值的h-BNC伏安曲线和电阻.Jingwei Bai等人通过在大块石墨上剥离下来的graphene片上,用O2等离子体制出密集的孔洞,间距最小为5nm,得到graphene 纳米网格[17].并测得用其制成的场效应管有较高的开关比,而且与孔间距成反比,孔间距是7nm(他们制备出的样品中最小的)时得到最高开关比为,为graphene块体的5~6倍.Graphene以及graphene基的分子基团,日益成为分子电子学中最有前途的材料之一.本文采用紧束缚方法,对graphene纳米条带(GNR)的电子结构,进行了分析,给出了Zigzag型边界GNR的边界态,并进一步采用Green函数方法,记算了在低偏压(<3V)下电输运特性,最后给出了N和B替换掺杂后的分子结的整流特性.在一张无限的Graphene面上,如图1中,沿向下箭头裁剪成条带,就可得到Zigzag型GNR(Z-GNR),沿向右的方向裁剪,就得到了Armchair型GNR(A-GNR).我们采用紧束缚的哈密顿量,来研究Z-GNR与A-GNR的电子结构,电子只能在最近临格点之前发生跃迁,跃迁积分为,我们取最简单的情况,所有的都相等,tn=t0(n∈{1,N}).对于无掺杂的GNR,我们取在位能为零,所以,哈密顿如(1)式所示,只有无电场项和电场项组成.无电场项(2)式中,第一项表式电子沿Zigzag方向的运动,第二项表示电子沿Armchair方向的运动.第二项求和号上的*,表示当n和m奇偶性相同时,tm=t0,否则,tm=0.当我们加上电场后,各个格点的在位能将发生改变.可以解得本征能谱{εn}和波函数{Zn,m},(n,m ∈ {1,N}).然后由(4,5,6)式求出推迟Green函数以及其复共轭超前Green函数,由(7)式求出透射率,最终代入Landauer-Büttiker公式(8)求出在V偏压下的电流I.我们取长度为101个格点,不同宽的(4,5,6,7,10,30)Z-GNR,得到的金属性能谱结构,如图2,可以清楚地看到,没有带隙.进一步,可以看到在费米能级附近的波函数只分布在靠外侧的Z链上,图3画出了宽度为4和5相应的Z-GNR 波函数.其中1到101为一个边界的,102到202为第二条Z链,依次类推,最后101个格点为另一个边界.图中中间的从下向上第四条线,表示HOMO,第五条表示LUMO,依次类推,费米面附近的波函数分别分布在边界上,这就形成了边界态.由于Z-GNR的边界态在边界上是括展在整个链上的,我们Z-GNR将是一种导体性的纳米结构.我们接下来计算了A-GNR,发现这种GNR是一种半导体,在费米面附近打开了带隙,图3a,b,c分别给出了Width度为4、5、6的A-GNR 电子能谱,发现,(a)和(c)中的带隙较大.图3d中给出了更多宽度的A-GNR的带隙变化情况,带隙有越随着宽度的增加而减少的趋势.并且还出现了以3为周期的波动.然后我们给出了对一个A-GNR用N和B进行掺杂的输运特性.我们可以看到I-V曲线是一个较为理想的整流曲线有较大的开关比,如图4.在反向偏压下,电流一直保持小于0.1 μA,直到1.5V偏压附近,才开始增大.而在正向偏压下,小于1.0V 偏压时,电流几乎为0,而到达1.0V之后,开始迅速增加,直到超过3.0μA.图4中的插图用由黑到白的颜色表示了在不同偏压下的该分子结的电子透射率,黑色表示透射率为0,白色表示1,所以不同的透射率值用不同深度的灰色表示,纵坐标是偏压值(单位:V),横坐标是能量值(单位:eV).实交叉线表示出了偏压窗(交叉线上部和下部),只有进入偏压窗内的透射率才对输运有贡献.可以看到,在反向偏压下(交叉线上部),偏压窗内只有黑色,表明透射率几乎为0;而在正向偏压下(交叉线下部),偏压较低时也是黑色,所以从-1.5V到1.0V之间电流都很小,我们用虚在插图中标出,当偏压高于虚线后,有一个透射峰进入偏压窗,输运通道打开,分子结开始导电.当偏压升到1.3V以后,又一个透射峰进入偏压窗,所以,电流进一步增大.这就是I-V曲线在1.1V到1.3V之间出现小平台的原因.本文采用紧束缚+格林函数的方法,研究了Z-GNR和A-GNR的电子结构、能谱,得到ZGNR的边界态的分布情况,由于其金属性,预示着在将来的分子电子学领域中,Z-GNR是一种非常有潜力的分子导线.而A-GNR有良好的半导体性,可以通过替换掺杂,来将其做成分子整流器,因此,在未来的分子器件中A-GNR将占有重要一席.两种GNR可以很容易地连接在一起,而不产生肖特基势垒,所以,graphene是最有前途的分子电子学的基本材料之一.【相关文献】[1]K S Novoselov,A K Geim,S V Morozov,D Jiang,Y Zhang,S V Dubonos,I V Grigorieva,A A Firsov.Electric Field Effect in A-tomically Thin Carbon Films[J].Science,2004,(306):666-669.[2]Y Zhang,Y-W Tan,H L Stormer,P Kim.Experimental Observation of the Quantum Hall effect and Berry's Phase in Graphene[J].Nature,2005,(438):201-204;Y Zhang,Z Jiang,J P Small,M S Purewal,Y-W Tan,M Fazlollahi,J D Chudow,J A Jaszczak,H L Stormer,P ndau-Level Splitting in Graphene in High Magnetic Fields[J].Phys.Rev.Lett.96,2006,(96)1-4:136806;A K Geim,K S Novoselov.The Rise of Graphene[J].Nature Materials 6,2007,(6):183-191.[3]K I Bolotin,F Ghahari,M D Shulman,H L Stormer,P Kim et al.Observation of the fractional quantum Hall effect in graphene[J].Nature,2009,(462):196-199;X Du,I Skachko,F Duerr,A Luican,E Y rei.Fractional Quantum Hall effect and Insulating Phase of Dirac Electrons in Graphene[J].Nature,2009,(462):192-195.[4]C Berger,Z-M Song,X-B Li,X-S Wu,N Brown,C Naud,D Mayou,T Li,J Hass,A N Marchenkov,E H Conrad,P N First,W A de Heer.Electronic Confinement and Coherence in Patterned Epitaxial Graphene[J].Science,2006,(312):1191-1196.[5]X-L Li,X-R Wang,L Zhang,S Lee,H-J Dai.Chemical Derived,Ultrasmooth Graphene Nanoribbon Semiconductors[J].Science ,2008,(319):1229-1232.[6]Y-W Son,M L Cohen,S G Louie.Half-Metallic Graphene Nanoribbons[J].Nature ,2006,(444):347-349.[7]S Dutta,A K Manna,S K Pati.Intrinsic Half-Metallicity in Modified Graphene Nanoribbons[J].Phys.Rev.Lett,2009,(102):096601(1-4).[8]M Wimmer,I Adagideli,S Berber,D Tománek,K Richter.Spin Currents in Rough Graphene Nanoribbons:Universal Fluctuations and Spin Injection[J].Phys.Rev.Lett.2008,(100):177207(1-4).[9]X-L Wang,Z Zeng,H Ahn,G-X Wang.First-principles study on the enhancementof lithium storage capacity in boron dope graphene[J].Appl.Rev.Lett,2009,(95):183103(1-3).[10]X-R Wang,X L Li,L Zhang,Y Yoon,P K Weber,H-L Wang,J Guo,H-J Dai.N-Doping of Graphene Through E-lectrothermal Reactions with Ammonia[J].Science,2009,(324):768-771.[11]E-J Kan,Z-Y Li,J-L Yang,J G Hou.Half-Metallicity in Edge-Modified Zigzag Graphene Nanoribbons[J].J.Am.Chem.Soc,2008,(130):4224-4225;H Sevinçli,M Topsakal,E Durgun,S Ciraci.Electroni and Magnetic Properties of 3d Transition-Metal Atom Adsorbed Graphene and Graphene Nanoribbons[J].Phys.Rev,2008,(B,77):195434(1-7).[12]L-J Ci,L Song,C-H Jin,D Jariwala,D-X Wu,Y-J Li,A Srivastava,Z F Wang,KStorr,L Balicas,F liu,P M Ajayan.Atomic Layers of Hybridized Boron Nitride and Graphene Domains[J].Nat.Mat,2010,(9):430.[13]B Biel,X Blasé,F Triozon,S Roche.Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons[J].Phys.Rev.Lett,2009,(102):096803(1-4). [14]Z-Y Li,H Y Qian,J Wu,B-L Gu,W-H Duan.Ole of Symmetry in the Transport Properties of Graphene Nanoribbons under Bias[J].Phys.Rev.Lett,2008,(100):206802. [15]H.Ren,Q-X Li,Y Luo,and J-L Yang,Graphene Nanoribbon as a Negative Differential Resistance Device[J].Appl.Phys .Lett.94,173110(1-3)(2009).[16]Z-F Wang,Q-X Li,Q-W Shi,X-P Wang,J-L Yang,J-G Hou,J Chen.Chiral Selective Tunneling Induced Negative Differential Resistance in Zigzag Graphene Nanoribbon:A Theoretical Study[J].Appl.Phys.Lett,2008,(92):173114(1-3).[17]J-W Bai,X Zhong,S Jiang,Y Huang,X-F Duan.Graphene Nanomesh[J].Nat.Nano,2010,(5):190.。
石墨烯英文版
术语石墨烯首次出现在1987年,描述单石墨作为石墨层间化合物(GIC)的成分之一。 更大的石墨烯 分子或片(使得它们可以被认为是真正隔离的2D晶体)甚至在原理上也不能生长。 在20世纪30年代, Landau和Peierls(和Mermin,后来)显示热力学阻止2-d晶体在自由状态,物理今天的一篇文章
Introduction
Properties of graphene
Mechanical properties
- High Young’s modulus (~1,100 Gpa)高杨氏模量 High fracture strength (125 Gpa)高断裂强度 - Graphene is as the strongest material ever measured, some 200 times stronger than structural steel
• In 2004: Andre Geim and Kostya Novoselov at Manchester University managed to extract single-atom-thick crystallites (graphene) from bulk graphite: Pulled out graphene layers from graphite and transferred them onto thin silicon dioxide on a silicon wafer in a process sometimes called micromechanical cleavage or, simply, the Scotch tape technique. Since 2004, an explosion in the investigation of graphene in term of synthesis, characterization, properties as well as specifical potential application were reported. • 在2004年:曼彻斯特大学的Andre Geim和Kostya Novoselov设法从 块状石墨中提取单原子厚的微晶(石墨烯):从石墨中拉出石墨烯层 ,并将其转移到硅晶片上的薄二氧化硅上,有时称为微机械 切割, 或简单地,苏格兰带技术。 自2004年以来,报告了石墨烯在合成, 表征,性质以及特异性潜在应用方面的研究中的爆炸。
“Graphene”研究及翻译
“Graphene”研究及翻译摘要:查阅近5年我国SCI、EI期源刊有关石墨烯研究873篇,石墨烯研究的有关翻译存在很大差异。
从石墨烯的发现史及简介,谈石墨烯内涵及研究的相关翻译。
指出“石墨烯”有关术语翻译、英文题目、摘要撰写应注意的问题。
关键词:石墨烯;石墨烯术语;翻译石墨烯是目前发现的唯一存在的二维自由态原子晶体,它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2杂化碳的基本结构单元,具有很多奇异的电子及机械性能。
因而吸引了化学、材料等其他领域科学家的高度关注。
近5年我国SCI、EI期源刊研究论文873篇,论文质量良莠不齐,发表的论文有35.97%尚未被引用过,占国际论文被引的4.84%左右。
石墨烯研究的有关翻译也存在很大差异。
为了更好的进行国际学术交流,规范化专业术语。
本文就“graphene”的内涵及翻译谈以下看法。
l “Graphene”的发现史及简介1962年,Boehm等人在电镜上观察到了数层甚至单层石墨(氧化物)的存在,1975年van Bom-mel等人报道少层石墨片的外延生长研究,1999年德克萨斯大学奥斯汀分校的R Ruoff等人对用透明胶带从块体石墨剥离薄层石墨片的尝试进行相关报道。
2004年曼彻斯特大学的Novoselov和Geim小组以石墨为原料,通过微机械力剥离法得到一系列叫作二维原子晶体的新材料——石墨烯,并于10月22日在Sclence期刊上发表有关少层乃至单层石墨片的独特电学性质的文章,2010年Gelm和No-voselov获得了诺贝尔物理学奖。
石墨烯有着巨大的比表面积(2630 m2/g)、极高的杨氏模量(1.06 TPa)和断裂应力(~130GPa)、超高电导率(~106 S/cm)和热导率(5000W/m·K)。
石墨烯中的载流子迁移率远高于传统的硅材料,室温下载流子的本征迁移率高达200000 cm2/V.s),而典型的硅场效应晶体管的电子迁移率仅约1000 cm2/V.s。
石墨烯的电阻跟温度的关系
• In testing the designs, resistance may vary depending on the thickness of the graphene oxide printed on the substrate, and the temperature in which it is tested.
TEMPERATURE DEPENDENT RESISTANCE OF GRAPHENE OXIDE
Antoinette Robustelli
Graphene & Graphene Oxide
• Graphene - two dimensional
sheets of graphite with a thickness of 5-10 nm.
annealing.
• Thermal annealing - in this, we
will be leaving samples on a hot plate for 8-12 hours at a ce
• Using the Keithly 2000, and a thermocouple, resistance can be measured in Kilo-Ohm's.
oxide decreases its electron mobility at a gradual pace.
• This will result in a substance more similar to graphene in
regards to its physical and electrical properties.
Reduction Process
• In this lab we will use a reduction method, thermal
聚酰亚胺基底上双光子直写负性光刻胶
第42卷第4期2021年4月激光杂志LASER JOURNALVol.42,No.4April,2021聚酰亚胺基底上双光子直写负性光刻胶杨公瑾,毛彦超,吴亚南,张宝森,刘建,毛淼,陈述郑州大学物理学院,郑卅450001摘要:近年来,聚酰亚胺薄膜因其良好的柔韧性、透明度、耐辐射等优点,逐渐成为制备柔性电子器件的重要材料。
利用飞秒激光双光子直写技术,以聚酰亚胺薄膜为基底,对负性光刻胶进行加工。
研究发现线条分辨率随着激光功率的降低和扫描速度的增加而提高,并获得了115nm最小线宽。
柔韧性测试实验表明,在聚酰亚胺薄膜上制备的亚波长线条具有很好的柔韧性。
这项工作证明了在聚酰亚胺薄膜上进行飞秒激光双光子直写的可行性,为进一步制造柔性电子器件提供了实验基础。
关键词:激光光学;飞秒激光;聚酰亚胺;双光子;光刻胶中图分类号:TN249文献标识码:A doi:10.14016/ki.jgzz.2021.04.021Two-photon direct writing of negative photoresist on a polyimide substrateYANG Gongjin,MAO Yanchao,WU Yanan,ZHANG Baosen,LIU Jian,MAO Miao,CHEN ShuSchool of Physics,Zhengzhou University,Zhengzhou450001,ChinaAbstract:In recent years,polyimide(PI)film has become an essential material for flexible electronic devices due to its advantages such as good flexibility,transparency,and radiation resistance.In this paper,femtosecond laser two-photon direct writing technology was employed for damaging photoresist fabrication on the PI substrate.The line resolution increases with decreasing laser power and increasing scanning speed,and a115nm lateral resolution was obtained.The flexibility test shows the excellent flexibility of the sub-wavelength lines fabricated on PI film.This work proves two-photon direct writing feasibility on PI film and provides fundamental experiments for further flexible electronic devices manufacture.Key words:laser optics;femtosecond laser;polyimide;two-photon;photoresist1引言近年来,柔性电子技术以其独特的柔性、延展性、高效性、低成本等特点,受到了人们的广泛关注。
石墨烯的制备及其印刷油墨的合成
摘要随着电子产品朝着柔性化、微型化的方向发展,喷墨印刷技术作为替代传统用于电子器件制造的方法诸如丝网印刷、胶板印刷以及蚀刻减成法等已逐渐成为研究的热点,喷墨打印石墨烯则是这一领域非常有前途的研究方向,这是由于它结合了喷墨印刷技术增材制造、可直写技术、低成本以及可实现大规模生产的优点和石墨烯作为热点材料所具有的优异的光学、电学以及机械性能。
本课题针对喷墨打印石墨烯,以石墨烯作为导电油墨的导电溶质,采用两种方法制备了石墨烯基印刷油墨,即以乙基纤维素为稳定剂和粘结剂的油墨体系以及以NMP(N-Methyl pyrrolidone,N-甲基吡咯烷酮)为分散剂的油墨体系,但采用喷墨打印后热压的导电图案处理方式,实现了石墨烯基油墨的制备及石墨烯基油墨在柔性基底的喷墨印刷,并对喷墨印刷的图案轮廓形貌进行了表征,对两种体系制备的石墨烯基油墨印刷后的电学性能以及机械性能进行了研究。
通过课题研究发现,在采用超声辅助的液相剥离的方式制备石墨烯时,超声时间以及石墨的初始浓度对最终得到的油墨中的石墨烯的片径、厚度以及缺陷情况有重要的影响,当超声时间3 h,石墨初始浓度为4% w/v时,可以得到片径范围60~120 nm以及厚度为5层以内的石墨烯片层,满足喷墨印刷的尺寸要求。
在对油墨在柔性基底的印刷形貌的研究中,发现片径在打印允许范围内的情况下,片径较大的石墨烯片层的油墨印刷后得到的导电图案具有更平整的形貌轮廓和更加均匀的溶质分布。
对乙基纤维素体系的石墨烯油墨喷墨打印20层得到的导电图案在300℃温度下退火30 min,电导率可达到2.352×104 S/m,此时透过率为89%(λ=550 nm)。
同时导电图案具有较高的柔性化程度,当弯折循环从100次增加至500次时,电阻率仅仅增加了1.5%;本课题制备的NMP体系石墨烯油墨浓度为1.5 mg/mL,对喷墨打印得到的导电图案进行热压处理,在打印层数12层,热压温度为170 ℃,热压时间5 min以及热压压强5 MPa的条件下,导电图案的电导率可达到7.892×104 S/m,此时透过率为86%(λ=550 nm),500次弯折循环后电阻率仅增加0.16%,弯折180º电阻率仅仅增加0.18%。
半导体微电子专业词汇中英文对照
半导体微电子专业词汇中英文对照Accelerated testing 加速实验Acceptor 受主Acceptor atom 受主原子Accumulation 积累、堆积Accumulating contact 积累接触Accumulation region 积累区Accumulation layer 积累层Acoustic Surface Wave 声表面波Active region 有源区Active component 有源元Active device 有源器件Activation 激活Activation energy 激活能Active region 有源(放大)区A/D conversion 模拟—数字转换Adhesives 粘接剂Admittance 导纳Aging 老化Airborne 空载Allowed band 允带allowance 容限,公差Alloy-junction device合金结器件Aluminum(Aluminum) 铝Aluminum – oxide 铝氧化物Aluminum Nitride 氮化铝Aluminum passivation 铝钝化Ambipolar 双极的Ambient temperature 环境温度A M light 振幅调制光,调幅光amplitude limiter 限幅器Amorphous 无定形的,非晶体的Amplifier 功放放大器Analogue(Analog)comparator 模拟比较器Angstrom 埃Anneal 退火Anisotropic 各向异性的Anode 阳极Antenna 天线Aperture 孔径Arsenide (As) 砷Array 阵列Atomic 原子的Atom Clock 原子钟Attenuation 衰减Audio 声频Auger 俄歇Automatic 自动的Automotive 汽车的Availability 实用性Avalanche 雪崩Avalanche breakdown 雪崩击穿Avalanche excitation雪崩激发Background carrier 本底载流子Background doping 本底掺杂Backward 反向Backward bias 反向偏置Ball bond 球形键合Band 能带Band gap 能带间隙Bandwidth 带宽Bar 巴条发光条Barrier 势垒Barrier layer 势垒层Barrier width 势垒宽度Base 基极Base contact 基区接触Base stretching 基区扩展效应Base transit time 基区渡越时间Base transport efficiency基区输运系数Base—width modulation基区宽度调制Batch 批次Battery 电池Beam 束光束电子束Bench 工作台Bias 偏置Bilateral switch 双向开关Binary code 二进制代码Binary compound semiconductor 二元化合物半导体Bipolar 双极性的Bipolar Junction Transistor (BJT)双极晶体管Bit 位比特Blocking band 阻带Body — centered 体心立方Body-centred cubic structure 体立心结构Boltzmann 波尔兹曼Bond 键、键合Bonding electron 价电子Bonding pad 键合点Boron 硼Borosilicate glass 硼硅玻璃Bottom-up 由下而上的Boundary condition 边界条件Bound electron 束缚电子Bragg effect 布拉格效应Breadboard 模拟板、实验板Break down 击穿Break over 转折Brillouin 布里渊FBrillouin zone 布里渊区Buffer 缓冲器Built-in 内建的Build-in electric field 内建电场Bulk 体/体内Bulk absorption 体吸收Bulk generation 体产生Bulk recombination 体复合Burn—in 老化Burn out 烧毁Buried channel 埋沟Buried diffusion region 隐埋扩散区Bus 总线Calibration 校准,检定,定标、刻度,分度Capacitance 电容Capture cross section 俘获截面Capture carrier 俘获载流子Carbon dioxide (CO2)二氧化碳Carrier 载流子、载波Carry bit 进位位Cascade 级联Case 管壳Cathode 阴极Cavity 腔体Center 中心Ceramic 陶瓷(的)Channel 沟道Channel breakdown 沟道击穿Channel current 沟道电流Channel doping 沟道掺杂Channel shortening 沟道缩短Channel width 沟道宽度Characteristic impedance 特征阻抗Charge 电荷、充电Charge-compensation effects 电荷补偿效应Charge conservation 电荷守恒Charge drive/exchange/sharing/transfer/storage 电荷驱动/交换/共享/转移/存储Chemical etching 化学腐蚀法Chemically—Polish 化学抛光Chemically—Mechanically Polish (CMP)化学机械抛光Chemical vapor deposition (cvd)化学汽相淀积Chip 芯片Chip yield 芯片成品率Circuit 电路Clamped 箝位Clamping diode 箝位二极管Cleavage plane 解理面Clean 清洗Clock rate 时钟频率Clock generator 时钟发生器Clock flip-flop 时钟触发器Close—loop gain 闭环增益Coating 涂覆涂层Coefficient of thermal expansion 热膨胀系数Coherency 相干性Collector 集电极Collision 碰撞Compensated OP-AMP 补偿运放Common-base/collector/emitter connection 共基极/集电极/发射极连接Common—gate/drain/source connection 共栅/漏/源连接Common-mode gain 共模增益Common-mode input 共模输入Common—mode rejection ratio (CMRR) 共模抑制比Communication 通信Compact 致密的Compatibility 兼容性Compensation 补偿Compensated impurities 补偿杂质Compensated semiconductor 补偿半导体Complementary Darlington circuit 互补达林顿电路Complementary Metal-Oxide-SemiconductorField-Effect—Transistor(CMOS) 互补金属氧化物半导体场效应晶体管Computer-aided design (CAD)/test(CAT)/manufacture(CAM) 计算机辅助设计/ 测试/制造Component 元件Compound Semiconductor 化合物半导体Conductance 电导Conduction band (edge)导带(底)Conduction level/state 导带态Conductor 导体Conductivity 电导率Configuration 结构Conlomb 库仑Constants 物理常数Constant energy surface 等能面Constant—source diffusion恒定源扩散Contact 接触Continuous wave 连续波Continuity equation 连续性方程Contact hole 接触孔Contact potential 接触电势Controlled 受控的Converter 转换器Conveyer 传输器Cooling 冷却Copper interconnection system 铜互连系统Corrosion 腐蚀Coupling 耦合Covalent 共阶的Crossover 交叉Critical 临界的Cross—section 横断面Crucible坩埚Cryogenic cooling system 冷却系统Crystal defect/face/orientation/lattice 晶体缺陷/晶面/晶向/晶格Cubic crystal system 立方晶系Current density 电流密度Curvature 曲率Current drift/drive/sharing 电流漂移/驱动/共享Current Sense 电流取样Curve 曲线Custom integrated circuit 定制集成电路Cut off 截止Cylindrical 柱面的Czochralshicrystal 直立单晶Czochralski technique 切克劳斯基技术(Cz法直拉晶体J)) Dangling bonds 悬挂键Dark current 暗电流Dead time 空载时间Decade 十进制Decibel (dB) 分贝Decode 解码Deep acceptor level 深受主能级Deep donor level 深施主能级Deep energy level 深能级Deep impurity level 深度杂质能级Deep trap 深陷阱Defeat 缺陷Degenerate semiconductor 简并半导体Degeneracy 简并度Degradation 退化Degree Celsius(centigrade) /Kelvin 摄氏/开氏温度Delay 延迟Density 密度Density of states 态密度Depletion 耗尽Depletion approximation 耗尽近似Depletion contact 耗尽接触Depletion depth 耗尽深度Depletion effect 耗尽效应Depletion layer 耗尽层Depletion MOS 耗尽MOS Depletion region 耗尽区Deposited film 淀积薄膜Deposition process 淀积工艺Design rules 设计规则Detector 探测器Developer 显影剂Diamond 金刚石Die 芯片(复数dice)Diode 二极管Dielectric Constant 介电常数Dielectric isolation 介质隔离Difference—mode input 差模输入Differential amplifier 差分放大器Differential capacitance 微分电容Diffusion 扩散Diffusion coefficient 扩散系数Diffusion constant 扩散常数Diffusivity 扩散率Diffusion capacitance/barrier/current/furnace 扩散电容/势垒/电流/炉Digital circuit 数字电路Dimension (1)尺寸(2)量钢(3)维,度Diode 二极管Dipole domain 偶极畴Dipole layer 偶极层Direct—coupling 直接耦合Direct-gap semiconductor 直接带隙半导体Direct transition 直接跃迁Directional antenna 定向天线Discharge 放电Discrete component 分立元件Disorder 无序的Display 显示器Dissipation 耗散Dissolution 溶解Distributed capacitance 分布电容Distributed model 分布模型Displacement 位移Dislocation 位错Domain 畴Donor 施主Donor exhaustion 施主耗尽Dopant 掺杂剂Doped semiconductor 掺杂半导体Doping concentration 掺杂浓度Dose 剂量Double-diffusive MOS(DMOS)双扩散MOS Drift 漂移Drift field 漂移电场Drift mobility 迁移率Dry etching 干法腐蚀Dry/wet oxidation 干/湿法氧化Dose 剂量Dual—polarization 双偏振,双极化Duty cycle 工作周期Dual-in—line package (DIP)双列直插式封装Dynamics 动态Dynamic characteristics 动态属性Dynamic impedance 动态阻抗Early effect 厄利效应Early failure 早期失效Effect 效应Effective mass 有效质量Electric Erase Programmable Read Only Memory(E2PROM)电可擦除只读存储器Electrode 电极Electromigration 电迁移Electron affinity 电子亲和势Electron—beam 电子束Electroluminescence 电致发光Electron gas 电子气Electron trapping center 电子俘获中心Electron Volt (eV)电子伏Electro—optical 光电的Electrostatic 静电的Element 元素/元件/配件Elemental semiconductor 元素半导体Ellipse 椭圆Emitter 发射极Emitter—coupled logic 发射极耦合逻辑Emitter-coupled pair 发射极耦合对Emitter follower 射随器Empty band 空带Emitter crowding effect 发射极集边(拥挤)效应Endurance test =life test 寿命测试Energy state 能态Energy momentum diagram 能量-动量(E—K)图Enhancement mode 增强型模式Enhancement MOS 增强性MOSEnteric (低)共溶的Environmental test 环境测试Epitaxial 外延的Epitaxial layer 外延层Epitaxial slice 外延片Epoxy 环氧的Equivalent circuit 等效电路Equilibrium majority /minority carriers 平衡多数/少数载流子Equipment 设备Erasable Programmable ROM (EPROM)可搽取(编程)存储器Erbium laser 掺铒激光器Error function complement 余误差函数Etch 刻蚀Etchant 刻蚀剂Etching mask 抗蚀剂掩模Excess carrier 过剩载流子Excitation energy 激发能Excited state 激发态Exciton 激子Exponential 指数的Extrapolation 外推法Extrinsic 非本征的Extrinsic semiconductor 杂质半导体Fabry—Perot amplifier 法布里-珀罗放大器Face - centered 面心立方Fall time 下降时间Fan-in 扇入Fan-out 扇出Fast recovery 快恢复Fast surface states 快表面态Feedback 反馈Fermi level 费米能级Femi potential 费米势Fiber optic 光纤Field effect transistor 场效应晶体管Field oxide 场氧化层Figure of merit 品质因数Filter 滤波器Filled band 满带Film 薄膜Fine pitch 细节距Flash memory 闪存存储器Flat band 平带Flat pack 扁平封装Flatness 平整度Flexible 柔性的Flicker noise 闪烁(变)噪声Flip-chip 倒装芯片Flip— flop toggle 触发器翻转Floating gate 浮栅Fluoride etch 氟化氢刻蚀Focal plane 焦平面Forbidden band 禁带Formulation 列式,表达Forward bias 正向偏置Forward blocking /conducting 正向阻断/导通Free electron 自由电子Frequency deviation noise 频率漂移噪声Frequency response 频率响应Function 函数Gain 增益Gallium-Arsenide(GaAs)砷化镓Gallium Nitride 氮化镓Gate 门、栅、控制极Gate oxide 栅氧化层Gate width 栅宽Gauss(ian)高斯Gaussian distribution profile 高斯掺杂分布Generation—recombination 产生—复合Geometries 几何尺寸Germanium(Ge)锗Gold 金Graded 缓变的Graded (gradual) channel 缓变沟道Graded junction 缓变结Grain 晶粒Gradient 梯度Graphene 石墨烯Grating 光栅Green laser 绿光激光器Ground 接地Grown junction 生长结Guard ring 保护环Guide wave 导波波导Gunn - effect 狄氏效应Gyroscope 陀螺仪Hardened device 辐射加固器件Harmonics 谐波Heat diffusion 热扩散Heat sink 散热器、热沉Heavy/light hole band 重/轻空穴带Hell - effect 霍尔效应Hertz 赫兹Heterojunction 异质结Heterojunction structure 异质结结构Heterojunction Bipolar Transistor(HBT)异质结双极型晶体High field property 高场特性High-performance MOS(H—MOS)高性能MOS器件High power 大功率Hole 空穴Homojunction 同质结Horizontal epitaxial reactor 卧式外延反应器Hot carrier 热载流子Hybrid integration 混合集成Illumination (1)照明(2)照明学Image - force 镜象力Impact ionization 