Lattice Virasoro from Lattice Kac-Moody
前列腺疾病的免疫组化诊断
前列腺疾病的免疫组化诊断余英豪;李慧明【期刊名称】《临床与实验病理学杂志》【年(卷),期】2014(000)012【总页数】4页(P1329-1332)【关键词】前列腺疾病;病理;诊断;免疫组织化学【作者】余英豪;李慧明【作者单位】南京军区福州总医院病理科,福州 350025;南京军区福州总医院病理科,福州 350025【正文语种】中文【中图分类】R737.25前列腺疾病的诊断在很大程度上依赖穿刺标本的病理学检查,而免疫组化染色在其病理辅助诊断中占有重要地位,病理医师对免疫组化的依赖性很高。
近年来前列腺肿瘤的生物学标志物不断涌现,如何选择合适标志物、合理应用鸡尾酒抗体(双标、三标)以及应用免疫组化检查解决前列腺疾病诊断中的难题,是日常病理工作经常遇到的问题,本文现对这些问题逐一进行讨论。
前列腺疾病诊断中,需选用的免疫组化标志物包括上皮标志物、基底细胞标志物以及在前列腺腺癌中过表达的标志物。
1.1 前列腺上皮标志物前列腺上皮标志物主要有前列腺特异性抗原(prostate specific antigen, PSA)、前列腺特异性膜抗原(prostate specific membraneantigen, PSMA)、前列腺特异性酸性磷酸酶(prostate specific acid phosphatase, PSAP)和P501s(prostein),这些标志物作用相似,均可表达于前列腺良性和肿瘤性上皮细胞。
PSA虽应用最为广泛,但其在高级别前列腺癌中的反应性不够稳定;PSMA特异性较高,从良性上皮→高级别上皮内瘤变(prostatic intraepith elial neoplasia, PIN)→高级别前列腺癌,阳性细胞逐渐增加,染色也趋于加深;PSAP特异性较低,但能维持前列腺癌放疗后的免疫反应性;P501s是位于高尔基体中的一种跨膜蛋白,对前列腺的特异性很高。
免疫组化染色显示特征性的顶端核周颗粒状染色。
蔓洛舒
每日500毫克的分量 所提供的花青苷,相等於
7杯蔓越莓果汁!
透過Bio-Shield®輸送系統, 達到高身體吸收利用率
• Bio-Shield® 將蔓越莓活性成分 包覆於保護層中,以免它們遭 到胃酸破壞或失去活性
• 將活性成分輸送至吸收力最佳的腸道 部位
• 在12-16小時內,控制式地將活性成 分釋放,以達到最高的身體吸收利用 率及效益
Nn Cran-Max® Plus
善用兩種富含強效的專利 成分,對抗念珠菌侵害及 尿道感染:
500mg Cran-Max®
(已獲臨床驗證的蔓越莓萃取物)
200mg UTIROSE™
(取自洛神花的天然萃取物)
只需每天2顆
爲什麽 Cran-Max® 比其他蔓越莓萃
取物更優越?
取自全顆蔓越莓果實 的專利萃取物
(資料來源:美國國家腎臟基金會和美國國立衛生研究院)Biblioteka 增加患上酵母菌感染風險 的因素
•飲食不當 •抗生素 •長期精神壓力及焦慮
不安 •曝露環境毒素中 •糖尿病 •懷孕 •避孕丸及類固醇之類
的藥物 •免疫機能衰弱
念珠菌導致
發胖!
“念珠菌會對阻礙進行 減重目標造成障礙。。。 人體新陳代謝機能會嚴 重衰退,而身體脂肪卻 無法減去,導致無法成
•濃縮洛神花(Hibiscus sabdariffa)萃取物
•含有 •>40% 有機酸 •>5% sambubiosides •>45% 酚類化合物
證實具高身體 吸收利用率
•在尿液中發現完整的 UTIROSE™ 活性成分
•這表示 UTIROSE™ 能通 過腸道及腎臟的障礙, 發揮直接的抗菌功效, 以對付能引發尿道感染 的細菌及念珠菌
地尔硫卓在慢性肾脏病中的应用
地尔硫卓在慢性肾脏病中的应用关玉珍;刘代华【摘要】地尔硫卓作为非二氢吡啶类钙离子拮抗剂常见药物,近年通过改变剂型,发展新的剂型,其作用效果更加显著,在慢性肾脏病中的应用日益受到关注,现就一些研究及临床应用进行总结.【期刊名称】《赣南医学院学报》【年(卷),期】2018(038)001【总页数】4页(P84-87)【关键词】地尔硫卓;慢性肾脏病【作者】关玉珍;刘代华【作者单位】广西科技大学附属柳州市人民医院,广西柳州545006;广西科技大学附属柳州市人民医院,广西柳州545006【正文语种】中文【中图分类】R969钙离子拮抗剂包括二氢吡啶类和非二氢吡啶类,由于临床医生对非二氢吡啶类药物的认识不足,临床上非二氢吡啶类选用率较低。
地尔硫卓作为第一代钙拮抗剂中的非二氢吡啶类常见药物,近年通过改变剂型,发展新的剂型,使其作用效果更加显著。
在此就地尔硫卓在慢性肾脏病方面的一些研究及应用进行总结。
1 在慢性肾脏病伴高血压中的应用高血压既是慢性肾脏病的病因,也是慢性肾脏病的并发症,高血压作为并发症可以出现在慢性肾脏病的早中晚期,高血压可促使肾功能恶化及导致心脑血管疾病发生,与慢性肾脏病预后不良密切相关。
李晓玫等[1]对我国肾性高血压流行病学调查结果显示,慢性肾脏病患者对自身肾性血压知晓率为76.4%,其中78.2%接受降压治疗,仅25.5%的患者血压控制在140/90 mmHg以下。
难治性高血压(resistant hypertension,RH)是高血压治疗中的一个难点,其定义:在改善生活方式的基础上,应用了合理可耐受的足量3种或3种以上降压药物(包括利尿剂)1个月以上血压仍未达标,或服用4种或4种以上降压药物血压才能有效控制,称为RH[2]。
肾性血压是难治性高血压的常见类型。
地尔硫卓为第一代钙拮抗剂,它具有钙离子拮抗剂的一些共性,如钙离子拮抗剂通过选择性抑制Ca2+经细胞膜上的钙通道进入细胞内,具有扩张血管和负性肌力作用,松弛血管平滑肌,减少末梢血管阻力,从而降低血压,但脑、冠状动脉和肾血流量不减少。
浅析莫西菌素在畜牧业中的进展【论文】
浅析莫西菌素在畜牧业中的进展摘要:莫西菌素(moxidectin, MOX) 是由链霉菌发酵产生的奈马菌素经衍生化得到, 具有良好的驱虫活性且对哺乳动物安全, 主要应用于畜牧业。
莫西菌素相较于其他阿维菌素类药物具有更好的脂溶性和水溶性, 在动物体内脂肪组织中分布最高。
莫西菌素通过与γ-氨基丁酸(GABA) 结合, 使Cl-大量内流造成神经膜电位超极化, 导致虫体麻痹死亡。
给药途径和动物生理状况的不同会影响其峰血浆浓度和药物半衰期。
莫西菌素在牛、羊、犬等动物体内具有很好的驱虫活性, 其应用范围从哺乳动物逐渐扩展到鸟类, 防治对象从线虫逐渐扩展到螨虫和部分病原菌, 研究方向也从驱虫活性延伸至治疗人类疾病。
随着莫西菌素应用范围的扩大和时间的延长, 耐药性开始出现, 可以采用莫西菌素和其他药剂混合等方式降低耐药性的产生速度。
探究其更广泛的作用, 需要不同研究领域研究人员的共同努力。
关键词:莫西菌素; 药代动力学; 药效学; 耐药性;Abstract:Moxidectin (MOX) is derived from derivatization of nemadectin produced by Streptomyces (Cyanneogrisens noncyanogenus) , which has good insect repellent activity andis safe for mammals, and it is mainly used in animal husbandry.Moxidectin has better fat-soluble and watersoluble than other avermectin drugs, and has the highest distribution in adipose tissues of animals.Moxidectin binds to GABA, and neural membrane potential hyperpolarization is caused by massive influx of Cl-, resulting in the death due to the insect's body paralysis.Differences in the route of administration and the physiological condition of animals would affect the peak concentration and depletion half-lives.Moxidectin has good insect repellent activity in animals such as cattle, sheep and dogs.The application range of moxidectin gradually expands from mammals to birds, and the control objects gradually extend from nematodes to mite and several kinds of germs.The research direction extends from anthelmintic activity to the treatment of human diseases.With the increase of the application range of moxidectin and the prolongation of time, the drug resistance began to appear, and the rate of drug resistance could be reduced by the combination of moxidectin and other agents.Exploring the wider role of moxidectin requires the efforts of researchers in different fields.Keyword:moxidectin; pharmacokinetics;pharmacodynamics; drug resistance;莫西菌素(moxidectin, MOX) 是第三代阿维菌素类药物, 是由链霉菌(Streptomyces, Cyanneogrisens noncyanogenus) 发酵产生的奈马菌素(nemadectin) 经化学修饰或衍生而来的结构单一的大环内酯类抗生素[1], 作为驱虫药物应用在畜牧业中[2]。
Lie algebras, in Infinite-dimensional Lie algebras and groups, Adv. Ser. in Math. Phys. 7,
C1;1;k g ' L0;k (0)
L1;k (1)
M1;k (1): Combining Theorem 4.6 and the statement (ii), we obtain the statement (i). Q.E.D.
References
H0 (g(0; 1; 1); L0 ;k (0)
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan. Department of Mathematics, Faculty of Science, Osaka University,
[KK] Kac V.G. and Kazhdan D.A., Structure of representations with highest weight of in nite dimensional Lie algebras, Adv. in Math. 34, (1979), 97{108. [KnPZ] Knizhnik V. G., Polyakov A. M. and Zamolodchikov A.B., Fractal structure in 2D quantum gravity, Mod. Phys. Lett. A 3, (1988), 819{826. [KW1] Kac V.G. and Wakimoto M., Modular invariant representations of in nite dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Soc., 35, (1988), 4956{4960. [KW2] Kac V.G. and Wakimoto M., Classi cation of modular invariant representations of ane Lie algebras, in In nite-dimensional Lie algebras and groups, Adv. Ser. in Math. Phys. 7, (1989), 138{177. [KWn] Kac V. G. and Wang W., Vertex operator superalgebras and their representations, Mathematical aspects of conformal and topological eld theories and quantum groups, 161{191, Contemp. Math. 175, Amer. Math. Soc. Providence, RI, (1994). [Mal] Malikov F.G., Verma modules over Kac-Moody algebras of rank 2, Leningrad Math. J., 2, No. 2, (1991), 269{286. [MFF] Malikov F.G., Feigin B.L. and Fuks D.B., Singular vectors in Verma modules over KacMoody algebras, Funkts. Anal. Prilozhen., 20, No. 2, (1988), 25{37. [MW] Mathieu P. and Walton M.A., Fractional-level Kac-Moody Algebras and Nonunitary Coset Conformal Theories, Prog. Theor. Phys. 102, (1990), 229-254. [MP] Moody R.V. and Pianzola A., Lie algebras with triangular decompositions, Wiley-Interscience Publ., New York, 1995. [P] Polyakov A. M., Quantum Gravity in two dimensions, Mod. Phys. Lett. A 2, (1987), 893-898. [Ray] Ray U., A Characterization of Lie superalgebras for a certain class of graded Lie superalgebras, preprint,to appear in Jour. Alg. [RW] Rocha-Caridi A. and Wallach N.R., Highest weight modules over graded Lie algebras: resolutions, ltrations and character formulas, Trans. Amer. Math. Soc. 20, (1983), 133{162. [TUY] Tsuchiya A., Ueno K. and Yamada Y., Conformal eld theory on moduli family of stable curves with gauge symmetry, in Integrable systems in quantum eld theory and statistical mechanics, Adv. Stud. Pure Math. 19, (1989), 459-566. [V] Verlinde E., Fusion rules and modular transformations in 2D conformal eld theory, Nucl. Phys. B 300, (1998), 360-376. (K. Iohara) (Y. Koga)
血管内皮细胞和临床
(2)纤溶酶原激活克制物(PAI):VEC能合成与分泌PAI-1和PAI-2, 但以PAI-1为主。内毒素、IL-1、TNFα、凝血酶及类固醇激素等 可刺激VEC合成PAI-1,分泌于血液和内皮细胞外基质中,与外 连素结合而得到稳定。
(3)凝血酶活化纤溶克制物(TAFI):新近发觉VEC表面旳凝血酶 调制蛋白与凝血酶形成复合物后,经过酰解,使羧肽酶原B激活, 强烈克制体内纤溶活性,所以羧肽酶原B又称TAFI。
(二)VEC合成与释放旳缩血管物质
1982年DeMey与Vanhoutte发觉,VEC还可产生使血管平滑肌 细 胞 收 缩 旳 物 质 , 即 血 管 内 皮 衍 生 旳 收 缩 因 子 (endothelium derived contracting factor,EDCF)。此类血管收缩物质比舒张 物质愈加复杂多样,至少有下列几种。
AngⅡ经过旁分泌作用于临近旳血管平滑肌细胞,引起血管 收缩;作用于支配血管旳交感神经突触前膜AngⅡ受体,增进 去甲肾上腺素(NA)旳释放,增强血管收缩作用。AngⅡ也能以 自分泌旳方式作用于内皮细胞旳本身受体,释放PGI2、EDRF /NO等舒血管因子,产生舒张血管旳作用,反馈性调整血管紧 张性。AngⅡ还有生长因子旳作用,诱导原癌基因c-fos与c-myc 旳体现,增进平滑细胞旳增生,增长蛋白质旳合成,使血管壁 增厚,增长血管阻力。另外,AngⅡ可诱导内皮细胞ET基因体 现增强,并增长血管旳反应性。
2、VEC旳抗凝血特征
(1)抗凝血酶Ⅲ(AT-Ⅲ):AT-Ⅲ及其辅助因子肝素是血浆中最 主要旳抗凝物质。AT-Ⅲ克制丝氨酸蛋白酶类,涉及凝血酶、 因子ⅩБайду номын сангаас、ⅩⅢa、Ⅺa、Ⅸa等,也能克制纤溶酶原、尿激酶、 激肽释放酶等。肝素是AT-Ⅲ旳辅助因子,可增强AT-Ⅲ与凝 血酶旳亲和力。
吉西他滨及顺铂经动脉、静脉注射后血浆、组织药物浓度的变化
吉西他滨及顺铂经动脉、静脉注射后血浆、组织药物浓度的变化目的分析不同化療药物通过动脉及静脉途径注射后血浆及组织内药物浓度的变化情况。
方法40只带瘤裸大鼠,随机分为8组,其中4组为动脉组,另4组为静脉组,带瘤裸大鼠分别经动脉及静脉注射吉西他滨及顺铂。
于注射后5、10、20、40、80、120、360、720 min采血液标本,注射后10、40、120、720 min取组织标本,以高效液相色谱法测定血浆及肿瘤组织中吉西他滨浓度,ICP-MS法测定血浆及肿瘤组织中的铂含量,计算药代动力学参数。
结果经动脉及静脉注射两种药物后,血浆及肿瘤组织中的药物浓度出现规律性变化,其变化过程均可用两室模型来描述。
动脉注射两组药物的药代动力学参数与静脉注射的药代动力学参数不同,动脉组注射药物后,血浆药物峰浓度[吉西他滨:(20.84±10.11)μg/mL,顺铂:(15.13±7.12)μg/mL]均低于静脉组[吉西他滨:(28.96±7.02)μg/mL,顺铂:(21.64±9.72)μg/mL],靶组织内药物峰浓度[吉西他滨:(20.18±9.43)μg/mL,顺铂:(6.98±0.31)μg/mL]均高于静脉组[吉西他滨:(18.19±10.30)μg/mL,顺铂:(3.04±0.11)μg/mL],靶组织内药物曲线下面积[吉西他滨:(2641±411)μg/(min·mL),顺铂:(6025±870)μg/(min·mL)]均明显高于静脉组[吉西他滨:(1663±568)μg/(min·mL),顺铂:(1780±883)μg/(min·mL)],差异均有统计学意义(P < 0.05或P < 0.01)。
结论动脉注射吉西他滨和顺铂较静脉注射有不同程度的优势,这种优势与药物的药理特性有关。
《临床肝胆病杂志》推荐使用的规范医学名词术语
临床肝胆病杂志第40卷第3期2024年3月J Clin Hepatol, Vol.40 No.3, Mar.2024[3]XIA SL, LIU ZM, CAI JR, et al. Liver fibrosis therapy based on biomi⁃metic nanoparticles which deplete activated hepatic stellate cells[J]. J Control Release, 2023, 355: 54-67. DOI: 10.1016/j.jconrel.2023.01.052.[4]LIU YW, DONG YT, WU XJ, et al. The assessment of mesenchymalstem cells therapy in acute on chronic liver failure and chronic liver disease: A systematic review and meta-analysis of randomized con⁃trolled clinical trials[J]. Stem Cell Res Ther, 2022, 13(1): 204. DOI:10.1186/s13287-022-02882-4.[5]ZHANG ZL, SHANG J, YANG QY, et al. Exosomes derived from hu⁃man adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline me⁃tabolism[J]. J Nanobiotechnology, 2023, 21(1): 29. DOI: 10.1186/ s12951-023-01788-4.[6]ZHAO T, SU ZP, LI YC, et al. Chitinase-3 like-protein-1 function andits role in diseases[J]. Signal Transduct Target Ther, 2020, 5(1): 201. DOI: 10.1038/s41392-020-00303-7.[7]YANG H, ZHAO LL, HAN P, et al. Value of serum chitinase-3-likeprotein 1 in predicting the risk of decompensation events in patients with liver cirrhosis[J]. J Clin Hepatol, 2023, 39(7): 1578-1585. DOI:10.3969/j.issn.1001-5256.2023.07.011.杨航, 赵黎莉, 韩萍, 等. 血清壳多糖酶3样蛋白1(CHI3L1)对肝硬化患者发生失代偿事件风险的预测价值[J]. 临床肝胆病杂志, 2023, 39(7): 1578-1585. DOI: 10.3969/j.issn.1001-5256.2023.07.011.[8]MA L, WEI J, ZENG Y, et al. Mesenchymal stem cell-originated exo⁃somal circDIDO1 suppresses hepatic stellate cell activation by miR-141-3p/PTEN/AKT pathway in human liver fibrosis[J]. Drug Deliv, 2022, 29(1): 440-453. DOI: 10.1080/10717544.2022.2030428. [9]NISHIMURA N, DE BATTISTA D, MCGIVERN DR, et al. Chitinase 3-like 1 is a profibrogenic factor overexpressed in the aging liver and in patients with liver cirrhosis[J]. Proc Natl Acad Sci U S A, 2021, 118(17): e2019633118. DOI: 10.1073/pnas.2019633118.[10]WANG CG, LI SZ, SHI JM, et al. Research progress in differentia⁃tion, identification, and purification methods of human pluripotent stem cells to mesenchymal-like cells in vitro[J]. J Jilin Univ Med Ed, 2023, 49(6): 1655-1661. DOI: 10.13481/j.1671-587X.20230634.王成刚, 李生振, 史嘉敏, 等. 体外人多能干细胞向间充质样细胞分化、鉴定和纯化方法的研究进展[J]. 吉林大学学报(医学版), 2023, 49(6): 1655-1661. DOI: 10.13481/j.1671-587X.20230634.[11]LI TT, WANG ZR, YAO WQ, et al. Stem cell therapies for chronicliver diseases: Progress and challenges[J]. Stem Cells Transl Med, 2022, 11(9): 900-911. DOI: 10.1093/stcltm/szac053.[12]YANG X, LI Q, LIU WT, et al. Mesenchymal stromal cells in hepaticfibrosis/cirrhosis: From pathogenesis to treatment[J]. Cell Mol Im⁃munol, 2023, 20(6): 583-599. DOI: 10.1038/s41423-023-00983-5. [13]ZHAO SX, LIU Y, PU ZH. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apop⁃tosis by activating autophagy in vitro[J]. Drug Des Devel Ther, 2019, 13: 2887-2897. DOI: 10.2147/DDDT.S220190.[14]LEE CG, HARTL D, LEE GR, et al. Role of breast regression protein39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue re⁃sponses and apoptosis[J]. J Exp Med, 2009, 206(5): 1149-1166.DOI: 10.1084/jem.20081271.[15]HIGASHIYAMA M, TOMITA K, SUGIHARA N, et al. Chitinase 3-like 1deficiency ameliorates liver fibrosis by promoting hepatic macro⁃phage apoptosis[J]. Hepatol Res, 2019, 49(11): 1316-1328. DOI:10.1111/hepr.13396.收稿日期:2023-06-09;录用日期:2023-08-17本文编辑:邢翔宇引证本文:LIU PJ, YAO LC, HU X, et al. Effect of human umbilical cord mesenchymal stem cells in treatment of mice with liver fibrosis and its mechanism[J]. J Clin Hepatol, 2024, 40(3): 527-532.刘平箕, 姚黎超, 胡雪, 等. 人脐带间充质干细胞(hUC-MSC)对肝纤维化小鼠模型的治疗作用及其机制分析[J]. 临床肝胆病杂志, 2024, 40(3): 527-532.读者·作者·编者《临床肝胆病杂志》推荐使用的规范医学名词术语有关名词术语应规范统一,以全国自然科学名词审定委员会公布的各学科名词为准。
