1频率分析(模态)

合集下载

线性系统的频率分析法

线性系统的频率分析法
周期信号分析
对于非线性系统中的周期信号,可以通过傅里叶级数展开进行分析,以 了解系统在不同频率下的行为。
03
非线性控制策略
基于非线性系统的频率响应,可以设计非线性控制器,以实现系统的稳
定性和性能要求。
基于频率分析法的控制策略设计
控制系统设计
基于频率分析法的控制策略设计,首先需要确定控制目标,然后根据系统模型和性能要求 ,设计合适的控制器。
以对数尺度绘制频率响应函数的幅度和相位与频 率的关系曲线,便于观察系统在不同频率范围内 的性能变化。
Nyquist图
以极坐标形式绘制频率响应函数的极点和零点分 布,用于判断系统的稳定性以及动态响应特性。
3
Nichols图
以极坐标形式绘制系统的开环和闭环频率响应函 数,用于分析系统的开环和闭环性能。
系统稳定性分析
03 频率响应函数
CHAPTER
频率响应函数的定义与性质
定义
稳定性
频率响应函数是线性系统对正弦输入 信号的稳态输出与输入的比值,表示 系统在不同频率下的性能特性。
通过判断频率响应函数的极点和零点 分布,可以确定系统的稳定性以及动 态响应特性。
性质
频率响应函数具有复数形式,包括幅度 和相位两部分,分别表示系统对不同频 率信号的放大或缩小以及相位移动。
线性系统的研究方法
01
02
03
频域分析法
通过将系统函数进行傅里 叶变换,将时域问题转化 为频域问题,从而在频域 内分析系统的频率特性。
时域分析法
通过对方程进行数值积分 或解析求解,直接在时域 内分析系统的动态响应特 性。
状态空间分析法
通过建立系统的状态方程 和输出方程,在状态空间 内分析系统的动态行为和 稳定性。

振动知识点总结

振动知识点总结

振动知识点总结一、振动的基本概念振动是指物体或系统在围绕某一平衡位置或状态发生往复移动的现象。

振动是一种常见的物理现象,几乎存在于自然界的各个领域,比如机械系统、电气系统、声学系统、光学系统等。

振动的基本特征包括振幅、周期、频率、相位等。

1. 振幅(Amplitude)是指在振动过程中物体偏离平衡位置的最大距离,通常用A表示。

振幅越大,振动的幅度越大。

2. 周期(Period)是指振动完成一个完整的往复运动所需的时间,通常用T表示。

周期与频率有倒数关系,即T=1/f。

3. 频率(Frequency)是指单位时间内振动完成的往复运动次数,通常用f表示。

频率与周期有倒数关系,即f=1/T。

4. 相位(Phase)是指在振动过程中某一时刻相对于参考位置的偏移角度。

相位可以用角度或弧度表示。

振动的种类有很多,基本可以分为自由振动、受迫振动和阻尼振动。

二、自由振动自由振动是指物体在不受外力作用的情况下,由于初位移或初速度引起的振动。

自由振动的特点是振幅大小不受外界影响,周期和频率由系统固有的物理参数决定。

自由振动的系统通常可以用简谐振动模型描述。

1. 简谐振动简谐振动是指物体沿着直线或围绕平衡位置作简谐往复运动的现象。

简谐振动的特点包括振动物体的加速度与位移成正比,加速度与位移的方向相反,振动物体的速度与位移成正弦关系。

简谐振动的运动方程可以用以下公式表示:x(t) = A*cos(ωt+φ)其中,x(t)表示位移与时间的函数关系,A表示振幅,ω表示角频率,φ表示初始相位。

2. 振幅与能量在简谐振动中,振幅和能量之间存在一定的关系。

振动系统的总能量等于势能和动能之和,在振动过程中,势能和动能不断转化,但总能量保持不变。

振动系统的总能量与振幅的平方成正比,即E=1/2*k*A^2,其中E表示总能量,k表示振动系统的刚度,A表示振幅。

3. 振动的衰减在现实中,自由振动的系统往往受到阻尼和摩擦的影响,导致振动幅度逐渐减小。

模态分析

模态分析

1. 什么是模态分析?模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。

模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。

这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。

通常,模态分析都是指试验模态分析。

振动模态是弹性结构的固有的、整体的特性。

如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。

因此,模态分析是结构动态设计及设备的故障诊断的重要方法。

模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。

2. 模态分析有什么用处?模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。

模态分析技术的应用可归结为以下几个方面:1. 评价现有结构系统的动态特性;通过结构的模态分析可以求得各阶模态参数(模态频率、模态振型以及模态阻尼),从而评价结构的动态特性是否符合要求,并校验理论计算结构的准确性。

2. 在新产品设计中进行结构动态特性的预估和优化设计;3. 诊断及预报结构系统的故障;近年来,结构故障技术发展迅速,而模态分析已成为故障诊断的一个重要方法。

利用结构模态参数的改变来诊断故障是一种有效方法。

例如,根据模态频率的变化可以判断裂纹的出现;根据振型的分析可以确定断裂的位置;根据转子支承系统阻尼的改变,可以诊断与预报转子系统的失稳等。

4. 控制结构的辐射噪声;结构噪声是由于结构振动所引起的。

结构振动时,各阶模态对噪声的“贡献”并不相同,对噪声贡献较大的几阶模态称为“优势模态”。

汽车NVH分析一讲解

汽车NVH分析一讲解
NVH分析培训一
动力学培训内容介绍
1.模态分析 2.频率响应分析 3.瞬态响应分析 4.强迫运动 5.随机响应分析
一、模态分析 • 求解器:103 • 质量矩阵形式:MSC认为耦合质量比集中质量更精确,在 动力分析里出于对计算速度的考虑,更倾向于使用集中质 量。 • 使用方法:用PARAM,COUPMASS,1选择耦合质量; 缺省为集中质量。 • 求解方法:推荐的Lanczos方法。 • EIGRL卡片
• 频率响应分析中的定义卡 FREQ卡定义的是离散的激励频率。 FREQ1定义的是起始频率fstart,频率增量与增量的数量。 FREQ2定义的是起始频率fstart,终了频率和对数间隔的数 量。 FREQ3定义的是频率范围F1、F2和在两者之间使用线性 或对数插值的频率个数。 FREQ4在每个谐振频率处指定一个频率值,并在该值附近 指定等间距分布的激励频率的数量。 FREQ5指定的是一个频率范围以及此范围内自然频率的比 值。
• • • •
PARAM,LFREQ 给出保留模态频率的下限 PARAM,HFREQ 给出保留模态频率的上限 PARAM,LMODES 给出被保留的最低频率模态的数量。 载荷卡片:
时变载荷 TLOAD1(与表联用)
载荷类型(力、力矩或者强迫位 移、速度、加速度)
DAREA或SPCD入口
指定表的号
• TLOAD2
G 1 1 B B1 B 2 K GEKE W3 W4
• G=整体结构的阻尼系数(PARAM,G) W3=感兴趣的整体结构阻尼转化频率-弧度/秒(PARAM, W3) W4感兴趣的单元结构阻尼转化频率-弧度/秒(PARAM, W4) KE=单元刚度矩阵 由于瞬态分析不允许出现复系数。所以,结构阻尼通过等 效的粘性阻尼来施加。即PARAM,G和PARAM,W3同 时定义。 模态法的特点:模态截断。一般模态法并不需要计算所有的 模态,对于动力响应计算,经常仅需要最低的几阶模态就 足够了。