碰撞电离Impedance 阻抗Imperfect structure 不完整结构Implantation dose 注入剂量Implanted ion 注入离子Impurity 杂质Impurity scattering 杂志散射Inch 英寸Incremental resistance 电阻增量(微分电阻)In—contact mask 接触式掩模Index of refraction 折射率Indium 铟Indium tin oxide (ITO) 铟锡氧化物Inductance 电感Induced channel 感应沟道Infrared 红外的Injection 注入Input power 输入功率Insertion loss 插入损耗Insulator 绝缘体Insulated Gate FET(IGFET)绝缘栅FET Integrated injection logic 集成注入逻辑Integration 集成、积分Integrated Circuit 集成电路Interconnection 互连Interconnection time delay 互连延时Interdigitated structure 交互式结构Interface 界面Interference 干涉International system of unions 国际单位制Internally scattering 谷间散射Interpolation 内插法Intrinsic 本征的Intrinsic semiconductor 本征半导体Inverse operation 反向工作Inversion 反型Inverter 倒相器Ion 离子Ion beam 离子束Ion etching 离子刻蚀Ion implantation 离子注入Ionization 电离Ionization energy 电离能Irradiation 辐照Isolation land 隔离岛Isotropic 各向同性Junction FET(JFET) 结型场效应管Junction isolation 结隔离Junction spacing 结间距Junction side—wall 结侧壁Laser 激光器Laser diode 激光二极管Latch up 闭锁Lateral 横向的Lattice 晶格Layout 版图Lattice binding/cell/constant/defect/distortion 晶格结合力/晶胞/晶格/晶格常熟/晶格缺陷/晶格畸变Lead 铅Leakage current (泄)漏电流Life time 寿命linearity 线性度Linked bond 共价键Liquid Nitrogen 液氮Liquid-phase epitaxial growth technique 液相外延生长技术Lithography 光刻Light Emitting Diode(LED) 发光二极管Linearity 线性化Liquid 液体Lock in 锁定Longitudinal 纵向的Long life 长寿命Lumped model 集总模型Magnetic 磁的Majority carrier 多数载流子Mask 掩膜板,光刻板Mask level 掩模序号Mask set 掩模组Mass - action law 质量守恒定律Master—slave D flip—flop 主从D 触发器Matching 匹配Material 材料Maxwell 麦克斯韦Mean free path 平均自由程Mean time before failure (MTBF) 平均工作时间Mechanical 机械的Membrane (1)薄腊,膜片(2)隔膜Megeto - resistance 磁阻Mesa 台面MESFET—Metal Semiconductor 金属半导体FET Metalorganic Chemical Vapor Deposition MOCVD 金属氧化物化学汽相淀积Metallization 金属化Metal oxide semiconductor (MOS)金属氧化物半导体MeV 兆电子伏Microelectronic technique 微电子技术Microelectronics 微电子学Microelectromechanical System (MEMS) 微电子机械系统Microwave 微波Millimeterwave 毫米波Minority carrier 少数载流子Misfit 失配Mismatching 失配Mobility 迁移率Module 模块Modulate 调制Molecular crystal 分子晶体Monolithic IC 单片MOSFET 金属氧化物半导体场效应晶体管Mount 安装Multiplication 倍增Modulator 调制Multi-chip IC 多芯片ICMulti-chip module(MCM)多芯片模块Multilayer 多层Multiplication coefficient 倍增因子Multiplexer 复用器Multiplier 倍增器Naked chip 未封装的芯片(裸片)Nanometer 纳米Nanotechnology 纳米技术Negative feedback 负反馈Negative resistance 负阻Negative—temperature—coefficient负温度系数Nesting 套刻Noise figure 噪声系数Nonequilibrium 非平衡Nonvolatile 非挥发(易失)性Normally off/on 常闭/开Nuclear 核Numerical analysis 数值分析Occupied band 满带Offset 偏移、失调On standby 待命状态Ohmic contact 欧姆接触Open circuit 开路Operating point 工作点Operating bias 工作偏置Operational amplifier (OPAMP)运算放大器Optical photon 光子Optical quenching 光猝灭Optical transition 光跃迁Optical-coupled isolator 光耦合隔离器Organic semiconductor 有机半导体Orientation 晶向、定向Oscillator 振荡器Outline 外形Out—of-contact mask 非接触式掩模Output characteristic 输出特性Output power 输出功率Output voltage swing 输出电压摆幅Overcompensation 过补偿Over—current protection 过流保护Over shoot 过冲Over-voltage protection 过压保护Overlap 交迭Overload 过载Oscillator 振荡器Oxide 氧化物Oxidation 氧化Oxide passivation 氧化层钝化Package 封装Pad 压焊点Parameter 参数Parasitic effect 寄生效应Parasitic oscillation 寄生振荡Pass band 通带Passivation 钝化Passive component 无源元件Passive device 无源器件Passive surface 钝化界面Parasitic transistor 寄生晶体管Pattern 图形Payload 有效载荷Peak—point voltage 峰点电压Peak voltage 峰值电压Permanent—storage circuit 永久存储电路Period 周期Permeable — base 可渗透基区Phase-lock loop 锁相环Phase drift 相移Phonon spectra 声子谱Photo conduction 光电导Photo diode 光电二极管Photoelectric cell 光电池Photoelectric effect 光电效应Photonic devices 光子器件Photolithographic process 光刻工艺Photoluminescence 光致发光Photo resist (光敏)抗腐蚀剂Photo mask 光掩模Piezoelectric effect 压电效应Pin 管脚Pinch off 夹断Pinning of Fermi level 费米能级的钉扎(效应)Planar process 平面工艺Planar transistor 平面晶体管Plasma 等离子体Plane 平面的Plasma 等离子体Plate 板电路板P—N junction pn结Poisson equation 泊松方程Point contact 点接触Polarity 极性Polycrystal 多晶Polymer semiconductor 聚合物半导体Poly—silicon 多晶硅Positive 正的Potential (电)势Potential barrier 势垒Potential well 势阱Power electronic devices电力电子器件Power dissipation 功耗Power transistor 功率晶体管Preamplifier 前置放大器Primary flat 主平面Print-circuit board(PCB) 印制电路板Probability 几率Probe 探针Procedure 工艺Process 工艺Projector 投影仪Propagation delay 传输延时Proton 质子Proximity effect 邻近效应Pseudopotential method 赝势法Pump 泵浦Punch through 穿通Pulse triggering/modulating 脉冲触发/调制Pulse Widen Modulator(PWM)脉冲宽度调制Punchthrough 穿通Push-pull stage 推挽级Q Q值Quality factor 品质因子Quantization 量子化Quantum 量子Quantum efficiency 量子效应Quantum mechanics 量子力学Quasi – Fermi-level 准费米能级Quartz 石英Radar 雷达Radiation conductivity 辐射电导率Radiation damage 辐射损伤Radiation flux density 辐射通量密度Radiation hardening 辐射加固Radiation protection 辐射保护Radiative - recombination 辐照复合Radio 无线电射电射频Radio—frequency RF 射频Raman 拉曼Random 随机Range 测距Radio 比率系数Ray 射线Reactive sputtering source 反应溅射源Real time 实时Receiver 接收机Recombination 复合Recovery diode 恢复二极管Record 记录Recovery time 恢复时间Rectifier 整流器(管)Rectifying contact 整流接触Red light 红光Reference 基准点基准参考点Refractive index 折射率Register 寄存器Regulate 控制调整Relative 相对的Relaxation 驰豫Relaxation lifetime 驰豫时间Relay 中继Reliability 可靠性Remote 远程Repeatability 可重复性Reproduction 重复制造Residual current 剩余电流Resonance 谐振Resin 树脂Resistance 电阻Resistor 电阻器Resistivity 电阻率Regulator 稳压管(器)Resolution 分辨率Response time 响应时间Return signal 回波信号Reverse 反向的Reverse bias 反向偏置Ribbon 光纤带Ridge waveguide 脊形波导Ring laser 环形激光器Rotary wave 旋转波Run 运行Sampling circuit 取样电路Sapphire 蓝宝石(Al2O3)Satellite valley 卫星谷Saturated current range 电流饱和区Scan 扫描Scaled down 按比例缩小Scattering 散射Schematic layout 示意图,简图Schottky 肖特基Schottky barrier 肖特基势垒Schottky contact 肖特基接触Screen 筛选Scribing grid 划片格Secondary flat 次平面Seed crystal 籽晶Segregation 分凝Selectivity 选择性Self aligned 自对准的Self diffusion 自扩散Semiconductor 半导体Semiconductor laser半导体激光器Semiconductor—controlled rectifier 半导体可控硅Sensitivity 灵敏度Sensor 传感器Serial 串行/串联Series inductance 串联电感Settle time 建立时间Sheet resistance 薄层电阻Shaping 成型Shield 屏蔽Shifter 移相器Short circuit 短路Shot noise 散粒噪声Shunt 分流Sidewall capacitance 边墙电容Signal 信号Silica glass 石英玻璃Silicon 硅Silicon carbide 碳化硅Silicon dioxide (SiO2)二氧化硅Silicon Nitride(Si3N4) 氮化硅Silicon On Insulator 绝缘体上硅Silver whiskers 银须Simple cubic 简立方Simulation 模拟Single crystal 单晶Sink 热沉Sinter 烧结Skin effect 趋肤效应Slot 槽隙Slow wave 慢波Smooth 光滑的Subthreshold 亚阈值的Solar battery/cell 太阳能电池Solid circuit 固体电路Solid Solubility 固溶度Solution 溶液Sonband 子带Source 源极Source follower 源随器Space charge 空间电荷Space Craft 宇宙飞行器Spacing 间距Specific heat(PT)比热Spectral 光谱Spectrum 光谱(复数)Speed—power product 速度功耗乘积Spherical 球面的Spin 自旋Split 分裂Spontaneous emission 自发发射Spot 斑点Spray 喷涂Spreading resistance 扩展电阻Sputter 溅射Square root 平方根Stability 稳定性Stacking fault 层错Standard 标准的Standing wave 驻波State-of-the—art 最新技术Static characteristic 静态特性Statistical analysis 统计分析Steady state 稳态Step motor 步进式电动机Stimulated emission 受激发射Stimulated recombination 受激复合Stopband 阻带Storage time 存储时间Stress 应力Stripline 带状线Subband 次能带Sublimation 升华Submillimeter 亚毫米波Substrate 衬底Substitutional 替位式的Superconductor 超导(电)体Superlattice 超晶格Supply 电源Surface mound表面安装Surge capacity 浪涌能力Switching time 开关时间Switch 开关Synchronizer 同步器,同步装置Synthetic-aperture 合成孔径System 系统Technical 技术的,工艺的Telecommunication 远距通信,电信Telescope 望远镜Terahertz 太赫兹Terminal 终端Template 模板Temperature 温度Tensor 张量Test 测试试验Thermal activation 热激发Thermal conductivity 热导率Thermal equilibrium 热平衡Thermal Oxidation 热氧化Thermal resistance 热阻Thermal sink 热沉Thermal velocity 热运动Thick- film technique 厚膜技术Thin- film hybrid IC 薄膜混合集成电路Thin—Film Transistor(TFT)薄膜晶体Three dimension 三维Threshold 阈值Through Silicon Via 硅通孔Thyistor 晶闸管Time resolution 时间分辨率Tolerance 公差T/R module 发射/接收模块Transconductance 跨导Transfer characteristic 转移特性Transfer electron 转移电子Transfer function 传输函数Transient 瞬态的Transistor aging(stress)晶体管老化Transit time 渡越时间Transition 跃迁Transition-metal silica 过度金属硅化物Transition probability 跃迁几率Transition region 过渡区Transmissivity 透射率Transmitter 发射机Transceiver 收发机Transport 输运Transverse 横向的Trap 陷阱Trapping 俘获Trapped charge 陷阱电荷Travelling wave 行波Trigger 触发Trim 调配调整Triple diffusion 三重扩散Tolerance 容差Tube 管子电子管Tuner 调节器Tunnel(ing)隧道(穿)Tunnel current 隧道电流Turn - off time 关断时间Ultraviolet 紫外的Ultrabright 超亮的Ultrasonic 超声的Underfilling 下填充Undoped 无掺杂Unijunction 单结的Unipolar 单极的Unit cell 原(元)胞Unity- gain frequency 单位增益频率Unilateral—switch 单向开关Vacancy 空位Vacuum 真空Valence(value)band 价带Value band edge 价带顶Valence bond 价键Vapour phase 汽相Varactor 变容管Variable 可变的Vector 矢量Vertical 垂直的Vibration 振动Visible light 可见光Voltage 电压Volt 伏特Wafer 晶片Watt 瓦Wave guide 波导Wavelength 波长Wave—particle duality 波粒二相性Wear-out 烧毁Wetting 浸润Wideband 宽禁带Wire 引线Wire routing 布线Work function 功函数Worst-case device 最坏情况器件X—ray X射线Yield 成品率Zinc 锌。
211018419_4_种紧固件用涂层性能对比分析
装备环境工程第20卷第3期·46·EQUIPMENT ENVIRONMENTAL ENGINEERING2023年3月4种紧固件用涂层性能对比分析靳磊1,郭建2,时卓2,王立东3,常伟1,李文1(1.中国航空制造技术研究院 a.高能束流加工技术国家级重点实验室b.先进表面技术航空科技重点 实验室,北京 100024;2.辽宁省轻工科学研究院有限公司 特种涂层及涂料事业部,沈阳 110000;3.北京航为高科连接技术有限公司,北京 100023)摘要:目的将4种不同涂料涂覆在相同紧固件上,在相同测试条件下研究它们的表面形貌、耐腐蚀、抗疲劳等性能,最后从中筛选出可替代传统HW-A的潜在涂料,进一步丰富现役钛合金紧固件表面涂层材料品种。
方法利用3D共聚焦、电化学阻抗谱、中性盐雾、加速环境谱等方法评价紧固件表面涂层性能,研究每种涂层的截面形貌、表面形貌、粗糙度、抗腐蚀、加速疲劳寿命等,然后综合分析其关键性能。
结果采用3D共聚焦、电化学阻抗谱、中性盐雾、加速谱等方法初步摸清了4种涂料的性能特点,PTFE涂料的表面粗糙度较CZ和GO降低约50%,PTFE电化学阻抗谱半径较其他3种涂层大大提高。
加速谱更清晰表明,PTFE涂料比现役HW-A铝涂料的疲劳寿命提高22.8%,PTFE涂料能满足当下性能需要。
结论PTFE涂料较市场上筛选出的石墨烯涂料、含铬酸盐聚氨酯涂料的施工性能更好、关键性能更优、更适合紧固件使用,在未来产品应用中有较大的潜力。
关键词:钛合金紧固件;涂料;形貌;电化学阻抗谱;耐中性盐雾;加速谱;综合性能中图分类号:TG174 文献标识码:A 文章编号:1672-9242(2023)03-0046-09DOI:10.7643/ issn.1672-9242.2023.03.006Comparative Analysis on Properties of 4 Kinds of Coatings for FastenersJIN Lei1, GUO Jian2, SHI Zhuo2, WANG Li-dong3, CHANG Wei1, LI Wen1(1. a. Science and Technology on Power Beam Process Laboratory, b. Aviation Key Laboratory of Advanced Surface EngineerTechnology, A VIC Manufacturing Technology Institute, Beijing 100024, China; 2. Special Coatings and coatings BusinessDivision, Liaoning Light Industry Research Institute Co., Ltd., Shenyang 110000, China; 3. Beijing Hangwei High-techConnection Technology Co., Ltd., Beijing 100023, China)ABSTRACT: The work aims to apply 4 kinds of different coatings to the same fasteners to test their surface morphology, cor-rosion resistance and anti-fatigue under the same test conditions, screen out the potential coatings to replace traditional HW-A coatings, to enrich the varieties of surface coating materials for titanium alloy fasteners. 3D confocal, Ac impedance spectrum, neutral salt spray, accelerated spectrum and other methods were adopted to evaluate the properties of coatings on the fastener surface. The section morphology, surface morphology, roughness, corrosion resistance and anti-fatigue of each coating were收稿日期:2022–06–15;修订日期:2022–07–27Received:2022-06-15;Revised:2022-07-27基金项目:稳定支持(KZ562101113)Fund:Stable Support Foundation of China (KZ562101113)作者简介:靳磊(1984—),男。
交联石墨烯环氧纳米复合材料的弹性常数和界面性质的分子模拟
Molecular modeling of crosslinked graphene–epoxy nanocomposites for characterization of elastic constants and interfacialpropertiesR.Rahman a ,⇑,A.Haque ba Center for Simulation,Visualization and Real-Time Prediction (SiViRt),The University of Texas at San Antonio,TX 78249,United States bThe Department of Aerospace Engineering &Mechanics,The University of Alabama,Tuscaloosa,AL 35487,United Statesa r t i c l e i n f o Article history:Received 3August 2012Received in revised form 14March 2013Accepted 26May 2013Available online 5June 2013Keywords:A.Nano-structuresB.Mechanical properties B.Elasticityputational modelinga b s t r a c tThe mechanical properties of crosslinked graphene/epoxy nanocomposites have been investigated using molecular mechanics (MM)and molecular dynamics simulations (MD).The influence of graphene nano-platelet concentrations,aspect ratios and dispersion on elastic constants and stress–strain responses are studied.The cohesive and pullout forces at the interface of G–Ep nanocomposites are also investigated.The simulated MD models were further analyzed through radial distribution function,molecular energy and atom density.The results show significant improvement in Young’s modulus and shear modulus for the G–Ep system in comparison to neat epoxy resin.The graphene concentrations in the range of 1–3%and graphene with low aspect ratio are seen to improve Young’s modulus.The dispersed graphene sys-tem is seen to enhance in-plane elastic modulus than the agglomerated graphene system.The cohesive and pullout forces versus displacements data were plotted under normal and shear modes in order to characterize interfacial properties.The cohesive force is significantly improved by attaching chemical bonding at the graphene–epoxy interface.It appears that elastic constants determined by molecular modeling and nanoindentation test methods are comparatively higher than the micromechanics based predicted value and coupon test data.This is possibly due to scaling effect.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionEpoxy resin exhibits excellent mechanical properties such as high elastic modulus and fracture strength,low creep and less envi-ronmental degradation which made it attractive candidate for coat-ings,adhesives and resin for structural composites particularly in aerospace and electronic industries.It has been reported that the structural properties of neat epoxy resins may be improved by rein-forcing them with carbon nanotubes (CNT),nanoclays (NC)and graphene nanoplatelets (GNP),and carbon nanofibers (CNF)[1–6].But most of the earlier studies related to epoxy based nanocompos-ites are primarily experimental which lacks sufficient physical understanding about the interactions of nanomaterials with neat resin particularly in terms of their concentration,aspect ratios and dispersion.The effects of these parameters in the overall opti-mum mechanical properties of nanocomposites are significantly important.Furthermore,the stress transfer at the interface of nanomaterials and neat resin is another critical factor which also controls the mechanical properties of nanocomposites.As a result both experimental as well as theoretical studies of epoxy based nanocomposites are emphasized in order to achieve optimum ben-efits.The theoretical study of epoxy based nanocomposites has been carried out at continuum scale using analytical and finite ele-ment method [7].However,continuum level analysis omits detail structural configuration of nanomaterials at the molecular level and lacks true realistic interactions at the nanoscales.This limits the continuum scale study inadequate at certain stage when detail structural,thermodynamic or interfacial properties are required.It appears that molecular modeling is an effective theoretical tool in understanding the properties of nanocomposites [8].Wu and Xu [9]performed MD simulation of cross-linked Diglyc-idyl Ether Bisphenol A (DGEBA)epoxy with isophorone diamine (IPD)curing agent and determined elastic constants,unit cell dimension and density.Fan and Yuen [10]also carried out MD sim-ulation for cross-linked Diglycidyl Ether Bisphenol F (EPON 862)epoxy in presence of the curing agent Triethylenetetramine (TETA).They outlined MD simulation methodology in detail and deter-mined Young’s modulus,glass transition temperature of the cross-linked epoxy network.Recently,Bandyopadhay et al.[11]studied the mechanical and thermal properties of cross-linked epoxy poly-mer using atomistic modeling.In last few years scientists are more interested in studying mechanical properties of crosslinked epoxy resin reinforced with nanomaterials using MD simulation.In this context,Yu and others [12]performed a MD analysis of epoxy (EPON 862)/alumina (Al 2O 3)nanocomposites.Their study showed that the mechanical property is improved due to added alumina nanofillers1359-8368/$-see front matter Ó2013Elsevier Ltd.All rights reserved./10.1016/positesb.2013.05.034Corresponding author.Tel.:+12052390559.E-mail address:rezwanrehman@ (R.Rahman).in the epoxy matrix.Zhu and coworkers[8]predicted the stress–strain behavior of single walled carbon nanotube(SWNT)reinforced epoxy nanocomposites using molecular dynamics(MD)simulation scheme.Frankland and co-researchers[13]investigated the effect of polymer–nanotube cross-linking on critical load transfer mecha-nism from carbon nanotubes to polymer matrix using molecular dynamics(MD)ing MD simulation as well as microm-echanics methods Choi et al.[14]performed a multiscale modeling of epoxy/silica nanocomposite.Yang et al.[15,16]also performed multiscale analysis of polyimide/silica systems using MD and micromechanics based model.Their study showed that introducing nanoparticles in the polymer matrix composites can enhance the mechanical as well as thermal properties.Besides alumina,silica or CNT,graphene platelet(GNP)has drawn attention asfiller/reinforcing material to enhance the mechanical,electrical and thermal property of traditional polymer system[4].It is to be noted that GNPs are comparatively less expensive than CNT and they posses very high stiffness.This makes GNPs as an attractive candidate forfiller materials in polymer nanocomposites.Cho and co-workers[5]predicted the elastic con-stants of graphite using molecular mechanics model and subse-quently determined the elastic constants of graphite/epoxy nanocomposites using micromechanical model based on Mori–Ta-naka method.Rafiee and co-researchers studied the enhancement of mechanical properties of graphene–epoxy nanocomposites in presence of low graphene content[6].Yasmine and Daniel deter-mined experimentally thermal properties and elastic modulus of graphite/epoxy nanocomposites[4].Xiang and coworkers[17] developed a micromechanics model for graphene–polymer nano-composite based on Mori–Tanaka model.It appears that the MD simulation work can be remarkably useful in addressing the influ-ence of weight concentrations,aspect ratios and dispersion on elastic constants of GNP/epoxy nanocomposites.Recently,it has been observed that the improved mechanical properties of the polymer composites not only depends on the inherent properties of the nanofiller,but also more importantly de-pends on interface energy and nanoscale morphology within the polymer matrix[18].In last few years several researchers have fo-cused on studying interfacial bonding between CNT and polymer matrix materials[7,8,19].In these works the pullout strength,crit-ical length of CNT in matrix and stress transfer at the CNT/epoxy interface etc.have been investigated.Aswathi[20]analyzed pull-out as well as cohesive interaction in graphene–polyethylene sys-tem using molecular dynamics(MD)simulation.This cohesive interaction between a nanofiller surface and polymer is usually controlled by the van der Waals energy.However,both the pullout (shear)and cohesive strength(normal)of graphene in epoxy resin are important parameters which require further attention.In this study,the effects of GNP weight concentration,aspect ra-tio and dispersion on stress–strain response and elastic constants are investigated using molecular modeling.The molecular simula-tion results are compared with available experimental data and predictions by micromechanics model.2.TheoryMD uses Newton’s equation of motion in defining the trajectory of atoms in any system.The forces on atoms are computed at each time interval and then combined with existing position and veloc-ity to update them for next time step.In this work pcff forcefield is used to specify the molecular interactions in all the graphene–epoxy systems[10,21].pcff forcefield consists of bonded energy terms,cross-terms and non-bonded energy terms.The bonded energy terms consist of bond stretch,angle bending and dihedral angle rotation energies.The cross interaction terms come from dy-namic vibrations among bond stretch;angle bending and dihedral rotation.The non-bonded energy terms refer to energy due to Col-umbic and van der Walls interactions.Columbic interaction was applied using Ewald summation technique.2.1.Atomistic stress calculationThe total energy in a system is based on contribution from both kinetic and potential energies.Hence the Hamiltonian based on this kinetic and potential part of total energy leads to calculate stress tensor r ij per I th atom,(both tensile and compressive)is ob-tained from the following virial expression[5].rij¼À1X NI¼1m I v I i v J T i!