三套初中奥数题

合集下载

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案试题一:代数问题题目:若\( a \)、\( b \)、\( c \)为正整数,且满足\( a^2 + b^2 + c^2 = 1 \),求\( a \)、\( b \)、\( c \)的值。

答案:由于\( a \)、\( b \)、\( c \)为正整数,且\( a^2 + b^2 + c^2 = 1 \),我们可以推断出\( a \)、\( b \)、\( c \)的值只能是1或0。

因为\( 1^2 = 1 \),而\( 2^2 = 4 \),所以\( a \)、\( b \)、\( c \)不能大于1。

经过尝试,我们可以发现只有当\( a = b = c = 0 \)或\( a = 1, b = 0, c = 0 \)(或其它两种排列)时,等式成立。

试题二:几何问题题目:在一个直角三角形ABC中,∠C是直角,AC = 6,BC = 8,求斜边AB的长度。

答案:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

所以,我们有:\[ AB^2 = AC^2 + BC^2 \]\[ AB^2 = 6^2 + 8^2 \]\[ AB^2 = 36 + 64 \]\[ AB^2 = 100 \]\[ AB = \sqrt{100} \]\[ AB = 10 \]试题三:组合问题题目:有5种不同的颜色的球,每种颜色有3个球,现在要从中选出3个球,求不同的选法总数。

答案:这是一个组合问题,我们可以使用组合公式来解决。

组合公式为:\[ C(n, k) = \frac{n!}{k!(n-k)!} \]其中\( n \)是总数,\( k \)是要选择的数目。

在这个问题中,\( n = 15 \)(因为有5种颜色,每种3个球),\( k = 3 \)。

所以:\[ C(15, 3) = \frac{15!}{3!(15-3)!} \]\[ C(15, 3) = \frac{15 \times 14 \times 13}{3 \times 2 \times 1} \]\[ C(15, 3) = 455 \]试题四:逻辑问题题目:有5个盒子,每个盒子里都装有不同数量的糖果,从1到5。

数学奥林匹克初中训练题(6套)

数学奥林匹克初中训练题(6套)

数学奥林匹克初中训练题(1)第 一 试一. 选择题.(每小题7分,共42分)( )1.已知33333a b c abc a b c++-=++,则22()()()()a b b c a b b c -+-+--的值为: (A)1 (B)2 (C)3 (D)4( )2.规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果对任意实数,a b 都有(,)a b Δ(,)(,),x y a b =则(,)x y 为:(A)(0,1) (B)(1,0) (C)(1,0)- (D)(0,1)-( )3.在ΔABC 中,211a b c=+,则∠A: (A)一定是锐角 (B)一定是直角 (C)一定是钝角 (D)非上述答案( )4.下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②2;a =③若点(,)P a b 在第三象限,则点1(,1)P a b --+在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等.其中正确的命题的个数是:(A)2个 (B)3个 (C)4个 (D)5个( )5.设P 为等腰Rt ΔABC 斜边AB 上或其延长线上一点,22S AP BP =+,那么:(A)22S CP (B)22S CP = (C)22S CP (D)不确定 ( )6.满足方程222()x y x y xy +=++的所有正整数解有:(A)一组 (B)二组 (C)三组 (D)四组二. 填空题.(每小题7分,共28分)1.一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问再过分钟,货车追上了客车.2.若多项式2228171642070P a ab b a b =-+--+,那么P 的最小值是 .3.如图1, ∠AOB=30O , ∠AOB 内有一定点P,且OP=10.在OA 上有一点Q,OB 上有一点R.若ΔPQR 周长最小,则最小周长是 .4.已知二次函数2(1)y ax a =≥的图象上两点A,B 的横坐标分别为1,2-,O 是坐标原点,如果ΔAOB 是直角三角形,则ΔAOB 的周长为 .第 二 试一.(20分)已知实数,,a b c 满足不等式,a b c b c a ≥+≥+,c a b ≥+,求a b c ++的值.二.(25分)如图2,点D 在ΔABC 的边BC 上,且与B,C 不重合,过点D 作AC 的平行线DE 交AB 于E,作AB 的平行线DF 交AC 于点F.又知BC=5.(1) 设ΔABC 的面积为S.若四边形AEFD 的面积为25S .求BD 长.(2) 若,AC 且DF 经过ΔABC 的重心G,求E,F 两点的距离.三.(25分)已知定理:”若三个大于3的质数,,a b c 满足关系式25a b c +=,则a b c ++是整数n 的倍数.”试问:上述定理中整数n 的最大可能值是多少?并证明你的结论.数学奥林匹克初中训练题(2)第一试一. 选择题.(每小题7分,共42分)( )1.有铅笔,练习本,圆珠笔三种学习用品.若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元.现购铅笔,练习本,圆珠笔各1件,共需:(A)1.2元 (B)1.05元 (C)0.95元 (D)0.9元( )2.三角形的三边,,a b c 都是整数,且满足7abc bc ca ab a b c ++++++=,则此三角形的面积等于:(A)2 (B)4 (C)4 (D)2( )3.如图1,ΔABC 为正三角形,PM ⊥AB,PN ⊥AC.设四边形AMPN, ΔABC 的周长分别是,m n ,则有: (A)1325m n (B)2334m n (C)80%83%m n (D)78%79%mn( )4.满足22(3)(3)6x y -+-=的所有实数对(,)x y ,使y x取最大值,此最大值为:(A)3+4+5+ (D)5( )5.设p .其中,,,a b c d 是正实数,且满足1a b c d +++=.则p 满足: (A)p >5(B)p <5 (C)p <2 (D)p <3( )6.如图2,点O 是正六边形ABCDEF 的中心,OM ⊥CD,N为OM 的中点.则:ABN BCN S S 等于:(A)9:5 (B)7:4 (C)5:3 (D)3:2二. 填空题.(每小题7分,共28分)1.若实数,x y 满足(1x y =,则x y += .2.如图3,CD 为直角ΔABC 斜边AB 上的高,DE ⊥AC.设ΔADE,ΔCDB,ΔABC 的周长分别是12,,p p p .当12p p p + 取最大值时,∠A= .3.若函数2543kx y kx kx +=++中自变量的取值范围是一切实数,则实数k 的取值范围是 .4.如图4所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= .第 二 试一.(共20分)n 是一个三位数,b 是一个一位数,且22,1a a b b ab ++都是整数,求a b +的最大值与最小值.二.(共25分)如图5,在ΔABC 中,∠A=60O ,O,I,H 分别是它的外心,内心,垂心.试比较ΔABC 的外接圆与ΔIOH 的外接圆的大小,证明你的论断.三.(共25分)求方程组33333x y z x y z ++=⎧⎨++=⎩的所有整数解.参考答案一.1.(B)数学奥林匹克初中训练题(四)第 一 试三. 选择题.(每小题7分,共42分)( )1.在11,,0.2002,7223πn 是大于3的整数)这5个数中,分数的个数为: (A)2 (B)3 (C)4 (D)5( )2.如图1,正方形ABCD 的面积为256,点F 在AD上,点E 在AB 的延长线上,Rt ΔCEF 的面积为200,则BE 的长为:(A)10 (B)11 (C)12 (D)15( )3.已知,,a b c 均为整数,且满足2223a b c +++<32ab b c ++.则以,a b c b +-为根的一元二次方程是:(A)2320x x -+= (B)2280x x +-=(C)2450x x --= (D)2230x x --=( )4.如图2,在Rt ΔABC 中,AF 是高,∠BAC=90O ,且BD=DC=FC=1,则AC 为:( )5.若222a b c a b c k c b a+++===,则k 的值为: (A)1 (B)2 (C)3 (D)非上述答案( )6.设0,0,26x y x y ≥≥+=,则224363u x xy y x y =++--的最大值是: (A)272(B)18 (C)20 (D)不存在四. 填空题.(每小题7分,共28分)1.方程222111013x x x x++=+的实数根是 . 2.如图3,矩形ABCD 中,E,F 分别是BC,CD 上的点,且2,3,4A B E C E F A D F S S S ===,则AEF S = .3.已知二次函数2(1)y x a x b =+++(,a b 为常数).当3x =时,3;y =当x 为任意实数时,都有y x ≥.则抛物线的顶点到原点的距离为 .4.如图4,半径为2cm ,圆心角为90O 的扇形OAB 的AB 上有一运动的点P.从点P 向半径OA 引垂线PH 交OA 于点H.设ΔOPH 的内心为I,当点P 在AB 上从点A 运动到点B 时,内心I 所经过的路径长为 .第 二 试一.(20分)在一个面积为1的正方形中构造一个如下的小正方形;将单位正方形的各边n 等分,然后将每个顶点和它相对应顶点最接近的分点连结起来,如图5所示.若小正方形的面积恰为13281,求n 的值. 二.(25分)一条笔直的公路l 穿过草原,公路边有一卫生站A,距公路30km 的地方有一居民点B,A,B 之间的距离为90km .一天某司机驾车从卫生站送一批急救药品到居民点.已知汽车在公路上行驶的最快速度是60/km h ,在草地上行驶的最快速度是30/km h .问司机应以怎样的路线行驶,所用的行车时间最短?最短时间是多少?三.(25分)从1,2,3,……,3919中任取2001个数。