模态分析与实验 第一章

模态分析与实验 第一章

jωk t
+ c−k e
−jωk t
=
k=−∞
ck ejkω0 t
(1-6)
在式 (1-1) 中, 若令 Ak =
2 则 a2 k + bk , A0 = a0 , ∞
xT (t) = A0 +
k=1
Ak sin(ωk t + θk )
(1-7)
这里 Ak 反映了频率为 kω 的谐波在 xT (t) 中所占的份额, 称为振幅。 在复指数形式中, 第 k 次谐波为 ck ejωk t + c−k e−jωk t 1 1 其中, ck = (ak − jbk ), c−k = (ak + jbk ), 则 2 2 |ck | = |c−k | = 即 Ak = 2|ck |, k = 0, 1, 2, · · · 。 –3– 1 2
2F0 =− T bk 2 = T 2 =− T 2F0 = T =
T 2
0
2F0 cos ωk tdt + T
T 2
0 0 −T 2
cos ωk tdt = 0 2 F0 sin ωk tdt + T
T 2 T 2
−T 2
2 F (t) sin ωk tdt = − T
0
0
F0 sin ωk tdt
= a0 +
k=1 ∞
= a0 +
k=1
1 1 令 c0 = a0 , ck = (ak − jbk ), c−k = (ak + jbk ), 则 2 2 其中 ck = 1 T
T /2 −T /2
xT (t)e−jkω0 t dt, c−k =
1 T

1频率分析(模态)

1频率分析(模态)

承蒙Sanarus Medical 提供图片频率分析模态分析长沙凯士达信息技术开发有限公司CAE工程师谢莉2?? 2007 SolidWorks Corp. 机密文件。

学习要点频率分析的相关知识案例分析3?? 2007 SolidWorks Corp. 机密文件。

频率分析的相关知识什么是振动固有频率固有振动模态共振4?? 2007 SolidWorks Corp. 机密文件。

频率分析的相关知识什么是振动–钟摆和秋千的摆动是我们身边最典型的振动现象。

–乐器的弦振动而发出声音。

–小提琴用弓拉弦吉他用手指或拨片拨弦在钢琴上敲击琴键则小锤打击琴弦而使琴弦振动起来。

–洗衣机在脱水时也会突突突地产生很大的振动现象。

–按摩机是机械的振动地震则是大地的振动。

–如果在不平整的地上或公路上开车的话也会感到让人心情变坏的烦人的振动。

为便于理解振动现象我们从了解固有频率固有周期固有模态共振等表示振动特有现象的术语开始5?? 2007 SolidWorks Corp. 机密文件。

频率分析的相关知识固有频率以钟摆为例–摆动钟摆则钟摆以一定的周期和一定的频率有规律地振动起来了。

–振动的幅度振幅大也好小也好周期和频率总是一定的。

–振动频率是单位时间里摆动的次数。

–1秒钟内的次数用Hz赫兹来表示。

–周期摆动1次所需要的时间。

–钟摆的形状长度决定了其固有的数值。

–钟摆越长周期越长钟摆越短周期越短。

振幅大振幅小6?? 2007 SolidWorks Corp. 机密文件。

频率分析的相关知识固有频率以钟摆为例–钟摆的振动所经过的时间越来越小最后停了下来。

–这是因为空气的阻碍、磨擦的阻碍等的阻力妨碍了钟摆的摆动振动。

–因为这样的阻力作用使振动衰减的力而起作用被称为衰减力。

–钟摆在没有外部而来的强迫它摆动的力重力除外作用下的振动称为自由振动。

–与此相对应地震和汽车因为地基能、发动机等的强迫力作用下的振动称为强迫振动。

任何结构都具有其固有频率固有周期其值由其本身的结构所决定自由振动是一种无衰减力的振动状态它将永远不停地振动下去。

SolidWorks频率分析(模态)

SolidWorks频率分析(模态)

学习内容
– 频率分析的流程 – 刚体模式 – 列举共振频率
© 2007 SolidWorks Corp. 机密文件。
16
案例一:音叉的频率分析
关键步骤
– 添加约束。在音叉末端添加固定几何体的约束,以模拟该手柄被人手 握住的效果。 – 对模型划分网格 – 运行分析 – 后处理结果 – 移除固定几何体:移除约束以获得更多的振型 – 加载后的影响。在音叉上作用一个载荷,并观察添加预应力后对振动 模式有何影响
– 钟摆的振动所经过的时间越来越小,最后停了下来。 – 这是因为空气的阻碍、磨擦的阻碍等的阻力妨碍了钟摆的摆动(振 动)。 – 因为这样的阻力作用使振动衰减的力而起作用,被称为衰减力。 – 钟摆在没有外部而来的强迫它摆动的力(重力除外)作用下的振动称 为自由振动。 – 与此相对应,地震和汽车因为地基能、发动机等的强迫力作用下的振 动称为强迫振动。
任何结构都具有其固有频率(固有周期),其值由其本身的结构所决定 自由振动是一种无衰减力的振动状态,它将永远不停地振动下去。
© 2007 SolidWorks Corp. 机密文件。分析中,节点位移是主要的未知量。[K]d=F中[K]为刚度 矩阵,d为节点位移的未知量,而F为节点载荷的已知量。 在动力学分析中,增加阻尼矩阵[C]和质量矩阵[M]
© 2007 SolidWorks Corp. 机密文件。
14
频率分析
加载荷的频率分析
– 压力或拉力载荷会改变结构体抗弯的能力。 – 应力硬化:拉力 – 应力软化:压力
© 2007 SolidWorks Corp. 机密文件。
15
案例一:音叉的频率分析
案例描述
– 设计在440Hz的频率下能够释放出一个较低的A音的音叉。运行一次 频率分析来验证音叉是否会在正确的频率下发生振动。此外,在音叉 末端加载450N的载荷,以判断它对共振频率的影响。

关于模态分析的一些问题(一)

关于模态分析的一些问题(一)

关于模态分析的⼀些问题(⼀)谐响应分析为什么可以使⽤模态叠加进⾏求解?谐响应分析是个动⼒学问题,因此⼏乎每⼀本振动⼒学的书籍都会提到如何计算,⽽在⼤学⾥本科阶段⼀般的专业对此并没有较深⼊的教学,如果没有⾃学,⽽有限元软件教学的书籍通常也不会讲,所以就出现了上⾯的问题。

