三门镇初中2018-2019学年七年级下学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三门镇初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)已知一个正方形纸片面积为32cm2,则这个正方形纸片的边长为()
A. 8 cm
B. 4 cm
C. 8 cm
D. 4 cm
【答案】B
【考点】平方根,算术平方根
【解析】【解答】设这个正方形纸片的边长为x(x为一个正数).
根据题意得:x2=32.
所以x= =4 .
故答案为:B.
【分析】设这个正方形纸片的边长为x(x为一个正数).根据正方形的面积=边长的平方可得:x2=32.由算术平方根的意义可求解。

2.(2分)如图,由下列条件不能得到直线a∥b的是()
A. ∠1=∠2
B. ∠1=∠3
C. ∠1+∠4=180°
D. ∠2+∠4=180°
【答案】C
【考点】平行线的性质
【解析】【解答】解:A、∵∠1=∠2,∴a∥b,因此A不符合题意;
B、∵∠1=∠3,∴a∥b,因此B不符合题意;
C、∠1+∠4=180°,∠1与∠4是邻补角,不能证明a∥b,因此C符合题意;
D、∵∠2+∠4=180°,∴a∥b,因此D不符合题意;
故答案为:C
【分析】根据平行线的性质对各选项逐一判断即可。

3.(2分)在下列各数中,无理数是()
A. ﹣
B. ﹣0.1
C.
D. 36
【答案】C
【考点】无理数的认识
【解析】【解答】解:A、是分数,是有理数,不符合题意;
B、是分数,是有理数,不符合题意;
C、是无理数,符合题意;
D、是整数,是有理数,不符合题意.
故答案为:C.
【分析】无理数是无限不循环小数和开方开不尽的数,不能写作两整数之比;得到正确选项.
4.(2分)若不等式组无解,则实数a的取值范围是()
A. a≥-1
B. a<-1
C. a≤1
D. a≤-1
【答案】C
【考点】解一元一次不等式组
【解析】【解答】解:由①得:x≥4-a
由②得:-3x>-9
解之:x<3
∵原不等式组无解
∴4-a≥3
解之:a≤1
故答案为:C
【分析】先求出不等式组中的每一个不等式的解集,再根据原不等式组无解,列出关于a的不等式,解不等式即可。

注意:4-a≥3(不能掉了等号)。

5.(2分)一元一次不等式的最小整数解为()
A.
B.
C.1
D.2
【答案】C
【考点】一元一次不等式的特殊解
【解析】【解答】解:
∴最小整数解为1.
故答案为:C.
【分析】先解不等式,求出不等式的解集,再从中找出最小整数即可。

6.(2分)如果直线MN外一点A到直线MN的距离是2 cm,那么点A与直线MN上任意一点B所连成的线段AB的长度一定()
A. 等于2 cm
B. 小于2 cm
C. 大于2 cm
D. 大于或等于2 cm
【答案】D
【考点】垂线段最短
【解析】【解答】解:根据“在连接直线外一点与直线上各点的线段中,垂线段最短”,
可知2 cm是连接点A与直线MN上各点的线段中最短线段的长度
故答案为:D
【分析】根据垂线段最短,可得出答案。

7.(2分)如图,直线AB,CD交于O,EO⊥AB于O,∠1与∠3的关系是()
A. 互余
B. 对顶角
C. 互补
D. 相等
【答案】A
【考点】余角、补角及其性质,对顶角、邻补角
【解析】【解答】∵EO⊥AB于O,∴∠EOB=90°,∴∠1+∠3=90°,则∠1与∠3的关系是互余.故答案为:A.
【分析】根据对顶角相等得到∠2=∠3,再由EO⊥AB于O,得到∠1与∠3的关系是互余.
8.(2分)晓影设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小1,晓影
按照此程序输入后,输出的结果应为()
A. 2016
B. 2017
C. 2019
D. 2020
【答案】B
【考点】实数的运算
【解析】【解答】输出的数为,故答案为:B.
【分析】根据运算程序法则即可求解。

9.(2分)适合下列二元一次方程组中的()
A. B. C. D.
【答案】C
【考点】二元一次方程组的解
【解析】【解答】把分别代入各个方程组,A、B、D都不适合,只有C适合.
故答案为:C.
【分析】将x=2、y=-1,分别代入各个方程组A、B、C、D中,判断即可。