þXI<Jr IJijf IJ Tij!"#ð1Þwhere Vol is the volume of the simulation box,m I is mass of I th atom,v I i is the velocity of I th atom in i th direction,N is total numberof atoms,r IJijis ij-component of the distance between I th and J thatoms,f IJijis ij-component of the force between I th and J th atoms.2.2.Elastic modulus using MM methodThe elastic constants of a polymer system can be determined by using several methods.In MM method,the elastic constants were determined from the changes in total potential energy subjected to uniaxial deformation of the structures ignoring the kinetic energy due to molecular motion.The amorphous cell model undergoes extension and compression in order to determine elastic properties. It is reported by Theodorou and Suter[17]that the entropic contri-bution to an elastic response can be neglected in polymeric glasses. As a result thefirst term with velocity components in Eq.(1)is not considered in MM simulation.Thefirst derivative of the potential energy with respect to strain provides internal stress tensor and the second derivative represents stiffness matrix.The unit cell(sim-ulation box)undergoes unidirectional tensile and compressive deformations in all direction,e¼e11e22e33e44e55e66½ . Thus,the corresponding stresses in the system(rþi and rÀi)are cal-culated using Eq.(1).Hence,the stiffness components can be writ-ten in terms of stress components as[22].C ij¼rþiÀrÀie jð2ÞThe deformation process is considered to be strain controlled.In Eq.(1),r i is the i th component of internal stress tensor and rþi;rÀi correspond to stress component under tension and compression. The change in strain components D e j is2e j due to tensile and com-pressive deformation.The entire stiffness matrix can be calculated using Eq.(2).Assuming ideal isotropic condition,Lame’s constants k;l were calculated using Eq.(3).So,the Young’s modulus and shear modulus of the system can be calculated using the following equations[22]:E¼l3kþ2l l Young’s modulusG¼l Shear modulusk¼1ðC11þC22þC33ÞÀ2ðC44þC55þC66Þl¼1ðC44þC55þC66Þð3Þ2.3.Stress–strain responses using MD methodBesides computing the elastic properties using MM method,it is also possible to obtain stress–strain relationship using MD simula-tion.The purpose is to perform numerical experiments with the unit cell by applying uniaxial deformation.In general,any uniaxial deformation causes atoms in the system to move along the applied strain.The stress can be represented as an average of all the354R.Rahman,A.Haque/Composites:Part B54(2013)353–364principle stresses or ‘‘hydrostatic stress’’.So,for any small applied strain e ,the average stress in the system is calculated using Eq.(4).Each stress component is calculated from the virial stress expres-sion in Eq.(1)without ignoring the dynamic motion of the moleculesr À¼ðr 11þr 22þr 33Þ3ð4Þwhere r 11,r 22,r 33virial stress in axial directions,r Àis the hydro-static stress.After every applied deformation the running averagedhydrostatic stress r Àis calculated in order to smoothen the stress–strain response.The Young’s modulus is also obtained from the slope of the linear regime of the stress–strain curve.3.Model development 3.1.Amorphous modelThe molecular model of amorphous crosslinked graphene–epoxy (G–Ep)nanocomposite system is developed in order to study the effects of graphene concentrations and aspect ratios on mechanical properties such as stress–strain responses,Young’s modulus and shear modulus.The model is also implied in investi-gating some important structural parameters such as radial distri-bution function (RDF),atom density,and molecular energy pertinent to G–Ep system.A typical amorphous cross-linked epoxy unit cell contains epoxy and curing agent in the ratio of 12:4[10].During cross-linking process,reactive sites from EPON 862(epox-ide groups)create new bonds with reactive sites from TETA (sites containing NH and NH 2).If they come close enough to each other within range of 4–10Å[12],the cross-linking occurs.Cross-linking process between EPON 862and TETA is non-trivial.The computa-tional cost becomes higher as the number of EPON 862and TETA molecules increases.Hence,Yu and coauthors proposed to use a XENOVIEW [24]with pcff forcefield.Afterwards,an in-house code was developed to replicate this representative epoxy molecule in multiple numbers of times along with graphene sheets to construct graphene–epoxy amorphous unitcells.Graphene sheet is a 2D nanostructure consists of carbon atoms bonded by sp 2hybridized electrons.The carbon atoms are arranged in a hexagonal pattern with the shortest distance of 1.42Åbetween atoms with bond an-gle 120°.Single layer graphene possesses very high mechanical properties.The average Young’s modulus of single layer zigzag graphene sheet with length 20.18nm and width 4.18nm is 1.033TPa [25].In this study graphene sheets with two different sizes were considered.These were defined in terms of aspect ratios AR-LW or AR-LT.AR-LW is length to width ratio and AR-LT is length to thickness ratio.Based on aspect ratio,the graphene sheets are named as Type-a:AR-LW P 5.0,AR-LT P 150and Type-b:AR-LW P 10.0and AR-LT P 480.The graphene sheets with hydrogen terminated edges were embedded in 3D periodic amorphous unit cells for evaluating elastic properties.Molecular model of these two types of graphene sheets were also constructed using XENOVIEW with pcff forcefield.In this study 1%,3%and 5%of graphene by weight was consid-ered in the amorphous unit cell.The initial density of amorphous graphene–epoxy unit cells was kept in the range of 1.0gm/ing initial density,the initial dimension of each unitcell was esti-mated.The number of epoxy monomers was determined in such a way that it ensures expected weight percentage of graphene in the unit cell.Each unitcell consists of one graphene and randomly posi-tioned multiple number of representative epoxy molecules based on a graphene’s concentration.Final configuration of each unitcell was obtained by equilibrating the model using MD.Table 1shows unitcell configurations with relevant graphene aspect ratios and weight percentages.Fig.1schematically describes the develop-ment of amorphous unitcell consisting of single graphene and mul-tiple numbers of representative cross-liked epoxy units.Fig.1.Schematic diagram of developing amorphous model for graphene–epoxy system.R.Rahman,A.Haque /Composites:Part B 54(2013)353–364355spacing is seen to be approximately2Å.The fundamental differ-ence between amorphous and stacked graphene models is the local periodicity of graphene platelets.3.3.Interface modelMolecular model calculates total potential energy of a N-atoms system.This leads to calculating force on each atom as force is neg-ative of gradient of the energy.It is possible to evaluate interaction between a polymer and nanostructure at atomic scale.The interac-tions can be determined in couple of ways.One is by evaluating normal separation force F Cohesive and another is by evaluating shear separation force F Pullout.These forces are calculated from the change in interaction energy between the nanostructure and poly-mer system.Once the nanofiller is moved away from the polymer matrix it experiences reaction forces either F Cohesive or F Pullout based on the direction of nanofiller movement.The system is non-peri-odic along the direction of displacement[23].The interface models as shown in Fig.3were developed in order to study the load trans-fer mechanism between graphene and epoxy matrix.Graphenes with two different lengths(39.36Åand118.08Å)were considered in order to evaluate the effect of aspect ratio.Both normal(mode-I) and shear separations(mode-II)were considered.For normal mode separation,epoxy molecules reside above a single graphene sheet whereas in shear separation,epoxy molecules reside on both side of the graphene sheet.Graphene is free to move in z-directionTable1Fig.2.Schematic diagram of stacked graphene model(SGM).Table2Material configurations of SGM-G–Ep system.Configuration Unit cell dimension(Å)Number of graphene plates Number of representative epoxy moleculesSGM-G–Ep-I a=9.84,b=19.02,c=1056.42146SGM-G–Ep-II a=9.84,b=19.02,c=2116.243(Dispersed)68SGM-G–Ep-III a=9.84,b=19.02,c=3104.213(Agglomerated)68356R.Rahman,A.Haque/Composites:Part B54(2013)353–364and x-direction for normal and shear separations respectively.De-tails about unit cell configurations are provided in Table3.putational detailsMD equilibration was done prior to calculating mechanical properties.In this work three different categories such as amor-phous,stacked graphene and interface models were considered. The following sections describe MD simulation scheme that was considered in each category.All the calculations were done using the open source molecular dynamics code LAMMPS[27].4.1.Amorphous modelsThe initial stable configuration was obtained by minimizing the energy of each system by conjugate gradient method[23]. The average cutoff range for non-bonded interaction was8Å. All systems with type-a graphenes were subject to molecular dy-namic equilibration under NVT(constant number of atoms,tem-perature and volume)condition with Nose–Hoover thermostat for 10,000steps followed by NPT ensemble(constant number of atoms,pressure and temperature)for5000thousand steps at 300K temperature and0.0atm external pressure.All the amor-phous models with type-b graphenes were equilibrated under NVT for30,000steps at300K and NPT for10,000steps at 300K temperature and0.0atm external pressure.Timestep size was0.5–1.0fs.Nose–Hoover barostat was used to add damping in the system[23].Verlet time integration scheme was used throughout the simulation.Once the system is equilibrated,it underwent uniaxial deformation.At this stage,the amorphous systems were subjected to either uniaxial deformation in order to obtain stress–strain response using MD or series of deforma-tions in all directions using MM in order to calculate Young’s modulus and shear modulus.Within1500steps,the unitcells were subjected to0.0001engineering strain at every300steps under NVT ensemble at0.1K.After applying strains at each step, the running averaged stress throughout the unitcell was calcu-lated[27].Timestep size was0.7–1.0fs during deformation.Molecular mechanics(MM)based deformation method requires a series of deformations in xx–yy–zz–xy–yz–xz directions.The velocity components of each atom were reset to zero prior to MM simulation.This was done in order to remove the effect of en-tropy.The equilibrated unitcells were subjected to±10À8strain in all the directions.After each deformation spatially averaged stress throughout the system was calculated.The stiffness matrix compo-nents were calculated using Eq.(3).Fig.4shows typical energy,temperature and pressure profiles with respect to time during MD equilibration process.These data were collected from the model G–Ep-Nc-IV during NVT and NPT based equilibration.Temperature and total energy profiles are ob-tained during NVT runs.It is noticed that,after1500fs the energy as well as temperature become very stable.The temperature is ex-pected to converge approximately at300K as the temperature of the heat bath is300K.And the energy converges to4.0Â104-kcal/mol for this specific system.This confirms that the system was properly equilibrated during NVT runs.According to the third plot in Fig.4the pressure in this system was observed to be stable around0.0atm during NPT runs.4.2.Stacked graphene modelIn the stacked graphene models the energy was minimized using conjugate gradient method followed by NVT based MD runs for5000steps at300K.Timestep size was0.8–1.0fs and the cutoff distance was8Å.The positions and velocities of the atoms were updated using verlet time integration scheme.Once the system is equilibrated,it was subjected to deform in xx–yy–zz directions. Within1000steps,each unit cell was deformed at every100under NVT at0.1K.The amount of applied strain was within the range of 0.0005–0.001.Nose–Hoover thermostat was used.The atoms in the systems were also subjected to damping term in every100fs. After each deformation,the running averaged stress was calculated using Eq.(1)to obtain stress–strain response.4.3.Interface modelsBoth normal and shear separation forces were calculated on a slowly displaced graphene sheet in normal and shear directions as shown in Fig.3.Such displacements lead to mode-I and mode-II separation.Initially,the space between epoxy and graphene sheet was maintained approximately2Å.The cutoff distance was 20Å.For mode-I case,the graphene–epoxy unit cell is non-periodic in z-axis.Similarly,for mode-II case the system was nonperiodic in xy plane.The reaction forces on graphene due to mode-I or mode-II separation were calculated.This leads us to obtain forces vs.dis-placement curve for both mode-I and mode-II cases.The weight percentage of graphene was maintained higher than3%in order to emphasize the effect of graphene on van der Waals interaction between epoxy and graphene.Prior to transverse or longitudinal movements of graphene plate,energy was minimized in all the systems using conjugate gradient method.Energy andforce Fig.3.Mode-I and Mode-II interface model of G–Ep system from epoxy.Table3Unit cell configuration for interface model.Configuration Graphene sheet dimension(lengthÂwidth)(Å)2Aspect ratio Number of carbon atoms in graphene Interaction force type Mode-I-a39.36Â19.02AR-LW P2.06,AR-LT P25.5248NormalMode-I-b118.08Â19.02AR-LW P6.20,AR-LT P76.67766NormalMode-II-a39.36Â19.02AR-LW P2.06,AR-LT P25.5248ShearMode-II-b118.08Â19.02AR-LW P6.20,AR-LT P76.67766ShearPart B54(2013)353–364357tolerance were in the order of10À10.After the minimization,each system was equilibrated under NVT for5000steps with step size 1.0fs.Once the systems are equilibrated,graphene was moved away from the polymer matrix by average translation rate of 0.01Å/fs for0.5–3.0ps in transverse direction(pullout)and 0.001–0.0001Å/fs for1.5ps in longitudinal direction(cohesive). The positions and velocities of the atoms were updated using verlet time integration scheme.5.Results and discussionThefirst part of this section focuses on analyzing radial distri-bution function(RDF),atom density and evolution in molecular en-ergy of different G–Ep systems.This is important in understanding the characteristics of simulated molecular ter the effects of graphene aspect ratio,weight percentage and dispersion on elas-tic modulus of G–Ep nanocomposites are discussed.The interfacial properties such as cohesive force and pull out forces of G–Ep sys-tem are analyzed.Finally,the results obtained from this study are compared with the same determined using micromechanics model,nanoindentation test and coupon test data.5.1.Radial distribution function(RDF)In general,RDF g(r)is a correlation function which relates the pairwise particle(atoms,molecules)density in a system to the dis-tance from a reference point.As a result RDF provides information about the distribution pattern of particles such as graphene atoms and epoxy molecule in G–Ep system.Fig.5shows RDF of any pair of atoms in G–Ep system.The absence of any noticeable sharp peaks in the RDF ensures the amorphous nature of the graph-ene–epoxy system.The highest peak is observed at3.9Åwhich indicates maximum concentration of atoms in the entire system at this pairwise distance.The influence of graphene concentration is seen to be insignificant on RDF for type-a sample.But highest and lowest values of g(r)are seen in type-b G–Ep system with1% and5%graphene concentrations,respectively.G–Ep systems lose any possibility of local order beyond pairwise distance of6Å.5.2.Atom densityIn molecular modeling atom density in the unit cell plays an important role in affecting mechanical properties.In all these unitFig.4.Typical temperature,total energy and pressure plots at different times.Fig.5.RDF of any pair of atoms in graphene–epoxy amorphous system(Left:AR-LT150and Right:AR-LT480).cells,number of epoxy molecules was changed in order to obtain necessary weight percentage of graphene.Thus,atom density in a unit cell is changed with respect to different weight percentage. Fig.6shows atom densities as a function of graphene concentra-tions in the unit cell for both type-a and type-b nanocomposites. The atom density in type-b G–Ep nanocomposites is significantly low for3%and5%graphene systems and corresponding Young’s modulus is also seen to be significantly low as shown in Table4. Highest atom density is observed in unit cells with1%graphene content which also shows comparatively highest Young’s and shear modulus.The RDF for type-b graphene system in Fig.5 showed comparatively weaker pairwise correlation in the G–Ep systems with5%graphene.This is possibly due to lower atom den-sity in G–Ep-Nc-IV and G–Ep-Nc-V unit cells.5.3.Molecular energyThe applied strain causes change in atom positions,velocities and overall molecular structure resulting an increase in overall po-tential energy.In general,potential energy consists of molecular energy(E mol=E Bond+E Angle+E Torsion+E Dihedral+E Cross-terms)and van der Waals energy[27].The potential energy has comparatively larger contribution in total molecular energy than van der Waals energy.The change in molecular energy followed by applied defor-mation indicates the sensitivity of the molecules against applied strain.Fig.7shows molecular energy verses strain plots for G–Ep nanocomposites with graphene concentration1%,3%and5%for both type-a and type-b graphenes.The increase in slope of molec-ular energy clearly explains the deformation in the molecular topology with applied strain.The molecular energy plot is seen to be comparatively steeper and higher for G–Ep with1%graphene which provided higher stiffness.But the change in molecular en-ergy is observed to be very small in G–Ep with5%graphene show-ing comparatively lower modulus.It is to be noted that the amount of molecular energy is also seen to be higher with increased aspect ratio as seen in Fig.7.5.4.Effects of graphene concentrations and aspect ratio on elastic constantsThe MD simulated stress–strain responses of G–Ep nanocom-posites with graphene concentrations(1%,3%and5%)and aspect ratios(AR-LT:150,480,AR-LW:5,10)are shown in Fig.8a.The val-ues of Young’s modulus(E)were determined from the slope of individual curve.In MM method,Young’s modulus,E and shear modulus G,were calculated from Lame’s constants k,l defined by Eq.