全球首个促睫毛生长处方药Latisse(比马前列素眼科溶液
HIGHLIGHTS OF PRESCRIBING INFORMATIONThese highlights do not include all the information needed to use LATISSE® safely and effectively. See full prescribing information for LATISSE®.LATISSE® (bimatoprost ophthalmic solution) 0.03%Initial U.S. Approval: 2001____________________INDICATIONS AND USAGE_____________________ LATISSE® is a prostaglandin analog, indicated to treat hypotrichosis of the eyelashes by increasing their growth including length, thickness and darkness. (1)________________DOSAGE AND ADMINISTRATION________________ Apply nightly directly to the skin of the upper eyelid margin at the base of the eyelashes using the accompanying applicators. Blot any excess solution beyond the eyelid margin. Dispose of the applicator after one use. Repeat for the opposite eyelid margin using a new sterile applicator. (2)______________DOSAGE FORMS AND STRENGTHS_______________ Bimatoprost ophthalmic solution 0.3 mg/mL. (3) ________________________CONTRAINDICATIONS_______________________ Hypersensitivity. (4.1)_________________WARNINGS AND PRECAUTIONS________________ Concurrent administration of LATISSE® and IOP-lowering prostaglandin analogs in ocular hypertensive patients may decrease the IOP-lowering effect. Patients using these products concomitantly should be closely monitored for changes to their intraocular pressure. (5.1)Pigmentation of the eyelids and iris may occur. Iris pigmentation is likely to be permanent. (5.2, 5.3)_______________________ADVERSE REACTIONS________________________ Most common adverse events (incidence approximately 3% - 4%) are eye pruritus, conjunctival hyperemia, and skin hyperpigmentation. (6)To report SUSPECTED ADVERSE REACTIONS, contact Allergan at 1-800-433-8871 or the FDA at 1-800-FDA-1088 or /medwatch.See 17 for Patient Counseling Information and FDA-approved Patient Package Insert.Revised: 07/2009FULL PRESCRIBING INFORMATION: Contents* 1 INDICATIONSANDUSAGE2 DOSAGEANDADMINISTRATION3 DOSAGE FORMS AND STRENGTHS4 CONTRAINDICATIONS4.1Hypersensitivity5 WARNINGSANDPRECAUTIONS5.1 Effects on Intraocular Pressure5.2IrisPigmentation5.3 Lid Pigmentation5.4 Hair Growth Outside the TreatmentArea5.5IntraocularInflammation5.6MacularEdema5.7ContaminationofLATISSE® orApplicators5.8 Use with Contact Lenses6 ADVERSEREACTIONS8 USEINSPECIFIC POPULATIONS8.1Pregnancy8.3NursingMothers8.4PediatricUse8.5GeriatricUse11 DESCRIPTION12 CLINICALPHARMACOLOGY12.1 MechanismofAction12.3 Pharmacokinetics13 NONCLINICALTOXICOLOGY13.1 Carcinogenesis,Mutagenesis,ImpairmentofFertility14 CLINICALSTUDIES16 HOW SUPPLIED/STORAGE AND HANDLING17 PATIENT COUNSELINGINFORMATION17.1 NightlyApplication17.2 Handling the Bottle and Applicator17.3 Potential for Intraocular PressureEffects17.4 Potential for Eyelid Skin Darkening17.5 Potential for Iris Darkening17.6 Potential for Unexpected HairGrowth or Eyelash Changes17.7 When to Seek Physician Advice17.8 Use with Contact Lenses17.9 FDA-Approved Patient PackageInsert*Sections or subsections omitted from the full prescribing information are not listed.FULL PRESCRIBING INFORMATION1INDICATIONS AND USAGELATISSE® (bimatoprost ophthalmic solution) 0.03% is indicated to treat hypotrichosis of the eyelashes by increasing their growth including length, thickness and darkness.2DOSAGE AND ADMINISTRATIONEnsure the face is clean, makeup and contact lenses are removed. Once nightly, place one drop of LATISSE®(bimatoprost ophthalmic solution) 0.03% on the disposable sterile applicator supplied with the package and apply evenly along the skin of the upper eyelid margin at the base of the eyelashes. The upper lid margin in the area of lash growth should feel lightly moist without runoff. Blot any excess solution runoff outside the upper eyelid margin with a tissue or other absorbent cloth. Dispose of the applicator after one use. Repeat for the opposite eyelid margin using a new sterile applicator.Do not reuse applicators and do not use any other brush/applicator to apply LATISSE®.Do not apply to the lower eyelash line (see WARNINGS AND PRECAUTIONS, 5.3 and PATIENT COUNSELING INFORMATION, 17).Additional applications of LATISSE® will not increase the growth of eyelashes.Upon discontinuation of treatment, eyelash growth is expected to return to its pre-treatment level.3DOSAGE FORMS AND STRENGTHSBimatoprost ophthalmic solution 0.3 mg/mL.4 CONTRAINDICATIONS4.1 HypersensitivityLATISSE® is contraindicated in patients with hypersensitivity to bimatoprost or any other ingredient in this product.5 WARNINGS AND PRECAUTIONS5.1 Effects on Intraocular PressureBimatoprost ophthalmic solution (LUMIGAN®) lowers intraocular pressure (IOP) when instilled directly to the eye in patients with elevated IOP. In clinical trials, in patients with or without elevated IOP, LATISSE®lowered IOP, however, the magnitude of the reduction was not cause for clinical concern.In ocular hypertension studies with LUMIGAN®, it has been shown that exposure of the eye to more than one dose of bimatoprost daily may decrease the intraocular pressure lowering effect. In patients using LUMIGAN®or other prostaglandin analogs for the treatment of elevated intraocular pressure, the concomitant use of LATISSE® may interfere with the desired reduction in IOP. Patients using prostaglandin analogs including LUMIGAN®for IOP reduction should only use LATISSE® after consulting with their physician and should be monitored for changes to their intraocular pressure (see PATIENT COUNSELING INFORMATION, 17).Pigmentation5.2 IrisIncreased iris pigmentation has occurred when the same formulation of bimatoprost ophthalmic solution (LUMIGAN®) was instilled directly onto the eye. Although iridal pigmentation was not reported in clinical studies with LATISSE®, patients should be advised about the potential for increased brown iris pigmentation which is likely to be permanent.The pigmentation change is due to increased melanin content in the melanocytes rather than to an increase in the number of melanocytes. The long term effects of increased pigmentation are not known. Iris color changes seen with administration of bimatoprost ophthalmic solution may not be noticeable for several months to years. Typically, the brown pigmentation around the pupil spreads concentrically towards the periphery of the iris and the entire iris or parts of the iris become more brownish. Neither nevi nor freckles of the iris appear to be affected by treatment. Treatment with LATISSE® solution can be continued in patients who develop noticeably increased iris pigmentation.Patients who receive treatment with LATISSE® should be informed of the possibility of increased pigmentation (see PATIENT COUNSELING INFORMATION, 17).Pigmentation5.3 LidBimatoprost has been reported to cause pigment changes (darkening) to periorbital pigmented tissues and eyelashes. The pigmentation is expected to increase as long as bimatoprost is administered, but has been reported to be reversible upon discontinuation of bimatoprost in most patients.5.4 Hair Growth Outside the Treatment AreaThere is the potential for hair growth to occur in areas where LATISSE® solution comes in repeated contact with the skin surface. It is important to apply LATISSE® only to the skin of the upper eyelid margin at the base of the eyelashes using the accompanying sterile applicators, and to carefully blot any excess LATISSE® from the eyelid margin to avoid it running onto the cheek or other skin areas (see PATIENT COUNSELING INFORMATION, 17).5.5Intraocular InflammationLATISSE® solution should be used with caution in patients with active intraocular inflammation (e.g., uveitis) because the inflammation may be exacerbated.5.6Macular EdemaMacular edema, including cystoid macular edema, has been reported during treatment with bimatoprost ophthalmic solution (LUMIGAN®) for elevated IOP. LATISSE®should be used with caution in aphakic patients, in pseudophakic patients with a torn posterior lens capsule, or in patients with known risk factors for macular edema.5.7 Contamination of LATISSE® or ApplicatorsThe LATISSE® bottle must be kept intact during use. It is important to use LATISSE®solution as instructed, by placing one drop on the single-use-per eye applicator. The bottle tip should not be allowed to contact any other surface since it could become contaminated. The accompanying sterile applicators should only be used on one eye and then discarded since reuse of applicators increases the potential for contamination and infections. There have been reports of bacterial keratitis associated with the use of multiple-dose containers of topical ophthalmic products (see PATIENT COUNSELING INFORMATION, 17).5.8 Use with Contact LensesLATISSE® contains benzalkonium chloride, which may be absorbed by soft contact lenses. Contact lenses should be removed prior to application of solution and may be reinserted 15 minutes following its administration (see PATIENT COUNSELING INFORMATION, 17).REACTIONS6 ADVERSEThe following information is based on clinical trial results from a multicenter, double-masked, randomized, vehicle-controlled, parallel study including 278 adult patients for four months of treatment.The most frequently reported adverse events were eye pruritus, conjunctival hyperemia, skin hyperpigmentation, ocular irritation, dry eye symptoms, and erythema of the eyelid. These events occurred in less than 4% of patients.Adverse reactions reported with bimatoprost ophthalmic solution (LUMIGAN®) for the reduction of intraocular pressure include, ocular dryness, visual disturbance, ocular burning, foreign body sensation, eye pain, blepharitis, cataract, superficial punctuate keratitis, eye discharge, tearing, photophobia, allergic conjunctivitis, asthenopia, increases in iris pigmentation, conjunctival edema, abnormal hair growth, iritis, infections (primarily colds and upper respiratory tract infections), headaches, and asthenia.8 USE IN SPECIFIC POPULATIONS8.1 PregnancyPregnancy Category CTeratogenic effects:In embryo/fetal developmental studies in pregnant mice and rats, abortion was observed at oral doses of bimatoprost which achieved at least 33 or 97 