三套初中奥数题及答案

三套初中奥数题及答案

初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。

两个单项式x²,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

数学奥林匹克初中训练题15套

数学奥林匹克初中训练题15套

数学奥林匹克初中训练题(一)第 一 试一. 选择题 1、已知33333a b c abca b c++-=++,则22()()()()a b b c a b b c -+-+--的值为:A .1B .2C .3D .42、规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果对任意实数,a b 都有(,)a b Δ(,)(,),x y a b =则(,)x y 为: A .(0,1) B .(1,0) C .(-1,0) D .(0,-1)3、在ΔABC 中,211a b c=+,则∠A:A .一定是锐角B .一定是直角C .一定是钝角D .非上述答案4、下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②2();a a =③若点(,)P a b 在第三象限,则点1(,1)P a b --+在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等.其中正确的命题的个数是:A .2个B .3个C .4个D .5个5、设P 为等腰Rt ΔABC 斜边AB 上或其延长线上一点,22S AP BP =+,那么: A . 22CP S < B .22CP S = C .22CP S > D .不确定6、满足方程222()x y x y xy +=++的所有正整数解有:A .一组B .二组C .三组D .四组 二. 填空题1、一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问再过 分钟,货车追上了客车.2、若多项式2228171642070P a ab b a b =-+--+,那么P 的最小值是 .3、如图1, ∠AOB=30O , ∠AOB 内有一定点P ,且OP=10.在OA 上有一点Q ,OB 上有一点R.若ΔPQR 周长最 小,则最小周长是 .4、已知二次函数2(1)y ax a =≥的图象上两点A ,B 的横坐标分别为1,2-,O 是坐标原点,如果ΔAOB 是直角三角形,则ΔAOB 的周长为 .第 二 试一、已知实数,,a b c 满足不等式,a b c b c a ≥+≥+,c a b ≥+,求a b c ++的值.二、如图2,点D 在ΔABC 的边BC 上,且与B ,C 不重合,过点D 作AC 的平行线DE 交AB 于E ,作AB 的平行线DF 交AC 于点F.又知BC=5.(1)设ΔABC 的面积为S.若四边形AEFD 的面积为25S .求BD 长.(2)若2,AC AB =且DF 经过ΔABC 的重心G ,求E ,F 两点的距离.三、已知定理:”若三个大于3的质数,,a b c 满足关系式25a b c +=,则a b c ++是整数n 的倍数.”试问:上述定理中整数n 的最大可能值是多少?并证明你的结论.数学奥林匹克初中训练题(二)第 一 试一、选择题1、有铅笔,练习本,圆珠笔三种学习用品.若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元.现购铅笔,练习本,圆珠笔各1件,共需:A .1.2元B .1.05元C .0.95元D .0.9元2、三角形的三边,,a b c 都是整数,且满足7abc bc ca ab a b c ++++++=,则此三角形的面积等于: A .32B .24C .34D .223、如图1,ΔABC 为正三角形,PM ⊥AB ,PN ⊥AC.设四边形AMPN , ΔABC 的周长分别是,m n ,则有: A .5321<<n m B .4332<<nm C .%79%78<<nm D .%83%80<<nm4、满足22(3)(3)6x y -+-=的所有实数对(,)x y ,使y x取最大值,此最大值为:A .322+B .42+C .533+D .53+5、设333717171p a b c =+++++371d ++.其中,,,a b c d 是正实数,且满足1a b c d +++=.则p 满足:A .p >5B .p <5C .p <2D .p <36、如图2,点O 是正六边形ABCDEF 的中心,OM ⊥CD ,N 为OM 的中点.则:ABN BC N S S 等于:A .9:5B .7:4C .5:3D .3:2二、填空题1、若实数,x y 满足22(1)(1)1x x y y ++++=,则 x y += .2、如图3,CD 为直角ΔABC 斜边AB 上的高,DE ⊥AC.设ΔADE ,ΔCDB ,ΔABC 的周长分别是12,,p p p .当12p p p +取最大值时,∠A= .3、若函数2543kx y kx kx +=++中自变量的取值范围是一切实数,则实数k 的取值范围是 .4、如图4所示,线段AB 与CD 都是⊙O 中的弦,其 108,,36,O O AB AB a CDCD b ====,则⊙O 的半径R= .第 二 试一.(共20分)n 是一个三位数,b 是一个一位数,且22,1a a bb ab ++都是整数,求a b +的最大值与最小值.二.(共25分)如图5,在ΔABC 中,∠A=60O ,O ,I ,H 分别是它的外心,内心,垂心.试比较ΔABC 的外接圆与ΔIOH 的外接圆的大小,证明你的论断.三.(共25分)求方程组33333x y z x y z ++=⎧⎨++=⎩的所有整数解.数学奥林匹克初中训练题(三)第 一 试一、选择题1、在112,,0.2002,(3222),7223n n π----(n 是大于3的整数)这5个数中,分数的个数为:A .2B .3C .4D .52、如图1,正方形ABCD 的面积为256,点F 在AD 上,点E 在AB 的延长线上,Rt ΔCEF 的面积为200,则BE 的长为: A .10 B .11 C .12 D .153、已知,,a b c 均为整数,且满足2223a b c +++<32ab b c ++.则以,a b c b +-为根的一元二次方程是:A .2320x x -+=B .2280x x +-=C .2450x x --=D .2230x x --=4、如图2,在Rt ΔABC 中,AF 是高,∠BAC=90O,且 BD=DC=FC=1,则AC 为:A .32 B .3 C .2 D .335、若222a b c a b c k cba+++===,则k 的值为:A .1B .2C .3D .非上述答案6、设0,0,26x y x y ≥≥+=,则224363u x xy y x y =++--的最大值是: A .272B .18C .20D .不存在二、填空题1、方程222111013x x x x++=+的实数根是 .2、如图3,矩形ABCD 中,E ,F 分别是BC ,CD 上的点,且4,3,2===∆∆∆ADF CEF ABE S S S ,则AEF S ∆= .3、已知二次函数2(1)y x a x b =+++(,a b 为常数).当3x =时,3;y =当x 为任意实数时,都有y x ≥.则抛物线的顶点到原点的距离为 .4、如图4,半径为2cm ,圆心角为90O 的扇形OAB 的 AB 上有一运动的点P .从点P 向半径OA 引垂线PH 交OA 于点H.设ΔOPH 的内心为I ,当点P 在 AB 上从点A 运动到点B 时,内心I 所经过的路径长为 .第 二 试一、(20分)在一个面积为1的正方形中构造一个如下的小正方形;将单位正方形的各边n 等分,然后将每个顶点和它相对应顶点最接近的分点连结起来,如图5所示.若小正方形的面积恰为13281,求n 的值.二、(25分)一条笔直的公路l 穿过草原,公路边有一卫生站A ,距公路30km 的地方有一居民点B ,A ,B 之间的距离为90km .一天某司机驾车从卫生站送一批急救药品到居民点.已知汽车在公路上行驶的最快速度是60/km h ,在草地上行驶的最快速度是30/km h .问司机应以怎样的路线行驶,所用的行车时间最短?最短时间是多少?三、(25分)从1,2,3,……,3919中任取2001个数。