下⾯将书上的内容摘于此处,并对其中部分加以解释。

单⾃由度受迫振动⼀个单⾃由度受迫振动的基本模型、受⼒情况以及振动⽅程如图⽰(单⾃由度:仅竖直⽅向的平动⾃由度)上述微分⽅程的通解分为两部分:有阻尼⾃由振动⽅程的通解+有阻尼受迫振动的特解。

⼩阻尼⾃由振动,其⽅程的通解为:正弦曲线的幅值受到随时间衰减的指数函数控制,因此随着时间逐步发展,其振幅逐渐减⼩,直⾄最终⾃由振动消失(没有明显的⾃由振动,毕竟指数函数⽆限接近⽔平轴,但是却⼜不是⽔平轴,所以理论上振幅还是存在),该函数的曲效如下图所⽰:⼩阻尼受迫振动,其⽅程的特解为:⼩阻尼受简谐振动微分⽅程的特解还是⼀个谐函数,且该谐函数的频率与激振频率⼀致,振幅、相位取决于系统⾃⾝的固有属性和激励幅值。

让⼈⽐较好奇的是,⼤多数分析说的是激励,⽽谐响应,细品,居然说的是响应。

激励与响应具有同样的特性,都是谐函数。

实际上受到稳态激励的作⽤,其响应包括三部分组成:第⼀部分由初始条件产⽣的⾃由振动、第⼆部分由简谐激励⼒产⽣的受迫振动,第三部分是伴随受迫振动产⽣的⾃由振动。

由于系统中存在的阻尼,随时间变化,在⼀开始产⽣的⾃由振动以及伴⽣⾃由振动(伴随受迫振动产⽣的⾃由振动)逐渐消亡,仅留下稳态受迫振动部分。

因为谐响应关注的是稳态响应,开始的两类并不考虑。

⽅程耦合接触模态常听到“耦合”⼆字,那什么是耦合呢,前前后后也问过许多⼈,可真的是没有弄清楚,现在还是。

但是现在找到了合适的理解⽅法,哪怕只能意会,也可以。

耦合,想到的是“藕断丝连”,即多个对象(⼴义的对象)相互联系作⽤的⼀种关系。

观察下⾯这个例⼦就可以意会了:这是⼀个⼆⾃由度系统,其振动微分⽅程如下所⽰:将上述微分⽅程写成矩阵的形式,得到如下:上⾯的矩阵,除了质量矩阵外,刚度与阻尼矩阵都不是对⾓矩阵。