times, respectively, the maximum intended human exposure (based on blood AUC levels after topical ophthalmic administration to the cornea or conjunctival sac).At doses at least 41 times the maximum intended human exposure, the gestation length was reduced in the dams, the incidence of dead fetuses, late resorptions, peri- and postnatal pup mortality was increased, and pup body weights were reduced.There are no adequate and well-controlled studies of bimatoprost ophthalmic solution 0.03% administration in pregnant women. Because animal reproductive studies are not always predictive of human response, LATISSE® should be administered during pregnancy only if the potential benefit justifies the potential risk to the fetus.Mothers8.3 NursingIt is not known whether LATISSE® solution is excreted in human milk, although in animal studies, bimatoprost has been shown to be excreted in breast milk. Because many drugs are excreted in human milk, caution should be exercised when LATISSE® is administered to a nursing woman.Use8.4 PediatricSafety and effectiveness in pediatric patients have not been established.Use8.5 GeriatricNo overall clinical differences in safety or effectiveness have been observed between elderly and other adult patients.11 DESCRIPTIONLATISSE® (bimatoprost ophthalmic solution) 0.03% is a synthetic prostaglandin analog. Its chemical name is (Z)-7-[(1R,2R,3R,5S)-3,5-Dihydroxy-2-[(1E,3S)-3-hydroxy-5-phenyl-1-pentenyl]cyclopentyl]-N-ethyl-5-heptenamide, and its molecular weight is 415.58. Its molecular formula is C25H37NO4.Its chemical structure is:2H5water. LATISSE® is a clear, isotonic, colorless, sterile ophthalmic solution with an osmolality of approximately 290 mOsmol/kg.Contains:Active: bimatoprost 0.3 mg/mL; Preservative: benzalkonium chloride 0.05 mg/mL; Inactives: sodium chloride; sodium phosphate, dibasic; citric acid; and purified water. Sodium hydroxide and/or hydrochloric acid may be added to adjust pH. The pH during its shelf life ranges from 6.8 - 7.8.12 CLINICALPHARMACOLOGY12.1 Mechanism of ActionBimatoprost is a structural prostaglandin analog. Although the precise mechanism of action is unknown the growth of eyelashes is believed to occur by increasing the percent of hairs in, and the duration of the anagen or growth phase.12.3 PharmacokineticsAbsorptionAfter one drop of bimatoprost ophthalmic solution 0.03% was administered once daily into both eyes (cornea and/or conjunctival sac) of 15 healthy subjects for two weeks, blood concentrations peaked within 10 minutes after dosing and were below the lower limit of detection (0.025 ng/mL) in most subjects within 1.5 hours after dosing. Mean C max and AUC0-24hr values were similar on days 7 and 14 at approximately 0.08 ng/mL and0.09 ng•hr/mL, respectively, indicating that steady state was reached during the first week of ocular dosing. There was no significant systemic drug accumulation over time.DistributionBimatoprost is moderately distributed into body tissues with a steady-state volume of distribution of 0.67 L/kg. In human blood, bimatoprost resides mainly in the plasma. Approximately 12% of bimatoprost remains unbound in human plasma.MetabolismBimatoprost is the major circulating species in the blood once it reaches the systemic circulation. Bimatoprost then undergoes oxidation, N-deethylation, and glucuronidation to form a diverse variety of metabolites.EliminationFollowing an intravenous dose of radiolabeled bimatoprost (3.12 µg/kg) to six healthy subjects, the maximum blood concentration of unchanged drug was 12.2 ng/mL and decreased rapidly with an elimination half-life of approximately 45 minutes. The total blood clearance of bimatoprost was 1.5 L/hr/kg. Up to 67% of the administered dose was excreted in the urine while 25% of the dose was recovered in the feces.TOXICOLOGY13 NONCLINICAL13.1 Carcinogenesis, Mutagenesis, Impairment of FertilityBimatoprost was not carcinogenic in either mice or rats when administered by oral gavage at doses of up to 2 mg/kg/day and 1 mg/kg/day respectively (approximately 192 and 291 times the recommended human exposure based on blood AUC levels after topical corneal and/or conjunctival sac administration respectively) for 104 weeks.Bimatoprost was not mutagenic or clastogenic in the Ames test, in the mouse lymphoma test, or in the in vivo mouse micronucleus tests.Bimatoprost did not impair fertility in male or female rats up to doses of 0.6 mg/kg/day.14CLINICAL STUDIESLATISSE® solution was evaluated for its effect on overall eyelash prominence in a multicenter, double-masked, randomized, vehicle-controlled, parallel study including 278 adult patients for four months of treatment. The primary efficacy endpoint in this study was an increase in overall eyelash prominence as measured by at least a 1-grade increase on the 4-point Global Eyelash Assessment (GEA) scale, from baseline to the end of the treatment period (week 16). LATISSE®was more effective than vehicle as measured by theGEA score, with statistically significant differences seen at 8-week, 12-week, and 16-week (primary endpoint) treatment durations.Table 1Number (%) of subjects with at least a 1-grade increase from baseline in Global Eyelash Assessment (Primary Efficacy Endpoint – Week 16)Week LATISSE®N=137N (%) Vehicle N=141 N (%)1 7 (5%) 3 (2%)4 20 (15%) 11 (8%)8 69 (50%) 21 (15%)12 95 (69%) 28 (20%)16 107 (78%) 26 (18%)20 103 (79%) 27 (21%)In this study, patients were also evaluated for the effect of LATISSE® solution on the length, thickness and darkness of their eyelashes. Improvements from baseline in eyelash growth as measured by digital image analysis assessing eyelash length, fullness/thickness, and darkness were statistically significantly more pronounced in the bimatoprost group at weeks 8, 12, and 16.Table 2Efficacy endpoint atWeek 16(Mean Change fromBaseline)LATISSE®VehicleEyelash growth (length) (mm; % increase) N=1371.4; 25%N=1410.1; 2%Fullness/thickness (mm2; % increase) N=1360.7; 106%N=1400.1; 12%Eyelash darkness (intensity*;% increase in darkness) N=135-20.2; -18%N=138-3.6; -3%* a negative value is representative of eyelash darkeningAfter the 16-week treatment period, a 4-week post-treatment period followed during which the effects of bimatoprost started to return toward baseline. The effect on eyelash growth is expected to abate following longer term discontinuation.16 HOW SUPPLIED/STORAGE AND HANDLINGLATISSE® (bimatoprost ophthalmic solution) 0.03% is supplied sterile in opaque white low density polyethylene dispenser bottles and tips with turquoise polystyrene caps accompanied by 60 sterile, disposable applicators:3 mL in a 5 mL bottle NDC 0023-3616-03Storage: LATISSE® should be stored at 2° to 25°C (36° to 77°F).INFORMATIONCOUNSELING17 PATIENT17.1Nightly ApplicationPatients should be informed that LATISSE® (bimatoprost ophthalmic solution) should be applied every night using only the accompanying sterile applicators. They should start by ensuring their face is clean, all makeup is removed, and their contact lenses removed (if applicable). Then carefully place one drop of LATISSE®solution on the disposable sterile applicator and brush cautiously along the skin of the upper eyelid margin at the base of the eyelashes. If any LATISSE® solution gets into the eye proper, it will not cause harm. The eye should not be rinsed.Additional applications of LATISSE® will not increase the growth of eyelashes.Patients should be informed not to apply to the lower eyelash line. Any excess solution outside the upper eyelid margin should be blotted with a tissue or other absorbent material.The onset of effect is gradual but is not significant in the majority of patients until 2 months. Patients should be counseled that the effect is not permanent and can be expected to gradually return to the original level upon discontinuation of treatment with LATISSE®.17.2Handling the Bottle and ApplicatorPatients should be instructed that the LATISSE® bottle must be maintained intact and to avoid allowing the tip of the bottle or applicator to contact surrounding structures, fingers, or any other unintended surface in order to avoid contamination of the bottle or applicator by common bacteria known to cause ocular infections. Patients should also be instructed to only use the applicator supplied with the product once and then discard since reuse could result in using a contaminated applicator. Serious infections may result from using contaminated solutions or applicators.17.3 Potential for Intraocular Pressure EffectsLATISSE® may lower intraocular pressure although not to a level that will cause clinical harm.In patients using LUMIGAN® or other prostaglandin analogs for the treatment of elevated intraocular pressure, the concomitant use of LATISSE® may interfere with the desired reduction in IOP. Patients using prostaglandin analogs for IOP reduction should only use LATISSE® after consulting with their physician.17.4 Potential for Eyelid Skin DarkeningPatients should be informed about the possibility of eyelid skin darkening, which may be reversible after discontinuation of LATISSE®.17.5 Potential for Iris DarkeningAlthough iridal pigmentation was not reported in clinical studies with LATISSE®, patients should be advised about the potential for increased brown iris pigmentation which is likely to be permanent. Increased iris pigmentation has occurred when the same formulation of bimatoprost ophthalmic solution (LUMIGAN®) was instilled directly onto the eye.17.6Potential for Unexpected Hair Growth or Eyelash ChangesPatients should be informed of the possibility of hair growth occurring outside of the target treatment area if LATISSE® repeatedly touches the same area of skin outside the treatment area. They should also be informed of the possibility of disparity between eyes in length, thickness, pigmentation, number of eyelashes or vellus hairs, and/or direction of eyelash growth. Eyelash changes are likely reversible upon discontinuation of treatment.17.7When to Seek Physician AdvicePatients should be advised that if they develop a new ocular condition (e.g., trauma or infection), experience a sudden decrease in visual acuity, have ocular surgery, or develop any ocular reactions, particularly conjunctivitis and eyelid reactions, they should immediately seek their physician’s advice concerning the continued use of LATISSE®.Patients on IOP-lowering medications should not use LATISSE® without prior consultation with their physician.17.8 Use with Contact LensesPatients should be advised that LATISSE® solution contains benzalkonium chloride, which may be absorbed by soft contact lenses. Contact lenses should be removed prior to application of LATISSE® and may be reinserted 15 minutes following its administration.