三套初中奥数题及标准答案

三套初中奥数题及标准答案

一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>05.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-a B.a小于-a C.a大于-a或a小于-a D.a不一定大于-a8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数 B.乘以同一个整式C.加上同一个代数式 D.都加上19.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多 B.多了 C.少了 D.多少都可能10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多B.减少C.不变D.增多、减少都有可能二、填空题(每题1分,共10分)1.19891990²-19891989²=______。

数学奥林匹克初中训练题(6套)综述

数学奥林匹克初中训练题(6套)综述

数学奥林匹克初中训练题(1)第一试一. 选择题 .( 每题 7 分,共 42 分)()1.已知 a3b3c33abc 3 ,则(a b)2(b c)2(a b)(b c) 的值为:a b c(A)1(B)2(C)3(D)4()2.规定” Δ”为有序实数对的运算, 假如(a, b)(c, d)( ac bd, ad bc ). 如果对随意实数a, b 都有 ( a, b)( x, y)( a,b), 则 (x, y) 为:(A) (0,1)(B)(1,0)(C)(1,0)(D) (0,1)()3.在ABC中 ,211, 则∠A:a b c(A) 必定是锐角(B)必定是直角(C)必定是钝角(D)非上述答案()4.以下五个命题 : ①若直角三角形的两条边长为3与4,则第三边长是5; ②( a )2a; ③若点P(a, b)在第三象限,则点 P1 (a,b1)在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形; ⑤两边及其第三边上的中线对应相等的两个三角形全等. 此中正确的命题的个数是:(A)2 个(B)3个(C)4个(D)5个()5.设 P 为等腰Rt ABC斜边 AB上或其延伸线上一点, S AP2BP2,那么:(A) S2CP 2(B)S2CP 2(C)S2CP 2(D)不确立()6.知足方程 x2y22( x y)xy 的全部正整数解有:(A) 一组(B)二组(C)三组(D)四组二. 填空题 .( 每题 7分,共28分 )1. 一辆客车 , 一辆货车和一辆小轿车在同一条直线上朝同一方向行驶, 在某一时辰 ,货车在中 , 客车在前 , 小轿车在后 , 且它们的距离相等.走了 10分钟 , 小轿车追上了货车 ; 又走了5分钟 , 小轿车追上了客车. 问再过分钟 , 货车追上了客车 .2. 若多项式P2a28ab 17b2 16 a 4b2070,那么 P 的最小值是.3. 如图 1,O∠ AOB内有必定点 P, 且 OP=10.∠ AOB=30,在 OA 上有一点Q,OB 上有一点 R.若PQR 周长最小 , 则最小周长是.4.已知二次函数yax 2 (a 1) 的图象上两点A,B的横坐标分别为1,2 ,O 是坐标原点 ,假如AOB 是直角三角形, 则AOB 的周长为第 二 试.一 .(20分 )已知实数a,b,c知足不等式ab c, bc a , ca b, 求a bc 的值 .二.(25 分) 如图2, 点 D 在 ABC 的边 BC 上 , 且与 B,C 不重合 , 过点D 作 AC 的平行线DE 交 AB 于 E, 作 AB 的平行线 DF 交 AC 于点 F. 又知 BC=5. (1) 设 ABC 的面积为 S. 若四边形 AEFD 的面积为 2S . 求5BD 长 .(2) 若 AC2AB, 且 DF 经过 ABC 的重心 G,求 E,F 两点的距离 .三 .(25 分 )已知定理 :”若三个大于 3 的质数 a, b, c 知足关系式 2a5b c ,则 a b c是整数 n 的倍数 .”试问 :上述定理中整数 n 的最大可能值是多少?并证明你的结论 .数学奥林匹克初中训练题(2)第一试一. 选择题 .( 每题 7 分,共 42 分)( )1.有铅笔,练习本,圆珠笔三种学惯用品. 若购铅笔 3 支 , 练习本 7 本 , 圆珠笔 1 支共需 3.15 元 ; 若购铅笔4 支,练习本 10 本, 圆珠笔 1 支共需4.2 元 . 现购铅笔 ,练习本 , 圆珠笔各 1 件,共需:元元元元( )2.三角形的三边 a,b,c 都是整数 , 且知足 abc bc caab a bc 7 , 则此三角形的面积等于:(A)3 2(C)3 2(B)4(D) 224( )3.如图 1,ABC 为正三角形 ,PM ⊥AB,PN ⊥AC.设四边形 AMPN,ABC 的周长分别是 m,n , 则有 :1 m 3 (B)2 m3 80% m m(A)n53n(C)83% (D) 78% 79%24nn( )4.知足 ( x3)2( y 3)26 的全部实数对( x, y) , 使y取最大值 , 此最大值x为 :(A) 32 2 (B)42 (C) 5 33 (D) 5 3( )5.设 p 37a 1 37b 1 37c137d1 . 此中 a,b,c, d 是正实数 , 且满足 ab c d 1. 则 p 知足 : (A) p > 5(B) p < 5 (C)p <2(D)p < 3( )6.如图 2, 点 O 是正六边形 ABCDEF 的中心 ,OM ⊥ CD,N为 OM 的中点 .