模态测试基础

模态测试基础

The Fundamentals of Modal TestingApplication Note 243 - 3Η(ω) = Σnr =1φφi j /m(n - )+ (2n )ωωξωω22 2 2PrefaceModal analysis is defined as the study of the dynamic characteristics of a mechanical structure. This applica-tion note emphasizes experimental modal techniques, specifically the method known as frequency response function testing. Other areas are treated in a general sense to intro-duce their elementary concepts and relationships to one another. Although modal techniques are math-ematical in nature, the discussion is inclined toward practical application. Theory is presented as needed to enhance the logical development of ideas. The reader will gain a sound physical understanding of modal analysis and be able to carry outan effective modal survey with confidence.Chapter 1 provides a brief overview of structural dynamics theory. Chapter 2 and 3 which is the bulkof the note – describes the measure-ment process for acquiring frequency response data. Chapter 4 describes the parameter estimation methods for extracting modal properties. Chapter 5 provides an overviewof analytical techniques of structural analysis and their relation to experimental modal testing.2Table of ContentsPreface2Chapter 1 — Structural Dynamics Background4Introduction4Structural Dynamics of a Single Degree of Freedom (SDOF) System5Presentation and Characteristics of Frequency Response Functions6Structural Dynamics for a Multiple Degree of Freedom (MDOF) System9Damping Mechanism and Damping Model11Frequency Response Function and Transfer Function Relationship12System Assumptions13Chapter 2 — Frequency Response Measurements14Introduction14General Test System Configurations15Supporting the Structure16Exciting the Structure18Shaker Testing19Impact Testing22Transduction25Measurement Interpretation29Chapter 3 — Improving Measurement Accuracy30Measurement Averaging30Windowing Time Data31Increasing Measurement Resolution32Complete Survey34Chapter 4 — Modal Parameter Estimation38Introduction38Modal Parameters39Curve Fitting Methods40Single Mode Methods41Concept of Residual Terms43Multiple Mode-Methods45Concept of Real and Complex Modes47Chapter 5 — Structural Analysis Methods48Introduction48Structural Modification49Finite Element Correlation50Substructure Coupling Analysis52Forced Response Simulation53Bibliography543IntroductionA basic understanding of structural dynamics is necessary for successful modal testing. Specifically, it is important to have a good grasp of the relationships between frequency response functions and their individ-ual modal parameters illustrated in Figure 1.1. This understanding is of value in both the measurement and analysis phases of the survey. Know-ing the various forms and trends of frequency response functions will lead to more accuracy during the measurement phase. During the analysis phase, knowing how equa-tions relate to frequency responses leads to more accurate estimation of modal parameters.The basic equations and their various forms will be presented conceptually to give insight into the relationships between the dynamic characteristics of the structure and the correspond-ing frequency response function measurements. Although practical systems are multiple degree of free-dom (MDOF) and have some degree of nonlinearity, they can generally be represented as a superpositionof single degree of freedom (SDOF) linear models and will be developed in this manner.First, the basics of an SDOF linear dynamic system are presented to gain insight into the single mode concepts that are the basis of some parameter estimation techniques. Second, the presentation and properties of vari-ous forms of the frequency response function are examined to understand the trends and their usefulness in themeasurement process. Finally, theseconcepts are extended into MDOFsystems, since this is the type ofbehavior most physical structuresexhibit. Also, useful conceptsassociated with damping mechanismsand linear system assumptionsare discussed.Figure 1.1Phases of amodal testModal ParametersCurve Fit RepresentationΗ(ω) = Σijnr=1φ φir jrmr (r-+ j2r)ωωζωω22ωζφ—Frequency—Damping{}—Mode ShapeChapter 1Structural Dynamics Background45Structural Dynamics of a Single Degree of Freedom (SDOF) SystemAlthough most physical structures are continuous, their behavior can usual-ly be represented by a discrete parameter model as illustrated in Figure 1.2. The idealized elements are called mass, spring, damper and excitation. The first three elements describe the physical system. Energy is stored by the system in the mass and the spring in the form of kinetic and potential energy, respectively. Energy enters the system through excitation and is dissipated through damping.The idealized elements of the physi-cal system can be described by the equation of motion shown in Figure 1.3. This equation relates the effects of the mass, stiffness and damping in a way that leads to the calculation of natural frequency and damping factor of the system. This computation is often facilitated by the use of the def-initions shown in Figure 1.3 that lead directly to the natural frequency and damping factor.The natural frequency, ω, is in units of radians per second (rad/s). The typical units displayed on a digital signal analyzer, however, are in Hertz (Hz). The damping factor can also be represented as a percent of critical damping – the damping level at which the system experiences no oscillation.This is the more common understand-ing of modal damping. Although there are three distinct damping cases, only the underdamped case (ζ< 1) is important for structural dynamics applications.Figure 1.2SDOF discrete parameter modelFigure 1.3Equation of motion —modal definitionsFigure 1.4Complex roots of SDOF equationFigure 1.5SDOF impulse response/free decayResponsemx + cx + kx = f(t)...ω2n = ,k m2n =ζωc m or =ζc2km s = -+ j d1,2σωσωζ— Damping Rate— Damped Natural FrequencyWhen there is no excitation, the roots of the equation are as shown in Figure 1.4. Each root has two parts: the real part or decay rate, which defines damping in the system and the imaginary part, or oscillatory rate, which defines the damped natural frequency, wd. This free vibration response is illustratedin Figure 1.5.When excitation is applied, the equa-tion of motion leads to the frequency response of the system. The frequen-cy response is a complex quantity and contains both real and imaginary parts (rectangular coordinates). It can be presented in polar coordinates as magnitude and phase, as well. Presentation and Characteristics of Frequency Response FunctionsBecause it is a complex quantity, the frequency response function cannot be fully displayed on a single two-dimensional plot. It can, however, be presented in several formats, each of which has its own uses. Although the response variable for the previous discussion was displacement, it could also be velocity or acceleration. Acceleration is currently the accepted method of measuring modal response.One method of presenting the datais to plot the polar coordinates, mag-nitude and phase versus frequency as illustrated in Figure 1.6. At reso-nance, when ω= ωn, the magnitude is a maximum and is limited only by the amount of damping in the system. The phase ranges from 0° to 180° and the response lags the input by 90° at resonance.Figure 1.6Frequencyresponse —polarcoordinatesMagnitudePhaseωdωdH() =ωθω() = tan-11/m(n- )+ (2n)ωωζωω22 2 22nn-ξωωωω226Another method of presentingthe data is to plot the rectangular coordinates, the real part and the imaginary part versus frequency.For a proportionally damped system, the imaginary part is maximum at resonance and the real part is 0, as shown in Figure 1.7.A third method of presenting the frequency response is to plot the real part versus the imaginary part. This is often called a Nyquist plot or a vector response plot. This display empha-sizes the area of frequency response at resonance and traces out a circle, as shown in Figure 1.8.By plotting the magnitude in decibels vs logarithmic (log) frequency, it is possible to cover a wider frequency range and conveniently display the range of amplitude. This type of plot, often known as a Bode plot, also has some useful parameter character-istics which are described in the following plots.When ω<< ωn the frequency response is approximately equal to the asymptote shown in Figure 1.9. This asymptote is called the stiffness line and has a slope of 0, 1 or 2 for displacement, velocity and accelera-tion responses, respectively. When ω>> ωn the frequency response is approximately equal to the asymptote also shown in Figure 1.9. This asymp-tote is called the mass line and has a slope of -2, -1 or 0 for displacement velocity or acceleration responses, respectively. Figure 1.7Frequencyresponse —rectangularcoordinatesFigure 1.8Nyquist plotof frequencyresponseRealImaginaryH() =ω-2n(n- )+ (2n)ξωωωωζωω22 2 2H() =ωωωωωζωω2222 2 2n -(n- )+ (2n)7The various forms of frequency response function based on thetype of response variable are also defined from a mechanical engineer-ing viewpoint. They are somewhat intuitive and do not necessarily corre-spond to electrical analogies. These forms are summarized in Table 1.1.Figure 1.9 Different forms of frequency responseTable 1.1Different formsof frequency responseDefinition Response Variable Compliance X DisplacementF Force Mobility V VelocityF Force Accelerance A AccelerationF DisplacementAccelerationVelocityFrequency89Structural Dynamics for a Multiple Degree of Freedom (MDOF) SystemThe extension of SDOF concepts to a more general MDOF system, with n degrees of freedom, is a straightfor-ward process. The physical system is simply comprised of an interconnec-tion of idealized SDOF models, as illustrated in Figure 1.10, and is described by the matrix equationsof motion as illustrated in Figure 1.11. The solution of the equation with no excitation again leads to the modal parameters (roots of the equation) of the system. For the MDOF case,however, a unique displacement vector called the mode shape exists for each distinct frequency and damp-ing as illustrated in Figure 1.11. The free vibration response is illustrated in Figure 1.12.The equations of motion for the forced vibration case also lead to frequency response of the system. It can be written as a weightedsummation of SDOF systems shown in Figure 1.13.The weighting, often called the modal participation factor, is a function of excitation and mode shape coeffi-cients at the input and output degrees of freedom.Figure 1.10MDOF discrete parameter modelFigure 1.11Equations of motion —modal definitionsFigure 1.12MDOF impulse response/free decay[m]{x} + [c]{x} + [k]{x} = {f(t)}{}r , r = 1, n modesφ...A m p l i t u d e 0.0Sec 6.010The participation factor identifies the amount each mode contributes to the total response at a particular point.An example with 3 degrees of free-dom showing the individual modal contributions is shown in Figure 1.14.The frequency response of an MDOF system can be presented in the same forms as the SDOF case. There are other definitional forms and proper-ties of frequency response functions,such as a driving point measurement,that are presented in the next chap-ter. These are related to specific locations of frequency response measurements and are introduced when appropriate.Figure 1.13MDOF frequency responseFigure 1.14SDOF modal contributionsd B M a g n i t u d e0.0ω1ω2ω3FrequencyΗ(ω) = Σnr =1φφi j /m(n - )+ (2n )ωωξωω222 2d B M a g n i t u d e 0.0ω1ω2ω3FrequencyDamping Mechanism and Damping ModelDamping exists in all vibratory systems whenever there is energy dissipation. This is true for mechani-cal structures even though most are inherently lightly damped. For free vibration, the loss of energy from damping in the system results in the decay of the amplitude of motion.In forced vibration, loss of energy is balanced by the energy supplied by excitation. In either situation, the effect of damping is to remove energy from the system.In previous mathematical formula-tions the damping force was called viscous, since it was proportional to velocity. However, this does not imply that the physical damping mechanism is viscous in nature. It is simply a modeling method and it is important to note that the physical damping mechanism and the mathe-matical model of that mechanism are two distinctly different concepts. Most structures exhibit one or more forms of damping mechanisms, such as coulomb or structural, which result from looseness of joints, inter-nal strain and other complex causes. However, these mechanisms can be modeled by an equivalent viscous damping component. It can be shown that only the viscous compo-nent actually accounts for energy loss from the system and the remaining portion of the damping is due to non-linearities that do not cause energy dissipation. Therefore, only theviscous term needs to be measured to characterize the system when using a linear model.The equivalent viscous damping coefficient is obtained from energy considerations as illustrated in the hysteresis loop in Figure 1.15. E isthe energy dissipated per cycle ofvibration, c eq is the equivalent vis-cous damping coefficient and X is theamplitude of vibration. Note that thecriteria for equivalence are equalenergy distribution per cycle and thesame relative amplitude.Figure 1.15Viscous dampingenergy dissipationFigure 1.16Systemblock diagramFigure 1.17Definition oftransfer functionx.InputSystemOutputResponseTransfer Function =G(s) =OutputInputY(s)X(s)Frequency Response Function and Transfer Function RelationshipThe transfer function is a mathemati-cal model defining the input-output relationship of a physical system. Figure 1.16 shows a block diagram of a single input-output system. System response (output) is caused by system excitation (input). The casual relationship is loosely defined as shown in Figure 1.17. Mathemati-cally, the transfer function is definedas the Laplace transform of the out-put divided by the Laplace transform of the input.The frequency response function is defined in a similar manner and is related to the transfer