(3).In Table4,Young’s modulus E and shear modulus G of G–Ep nanocomposites calculated by molecular mechanics(MM) and molecular dynamic(MD)methods are provided.The MM and MD simulation results are then compared with the data gener-ated by Mori–Tanaka micromechanics(MTM)model[17].The ef-fects of graphene weight concentrations and aspect ratios on Young’s modulus and shear modulus of G–Ep nanocomposites are shown in Table4.Finally,these data are compared with neat epoxy resin.In Table4,Young’s modulus and shear modulus of neat epoxy resin(EPON862)are seen to be2.5GPa and0.95GPa, respectively by MM simulation.But the MD simulation shows Young’s modulus of neat epoxy resin equals to 3.42GPa.The Young’s modulus and shear modulus data of G–Ep nanocomposites predicted using MM,MD and MTM simulations are seen to be com-paratively higher than those of neat epoxy resin.The Young’s modulii for different G–Ep systems are seen to be in the range 1.34–4.56GPa by MM and1.77–5.0GPa by MD simulations.It is observed that Young’s modulus predicted by MD is comparatively higher than the same predicted by MM method.This trend is seen for both type-a and type-b samples.These variations are reason-able since the energy associated with atom’s linear momentum is not incorporated in MM simulation.It is seen that modulus of nanocomposites with lower graphene concentration(1%by weight)is comparatively higher than the same with higher concen-tration(5%by weight).This is possibly due to the variation in atom density.The results show comparatively higher E value with decreased aspect ratio in comparison to increased aspect ratio.InFig.6.Atom density in amorphous system(Left:AR-LT150and Right:AR-LT480).Table4Effect of graphene concentrations and aspect ratio on elastic constants.Materialconfiguration Aspect ratio(AR)Weightpercentage ofgraphene(%)Young’s modulus(MM):E(Gpa)Shear modulus(MM):G(Gpa)Young’s modulus from stress–strain(MD)response(GPa)Young’s modulus frommicromechanics(MTM)model(GPa)[17]G–Ep-Nc-I AR-LW P5,AR-LT P150(Type-a)1 4.56 1.73 5.00 2.96G–Ep-Nc-II AR-LW P10,AR-LT P480(Type-b)1 3.45 1.16 4.27 2.63G–Ep-Nc-III AR-LW P5,AR-LT P150(Type-a)3 3.98 1.37 3.98 3.6G–Ep-Nc-IV AR-LW P10,AR-LT P480(Type-b)3 1.160.391 2.04 2.71G–Ep-Nc-V AR-LW P5,AR-LT P150(Type-a)5 2.98 1.07 3.56 4.33 G–Ep-Nc-VI AR-LW P10,AR-LT P480(Type-b)5 1.340.45 1.77 4.69EPON-862Current work 2.50.95 3.42Literature value[12]3.362 1.22 3.362。
半导体微电子专业词汇中英文对照
半导体微电子专业词汇中英文对照Accelerated testing 加速实验Acceptor 受主Acceptor atom 受主原子Accumulation 积累、堆积Accumulating contact 积累接触Accumulation region 积累区Accumulation layer 积累层Acoustic Surface Wave 声表面波Active region 有源区Active component 有源元Active device 有源器件Activation 激活Activation energy 激活能Active region 有源(放大)区A/D conversion 模拟—数字转换Adhesives 粘接剂Admittance 导纳Aging 老化Airborne 空载Allowed band 允带allowance 容限,公差Alloy—junction device合金结器件Aluminum(Aluminum)铝Aluminum – oxide 铝氧化物Aluminum Nitride 氮化铝Aluminum passivation 铝钝化Ambipolar 双极的Ambient temperature 环境温度A M light 振幅调制光,调幅光amplitude limiter 限幅器Amorphous 无定形的,非晶体的Amplifier 功放放大器Analogue(Analog)comparator 模拟比较器Angstrom 埃Anneal 退火Anisotropic 各向异性的Anode 阳极Antenna 天线Aperture 孔径Arsenide (As)砷Array 阵列Atomic 原子的Atom Clock 原子钟Attenuation 衰减Audio 声频Auger 俄歇Automatic 自动的Automotive 汽车的Availability 实用性Avalanche 雪崩Avalanche breakdown 雪崩击穿Avalanche excitation雪崩激发Background carrier 本底载流子Background doping 本底掺杂Backward 反向Backward bias 反向偏置Ball bond 球形键合Band 能带Band gap 能带间隙Bandwidth 带宽Bar 巴条发光条Barrier 势垒Barrier layer 势垒层Barrier width 势垒宽度Base 基极Base contact 基区接触Base stretching 基区扩展效应Base transit time 基区渡越时间Base transport efficiency基区输运系数Base—width modulation基区宽度调制Batch 批次Battery 电池Beam 束光束电子束Bench 工作台Bias 偏置Bilateral switch 双向开关Binary code 二进制代码Binary compound semiconductor 二元化合物半导体Bipolar 双极性的Bipolar Junction Transistor (BJT)双极晶体管Bit 位比特Blocking band 阻带Body - centered 体心立方Body—centred cubic structure 体立心结构Boltzmann 波尔兹曼Bond 键、键合Bonding electron 价电子Bonding pad 键合点Boron 硼Borosilicate glass 硼硅玻璃Bottom—up 由下而上的Boundary condition 边界条件Bound electron 束缚电子Bragg effect 布拉格效应Breadboard 模拟板、实验板Break down 击穿Break over 转折Brillouin 布里渊FBrillouin zone 布里渊区Buffer 缓冲器Built—in 内建的Build-in electric field 内建电场Bulk 体/体内Bulk absorption 体吸收Bulk generation 体产生Bulk recombination 体复合Burn—in 老化Burn out 烧毁Buried channel 埋沟Buried diffusion region 隐埋扩散区Bus 总线Calibration 校准,检定,定标、刻度,分度Capacitance 电容Capture cross section 俘获截面Capture carrier 俘获载流子Carbon dioxide (CO2)二氧化碳Carrier 载流子、载波Carry bit 进位位Cascade 级联Case 管壳Cathode 阴极Cavity 腔体Center 中心Ceramic 陶瓷(的)Channel 沟道Channel breakdown 沟道击穿Channel current 沟道电流Channel doping 沟道掺杂Channel shortening 沟道缩短Channel width 沟道宽度Characteristic impedance 特征阻抗Charge 电荷、充电Charge-compensation effects 电荷补偿效应Charge conservation 电荷守恒Charge drive/exchange/sharing/transfer/storage 电荷驱动/交换/共享/转移/存储Chemical etching 化学腐蚀法Chemically-Polish 化学抛光Chemically-Mechanically Polish (CMP)化学机械抛光Chemical vapor deposition (cvd)化学汽相淀积Chip 芯片Chip yield 芯片成品率Circuit 电路Clamped 箝位Clamping diode 箝位二极管Cleavage plane 解理面Clean 清洗Clock rate 时钟频率Clock generator 时钟发生器Clock flip—flop 时钟触发器Close—loop gain 闭环增益Coating 涂覆涂层Coefficient of thermal expansion 热膨胀系数Coherency 相干性Collector 集电极Collision 碰撞Compensated OP-AMP 补偿运放Common-base/collector/emitter connection 共基极/集电极/发射极连接Common—gate/drain/source connection 共栅/漏/源连接Common—mode gain 共模增益Common-mode input 共模输入Common—mode rejection ratio (CMRR) 共模抑制比Communication 通信Compact 致密的Compatibility 兼容性Compensation 补偿Compensated impurities 补偿杂质Compensated semiconductor 补偿半导体Complementary Darlington circuit 互补达林顿电路Complementary Metal—Oxide-SemiconductorField—Effect-Transistor(CMOS) 互补金属氧化物半导体场效应晶体管Computer-aided design (CAD)/test(CAT)/manufacture(CAM) 计算机辅助设计/ 测试/制造Component 元件Compound Semiconductor 化合物半导体Conductance 电导Conduction band (edge) 导带(底)Conduction level/state 导带态Conductor 导体Conductivity 电导率Configuration 结构Conlomb 库仑Constants 物理常数Constant energy surface 等能面Constant-source diffusion恒定源扩散Contact 接触Continuous wave 连续波Continuity equation 连续性方程Contact hole 接触孔Contact potential 接触电势Controlled 受控的Converter 转换器Conveyer 传输器Cooling 冷却Copper interconnection system 铜互连系统Corrosion 腐蚀Coupling 耦合Covalent 共阶的Crossover 交叉Critical 临界的Cross-section 横断面Crucible坩埚Cryogenic cooling system 冷却系统Crystal defect/face/orientation/lattice 晶体缺陷/晶面/晶向/晶格Cubic crystal system 立方晶系Current density 电流密度Curvature 曲率Current drift/drive/sharing 电流漂移/驱动/共享Current Sense 电流取样Curve 曲线Custom integrated circuit 定制集成电路Cut off 截止Cylindrical 柱面的Czochralshicrystal 直立单晶Czochralski technique 切克劳斯基技术(Cz法直拉晶体J))Dangling bonds 悬挂键Dark current 暗电流Dead time 空载时间Decade 十进制Decibel (dB)分贝Decode 解码Deep acceptor level 深受主能级Deep donor level 深施主能级Deep energy level 深能级Deep impurity level 深度杂质能级Deep trap 深陷阱Defeat 缺陷Degenerate semiconductor 简并半导体Degeneracy 简并度Degradation 退化Degree Celsius(centigrade)/Kelvin 摄氏/开氏温度Delay 延迟Density 密度Density of states 态密度Depletion 耗尽Depletion approximation 耗尽近似Depletion contact 耗尽接触Depletion depth 耗尽深度Depletion effect 耗尽效应Depletion layer 耗尽层Depletion MOS 耗尽MOS Depletion region 耗尽区Deposited film 淀积薄膜Deposition process 淀积工艺Design rules 设计规则Detector 探测器Developer 显影剂Diamond 金刚石Die 芯片(复数dice)Diode 二极管Dielectric Constant 介电常数Dielectric isolation 介质隔离Difference-mode input 差模输入Differential amplifier 差分放大器Differential capacitance 微分电容Diffusion 扩散Diffusion coefficient 扩散系数Diffusion constant 扩散常数Diffusivity 扩散率Diffusion capacitance/barrier/current/furnace 扩散电容/势垒/电流/炉Digital circuit 数字电路Dimension (1)尺寸(2)量钢(3)维,度Diode 二极管Dipole domain 偶极畴Dipole layer 偶极层Direct-coupling 直接耦合Direct-gap semiconductor 直接带隙半导体Direct transition 直接跃迁Directional antenna 定向天线Discharge 放电Discrete component 分立元件Disorder 无序的Display 显示器Dissipation 耗散Dissolution 溶解Distributed capacitance 分布电容Distributed model 分布模型Displacement 位移Dislocation 位错Domain 畴Donor 施主Donor exhaustion 施主耗尽Dopant 掺杂剂Doped semiconductor 掺杂半导体Doping concentration 掺杂浓度Dose 剂量Double-diffusive MOS(DMOS)双扩散MOS Drift 漂移Drift field 漂移电场Drift mobility 迁移率Dry etching 干法腐蚀Dry/wet oxidation 干/湿法氧化Dose 剂量Dual—polarization 双偏振,双极化Duty cycle 工作周期Dual-in-line package (DIP)双列直插式封装Dynamics 动态Dynamic characteristics 动态属性Dynamic impedance 动态阻抗Early effect 厄利效应Early failure 早期失效Effect 效应Effective mass 有效质量Electric Erase Programmable Read Only Memory(E2PROM)电可擦除只读存储器Electrode 电极Electromigration 电迁移Electron affinity 电子亲和势Electron—beam 电子束Electroluminescence 电致发光Electron gas 电子气Electron trapping center 电子俘获中心Electron Volt (eV) 电子伏Electro-optical 光电的Electrostatic 静电的Element 元素/元件/配件Elemental semiconductor 元素半导体Ellipse 椭圆Emitter 发射极Emitter-coupled logic 发射极耦合逻辑Emitter—coupled pair 发射极耦合对Emitter follower 射随器Empty band 空带Emitter crowding effect 发射极集边(拥挤)效应Endurance test =life test 寿命测试Energy state 能态Energy momentum diagram 能量—动量(E—K)图Enhancement mode 增强型模式Enhancement MOS 增强性MOSEnteric (低)共溶的Environmental test 环境测试Epitaxial 外延的Epitaxial layer 外延层Epitaxial slice 外延片Epoxy 环氧的Equivalent circuit 等效电路Equilibrium majority /minority carriers 平衡多数/少数载流子Equipment 设备Erasable Programmable ROM (EPROM)可搽取(编程)存储器Erbium laser 掺铒激光器Error function complement 余误差函数Etch 刻蚀Etchant 刻蚀剂Etching mask 抗蚀剂掩模Excess carrier 过剩载流子Excitation energy 激发能Excited state 激发态Exciton 激子Exponential 指数的Extrapolation 外推法Extrinsic 非本征的Extrinsic semiconductor 杂质半导体Fabry-Perot amplifier 法布里-珀罗放大器Face — centered 面心立方Fall time 下降时间Fan-in 扇入Fan—out 扇出Fast recovery 快恢复Fast surface states 快表面态Feedback 反馈Fermi level 费米能级Femi potential 费米势Fiber optic 光纤Field effect transistor 场效应晶体管Field oxide 场氧化层Figure of merit 品质因数Filter 滤波器Filled band 满带Film 薄膜Fine pitch 细节距Flash memory 闪存存储器Flat band 平带Flat pack 扁平封装Flatness 平整度Flexible 柔性的Flicker noise 闪烁(变)噪声Flip—chip 倒装芯片Flip- flop toggle 触发器翻转Floating gate 浮栅Fluoride etch 氟化氢刻蚀Focal plane 焦平面Forbidden band 禁带Formulation 列式,表达Forward bias 正向偏置Forward blocking /conducting 正向阻断/导通Free electron 自由电子Frequency deviation noise 频率漂移噪声Frequency response 频率响应Function 函数Gain 增益Gallium-Arsenide(GaAs) 砷化镓Gallium Nitride 氮化镓Gate 门、栅、控制极Gate oxide 栅氧化层Gate width 栅宽Gauss(ian)高斯Gaussian distribution profile 高斯掺杂分布Generation-recombination 产生-复合Geometries 几何尺寸Germanium(Ge) 锗Gold 金Graded 缓变的Graded (gradual)channel 缓变沟道Graded junction 缓变结Grain 晶粒Gradient 梯度Graphene 石墨烯Grating 光栅Green laser 绿光激光器Ground 接地Grown junction 生长结Guard ring 保护环Guide wave 导波波导Gunn — effect 狄氏效应Gyroscope 陀螺仪Hardened device 辐射加固器件Harmonics 谐波Heat diffusion 热扩散Heat sink 散热器、热沉Heavy/light hole band 重/轻空穴带Hell - effect 霍尔效应Hertz 赫兹Heterojunction 异质结Heterojunction structure 异质结结构Heterojunction Bipolar Transistor(HBT)异质结双极型晶体High field property 高场特性High-performance MOS(H-MOS)高性能MOS器件High power 大功率Hole 空穴Homojunction 同质结Horizontal epitaxial reactor 卧式外延反应器Hot carrier 热载流子Hybrid integration 混合集成Illumination (1)照明(2)照明学Image - force 镜象力Impact ionization 碰撞电离Impedance 阻抗Imperfect structure 不完整结构Implantation dose 注入剂量Implanted ion 注入离子Impurity 杂质Impurity scattering 杂志散射Inch 英寸Incremental resistance 电阻增量(微分电阻)In-contact mask 接触式掩模Index of refraction 折射率Indium 铟Indium tin oxide (ITO) 铟锡氧化物Inductance 电感Induced channel 感应沟道Infrared 红外的Injection 注入Input power 输入功率Insertion loss 插入损耗Insulator 绝缘体Insulated Gate FET(IGFET) 绝缘栅FET Integrated injection logic 集成注入逻辑Integration 集成、积分Integrated Circuit 集成电路Interconnection 互连Interconnection time delay 互连延时Interdigitated structure 交互式结构Interface 界面Interference 干涉International system of unions 国际单位制Internally scattering 谷间散射Interpolation 内插法Intrinsic 本征的Intrinsic semiconductor 本征半导体Inverse operation 反向工作Inversion 反型Inverter 倒相器Ion 离子Ion beam 离子束Ion etching 离子刻蚀Ion implantation 离子注入Ionization 电离Ionization energy 电离能Irradiation 辐照Isolation land 隔离岛Isotropic 各向同性Junction FET(JFET)结型场效应管Junction isolation 结隔离Junction spacing 结间距Junction side-wall 结侧壁Laser 激光器Laser diode 激光二极管Latch up 闭锁Lateral 横向的Lattice 晶格Layout 版图Lattice binding/cell/constant/defect/distortion 晶格结合力/晶胞/晶格/晶格常熟/晶格缺陷/晶格畸变Lead 铅Leakage current (泄)漏电流Life time 寿命linearity 线性度Linked bond 共价键Liquid Nitrogen 液氮Liquid-phase epitaxial growth technique 液相外延生长技术Lithography 光刻Light Emitting Diode(LED) 发光二极管Linearity 线性化Liquid 液体Lock in 锁定Longitudinal 纵向的Long life 长寿命Lumped model 集总模型Magnetic 磁的Majority carrier 多数载流子Mask 掩膜板,光刻板Mask level 掩模序号Mask set 掩模组Mass — action law 质量守恒定律Master—slave D flip—flop 主从D 触发器Matching 匹配Material 材料Maxwell 麦克斯韦Mean free path 平均自由程Mean time before failure (MTBF) 平均工作时间Mechanical 机械的Membrane (1)薄腊,膜片(2)隔膜Megeto - resistance 磁阻Mesa 台面MESFET-Metal Semiconductor 金属半导体FET Metalorganic Chemical Vapor Deposition MOCVD 金属氧化物化学汽相淀积Metallization 金属化Metal oxide semiconductor (MOS)金属氧化物半导体MeV 兆电子伏Microelectronic technique 微电子技术Microelectronics 微电子学Microelectromechanical System (MEMS) 微电子机械系统Microwave 微波Millimeterwave 毫米波Minority carrier 少数载流子Misfit 失配Mismatching 失配Mobility 迁移率Module 模块Modulate 调制Molecular crystal 分子晶体Monolithic IC 单片MOSFET 金属氧化物半导体场效应晶体管Mount 安装Multiplication 倍增Modulator 调制Multi-chip IC 多芯片ICMulti—chip module(MCM) 多芯片模块Multilayer 多层Multiplication coefficient 倍增因子Multiplexer 复用器Multiplier 倍增器Naked chip 未封装的芯片(裸片) Nanometer 纳米Nanotechnology 纳米技术Negative feedback 负反馈Negative resistance 负阻Negative—temperature—coefficient负温度系数Nesting 套刻Noise figure 噪声系数Nonequilibrium 非平衡Nonvolatile 非挥发(易失)性Normally off/on 常闭/开Nuclear 核Numerical analysis 数值分析Occupied band 满带Offset 偏移、失调On standby 待命状态Ohmic contact 欧姆接触Open circuit 开路Operating point 工作点Operating bias 工作偏置Operational amplifier (OPAMP)运算放大器Optical photon 光子Optical quenching 光猝灭Optical transition 光跃迁Optical-coupled isolator 光耦合隔离器Organic semiconductor 有机半导体Orientation 晶向、定向Oscillator 振荡器Outline 外形Out—of—contact mask 非接触式掩模Output characteristic 输出特性Output power 输出功率Output voltage swing 输出电压摆幅Overcompensation 过补偿Over-current protection 过流保护Over shoot 过冲Over—voltage protection 过压保护Overlap 交迭Overload 过载Oscillator 振荡器Oxide 氧化物Oxidation 氧化Oxide passivation 氧化层钝化Package 封装Pad 压焊点Parameter 参数Parasitic effect 寄生效应Parasitic oscillation 寄生振荡Pass band 通带Passivation 钝化Passive component 无源元件Passive device 无源器件Passive surface 钝化界面Parasitic transistor 寄生晶体管Pattern 图形Payload 有效载荷Peak-point voltage 峰点电压Peak voltage 峰值电压Permanent—storage circuit 永久存储电路Period 周期Permeable — base 可渗透基区Phase—lock loop 锁相环Phase drift 相移Phonon spectra 声子谱Photo conduction 光电导Photo diode 光电二极管Photoelectric cell 光电池Photoelectric effect 光电效应Photonic devices 光子器件Photolithographic process 光刻工艺Photoluminescence 光致发光Photo resist (光敏)抗腐蚀剂Photo mask 光掩模Piezoelectric effect 压电效应Pin 管脚Pinch off 夹断Pinning of Fermi level 费米能级的钉扎(效应)Planar process 平面工艺Planar transistor 平面晶体管Plasma 等离子体Plane 平面的Plasma 等离子体Plate 板电路板P—N junction pn结Poisson equation 泊松方程Point contact 点接触Polarity 极性Polycrystal 多晶Polymer semiconductor 聚合物半导体Poly—silicon 多晶硅Positive 正的Potential (电)势Potential barrier 势垒Potential well 势阱Power electronic devices电力电子器件Power dissipation 功耗Power transistor 功率晶体管Preamplifier 前置放大器Primary flat 主平面Print-circuit board(PCB)印制电路板Probability 几率Probe 探针Procedure 工艺Process 工艺Projector 投影仪Propagation delay 传输延时Proton 质子Proximity effect 邻近效应Pseudopotential method 赝势法Pump 泵浦Punch through 穿通Pulse triggering/modulating 脉冲触发/调制Pulse Widen Modulator(PWM)脉冲宽度调制Punchthrough 穿通Push—pull stage 推挽级Q Q值Quality factor 品质因子Quantization 量子化Quantum 量子Quantum efficiency 量子效应Quantum mechanics 量子力学Quasi – Fermi-level 准费米能级Quartz 石英Radar 雷达Radiation conductivity 辐射电导率Radiation damage 辐射损伤Radiation flux density 辐射通量密度Radiation hardening 辐射加固Radiation protection 辐射保护Radiative — recombination 辐照复合Radio 无线电射电射频Radio—frequency RF 射频Raman 拉曼Random 随机Range 测距Radio 比率系数Ray 射线Reactive sputtering source 反应溅射源Real time 实时Receiver 接收机Recombination 复合Recovery diode 恢复二极管Record 记录Recovery time 恢复时间Rectifier 整流器(管)Rectifying contact 整流接触Red light 红光Reference 基准点基准参考点Refractive index 折射率Register 寄存器Regulate 控制调整Relative 相对的Relaxation 驰豫Relaxation lifetime 驰豫时间Relay 中继Reliability 可靠性Remote 远程Repeatability 可重复性Reproduction 重复制造Residual current 剩余电流Resonance 谐振Resin 树脂Resistance 电阻Resistor 电阻器Resistivity 电阻率Regulator 稳压管(器) Resolution 分辨率Response time 响应时间Return signal 回波信号Reverse 反向的Reverse bias 反向偏置Ribbon 光纤带Ridge waveguide 脊形波导Ring laser 环形激光器Rotary wave 旋转波Run 运行Sampling circuit 取样电路Sapphire 蓝宝石(Al2O3)Satellite valley 卫星谷Saturated current range 电流饱和区Scan 扫描Scaled down 按比例缩小Scattering 散射Schematic layout 示意图,简图Schottky 肖特基Schottky barrier 肖特基势垒Schottky contact 肖特基接触Screen 筛选Scribing grid 划片格Secondary flat 次平面Seed crystal 籽晶Segregation 分凝Selectivity 选择性Self aligned 自对准的Self diffusion 自扩散Semiconductor 半导体Semiconductor laser半导体激光器Semiconductor—controlled rectifier 半导体可控硅Sensitivity 灵敏度Sensor 传感器Serial 串行/串联Series inductance 串联电感Settle time 建立时间Sheet resistance 薄层电阻Shaping 成型Shield 屏蔽Shifter 移相器Short circuit 短路Shot noise 散粒噪声Shunt 分流Sidewall capacitance 边墙电容Signal 信号Silica glass 石英玻璃Silicon 硅Silicon carbide 碳化硅Silicon dioxide (SiO2)二氧化硅Silicon Nitride(Si3N4) 氮化硅Silicon On Insulator 绝缘体上硅Silver whiskers 银须Simple cubic 简立方Simulation 模拟Single crystal 单晶Sink 热沉Sinter 烧结Skin effect 趋肤效应Slot 槽隙Slow wave 慢波Smooth 光滑的Subthreshold 亚阈值的Solar battery/cell 太阳能电池Solid circuit 固体电路Solid Solubility 固溶度Solution 溶液Sonband 子带Source 源极Source follower 源随器Space charge 空间电荷Space Craft 宇宙飞行器Spacing 间距Specific heat(PT) 比热Spectral 光谱Spectrum 光谱(复数) Speed—power product 速度功耗乘积Spherical 球面的Spin 自旋Split 分裂Spontaneous emission 自发发射Spot 斑点Spray 喷涂Spreading resistance 扩展电阻Sputter 溅射Square root 平方根Stability 稳定性Stacking fault 层错Standard 标准的Standing wave 驻波State—of-the—art 最新技术Static characteristic 静态特性Statistical analysis 统计分析Steady state 稳态Step motor 步进式电动机Stimulated emission 受激发射Stimulated recombination 受激复合Stopband 阻带Storage time 存储时间Stress 应力Stripline 带状线Subband 次能带Sublimation 升华Submillimeter 亚毫米波Substrate 衬底Substitutional 替位式的Superconductor 超导(电)体Superlattice 超晶格Supply 电源Surface mound表面安装Surge capacity 浪涌能力Switching time 开关时间Switch 开关Synchronizer 同步器,同步装置Synthetic—aperture 合成孔径System 系统Technical 技术的,工艺的Telecommunication 远距通信,电信Telescope 望远镜Terahertz 太赫兹Terminal 终端Template 模板Temperature 温度Tensor 张量Test 测试试验Thermal activation 热激发Thermal conductivity 热导率Thermal equilibrium 热平衡Thermal Oxidation 热氧化Thermal resistance 热阻Thermal sink 热沉Thermal velocity 热运动Thick— film technique 厚膜技术Thin— film hybrid IC 薄膜混合集成电路Thin-Film Transistor(TFT) 薄膜晶体Three dimension 三维Threshold 阈值Through Silicon Via 硅通孔Thyistor 晶闸管Time resolution 时间分辨率Tolerance 公差T/R module 发射/接收模块Transconductance 跨导Transfer characteristic 转移特性Transfer electron 转移电子Transfer function 传输函数Transient 瞬态的Transistor aging(stress) 晶体管老化Transit time 渡越时间Transition 跃迁Transition-metal silica 过度金属硅化物Transition probability 跃迁几率Transition region 过渡区Transmissivity 透射率Transmitter 发射机Transceiver 收发机Transport 输运Transverse 横向的Trap 陷阱Trapping 俘获Trapped charge 陷阱电荷Travelling wave 行波Trigger 触发Trim 调配调整Triple diffusion 三重扩散Tolerance 容差Tube 管子电子管Tuner 调节器Tunnel(ing) 隧道(穿)Tunnel current 隧道电流Turn - off time 关断时间Ultraviolet 紫外的Ultrabright 超亮的Ultrasonic 超声的Underfilling 下填充Undoped 无掺杂Unijunction 单结的Unipolar 单极的Unit cell 原(元)胞Unity— gain frequency 单位增益频率Unilateral-switch 单向开关Vacancy 空位Vacuum 真空Valence(value) band 价带Value band edge 价带顶Valence bond 价键Vapour phase 汽相Varactor 变容管Variable 可变的Vector 矢量Vertical 垂直的Vibration 振动Visible light 可见光Voltage 电压Volt 伏特Wafer 晶片Watt 瓦Wave guide 波导Wavelength 波长Wave—particle duality 波粒二相性Wear-out 烧毁Wetting 浸润Wideband 宽禁带Wire 引线Wire routing 布线Work function 功函数Worst—case device 最坏情况器件X-ray X射线Yield 成品率Zinc 锌。