10.(2分)下列说法中错误的是()
A.中的可以是正数、负数或零
B.中的不可能是负数
C.数的平方根有两个
D.数的立方根有一个
【答案】C
【考点】平方根,立方根及开立方
【解析】【解答】A选项中表示a的立方根,正数,负数和零都有立方根,所以正确;
B选项中表示a的算术平方根,正数和零都有算术平方根,而负数没有算术平方根,所以正确;
C选项中正数的平方根有两个,零的平方根是零,负数没有平方根,所以数a是非负数时才有两个平方根,所以错误;
D选项中任何数都有立方根,所以正确。

故答案为:C
【分析】正数有两个平方根,零的平方根是零,负数没有平方根,任何一个数都有一个立方根,A选项中被开方数a可以是正数,负数或零,B选项中的被开方数只能是非负数,不能是负数,C选项中只有非负数才有平方根,而a有可能是负数,D选项中任何一个数都有一个立方根。

11.(2分)在这些数中,无理数有()个.
A. 1
B. 2
C. 3
D. 4
【答案】B
【考点】无理数的认识
【解析】【解答】解:依题可得:
无理数有:-,,
∴无理数有2个.
故答案为:B.
【分析】无理数定义:无限不循环小数,由此即可得出答案.
12.(2分)用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()
①②③④
A. ①②
B. ②③
C. ③④
D. ①④
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:试题分析:
把y的系数变为相等时,①×3,②×2得,

把x的系数变为相等时,①×2,②×3得,

所以③④正确.
故答案为:C.
【分析】观察方程特点:若把y的系数变为相等时,①×3,②×2,就可得出结果;若把x的系数变为相等时,
①×2,②×3,即可得出答案。

二、填空题
13.(4分)如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:
解:∵AD∥BC(已知),
∴∠1=∠3(________).
∵∠1=∠2(已知),
∴∠2=∠3.
∴BE∥________(________).
∴∠3+∠4=180°(________).
【答案】两直线平行,内错角相等;DF;同位角相等,两直线平行;两直线平行,同旁内角互补
【考点】平行线的判定与性质
【解析】【分析】根据平行线性质:两直线平行,内错角相等;
根据平行线判定:同位角相等,两直线平行;
根据平行线性质:两直线平行,同旁内角互补.
14.(1分)如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.
【答案】53°
【考点】对顶角、邻补角
【解析】【解答】解:∵∠2和∠COE为对顶角
∴∠2=∠COE=32°
∵∠1+∠COE+∠BOE=180°
即95°+32°+∠BOE=180°
∴∠BOE=53°
故答案为:53°。

【分析】根据对顶角相同,可求∠COE的度数,因为∠AOB为平角,根据平角等于180度,即可求得∠1+∠COE+∠BOE的和为180°,从而得出∠BOE的度数。

15.(1分)如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.
【答案】90°
【考点】平行线的性质
【解析】【解答】解:∵CE、AE分别平分∠ACD、∠CAB,
∴∠1=∠DCE=∠ACD,∠2=∠BAE=∠CAB,
∴∠ACD=2∠1,∠CAB=2∠2,
又∵AB∥CD,
∴∠CAB+∠ACD=180°,
∴2∠2+2∠1=180°,
∴∠2+∠1=90°.
故答案为:90°.
【分析】根据角平分线定义得∠ACD=2∠1,∠CAB=2∠2,再由平行线性质得∠CAB+∠ACD=180°,代入、计算即可得出答案.
16.(1分)是二元一次方程ax+by=11的一组解,则2017﹣2a+b=________.
【答案】2028
【考点】代数式求值,二元一次方程的解
【解析】【解答】解:∵是二元一次方程ax+by=11的一组解,
∴代入得:﹣2a+b=11,
∴2017﹣2a+b=2017+11=2028,
故答案为:2028.
【分析】将二元一次方程的解代入方程,求出﹣2a+b的值,再整体代入求值。