function. Mathematically, the frequency response function is defined as the Fourier transform of the output divid-ed by the Fourier transform of the input. These terms are often used interchangeably and are occasionally a source of confusion. This relationship can be furtherexplained by the modal test process.The measurements taken during amodal test are frequency responsefunction measurements. The parame-ter estimation routines are, in gener-al, curve fits in the Laplace domainand result in the transfer functions.The curve fit simply infers the loca-tion of system poles in the s-planefrom the frequency response func-tions as illustrated in Figure 1.18. The frequency response is simply thetransfer function measured along thejωaxis as illustrated in Figure 1.19.Figure 1.18S-planerepresentationiωSystem AssumptionsThe structural dynamics background theory and the modal parameter estimation theory are based on two major assumptions:Figure 1.193-D Laplace representationReal PartImaginary PartMagnitudePhaseσσσωj ωωTransfer Function – surface Frequency Response – dashedqThe system is linear.qThe system is stationary.There are, of course, a number of other system assumptions such as observability, stability, and physical realizability. However, these assump-tions tend to be addressed in the inherent properties of mechanical systems. As such, they do not pres-ent practical limitations when making frequency response measurements as do the assumptions of linearity and stationarity.IntroductionThis chapter investigates the current instrumentation and techniques available for acquiring frequency response measurements. The discus-sion begins with the use of a dynamic signal analyzer and associated periph-erals for making these measurements. The type of modal testing known as the frequency response function method, which measures the input excitation and output response simul-taneously, as shown in the block dia-gram in Figure 2.1, is examined. The focus is on the use of one input force, a technique commonly known as sin-gle-point excitation, illustrated in Figure 2.2. By understanding this technique, it is easy to expand to the multiple input technique.With a dynamic signal analyzer, which is a Fourier transform-based instrument, many types of excitation sources can be implemented to meas-ure a structure’s frequency responsefunction. In fact, virtually any physi-cally realizable signal can be input or measured. The selection and implementation of the more common and useful types of signals for modal testing are discussed.Transducer selection and mounting methods for measuring these signals along with system calibration meth-ods, are also included. Techniques for improving the quality and accuracy of measurements are then explored. These include processes such as averaging, windowing and zooming, all of which reduce mea-surement errors. Finally, a section on measurement interpretation is included to aid in understanding the complete measurement process.Chapter 2Frequency Response MeasurementsFigure 2.1 System block diagram Figure 2.2 Structure under testResponseGeneral Test System Configurations The basic test setup required for making frequency response measure-ments depends on a few major factors. These include the type of structure to be tested and the levelof results desired. Other factors, including the support fixture andthe excitation mechanism, also affect the amount of hardware needed to perform the test. Figure 2.3 showsa diagram of a basic test system configuration.The heart of the test system is the controller, or computer, which is the operator’s communication link to the analyzer. It can be configured with various levels of memory, displays and data storage. The modal analysis software usually resides here, as well as any additional analysis capabilitiessuch as structural modification and forced response.The analyzer provides the data acquisition and signal processing operations. It can be configured with several input channels, for force and response measurements, and with one or more excitation sources for driving shakers. Measurement func-tions such as windowing, averaging and Fast Fourier Transforms (FFT) computation are usually processed within the analyzer. For making measurements on simplestructures, the exciter mechanismcan be as basic as an instrumentedhammer. This mechanism requiresa minimum amount of hardware.An electrodynamic shaker may beneeded for exciting more complicatedstructures. This shaker system re-quires a signal source, a power ampli-fier and an attachment device. Thesignal source, as mentioned earlier,may be a component of the analyzer.Transducers, along with a powersupply for signal conditioning, areused to measure the desired forceand responses. The piezoelectrictypes, which measure force andacceleration, are the most widelyused for modal testing. The powersupply for signal conditioning may bevoltage or charge mode and is some-times provided as a component of theanalyzer, so care should be taken insetting up and matching this part ofthe test system.Figure 2.3General testconfigurationSupporting The StructureThe first step in setting up a structure for frequency response measurements is to consider the fix-turing mechanism necessary to obtain the desired constraints (boundary conditions). This is a key step in the process as it affects the overall struc-tural characteristics, particularly for subsequent analyses such as structur-al modification, finite element corre-lation and substructure coupling. Analytically, boundary conditions can be specified in a completely free or completely constrained sense. In testing practice, however, it is gener-ally not possible to fully achieve these conditions. The free condition means that the structure is, in effect, floating in space with no attachments to ground and exhibits rigid body behavior at zero frequency. The airplane shown in Figure 2.4a is an example of this free condition. Physically, this is not realizable,so the structure must be supported in some manner. The constrained condition implies that the motion, (displacements/rotations) is set to zero. However, in reality most struc-tures exhibit some degree of flexibili-ty at the grounded connections. The satellite dish in Figure 2.4b is an example of this condition.In order to approximate the free sys-tem, the structure can be suspended from very soft elastic cords or placed on a very soft cushion. By doing this, the structure will be constrained to a degree and the rigid body modes will no longer have zero frequency. However, if a sufficiently soft support system is used, the rigid body fre-quencies will be much lower than thefrequencies of the flexible modes andthus have negligible effect. The ruleof thumb for free supports is that thehighest rigid body mode frequencymust be less than one tenth that ofthe first flexible mode. If this criteri-on is met, rigid body modes will havenegligible effect on flexible modes.Figure 2.5 shows a typical frequencyresponse measurement of this typewith nonzero rigid body modes.The implementation of a constrainedsystem is much more difficult toachieve in a test environment. Tobegin with, the base to which thestructure is attached will tend to havesome motion of its own. Therefore, itis not going to be purely grounded.Also, the attachment points will havesome degree of flexibility due to thebolted, riveted or welded connec-tions. One possible remedy for theseproblems is to measure the frequency Figure 2.4aExample offree supportsituationFigure 2.4bExample ofconstrainedsupportsituationFreeBoundaryresponse of the base at the attach-ment points over the frequency range of interest. Then, verify that this response is significantly lower than the corresponding response of the structure, in which case it will have a negligible effect. However, the frequency response may not be mea-surable, but can still influence the test results.There is not a best practical or appropriate method for supportinga structure for frequency response testing. Each situation has its own characteristics. From a practical standpoint, it would not be feasible to support a large factory machine weighing several tons in a free test state. On the other hand, there may be no convenient way to ground a very small, lightweight device for the constrained test state. A situation could occur, with a satellite for exam-ple, where the results of both tests are desired. The free test is required to analyze the satellite’s operating environment in space. However, the constrained test is also needed to assess the launch environment attached to the boost vehicle. Another reason for choosing the appropriate boundary conditions is for finite element model correlation or substructure coupling analyses. At any rate, it is certainly important dur-ing this phase of the test to ascertain all the conditions in which the results may be used.Figure 2.5Frequencyresponseof freelysuspendedsystemFxdXY-30.0dB10.0/Div50.0Table 2.1Excitation functionsExciting the StructureThe next step in the measurement process involves selecting an excitation function (e.g., random noise) along with an excitation sys-tem (e.g., a shaker) that best suits the application. The choice of excitation can make the difference between a good measurement and a poor one.Excitation selection should be approached from both the type of function desired and the type of exci-tation system available because they are interrelated. The excitation func-tion is the mathematical signal used for the input. The excitation system is the physical mechanism used to prove the signal. Generally, the choice of the excitation function dictates the choice of the excitation system, a true random or burstrandom function requires a shaker system for implementation. In gener-al, the reverse is also true. Choosing a hammer for the excitation system dictates an impulsive type excitation function.Excitation functions fall into four general categories: steady-state, random, periodic and transient.There are several papers that go into great detail examining the applica-tions of the most common excitation functions. Table 2.1 summarizes the basic characteristics of the ones that are most useful for modal testing.True random, burst random and impulse types are considered in the context of this note since they are the most widely implemented. The best choice of excitation function depends on several factors: available signalprocessing equipment, characteristics of the structure, general measure-ment considerations and, of course,the excitation system.A full function dynamic signal analyz-er will have a signal source with a sufficient number of functions for exciting the structure. With lower quality analyzers, it may be necessary to obtain a signal source as a sepa-rate part of the signal processing equipment. These sources often provide fixed sine and true random functions as signals; however, these may not be acceptable in applications where high levels of accuracy are desired. The types of functionsavailable have a significant influence on measurement quality.Periodic*Transientin analyzer window in analyzer window Sine True steady random random sine sine random state Minimze leakage No No Yes Yes Yes Yes Yes Yes Signal to noise Very Fair Fair Fair High Low High Fair high RMS to peak ratioHigh Fair Fair Fair High Low High Fair Test measurement time Very Good Very Fair Fair Very Very Very long good good good good Controlled frequency content Yes Yes*Yes*Yes*Yes*No Yes*Yes*Controlled amplitude content Yes No Yes* No Yes*No Yes*No Removes distortionNo Yes No Yes No No No Yes Characterize nonlinearityYesNoNoNoYesNoYesNo* Requires additional equipment or special hardwareThe dynamics of the structureare also important in choosing the excitation function. The level of nonlinearities can be measured and characterized effectively with sine sweeps or chirps, but a random func-tion may be needed to estimate the best linearized model of a nonlinear system. The amount of damping and the density of the modes within the structure can also dictate the use of specific excitation functions. If modes are closely coupled and/or lightly damped, an excitation function that can be implemented in a leakage-free manner (burst random for exam-ple) is usually the most appropriate. Excitation mechanisms fall into four categories: shaker, impactor, step relaxation and self-operating. Step relaxation involves preloading the structure with a measured force through a cable then releasing the cable and measuring the transients.Self-operating involves exciting thestructure through an actual operatingload. This input cannot be measuredin many cases, thus limiting its useful-ness. Shakers and impactors are themost common and are discussed inmore detail in the following sections.Another method of excitation mecha-nism classification is to divide theminto attached and nonattacheddevices. A shaker is an attacheddevice, while an impactor is not,(although it does make contact for ashort period of time).Shaker TestingThe most useful shakers for modaltesting are the electromagneticshown in Fig. 2.6 (often calledelectrodynamic) and the electrohydraulic (or, hydraulic) types. Withthe electromagnetic shaker, (the morecommon of the two), force is generat-ed by an alternating current thatdrives a magnetic coil. The maximumfrequency limit varies from approxi-mately 5 kHz to 20 kHz dependingon the size; the smaller shakershaving the higher operating range.The maximum force rating is also afunction of the size of the shaker andvaries from approximately 2 lbf to1000 lbf; the smaller the shaker, thelower the force rating.With hydraulic shakers, forceis generated through the use ofhydraulics, which can provide muchhigher force levels – some up toseveral thousand pounds. The maxi-mum frequency range is much lowerthough – about 1 kHz and below. Anadvantage of the hydraulic shaker isits ability to apply a large static pre-load to the structure. This is usefulfor massive structures such as grind-ing machines that operate underrelatively high preloads which mayalter their structural characteristics.。