----------------Cut Here- --------------------------------------------------------------------------------------------------------17.9 FDA-Approved Patient Package InsertPATIENT INFORMATIONLATISSE® (la teece) (bimatoprost ophthalmic solution) 0.03%Read the Patient Information that comes with LATISSE® before you start using it and each time you get a refill. There may be new information. This leaflet does not take the place of talking with your physician about your treatment.What is hypotrichosis of the eyelashes?Hypotrichosis is another name for having inadequate or not enough eyelashes.What is LATISSE® solution?LATISSE®solution is a prescription treatment for hypotrichosis used to grow eyelashes, making them longer, thicker and darker.Who should NOT take LATISSE®?Do not use LATISSE® solution if you are allergic to one of its ingredients.Are there any special warnings associated with LATISSE® use?LATISSE®solution is intended for use on the skin of the upper eyelid margins at the base of the eyelashes. Refer to Illustration 2 below. DO NOT APPLY to the lower eyelid. If you are using LUMIGAN® or other products in the same class for elevated intraocular pressure (IOP), or if you have a history of abnormal IOP, you should only use LATISSE® under the close supervision of your physician.LATISSE® use may cause darkening of the eyelid skin which may be reversible. LATISSE® use may also cause increased brown pigmentation of the colored part of the eye which is likely to be permanent.It is possible for hair growth to occur in other areas of your skin that LATISSE® frequently touches. Any excess solution outside the upper eyelid margin should be blotted with a tissue or other absorbent material to reduce the chance of this from happening. It is also possible for a difference in eyelash length, thickness, fullness, pigmentation, number of eyelash hairs, and/or direction of eyelash growth to occur between eyes. These differences, should they occur, will usually go away if you stop using LATISSE®.Who should I tell that I am using LATISSE®?You should tell your physician you are using LATISSE® especially if you have a history of eye pressure problems.You should also tell anyone conducting an eye pressure screening that you are using LATISSE®.What should I do if I get LATISSE® in my eye?LATISSE®solution is an ophthalmic drug product. LATISSE® is not expected to cause harm if it gets into the eye proper. Do not attempt to rinse your eye in this situation.What are the possible side effects of LATISSE®?The most common side effects after using LATISSE® solution are an itching sensation in the eyes and/or eye redness. This was reported in approximately 4% of patients. LATISSE®solution may cause other less common side effects which typically occur on the skin close to where LATISSE® is applied, or in the eyes. These include skin darkening, eye irritation, dryness of the eyes, and redness of the eyelids.If you develop a new ocular condition (e.g., trauma or infection), experience a sudden decrease in visual acuity, have ocular surgery, or develop any ocular reactions, particularly conjunctivitis and eyelid reactions, you should immediately seek your physician’s advice concerning the continued use of LATISSE®solution.What happens if I stop using LATISSE®?If you stop using LATISSE®, your eyelashes are expected to return to their previous appearance over several weeks to months.Any eyelid skin darkening is expected to reverse after several weeks to months.Any darkening of the colored part of the eye known as the iris is NOT expected to reverse and is likely permanent.How do I use LATISSE®?LATISSE® solution is packaged as a 3 mL bottle of solution with 60 accompanying sterile, disposable applicators. The recommended dosage is one application nightly to the skin of the upper eyelid margin at the base of the eyelashes only.Once nightly, start by ensuring your face is clean, makeup and contact lenses are removed. Remove an applicator from its tray. Then, holding the sterile applicator horizontally, place one drop of LATISSE® on the area of the applicator closest to the tip but not on the tip (see Illustration 1). Then immediately draw the applicator carefully across the skin of the upper eyelid margin at the base of the eyelashes (where the eyelashes meet the skin) going from the inner part of your lash line to the outer part (see Illustration 2). Blot any excess solution beyond the eyelid margin. Dispose of the applicator after one use.Repeat for the opposite upper eyelid margin using a new sterile applicator. This helps minimize any potential for contamination from one eyelid to another.Illustration 1Illustration 2DO NOT APPLY in your eye or to the lower lid. ONLY use the sterile applicators supplied with LATISSE®to apply the product. If you miss a dose, don’t try to “catch up.” Just apply LATISSE® solution the next evening. Fifty percent of patients treated with LATISSE® in a clinical study saw significant improvement by 2 months after starting treatment.If any LATISSE® solution gets into the eye proper, it is not expected to cause harm. The eye should not be rinsed.Don’t allow the tip of the bottle or applicator to contact surrounding structures, fingers, or any other unintended surface in order to avoid contamination by common bacteria known to cause infections.Contact lenses should be removed prior to application of LATISSE® and may be reinserted 15 minutes following its administration.Use of LATISSE® more than once a day will not increase the growth of eyelashes more than use once a day. Store LATISSE® solution at 36o to 77o F (2o to 25o C).General Information about LATISSE®.Prescription treatments are sometimes prescribed for conditions that are not mentioned in patient information leaflets. Do not use LATISSE® solution for a condition for which it was not prescribed. Do not give LATISSE® to other people. It may not be appropriate for them to use.This leaflet summarizes the most important information about LATISSE®solution. If you would like more information, talk with your physician. You can also call Allergan’s product information department at 1-800-433-8871.What are the ingredients in LATISSE®?Active ingredient: bimatoprostInactive ingredients: benzalkonium chloride; sodium chloride; sodium phosphate, dibasic; citric acid; and purified water. Sodium hydroxide and/or hydrochloric acid may be added to adjust pH. The pH during its shelf life ranges from 6.8 - 7.8.© 2009 Allergan, Inc.Irvine, CA 92612® marks owned by Allergan, Inc.U.S. Patents 6,403,649; 7,351,404; and 7,388,029。
AVVIO RAPIDO Router mobili 5G 安装指南说明书
Per caricare la batteria, collegare il cavo USB al router mobile, quindi collegarlo a una presa a muro utilizzando l'adattatore di alimentazione CA o una porta USB del computer.Assicurarsi che l'orientamento della scheda nano SIM coincida con l'orientamento indicato sull'etichetta del dispositivo e inserirla delicatamente, quindi posizionare la batteria e il coperchio posteriore.NOTA: utilizzare solo le dita per inserire o rimuovere la scheda nano SIM. L'utilizzo di altri oggetti potrebbe danneggiare il dispositivo.1. COM'È FATTO IL DISPOSITIVO2. INSTALLAZIONE DELLA SIM E DELLA BATTERIAIl router mobile viene fornito con i seguenti componenti:• Router mobile Nighthawk® M6 o M6 Pro 5G*• Coperchio della batteria • Batteria• Cavo USB Tipo C• Alimentatore (varia in base all’area geografica)• Adattatori con presa Tipo C (per la maggior parte dei Paesi europei)•Adattatori con presa Tipo G (per il Regno Unito)*Illustrazioni del modello Nighthawk M6 per scopi illustrativi.antenna esterna (TS-9)antenna esterna (TS-9)USB Tipo CEthernetCONFORMITÀ NORMATIVA E NOTE LEGALIPer informazioni sulla conformità alle normative, compresala Dichiarazione di conformità UE, visitare il sito Web https:///it/about/regulatory/.Prima di collegare l'alimentazione, consultare il documento relativo alla conformità normativa.Può essere applicato solo ai dispositivi da 6 GHz: utilizzare il dispositivo solo in un ambiente al chiuso. L'utilizzo di dispositivi a 6 GHz è vietato su piattaforme petrolifere, automobili, treni, barche e aerei, tuttavia il suo utilizzo è consentito su aerei di grandi dimensioni quando volano sopra i 3000 metri di altezza. L'utilizzo di trasmettitori nella banda 5.925‑7.125 GHz è vietato per il controllo o le comunicazioni con sistemi aerei senza equipaggio.SUPPORTO E COMMUNITYDalla pagina del portale di amministrazione Web, fare clic sull'icona con i tre puntini nell'angolo in alto a destra per accedere ai file della guida e del supporto.Per ulteriori informazioni, visitare il sito netgear.it/support per accedere al manuale dell'utente completo e per scaricare gli aggiornamenti del firmware.È possibile trovare utili consigli anche nella Community NETGEAR, alla pagina /it.GESTIONE DELLE IMPOSTAZIONI TRAMITE L'APP NETGEAR MOBILEUtilizzare l'app NETGEAR Mobile per modificare il nome della rete Wi-Fi e la password. È possibile utilizzarla anche per riprodurre e condividere contenutimultimediali e accedere alle funzioni avanzate del router mobile.1. Accertarsi che il dispositivo mobile sia connesso a Internet.2. Eseguire la scansione del codice QR per scaricare l'appNETGEAR Mobile.Connessione con il nome e la password della rete Wi-Fi 1. Aprire il programma di gestione della rete Wi‑Fi deldispositivo.2. Individuare il nome della rete Wi‑Fi del router mobile(NTGR_XXXX) e stabilire una connessione.3. Only Connessione tramite EthernetPer prolungare la durata della batteria, l'opzione Ethernet è disattivata per impostazione predefinita. Per attivarla, toccare Power Manager (Risparmio energia) e passare a Performance Mode (Modalità performance).4. CONNESSIONE A INTERNETÈ possibile connettersi a Internet utilizzando il codice QR del router mobile da uno smartphone oppure selezionando manualmente il nome della rete Wi‑Fi del router e immettendo la password.Connessione tramite codice QR da uno smartphone 1. Toccare l'icona del codice QR sulla schermata inizialedello schermo LCD del router mobile.NOTA: quando è inattivo, lo schermo touch si oscura per risparmiare energia. Premere brevemente e rilasciare il pulsante di alimentazione per riattivare lo schermo.3. CONFIGURAZIONE DEL ROUTER MOBILETenere premuto il pulsante di accensione per due secondi, quindi seguire le istruzioni visualizzate sullo schermo per impostare un nome per la rete Wi‑Fi e una password univoci.La personalizzazione delle impostazioni Wi‑Fi consente di proteggere la rete Wi‑Fi del router mobile.Impostazioni APNIl router mobile legge i dati dalla scheda SIM e determina automaticamente le impostazioni APN (Access Point Name) corrette con i piani dati della maggior parte degli operatori. Tuttavia, se si utilizza un router mobile sbloccato con un operatore o un piano meno comune, potrebbe essere necessario immettere manualmente le impostazioni APN.Se viene visualizzata la schermata APN Setup Required (Configurazione APN richiesta), i dati APN dell’operatore non sono presenti nel nostro database ed è necessario inserirli manualmente. Immettere i valori fornitidall’operatore nei campi corrispondenti, quindi toccare Save (Salva) per completare la configurazione.NOTA: l’operatore determina le proprie informazioni APN e deve fornire le informazioni per il proprio piano dati. Si consiglia di contattare il proprio operatore per le impostazioni APN corrette e di utilizzare solo l’APN suggerito per il piano specifico.Schermata inizialeAl termine della configurazione, il router visualizza la schermata iniziale:Wi‑FiPotenza Carica Rete Codice QR connessione rapida Wi‑FiNome e Wi‑FiIcona del codice QR。
0411523v1 Twisted representations of vertex operator superalgebras