则 S ABN :S BCN 等于:(A)9:5 (B)7:4 (C)5:3 (D)3:2二 . 填空题 .(每题 7 分 ,共 28 分)1. 若实数 x, y 知足 ( xx 2 1)( yy21)1则,x y.2.如图 3,CD 为直角 ABC 斜边 AB 上的高 ,DE ⊥AC.设p 1 p 2ADE, CDB, ABC 的周长分别是 p 1 , p 2 , p . 当p取最大值时 , ∠A= .3. 若函数 ykx 5 中自变量的取值范围是4kx kx 2 3一确实数 , 则实数 k 的取值范围是.4. 如图 4 所示 , 线段 AB 与 CD 都是⊙ O 中的弦 , 此中AB 108O , AB a, CD 36O ,CD b ,则⊙O的半径R=.第二试一.( 共 20分 ) n是一个三位数 , b是一个一位数 , 且a,a2b2都是整数 , 求a b 的b ab1最大值与最小值 .二.( 共 25分)如图 5, 在ABC中, ∠A=60O,O,I,H 分别是它的外心, 心里 , 垂心 . 试比较ABC的外接圆与IOH 的外接圆的大小, 证明你的论断 .x y z 3的全部三 .(共 25 分 )求方程组3y3z3x3整数解 .参照答案一.1.(B)数学奥林匹克初中训练题( 四 )第一试三. 选择题 .( 每题 7 分,共 42 分)(1,0.2002,13 2 22),n n2)1.在,(3( n是大于 3 的整数 )这 5 个722数中 ,分数的个数为 :(A)2(B)3(C)4(D)5()2.如图 1,正方形 ABCD的面积为256,点 F 在 AD 上,点E在AB的延伸线上 ,Rt CEF 的面积为200,则 BE 的长为 :(A)10(B)11(C)12(D)15 ()3.已知a, b, c均为整数 ,且知足a2b2 c 23< ab3b 2c .则以 a b,c b 为根的一元二次方程是 :(A) x23x20(B) x2 2 x80(C) x24x50(D) x2 2 x30()4.如图 2,在 Rt ABC 中 ,AF 是高 ,∠ BAC=90 O,且BD=DC=FC=1, 则 AC 为:(A) 32(B)3(C)2(D)33()5.若k 2a b2c a2b cc b a,则k的值为 :(A)1(B)2(C)3(D) 非上述答案()6.设x0, y0,2 x y 6 ,则u 4x23xy y 2 6x 3y 的最大值是:(A)27(B)18(C)20(D) 不存在2四 . 填空题 .(每题7 分,共 28分)1.方程1x2110的实数根是.x21x23x2.如图 3,矩形 ABCD中 ,E,F分别是 BC,CD上的点 ,且SABE 2 , S C E F 3 ,S ADF,4则SAEF=.3.已知二次函数数时,都有为.y x2( a 1)x b (a, b为常数).当x 3 时, y 3; 当x为随意实y x .则抛物线的顶点到原点的距离4.如图 4,半径为2cm ,圆心角为90O的扇形 OAB 的AB上有一运动的点 P.从点 P 向半径 OA 引垂线 PH 交 OA 于点 H.设OPH 的心里为 I,当点 P 在AB上从点 A 运动到点 B 时 ,心里I 所经过的路径长为.第二试一.(20 分 ) 在一个面积为 1 的正方形中结构一个以下的小正方形 ; 将单位正方形的各边n均分 , 而后将每个顶点和它相对应极点最靠近的分点连接起来,如图5所示 . 若小正方形的面积恰为1, 求n的值 . 3281二 .(25 分)一条笔挺的公路l 穿过草原,公路边有一卫生站A, 距公路30km的地方有一居民点B,A,B 之间的距离为 90km .一天某司机驾车从卫生站送一批抢救药品到居民点.已知汽车在公路上行驶的最迅速度是60km / h ,在草地上行驶的最迅速度是30km / h .问司机应以如何的路线行驶,所用的行车时间最短 ?最短时间是多少 ?三.(25 分 )从 1,2,3,, 3919 中任取 2001 个数。

初三奥数题及答案

初三奥数题及答案

初三奥数题及答案题目一:几何问题已知一个圆的半径为5厘米,圆内接一个等腰三角形,三角形的底边恰好是圆的直径。

求三角形的高。

解答:设等腰三角形的底边为AB,高为CD,其中A、B是圆上的两点,C是三角形的顶点。

由于AB是圆的直径,所以AB=10厘米。

设圆心为O,根据勾股定理,我们可以计算出OC的长度。

由于三角形AOC是直角三角形(因为OC是高,且AO是半径),我们有:\[ OC^2 + AC^2 = AO^2 \]\[ OC^2 + (5)^2 = (5\sqrt{2})^2 \]\[ OC^2 + 25 = 50 \]\[ OC^2 = 25 \]\[ OC = 5 \]由于三角形ABC是等腰三角形,所以AC=BC,我们可以设AC=BC=x厘米。

根据勾股定理,我们有:\[ x^2 = 5^2 + (10/2 - x)^2 \]\[ x^2 = 25 + (5 - x)^2 \]\[ x^2 = 25 + 25 - 10x + x^2 \]\[ 10x = 50 \]\[ x = 5 \]所以,三角形的高CD等于OC,即5厘米。

题目二:数列问题一个数列的前三项为1, 1, 2,从第四项开始,每一项都是其前三项的和。

求这个数列的前10项。

解答:已知数列的前三项为a_1=1, a_2=1, a_3=2。

根据题意,我们可以计算出后续项:- 第四项:a_4 = a_1 + a_2 + a_3 = 1 + 1 + 2 = 4- 第五项:a_5 = a_2 + a_3 + a_4 = 1 + 2 + 4 = 7- 第六项:a_6 = a_3 + a_4 + a_5 = 2 + 4 + 7 = 13- 以此类推,我们可以继续计算出后续项。