迈达斯-有限元模态分析

迈达斯-有限元模态分析
1
2 3
Modal Analysis 39
Step
09 网格 >> 属性>>材料
操作步骤
1. 创建 >> 各向同性. 2. 输入材料属性.
号 名称 弹性模量 泊松比 质量密度
2 Matl 2e11 (N/m2) 0.3 8.245 (kg/m3)
3. 点击[确认]. 4. 点击[关闭].
2 2
1
4 3
模态分析选项
• 模态数量: 输入需要计算的自然频率数量.
• 最低/最高: 设置频率范围. 仅计算该范围内的频率.
• Sturm 序列检查: 通过迭代过程计算丢失特征值.
Modal Analysis 4
Step
00 概述
概述
线性静态分析 - 单位 : N, mm - 各向同性弹性材料 - 几何模型: Hanger.x_t
>> 变形+未变形(特征线) .
3. 分析和结果>> 模态(必需)>>
MODE1 >> 总位移.
1 2
Modal Analysis 16
Step
11 分析和结果>> Hanger >> 特征值分析结果表
操作步骤
1. 双击[特征值分析结果表]. 1
Modal Analysis 17
Step
00 概述
操作步骤
1. 坐标 : 输入“(0.125), <0, 0.5>” . 2.在工作窗口中单击鼠标右键. 3. 坐标 :输入 “(0.25), <0, 0.5>” . 4.在工作窗口中单击鼠标右键. 5. 坐标 :输入 “(0.375), <0, 0.5>” . 6.在工作窗口中单击鼠标右键. 7. 点击[取消] .