a r X i v :m a t h /0411523v 1 [m a t h .Q A ] 23 N o v 2004Twisted representations of vertex operatorsuperalgebrasChongying Dong 1and Zhongping ZhaoDepartment of Mathematics,University of California,Santa Cruz,CA 95064AbstractThis paper gives an analogue of A g (V )theory for a vertex operator superalgebra V and an automorphism g of finite order.The relation between the g -twisted V -modules and A g (V )-modules is established.It is proved that if V is g -rational,then A g (V )is finite dimensional semisimple associative algebra and there are only finitely many irreducible g -twisted V -modules.1IntroductionThe twisted sectors or twisted modules are basic ingredients in orbifold conformal field theory (cf.[FLM1],[FLM2],[FLM3],[Le1],[Le2],[DHVW],[DVVV],[DL2],[DLM2]).The notion of twisted module [FFR],[D]is derived from the properties of twisted vertex operators for finite automorphisms of even lattice vertex operator algebras constructed in [Le1],[Le2]and [FLM2],also see [DL2].In this paper we study the twisted modules for an arbitrary vertex operator superalgebra following [Z],[KW]and [DLM2].An associative algebra A (V )was introduced in [Z]for every vertex operator algebra V to study the representation theory for vertex operator algebra.The main idea is to reduce the study of representation theory for a vertex operator algebra to the study of represen-tation theory for an associative algebra.This approach has been very successful and the irreducible modules for many well-known vertex operator algebras have been classified by using the associative algebras.This theory has been extended to the vertex operator superalgebras in [KW]and has been further generalized to the twisted representations for a vertex operator algebra in [DLM2].This paper is a “super analogue”of [DLM2].We construct an associative algebra A g (V )for any vertex operator superalgebra V together with an automorphism g of finite order.Then the vacuum space of any admissible g -twisted V -module becomes a module for A g (V ).On the other hand one can construct a ‘universal’admissible g -twisted V -module from any A g (V )-module.This leads to a one to one correspondence between the set of inequivalent admissible g -twisted V -modules and the set of simple A g (V )-modules.As in the case of vertex operator algebra,if V is g -rational then A g (V )is a finite dimensional semisimple associative algebra.The ideas of this paper and other related papers are very natural and go back to the theory of highest weight modules for Kac-Moody Lie algebras and other Lie algebras with triangular decompositions.In the classical highest weight module theory,the highestweight or highest weight vector determines the highest weight module structure to some extend(different highest weight modules can have the same highest weight).The role of the vacuum space for an admissible twisted module is similar to the role of the highest weight space in a highest weight module.So from this point of view,the A g(V)theory is a natural extension of highest weight module theory in the representation theory of vertex operator superalgebras.A vertex operator superalgebra has a canonical automorphismσof order2arising from the structure of superspace.Theσ-twisted modules which are called the Ramond sector in the literature play very important roles in the study of geometry.Important topological invariants such as elliptic genus and certain Witten genus can be understood as graded trace functions on the Ramond sectors constructed from the manifolds.It is expected that the theory developed in this paper will have applications in geometry and physics.Since the setting and most results in this paper are similar to those in[DLM2]we only provide the arguments which are either new or need a lot of modifications.We refer the reader to[DLM2]for details.The organization of this paper is similar to that of[DLM2].We review the definition of vertex operator superalgebra and define various notions of g-twisted V-modules in section2.In section3,we introduce the algebra A g(V)for VOSA V.Section4is devoted to the study of Lie superalgebra V[g]which is kind of twisted affinization of V.A weak g-twisted V-module is naturally a V[g]-module.In section5,we construct the functorΩwhich sends a weak g-twisted V-module to an A g(V)-module.We construct another functor L from the category of A g(V)-modules to the category of admissible g-twisted V-modules in Section6.That is,for any A g(V)-module U we can construct a kind of“generalized Verma module”¯M(U)which is the universal admissible g-twisted V-module generated by U.It is proved that there is a1-1correspondence between the irreducible objects in these two categories.Moreover if V is g-rational,then A g(V)is a finite dimensional semisimple associative algebra.We discuss some examples of vertex operator superalgebras constructed from the free fermions and their twisted modules in Section7.2Vertex Operator superalgebra and twisted mod-ulesWe review the definition of vertex operator superalgebra(cf.[B],[FLM3],[DL1])and various notions of twisted modules in this section(cf.[D],[DLM2],[FFR],[FLM3],[Z]).Recall that a super vector space is a Z2-graded vector space V=V¯0⊕V¯1.The elements in V¯0(resp.V¯1)are called even(resp.odd).Let˜v be0if v∈V¯0,and1if v∈V¯1.Definition2.1.A vertex operator superalgebra is a12Z+V n=V¯0⊕V¯1.(2.1)with V¯0= n∈Z V n and V¯1= n∈112(m3−m)δm+n,0c;(2.6)dz0 Y(u,z1)Y(v,z2)−(−1)˜u˜v z−10δ z2−z1z2 Y(Y(u,z0)v,z2).(2.9) whereδ(z)= n∈Z z n and(z i−z j)n is expanded as a formal power series in z j.Throughout the paper,z0,z1,z2,etc.are independent commuting formal variables.Such a vertex operator superalgebra may be denoted by V=(V,Y,1,ω).In the case V¯1=0,this is exactly the definition of vertex operator algebra given in[FLM3].Definition2.2.Let V be a vertex operator superalgebra.An automorphism g of V is a linear automorphism of V preservingωsuch that the actions of g and Y(v,z)on V are compatible in the sense thatgY(v,z)g−1=Y(gv,z)for v∈V.Note that any automorphism of V commutes with L(0)and preserves each homoge-neous space V n.As a result,any automorphism preserves V¯0and V¯1.Let Aut(V)be the group of automorphisms of V.There is a special automorphism σ∈Aut(V)such thatσ|V¯0=1andσ|V¯1=−1.It is clear thatσis a central element of Aut(V).Fix g∈Aut(V)of order T0.Let o(gσ)=T.Denote the decompositions of V into eigenspaces with respect to the actions of gσand g as followsV=⊕r∈Z/T Z V r∗(2.10)V=⊕r∈Z/T0ZV r(2.11) where V r∗={v∈V|gσv=e2πir/T v}and V r={v∈V|gv=e2πir/T0v}Definition2.3.A weak g-twisted V-module M is a vector space equipped with a linear mapV→(End M)[[z1/T0,z−1/T0]v→Y M(v,z)= n∈1T0+Zu n z−n−1;(2.12)u l w=0for l>>0;(2.13)Y M(1,z)=Id M;(2.14) z−10δ z1−z2−z0 Y M(v,z2)Y M(u,z1)=z−12 z1−z0z2 Y M(Y(u,z0)v,z2).(2.15)Following the arguments in[DL1]one can prove that the twisted Jacobi identity is equivalent to the following associativity formula(z0+z2)k+r T0Y M(Y(u,z0)v,z2)w.(2.16) where w∈M and k∈Z+s.t z k+rz2 −r/T0δz1−z0Lemma2.4.The associativity formula(2.16)is equivalent to the following: (z0+z2)m+s T Y M(Y(u,z0)v,z2)wfor u∈V s∗and some m∈1T Y M(u,z)w involves only nonnegative integral powers of z.Proof:Let u∈V r.It is enough to prove that wt u+sT0are congruent modulo Z.It is easy to see that s≡T2˜u+2r modulo Z if T0is odd.Thus wt u+s2˜u+r2˜u and wt u are congruentmodulo Z,the result follows immediately.Equating the coefficients of z−m−11z−n−12in(2.17)yields[u m,v n]=∞i=0 m i (u i v)m+n−i.(2.18)We may also deduce from(2.12)-(2.15)the usual Virasoro algebra axioms,namely that if Y M(ω,z)= n∈Z L(n)z−n−2then[L(m),L(n)]=(m−n)L(m+n)+1dzY M(v,z)=Y M(L(−1)v,z)(2.20) (cf.[DLM1]).The homomorphism and isomorphism of weak twisted modules are defined in an ob-vious way.Definition2.5.An admissible g-twisted V-module is a weak g-twisted V-module M which carries a1T Z+M(n)(2.21)satisfyingv m M(n)⊆M(n+wt v−m−1)(2.22) for homogeneous v∈V.Definition2.6.An ordinary g-twisted V-module is a weak g-twisted V-moduleM= λ∈C Mλ(2.23) such that dim Mλisfinite and forfixedλ,M nThe admissible g-twisted V-modules form a subcategory of the weak g-twisted V-modules.It is easy to prove that an ordinary g-twisted V-module is admissible.Shifting the grading of an admissible g-twisted module gives an isomorphic admissible g-twisted V-module.A simple object in this category is an admissible g-twisted V-module M such that0and M are the only graded submodules.We say that V is g-rational if every admissible g-twisted V-module is completely reducible,i.e.,a direct sum of simple admissible g-twisted modules.V is called rational if V is1-rational.V is called holomorphic if V is rational and V is the only irreducible V-module up to isomorphism.If M=⊕n∈1T Z+M(n)∗(2.24)where M(n)∗=Hom C(M(n),C).The vertex operator Y M′(a,z)is defined for a∈V via Y M′(a,z)f,u = f,Y M(e zL(1)(−z−2)L(0)a,z−1)u (2.25) where · denotes the natural paring between M′and M.Then we have the following [FHL]:Lemma2.7.(M′,Y M′)is an admissible g−1-twisted V-module.Lemma2.7is needed in the proof of several results in Section6although we do not intend to give these proofs(cf.[DLM2]).3The associative algebra A g(V)Let r be an integer between0and T−1(or T0−1).We will also use r to denote its residue class modulo T or T0.For homogeneous u∈V r∗,we setδr=1if r=0andδr=0 if r=0.Let v∈V we defineu◦g v=Res z (1+z)wt u−1+δr+rz1+δrY(u,z)v(3.1)where(1+z)αforα∈C is to be expanded in nonnegative integer powers of z.Let O g(V) be the linear span of all u◦g v and define the linear space A g(V)to be the quotient V/O g(V).We will use A(V),O(V),u◦v,when g=1.The A(V)was constructed in[KW] and if V is a vertex operator,A g(V)was constructed in[DLM2].Lemma3.1.If r=0then V r∗⊆O g(V).Proof:The proof is the same as that of Lemma2.1in[DLM2].Let I=O g(V)∩V0∗.Then A g(V)≃V0∗/I(as linear spaces).Since O(V0∗)⊂I, A g(V)is a quotient of A(V0∗).We now define a product ∗g on V which will induce an associative product in A g (V ).Let r,u and v be as above and setu ∗gv =Res z (Y (u,z )(1+z )wt uT+nzY (v,z )u ∈O (V 0∗)and(iii)u ∗v −(−1)˜u ˜v v ∗u −Res z (1+z )wt u −1Y (u,z )v ∈O (V 0∗).Proof:See the proofs of Lemmas 2.1.2and 2.1.3of[Z]bynoting thatY (u,z )v ≡(−1)˜u ˜v (1+z )−wtu −wtv Y (v,−zz Y (c,z )u(3.4)andu∗c≡Res z(1+z)wt c−1z0 Y(c,z1)Y(a,z2)b−(−1)˜c˜a z−10δ z2−z1z2 Y(Y(c,z0)a,z2)b.(3.6) Forε=0or1,(3.6)implies:xε=Res z1(1+z1)wt c−εTz1Y(c,z1)(1+z2)wt a−1+δr+rz1+δr2Y(a,z2)b=(−1)˜a˜c Res z1Res z2(1+z1)wt c−εTz1(1+z2)wt a−1+δr+rz1+δr2z−12δ z1−z0z1(1+z2)wt a−1+δr+rz1+δr2Y(a,z2)Y(c,z1)b+Res z2Res z(1+z2+z0)wt c−εTTz1Y(c,z1)b+∞i,j=0(−1)j wt c−εi Res z2(1+z2)wt a−1+δr+r z j+2+δr2Y(c i+j a,z2)b=(−1)˜c˜a Res z2(1+z2)wt a−1+δr+rz1+δr2Y(a,z2)Res z1(1+z1)wt c−εT+j+1−εNext we prove that∗g is associative.We need to verify that(a∗b)∗c−a∗(b∗c)∈O g(V0∗)for a,b,c∈V0∗.A straightforward computation using the twisted Jacobi identity gives(a∗b)∗c=wt a i=0(a i−1b)∗c=wt ai=0 wt a i Res w(Y(a i−1b,w)(1+w)wt(a i−1b)wc)=Res w Res z−w(Y(Y(a,z−w)b,w)(1+z)wt a(1+w)wt bw(z−w)c)−(−1)˜a˜b Res w Res z(Y(b,w)Y(a,z)(1+z)wt a(1+w)wt bwc)−(−1)˜a˜b∞i=0Res w Res z(Y(b,w)Y(a,z)(−1)i+1z i w−i−1(1+z)wt a(1+w)wt bzwc)mod O g(V0∗)≡a∗(b∗c)mod O g(V0∗)Thus A g(V)≃V0∗T0,t−1dt f(t) g(t).