纳米技术用在鞋子上英语作文
纳米技术用在鞋子上英语作文英文回答:Nanotechnology has revolutionized various industries, including the footwear sector. By manipulating materials at the atomic and molecular level, scientists have developed innovative applications that enhance the performance, comfort, and sustainability of shoes.Enhanced Performance:Carbon nanotubes provide exceptional strength and durability, making shoes more resistant to wear and tear, especially in high-impact activities like running and basketball.Graphene-based materials offer superior electrical conductivity, enabling the integration of sensors and electronics into shoes for tracking fitness data and providing real-time feedback.Improved Comfort:Nanofibers create breathable and moisture-wicking fabrics, ensuring that feet stay dry and comfortable during extended periods of wear.Shape-memory polymers adjust to the wearer's foot shape, providing custom-like fits for enhanced stability and reduced pressure points.Antimicrobial coatings inhibit the growth of odor-causing bacteria, maintaining freshness and hygiene.Increased Sustainability:Biodegradable materials like cellulose nanocrystals and chitosan minimize the environmental impact of shoe production.Water-repellent nanotechnologies prevent stains and spills, extending the longevity of shoes and reducing theneed for harmful cleaning chemicals.Recycled materials, such as post-consumer plastic fibers, contribute to waste reduction and circularity inthe footwear industry.Specific Applications:Athletic shoes: Enhanced cushioning, energy return,and tracking capabilities for improved performance.Casual shoes: Moisture management, antimicrobial properties, and stain resistance for everyday comfort.Safety shoes: Increased protection against impact, punctures, and electrical hazards with advanced materials.Medical shoes: Custom fits, pressure-relieving designs, and antimicrobial protection for individuals with foot conditions.Nanotechnology continues to transform the footwearindustry, offering a wide range of benefits. By harnessing the power of nanoscale engineering, footwear designers can create shoes that are stronger, more comfortable, and more sustainable than ever before.中文回答:纳米技术已经彻底改变了各个行业,其中包括制鞋业。
柔性电极材料的国内外研究进展
文章编号:1001-9731(2021)02-02039-11柔性电极材料的国内外研究进展*武畏志鹏,邹华,宁南英,田明(北京化工大学材料科学与工程学院,北京100029)摘要:近年来,随着柔性可穿戴设备㊁触觉反馈设备㊁能量收集器等领域的快速发展,介电弹性体(D E)及超级电容器(S C)因能够提共高能量㊁高储能效率以及可小型化而备受关注,有着非常广泛的应用㊂由于柔性电极的性能直接影响D E的发电和驱动效率以及S C的储能效率,因而其是D E和S C的重要组成部分㊂基于柔性电极材料的不同类型,本文首先对碳电极㊁金属电极㊁复合型电极等几种典型的电极材料及其性能进行了详细介绍㊂然后,对电极的制备方法进行了阐述㊂接着,总结了由柔性电极材料组装的D E和S C在各领域的应用,并对电极材料所面临的问题及挑战进行了分析㊂最后,对柔性电极材料的发展趋势进行了展望㊂关键词:介电弹性体;超级电容器;碳电极;金属电极;复合电极中图分类号: T B34;T B333;T B324文献标识码:A D O I:10.3969/j.i s s n.1001-9731.2021.02.0060引言电极材料属于一种导体材料,用作固体㊁气体或电解质溶液等导电介质中输入或输出电流的两个端㊂柔性电极一般用在介电弹性体或超级电容器中,所以它们必须在保持导电性的同时具备轻薄㊁大形变㊁高可拉伸性的特点,能够进行数百万次的循环㊂在介电弹性体及超级电容器中,由于电极材料是与橡胶或电解质配合使用,需要通过形变输出或储存电能㊂因而,为了提高能量的输出,电极材料必须足够柔顺,降低对电介质刚度的影响㊂另外,与普通电极不同的是,柔性电极能够在电介质基体上形成精确的图案,使电荷可以在规定的位置工作,从而允许在单个膜上具有多个电极和明确定义的独立有源区域的复杂结构㊂P e l r i n e 等[1]人说过: 理想电极具有高导电性,完全柔顺且可图案化,并且相对于基体厚度可以更薄㊂ 基于柔性电极材料的不同类型,我们将其分为碳电极㊁金属电极㊁复合型电极三类㊂1碳电极1.1炭黑电极导电炭黑是一种有着较低电导率的半导体材料,将其分散到特殊制品中,可使制品起到导电或防静电的作用㊂其特点为粒径小,比表面积大且粗糙,结构度高,表面洁净(化合物少)等㊂采用刷涂或喷涂的方式将炭黑粉末通过物理作用黏附在D E基体上是早期介电弹性体致动器(D E A)用柔性电极的主要材料㊂由于炭黑粒子间没有强的相互作用力,所以导电炭黑的主要优点是其对D E基体的刚度不产生影响㊂但是炭黑电极也有以下两个缺点影响其导电性:一是由于炭黑粒子间相互作用弱,所以在大应变下电极会产生断裂带,切断了电荷传输路径;二是在反复拉伸-回复过程中,炭黑粉末会产生脱落㊂P e l r i n e等[1]人通过喷涂的方式将溶解于有机溶剂中的碳粉喷洒在预应变为32%的D E基体上㊂待溶液挥发后,碳粉附着在D E基体上,制成介电弹性体致动器(D E A)㊂研究表明,在300V电压下D E A的形变量达到20%㊂张治安等[2]人利用油压机,将高比表面积㊁高导电性的工业炭黑固定到集流体上,制成电极片㊂研究结果表明使用纯炭黑作为柔性电极材料的比容量大约为60~70F/g,相对较低㊂1.2碳纳米管电极碳纳米管是一种具有高机械强度㊁良好导电性的一维纳米材料,可应用于高强度复合材料㊁信息存储㊁纳米电子器件等㊂由于碳纳米管有着大长径比㊁高比表面积以及良好的导电性等特点,使得其作为柔性电极材料在D E G和D E A上有着广泛的应用㊂张东智等[3]人将C N T用静电自组装的方法粘附在D E基体上,制备出了28μm后的D E G㊂与手套结合,制成了手套式发电机,如图1所示㊂研究表明,当手指弯曲90ʎC,此时为可输出的最大电压,大约为3.7V,如图2所示㊂接着该团队又制备出鞋垫式发电机,通过足部运动使介电弹性体产生压缩-回复的变化㊂研究表明, D E的相对介电常数为12,可输出的最大电压为1V,最大电容为1.37n F㊂93020武畏志鹏等:柔性电极材料的国内外研究进展*收到初稿日期:2020-08-18收到修改稿日期:2020-09-30通讯作者:邹华,E-m a i l:1252528362@q q.c o m 作者简介:武畏志鹏(1995 ),男,山东济南人,硕士,师承邹华副教授,从事导电纳米复合材料研究㊂图1 手指弯曲度检测示意图F i g 1I l l u s t r a t i o no f f i n g e r -b e n d i n g te st 图2 不同弯曲角度下E A P 薄膜的输出电压-时间曲线F i g 2C u r v e so fo u t p u tv o l t a ge -t i m ef o rE A Pf i l -m u n d e r d i f f e r e n t b e n d i ng a n gl e s 近年来研究人员对C N T 不断的深入研究,使得其也迅速成为超级电容器领域的研究热点㊂D u 等[4]以镍片做衬底,使用C N T 分散液将C N T 均匀分散,制备出了排列整齐的C N T 电极㊂研究表明,其质量比容量为20F /g ,功率密度为30k W /k g㊂Z h a o 等[5]采用喷涂的方法将多壁碳纳米(MW C N T )管固定到钢网上,如图3所示,制备出了质量比容量为155F /g 的碳纳米管电极㊂经过100次弯折循环后,MW C N T 没有脱落,表现出优异的循环稳定性㊂图3 通过静电相互作用保持的P E I /C N T 膜排列示意图F i g 3S c h e m a t i co f t h eP E I /C N Tf i l m a r r a n ge m e n t h e l db y el e c t r o s t a t i c i n t e r a c t i o n 1.3 石墨烯电极石墨烯具有导电导热性好㊁比表面积大㊁循环寿命长,机械强度高等特点,并且在水性电解质中有着优异的耐腐蚀性,使得其在柔性电极方面运用广泛㊂C h e n 等[6]人采用真空抽滤的方法制备了超薄透明的石墨烯薄膜(厚度为25~100n m ),测试结果表明,薄膜的电导率在800~1000s /m ㊂将其应用到超级电容器时,25n m 的薄膜比电容为135F /g,功率密度为7.2k W /k g,透光率70%㊂随着厚度的增加,性能降低㊂H o l l o w a y 等[7]人使用射频等离子体增强化学气相沉积工艺在加热的镍基板上直接生长了垂直取向的石墨烯纳米片,如图4所示㊂测试结果表明,其比表面积约为1100m 2/g ,120H z 下比电容为175F /c m 2㊂W a n g等[8]采用氧化还原法得到了单层石墨烯,验证了单层石墨烯作为电极材料的优势㊂研究表明,在电解质水溶液中以28.5W h /k g 的能量密度获得的最大比电容为205F /g ,功率密度为10k W /k g ㊂并且经过1200次循环测试后保留了约90%的比电容,显示出优异的循环稳定性㊂图4 不同生长时间下垂直取向石墨烯纳米片的S E M照片F i g 4S E M i m a g e s o f v e r t i c a l l y a l i g n e d g r a ph e n e n a n o s h e e t s u n d e r d i f f e r e n t g r o w t h t i m e s1.4 碳纤维电极由于碳纤维有着极高的纵横比,使得其有着良好的电子传输路径,导电性优异㊂并且碳纤维还有着高度可修饰的纳米结构㊁良好的循环使用寿命等特点㊂近年来,以碳纤维作为柔性电极也成为了超级电容器领域的研究热点㊂Z HO U 等[9]通过对碳纤维进行酸氧化处理,制备出了多孔核-壳碳纤维㊂研究表明,0.5A /g 电流密度下,比电容为98F /g ㊂在1A /g 的电流密度下进行3000次充放电循环后,电容保持率约为96%㊂表现出出色的电化学性能和机械性能以及良好的循环稳定性㊂L i u 等[10]用生物型棉纤维制备出碳纤维,通过一定程度的煅烧来塑造多孔微管结构,作为电极材料㊂研究表明,其比表面积约为584.49m 2/g ㊂在0.3A /g 的电路密度下,比容量约为221.72F /g ,经过两次6000次循环后,电容的损失率仅有4.6%㊂2 金属电极虽然金属材料作为电极有着优良的导电性,但其也有两个非常明显的缺点:一是金属的杨氏非常高,通常高于介电弹性体几个数量级,会增加基体的刚度㊂40202021年第2期(52)卷R o s s e t 等[11]人通过研究表明,在30.6μm 的硅橡胶上溅射8n m 的金层,使得基体的模量由最初的0.77M P a 增加到了4.2M P a ,增长率达到440%㊂二是金属的弹性极限在2%~3%,若超过该极限金属将会破裂,阻碍电子的传输路径,影响导电性㊂为提高金属的柔韧性,许多研究人员进行了广泛的探索㊂目前常用的方法主要有三种:(1)改变金属电极的形貌来提高柔韧性,如褶皱电极㊁波纹电极等;(2)将金属做到纳米级尺度;(3)使用液态金属㊂L a c o u r 等[12]人将A u 沉积到因加热而膨胀的硅橡胶基体上㊂然后将硅橡胶冷却至室温,使其恢复原状,这时硅橡胶表面产生褶皱金属,如图5(a)所示㊂研究表明,在23%的应变下A u 仍具有导电性,此时已远远超过了A u 的屈服应变㊂接着该团队在10%~20%预拉伸的硅橡胶基体上沉积厚度为25n m 的A u 电极,撤去外力后基体恢复原状产生褶皱金属㊂研究表明,A u 电极最大可拉伸至28%仍保持导电性,如图5(b )所示㊂B e n s l i m a n e 等[13]人将橡胶放在具有正弦波纹轮廓的模具上硫化,制备具有波纹形状的弹性体,并在其上沉积A g ㊂研究表明,A g 电极最大可拉伸至33%仍保持导电性㊂图5 (a )15%预拉伸释放后的金表面波的三维轮廓;(b )机械循环过程中的电阻介于0%和15%之间F i g 5T h r e e -d i m e n s i o n a l pr o f i l e o f aA us u r f a c ew a v ea f t e r r e l e a s e f r o m15%p r e s t r e t c ha n de l e c t r i c a l r e -s i s t a n c e d u r i n g m e c h a n i c a l c y c l i n g be t w e e n0%a n d15%s t r a i n 纳米材料与传统材料不同的是,纳米材料通常具有表面与界面效应㊁小尺寸效应㊁量子尺寸效应㊁宏观量子隧道效应等特性,因而纳米材料具有独特的光学㊁电学㊁磁学㊁热学㊁力学等方面的性质㊂正因为如此,纳米金属材料与宏观金属材料相比具有更优异的综合性能,可弥补宏观材料的一些不足㊂C h e n 等[14]人通过使用具有适当离子强度的电解质溶液处理银纳米线(A gNW ),如图6所示,可以解吸其表面的绝缘活性剂层(聚乙烯吡咯烷酮,P V P )㊂研究表明,制备的A g-NW 膜电导率显著提高,电阻仅为26.4Ω/s q,透光率为92.5%,并且使A gNW 网络更加致密㊂弯曲循环4000次后,电导率几乎无变化,显示出良好的循环稳定性㊂L e e 等[15]人通过对大长径比(长度>100μm )的A gNW s 进行固溶处理,随后通过低温纳米焊接形成渗流网络,开发出具有高度可拉伸性的金属电极㊂研究表明,其方阻仅为9Ω/s q,最大可拉伸至460%㊂C u 的导电性与A g 相差不多,而价格仅为A g 的1%,而且储量巨大㊂所以铜纳米线(C u NW s)因为其极高的性价比而受到广泛的关注㊂Z e n g 等[16]人在低温(60ħ)下,通过水还原途径制备出了直径为90~120n m ㊁图6 (a )不同电解质溶液处理后A g NW 薄膜的薄层电阻的相对变化;(b )电解质溶液处理后的A gNW 网络的S E M 图像F i g 6R e l a t i v e c h a n g e s i n t h e s h e e t r e s i s t a n c e o fA g NWf i l m s a f t e r t r e a t m e n tw i t hd i f f e r e n t e l e c t r o l yt e s o l u t i o n s a n dS E Mi m a g e o fA g NW n e t w o r k s a f t e r e l e c t r o l yt e s o l u t i o n t r e a t m e n t 14020武畏志鹏等:柔性电极材料的国内外研究进展长度为40~50μm的大长径比C u NW s㊂W i l e y等[17]人改进了制备方法,换用聚乙烯吡咯烷酮(P V P)加入到混合液中,以防止C u NW的聚集,并且降低反应温度,在冰水浴中生长C u NW,得到了直径<60n m㊁长度>20μm的具有更大长径比的高透光率的C u NW,然后将其涂覆到聚合物基材上㊂研究表明,C u NW薄膜具有优良的导电性,电阻为30Ω/s q,透光率为85%㊂经过1000次弯折循环后,薄膜电导率无明显变化㊂液态金属一般采用低温熔炼制备工艺,将不同的金属材料(多以镓㊁铟类合金为基础材料)按照一定的配比,通过温度控制使其充分融合而形成,是一种不定型㊁可流动的特殊金属材料㊂因而其在拥有高导电性的同时还有这极高的柔韧性(杨氏模量几乎为0)㊂但是由于其具有流动性,若不加以复合或封装则无法使用㊂3复合电极不管是碳电极还是金属电极,在他们单独使用时总会有许多不尽人意之处,使得它们的性能无法发挥到极致㊂所以目前对于柔性电极的研究多集中于碳-碳㊁碳-金属㊁碳(金属)-聚合物等复合材料上,以弥补各自性能上的不足㊂以下我们将把复合型电极分为本征型电极和填充型电极两类㊂3.1本征型电极我们将本征型复合电极定义为主要由两种或两种以上的具有导电能力的材料构成的电极㊂如碳材料(碳纳米管㊁碳纤维㊁石墨烯)㊁纳米金属材料和导电聚合物(聚吡咯㊁聚苯胺)等本身就有着非常高的柔韧性,将其选择性的进行复合,以期望获得性能上的提升㊂具有优良导电性㊁大比表面积㊁高机械强度以及自支撑特性的石墨烯及其复合材料被认为是超级电容器的理想电极材料㊂冯先强等[18]人将碳纤维(C F)㊁沥青(M P)㊁石墨烯(G)3种材料通过真空抽滤法制备了具有三维网络结构的自支撑G-C F-M P复合薄膜㊂研究表明,沥青在其中增强了碳纤维与石墨烯的粘结强度,使得网络结构更加稳定㊂3种材料协同作用,提高了薄膜的导电性,方阻仅为0.229Ω/s q㊂聚苯胺(P A N I)具有简单易得㊁电容值高㊁化学稳定性强等特点,在超级电容器的电极材料中有着非常广泛应用㊂尚嘉茵等[19]利用原位聚合㊁层-层自组装的方法将MW C N T㊁G Q D㊁P A N I负载至碳布表面,制备出了MWN T/ G Q D/P A N I/碳布柔性电极材料,如图7所示㊂研究表明,MW C N T/G Q D提高了P A N I在碳布上的负载量,且分布更加均匀㊂电极材料的比电容为361.5m F/c m2,经过1000次循环后,电容损失率为15%㊂图7 MWN T/G Q D/P A N I/碳布柔性织物电极制备示意图F i g7S c h e m a t i c d i a g r a m o f p r e p a r a t i o n o fMWN T/G Q D/P A N I/c a r b o n c l o t h f l e x i-b l e f a b r ic e l e c t r od e二氧化锰作是一种电化学活性和比电容高的过渡金属氧化物,但是其导电性较差㊂张燕等[20]人以柔性C N T薄膜为基底,通过水热法将M n O2覆盖在C N T 薄膜上,制备出C N T/M n O2复合电极材料,如图8所示㊂研究表明,M n O2呈现泡沫状,使得薄膜具有较大的比表面积,提高了薄膜电极的比电容,达到了297F/ g㊂经过500次充放电循环后,电容损失率仅为6%,显示出良好的循环稳定性,如图9所示㊂张亚妮等[21]人发明了一种专利㊂将过渡金属(TM)层溅射到碳纤维(C F)表面,采用原位生长法将C N T覆盖在其表面㊂制备出C F/T M/C N T柔性复合电极材料㊂结果表明,电极材料柔韧性高㊁寿命长,电导率高达104S/c m ㊂图8碳纳米管膜/M n O2电极材料的透射电镜图F i g8T E Mi m a g e s o fC N T F/M n O2图9碳纳米管膜和碳纳米管膜/M n O2电极材料的循环稳定性曲线F i g9C y c l i n g s t a b i l i t y o fC N T Fa n dC N T F/M n O2纳米金属材料长时间暴露在空气中时极易被氧化,影响其电学性能㊂由于石墨烯能够对水和氧气进行有效的隔绝,以及自身优异的化学稳定性,当其覆盖在金属表面时,能够保护金属材料不被氧化㊂C h e n 等[22]人通过在金属上生长石墨烯,将石墨烯包裹在金240202021年第2期(52)卷属表面,然后在200ħ的环境中加热4小时㊂研究表明,与未覆盖石墨烯的金属相比,被包裹金属的氧化速率得到了有效的减缓,且对金属的物理㊁化学性质没有影响㊂李云飞等[23]进一步改进工艺,采用化学气相沉积法在C u纳米粒子表面原位生长石墨烯,制备出C u 纳米粒子-石墨烯复合结构㊂研究表明,C u纳米粒子与石墨烯间的相互作用非常强,且抑制了C u在空气中的氧化速度㊂L e e等[24]人通过真空抽滤法制备出了A g NW-S W C N T复合电极,如图10(a),将其黏附到V H B4910弹性体上,制成了D E A㊂研究表明,其应变高达146%,且相较于单独使用低初始电导率的A g-NW电极时,加入少量C N T后,电极电阻下降了3个数量级,如图10(b),击穿强度增加了183%㊂图10(a)掺入C N T后的A g NW的S E M图像;(b)四种不同的A g NW薄膜(S1-4)的薄层电阻(黑点掺入C N T之前,红点掺入C N T之后)F i g10S E Mi m a g eo fA g NW d o p e dw i t hC N Ta n ds h e e t r e s i s t a n c eo f f o u rd i f f e r e n tA g NWf i l m s(S1-4)(b l a c kd o t s b e f o r e d o p i n g C N T,r e dd o t s a f t e r d o p i n g C N T)3.2填充型电极填充型电极一般是将导电性物质分散到聚合物中,在保证导电性的同时,又具有极强的柔韧性,能承受较大的应变㊂碳脂电极是将炭黑分散到硅油(低分子量硅胶)等一些粘性基质中,在D E A电极材料中有着广泛应用㊂碳脂电极模量低,有着优异的伸缩性能,不会阻碍D E基体的形变㊂但是其也有以下几个缺点:一是油脂在重力作用下会产生蠕变,降低电极的使用寿命,特别对与垂直存放的设备;二是油脂类物质随着时间推移会逐渐干涸,柔韧性降低;三是像硅油等油脂类材料一般都是绝缘的有机物,会影响炭黑等导电填料的电导率㊂以炭黑为导电填料制成的导电橡胶是常用的电极材料㊂橡胶本身是绝缘性材料,若想使橡胶复合材料具有一定的导电性,那么炭黑的填充量必须高于逾渗阈值㊂黄英等[25]人分别用N330㊁E C P和C B3100三种炭黑填充硅橡胶制成了导电硅橡胶,探究其渗流现象㊂研究表明,当炭黑粒径越小㊁结构度越高㊁比表面积越大时,炭黑粒子在硅橡胶中的分散性就越好,逾渗阈值越小㊂孙宗学等[26]人将炭黑填充到通过点击化学反应接枝了3-巯基丙酸的甲基乙烯基硅橡胶(VMQ)中,制备出了导电硅橡胶复合电极材料,然后将其喷涂到V H B4910丙烯酸酯弹性体上㊂测试结果表明电极不仅与基体的粘结性显著提高,而且在较小的电场下就能产生大的形变㊂J i a n g等[27]人把用硅烷偶联剂K H550改性处理过的多壁碳纳米管(MW C N T)填充到硅橡胶中,制备出了导电硅橡胶复合电极材料㊂研究表明,与未经修饰的MW C N T相比,填料在硅橡胶中分散的更加均匀,电导率显著增强,这是因为经表面改性的MW C N T与硅橡胶的相互作用得到增强㊂张玉刚等[28]人将炭黑与碳纳米管并用,采用溶液共混法制备出了炭黑/C N T/硅橡胶复合电极材料㊂研究表明,相较于单独使用两种碳材料时,并用使得复合材料的导电网络更加稳定,这得益于近程网络和远程网络的协同互补作用,如图11所示,并且还可以减少导电填料的用量㊂图11炭黑和碳纳米管的协同效应F i g11S y n e r g i s t i ce f f e c to f c a r b o nb l a c ka n dc a r-b o nn a n o t u b e s以纳米金属为导电填料制成的导电橡胶也是常用的电极材料㊂L i u等[29]人采用喷涂法将A g NW溶液喷涂在四氟板上,200ħ下加热使A g NW间产生融合,然后将P D M S粘性液体覆盖在上面进行固化㊂完成后,A g NW嵌入在P D M S中,成功制备出可拉伸薄膜电极㊂研究表明,薄膜电阻为20Ω/s q,1000次拉伸,弯折循环后,电导率无明显变化㊂R o s s e t等[30]人34020武畏志鹏等:柔性电极材料的国内外研究进展通过在弹性体表面下方的几十纳米处以低能量植入金属纳米团簇,如图12所示,这些金属粒子可以相对于彼此移动,因此形成比普通金属薄膜更柔顺的电极,并且因为它们位于弹性体基体内部,提高了纳米金属粒子在弹性体中的附着力,稳定性大大增强㊂雷海军等[31]人探究了金属填料的性质对硅橡胶复合材料性能的影响㊂结果发现,金属填料相同时,导电性与用量和细度有关,用量越大,细度越小,硅橡胶导电性就越好㊂复合金属系导电填料不仅可以减少金属的用量以降低成本,还可以提高填料整体的导电性㊂邹华等[32]人将镀镍石墨填充到甲基乙烯基硅橡胶中,制备出复合电极材料㊂结果表明,其拉伸性和导电性均较好㊂张立群等[33]人将镀镍石墨和镀镍碳纤维并用填充到硅橡胶中㊂研究表明,与单一材料填充相比,并用后所需的填料总量降低,复合材料硬度降低㊂且随着镀镍碳纤维比例的增加,逾渗阈值降低,导电稳定性提高㊂图12 A u/P D M S纳米复合材料的T E M截面F i g12T E Mc r o s s s e c t i o n o fA u/P D M Sn a n o c o m p o s i t e液态金属在保持着高导电性的同时还有着接近于0的模量,柔韧性极高㊂F a s s l e r等[34]人将液态金属(镓铟锡合金,液滴2~30μm)填充到硅橡胶中,制备出了液态金属/硅橡胶复合材料,如图13所示㊂研究表明,复合材料柔韧性非常好,杨氏模量为0.9~ 1.27M P a,最大形变量可达133%㊂产生形变时,表面压力使得液滴相互接触形成导电网络,电导率达到了1.05ˑ104S/m㊂在无应力时,若想具有导电性,可与其他导电填料并用,在金属液滴间产生导通,形成导电网络㊂Z h u等[35]人将液态金属(共晶镓铟合金)注入到空心聚合物S E B S(三嵌段共聚物)纤维的芯中㊂研究表明,液态金属对纤维的机械性能无影响,电导率最大可达3ˑ104S/c m㊂随着纤维拉伸程度的增加,电导率降低,500%时电导率约为5S/c m,增加到700%时仍具有较好的导电性㊂L i a n g等[36]人将液态金属(镓铟锡合金)注入到P D M S海绵中,制备出液态金属海绵㊂结果表明,P D M S海绵不仅可以储存液态金属,还具有3D互连的多孔结构,形成电子传输通路,电导率最高可达1.62ˑ104S/c m,在经过大量的拉伸-回复循环后,电导损失率小于7%㊂,循环稳定性优异㊂图13 可拉伸的液态金属/P D M S薄片嵌入到P D M S薄层中F i g13S t r e t c h a b l e l i q u i dm e t a l/P D M S s h e e t e m b e d-d e d i nP D M S t h i n l a y e r4制备方法电极材料作为D E和S C中最关键的组成部分,如何将其覆盖到基体材料上,并且能够满足特殊的需求(如特定的形状㊁特定的位置等),是现阶段亟待解决的问题㊂目前常用的制备方法有喷涂/涂覆法㊁化学沉积法(化学气相沉积㊁液相沉积)㊁喷墨印刷法等㊂4.1喷涂/涂覆法喷涂/涂敷方法是近年来基于传统成型技术上衍生而来的新技术,喷涂/涂敷工艺因具有设备简单㊁工艺易控制㊁掺杂方便等特点而被广泛应用㊂S h i e h 等[37]人通过在P D M S基体表面涂覆由石墨烯和多壁碳纳米管组成的混合电极,得到具有高比电容和良好循环稳定性的复合电极㊂2000次循环后,电容保持率达到93%㊂J e o n g等[38]人通过喷涂技术将还原的氧化石墨烯(r G O)/单壁碳纳米管(S WN T s)复合材料涂覆到聚己内酯(P C L)基底上,以制备柔性超级电容器㊂结果表明,未弯曲时比电容为52.5F/g,经过500次弯曲循环后比电容降至37.5F/g㊂接着又进行了不同弯曲角度下分别进行1000次充放电循环,电容仅下降约1%㊂S c h l a a k等[39]人将石墨悬浮液喷涂在硅橡胶上,然后再使硅橡胶交联固化,如此反复交替进行,开发出了一种可制造高达100层的D E A的生产方法㊂4.2化学沉积法化学沉积法是通过氧化还原反应,将电极材料沉积在基体表面的一种化学反应过程㊂化学沉积法有气相沉积和液相沉积两种㊂J a y e s h等[40]采用化学气相沉积法在碳纤维(C F)上合成了螺旋状盘绕的碳纳米管(H C N T),制备出C F/H C N T复合电极㊂结果表明,电极的最大比电容为125.7F/g,经过不同弯曲角440202021年第2期(52)卷度下的充放电循环以及15000次的弯折循环后,比电容几乎没有损失㊂J i a n g 等[41]基于化学气相沉积法将镍纳米粒子沉积到碳纳米管上,制备出镍纳米粒子@碳纳米管(N i @C N T )复合电极㊂使得N i 与C N T 间无粘合剂,提高了电极材料的性能㊂结果表明,其能量密度为1.39mW h /c m 3,功率密度为440mW /c m 3,10000次循环后仍具有良好的电化学稳定性,无电容损耗㊂L o w 等[42]人利用液相沉积法在高度拉伸4.2倍的丙烯酸酯橡胶基体上沉积银薄膜,然后松弛至2.5倍的预拉伸来制备褶皱电极㊂测试得到在1.8k V 的电压下电极面积扩展至128%,并且具有良好的循环稳定性㊂4.3 喷墨印刷法喷墨印刷是通过计算机控制,将细墨流射在基材上㊂它具有工艺简单㊁成本低㊁无接触㊁无污染㊁生产周期短等特点,有着巨大的使用潜力㊂M u s t o n e n 等[43]人利用喷墨印刷的方法将由单壁碳纳米管/导电聚合物(P E D O T -P S S)组成的墨水沉积在基体上,制备出复合透明电极㊂结果表明,在低印刷重复率下,与P E -D O T -P S S 电极相比,复合电极显示出更高的电导率,这是因为碳纳米管在P E D O T -P S S 导电相间建立了连接㊂90%的高透光率下,方阻为10k Ω/s q ㊂金属材料的导电性远远高于碳材料,因此金属墨水是现在最为最常用的㊂D o n g 等[44]人利用喷墨印刷法将高银含量的MO D (金属-有机分解)墨水沉积在P I 基体上㊂结果表明,固化后膜电极的电阻率为8.6μΩ㊃c m ,大弯曲下电极也无破裂现象,表现出良好的柔韧性㊂除了上述几种常用的方法外,还有电化学沉积法㊁激光刻蚀法㊁静电纺丝法㊁溅射法㊁湿法纺丝法㊁冲压法㊁3D 打印法等多种方法㊂图14 (a )(b )介电弹性体卫星夹持器示意图;(c )通过将三个D E M E S 旋转接头连接在一起形成的襟翼系统;(d)仿生鱼斜视图;(e)介电弹性体海浪发电机示意图F i g 14(a )S c h e m a t i cd i a g r a m o fd i e l e c t r i ce l a s t o m e r s a t e l l i t eh o l d e r ;(b )f l a p p i n g w i n g s ys t e mf o r m e df r o m j o i n i n g t h r e eD E M E S r o t a r y j o i n t s t o g e t h e ;(c )b i o n i c f i s ho b l i q u e v i e w ;(d )s c h e m a t i cd i a gr a mo f d i e -l e c t r i c e l a s t o m e r s e aw a v e g e n e r a t o r54020武畏志鹏等:柔性电极材料的国内外研究进展。
高耐磨导静电石墨烯杂化材料