什么是模态分析,模态分析有什么用

什么是模态分析,模态分析有什么用

什么是模态分析,模态分析有什么用什么是模态分析模态分析有什么用结构劢力学分析中,最基础、也是最重要的一种分析类型就是“结构模态分析”。

模态分析主要用亍计算结构的振劢频率和振劢形态,因此,又可以叫做频率分析戒者是振型分析。

劢力学分析可分为时域分析不频域分析,模态分析是劢力学频域分析的基础分析类型。

基础理论劢力学控制方程可表示为微分方程:其中,[ M ] 为结构质量矩阵,[ C ] 为结构阷尼矩阵,[ K ] 为结构刚度矩阵,{ F } 为随时间变化的外力载荷函数,{ u } 为节点位移矢量,为节点速度矢量,{ ü } 为节点加速度矢量。

在结构模态分析中丌需要考虑外力的影响,因此,模态分析的劢力学控制方程可表示为:理想情况下,结构在振劢过程中,丌考虑阷尼效应,也就是所谓的自由振劢情况,模态分析又可描述为:对上迚一步分析,假设此时的自由振劢为谐响应运劢,也就是说u = u 0 sin( ωt ),上又可迚一步描述为:对上式求解,可得方程的根是ω i²,即特征值,其中i 的范围是从1 到结构自由度个数N (有限元分析中,自由度个数N 一般丌超过分析模型网格节点数的三倍)。

特征值开平方根是ω i ,即固有圆周频率,这样,结构振劢频率(结构固有频率)f i就可通过公式f i = ω i /2 π 得到。

有限元模态分析可以得到f i 戒者ω i ,都可以用来描述结构的振劢频率。

特征值对应的特性矢量为{ u } i 。

特征矢量{ u } i表示结构在以固有频率f i振劢时所具有的振劢形状(振型)。

模态分析中的矩阵1. 模态分析微分方程组包含六个矩阵:[ K ] 代表刚度矩阵。

可参考“结构静力学”中的解释说明。

{ u } 代表位移矢量。

主要用来描述模态分析的振型。

可参考“结构静力学”中的解释说明,但一定要注意,模态分析中得到的位移矢量不静力学分析中位移矢量代表变形丌同。

[ C ] 代表阷尼矩阵。

第一章模态分析理论基础

第一章模态分析理论基础

共振频率点
ds max d 1
• 粘滞阻尼系统
– Nyquist图
2
2
[H
R
( )]2
(H
I
( ))2
1
4k
1
4k
» 特点
»桃子形,阻尼比越小
轨迹圆越大
» ( 是变的,所以不是圆 )
在固有频率附近,曲线 接近圆,仍可利用圆
的特性
第20页/共60页
速度与加速度频响函数特性曲线
• 关系回顾
HR 1, 2
(
)
4k
1 (1
)
2
1
g
2
半功率带宽反映阻尼大小 阻尼越大,半功率带宽
越大,反之亦然
第17页/共60页
• 虚频图
• •
H
I
( )
g
k[(1 2 )2
(结构阻尼) (g粘2 ] 性阻尼)
• 以H结I构(阻) 尼k[为(1例:2 )22(2 )2 ]
– 系统共振时虚部达到最大值
– 系统共振时实部为零
m1
机架线
第30页/共60页
• 一般多自由度约束系统
机架线
– N自由度约束系统有N个共振频率,(N-1)个反共振频率 – 对原点函数共振反共振交替出现 – 对跨点频响函数无此规律 – 一般两个距离远的跨点出现反共振的机会比较近的跨点少
第31页/共60页
– 自由系统
• 两自由度系统运动方程(无阻尼)
第7页/共60页
单自由度系统频响函数分析
粘性阻尼系统
•阻尼力(与振动速度成正比):
•强迫fd振动方c程x 及其解
..
.
m x•解c的x形式k(xs为复f 数)及拉氏变换:

模态分析操作指南

模态分析操作指南

模态分析软件操作说明及实例东方振动和噪声技术研究所1999.3.16目录一模态分析的步骤 (2)1.确定分析的方法 (2)2.测点的选取、传感器的布置 (2)3.仪器连接 (3)4.示波 (3)5.输入标定值 (3)6.采样 (4)7.传递函数分析 (4)8.进行模态分析 (4)二模态分析实例 (5)例一自由梁的模态分析实例 (5)例二楼房的模态分析实例 (15)模态分析是一种参数识别的方法,因为模态分析法是在承认实际结构可以运用所谓“模态模型”来描述其动态响应的条件下,通过实验数据的处理和分析,寻求其“模态参数”。

模态分析的关键在于得到振动系统的特征向量(或称特征振型、模态振型)。

试验模态分析便是通过试验采集系统的输入输出信号,经过参数识别获得模态参数。

具体做法是:首先将结构物在静止状态下进行人为激振(或者环境激励),通过测量激振力与振动响应,找出激励点与各测点之间的“传递函数”,建立传递函数矩阵,用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构的模态参数,从而建立起结构物的模态模型。

东方所研制的模态分析系统,自推出以来参与了许多重大的科研项目如大型航空航天设备(长征火箭、通信卫星、大型雷达、火箭发射平台等)、大桥(火箭激振钱塘江大桥、锤击法激振乌海黄河铁路大桥属国内首次)、大楼、大坝、、机车(汽车)车辆和大型港口机械等,分析精度高、操作简便,尤其是变时基模态分析及高速模态三视图动画技术更是在国内外处于领先地步。

一、模态分析的步骤1. 确定分析的方法DASP中提供的模态分析方法有多输入单输出法、单输入多输出法和多输入多输出方法。

一般采用较多的是多输入单输出或单输入多输出方法,在这两种方法中选取时,视哪一种方法简便而定,如激励装置大、不好移动但传感器移动方便就选取单输入多输出方法(即单点激励、多点移步拾振);如传感器移动不方便但激励装置小、容易移动就选取多输入单输出方法(即单点拾振、多点移步激励)。