(4.1) (see[B]).Then the tensor productL(V)=C[t1T0]⊗V.(4.2)is a vertex superalgebra with vertex operatorY (f (t )⊗v,z )(g (t )⊗u )=f (t +z )g (t )⊗Y (v,z )u.(4.3)The L (−1)operator of L (V )is given by D =dT 0)(t m ⊗ga ).(4.4)Let L (V,g )be the g -invariants which is a vertex sub-superalgebra of L (V ).Clearly,L (V,g )=⊕T 0−1r =0tr/T 0C [t,t −1]⊗V r .(4.5)Following [B],we know thatV [g ]=L (V,g )/D L (V,g )(4.6)is a Lie superalgebra with bracket[u +D L (V,g ),v +D L (V,g )]=u 0v +D L (V,g ).(4.7)For short let a (q )be the image of t q ⊗a ∈L (V,g )in V [g ].Then we have Lemma 4.1.Let a ∈V r ,v ∈V s and m,n ∈Z .Then(i)[ω(0),a (m +r T 0a (m −1+rT 0),b (n +s T 0ia ib (m +n +r +sTZ -graded.Since D increases degree by 1,D L (V,g )is a graded subspace ofL (V,g )and V [g ]is naturally 1TZV [g ]n .By Lemma 4.1,V [g ]is a1TZV [g ]±n .Lemma 4.2.V [g ]0is spanned by elements of the form a (wt a −1)for homogeneous a ∈V 0∗.Proof:Let a∈V.Then the degree wt a−n−1of a(n)is0if and only if a∈V0¯andn=wt a−1or a∈V T0/2¯1and n=wt a−1.The bracket of V[g]0is given by[a(wt a−1),b(wt b−1)]=∞j=0 wt a−1j a j b(wt(a j b)−1).(4.10)Set o(a)=a(wt a−1)for homogeneous a∈V0∗and extend linearly to all a∈V0∗. This gives a linear mapV0∗→V[g]0,a→o(a).(4.11) As the kernel of the map is(L(−1)+L(0))V0∗,we obtain an isomorphism of Lie super-algebras V0∗/(L(−1)+L(0))V0∗∼=V[g]0.The bracket on the quotient of V0∗is given by[a,b]= j≥0 wt a−1j a j b.Lemma4.3.Let A g(V)Lie be the Lie superalgebra of the associative algebra A g(V)intro-duced in section3such that[u,v]=u∗g v−(−1)˜u˜v v∗g u.Then the map o(a)→a+O g(V) is an onto Lie superalgebra homomorphism from V[g]0to A g(V)Lie.Proof:Recall that I=O g(V)∩V0∗.So we have a surjective linear mapV[g]0∼=V0∗/(L(−1)+L(0))V0∗→V0∗/I≃A g(V),o(a)→a+(L(−1)+L(0))V0∗→a+I.(4.12) The Lie homomorphism follows from[o(a),o(b)]=∞j=0 wt a−1j o(a j b).and[a+O g(V),b+O g(V)]≡a∗g b−(−1)˜a˜b b∗g a≡∞j=0 wt a−1j a j b≡Res z(1+z)wt a−1Y(a,z)b mod O g(V0∗)≡∞i=0 wt a−1i a i b mod O g(V0∗).5The functorΩThe main purpose in this section is to construct a covariant functorΩfrom the category of weak g-twisted V-modules to the category of A g(V)-modules(cf.Theorem5.1).Let M be a weak g-twisted V-module.We define the space of“lowest weight vectors”to beΩ(M)={w∈M|u wt u+n w=0,u∈V,n≥0}.The main result in this section says thatΩ(M)is an A g(V)-module.Moreover if f:M→N is a morphism in weak g-twisted V-modules,the restrictionΩ(f)of f toΩ(M)is an A g(V)-module morphism.Note that if M is a weak g-twisted V-module then M becomes a V[g]-module such that a(m)acts as a m.Moreover,M is an admissible g-twisted V-module if and only if M is a1TY(u,z)v.z2The argument in the Proof of Theorem2.1.2in[Z]with suitable modification giveso(u∗v)=o(u)o(v).Note that o(L(−1)u+L(0)u)=0and(L(−1)u+L(0)u)∗v=u◦v.We immediately have o(u◦v)=0onΩ(M).Ifa=Res z (1+z)wt c−1+rzY(u,z)v,we can use Lemma2.4.Since z wt u−1+rT Y M(u,z0+z2)Y M(v,z2)w=(z2+z0)wt u−1+rT2to(5.1)yields0=Res z0Res z2z−10zwt v−rT Y M(Y(u,z0)v,z2)w=∞i=0 wt u−1+rTi o(u i−1v)w=o Res z(1+z)wt u−1+r z Y M(u,z)v w=o(a)w(5.2) as required.If M is a nonzero admissible g-twisted V-modules we may and do assume that M(0) is nonzero with suitable degree shift.With these conventions we haveProposition5.2.Let M be a simple admissible g-twisted V-module.Then the following hold(i)Ω(M)=M(0).(ii)Ω(M)is a simple A g(V)-module.Proof:The proof is the same as in[DLM2].6Generalized Verma modules and the functor LIn this section we focus on how to construct admissible g-twisted V-modules from a given A g(V)-module U.We use the same trick which was used in[DLM2]to do this.We will define two g-twisted admissible V-modules¯M(U)and L(U).The¯M(U)is the universal admissible g-twisted V-module such that¯M(U)(0)=U and L(U)is smallest admissible g-twisted V-module whose L(U)(0)=U.Just as in the classical highest weight module theory,L(U)is the unique irreducible quotient of¯M(U)if U is simple.We start with an A g(V)-module U.Then U is automatically a module for A g(V)Lie.By Lemma4.3U is lifted to a module for the Lie superalgebra V[g]0.Let V[g]−act trivially on U and extend U to a P=V[g]−⊕V[g]0-module.Consider the induced moduleM(U)=Ind V[g]P(U)=U(V[g])⊗U(P)U(6.1)T0Zv(m)z−m−1(6.2)Then Y M(U)(v,z)satisfies condition(2.12)-(2.14).By Lemma4.1(ii),the identity(2.18) holds.But this is not good enough to establish the twisted Jacobi identity for the action (6.2)on M(U).Let W be the subspace of M(U)spanned linearly by the coefficients of(z0+z2)wt a−1+δr+r T Y(Y(a,z0)b,z2)u(6.3) for any homogeneous a∈V r∗,b∈V,u∈U.We set¯M(U)=M(U)/U(V[g])W.(6.4) Proposition6.1.Let M be a V[g]-module such that there is a subspace U of M satisfying the following conditions:(i)M=U(V[g])U;(ii)For any a∈V r∗and u∈U there is k∈wt a+Z+such that(z0+z2)k+r T Y(Y(a,z0)b,z2)u(6.5) for any b∈V.Then M is a weak V-module.Proof:We only need to prove the twisted Jacobi identity,which is equivalent to com-mutator relation(2.17)and the associativity(2.16).But the commutator formula is built in already as M is a V[g]-module.By Lemma2.4,the assumption(ii)can be reformulated as follows:(ii’)For any a∈V r and u∈U there is k∈Z+such that(z0+z2)k+r T0Y(Y(a,z0)b,z2)u(6.6) Since M is a V[g]-module generated by U it is enough to prove that if u satisfies(ii’) then c n u also satisfies(ii’)for c∈V and n∈1T0Y(c i a,z0+z2)Y(b,z2)u=(z2+z0)k2+r+sT0Y(a,z0+z2)Y(c i b,z2)u=(z2+z0)k2+r+sT0+n−k1>k2+r+s(z 0+z 2)k +rT 0c n Y (a,z 0+z 2)Y (b,z 2)u −(−1)˜a ˜c (−1)˜b ˜c∞ i =0n i (z 0+z 2)k +r T 0Y (a,z 0+z 2)Y (c i b,z 2)u=(−1)˜a ˜c (−1)˜b ˜c (z 0+z 2)k +rT 0+n −iY (Y (c i a,z 0)b,z 2)u−(−1)˜b ˜c∞ i =0n iz n −i2(z 2+z 0)k +rT 0c n Y (Y (a,z 0)b,z 2)u−(−1)˜a ˜c (−1)˜b ˜c ∞ i =0n i (z 2+z 0)k +r T 0Y (c i Y (a,z 0)b,z 2)u+(−1)˜a ˜c (−1)˜b ˜c ∞ i =0∞ j =0n j j iz n −i2(z 2+z 0)k +rT 0c n Y (Y (a,z 0)b,z 2)u−(−1)˜a ˜c (−1)˜b ˜c ∞ i =0n i (z 2+z 0)k +r T 0Y (c i Y (a,z 0)b,z 2)u+(−1)˜a ˜c (−1)˜b ˜c ∞ j =0∞ i =jn j n −ji −jz n −i2(z 2+z 0)k +rT 0c n Y (Y (a,z 0)b,z 2)u−(−1)˜a ˜c (−1)˜b ˜c∞ i =0n i z n −i 2(z 2+z 0)k +rT 0c n Y (Y (a,z 0)b,z 2)u−(−1)˜a ˜c (−1)˜b ˜c (z 2+z 0)k +rT 0Y (Y (a,z 0)b,z 2)c n u,=(z 2+z 0)k +rThe proof is complete.Applying Proposition6.1to¯M(U)gives the following main result of this section. Theorem6.2.¯M(U)is an admissible g-twisted V-module with¯M(U)(0)=U and with the following universal property:for any weak g-twisted V-module M and any A g(V)-morphismφ:U→Ω(M),there is a unique morphism¯φ:¯M(U)→M of weak g-twisted V-modules which extendsφ.As in[DLM2]we also haveTheorem6.3.M(U)has a unique maximal graded V[g]-submodule J with the property that J∩U=0.Then L(U)=M(U)/J is an admissible g-twisted V-module satisfying Ω(L(U))∼=U.L defines a functor from the category of A g(V)-modules to the category of admissible g-twisted V-modules such thatΩ◦L is naturally equivalent to the identity.We have a pair of functorsΩ,L between the A g(V)-module category and admissible g-twisted V-module category.AlthoughΩ◦L is equivalent to the identity,L◦Ωis not equivalent to the identity in general.The following result is an immediate consequence of Theorem6.3.Lemma6.4.Suppose that U is a simple A g(V)-module.Then L(U)is a simple admissible g-twisted V-module.Using Lemma6.4,Proposition5.2(ii),Theorems6.2and6.3gives:Theorem6.5.L andΩare equivalent when restricted to the full subcategories of com-pletely reducible A g(V)-modules and completely reducible admissible g-twisted V-modules respectively.In particular,L andΩinduces mutually inverse bijections on the isomor-phism classes of simple objects in the category of A g(V)-modules and admissible g-twisted V-modules respectively.We now apply the obtained results to g-rational vertex operator superalgebras to obtain:Theorem6.6.Suppose that V is a g-rational vertex operator superalgebra.Then the following hold:(a)A g(V)is afinite-dimensional,semi-simple associative algebra(possibly0).(b)V has onlyfinitely many isomorphism classes of simple admissible g-twisted mod-ules.(c)Every simple admissible g-twisted V-module is an ordinary g-twisted V-module.(d)V is g−1-rational.(e)The functors L,Ωare mutually inverse categorical equivalences between the cate-gory of A g(V)-modules and the category of admissible g-twisted V-modules.(f)The functors L,Ωinduce mutually inverse categorical equivalences between the category offinite-dimensional A g(V)-modules and the category of ordinary g-twisted V-modules.The proof is the same as that of Theorem8.1in[DLM2].7ExamplesIn this section we discuss the well known vertex operator superalgebras constructed from the free fermions and their twisted modules.In particular we compute the algebra A g (V )and classify the irreducible twisted modules using A g (V ).The classification results have been obtained previously in [Li2]with a different approach.Let H = li =1C a i be a complex vector space equipped with a nondegenerate symmet-ric bilinear form (,)such that {a i |i =1,2,...l }form an orthonormal basis.Let A (H,Z +12}subject to the relation [a (n ),b (m )]+=(a,b )δm +n,0.Let A +(H,Z +12,n >0},andmake C a 1-dimensional A +(H,Z +12)=A (H,Z +12)C∼=Λ[a i(−n )|n >0,n ∈Z +1∂a i (−n )if n is positive and by multiplication by a i (n )if nis negative.The V (H,Z +12Zso thatV (H,Z +12Zwe define a normal ordering:b 1(n 1)···b k (n k ):=(−1)|σ|b i 1(n i 1)···b i k (n i k )such that n i 1≤···≤n i k where σis the permutation of {1,...,k }by sending j to i j .For a ∈H set Y (a (−1/2),z )=n ∈12)···b k (−n k −12)where n i arenonnegative integers.We setY (v,z )=:(∂n 1b 1(z ))···(∂n k b k (z )):where ∂n =1dz)n .Then we have a linear map:V (H,Z +12))[[z,z −1]]v→Y (v,z )=n ∈Z v n z −n −1(v n ∈End V (H,Z +12li =1a i (−32).The following result is well known (cf.[FFR],[KW]and [Li1]).Theorem7.1.