数列的前10项为:1, 1, 2, 4, 7, 13, 24, 44, 81, 149。

题目三:组合问题有5个不同的球和3个不同的盒子,每个盒子至少放一个球,求所有可能的放球方式。

三套初中奥数题及答案

三套初中奥数题及答案

初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。

两个单项式x2,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

初中奥数试题精选及答案

初中奥数试题精选及答案

初中奥数试题精选及答案
1. 题目:一个数列的前三项分别是1,2,3,从第四项开始,每一项都是前三项的和。

求数列的第10项是多少?
答案:数列的第10项是144。

2. 题目:一个长方体的长、宽、高分别是2cm、3cm、4cm,求其所有棱的总和。

答案:长方体的棱总和是48cm。

3. 题目:一个自然数,它加上100后是一个完全平方数,它加上168后也是一个完全平方数,求这个自然数。

答案:这个自然数是196。

4. 题目:一个圆的直径是10cm,求其面积。

答案:圆的面积是78.5平方厘米。

5. 题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

答案:数列的第10项是27。

6. 题目:一个三角形的三个内角的度数之和是多少?
答案:三角形的三个内角的度数之和是180度。

7. 题目:一个数的平方是289,求这个数。

答案:这个数是±17。

8. 题目:一个等腰三角形的两个底角相等,如果其中一个底角是40度,求顶角的度数。

答案:顶角的度数是100度。

9. 题目:一个数列的前三项是1,2,3,从第四项开始,每一项都是
前三项的和。

求数列的前10项的和。

答案:数列的前10项的和是144。

10. 题目:一个长方体的长、宽、高分别是3cm、4cm、5cm,求其体积。

答案:长方体的体积是60立方厘米。

九年级奥数题五篇

九年级奥数题五篇

九年级奥数题五篇1.九年级奥数题篇一1.甲、乙两船分别在一条河的A、B两地同时相向而行,甲顺流而下,乙逆流而上。

相遇时,甲乙两船行了相等的航程,相遇后继续前进。

甲到达B,乙到达A 后,都按照原路返航,两船第二次相遇时,甲船比乙船少行1000米。

如果从第一次相遇到第二次相遇时间间隔1小时20分,则河水的流速是多少?2.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

3.某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?4.一只小船静水中速度为每小时30千米,在176千米长河中逆水而行用了11个小时,求返回原外需要几个小时?5.一只船在河里航行,顺流而下每小时行18千米,已知这只船下行2小时恰好与上行3小时所行的路程相等,求船速和水速。

2.九年级奥数题篇二1、在一块底边长8m,高6.5m的平行四边形菜地里种萝卜。

如果每平方米收萝卜7.5kg,这块地可收萝卜多少kg?2、一块三角形钢板,底边长3.6dm,高1.5dm。

这种钢板每平方分米重1.8kg,这块钢板重多少kg?3、有一块梯形的麦田,上底136米,下底158米高62米,共收小麦19.8吨。

这块麦田有多少公顷?平均每公顷收小麦多少千克?4、一种微风吊扇的叶片是由三块梯形的塑料片组成的,已知每块塑料片上底3厘米,下底4厘米,高10厘米,做这个吊扇的三块叶片共需塑料片多少平方厘米?5、一个三角形和一个平行四边形面积相等。

已知三角形底是6厘米,高是5厘米,平行四边形底是15厘米,高是多少厘米?6、一个三角形的面积是4.5平方分米,底是5分米,高是多少平方分米?7、一个等边三角形的周长是18厘米,高是3.6厘米,它的面积是多少平方厘米?3.九年级奥数题篇三1、甲乙两队学生从相隔18千米的两地同时出发相向而行。

全国初三奥数试题及答案

全国初三奥数试题及答案

全国初三奥数试题及答案试题一:代数问题题目:若\( x \)和\( y \)满足\( x^2 - 5xy + 6y^2 = 0 \),求\( x \)和\( y \)的值。

解答:首先将方程分解为\( (x - 2y)(x - 3y) = 0 \),从而得到\( x = 2y \)或\( x = 3y \)。

将\( x = 2y \)代入原方程,得到\( y = 0 \),进而\( x = 0 \)。

将\( x = 3y \)代入原方程,得到\( y = 0 \)或\( y = 1 \),对应\( x = 3 \)。

所以,\( x \)和\( y \)的值可以是\( (0, 0) \)或\( (3, 1) \)。

试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为3和4,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边长度可以通过计算\( \sqrt{3^2 + 4^2} \)得到。

计算结果为\( \sqrt{9 + 16} =\sqrt{25} = 5 \)。

所以,斜边的长度是5。

试题三:组合问题题目:有5个不同的球和3个不同的盒子,将球放入盒子中,每个盒子至少有一个球,有多少种不同的放法?解答:首先,我们需要将5个球分成3组,每组至少有一个球。

这可以通过组合数\( C(5, 2) \)来计算,即从5个球中选择2个球组成一组的方法数。

计算得到\( C(5, 2) = 10 \)种分组方法。

然后,将这3组球分配到3个盒子中,有\( 3! \)种分配方法。

所以,总的放法数为\( 10 \times 3! = 60 \)种。

试题四:数列问题题目:一个等差数列的第3项是5,第5项是15,求这个数列的首项和公差。

解答:设等差数列的首项为\( a \),公差为\( d \)。

根据等差数列的性质,我们有\( a + 2d = 5 \)和\( a + 4d = 15 \)。

解这个方程组,我们得到\( a = -5 \)和\( d = 5 \)。

初中奥数真题试题及答案

初中奥数真题试题及答案

初中奥数真题试题及答案一、选择题(每题3分,共30分)1. 已知一个数列的前三项分别为1,2,4,且每一项都是前一项的两倍,那么这个数列的第5项是多少?A. 8B. 16C. 32D. 64答案:C2. 一个长方体的长、宽、高分别为a、b、c,且满足a+b+c=12,a^2+b^2+c^2=144,求这个长方体的体积是多少?A. 48B. 96C. 192D. 288答案:B3. 一个圆的半径为r,圆心到圆上任意一点的距离都等于半径,那么这个圆的面积是多少?A. πr^2B. 2πr^2C. 4πr^2D. 8πr^2答案:A4. 一个等差数列的首项为3,公差为2,那么这个数列的第10项是多少?A. 23B. 25C. 27D. 29答案:A5. 如果一个三角形的三边长分别为3,4,5,那么这个三角形的面积是多少?A. 3B. 4C. 6D. 9答案:C6. 一个正五边形的内角和是多少度?A. 540B. 720C. 900D. 1080答案:B7. 如果一个数的平方等于它本身,那么这个数可能是多少?A. 0B. 1C. -1D. 以上都有可能答案:D8. 一个等比数列的首项为2,公比为3,那么这个数列的第5项是多少?A. 486B. 729C. 1458D. 2187答案:B9. 一个圆的周长为2πr,那么这个圆的直径是多少?A. 2rB. 4rC. 6rD. 8r答案:A10. 如果一个数列的前三项分别为2,4,8,且每一项都是前一项的两倍,那么这个数列的第4项是多少?A. 16B. 32C. 64D. 128答案:B二、填空题(每题4分,共20分)11. 一个等差数列的首项为5,公差为3,那么这个数列的第8项是________。