山东科学SHANDONGSCIENCE第37卷第2期2024年4月出版Vol.37No.2Apr.2024收稿日期:2023 ̄05 ̄15基金项目:国家自然科学基金资助项目(51603111ꎬ5170311)ꎻ山东省自然科学基金面上项目(ZR2021ME107)ꎻ中国博士后科学基金项目(2022M721903ꎬ2021M700553ꎬ2020M672014)ꎻ建新赵氏科技股份有限公司博士后项目作者简介:谭双美(1998 )ꎬ女ꎬ硕士研究生ꎬ研究方向为丁苯/顺丁橡胶复合材料耐磨和导静电性能研究ꎮE ̄mail:178****2510@163.com∗通信作者ꎬ李琳(1981 )ꎬ女ꎬ博士ꎬ副教授ꎬ研究方向为石墨烯的低成本绿色宏量制备及其在功能性橡胶/弹性体材料中的应用ꎮE ̄mail:qustlilin@163.com高耐磨导静电石墨烯杂化材料/丁苯/顺丁胎面胶的研制谭双美1ꎬ关迎东2ꎬ赵帅1ꎬ李琳1∗(1.青岛科技大学高分子科学与工程学院ꎬ山东青岛266042ꎻ2.海洋化工研究院有限公司海洋涂料国家重点实验室ꎬ山东青岛266071)摘要:采用单宁酸辅助液相剥离所制备的石墨烯ꎬ获得了比普通石墨烯更好的分散性ꎬ可以达到低成本㊁高产量和环保的要求ꎮ用硅烷偶联剂(KH550)改性处理的SiO2和单宁酸修饰的石墨烯发生反应形成强杂化键ꎬ成功得到石墨烯-SiO2杂化材料ꎮ研究了石墨烯-SiO2杂化材料在丁苯/顺丁橡胶复合材料中的力学性能ꎬ同时还研究了将导电炭黑与石墨烯-SiO2杂化材料共混后在丁苯/顺丁橡胶复合材料中的力学性能以及导电导热性能ꎮ结果表明:加入1份石墨烯-SiO2杂化材料时ꎬ丁苯/顺丁橡胶复合材料获得了相对良好的耐磨性ꎻ如果负载超过1份ꎬ石墨烯填料之间会很容易发生再聚集ꎬ导致磨损体积相比于空白对照组有所增加ꎻ加入8份自制石墨烯时ꎬ电阻值降低至2ˑ106Ωꎬ橡胶复合材料的抗静电性能得到了明显的改善ꎮ关键词:顺丁橡胶ꎻ丁苯橡胶ꎻ导电炭黑ꎻ电导率ꎻ耐磨性能ꎻ石墨烯负载中图分类号:TQ328㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1002 ̄4026(2024)02 ̄0055 ̄10开放科学(资源服务)标志码(OSID):Developmentofhighwearresistantandelectrostaticconductivegraphenehybridmaterial/butylene/parabutylenetreadrubberTANShuangmei1ꎬGUANYingdong2ꎬZHAOShuai1ꎬLILin1∗(1.CollegeofPolymerScienceandEngineeringꎬQingdaoUniversityofScienceandTechnologyꎬQingdao266042ꎬChinaꎻ2.StateKeyLaboratoryofMarineCoatingsꎬMarineChemicalResearchInstituteCo.ꎬLtd.ꎬQingdao266071ꎬChina)AbstractʒInthispaperꎬgraphenepreparedbyliquid ̄phasestrippingassistedbytannicacidachievedbetterdispersionthanordinarygraphene.Thenewgraphenecanmeettherequirementsoflowcostꎬhighoutputꎬandenvironmentalprotection.Graphene ̄SiO2hybridmaterialswereobtainedbyreactingSiO2treatedwithsilanecouplingagent(KH550)modificationandgraphenemodifiedwithtannicacidtoformstronghybridizationbondsꎬandthesuccessofobtaininggraphene ̄SiO2hybridmaterialswasconfirmedbyinfraredspectroscopy.Furthermoreꎬthemechanicalpropertiesofgraphene ̄SiO2hybridmaterialinstyrene ̄butadiene/polybutadienecompositeswerestudied.Inadditionꎬthemechanicalpropertiesandtheelectricalandthermalconductivityoftheblendofconductivecarbonblackandgraphene ̄SiO2hybridmaterialinstyrene ̄butadiene/polybutadienecompositewereinvestigated.Theresultsshowthat:attheadditionof1partperhundred(phr)ofgraphene ̄SiO2hybridmaterialꎬthebutadiene/cisrubbercompositesobtainedrelativelygoodwearresistanceꎬiftheloadingismorethan1phrꎬthegraphenefillerswilleasilyreaggregatewitheachotherꎬresultinginanincreaseinwearvolumecomparedwiththeblankcontrolgroup.Moreoverꎬwhen8phrsofself ̄madegraphenewereaddedꎬtheconductivityincreasedby1000timesꎬandtheantistaticpropertiesofrubbercompositeswereconsiderablyimproved.Keywordsʒpolybutadienerubberꎻstyrene ̄butadienerubberꎻconductivecarbonblackꎻconductivityꎻwearresistanceꎻgrapheneloading㊀㊀随着目前我国经济的迅速发展ꎬ石油和化工产业成为了推动经济发展的主要动力ꎮ随着产业的蓬勃发展ꎬ载运易燃易爆物质㊁液化石油的车辆大幅增加[1]ꎮ但是汽车在行进过程中ꎬ车轮与地面的不断摩擦会产生静电ꎬ静电积累到一定程度会产生电火花ꎬ容易造成汽车燃烧和爆炸的事故ꎬ若发生在化工㊁石油的作业区ꎬ可能会带来更严重的灾难ꎮ汽车轮胎是始终与地面接触的部件ꎬ如何提高轮胎的导电性能是目前亟待解决的研究课题ꎮ现阶段ꎬ人们对于环保和节能越来越重视ꎬ具有较低滚动阻力的 绿色轮胎 也越来越受欢迎ꎬ而轮胎配方的 魔三角 效应一直制约着 绿色轮胎 的发展ꎮ 魔三角 效应是磨耗㊁湿滑㊁滚动阻力三者的平衡关系[2 ̄7]ꎮ在目前所存在的材料体系中ꎬ很难达到各方面性能的平衡ꎮ石墨烯是目前唯一存在的一种二位自由态原子晶体[8]ꎬ是迄今为止测量到最薄最坚硬的碳材料ꎬ由sp2杂化碳原子连接组成的六元环二维单层晶体[9]ꎮ石墨烯独特的原子排列方式和能带结构使其具有一系列独特的性质:其弹性模量约为1TPaꎬ本征应力约为130GPa[10]ꎻ具有较大的比表面积[11]ꎻ较高的导电性和导热性ꎬ其电导率达到了2.0ˑ106S/m以上ꎬ是普通金属材料的数千倍ꎬ热传导率可达到3000~5000W/mKꎬ在室温下超过了传统热传导材料[12]ꎮ所以将石墨烯作为填料制备的轮胎导电性能更加优异ꎬ可以明显改善汽车行驶过程中产生静电的情况ꎮ目前已有一些石墨烯杂化材料成功地应用在橡胶领域ꎮ陈耀然[13]采用静电自组装和原位还原的技术制备了交联聚苯乙烯纳米微球/石墨烯杂化物ꎬ并将丁苯橡胶作为基体ꎬ采用直接共混法制备了SBR/PS@rGO纳米复合材料ꎬ其力学性能都得到了优化ꎮ对于制备新型改性的石墨烯的研究也取得了一些成果ꎮ奉林飞龙[14]通过十二烷基胺氧化改性石墨烯ꎬ然后以溶聚丁苯橡胶为基体制备DDA ̄GO/SSBR复合材料并测量其力学性能ꎬDDA ̄GO/SSBR复合材料的拉伸强度由2.6MPa提升到6.6MPaꎬ300%定伸应力提高了92%ꎬ断裂伸长率提高了约45%ꎬ表明力学性能都得到了较大程度的改善ꎮ前人研究出的这些杂化材料虽然使得力学性能得到了大幅度提升ꎬ但是实验中所采用的极性溶剂并不环保ꎮ本文采用的单宁酸是一种植物多酚ꎬ其来源丰富ꎬ且避免了目前分散助剂的成本高㊁环境污染㊁有毒性等问题[15]ꎮ本文将导电炭黑与石墨烯形成有效负载ꎬ以达到提高复合材料导电性能的目的ꎮ其导电机理是利用石墨烯大的比表面积和导电炭黑的体积占据效应ꎬSiO2覆在石墨烯表面与之结合可以增大石墨烯与复合材料的接触率ꎬ同时导电炭黑作为连枝状聚集体与石墨烯形成通路ꎬ更容易形成网络结构ꎮ导电炭黑作为网络中的有效节点ꎬ可以使得有限数量的石墨烯通过节点搭桥形成更为扩展且完整的导电导热通路ꎮ同时由于各组分之间的热阻较低ꎬ热量和电子可以在这些通路中快速传递ꎬ更近一步地改善复合材料的导电导热性能ꎮ1㊀实验部分1.1㊀实验材料顺丁橡胶(BR9000)和溶聚丁苯橡胶(S ̄SBRꎬ韩泰轮胎有限公司)ꎻ鳞片石墨(青岛黑龙石墨有限公司)ꎻ石墨烯(GEꎬ常州第六元素材料科技股份有限公司)ꎻ单宁酸(TAꎬ国药集团化学试剂公司)ꎻ白炭黑(SiO2ꎬ株洲兴隆化工实业有限公司)ꎻ导电炭黑(上海卡博特化工有限公司)ꎻ偶联剂KH550(南京向前化工有限公司)ꎻ氧化锌(兴化市兴江锌品厂)ꎻ硬脂酸㊁硫磺(安庆鑫泉硫化剂厂)ꎻ促进剂DPG㊁促进剂ZBEC㊁促进剂CZ㊁防老剂RD和防老剂6PPD(中国尚舜化工控股有限公司)ꎻ其他助剂均为市售ꎮ1.2㊀主要设备和仪器BL ̄6175 ̄BL型开炼机(东莞市宝轮精密检测仪器有限公司)ꎻPC68高阻仪(上海精密仪器仪表有限公司)ꎻRTS ̄8四探针(广州四探针科技有限公司)ꎻGX ̄5028DIN磨耗试验机(中国高新检测设备有限公司)ꎻMDR2000无转子硫化仪(中国台湾高铁公司)ꎻT800动态机械分析(DMA)仪(美国TA仪器公司产品)ꎻ91001SR炭黑分散仪(美国TA仪器公司产品)ꎻVR ̄7130动态黏弹性分析仪(日本上岛Ueshima产品)ꎻBGD740高速分散机(标格达精密仪器(广州)有限公司)ꎻSHK ̄III循环水式多用真空泵(郑州科泰实验设备有限公司)ꎻBruker ̄VERTEX70傅里叶红外光谱(FTIR)仪(布鲁克(北京)科技有限公司)ꎻD ̄MAX2500 ̄PCX射线衍射(XRD)仪(日本理学株式会社产品)ꎻJEM ̄2100透射电子显微镜(TEM)(日本电子株式会社)ꎻGT ̄RH ̄2000压缩生热试验机(中国台湾高铁科技股份有限公司)ꎻXLB ̄D500X500平板硫化机(浙江湖州东方机械有限公司)ꎻLX ̄A邵尔硬度计(江苏明珠试验机械有限公司)ꎻJOEL ̄JSM7500F扫描电镜(SEM)(日本电子公司)ꎻZ005万能电子拉力试验机(德国Zwick/Roell集团)ꎮ1.3㊀试样的制备1.3.1㊀自制石墨烯(TGE)的制备取一定数量的鳞片石墨烯和单宁酸(TA)置于烧杯中ꎬ加入一定量的去离子水ꎮ之后超声水浴25ħ作用一段时间ꎬ然后静置取上层清液ꎬ即可得到自制石墨烯的水溶液ꎮ1.3.2㊀石墨烯-SiO2胎面胶复合材料的制备第一步:改性白炭黑ꎮ在高速分散器搅拌作用下ꎬ按1:10比例将KH550加入到白炭黑溶液中ꎬ5000r/min高速搅拌10minꎬ然后超声辅助2h进行改性白炭黑ꎬ过程中保持水浴温度在60ħꎻ第二步:杂化反应ꎮ在高速分散器搅拌作用下ꎬ将改性白炭黑与修饰石墨烯共混10min(5000r/min)ꎬ然后放入恒温水浴(25ħ)反应12hꎬ制得石墨烯-SiO2杂化材料ꎮ第三步:将96g溶聚丁苯橡胶和30g顺丁橡胶9000混合置入密炼机中ꎬ在70ħ㊁45r/min的条件下混炼2minꎬ将制备好的石墨烯-SiO2负载料与防老剂等小料分3次加入密炼机中混炼3min(每次间隔1min)ꎬ混炼后将纯白炭黑分3次加入密炼机中混炼5min后取出ꎮ第四步:将密炼好的丁苯/顺丁胶在开炼机中40ħ的条件下ꎬ以20r/min的速度薄通3次ꎬ依次加入氧化锌㊁硬脂酸㊁促进剂和硫磺后左右割交各3刀ꎬ打三角包ꎬ打卷ꎬ最后在1.8mm的辊矩下下片待用ꎮ1.3.3㊀石墨烯-SiO2导电炭黑/胎面胶复合材料的制备第一步和第二步工艺同石墨烯-SiO2胎面胶复合材料的制备工艺相同ꎮ第三步:将96g溶聚丁苯橡胶和30g顺丁橡胶9000混合密炼机中ꎬ70ħ㊁45r/min的条件下混炼2minꎬ将制备好的石墨烯-SiO2负载料与防老剂等小料分3次加入密炼机中混炼3min(每次间隔1min)ꎬ混炼后将导电炭黑和纯白炭黑分3次加入密炼机中混炼5min后取出ꎮ第四步:将密炼好的丁苯/顺丁胶在开炼机中40ħ的条件下ꎬ以20r/min的速度薄通3次ꎬ依次加入氧化锌㊁硬脂酸㊁促进剂和硫磺后左右割胶各3刀ꎬ打三角包ꎬ打卷ꎬ最后在1.8mm的辊矩下下片待用ꎮ1.3.4实验配方(1)石墨烯-SiO2胎面胶复合材料的配方S-SBR96份(质量ꎬ下同)ꎬBR30份ꎬ纯白炭黑85份ꎬKH5502份ꎬ硅烷偶联剂15份ꎬ氧化锌2份ꎬ硬脂酸1份ꎬ防老剂6PPD2份ꎬ防老剂RD2份ꎬ石蜡1份ꎬ润滑剂3份ꎬ促进剂DPG2份ꎬ硫黄0.7份ꎬ促进剂CZ2.2份ꎬ促进剂ZBEC0.2份ꎬTGE作为变量分别添加0㊁1㊁3㊁5㊁7㊁9份ꎬ并将配方分别命名为1#㊁2#㊁3#㊁4#㊁5#㊁6#ꎮ(2)石墨烯-SiO2/导电炭黑胎面胶复合材料的配方S-SBR96份ꎬBR30份ꎬ纯白炭黑85份ꎬKH5502份ꎬ硅烷偶联剂15份ꎬ氧化锌2份ꎬ硬脂酸1份ꎬ防老剂6PPD2份ꎬ防老剂RD2份ꎬ石蜡2份ꎬ润滑剂3份ꎬ促进剂DPG2份ꎬ硫黄0.7份ꎬ促进剂CZ2.2份ꎬ促进剂ZBEC0.2份ꎬTGE和导电炭黑同时作为变量ꎬTGE分别添加0㊁4㊁8㊁10份ꎬ导电炭黑分别添加0㊁10㊁15㊁20份ꎬ并将配方分别命名为7#㊁8#㊁9#㊁10#ꎮ1.4㊀性能测试(1)红外光谱(FTIR)测试采用透射模式对样品进行溴化钾压片后进行测试ꎬ测试波长范围为500~4000cm-1ꎮ(2)邵尔A型硬度在室温下按照国标GB/T531.1 2008[16]进行测试ꎮ(3)拉伸强度按照国标GB/T528 2009[17]进行测试ꎮ(4)撕裂强度按照国标GB/T529 2008[18]进行测试ꎮ(5)压缩生热性能按照国标GB/T1687.1 2016[19]进行测试ꎬ测试条件为:温度55ħꎬ冲程4.45mmꎬ负荷1.0MPaꎮ(6)导热率按照astme1530保护热流计法ꎬ测定复合材料圆形样片的导热系数ꎬ测试样品为50mmˑ50mmˑ2mm的圆形样片ꎬ测试温度为30ħꎮ(7)导电率的测试样品为50mmˑ50mmˑ2mm的圆形样片ꎬ测试温度为室温ꎮ(8)DIN磨耗按照国标GB/T1689 2014[20]对试样进行测试ꎮ㊀㊀(9)动态热机械(DMA)的分析采用拉伸模式测试ꎬ记录样品的损耗因子(tanδ)㊁损耗模量(Gᵡ)和储能模量(Gᶄ)㊁随温度的变化曲线ꎮ2㊀结果与讨论2.1㊀SiO2表面改性及石墨烯杂化SiO2的表征实验中对KH550硅烷化的SiO2进行了FTIR光谱的检测(见图1)ꎬ检测结果表明:1107cm-1处的峰值对应于Si O Si的不对称拉伸振动[21]ꎻ3663cm-1的峰值为 OH基团的特征吸收峰ꎮ曲线2㊁3㊁4中的FTIR光谱表明ꎬ2929cm-1处的峰对应于 CH2的不对称拉伸振动[22]ꎬ同时1453cm-1处的峰值对应 CH2ꎬ说明硅烷偶联剂(KH550)成功接枝到SiO2上ꎮ注:图中1㊁2㊁3㊁4曲线表示KH550与白炭黑质量比分别为0:20㊁1:20㊁2:20㊁3:20ꎮ图1㊀KH550硅烷化SiO2的红外光谱图Fig.1㊀InfraredspectraofKH550 ̄silanizedSiO22.2㊀石墨烯-SiO2对胎面胶复合材料性能的影响2.2.1㊀石墨烯-SiO2对胎面胶复合材的力学性能的影响依前述石墨烯-SiO2胎面胶复合材料配方及其制备方法ꎬ对得到的系列硫化胶进行了门尼黏度和硫化果特性测试ꎬ具体结果见表1ꎮ测定得到的石墨烯-SiO2胎面胶复合材料的力学性能测试结果见图2ꎮ由表1可以看出ꎬ配方中随着TGE的增加ꎬ门尼黏度(ML(1+4)100ħ)增大ꎬ进而使得加工胶料的性能变差ꎻMH值和MH与ML之差在加入宽分布石墨烯后比空白样的数值均有所提升ꎬ硫化速度指数(CRI)呈现先增大后减小的趋势ꎮ而从焦烧时间(t10)和正硫化时间(t90)的数值变化可以看出ꎬTGE存在一个适当的数值使t10㊁t90达到最低值ꎬ胶料获得最好的硫化速度ꎮ出现此种现象的原因可能是TGE大的比表面积增加了与基体的接触概率ꎬ形成了更多的网络结构ꎬ自制石墨烯与橡胶分子形成了很多有效节点ꎬ单位体积内所形成的交联键增多ꎬ交联密度增大[23]ꎮ表1㊀石墨烯-SiO2胎面胶的门尼黏度和硫化特性2#14827.883.5624.32346020.1763#14828.84.0524.75286460.1624#15327.225.3221.90618090.1345#16229.336.4022.93508000.1336#17231.335.7625.57349020.115㊀㊀㊀㊀㊀㊀㊀注:CRI=100/(t90-t10)ꎻMH为最大转矩ꎻML为最小转矩ꎮ由图2(a)可以看出ꎬ断裂伸长率对于石墨烯的用量要求较高ꎬ在4#配方中达到了最优性能ꎮ图2(b)可以看出ꎬ在加入混合填料后的配方中3#配方的拉伸强度性能最差ꎬ5#配方性能最优ꎬ说明并不是石墨烯-SiO2的用量越多ꎬ对拉伸强度的性能改善越好ꎮ拉伸强度和断裂伸长率是此消彼长的关系ꎮ3#配方中断裂伸长率和拉伸强度同时减小ꎬ可能的原因是硫化程度比较好因此交联密度增大ꎬ导致力学性能大幅度下降ꎮ同时单宁酸作为连接石墨烯和橡胶的有效节点ꎬ大量的石墨烯吸附在橡胶表面也会导致力学性能的下降ꎮ由图2(c)可以看出ꎬ200%定伸应力和300%定伸应力同时在4#配方中出现了下降的趋势ꎬ不同百分比的定伸应力都在6#配方中达到了最高值ꎮ拉伸强度和定伸应力都比空白对照组的高ꎬ主要是因为偶联剂KH550改性白炭黑增强了其与橡胶基体之间的界面作用ꎬ表现出了更好的力学性能ꎮ由图2(d)可得出加入自制石墨烯以后橡胶撕裂强度相对于空白对照组都有所增加ꎬ呈现出缓慢增长后下降之后再次上升的趋势ꎮ出现这种现象的原因可能是修饰以后的石墨烯在用量达到一定值时ꎬ可以起到载体的作用ꎬ促进配方中填料的分散ꎬ进而提高胶料的力学性能ꎮ由图2(e)分析可以得出复合材料在加入一份自制石墨烯时获得了相对良好的耐磨性ꎬ添加过量时ꎬ石墨烯难以分散ꎬ导致材料在石墨烯团聚位置出现应力集中现象ꎮ同时在图中可以看出除了2#配方的磨损体积低于空白对照组ꎬ其他配方均高于对照组ꎬ原因可能是自制石墨烯的添加量过少ꎬ没有对白炭黑起到一定的分散作用ꎬ导致胶料的耐磨性能变差ꎮ图2㊀石墨烯-SiO2对胎面胶力学性能的影响Fig.2㊀Effectofgraphene ̄SiO2onthemechanicalpropertiesoftreadrubber图2(续)2.2.2㊀石墨烯-SiO2对胎面胶复合材料导电性能的影响根据上述性能测试方法ꎬ测定得到石墨烯-SiO2胎面胶复合材料的导电性能见图3ꎮ由图3数据分析可以得出ꎬ橡胶纳米复合材料的优异导电网络是在石墨烯的负载中实现的ꎮ本文采用的SiO2覆在大比表面积的石墨烯表面改善了石墨烯与复合材料基体的接触概率ꎬ所以石墨烯更容易形成网络结构ꎬSiO2作为石墨烯网络中的有效节点ꎬ通过占据分子间空间实现有效的体积排斥ꎬ使有限数量的石墨烯通过节点搭桥形成扩展且完整的网络ꎬ使得复合材料中更多的通路可以连接在一起ꎮ但如果石墨烯负载量过高ꎬ则容易发生再聚集ꎮ图3㊀石墨烯-SiO2用量与胎面胶电阻值的关系Fig.3㊀Resistancevaluesofgraphene ̄SiO2/treadrubber2.3㊀石墨烯-SiO2/导电炭黑对胎面胶复合材料性能的影响2.3.1㊀石墨烯-SiO2/导电炭黑对胎面胶复合材料力学性能的影响实验测定得到不同石墨烯-SiO2/导电炭黑用量对复合材料力学性能的影响ꎬ见图4ꎮ图4㊀石墨烯-SiO2/导电炭黑对胎面胶力学性能的影响Fig.4㊀Effectofgraphene ̄SiO2/conductivecarbonblackonthemechanicalpropertiesoftreadrubber由图4(a)的实验结果分析可得ꎬ随着自制混合填料份数的不断加入ꎬ拉伸强度在配方中都有所改善ꎬ在10#配方中混合填料的添加量使得拉伸性能较9#配方稍有下降ꎻ最终通过数据分析得出相比于未添加石墨烯和炭黑的配方来说ꎬ加入填料配方的拉伸强度整体都呈现出上升的趋势ꎮ由图4(b)的实验结果分析可得ꎬ随着混合填料用量的增加ꎬ压缩生热性能的波动幅度较大ꎬ表现为先下降后增长ꎻ从图中可以看出ꎬ在配方9#中ꎬ石墨烯化炭黑用量为15份时ꎬ热生成温度达到了最低ꎬ相比于空白对照组ꎬ温度下降18.5%ꎮ主要原因是石墨烯的比表面积较大ꎬ可以在橡胶中分散形成连接网络ꎬ另外修饰石墨烯所用的单宁酸可以使石墨烯分散性更好ꎬ所以复合材料有更好的散热性ꎮ由图4(c)可以看出ꎬ伴随着混合填料用量的增加ꎬ所测的硬度值呈现较为稳定的上升趋势ꎮ主要是因为石墨烯的高强度和高韧性ꎬ所以其用量的增加ꎬ会使得橡胶的硬度更加优异ꎮ在混炼过程中ꎬ石墨烯在厚度方向上取向排布ꎬ硫化时ꎬ自制石墨烯的取向排布会更加规范ꎬ相应的硬度性能会变好ꎮ硬度最优的配方与空白对照组相比ꎬ硬度提升15.8%ꎮ由图4(d)可以看出ꎬ随着填料的不断加入ꎬ耐磨性呈先上升后下降的趋势ꎬ在10#配方中略有所改善ꎮ在配方9#中ꎬ使用15份导电炭黑时DIN磨耗体积达到了最低值ꎬ耐磨性相比空白对照组提升了43.8%ꎮ首先ꎬ原因可能是顺丁橡胶的结构中存在大量顺式结构ꎬ分子中有很多可发生内旋转的C C单键ꎬ使其具有较高的弹性和耐磨性ꎮ其次ꎬ原因可能是自制的石墨烯中所添加的单宁酸修饰了石墨烯与橡胶的界面使得界面结合较强ꎬ相容性比较好ꎬ在橡胶基体中形成完善的填料网络ꎬ粒子的应力集中效应比较弱ꎬ耐磨性较好[24]ꎮ由图4(e)可以看出ꎬ随着填料用量的增加ꎬ撕裂强度起始的升高幅度较大ꎬ但在填料添加过多时撕裂强度大幅下降ꎮ说明自制石墨烯炭黑填料共用起到了 协同作用 ꎬ相比于石墨烯单一粉体来说ꎬ采用自制石墨烯和导电炭黑共同填充补强的效果会更好ꎮ从图4(e)中可以看出在9#配方中撕裂强度达到了最高值ꎬ撕裂强度性能最优ꎮ但在10#配方中也可以看出复合填料用量过多时反而会导致撕裂强度性能下降ꎮ2.3.2㊀石墨烯-SiO2/导电炭黑对胎面胶复合材料导电导热性能的影响实验测定得到不同石墨烯-SiO2/导电炭黑用量ꎬ在胎面胶复合材料各配方中的电阻值㊁导热率见图5ꎮ由图5(a)可以看出ꎬ随着自制石墨烯和导电炭黑用量的增加ꎬ电阻值呈现先减小后增大的趋势ꎬ在配方9#中导电率达到了最低值ꎮ从数据对比来看ꎬ相比于未添加石墨烯和炭黑的7#配方ꎬ9#配方的电阻值降低了很多ꎬ导静电能力大幅度改善ꎬ更好地减弱了使用过程中的静电效应ꎮ主要是由于石墨烯的分散性比较好ꎬ因此在橡胶基体中形成了比较完善的网络有益于导电ꎮ由图5(b)可以看出ꎬ相比于未添加任何填料的7#配方ꎬ添加了复合填料的配方的导热率都有增强的趋势ꎬ另外在图中可以看出8#和9#配方在加入复合填料后增长的幅度较大ꎬ而对于10#配方在加入填料后的增长幅度并不大ꎬ说明应该存在一个适值可以使得导热性能达到最优的状态ꎮ主要的原因可能是单宁酸中的植物多酚可以使得石墨烯更好地分布在胶料中ꎬ使得形成的导热网络可以更为完整ꎬ进而大幅改善导热性能ꎮ图5㊀石墨烯-SiO2/导电炭黑对胎面胶导电和导热性能的影响Fig.5㊀Effectofgraphene ̄SiO2/conductivecarbonblackontheconductivityandthermalconductivityoftreadrubber2.3.3㊀石墨烯-SiO2/导电炭黑/胎面胶复合材料的动态机械性能通过以上的数据分析可知ꎬ9#配方使橡胶的不同物理性能表现比较优异ꎬ所以将9#配方与未添加填料的7#配方的动态机械性能单独进行了对比ꎮ实验测定两种配方的储能模量和损耗因子见图6ꎮ由图6(a)可以看出ꎬ随着温度的不断增加ꎬ储能模量处于大幅下降最终趋于不变的趋势ꎬ7#和9#曲线最终达到重合的趋势ꎮ在动态载荷下ꎬ填料间的物理作用力会被破坏ꎬ而填料网络结构不断被破坏后再次重组会导致能量的损耗ꎮ储能模量呈现不断下降的趋势ꎬ说明填料间物理作用力越大ꎬ表现为填料的分散性越差[25]ꎮ通常ꎬ用0ħ下的损耗因子值来表征橡胶的抗湿滑性能ꎬ损耗因子的值越高说明其抗湿滑性越好ꎬ而60ħ下的损耗因子值用来表征橡胶的滚动阻力性能ꎬ损耗因子的值越低说明其滚动阻力越低[26]ꎮ在图6(b)中可以看出ꎬ9#配方相比于空白对照组在0ħ的损耗因子值较低ꎬ60ħ的损耗因子值较高ꎬ表明其抗湿滑性较空白样差ꎬ而滚动阻力较空白样高ꎮ其滚动阻力较高的原因可能是白炭黑经过硅烷偶联剂改性和反应共混技术的处理ꎬ在橡胶基体中分散得到了较大的改善ꎮ图6㊀不同温度下石墨烯-SiO2/导电炭黑对胎面胶动态机械性能的影响Fig.6㊀Effectofgraphene ̄SiO2/conductivecarbonblackatdifferenttemperaturesonthedynamicmechanicalpropertiesoftreadrubber3㊀结论研究表明ꎬ通过自制石墨烯和导电炭黑在胎面胶中的填充量分别为8和15份时ꎬ电阻值从纯复合材料1ˑ1010Ω降低至2ˑ106ꎬ导电性能得以大幅提高ꎬ可有效消除制品在使用过程中的静电效应ꎮ另外ꎬ石墨烯-SiO2/导电炭黑胎面胶复合材料的拉伸强度增长了14.0%ꎻ导热率也上升了58.6%ꎬ热生成温度下降了18.5%ꎻ撕裂强度增长了11.8%ꎬ耐磨性上升了43.8%ꎬ硬度上升了15.8%ꎬ耐磨性能提高了24.9%ꎮ因此ꎬ在胎面胶中填充石墨烯和导电炭黑其机械性能和电热性能都有很大改善ꎬ该研究工作为高耐磨㊁导静电轮胎进一步发展提供了新思路ꎮ参考文献:[1]张浩ꎬ杜宇程.汽车导静电橡胶拖地带标准现状分析[J].交通节能与环保ꎬ2020ꎬ16(2):22 ̄25.DOI:10.3969/j.issn.1673 ̄6478.2020.02.006.[2]刘大晨ꎬ梁雨ꎬ汤琦.炭黑/稻壳源白炭黑并用对天然橡胶增强作用的粒径效应[J].合成橡胶工业ꎬ2017ꎬ40(5):372 ̄376. [3]潘宏丽ꎬ杨英.含石墨烯纳米材料的丁苯橡胶[J].世界橡胶工业ꎬ2015ꎬ42(10):12 ̄19.DOI:10.3969/j.issn.1671 ̄8232.2015.10.003.[4]BAISꎬSHENXP.Graphene ̄inorganicnanocomposites[J].RSCAdvancesꎬ2012ꎬ2(1):64 ̄98.DOI:10.1039/C1RA00260K. [5]DROUETFꎬSTOLZCꎬLALIGANTOꎬetal.3Dmeasurementofbothfrontandbacksurfacesoftransparentobjectsbypolarizationimaging[C]//ReflectionꎬScatteringꎬandDiffractionfromSurfacesIVꎬSanDiegoꎬCaliforniaꎬUSA:SPIE.2014ꎬ9205:192 ̄198.DOI:10.1117/12.2061811.[6]崔隽雷ꎬ刘力ꎬ毛迎燕ꎬ等.氧化石墨烯/炭黑/乳聚丁苯橡胶纳米复合材料的性能研究[J].橡胶工业ꎬ2015ꎬ62(8):453 ̄457.DOI:10.3969/j.issn.1000 ̄890X.2015.08.001.[7]KANGSꎬPARKSꎬKIMDꎬetal.Simultaneousreductionandsurfacefunctionalizationofgrapheneoxidebymussel ̄inspiredchemistry[J].AdvancedFunctionalMaterialsꎬ2011ꎬ21(1):108 ̄112.DOI:10.1002/adfm.201001692.[8]夏心怡ꎬ叶鑫城ꎬ陈熠桢ꎬ等.石墨烯复合材料的散热特点分析[J].电子技术ꎬ2023ꎬ52(4):258 ̄259.[9]施彤ꎬ邓巧云ꎬ李大纲.液相剥离法制备石墨烯导电油墨的研究进展[J].包装工程ꎬ2022ꎬ43(21):50 ̄57.DOI:10.19554/j.cnki.1001 ̄3563.2022.21.007.[10]杨靖宇.石墨烯材料在水处理方面的应用研究[J].化纤与纺织技术ꎬ2021ꎬ50(9):28 ̄29.DOI:10.3969/j.issn.1672 ̄500X.2021.09.013.[11]MASSꎬZHANGQꎬZHUJꎬetal.RationalengineeringofAg ̄dopedreducedgrapheneoxideaselectrochemicalsensorfortracemercuryionsmonitoring[J].SensorsandActuatorsB:Chemicalꎬ2021ꎬ345:130383.DOI:10.1016/j.snb.2021.130383. [12]RAFIQUEIꎬKAUSARAꎬMUHAMMADB.Epoxyresincompositereinforcedwithcarbonfiberandinorganicfiller:Overviewonpreparationandproperties[J].Polymer ̄PlasticsTechnologyandEngineeringꎬ2016ꎬ55(15):1653 ̄1672.DOI:10.1080/03602559.2016.1163597.[13]陈耀燃.聚合物纳米微球/石墨烯杂化物的制备及其在橡胶中的应用研究[D].广州:华南理工大学ꎬ2016.[14]奉林飞龙.石墨烯和富勒烯/橡胶纳米复合材料的制备与性能研究[D].北京:北京化工大学ꎬ2016.[15]ZHAOSꎬXIESCꎬZHAOZꎬetal.Greenandhigh ̄efficiencyproductionofgraphenebytannicacid ̄assistedexfoliationofgraphiteinwater[J].ACSSustainableChemistry&Engineeringꎬ2018ꎬ6(6):7652 ̄7661.DOI:10.1021/acssuschemeng.8b00497.[16]中国石油和化学工业协会.硫化橡胶或热塑性橡胶压入硬度试验方法第1部分:邵氏硬度计法:GB/T531.1 2008[S].北京:中国标准出版社ꎬ2008.[17]中国石油和化学工业协会.硫化橡胶或热塑性橡胶拉伸应力应变性能的测定:GB/T528 2009[S].北京:中国标准出版社ꎬ2009.[18]中国石油和化学工业协会.硫化橡胶或热塑性橡胶撕裂强度的测定:GB/T529 2008[S].北京:中国标准出版社ꎬ2008.[19]中国石油和化学工业联合会.硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第1部分:基本原理:GB/T1687.1 2016[S].北京:中国标准出版社ꎬ2016.[20]中国石油和化学工业联合会.硫化橡胶耐磨性能的测定(用阿克隆磨耗试验机):GB/T1689 2014[S].北京:中国标准出版社ꎬ2014.[21]水玲玲ꎬ刘晓纯ꎬ龚颖欣.二氧化硅材料的表面润湿性改性研究[J].华南师范大学学报(自然科学版)ꎬ2018ꎬ50(5):39 ̄44.DOI:10.6054/j.jscnun.2018098.[22]单芙蓉ꎬ于志明ꎬ罗丽丝ꎬ等.硅烷偶联剂KH550表面改性纳米Al2O3的研究[J].化工新型材料ꎬ2013ꎬ41(5):169 ̄170.DOI:10.3969/j.issn.1006 ̄3536.2013.05.058.[23]赵宗祥.改性氧化石墨烯/炭黑/天然橡胶复合材料性能研究[D].青岛:青岛科技大学ꎬ2020.[24]谢士诚ꎬ王玉超ꎬ蔡瑞ꎬ等.白炭黑/石墨烯杂化填料对天然橡胶胶料性能的影响[J].橡胶工业ꎬ2022ꎬ69(8):563 ̄571.DOI:10.12136/j.issn.1000 ̄890X.2022.08.0563.[25]崔怡雯.石墨烯增强天然橡胶的制备与性能研究[D].太原:中北大学ꎬ2022.[26]SARKARPꎬBHOWMICKAK.Terpenebasedsustainableelastomerforlowrollingresistanceandimprovedwetgripapplication:Synthesisꎬcharacterizationandpropertiesofpoly(styrene ̄co ̄myrcene)[J].ACSSustainableChemistry&Engineeringꎬ2016ꎬ4(10):5462 ̄5474.DOI:10.1021/acssuschemeng.6b01038.。
石墨烯与金属欧姆接触电阻研究进展
石墨烯本征优异性能的发挥。本文梳理了石墨烯与金属接触的重要专利技术,并给出了技术发展的路线图。
关键词:石墨烯;金属;接触电阻
中图分类号:TN304.18;TN386
文献标识码:A
文章编号:1003-5168(2018)08-0145-02
Progress in the Study of The Contact Resistance of Graphene and Metal Ohm
总 634 期第三期 2018 年 3 月
河南科技 Henan Science and Technology
能源与化学
石墨烯与金属欧姆接触电阻研究进展
王顺冲 孙宁宁
(国家知识产权局专利局专利审查协作河南中心,河南 郑州 450018)
摘 要:石墨烯在半导体器件领域具有广阔的应用前景,然而石墨烯和金属电极之间较大的接触电阻不利于
3.3.1 中国科学院微电子所。其专利申请布局涵盖 了多个技术分支:CN102593006A 采用金属掩膜,实现光 刻胶与石墨烯的隔离,最大程度减少残余光刻胶对石墨 烯与金属接触的影响。CN104253015A 通过离子注入,调 整界面处的离子注入浓度,施加退火工艺,降低接触电 阻。CN104282541A 使石墨烯和钌金属发生反应,形成较 好的金属接触,之后再与互联金属接触。CN105789039A 将石墨烯和金属的接触结构设置为梳型,提高了电流注 入效率,降低器件接触电阻。CN105914158A 采用金属和 石墨烯双面接触及自对准工艺,排除光刻胶的影响,形成 更多的边缘接触结构。
1 石墨烯材料在半导体器件中的应用
石墨烯是从石墨材料中剥离出来、由碳原子组成的 只有一层原子厚度的二维晶体。在二维平面,碳原子以 sp2 杂化轨道相连接,碳原子相互围成正六边形的平面蜂 窝形结构。石墨烯具有高载流子迁移率,是一种优异的 半导体材料。2004 年,科学家通过机械剥离的方式制 备出石墨烯。自此以后,石墨烯作为明星材料,被应用 于诸多领域。在半导体器件领域,石墨烯在高频器件、 传 感 器 、超 级 电 容 器 和 锂 电 池 等 方 面 都 具 有 良 好 的 应 用 前 景 。 然 而 ,石 墨 烯 与 金 属的接触电阻较大,这会导 致寄生参量、测试得到的电学性能与理论值相差较大,石 墨烯与金属接触电阻是影响石墨烯器件性能的最重要因 素之一。
dielectric constant of PEO
Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistorA.DAS1,S.PISANA2,B.CHAKRABORTY1,S.PISCANEC2,S.K.SAHA1,U.V.WAGHMARE3,K.S.NOVOSELOV4,H.R.KRISHNAMURTHY1,A.K.GEIM4,A.C.FERRARI2*AND A.K.SOOD1*1Department of Physics,Indian Institute of Science,Bangalore560012,India2Department of Engineering,Cambridge University,9JJ Thomson Avenue,Cambridge CB3OFA,UK3Theoretical Sciences Unit,Jawaharlal Nehru Centre for Advanced Scientific Research,Bangalore560064,India4Department of Physics and Astronomy,Manchester University,Manchester M139PL,UK*e-mail:acf26@;asood@physics.iisc.ernet.inPublished online:30March2008;doi:10.1038/nnano.2008.67The recent discovery of graphene1–3has led to many advances in two-dimensional physics and devices4,5.The graphene devices fabricated so far have relied on SiO2back gating1–3. Electrochemical top gating is widely used for polymer transistors6,7,and has also been successfully applied to carbon nanotubes8,9.Here we demonstrate a top-gated graphene transistor that is able to reach doping levels of up to 531013cm22,which is much higher than those previously reported.Such high doping levels are possible because the nanometre-thick Debye layer8,10in the solid polymer electrolyte gate provides a much higher gate capacitance than the commonly used SiO2back gate,which is usually about 300nm thick11.In situ Raman measurements monitor the doping.The G peak stiffens and sharpens for both electron and hole doping,but the2D peak shows a different response to holes and electrons.The ratio of the intensities of the G and 2D peaks shows a strong dependence on doping,making it a sensitive parameter to monitor the doping.Figure1a shows a schematic diagram of our experimental setup for transport and Raman measurements.(See Supplementary Information and Methods for details about device fabrication and measurements.)Figure1b shows the source–drain current (I SD)of the top-gated graphene as a function of electrochemical gate voltage.The gate dependence of the drain current(Fig.1b) shows ambipolar behaviour and is almost symmetric for both electron and hole doping.This is directly related to the band structure of graphene,where both electron and hole conduction are accessible by shifting the Fermi level.The I SD2V DS characteristics at different electrochemical gate voltages(Fig.1c) show linear behaviour,indicating the lack of significant Schottky barriers at the electrode–graphene interface.In order to compare our top-gating results with the usual back-gating measurements,it is necessary to convert the top-gate voltage into an effective doping concentration.In general,the application of a gate voltage(V G)creates an electrostatic potential difference f between the graphene and the gate electrode,and the addition of charge carriers leads to a shift in the Fermi level(E F).Therefore,V G is given byV G¼E Feþfð1Þwith E F/e being determined by the chemical(quantum) capacitance of the graphene,and f being determined by the geometrical capacitance C G.As discussed in the Methods section, for the back gate,f)E F/e,whereas for top gating the two terms in equation(1)are comparable.The Fermi energy in graphene changes as E F(n)¼h j v F jffiffiffiffiffiffip np, where j v F j¼1.1Â106ms21is the Fermi velocity2,3.For the top gate,f¼ne/C TG,where C TG is the geometric capacitance(TG denotes‘top gate’).From equation(1)we getV TG¼hÀj v F jffiffiffiffiffiffip npeþneTGð2ÞUsing the numerical values:C TG¼2.2Â1026F cm22(as given in the Methods section)and v F¼1.1Â106ms21,V TGðvoltsÞ¼1:16Â10À7ffiffiffinpþ0:723Â10À13nð3Þwhere n is in units of cm22.Equation(3)allows us to estimate the doping concentration at each top-gate voltage(V TG).Note that,as in back gating,we also obtain the minimum source–drain current atfinite top-gate voltage(V n TG¼0.6V),as seen in Fig.1b. Accordingly,a positive(negative)V TG2V n TG induces electron (holes)doping.Figure2a plots the resistivity of our graphene layer(extracted from Fig.1b knowing the sample’s aspect ratio:W/L¼1.55)as a function V TG.Figure2b shows the back-gate response of the same sample(without electrolyte).There is an increase in resistivity maximum($6k V)after pouring the electrolyte,which may originate from the creation of more charged impurities on thesample.Figure 2a,b also show that,for both top-gate (TG)and back-gate (BG)experiments,the resistivity does not decay sharply around the Dirac point.Indeed,it has been suggested that the sharpness of the resistivity around the Dirac point and the finite offset gate voltage (V n BG )depend on charged impurities 12.The conductivity minimum (s min )(resistivity maximum)is obtained when the Fermi level is at the Dirac point.This is generally around $4e 2/h (ref.2).In both our back-and top-gate experiments the conductivity minimum is reduced by the contact resistance,because measurements are performed in the two-probe configuration,or possible contaminations at the contact–graphene interface.Minimum conductivities in the range from 2e 2/h to 10e 2/h have been reported recently 12,with the spread assigned to charged impurities.Figure 2c shows the change in mobility (using the simple Drude model 12m ¼(en r )21)as a function of doping for our TG /BG experiments.The Drude model can be safely used here,because the sample length ($5m m)is much more than the transport mean free path ($100nm)11–13.The mobility is smaller in the TG case.This is consistent with the reduction in conductivity minimum and can be attributed to the presence of added charge impurities from the polymer electrolyte.This reduction in mobility for TG is consistent with ref.4.Despite the limitations in ‘on’and ‘off ’currents,our large graphene device shows an on /off ratio of $5.5.This is higherthan previously reported results 4for devices using 20-nm-thick SiO 2as a top gate (on /off ratio $1.5)and 40-nm-thick PMMA 14as a top gate (on /off ratio $2).Our demonstration of top gating with polymer electrolyte paves the way for further research.For example,by using water as the top gate and extensive graphene cleaning we could achieve an on–off ratio of 40(see Supplementary Information).However,because the water droplet evaporates in less than one minute,this arrangement is not stable over long periods of time,unlike the solid polymer electrolyte.Raman spectroscopy is a powerful non-destructive technique for identifying the number of layers,structure,doping and disorder of graphene 15–19.The prominent Raman features in graphene are the G-band at G ($1,584cm 21),and the 2D band at $2,700cm 21involving phonons at the K þD k points in the brillouin zone 15.The value of D k depends on the excitation laser energy,due to a double-resonance Raman process and the linear dispersion of the phonons around K (refs.15,20,21).The effect of doping induced by SiO 2back gating on the G-band frequency and full-width at half-maximum (FWHM)has been reported recently 16,17.This results in G peak stiffening and a decrease in linewidth for both electron and hole doping.The decrease in linewidth saturates when the doping causes a Fermi-level shift bigger than half the phonon energy 16,17.The strong electron–phonon coupling in graphene and metallic nanotubes gives rise to Kohn anomalies in the phonon dispersions 21–23,whichresultFrom Ar laser (514 nm)84V DS (V)×50 objectiveGraphene––––––––––––+++++++++++++++++––––Figure 1Electrochemically top-gated graphene transistor.a ,Schematic diagram of the experimental setup.The black dotted box between the drain and source indicates the thin layer of polymer electrolyte (PEO þLiClO 4),and the blue stripe between the electrodes represents the graphene sample.The left inset shows the optical image of a single-layer graphene connected between source and drain gold electrodes.Scale bar:5m m.The right inset is a schematic illustration of polymer electrolyte top gating,with Li þ(magenta)and ClO 42(cyan)ions and the Debye layers near each electrode.b ,I SD as a function of top-gate voltages (V TG ).The inset shows the I SD time dependence at fixed V TG .The dotted line corresponds to the Dirac point (change neutrality point).c ,I SD versus V DS at different top-gate voltages.The black dotted line corresponds to the value of V DS at which the data in Fig.1b was measured.in phonon softening.The G peak stiffening is due to the non-adiabatic removal of the Kohn anomaly from the G point 16.The FWHM(G)sharpening occurs because of the blockage of the decay channel of phonons into electron–hole pairs due to the Pauli exclusion principle,when the electron–hole gap becomes higher than the phonon energy 16.A similar behaviour is observed for the longitudinal optic (LO)G 2peak of doped metallic nanotubes 8,9,24,for exactly the same reasons.We now consider the evolution of the Raman spectra.Figure 3a plots the Raman spectra in the G (left)and 2D (right)region atdifferent values of the top-gate voltage.Figure 3b,c shows how the Raman parameters (the positions of the G and 2D peaks,and the FWHM of the G peak)vary as a function of doping.The Raman shift of the G peak has its smallest value ($1,583.1cm 21)at V TG ¼V n TG $0.6V ,and increases by up to 30cm 21for hole doping and up to 25cm 21for electron doping (Fig.3b,top panel).The decrease in the FWHM of the G peak (Fig.3b,bottom panel)for both hole and electron doping is similar to earlier results 16,17,even though it extends to a much wider doping range.Moreover,the 2D and G peak show very different dependencies on the gate voltage.For electron doping,the position of the 2D peak does not change much (,1cm 21)until a gate voltage of $3V (corresponding to $3.2Â1013cm 22).At higher gate voltages,there is a significant softening of $20cm 21and for hole doping,the position of the 2D peak increases $20cm 21(Fig.3c).Figure 4plots the variation of the intensity ratio of the G and 2D peaks (I (2D)/I (G))as a function of doping.The dependence of the 2D mode is much stronger than that of the G mode and hence I (2D)/I (G)is a strong function of the gate voltage.Therefore,this is a new,important parameter to estimate the doping density.Figures 3and 4also show that I (2D)/I (G)and the position of the G peak should not be used to estimate the number of graphene layers,contrary to what is suggested in refs 25and 26.It is the shape of the 2D peak that is the most effective way to identify a single layer,as shown in ref.15.The theoretical trends in Fig.3b have been discussed before 16.These confirm previous back-gate experiments,but extend the data to a much wider electron and hole range 16.In this wider range,the theory still captures the main features,such as the asymmetry between electron and hole doping 27.However,the quantitative agreement is poor for large doping,and requires us to reconsider the non-adiabatic calculations of ref.27.At low doping,the uncertainty,as estimated by comparing the Raman data and theory,is at most 25%.Here we focus on the novel trend of the 2D peak position as a function of doping.This is experimentally and conceptually different from the interpretation of the G peak.The 2D peak originates from a second-order,double-resonant (DR)Raman scattering mechanism 15,20,28.The position of the 2D peak can be evaluated by computing the energy of the phonons involved in the second-order,DR scattering process.As shown in ref.15,because of the trigonal warping of the p 2p *bands and the angular dependence of the electron–phonon coupling (EPC)matrix elements,only phonons oriented along the G KM direction and with q .K give a non-negligible contribution to the 2D peak.The precise value of q is fixed by the constraint that the energy of the incoming laser photons (h v L )has to exactly match a real electronic transition.In particular,only a wavevector q 0can be found for which h v L ¼e (p *,q 0)2e (p ,q 0),where e (n ,k )is the energy of an electron of band index n and wavevector k ,and q 0is measured from K and is in the G KM direction.Once q 0has been determined,q ¼2q 0þK .Among the six phonons corresponding to the q vector that satisfy the DR conditions,only the highest optical branch has an energy compatible with the measured Raman shift.Therefore,the theoretical position of the 2D peak corresponds to twice the energy of the Raman active phonon.In order to be comparable with our experiments performed at 514nm,we consider h v L ¼2.5eV .Assuming the p /p *bands to be linear,with a slope of 14.1eV (ref.21),this laser energy selects a phonon with wavevector q of modulus 0.844in 2p /a 0units,where a 0is the lattice parameter of graphene.The dependence of the position of the 2D peak on doping can be investigated by calculating,within a density functional theory (DFT)framework,the effects of the Fermi-level shift on the phononfrequencies.2016M o b i l i t y (c m 2 V –1 s –1)121051041031026420n (×1012cm –2)–2–4Figure 2Conductivity minimum in graphene.a ,Resistivity as a function of the top-gate voltage.The dots are extracted from Fig.1b for W /L ¼1.55.b ,Resistivity of the same sample as a function of the back-gate voltage.The dotted black line marks the Dirac point.c ,Mobility as a function of doping for top gating (dashed red line)and back gating (solid blue line).In doped graphene,the shift of the Fermi energy induced by doping has two major effects:(1)a change of the equilibrium lattice parameter with a consequent stiffening /softening of the phonons,and (2)the onset of effects beyond the adiabatic Born–Oppenheimer approximation that modify the phonon dispersion close to the Kohn anomalies (KAs)16,27.The excess (defect)charge results in an expansion (contraction)of the crystal lattice.This has been extensively investigated in order to understand graphite intercalation compounds 29.We model the shift of the Fermi surface by varying the number of electrons in the system.Because the total energy of charged systems diverges,electrical neutrality is achieved by imposing a uniformly charged background.T o avoid electrostatic interactions between the graphene layer and the background,the equilibrium lattice parameter of the charged systems is computed in the limit of a unit cell with an infinite volume.Such a limit is reached by using a model with periodic boundary conditions where thegraphene layers are spaced by 60A˚vacuum.Phonon calculations for charged graphene are carried out with the same unit cells used for the determination of the corresponding lattice parameter.Interestingly,although we observe that for charged graphene the frequency of border zone phonons converges onlyfor layer spacing as large as 60A ˚,the frequency of the E 2gmode is already converged for a 7.5A˚spacing.This suggests that border zone phonons are much more sensitive to the local environment.Dynamic effects beyond the Born–Oppenheimer approximation play a fundamental role in the description of the KA in single-walled carbon nanotubes and in graphene 16,22,27.However,for the 2D peak measured at 514nm,the influence of dynamic effects is expected to be negligible,because the phonons giving rise to the 2D peak are far away from the KA at K .Thus,we can calculate the position of the 2D peak without dynamic corrections (seeMethods).1,5501,5751,6002,600Raman shift (cm –1)2,6502,7002,750I n t e n s i t y (a .u .)Fermi energy (meV)1,6101,605P o s (G ) (c m –1)P o s (2D ) (c m –1)F W H M (G ) (c m –1)1,6001,5951,5901,5851,5801816141210864Electron concentration (×1013 cm –2)2,7002,6902,6702,6602,680Figure 3Raman spectra of graphene as a function of gate voltage.a ,Raman spectra at values of V TG between 22.2V and þ4.0V.The dots are theexperimental data,the black lines are fitted lorentzians,and the red line corresponds to the Dirac point.The G peak is on the left and the 2D peak is on the right.b ,Position of the G peak (Pos(G));top panel)and its FWHM (FWHM(G);bottom panel)as a function of electron and hole doping.The solid blue lines are the predicted non-adiabatic trends from ref.16.c ,Position of the 2D peak (Pos(2D))as a function of doping.The solid line is our adiabatic DFT calculation.The comparison between the theoretical and the experimental position of the 2D peak is shown in Fig.3c.Our calculations are in qualitative agreement with experiments,considering the spectral resolution and the Debye layer estimation.Indeed,as experimentally determined,the position of the 2D peak is predicted to decrease for an increasing electron concentration in the system.This allows the use of the 2D peak to discriminate between electron and hole doping.The tradeoff between measured and theoretical data can be partially explained in terms of the electrostatic difference existing between the experiments and the model DFT system.In our simulations,the 2D phonon frequencies are very sensitive to the charged background used to ensure global electrical neutrality.In the experiments,the electric charge on the graphene surface is induced by capacitative coupling.The electrostatic interaction between graphene and the electrolyte could thus further modify the 2D phonons.This does not affect the G peak to the same extent,due to the much lower sensitivity of the G phonon to an external electrostatic potential.Other effects not captured by DFT,such as quasi-particle interactions,should also be considered to fully explain the 2D peak behaviour.In conclusion,we have demonstrated the first graphene top gating using a solid polymer electrolyte.We reached much higher electron and hole doping than standard SiO 2back gating.The Raman measurements show that the G and 2D peaks have different doping dependence and the 2D /G height ratio changes significantly with doping,making Raman spectroscopy an ideal tool for graphene nanoelectronics.METHODSEXPERIMENTALGraphene samples were produced by micro-mechanical cleavage of bulk graphite and deposited on Si covered with 300-nm SiO 2(IDB T echnologies).Raman spectroscopy was used to select single layers 15.Source and drain Cr /Auelectrodes were then deposited by photolithography as shown in Fig.1a.Cr was used instead of Ti to ensure less reactivity with the electrolyte.T op gating was achieved by using solid polymer electrolyte consisting of LiClO 4and PEO in the ratio 0.12:1,as previously used for nanotubes 10.The gate voltage was applied by placing a platinum electrode in the polymer layer 10.Electrical measurements were carried out using Keithley 2400source meters.Figure 1shows a schematic of the experimental setup for transport and Raman measurements.Ramanspectra of pristine and back-gated samples were measured with a Renishaw spectrometer.In situ measurements on top-gated graphene were recorded using a WITEC confocal (Â50objective)spectrometer with 600lines /mm grating,514.5nm excitation and very low power level ($1mW)to avoid any heating effect.The spectral resolution of the two instruments was determined by fitting the Rayleigh line to a gaussian profile and is 1.9cm 21for the Renishawspectrometer and 9.4cm 21for the WITEC spectrometer.The Raman spectra were then fitted with Voigt functions.The FWHM of the lorentzian components give the relevant information on the phonon lifetime.Note that a very thin layer of polymer electrolyte does not absorb the incident laser light.Furthermore,the Raman spectrum of the polymer does not cover the signatures of graphene (see Supplementary Information).The measured source–drain currents (I SD )and G and 2D are reversible at different gate voltages.Note that for each point a given gate voltage is applied for 10min to stabilize I SD .In transport experiments a small hysteresis in current ($1m A)is observed during forward and backward gate voltage scans (at intervals of 10min for each gate-voltage step).The Raman hysteresis,however,is less than 1cm 21.GATE VOLTAGES AND DOPING LEVELSWe now discuss how the applied gate voltage is converted to the doping in graphene.Let us first consider back gating.For a back gate,f ¼ne /C BG ,where n is the carrier concentration and C BG is the geometrical capacitance.For single-layer graphene,C BG ¼ee 0/d BG ,where e is the dielectric constant of SiO 2($4),e 0is the permittivity of free space and d BG is 300nm.This results in a very low gate capacitance C BG ¼1.2Â1028F cm 22.Therefore,for a typical value of n ¼1Â1013cm 22,the potential drop is f ¼100V ,much larger than E F /e .Hence,V BG %f and the doping concentration becomes n ¼h V BG ,where h ¼C BG /e .However,most samples have a zero-bias (V BG ¼0)doping of,typically,a few 1011cm 22(refs 1,18,19).This is reflected in the existence of a finite gate voltage V n BG ,at which the Hall resistance is zero and the longitudinal resistivity reaches its maximum.This maximum is associated with the Fermi level positioned between the valence and the conduction bands (the Dirac point).Accordingly,a positive (negative)V BG 2V n BG induces electron (holes)doping,with an excess electron surface-concentration of n ¼h (V BG 2V n BG ).A value of h %7.2Â1010cm 22V 21is found from Hall effect measurements,and agrees with the estimation from the gate geometry 1–3.We shall now consider the present case of top gating.When a field is applied,free cations tend to accumulate near the negative electrode,creating a positive charge there and an uncompensated negative charge near the interface.The accumulation is limited by the concentration gradient,which opposes theCoulombic force of the electric field.When a steady state is reached,the statistical space charge distribution resembles that shown in Fig.1.This layer ofcharge around an electrode is called the Debye layer.As shown in Fig.1,when we apply a positive potential (V TG )to the platinum top gate (with respect to the source electrode connected to graphene),the Li þions become dominant in the Debye layer formed at the interface between the graphene and the electrolyte.The Debye layer of thickness d TG acts like a parallel-plate capacitor.Therefore,the geometrical capacitance in this case is C TG ¼ee 0/d TG ,where e is the dielectric constant of the PEO matrix.The Debye length is given by d TG ¼(2ce 2/ee 0kT )21/2for a monovalent electrolyte,where c is theconcentration of the electrolyte,e is the electric charge and kT is the thermal energy.In principle,d TG can be calculated if the electrolyte concentration is known.However,in the presence of a polymer,the electrolyte ions formcomplexes with the polymer chains 30.Hence,the exact concentration of ions is not amenable to measurement.For polymer electrolyte gating the thickness of the Debye layer is reported to be a few nanometres ($1–5nm)(ref.10).The dielectric constant e of PEO is 5(ref.31).Assuming a Debye length of 2nm,we obtain a gate capacitance C TG ¼2.2Â1026F cm 22,which is much higher than C BG .Therefore,the first term in equation (1)cannot be neglected.THEORYCalculations were performed within the generalized gradient approximation (GGA)32.We used planewaves (30Ry cutoff)and pseudopotential approaches.The semimetallic character of the system was treated by performing electronic integration with a Fermi–Dirac first-order spreading with asmearing of 0.01Ry.Integration over the brillouin zone was covered out with a uniform 72Â72Â1k -points grid.Calculations were carried out using the Quantum Espresso code ().Received 30October 2007;accepted 28February 2008;published 30March2008.Fermi energy (meV)3.53.02.52.01.5I (2D )/I (G )1.00.5Electron concentration (×1013 cm –2)Figure 4The influence of hole and electron doping on the 2D and G peaks.The ratio of the intensity of the 2D peak in the Raman spectrum to the intensity of the G peak exhibits a clear dependence on the electron concentration,and can therefore be used to monitor the level of doping in graphene-based devices.References1.Novoselov,K.S.et al .Electric field effect in atomically thin carbon films.Science 306,666–669(2004).2.Novoselov,K.S.et al .Two-dimensional gas of massless Dirac fermions in graphene.Nature 438,197–200(2005).3.Zhang,Y .,Tan,Y .-W.,Stormer,H.L.&Kim,P .Experimental observation of the quantum Hall effectand Berrys´phase in graphene.Nature 438,201–204(2005).4.Lemme,M.C.,Echtermeyer,T.J.,Baus,M.&Kurz,H.A Graphene field-effect device.IEEE Electron.Device Lett.28,282–284(2007).5.Han,M.Y .,Ozyilmaz,B.,Zhang,Y .