(V(H,Z+12)for i=1,...,l.We have already mentioned in Section2that any vertex operator superalgebra has a canonical automorphismσsuch thatσ=1on V¯0andσ=−1on V¯1.Note thatV(H,Z+12)¯1.We next discuss theσ-twisted V(H,Z+1∂b i(−n)∗if n is nonnegative and multiplication by b i(n)if n is nega-tive.Similarly,b i(n)∗acts as∂2)-module such thatY V(H,Z)(u(−12)is isomorphic to thematrix algebra M2k×2k(C)and V(H,Z)is the unique irreducibleσ-twisted V(H,Z+12)is isomorphic to thematrix algebra M2k×2k(C).Since g=σ,the decomposition(2.10)becomes V=V0∗.By lemma3.2(i),Res z (1+z)1z2+ma i(z)v= s≥0c s a i(−m+s−3lies in O σ(V (H,Z +12s.This implies that a i (−m −32+s )vmod O σ(V (H,Z +12))is spanned by b 1(−1/2)s 1···b k (−1/2)s k b ∗1(−1/2)t 1···b ∗k (−1/2)t kwith s i ,t i =0,1.As a result,dim A σ(V (H,Z +12)-module.By Theorem 5.1,Ω(V (H,Z ))is a simple A σ(V (H,Z +12)≥dim Ω(V (H,Z ))=22k .This forces dim A σ(V (H,Z +12))∼=M 2k ×2k (C ).We now deal with the case dim H =2k +1for some nonnegative integer k.Then H can be decomposed into:H =k i =1C b i +k i =1C b ∗i +C ewith (b i ,b j )=(b ∗i ,b ∗j )=0,(b i ,b ∗j )=δi,j ,(e,b i )=(e,b ∗i )=0,(e,e )=2.Let A (H,Z )be the associative algebra generated same as above,and A (H,Z )+be the subalgebra generated by {b i (n ),b ∗i (m ),e (n )|m,n ∈Z ,m >0,n ≥0,i =1,···,k }and make C a 1-dimensional A (H,Z )+-module so that b i (n )1=0for n ≥0and b ∗i (m )1=e (m )1=0for m >0,i =1,···,k.SetV (H,Z )=A (H,Z )⊗A (H,Z )+C∼=Λ[b i (−n ),b ∗i (−m ),e (−m )|n,m ∈Z ,n >0,m ≥0]and letW (H,Z )=Λ[b i (−n ),b ∗i (−m ),e (−n )|n,m ∈Z ,n >0,m ≥0]=W (H,Z )even⊕W (H,Z )odd be the decomposition into the even and old parity subspaces.Also defineV ±(H,Z )=(1±e (0))W (H,Z )even ⊕(1∓e (0))W (H,Z )odd .ThenV (H,Z )=V +(H,Z )⊕V −(H,Z )and V ±(H,Z )are irreducible A (H,Z )-modules.The actions of b i (n ),b ∗i (n )are the same as before.The e (n )acts as 2∂2),z )=u (z )=n ∈Zu (n )z −n −1/2for u ∈H.Proposition7.3.If dim H=2k+1is odd,then Aσ(V(H,Z+12)has exactly two irreducibleσ-twisted modulesV±(H,Z)up to isomorphism.Proof:The proof is similar to that of Proposition7.2.Note that the automorphismσof V(H,Z+12)as follows:For any a1(−n1)···a s(−n s)∈V(H,Z+1/2),τ(a1(−n1)a2(−n2)···a m(−n m))=(τa1)(−n1)(τa2)(−n2)···(τa m)(−n m).Let o(τσ)=N.We decompose H into eigenspaces with respect to theτσandτas follows:H=⊕r∈Z/N Z H r∗(7.4)H=⊕r∈Z/N0ZH r(7.5) where H r∗={v∈H|τσv=e2πir/N v},and H r={v∈H|τv=e2πir/N0v}.Let l0=dim H0∗.As before we need to consider two separate cases:l0is even or odd. If l0=2k0for some nonnegative integer k0,we haveH0∗=k0i=1C h i+k0 i=1C h∗iwith(h i,h j)=(h∗i,h∗j)=0,(h i,h∗j)=δi,j.Let l r=dim H r∗with r=0.If r=N−r,wefix bases b r,1,b r,2,···b r,lr∈H r∗and b∗r,1,b∗r,2,···b∗r,lr∈H(N−r)∗such that(b r,i,b∗r,j)=(b∗r,j,b r,i)=δi,j.If r=N−r,let{c1,c2,···c lN 2∗.Then M= N−1r=1Λ[b(−n)|n∈r2)-module so that for u∈H r∗, Y M(u(−1N +Zu(n)z−n−1/2(see[Li2]).Note that b r,i(n)acts as∂∂c i(−n)if n is positive andacts as multiplication by c i(n)if n is negative.Also,h i(n)acts as∂∂h i(−n)if n is positive,and acts as multiplication by h∗i(n)if nis nonnegative.One can easily calculate thatΩ(M)=Λ[h∗i(0)|h∗i∈H0∗,i=1,2,···k0]. So dimΩ(M)=2k0.Proposition7.4.If dim H0∗=l0=2k0then M= N−1r=1Λ[b(−n)|n∈r2)-module.Proof:As in the proof of Proposition7.2,it is sufficient to show that dim Aτ(V(H,Z+ 1N−1 z1+m a(z)b=∞l=0 r2l a(−m−12)).So using the same calculation done in Proposition7.2,we conclude that Aτ(V)is spanned byh1(−1/2)s1···h k0(−1/2)s k0h∗1(−1/2)t1···h∗k(−1/2)t k0with s i,t i=0,1.Hence dim Aτ(V(H,Z+1N+Z,1≤r≤N−1,n>0] are irreducibleτ-twisted V(H,Z+1∂e(−n)if n>0andas multiplication by e(n)if n≤0.The proof of Proposition7.4gives Proposition7.5.If dim H0∗=2k0+1is odd,V(H,Z+1[DVVV]R.Dijkgraaf,C.Vafa,E.Verlinde and H.Verlinde,The operator algebra of orbifold models,Comm.Math.Phys.123(1989),485-526.[DHVW]L.Dixon,J.Harvey,C.Vafa and E.Witten,Strings on orbifolds,Nucl.Phys.B261(1985),651;II,Nucl.Phys.B274(1986),285.[D] C.Dong,Twisted modules for vertex algebras associated with even lattice,J.of Algebra165(1994),91-112.[DL1] C.Dong and J.Lepowsky,Generalized Vertex Algebras and Relative Vertex Operators,Progress in Math.,Vol.112,Birkh¨a user Boston,1993.[DL2] C.Dong and J.Lepowsky,The algebraic structure of relative twisted vertex operators,J.Pure and Applied Algebra110(1996),259-295.[DLM1] C.Dong,H.Li and G.Mason,Regularity of rational vertex operator algebras, Adv.Math.132(1997),148–166.[DLM2] C.Dong,H.Li and G.Mason,Twisted representations of vertex operator alge-bras,Math.Ann.310(1998),571–600.[FFR]Alex J.Feingold,Igor B.Frenkel and John F.X.Ries,Spinor Construction of Vertex Operator Algebras,Triality,and E(1)8,Contemporary Math.121,1991.[FHL]I.Frenkel,Y.Huang and J.Lepowsky,On axiomatic approaches to vertex oper-ator algebras and modules,Mem.Amer.Math.Soc.1041993.[FLM1]I.B.Frenkel,J.Lepowsky and A.Meurman,A natural representation of the Fischer-Griess Monster with the modular function J as character,Proc.Natl.A81(1984),3256-3260.[FLM2]I.B.Frenkel,J.Lepowsky and A.Meurman,Vertex operator calculus,in:Math-ematical Aspects of String Theory,Proc.1986Conference,San Diego.ed.byS.-T.Yau,World Scientific,Singapore,1987,150-188.[FLM3]I.B.Frenkel,J.Lepowsky and A.Meurman,Vertex Operator Algebras and the Monster,Pure and Applied Math.,Vol.134,Academic Press,1988.[FZ]I.Frenkel and Y.Zhu,Vertex operator algebras associated to representations of affine and Virasoro algebras,Duke Math.J.66(1992),123-168.[KW]V.Kac and W.Wang,Vertex operator superalgebras and representations,Con-tem.Math.,AMS Vol.175(1994),161-191.[Le1]J.Lepowsky,Calculus of twisted vertex operators,Proc.Natl.Acad A 82(1985),8295-8299.。
机械通气临床应用指南(中华重症医学分会2024)
机械通气临床应用指南中华医学会重症医学分会(2024年)引言重症医学是探讨危重病发生发展的规律,对危重病进行预防和治疗的临床学科。
器官功能支持是重症医学临床实践的重要内容之一。
机械通气从仅作为肺脏通气功能的支持治疗起先,经过多年来医学理论的发展及呼吸机技术的进步,已经成为涉及气体交换、呼吸做功、肺损伤、胸腔内器官压力及容积环境、循环功能等,可产生多方面影响的重要干预措施,并主要通过提高氧输送、肺脏爱护、改善内环境等途径成为治疗多器官功能不全综合征的重要治疗手段。
机械通气不仅可以依据是否建立人工气道分为“有创”或“无创”,因为呼吸机具有的不同呼吸模式而使通气有众多的选择,不同的疾病对机械通气提出了具有特异性的要求,医学理论的发展及循证医学数据的增加使对呼吸机的临床应用更加趋于有明确的针对性和规范性。
在这种条件下,不难看出,对危重病人的机械通气制定规范有明确的必要性。
同时,多年临床工作的积累和多中心临床探讨证据为机械通气指南的制定供应了越来越充分的条件。
中华医学会重症医学分会以循证医学的证据为基础,采纳国际通用的方法,经过广泛征求看法和建议,反复仔细探讨,达成关于机械通气临床应用方面的共识,以期对危重病人的机械通气的临床应用进行规范。
重症医学分会今后还将依据医学证据的发展及新的共识对机械通气临床应用指南进行更新。
指南中的举荐看法依据2024年ISF提出的Delphi分级标准(表1)。
指南涉及的文献依据探讨方法和结果分成5个层次,举荐看法的举荐级别依据Delphi分级分为A E级,其中A 级为最高。
表1 Delphi分级标准举荐级别A 至少有2项I级探讨结果支持B 仅有1项I级探讨结果支持C 仅有II级探讨结果支持D 至少有1项III级探讨结果支持E 仅有IV级或V探讨结果支持探讨课题分级I 大样本,随机探讨,结果清楚,假阳性或假阴性的错误很低II 小样本,随机探讨,结果不确定,假阳性和/或假阴性的错误较高III 非随机,同期比照探讨IV 非随机,历史比照和专家看法V 病例报道,非比照探讨和专家看法危重症患者人工气道的选择人工气道是为了保证气道通畅而在生理气道与其他气源之间建立的连接,分为上人工气道和下人工气道,是呼吸系统危重症患者常见的抢救措施之一。
室性期前收缩性心肌病
室性期前收缩性心肌病林恒如【摘要】频发的室性期前收缩导致心脏结构改变和左心室射血分数下降,称为室性期前收缩性心肌病.消除室性期前收缩后心脏结构和功能可恢复正常.回顾性研究显示,病程长及室性期前收缩负荷高是室性期前收缩性心肌病主要易患因素.其发生机制可能与室性期前收缩发生时心脏无法有效充盈及左右室收缩不同步导致心室腔扩大,心功能下降相关.射频消融术已成为根治室性期前收缩、逆转室性期前收缩性心肌病的唯一方法.【期刊名称】《心血管病学进展》【年(卷),期】2015(036)002【总页数】4页(P162-165)【关键词】室性期前收缩;心肌病;射频消融【作者】林恒如【作者单位】北京大学第三医院心内科卫生部心血管分子生物学与调节肽重点实验室及分子心血管学教育部重点实验室,北京100191【正文语种】中文【中图分类】R541.7;R542.2室性期前收缩是临床上十分常见的一种疾病。
患者可伴有心悸、胸闷、头晕等症状。
普遍认为单发的、非恶性(如R-on-T)室性期前收缩并不影响患者预后,无需进行任何干预。
1988 年Duffee 等[1]对上述观念提出了质疑,其在临床病例中发现,某些频发室性期前收缩患者合并心脏扩大被诊断为扩张型心肌病,在控制室性期前收缩后,心功能得到明显改善,从而提出“室性期前收缩性心肌病”(premature ventricular contractioninduced cardiomyopathy)的概念。
后继的临床实践也支持这一观点。
目前室性期前收缩性心肌病被定义为因频发室性期前收缩而导致心功能降低、心脏扩大,在期前收缩消除后心脏缩小、心功能逐渐逆转。
当然室性期前收缩性心肌病的诊断仍然是排他性和回顾性的,需排除任何其他病因导致的心力衰竭。
现对室性期前收缩性心肌病的历史及诊疗进展进行综述。
1 室性期前收缩性心肌病历史室性期前收缩性心肌病的提出可追溯至1988 年Duffee 等[1]的病例报告,其首先报道4例频发室性期前收缩被诊断为扩张型心肌病患者,给予乙胺碘呋酮治疗后,室性期前收缩消失,其心腔变小,心功能得到显著改善。
辅助生殖技术相关并发症的研究进展
DOI:10.12280/gjszjk.20200730谢奇君,李欣,赵纯,凌秀凤△【摘要】辅助生殖技术(ART)已被广泛应用于不孕症的治疗,包括人工授精(AI)和体外受精-胚胎移植(IVF-ET),及其相关衍生技术如胞浆内单精子注射(ICSI)、胚胎植入前遗传学筛查(PGS)、卵母细胞体外成熟(IVM)、胚胎辅助孵化(AH)等技术。
随着ART的普及和妊娠率的逐步提高,其带来的并发症及其安全性也越来越受到重视。
能够及时发现和处理并发症,可以最大限度地使不孕症患者获得安全优质的妊娠结局。
目前,ART相关并发症发生的原因仍存在争议,有部分研究认为是由于ART导致的多胎妊娠或不孕症病因,也有研究认为是由于ART本身。
故对近年来相关文献进行分析,总结ART相关并发症的最新研究进展。
【关键词】生殖技术,辅助;并发症;不育,女(雌)性;体外受精;胚胎移植Research Progress of Complications Related to Assisted Reproductive Technology XIE Qi-jun,LI Xin,ZHAO Chun,LING Xiu-feng.Reproductive Center,Women′s Hospital of Nanjing Medical University(NanjingMaternity and Child Health Care Hospital),Nanjing210004,ChinaCorresponding author:LING Xiu-feng,E-mail:************************【Abstract】Assisted reproductive technology(ART)has been widely used in the treatment of infertility,including artificial insemination(AI)and in vitro fertilization-embryo transfer(IVF-ET),and many derivativetechniques such as intracytoplasmic sperm injection(ICSI),preimplantation genetic screening(PGS),in vitromaturation(IVM),and assisted hatching(AH).With the popularity of ART and the gradual improvement ofpregnancy rate,more and more attention has been paid to the complications of ART and the safety of ART.Detection and treatment of complications in time can maximize the safety and high quality of pregnancy,and thegood outcomes for patients.At present,the causes of ART-related complications are still controversial.Somestudies believe that the increased rate of multiple pregnancy caused by ART or the factors related to infertility arethe main causes.However,other studies believe that the factors of ART itself cannot be overlooked.In this review,we analyzed the complications related to ART and the causes.【Keywords】Reproductive techniques,assisted;Complications;Infertility,female;Fertilization in vitro;Embryo transfer(JIntReprodHealth蛐FamPlan,2021,40:204-208)·综述·基金项目:国家自然科学基金(81871210)作者单位:210004南京医科大学附属妇产医院(南京市妇幼保健院)生殖中心通信作者:凌秀凤,E-mail:************************△审校者辅助生殖技术(assisted reproductive technology,ART)是一种应用各种技术处理精子或卵子,以帮助不孕症夫妇实现生育的方法,包括人工授精(artificial insemination,AI)、体外受精-胚胎移植(invitro fertilization-embryo transfer,IVF-ET)及相关技术,如胞浆内单精子注射(intracytoplasmic sperminjection,ICSI)、胚胎植入前遗传学筛查(preimplantation genetic screening,PGS)、卵母细胞体外成熟(in vitro maturation,IVM)、胚胎辅助孵化技术(assisted hatching,AH)和卵母细胞玻璃化冷冻技术等。
loop-virasoro代数的whittaker模 -回复
loop-virasoro代数的whittaker模-回复loop Virasoro代数是很多量子场论和数学领域的重要研究对象之一。
其中的Whittaker模在数学物理中具有重要的应用,特别是在二维共形场论、统计力学和弦理论等领域中起到了关键的作用。
本文将详细介绍loop Virasoro代数和Whittaker模,并逐步回答与其相关的问题。
第一部分:什么是loop Virasoro代数1. 什么是Virasoro代数?Virasoro代数是一种广义的Kac-Moody代数,根据共形场论和弦理论的研究需要,从二维共形对称群中导出。
其基本元素是一组生成元L_n (n为整数),以及一组满足特定代数关系的对易关系。
Virasoro代数具有丰富的数学结构和丰富的应用,是研究量子场论的重要工具之一。
2. 什么是loop Virasoro代数?回答这个问题之前,我们先来了解一下什么是loop群。
loop群是指由所有周期作用在复平面上的全纯函数构成的群。
loop群的重要性在于它在弦理论中的应用,是描述弦的物理量的数学工具。
loop Virasoro代数是在loop群的基础上构造的一种代数结构,其中的生成元L_n(n为整数)满足特定的对易关系,这些关系与Virasoro代数类似,但在loop方向上也满足周期性。
第二部分:什么是Whittaker模1. 什么是Whittaker函数?Whittaker函数是一类特殊的解析函数,最早由英国数学家E.T. Whittaker在20世纪初引入。
Whittaker函数具有复杂的数学结构和广泛的应用,例如在量子力学、数论、特殊函数论等领域中都有重要的应用。
2. 什么是Whittaker模?在数学物理领域中,Whittaker模是在表示论研究中的一种特殊对象。
对于loop Virasoro代数,Whittaker模是一种特殊的表示,其中存在满足一定条件的Whittaker向量。
益生菌对阿尔茨海默病作用的研究进展
益生菌对阿尔茨海默病作用的研究进展发布时间:2021-12-14T06:08:15.523Z 来源:《中国结合医学杂志》2021年12期作者:宋鑫萍1,2,李盛钰2,金清1[导读] 阿尔茨海默病已成为威胁全球老年人生命健康的主要疾病之一,患者数量逐年攀升,其护理的经济成本高,给全球经济造成重大挑战。
近年来研究显示,益生菌在适量使用时作为有益于宿主健康的微生物,在防治阿尔茨海默病方面具有积极影响,其作用机制可能通过调节肠道菌群,影响神经免疫系统,调控神经活性物质以及代谢产物,通过肠-脑轴影响该病发生和发展。
宋鑫萍1,2,李盛钰2,金清11.延边大学农学院,吉林延吉 1330022.吉林省农业科学院农产品加工研究所,吉林长春 130033摘要:阿尔茨海默病已成为威胁全球老年人生命健康的主要疾病之一,患者数量逐年攀升,其护理的经济成本高,给全球经济造成重大挑战。
近年来研究显示,益生菌在适量使用时作为有益于宿主健康的微生物,在防治阿尔茨海默病方面具有积极影响,其作用机制可能通过调节肠道菌群,影响神经免疫系统,调控神经活性物质以及代谢产物,通过肠-脑轴影响该病发生和发展。
本文综述了近几年来国内外益生菌对阿尔茨海默病的作用进展,以及其预防和治疗阿尔茨海默病的潜在作用机制。
关键词:益生菌;阿尔茨海默病;肠道菌群;机制Recent Progress in Research on Probiotics Effect on Alzheimer’s DiseaseSONG Xinping1,2,LI Shengyu2,JI Qing1*(1.College of Agricultural, Yanbian University, Yanji 133002,China)(2.Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Chanchun 130033, China)Abstract:Alzheimer’s disease has become one of the major diseases threatening the life and health of the global elderly. The number of patients is increasing year by year, and the economic cost of nursing is high, which poses a major challenge to the global economy. In recent years, studies have shown that probiotics, as microorganisms beneficial to the health of the host, have a positive impact on the prevention and treatment of Alzheimer’s disease. Its mechanism may be through regulating intestinal flora, affecting the nervous immune system, regulating the neuroactive substances and metabolites, and affecting the occurrence and development of the disease through thegut- brain axis. This paper reviews the progress of probiotics on Alzheimer’s disease at home and abroad in recent years, as well as its potential mechanism of prevention and treatment.Key words:probiotics; Alzheimer’s disease; gut microbiota; mechanism阿尔茨海默病(Alzheimer’s disease, AD),系中枢神经系统退行性疾病,属于老年期痴呆常见类型,临床特征主要包括:记忆力减退、认知功能障碍、行为改变、焦虑和抑郁等。
Relating Kac-Moody, Virasoro and Krichever-Novikov Algebras
2
on , for which we refer to the appendix of r case of current algebras.