答案:2912. 一个圆的面积为πr^2,如果这个圆的半径为5,那么这个圆的面积是________。

答案:25π13. 一个三角形的内角和为180度,如果一个三角形的两个内角分别为60度和80度,那么第三个内角是________。

简单初三奥数题大全(五篇)

简单初三奥数题大全(五篇)

简单初三奥数题大全(五篇)1.简单初三奥数题大全篇一1.哥哥和妹妹同时从甲到相距540米远的学校上学,哥哥每分钟走60米,妹妹每分钟走48米,哥哥到达学校后发现忘了拿铅笔,立即返回家去取,在途中遇到妹妹。

从开始上学到两人再相遇共有多少分钟?2.甲乙两队学生从相距2700米的两地同时出发,相向而行,一个同学骑自行车以每分钟150的速度在两队之间不停地往返联络,甲队每分钟行25米,乙队每分钟行20米,两队相遇时,骑自行车的同学共行了多少米?3.AB两人同时从相距3000米的家里相向而行,A每分钟行70米,B每分钟行80米,一只大狗与他同时出发,每分钟行100米,狗与B相遇后立即掉头向A跑去,遇到A后又向B跑去,直到AB两人相遇。

这只狗一共跑了多少米?4.家离图书馆4.8千米,弟弟从家出发以60米/分速度步行去图书馆。

15分钟后,哥哥骑自行车从家出发去追赶弟弟,自行车的速度是240米/分。

问:(1)哥哥在离家多远处追上弟弟?(2)哥哥追上弟弟后不久到达图书馆,又马上折回,过不久与弟弟相遇,那么相遇处离图书馆多少千米?5.小张和小王各自以一定的速度在周长为500米的跑道上跑步。

小王每分跑1 80米。

①小张和小王同时从一个地点出发,反向而行,75秒钟后两人相遇,求小张的速度。

②小张和小王同时从一个地点出发,沿同一方向跑步,经过多少分钟两人第一次相遇?2.简单初三奥数题大全篇二1、甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车。

小张和小王分别骑车从甲、乙两地出发,相向而行。

每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车。

已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了多少分钟?2、两辆汽车同时从相距360千米的两地相对开出,甲车每小时行33千米,乙车每小时比甲车少行6千米。

两车在途中相遇时,乙车比甲车多行多少千米?3、AB两地相距280千米,甲乙两辆汽车同时从两地相向而行,经过4小时相遇,甲车平均每小时行36千米,乙车每小时行多少千米?4、甲乙两车同时从A地去B地,甲车每小时行64千米,5小时后,甲车在乙车前面78千米,乙车每小时行多少千米?5、甲乙两辆汽车分别从AB两地出发,相向而行,当甲车行至距B地2/3处时,乙车超过中点30千米,这时甲车比乙车多行了45千米,AB两地相距多少千米?3.简单初三奥数题大全篇三1、小淘气看一本科技书,第一天看了全书的,第二天看了42页,这时看了的页数与剩下的页数比是2:5,这本科技书一共有多少页?2、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。

初中奥数试题及答案

初中奥数试题及答案

初中奥数试题及答案在初中数学学习过程中,奥数是一个重要的组成部分。

通过解决奥数试题,学生能够培养自己的逻辑思维能力和问题解决能力。

本文将提供一些初中奥数试题及答案,帮助学生更好地练习和巩固数学知识。

1. 试题一已知数列{an}满足a1=3,an+1=2an+1,求a5的值。

解答一:根据题意,我们可以列出数列的前几项:a1=3a2=2*a1+1=2*3+1=7a3=2*a2+1=2*7+1=15a4=2*a3+1=2*15+1=31a5=2*a4+1=2*31+1=63所以,a5的值为63。

2. 试题二已知平面上一个三角形的三个顶点坐标分别为A(3, 5),B(7, 9),C(9, 1),求三角形的面积ABC。

解答二:利用向量的方法来求解。

设向量AB为向量u,向量AC为向量v,则向量AB的坐标为(4,4),向量AC的坐标为(6,-4)。

根据向量的模长和向量之间的夹角公式,可以求得向量AB和向量AC的模长分别为:|u|=√[(4)^2+(4)^2]=√32|v|=√[(6)^2+(-4)^2]=2√13两个向量夹角θ的cos值可以通过向量的点积来计算,即:cosθ=(向量u·向量v)/(|u|*|v|)向量u·向量v=4*6+4*(-4)=8所以,cosθ=(8)/(√32*2√13)通过计算可以得知,cosθ=0.5进一步计算得到,θ≈60°根据三角形的面积公式,可以用向量的模长和夹角sin值求得面积S:S=0.5*|AB|*|AC|*sinθS=0.5*√32*2√13*sin60°=16*√13*√3/2=8√39所以,三角形ABC的面积为8√39。

3. 试题三如果二次方程x^2-7x+k=0有两个不同的实根,那么k的取值范围是多少?解答三:根据二次方程的判别式D=b^2-4ac,可以判断方程的根的性质。

对于方程x^2-7x+k=0,我们可以得到a=1,b=-7,c=k。

三套初中奥数题及答案

三套初中奥数题及答案

三套初中奥数题及答案初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都是有理数,并且a+b=0,那么a,b互为相反数。

2.正确的说法是整式与整式的和是整式。

3.不正确的说法是没有最大的负整数。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么b>a。

5.大于-π并且不是自然数的整数有4个。

6.不正确的说法的个数是1个。

7.a和- a的大小关系是a不一定大于- a。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边都加上1.改写后的文章:以下是初中奥数试题一的选择题,每题1分,共10分。

1.如果a,b都是有理数,并且a+b=0,那么a,b互为相反数。

2.正确的说法是整式与整式的和是整式。

3.不正确的说法是没有最大的负整数。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么b>a。

5.大于-π并且不是自然数的整数有4个。

6.不正确的说法的个数是1个。

7.a和- a的大小关系是a不一定大于- a。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边都加上1.答案:约等于17.278解析:直接代入计算即可,注意小数点后保留四位。