17.(1分)点A,B在数轴上,以AB为边作正方形,该正方形的面积是49.若点A对应的数是-2,则点B对应的数是________.
【答案】5
【考点】数轴及有理数在数轴上的表示,算术平方根
【解析】【解答】解:∵正方形的面积为49,
∴正方形的边长AB==7
∵点A对应的数是-2
∴点B对应的数是:-2+7=5
故答案为:5
【分析】根据正方形的面积求出正方形的边长,就可得出AB的长,然后根据点A对应的数,就可求出点B 表示的数。

18.(3分)把下列各数填在相应的横线上
﹣8,π,﹣|﹣2|,,,﹣0.9,5.4,,0,﹣3.6,1.2020020002…(每两个2之间多一个0)整数________;负分数________;无理数________.
【答案】﹣8,,,0;﹣0.9,﹣3.6;π,,1.2020020002….
【考点】实数及其分类
【解析】【解答】解:整数﹣8,﹣|﹣2|,,0;
负分数﹣0.9,﹣3.6;
无理数π,,1.2020020002…;
故答案为:﹣8,﹣|﹣2|,,0;﹣0.9,﹣3.6;π,,1.2020020002….
【分析】考查无理数、有理数、整数、分数的定义。

无理数:无限不循环小数;除无理数之外的都是有理数。

另外,要记住:是无理数。

三、解答题
19.(5分)在数轴上表示下列数(要准确画出来),并用“<”把这些数连接起来.-(-4),-|
-3.5|,,0,+(+2.5),1
【答案】解:如图,
-|-3.5|<0< <1 <+(+2.5)< -(-4)
【考点】数轴及有理数在数轴上的表示,有理数大小比较,实数在数轴上的表示,实数大小的比较
【解析】【分析】将需化简的数进行化简;带根号的无理数,需要在数轴上构造边长为1的正方形,其对
角的长度为;根据每个数在数轴上的位置,左边的数小于右边的数.
20.(5分)阅读下面情境:甲、乙两人共同解方程组由于甲看错了方程①中的a,得
到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a、b的正确值,并计算
a2 017+(-b)2 018的值.
【答案】解:根据题意把代入4x﹣by=﹣2得:﹣12+b=﹣2,解得:b=10,把代入ax+5y=15
得:5a+20=15,解得:a=﹣1,所以a2017+(﹣b)2018=(﹣1)2017+(﹣×10)2018=0.
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,因此将甲得到的方程组的记为代入方程②求出b的值,而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出a的值,然后将a、b的值代入代数式计算求值。

21.(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
∴∠ACD=75°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质即可求得∠E的度数.
22.(5分)如图,已知DA⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+ ∠2=90°.求证:BC ⊥ AB.
【答案】证明:∵DE平分∠ADC,CE平分∠BCD,
∴∠1=∠ADE,∠2=∠BCE,
∵∠1+∠2=90°,
即∠ADE+∠BCE=90°,
∴∠DEC=180°-(∠1+∠2)=90°,
∴∠BEC+∠AED=90°,
又∵DA ⊥AB,
∴∠A=90°,
∴∠AED+∠ADE=90°,
∴∠BEC=∠ADE,
∵∠ADE+∠BCE=90°,
∴∠BEC+∠BCE=90°,
∴∠B=90°,
即BC⊥AB.
【考点】垂线,三角形内角和定理
【解析】【分析】根据角平分线性质得∠1=∠ADE,∠2=∠BCE,结合已知条件等量代换可得∠1+∠2=∠ADE+∠BCE=90°,根据三角形内角和定理和邻补角定义可得∠BEC=∠ADE,代入前面式子即可得∠BEC+∠BCE=90°,由三角形内角和定理得∠B=90°,即BC⊥AB.
23.(5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求
∠BOD.
【答案】解:∵∠BOD=∠AOC,∠AOC=∠AOE-∠COE
∴∠BOD=∠AOE-∠COE=90º-55º=35º
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等,可得∠BOD=∠AOC,再根据∠BOD=∠AOC=∠AOE-∠COE,代入数据求得∠BOD。

24.(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。

25.(5分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.
【答案】解:∵AB∥EF,
∴∠FRG=∠APR,
∵∠FRG=110°,
∴∠APR=110°,
又∵PS⊥GH,
∴∠SPR=90°,
∴∠APS=∠APR-∠SPR=20°,
∵AB∥CD,
∴∠PSQ=∠APS=20°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.
26.(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.。

相关文档
最新文档