Although the central extension was formulated independent of the genus g, constructing a basis for the algebras will crucially depend on the global structure of the Riemann surface, and in particular on its genus g. The key tool here is the Weierstrass gap theorem 6] which states that meromorphic functions f having a pole of order n at a given point cannot be extended holomorphically outside that point for g values of n between 1 and 2g (for a generic point, n=1,2,...g). The basis of meromorphic functions holomorphic outside of P is constructed by specifying the order of the poles (or zeros) at P and P?, such that there are g zeros outside P whose positions are xed by requiring the function to be single-valued. This is the famous Jacobi inversion theorem 6]. The above needs two remarks. First, the constant function is clearly an element of the algebra. The addition of a constant to a meromorphic function is viewed as a gauge freedom. Indeed, if one takes a meromorphic function with poles both at P and P? (a situation required to occur due to the Weierstrass gap theorem), it cannot be uniquely speci ed by giving the order of the poles at P . Instead one requires there to be g+1 zeros outside of P for the g functions having poles at both P and P? . They will then have a one-parameter freedom corresponding precisely to the addition of a constant. The basis is therefore speci ed by
谢勇博士和美国哈佛医学院专家研究获得β细胞活性肽茶
谢勇博士和美国哈佛医学院专家研究获得β细胞活性肽茶谢勇博士和美国哈佛医学院专家研究获得β细胞活性肽茶β-cell活性肽茶:1992年4月,一封来自大洋彼岸的信寄到了第二军医大学长海医院,信的落款是美国哈佛大学医学院,收到这封来自异国的信函,谢勇心里也充满了疑惑。
打开来信,信的内容让他激动中又有犹豫,信是美国哈佛医学院海外交流中心负责人梅里斯教授写的。
梅里斯教授对谢勇来说并不陌生,他是国际糖尿病联盟的学刊《世界糠尿病》的特约撰稿人,也是国际糖尿病领域著名的学者。
谢勇在参加《世界糖尿病》杂志年会时曾经和梅里斯教授有过交流,梅里斯教授对谢勇在糖尿病方面的一些独特见解十分欣赏。
尤其是谢勇在年会上提出糖尿病不能单独依靠药物治疗的理念更是推崇。
在信中,梅里斯教授代表哈佛医学院邀请他前往该院进行讲学和深入的合作,共同进行糖尿病医学的研究,美国哈佛医学院海外交流中心将让他担任项目负责人,并为他提供可观的研究实验经费。
年轻的谢勇彷徨了,以内心来说,他不愿意离开自己成长学习的地方,更希望能够在自己岗位上为患者治病救人,正如他所说,这是我的责任。
但另一方面,国内的医学科研,无论从硬件设施、政策规定以及其他客观方面都不完善,学术界的论资排辈,研究项目僧多粥少,很多研究资金被无谓的浪费,而一些关键急需的项目却又无从上马,人情、资历、关系都制约着发展。
而美国哈佛医学院海外中心的邀请和承诺,将会是他实现飞跃的一个良好平台。
取舍之间,情理之间,该何去何从?第三天晚上,谢勇来到了导师顾老的家里,他拿着邀请信,把情况告诉了顾老,想征求顾老的意见。
顾老看完信之后,沉默了许久,拿起一柄小锄头到后院的小花园里松土。
当焦急的谢勇快要憋不住时,顾老拿起一块土块放到谢勇的手里,问他:“你的心在那里,你的根在那里,你会丢掉自己的根吗?”谢勇站在那里深思了许久,终于他对顾老坚定地说:我的心是患者,要把他们的病治好,我的根在这里,生养我的土地,我不会改变,我相信自己会回来的!改变时代的发现1992年11月10日,谢勇携带简单的行李,走进了现代医学圣地美国哈佛医学院。
强代数格的关系表示(英文)
强代数格的关系表示(英文)许广红;饶三平【期刊名称】《数学季刊:英文版》【年(卷),期】2012(27)4【摘要】In this paper,we introduce and investigate the strongly regular relation.Then we give the relational representations and an intrinsic characterization of strongly algebraic lattices via mapping relation and strongly regular relation.【总页数】7页(P509-515)【关键词】binary relation;strongly regular relation;strongly algebraic lattice;mapping relation【作者】许广红;饶三平【作者单位】College of Mathematics and Information Science,Nanchang Hangkong University;Department of Science,Nanchang Institute of Technology【正文语种】中文【中图分类】O135.1【相关文献】1.“吉利和沃尔沃是兄弟关系,不是父子关系,两兄弟之间可以取长补短,强强合作。
”——吉利集团董事长李书福表示最近两个月将公布吉利和沃尔沃实质性合作项目 [J],2.关于Witt代数的包络代数的q-变形的表示(英文) [J], 尚英姿3.SU(2)Kac—Moody代数virasoro代数表示间的关系... [J], 刘益民4.仿射李代数的Sl(n,C)顶点算子表示V_Q上的顶点代数结构(英文) [J], 王瑜;李天增5.仿射李代数■的顶点算子表示V_Q上的顶点代数结构(英文) [J], 楚彦军;程俊芳;郑驻军因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(11)
2.a Quantum case. In this section we give explicit formulas, expressing the generators of the quantum FTV algebra in terms of the LKM generators. Namely, define the operators
[Fn , Mn ]q−1 = (q − q −1 )(Fn + q 3/2 Mn ) [Fn+1 , Mn ]q = −(q − q −1 )(Fn+1 + q 3/2 Mn )
(8)
with the condition (4) transformed to j11 (x) + j22 (x) = 0 The fields j form classical sl(2)-KM algebra {j11 (x), j21 (y )} = 2j21 (x)δ (x − y ) {j11 (x), j12 (y )} = −2j12 (x)δ (x − y ) {j11 (x), j21 (y )} = 2δ ′ (x − y ) + 4j11 (x)δ (x − y ) {j11 (x), j11 (y )} = −δ ′ (x − y )
−1
J (n)11 J (n)21
J (n)12 J (n)22
∈
KN ⊗ End(C2 )
(3)
(4)
J (n)1 ,
(5)
for m = n − 1, n, n + 1
Lattice analogues of quantum vertex operators are defined via the relations [8]: h(n + 1) = J (n)h(n) and form the representation of LKM as J (n)1 R− h(n)2 = h(n)2 J (n)1 J (n)1 h(n + 1)2 = R+ h(n + 1)2 J (n)1 Further on we consider an infinite lattice in order to avoid possible problems with boundary conditions. 2KM-algebra KN on the lattice with N sites is defined as a free algebra of matrix elements of the matrix J (n) ≡ such that J (n)11 J (n)22 − q −1 J (n)21 J (n)12 = q 1/2 with the relations J (n)1 J (n)2 = R+ J (n)2 J (n)1 R− , J (n)1 J (n + 1)2 = J (n + 1)2 (R+ ) J (n)1 J (m)2 = J (m)2 J (n)1
± ± ± ± ± ± R12 R13 R23 = R23 R13 R12
(1)
associated with the standard representation of Uq (sl(N )): q −1 0 R+ = q 1/2 0 0 0 0 1 q −1 − q 0 1 0 0 0 0 , 0 q 0 1 − −1/2 0 R =q 0 q − q −1 0 0 0 0 0 0 1 0 0 q
Int. Inst. for Math. Geophys., Warshavskoe sh. 79, k.2 113556 Russia, e-mail: mitpan% adonis@ [Belov] $ Landau Inst. for Theor. Phys., Vorobyevskoe sh.2, Moscow 117334 Russia, e-mail: chalt@ndau.free.msk.su 1
(9)
2. Lattice Virasoro from Lattice Kac-Moody. Recall first the standard Lu(1) realization of the FTV algebra [1]. If one has Lu(1)-current with the exchange relations Un Un+1 = q 2 Un+1 Un then the quantum Miura transformation gives us the FTV-generators in the following form [3,4]
We propose a new version of quantum Miura transformation on the lattice based on the lattice KacMoody algebra. In particular, we built Faddeev- Takhtadjan-Volkov lattice Virasoro algebra from lattice current algebra and discuss the possibility of existence of the lattice analogue of the Sugawara construction.
12 21 Fn = Jn Jn ,
Mn =
12 21 Jn Jn+1 22 22 Jn Jn +1
(13)
Direct calculation provides us with the following quantum commutators
−1 [Fn , Fn+1 ] = (1 − q −2 )Fn+1 Mn Fn −1 [Mn , Mn+1 ] = q 3/2 (q 2 − 1)Mn Fn +1 Mn+1
1. Lattice Kac-Moody algebra In this section we give the basic definitions and notations concerning the LKM, following the work [8]. Let R± be the two solutions of the Yang-Baxter equation
#
0. Introduction Lattice versions of the well-known continuous symmetries became of great interest last time because of their possible relation to some certain models of conformal matter coupled to 2D quantum gravity. The activity in this direction began with the work of Faddeev and Takhtadjan [1] on the clasical lattice analogue of Liouville model, where for the first time classical lattice version of the Virasoro algebra was obtained. It has been developed further in the context of studying the integrable hierarchies related to matrix models , which seem to be very relevant for the description of the minimal matter coupled to gravity [2]. At the same time, the zoo of the lattice symmetries is being expanded very fast last years, providing a considerable amount of relevant material both for physicists and mathematicians [3-5]. The aim of the present paper is to extend further the analogy between the lattice world and the continuous one, discussing a possible lattice analogue of the well-known Sugawara construction. In particular, starting from the lattice Kac-Moody (LKM) algebra [6-8], we obtain the lattice Virasoro- Faddev-TakhtadjanVolkov (FTV) algebra [1] in both quantum and classical cases.
1 π ± i 2k r
have the form:
Classical continuous limit is defined as follows (x ≡ n∆)
11 Jn → 1 − ∆j11 (x) + . . . , 21 Jn → ∆j21 (x) + . . . 12 Jn → −∆j12 (x) + . . . , 22 Jn → 1 − ∆j22 (x) + . . .
ILG-TMP-93-03 May, 1993 solv-int/9305004 Alexander A.Belov# , Karen D.Chaltikian$ LATTICE VIRASORO FROM LATTICE KAC-MOODY