&Kim,P .Energy band-gap engineering of graphenenanoribbons.Phys.Rev.Lett.98,206805(2007).6.Sirringhaus,H.et al .High-resolution inkjet printing of all-polymer transistor circuits.Science 290,2123–2126(2000).7.Dhoot,A.S.et al .Beyond the metal–insulator transition in polymer electrolyte gated polymerfield-effect transistors.Proc.Natl A 103,11834–11837(2006).8.Nguyen,K.T.,Gaur,A.&Shim,M.Fano lineshape and phonon softening in single isolated metalliccarbon nanotubes.Phys.Rev.Lett.98,145504(2007).9.Das,A.et al .Doping in carbon nanotubes probed by raman and transport measurements.Phys.Phys.Lett.99,136803(2007).10.Lu,C.,Fu,Q.,Huang,S.&Liu,J.Polymer electrolyte-gated carbon nanotube field-effect transistor.Nano Lett.4,623–627(2004).11.Geim,A.K.&Novoselov,K.S.The rise of graphene.Nature Mater.6,183–191(2007).12.Tan,Y .-W.et al .Measurement of scattering rate and minimum conductivity in graphene.Phys.Rev.Lett.99,246803(2007).13.Morozov,S.V .et al .Giant intrinsic carrier mobilities in graphene and its bilayer.Phys.Rev.Lett.100,016602(2008).14.Huard,B.et al .Transport measurements across a tunable potential barrier in graphene.Phys.Rev.Lett.98,236803(2007).15.Ferrari,A.C.et al .Raman spectrum of graphene and graphene layers.Phys.Rev.Lett.97,187401(2006).16.Pisana,S.et al .Breakdown of the adiabatic Born–Oppenheimer approximation in graphene.Nature Mater.6,198–201(2007).17.Y an,J.,Zhang,Y .,Kim,P .&Pinczuk,A.Electric field effect tuning of electron–phonon coupling ingraphene.Phys.Rev.Lett.98,166802(2007).18.Casiraghi,C.,Pisana,S.,Novoselov K.S.,Geim A.K.&Ferrari A.C.Raman fingerprint of chargedimpurities in graphene.Appl.Phys.Lett.91,233108(2007).19.Stampfer,C.et al .Raman imaging of charged domains in graphene on SiO 2.Appl.Phys.Lett.91,241907(2007).20.Thomsen,C.&Reich,S.Double resonant Raman scattering in graphite.Phys.Rev.Lett.85,5214–5217(2000).21.Piscanec,S.,Lazzeri,M.,Mauri,F.,Ferrari,A.&Robertson,J.Kohn anomalies and electron–phononinteractions in graphite.Phys.Rev.Lett.93,185503(2004).22.Piscanec,S.,Lazzeri,M.,Robertson,J.,Ferrari,A.C.&Mauri,F.Optical phonons in carbonnanotubes:Kohn anomalies,Peierls distortions,and dynamic effects.Phys.Rev.B 75,035427(2007)zzeri,M.,Piscanec,S.,Mauri,F.,Ferrari,A.C.&Robertson,J.Phonon linewidths and electron–phonon coupling in graphite and nanotubes.Phys.Rev.B 73,155426(2006).24.Tsang,J.C.,Freitag,M.,Perebeinos,V .,Liu,J.&Avouris,P .H.Doping and phonon renormalizationin carbon nanotubes.Nature Nanotech.2,725–730(2007).25.Gupta,A.,Chen,G.,Joshi,P .,Tadigadapa,S.&Eklund,P .C.Raman scattering from high-frequencyphonons in supported n -graphene layer films.Nano Lett.6,2667–2673(2006).26.Graf,D.et al .Spatially resolved Raman spectroscopy of single-and few-layer graphene.Nano Lett.7,238–242(2007).zzeri,M.&Mauri,F.Nonadiabatic Kohn anomaly in a doped graphene monolayer.Phys.Rev.Lett.97,266407(2006).28.Maultzsch,J.,Reich,S.&Thomsen,C.Chirality-selective Raman scattering of the D mode in carbonnanotubes.Phys.Rev.B 61,121407(2001).29.Pietronero,L.&Strassler,S.Bond-length change as a tool to determine charge transfer and electron–phonon coupling in graphite intercalation compounds.Phys.Rev.Lett.47,593–596(1981).30.Salomon,M.,Xu,M.,Eyring,E.M.&Petrucci,S.Molecular structure and dynamics ofLiC104–polyethylene oxide-400(dimethyl ether and diglycol systems)at 258C.J.Phys.Chem.98,8234–8244(1994).31.Boyd,R.H.The dielectric constant of lamellar semicrystalline polymers.J.Polym.Sci.Polym.Phys.Ed.21,505–514(1983).32.Perdew,P .,Burke,K.&Ernzerhof,M.Generalized gradient approximation made simple.Phys.Rev.Lett.77,3865–3868(1996).AcknowledgementsS.P .acknowledges funding from Pembroke College and the Maudslay Society.A.C.F.acknowledges funding from the Royal Society and Leverhulme Trust.A.K.S.thanks the Department of Science and T echnology,India,for financial support.Correspondence and requests for materials should be addressed to A.C.F.and A.K.S.Supplementary Information accompanies this paper on /naturenanotechnology.Reprints and permission information is available online at /reprintsandpermissions/。
石墨烯(graphene)中的几个基本物理问题
周光辉
湖南师范大学物理与信息科学学院 Electronic address: ghzhou@ 合作者: 丁开和博士、 程 芳博士 (长沙理工大学) 廖文虎博士(吉首大学) 付 喜博士(湖南科技学院) 周本胡、谌雄文、王海艳(博士生) 王书恒、郭雄杰 (硕士生)
Wenhu Liao, Guanghui Zhou and Fu Xi, J. Appl. Phys. 104, 126105 (2008)
介电函数为:
Fig.1: Band structure for one-dimensional-confined graphene
3 2 1 0 1 2 3
a
III. 石墨烯纳米带电光磁性质及应力调控 How to open and manipulate (gap ( engineering ) a gap?
1. Quantum confinement: Nanoribbon or nanostripe; 2. Disorder: lattice defects, impurities, chemical doping, etc; 3. Edge chemical modifications; 4. External field, static E B field, electromagnetic field (optical properties); 5. Mechanically, substrate or intentional applied strain, stress, deformation, etc.
Εn,kx
0.2 0.1 0 0.1 0.2 kx a
Fig.1(a) : 173-AGNR金属型, 导带和价带关于费米能EF =0镜 像对称,导带在kx=0点自下而上 分别为n=0,1,2,3,4,5,6…13.
二维材料磁阻拟合模型
二维材料磁阻拟合模型引言:随着科技的不断进步,二维材料作为一种新型的材料,展现出了许多独特的性质和应用潜力。
其中,二维材料的磁阻特性备受关注。
磁阻是指材料在磁场中的电阻变化程度,是一个重要的电磁特性参数,对于理解和应用二维材料具有重要意义。
本文将介绍二维材料磁阻拟合模型的原理和应用。
一、磁阻的基本概念磁阻是指材料在磁场中的电阻变化程度,它与材料的电子结构和磁场的相互作用有关。
当外加磁场作用于材料时,材料内部的电子会受到磁场的影响,电子的运动受到阻碍,导致电阻发生变化。
磁阻的大小可以通过磁阻率来表示,磁阻率是指材料在磁场中的电阻与无磁场时的电阻之比。
二、二维材料磁阻的特性二维材料具有独特的电子结构和晶格结构,因此其磁阻特性也与传统材料有所不同。
研究表明,二维材料的磁阻呈现出多种不同的行为,如正常磁阻、反常磁阻和磁电阻等。
其中,正常磁阻是指材料在磁场中电阻的增加或减少;反常磁阻是指材料在磁场中电阻出现不连续的变化;磁电阻是指材料在磁场中电阻的变化与磁场的方向和大小有关。
三、二维材料磁阻拟合模型的原理为了更好地理解和描述二维材料的磁阻特性,研究者们提出了各种不同的拟合模型。
其中,最简单和常用的是线性拟合模型,它假设磁阻率与磁场呈线性关系。
然而,实际的二维材料磁阻往往不能满足线性关系,因此需要引入更复杂的拟合模型,如二次拟合模型、指数拟合模型等。
这些拟合模型可以更准确地描述二维材料的磁阻特性。
四、二维材料磁阻拟合模型的应用二维材料的磁阻特性对于电子器件的设计和应用具有重要意义。
通过对磁阻特性的研究和拟合,可以得到材料的电子结构和磁场的相互作用信息,为器件性能的优化提供参考。
此外,磁阻拟合模型还可以用于预测和设计新型二维材料的磁阻特性,为材料的合成和制备提供指导。
五、总结二维材料的磁阻特性是一个复杂而有趣的研究课题。
通过建立合适的磁阻拟合模型,可以更好地理解和描述二维材料的磁阻特性。
随着对二维材料的研究不断深入,相信二维材料磁阻拟合模型将会为材料科学和电子器件的发展做出更大的贡献。
钕铁硼永磁体电镀镍工艺优化及镀层性能
钕铁硼永磁体电镀镍工艺优化及镀层性能张秀芝;支晨琛;薛康【摘要】以钕铁硼永磁体为基体,电沉积制备镍镀层.以镍镀层的耐蚀性、结合力、显微硬度和腐蚀电位为性能指标,通过正交试验得到最优配方和工艺条件为:NiSO4·6H2O 250 g/L,NiCl2·6H2O 30 g/L,H3BO3 35 g/L,糖精钠0.5 g/L,十二烷基硫酸钠(SDS)1g/L,pH 5.0,电流密度2.0 A/dm2,温度50℃.在最佳工艺下制备的镍镀层结晶细致、均匀,结合力为9级,显微硬度为644.0 HV.与钕铁硼基体相比,Ni镀层在3.5% NaCl溶液中的腐蚀电位正移了0.43 V,腐蚀电流密度降低了近2个数量级,表明电镀镍可提高钕铁硼的耐蚀性.【期刊名称】《电镀与涂饰》【年(卷),期】2016(035)009【总页数】6页(P454-459)【关键词】钕铁硼永磁体;电镀镍;耐蚀性;结合力;显微硬度;正交试验【作者】张秀芝;支晨琛;薛康【作者单位】太原科技大学材料科学与工程学院,山西太原030024;太原科技大学材料科学与工程学院,山西太原030024;太原科技大学材料科学与工程学院,山西太原030024【正文语种】中文【中图分类】TQ153.12First-author's address: Material Science and Engineering Institute,Taiyuan University of Science and Technology,Taiyuan 030024, China钕铁硼(NdFeB)稀土永磁体因其优异的矫顽力和磁性能而广泛应用于电子产品、微波技术、核磁共振成像、风力发电、新能源汽车等高科技领域[1-4]。
钕铁硼中富钕相的化学性质极其活泼,导致NdFeB永磁体的耐蚀性很差,从而严重限制了其在许多领域的进一步应用和发展[5-7]。
目前NdFeB防护的主要手段是在其中添加合金元素[8-10]或进行表面镀覆[11-16]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :0901.0485v 1 [c o n d -m a t .m e s -h a l l ] 5 J a n 2009Contact resistance in graphene-based devicesS.Russo ∗,1,2M.F.Craciun,1M.Yamamoto,1A.F.Morpurgo,3and S.Tarucha 1,41Department of Applied Physics,The University of Tokyo,Tokyo 113-8656,Japan2Kavli Institute of Nanoscience,Delft University of Technology,Lorentzweg 1,2628CJ Delft,The Netherlands3DPMC and GAP,University of Geneva,quai Ernest-Ansermet 24,CH-1211Geneva 4,Switzerland4Quantum Spin Information Project,ICORP,Japan Science and Technology Agency,Atsugi-shi,243-0198,JapanWe report a systematic study of the contact resistance present at the interface between a metal (Ti)and graphene layers of different,known thickness.By comparing devices fabricated on 11graphene flakes we demonstrate that the contact resistance is quantitatively the same for single-,bi-,and tri-layer graphene (∼800±200Ωµm ),and is in all cases independent of gate voltage and temperature.We argue that the observed behavior is due to charge transfer from the metal,causing the Fermi level in the graphene region under the contacts to shift far away from the charge neutrality point.The versatility of graphene-based materials is illus-trated by the large variety of novel electronic phenomena that have been recently discovered in these systems.Examples are provided by Klein tunneling in single layers and the opening of a gate tunable band gap in bilayers 1,2,3,4,5,6,7.This versatility,together with the surprisingly high values of carrier mobility 8-which exceed by far those of technologically relevant semicon-ductors such as Silicon-make graphene-based materials promising candidates for possible electronic device applications 2.Whereas considerable work has focused on the electronic properties of bulk graphene,virtually no experiments have addressed the properties of metal/graphene interfaces 9,10,11,12,13.This is somewhat surprising,since these interfaces will unavoidably be present in future electronic device,and may crucially affect their performance.In recently demonstrated single-molecule sensors,for instance,graphene trilayers have been claimed to be better suited than single-layers because of a lower contact resistance,leading to a higher device sensitivity (the measurements of the values of contact resistance,however,were not discussed in any detail -see Ref.[4]and related online supporting material).Not only in the realm of electronic applications,but also for many transport experiments of fundamental interest,the quality of graphene/metal contacts is of crucial importance.For example,the simplest shot-noise measurements require the use of a two terminal configu-ration,and it was recently argued 14that properly taking into account the quality of the contacts is essential to interpret the experimental data correctly.In order to better understand the influence of the contacts we have performed a series of measurements of the contact resistance (R C )present at the interface between Ti/Au electrodes and graphene layers of dif-ferent thickness (single,double and triple layer).The Ti/Au bilayer was chosen because,together with Cr/Au,it is most commonly used as electrode.In addition,2a reliable quantitative determination of the contact resistance.All measurements were taken using a lock-in technique (excitation frequency:19.3Hz),in the linear transport regime,at temperatures ranging from 50mK to 300K,depending on the specificdevice.FIG.1:a)The inset shows the total device resistance R 2p measured at T =250mK in a bilayer graphene with Ti/Au contacts for fixed device width (W =5.5µm)and several different contact separations (from high to low resistance L =1.4,1.7,3.5,6and 8.8µm,respectively).The main panel shows the scaling of the device resistance vs.L ,for different values of fixed V bg ( −70V,∗−50V,◦−30V,△−10V,▽10V,•18V,⋆30V, 50V, 70V ).Continuous lines are linear fits to the experimental data.The contact resistance extracted from the intercept at L=0at each fixed V bg in the range −70V <V bg <70V is shown in panel (c).One of the methods most commonly used to determine the contribution of the resistance present at an interface between two different materials is by means of a scaling analysis of the resistance,measured in a two probe configuration in devices with different contact separa-tion.Specifically,the two-probe resistance of a graphene device reads R 2p (V bg )=2R C (V bg )+R G (V bg ),where R G =ρG (V bg )L/W is the contribution of graphene to the resistance (ρG (V bg )graphene resistivity)and R C (V bg )is the (contact)resistance of one metal/graphene interface.Experimentally,R C (V bg )is obtained by measuring the resistance of devices having different lengths L ,and extrapolating the data to L =0(while keeping fixed W).The inset of Fig.1a shows measurements of R 2p (V bg )performed on devices fabricated on a bilayer graphene flake,with different contacts separations (L ranging from 1.4µm to 8.8µm )and fixed conductive channel width (W =5.5µm ).As it appears from the main graph in Fig.1a,at each fixed value of V bg the total device resistance scales linearly with L .The deviations from such a linear dependence are small,indicating that the contact resistance for the different electrodes is approximately the same.From the linear extrapolation of R 2p we determine the intercept at L =0as a function of V bg .It appears that R C is only weakly dependent on V bg even in the charge neutrality region (see Fig.1b),in contrast to the resistance of bilayer graphene,which exhibits a pronounced peak.We have also checked the scaling as a function of contact width but fixed channel length,by comparing two devices fabricated on the same flake.In this case R C is givenby (R Dev 12p−ρG (V bg )L Dev 1/W Dev 1)/2,with ρG (V bg )=(R Dev 12p −R Dev 22p)(L Dev 1/W Dev 1−L Dev 2/W Dev 2)−1.In Fig.2a-d we show the results of this experiments for layers of different thickness,with the light grey lines representing values obtained for R C as a function of V bg .Consistently with the previous results,also these ex-periments show that R C is a gate independent quantity over the full back gate range (∼−70V <V bg <70V ),and that its value (∼800Ωµm )does not depend on the thickness of graphene layer.Finally,we have extracted the value of R C by compar-ing directly two and four probe resistance measurements.In a four-probe configuration only the resistance of the graphene channel is measured,i.e.R G (V bg )=R 4p .From the value of R 4p and the known device geometry we obtain the resistivity of graphene,and use it to extract the contact resistance from resistance measured in a two-terminal configuration R 2p .In Fig.2e we plot R 2p and R 4p versus V bg ,together with the extracted R C .Once again we find that R C ∼800Ωµm and gate voltage independent.The fact that all these three independent transport methods (scaling of L ,W ,and comparison of two-and four-probe measurements)give quantitatively consistent results confirms the validity of our analysis.Note also that measurements performed at different temperature give the same result,indicating that contact resistance is temperature independent (or only very weakly temperature dependent)up to room temperature.A remarkable result of our measurements emerges when comparing the estimated value of R C for each different few layer graphene device (see Fig.3).Even though graphene-based materials of different thickness correspond to truly different electronic systems,with unique and characteristic low-energy electronic prop-erties,the value of R C that we have obtained from all our measurements is independent of the number of layers:at least up to 3layers R C =800±200Ωµm .Since the low-energy electronic properties of single-,bi-,3FIG.2:Gate-voltage dependence of R C(light gray curve)ex-tracted from the scaling with device width of R2p,on single layers in(a)(with L=2.75µm,W=0.8and2.4µm respec-tively for the continuous and dashed line measurements),on double layers in(b)(L=1.26µm,W=1.05and1.8µm re-spectively for the continuous and dashed line measurements), and on trilayers in(c,d)(in(c)L=1.2µm,W=1.62and1.94µm respectively for the continuous and dashed line,in(d)L=1.25µm,W=1.66and2.12µm respectively for the continuous and dashed line measurement).e)Gate-voltage de-pendence of R C obtained from the comparison of two and four probe measurements,as described in the text,for a double layer device(W=3.3µmL=1.96µm).and tri-layer are markedly different20,the independence of R C from layer thickness suggests that a substantial charge transfer from the metal contact to the graphene shifts the Fermi level far from the degeneracy point.This same argument may also explain why R C is independent on V bg,since the density of charge transferred from the metal contact can easily be much larger than the typical modulation induced by the back gate voltage.Indeed,ithas been predicted theoretically that a large transfer of charge should occur between many different metals andgraphene12.For Ti,however,no calculations have been yet performed.In conclusion we have conducted a systematic study in transport experiments of the contact resistanceat graphene-metal(Ti/Au)interface,using single, FIG.3:Summary plot of R C estimated for11different fewlayer graphene devices.double and triple layer graphene.Employing three independent methods we have established that R C is∼800±200Ωµm,independent of back gate voltage, of temperature and of layer thickness.A significantcharge transfer at the graphene-metal interface,which shifts the Fermi level of the few-layer graphene far away from degeneracy point,is the likely explanation for this unexpected result.We acknowledgefinancial support from FOM(AFM and SR)and the Japan Society for the Promotion of Science, grant P07372(MFC).M.Y.acknowledgefinancial support from the Grant-in-Aid for Young Scientists A (No.20684011)and ERATO-JST(No.080300000477). S.T.acknowledgesfinancial support from the Grant-in-Aid for Scientific Research S(No.19104007),B(No. 18340081),JST-CREST,and Special Coordination Funds for Promoting Science and Technology.1K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y. Zhang,S.V.Dubonos,I.V.Grigorieva,and A.A.Firsov, Science306,666(2004);K.S.Novoselov,A.K.Geim,S. V.Morozov,D.Jiang,M.I.Katsnelson,I.V.Grigorieva, S.V.Dubonos,and A.A.Firsov,Nature438,197(2005);Y.Zhang,Y.Tan,H.L.Stormer,and P.Kim,Nature438, 201(2005).2A.K.Geim and K.S.Novoselov,Nature Mater.6,183 (2007).3M.I.Katsnelson,K.S.Novoselov,and A.K.Geim,Nature4Physics2,620(2006).4E.McCann,Phys.Rev.B74,161403(2006).5T.Ohta,A.Bostwick,T.Seyller,K.Horn,and E.Roten-berg,Science313,951(2006).6E.V.Castro,K.S.Novoselov,S.V.Morozov,N.M.R.Peres,J.M.B.Lopes dos Santos,Johan Nilsson,F.Guinea,A.K.Geim,and A.H.Castro Neto,Phys.Rev.Lett.99216802(2007).7J.B.Oostinga,H.B.Heersche,X.Liu,A.F.Morpurgo, and L.M.K.Vandersypen,Nature Mater.7,151(2008). 8K.I.Bolotin,K.J.Sike,Z.Jian,G.Fundenberg,J.Hone,P.Kim and H.L.Stormer Solid State Commun.146,351-355 (2008).9P.Blake,R.Yang,S.V.Morozov,F.Schedin,L.A.Pono-marenko,A.A.Zhukov,I.V.Grigorieva,K.S.Novoselov,A.K.Geim,arXiv:0811.1459.10E.J.H.Lee,K.Balasubramanian,R.T.Weitz,M.Burghard,and K.Kern,Nature Nanotechnology3,486 (2008).11B.Huard,N.Stander,J.A.Sulpizio,and D.Goldhaber Gordon,Phys.Rev.B78,121402(R)(2008).12G.Giovannetti,P. A.Khomyakov,G.Brocks,V.M.Karpan,J.van den Brink,and P.J.Kelly,Phys.Rev.Lett.101,026803(2008).13S.Malola,H.Hakkinen,and P.Koskinen,arXiv:0811.1459. 14J.Cayssol,B.Huard,and D.Goldhaber-Gordon,Preprint at¡/abs/0810.4568¿(2008).15H.H.Heersche,P.Jarillo-Herrero,J.B.Oostinga,L.M.K.Vandersypen,and A.F.Morpurgo,Nature446,56-59 (2007).16P.Blake,K.S.Novoselov,A.H.Castro Neto,D.Jiang,R.Yang,T.J.Booth,A.K.Geim,E.W.Hill,Appl.Phys.Lett.91,063124(2007).17D.S.L.Abergel,A.Russell,and V.I.Falko,Appl.Phys.Lett.91,063125(2007).18Z.H.Ni,H.M.Wang,J.Kasim,H.M.Fan,T.Yu,Y.H.Wu,Y.P.Feng,and Z.X.Shen,Nano Letters7,2758-2763 (2007).19R.Golizadeh-Mojarad,and S.Datta,arXiv:0710.2727. til,L.Henrard,Phys.Rev.Lett.97,036803(2006);B.Partoens,F.M.Peeters,Phys.Rev.B74,075404(2006).。