计算过程为:3.1416×7.5944+3.1416×(-5.5944)≈22.7328+(-17.4544)≈17.278.4.已知a+b=5,ab=6,则a²+b²的值是( )A.1B.13C.19D.31答案:B解析:根据(a+b)²=a²+b²+2ab,可得a²+b²=(a+b)²-2ab=5²-2×6=13.故选B。

5.已知函数f(x)满足f(1)=3,f(x+1)=f(x)+2x+1,则f(5)的值是( )A.21B.23C.25D.27答案:D解析:根据题意,可得f(2)=f(1)+2×1+1=6,f(3)=f(2)+2×2+1=11,f(4)=f(3)+2×3+1=18,f(5)=f(4)+2×4+1=27.故选D。

初三数学奥数试题及答案

初三数学奥数试题及答案

初三数学奥数试题及答案试题一:几何问题题目:在一个圆中,有一条弦AB,弦AB的长度为10厘米。

弦AB上的圆心角为30度。

求弦AB所对的圆心角的度数。

解答:根据圆的性质,弦AB所对的圆心角是弦AB上的圆心角的两倍。

因此,弦AB所对的圆心角为30°×2=60°。

试题二:代数问题题目:若x^2 - 5x + 6 = 0,求x的值。

解答:这是一个二次方程,可以通过因式分解来求解。

将方程分解为(x-2)(x-3)=0,得到x的两个解:x=2或x=3。

试题三:数列问题题目:一个等差数列的前三项分别为2, 5, 8,求这个数列的第20项。

解答:首先确定等差数列的公差d。

由于第二项减去第一项等于第三项减去第二项,所以d=5-2=3。

使用等差数列的通项公式a_n=a_1+(n-1)d,其中a_1是首项,n是项数。

将已知值代入公式,得到a_20=2+(20-1)×3=2+57=59。

试题四:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球,有多少种不同的放法?解答:首先,将5个球分为3组,有C(5,2)种分法。

然后,将分好的3组球放入3个不同的盒子中,有A(3,3)种放法。

根据乘法原理,总的放法为C(5,2)×A(3,3)=10×6=60种。

试题五:概率问题题目:一个袋子里有3个红球和2个蓝球,随机取出2个球,求取出的两个球都是红球的概率。

解答:首先计算总共的取球方式,即从5个球中取出2个球的组合数,C(5,2)=10。

然后计算取出两个红球的方式,即从3个红球中取出2个球的组合数,C(3,2)=3。

所以,取出两个红球的概率为3/10。

结束语:以上就是初三数学奥数试题及答案的全部内容。

奥数题目往往需要学生具备较强的逻辑思维能力和数学基础,希望这些题目能够帮助学生在数学学习上取得更好的成绩。

初中生奥数练习题及答案

初中生奥数练习题及答案

初中生奥数练习题及答案1.初中生奥数练习题及答案篇一一收割机每天收割小麦12公顷,割完麦地的2/3后,效率提高到原来的5/4倍,因此比预定时间提早1天完成,问麦地共有多少公顷?设麦地有x公顷,因为已割完了2/3,所以还剩1/3,得方程:(1/3)x/12=(1/3)x/[12*(5/4)]+1化简得:(5/3)x=(4/3)x+60(1/3)x=60x=180所以麦地有180公顷。

2.初中生奥数练习题及答案篇二牡丹杯足球赛11轮(即每个队均需比赛11场),胜一场得3分,平一场得一分,负一场得0分.国兴三高俱乐部队所胜场数是所负场数的4倍,结果共得25分,此次杯赛该球队胜负平各几场?设胜x场,负y场,则平11-x-y场x=4y3x+11-x-y=25x=8y=2胜8场,负2场,平1场3.初中生奥数练习题及答案篇三某筑路队承担了修一条公路的任务。

原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。

这条公路全长多少米?想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。

根据每天多修80米可求已修的天数,进而求公路的全长。

解:已修的天数:(720×3-1200)÷80=960÷80=12(天)公路全长:(720+80)×12+1200=800×12+1200=9600+1200=10800(米)答:这条公路全长10800米。

4.初中生奥数练习题及答案篇四某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。

每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。

但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。

因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。

初中数学奥赛试题及答案

初中数学奥赛试题及答案

初中数学奥赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个表达式的结果为0?A. 3 - 3B. 2 + 2C. 4 * 0D. 5 / 5答案:A3. 一个数的平方根是它本身,这个数是?A. 1B. 0C. -1D. 2答案:B4. 一个数的立方等于它本身,这个数可以是?A. 1B. 0C. -1D. 2答案:A, B, C5. 一个等腰三角形的底角是45度,那么顶角是多少度?A. 45度B. 90度C. 135度D. 180度答案:B6. 下列哪个图形的周长最长?A. 正方形B. 长方形C. 圆形D. 三角形答案:C7. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B8. 一个数的相反数是-3,那么这个数是?A. 3B. -3C. 0D. 6答案:A9. 一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 0D. 10答案:A, B10. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 7/9答案:D二、填空题(每题4分,共20分)1. 一个数的平方是16,这个数是____。

答案:±42. 一个数的立方是-8,这个数是____。

答案:-23. 一个数的倒数是1/3,这个数是____。

答案:34. 一个数的绝对值是5,这个数是____。

答案:±55. 一个数的平方根是2,这个数是____。

答案:4三、解答题(每题10分,共50分)1. 已知一个直角三角形的两直角边长分别为3和4,求斜边的长度。

答案:斜边长度为5。

2. 计算下列表达式的值:(3+2) * (2-1)。

答案:5。

3. 一个数的两倍加上3等于15,求这个数。

答案:(15-3)/2 = 6。

4. 一个数的三倍减去4等于10,求这个数。

答案:(10+4)/3 = 4。

初中奥数题目及答案大全

初中奥数题目及答案大全

初中奥数题目及答案大全
初中阶段是学生培养数学思维和解题能力的关键时期,而奥数是锻炼学生逻辑思维和创新能力的重要途径。

为了帮助初中生们更好地备战奥数竞赛,以下是一些常见的初中奥数题目及其详细答案解析,供学生们参考。

1. 试题一:已知一边长为3cm的正方形S1,如果将它的所有顶点连接起来,形成的正方形叫做S2,依此类推,每次都将新形成的正方形的顶点连接起来,问第n次形成的正方形S(n)的面积是多少?
解答:根据题意,我们可以发现每次形成的正方形的边长是上一次正方形的边长的平方根。

所以第n次形成的正方形的边长为3^(1/2)^n cm。

由于正方形的面积公式为S = a^2^,所以第n次形成的正方形的面积为S(n) = (3^(1/2))^2^n = 3^n。

2. 试题二:已知正整数a、b和c满足a^b^ = c^3^,求证:a、b和c 必有一个是3的倍数。

解答:根据题意,我们可以得到a^b^ = c^3^的公式。

根据数学定理知,一个正整数的质因数分解形式中,每个质因子的指数都是3的倍数。

所以,对于a、b和c的质因数分解形式来说,它们必有一个是3的倍数。

因此,题目得证。

通过以上两个例题,我们可以看到,在解答初中奥数题目时,我们需要注重数学知识的运用和逻辑思维能力的发挥。

只有通过不断练习和思考,才能在奥数竞赛中取得优异的成绩。

希望同学们能够利用以
上题目及答案解析进行充分的练习和思考,不断提高自己的数学能力。

让我们共同努力,迈向数学之巅!。

初中数学奥赛题试卷及答案

初中数学奥赛题试卷及答案

一、选择题(每题5分,共20分)1. 下列各数中,有理数是()A. √16B. √-16C. √25D. √-252. 若a、b是方程x²-2ax+1=0的两个实数根,则a+b的值是()A. 2B. 1C. 0D. -23. 下列命题中,正确的是()A. 若x²=1,则x=1B. 若x²=4,则x=±2C. 若x²=-1,则x=±√2D. 若x²=0,则x=04. 已知函数y=2x+1,当x=3时,y的值为()A. 5B. 6C. 7D. 85. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)二、填空题(每题5分,共25分)6. 已知一元二次方程x²-3x+2=0,其两个实数根为x₁=,x₂=。

7. 若等腰三角形底边长为6cm,腰长为8cm,则其面积为cm²。

8. 若函数y=3x²-4x+1的图像与x轴的交点坐标为(1,0),则该函数的顶点坐标为。

9. 在直角坐标系中,点A(2,-3)与点B(-4,5)之间的距离为。

10. 若sin∠A=,cos∠B=,则∠A+∠B的值为。

三、解答题(每题15分,共45分)11. 解方程:x²-5x+6=0。

12. 已知函数y=2x²-3x+1,求该函数的最小值。

13. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为Q,求点Q的坐标。

14. 已知三角形ABC的三个内角A、B、C满足A+B+C=π,且a²+b²=2c²,求角C的度数。

答案:一、选择题1. C2. B3. B4. A5. A二、填空题6. 2,37. 168. (1/2,-1/2)9. 5√510. π/2三、解答题11. 解:因式分解得(x-2)(x-3)=0,所以x₁=2,x₂=3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。

两个单项式x²,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故丙错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

我们考察方程x -2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。

同理应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多B.多了C.少了D.多少都可能答案:C解析:设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为 0.99∶1,所以第三天杯中水量比第一天杯中水量少了,选C。

10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多B.减少C.不变D.增多、减少都有可能答案:A二、填空题(每题1分,共10分)1.19891990²-19891989²=______。

答案:19891990²-19891989²=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979。

解析:利用公式a²-b²=(a+b)(a-b)计算。

2.1-2+3-4+5-6+7-8+…+4999-5000=______。

答案:1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500。

解析:本题运用了运算当中的结合律。

3.当a=-0.2,b=0.04时,代数式 a²-b的值是______。

答案:0解析:原式==(-0.2)²-0.04=0。

把已知条件代入代数式计算即可。

4.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______千克。

答案:45(千克)解析:食盐30%的盐水60千克中含盐60×30%(千克),设蒸发变成含盐为40%的水重x克,即60×30%=40%x解得:x=45(千克)。

遇到这一类问题,我们要找不变量,本题中盐的含量是一个不变量,通过它列出等式进行计算。

三、解答题1.甲乙两人每年收入相等,甲每年储蓄全年收入的15,乙每月比甲多开支100元,三年后负债600元,求每人每年收入多少?答案:解:设每人每年收入x元,甲每年开支4/5x元,依题意有:3(4/5x+1200)=3x+600即(3-12/5)x=3600-600解得,x=5000答:每人每年收入5000元所以S的末四位数字的和为1+9+9+5=24。

4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程。

答案:设上坡路程为x千米,下坡路程为y千米.依题意则:由②有2x+y=20,③由①有y=12-x,将之代入③得 2x+12-x=20。

所以x=8(千米),于是y=4(千米)。

答:上坡路程为8千米,下坡路程为4千米。

5.求和:。

答案:第n项为所以。

6.证明:质数p除以30所得的余数一定不是合数。

证明:设p=30q+r,0≤r<30,因为p为质数,故r≠0,即0<r<30。

假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5。

再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾。

所以,r一定不是合数。

解:设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q)。

可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q。

(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故p+q=8。

初中奥数题试题二一、选择题1.数1是 ( )A.最小整数B.最小正数C.最小自然数D.最小有理数答案:C解析:整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D。

1是最小自然数,正确,故选C。

2.a为有理数,则一定成立的关系式是 ( )A.7a>aB.7+a>aC.7+a>7D.|a|≥7答案:B解析:若a=0,7×0=0排除A;7+0=7排除C;|0|<7排除D,事实上因为7>0,必有7+a >0+a=a.选B。

3.3.1416×7.5944+3.1416×(-5.5944)的值是 ( )A.6.1632B.6.2832C.6.5132D.5.3692答案:B解析:3.1416×7.5944+3.1416×(-5.5944)=3.1416(7.5944-5.5944)=2×3.1416=6.2832,选B。

4.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( ) A.225B.0.15C.0.0001D.1答案:B解析:-4,-1,-2.5,-0.01与-15中最大的数是-0.01,绝对值最大的数是-15,(-0.01)×(-15)=0.15,选B。

二、填空题1.计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______。

答案:(-1)+(-1)-(-1)×(-1)÷(-1)=(-2)-(-1) =-1 。

2.求值:(-1991)-|3-|-31||=______。

答案:(-1991)-|3-|-31||=-1991-28=-2019。

3.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009。

则n的最小值等于______。

答案:4解析:1990n的末四位数字应为1991+8009的末四位数字.即为0000,即1990n末位至少要4个0,所以n的最小值为4。

4.不超过(-1.7)²的最大整数是______。

答案:2解析:(-1.7)²=2.89,不超过2.89的最大整数为2。

5.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______。

答案:29解析:个位数比十位数大7的两位数有18,29,其中只有29是质数。

三、解答题1.已知3x2-x=1,求6x3+7x2-5x+2000的值。

答案:原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003。

2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件。

试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?答案:原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件。

如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490。

所以当x=3时,y最大=490元,即每件提价3元,每天获利最大为490元。

3.如图1-96所示,已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°。

求证:DA⊥AB。

证明:∵CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°,∴∠ADC+∠BCD=180°,∴AD∥BC。

又∵AB⊥BC,∴AB⊥AD。

4.求方程|xy|-|2x|+|y|=4的整数解。

答案:|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2。

因为|x|+1>0,且x,y都是整数,所以5.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)答案:设设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以0.0497x=994,所以x=20000(元),y=35000-20000=15000(元)。

相关文档
最新文档