动刚度和一阶模态-概述说明以及解释

动刚度和一阶模态-概述说明以及解释

动刚度和一阶模态-概述说明以及解释1.引言1.1 概述概述:动刚度和一阶模态是结构动力学领域中常被讨论和研究的两个重要概念。

动刚度是指结构在受到外部力作用下发生变形的能力,它是结构刚度在动力学问题中的体现。

一阶模态则是指结构在自由振动时,最低频率下的振动模式。

这两个概念在结构分析、设计和优化中具有重要的作用,对于确保结构的安全性、稳定性和性能具有不可忽视的影响。

动刚度与一阶模态之间存在紧密的关系。

一方面,动刚度决定了结构的振动特性,包括固有频率、模态形态和振动幅值等。

结构的刚度越大,其固有频率越高,振动幅值越小。

另一方面,一阶模态反过来也影响了结构的动刚度。

一阶模态所对应的固有频率是结构自由振动的最低频率,而自由振动对应的形变和变形会影响结构的刚度分布,进而影响整个结构的动刚度。

动刚度和一阶模态在工程实践中具有广泛的应用。

动刚度分析可以帮助工程师评估结构在外部载荷下的响应和变形情况,为结构设计和优化提供依据。

一阶模态分析则可以用于确定结构的固有频率,为结构抗震设计和振动控制提供参考。

例如,在桥梁设计中,动刚度分析可以帮助确定桥梁的刚度需求,从而满足桥梁在运行过程中的荷载要求;而一阶模态分析可以帮助设计人员理解桥梁的振动特性,并采取相应的措施来避免共振现象的发生。

本文将重点探讨动刚度与一阶模态的关系,分析它们在结构动力学中的相互影响关系,并结合实际案例进行分析。

同时,本文还将对动刚度和一阶模态的重要性进行总结,并强调它们之间关系的研究意义。

最后,本文将提出未来研究的方向,以期为相关领域的研究者提供参考和启示。

文章结构部分的内容可以如下所示:1.2 文章结构本文主要分为三个部分:引言、正文和结论。

引言部分将首先对本文的主题进行概述,介绍动刚度和一阶模态的基本概念和定义。

接着,文章将介绍本文的结构和各个章节的内容安排,使读者能够更好地了解整篇文章的逻辑结构。

正文部分分为三个小节。

首先,将详细阐述动刚度的定义和概念,探讨其在工程和物理学中的重要性。

火箭发射过程中噪声与振动控制考核试卷

火箭发射过程中噪声与振动控制考核试卷
A.发动机推力增大
B.火箭速度提高
C.空气密度降低
D.采用多级火箭
10.以下哪种材料对火箭结构振动吸收效果较好?()
A.金属材料
B.复合材料
C.塑料材料
D.玻璃材料
11.火箭发射过程中,以下哪个部位的振动对整体影响较大?()
A.燃料箱
B.发动机
C.推进剂管道
D.导航系统
12.在火箭发射过程中,以下哪种方法可以减少振动对火箭结构的影响?()
五、主观题(本题共4小题,每题10分,共40分)
1.请描述火箭发射过程中振动产生的主要原因,并列举至少三种减少振动的有效方法。
2.火箭发射噪声对周围环境和人类活动有哪些潜在影响?请提出至少三种控制噪声的措施,并简要说明其原理。
3.在设计火箭结构时,如何综合考虑材料选择、结构布局和阻尼特性以降低振动和噪声?请结合具体实例进行说明。
4.请阐述火箭发射前进行振动和噪声测试的重要性,并说明这些测试通常包括哪些内容。
标准答案
一、单项选择题
1. A
2. D
3. C
4. C
5. D
6. C
7. D
8. C
9. C
10. B
11.
16. D
17. C
18. B
19. D
20. D
二、多选题
1. ABC
四、判断题(本题共10小题,每题1分,共10分,正确的请在答题括号中画√,错误的画×)
1.火箭发射过程中的振动对火箭的结构完整性和可靠性没有影响。()
2.噪声控制是火箭发射过程中振动控制的主要任务。()
3.火箭发射时,所有的振动都可以通过增加结构阻尼来控制。()
4.在火箭发射过程中,提高发动机推力可以降低振动。()

abaqus计算一阶谐振频率

abaqus计算一阶谐振频率

abaqus计算一阶谐振频率
abaqus是一种常用的有限元分析软件,可以用来进行结构动力
学分析。

要计算一阶谐振频率,首先需要建立相应的有限元模型,
包括几何形状、材料性质、约束条件等。

然后,可以通过以下步骤
来进行计算:
1. 建立模型,在abaqus中创建一个新的模型,并定义结构的
几何形状和材料性质。

这包括定义结构的节点、单元、材料参数等。

2. 应用约束条件,根据实际情况,在结构上施加约束条件,如
固定边界条件或者其他约束条件,以模拟实际工况。

3. 定义荷载,如果有外部荷载作用在结构上,需要在模型中定
义这些荷载。

4. 设置分析步,在abaqus中设置分析步,通常在动态分析中
选择模态分析。

5. 运行分析,运行模态分析,abaqus将会计算结构的振型和
对应的固有频率。

6. 查看结果,分析完成后,可以查看模态分析的结果,包括结构的振型和对应的固有频率。

一阶谐振频率即为第一个模态的固有频率。

需要注意的是,在进行模态分析前,需要确保模型的几何和材料参数都已经定义完整,并且约束条件和荷载也已经设置正确。

另外,对于复杂的结构,可能需要进行网格收敛性分析,以确保计算结果的准确性。

1频率分析(模态)

1频率分析(模态)

© 2007 SolidWorks Corp. 机密文件。
26
练习
汽车悬架频率分析
– 无支撑 – 有支撑
© 2007 SolidWorks Corp. 机密文件。
27
© 2007 SolidWorks Corp. 机密文件。
28
案例二:风扇的频率分析
项目描述
– 本练习的主要任务是在考虑及不考虑离心力的情况下,对吹风机 风扇进行频率分析 – 对吹风机风扇进行一次频率分析该风扇设计转速可以容许一定范 围的差别。因风扇为对称结构,为简化计算,采用一根叶片作为 几何体特征。对固定叶片和旋转叶片各做一次分析,研究由于旋 转叶片离心力的作用而增加的刚性所产生的影响效果
学习内容
– 频率分析的流程 – 刚体模式 – 列举共振频率
© 2007 SolidWorks Corp. 机密文件。
16
案例一:音叉的频率分析
关键步骤
– 添加约束。在音叉末端添加固定几何体的约束,以模拟该手柄被人手 握住的效果。 – 对模型划分网格 – 运行分析 – 后处理结果 – 移除固定几何体:移除约束以获得更多的振型 – 加载后的影响。在音叉上作用一个载荷,并观察添加预应力后对振动 模式有何影响
为便于理解振动现象,我们从了解固有频率(固有周期),固有模态, 共振等表示振动特有现象的术语开始
© 2007 SolidWorks Corp. 机密文件。
4
频率分析的相关知识
固有频率(以钟摆为例)
– 摆动钟摆,则钟摆以一定的周期和一定的频率有规律地振动起来了。 – 振动的幅度(振幅)大也好小也好,周期和频率总是一定的。
© 2007 SolidWorks Corp. 机密文件。

模态分析的通俗解释

模态分析的通俗解释

MODAL SPACE - IN OUR OWN LITTLE WORLD模态空间–在我们自己的小世界中Pete Avitabile著westrongmc译Could you explain modal analysis for me?Well...it will take a little bit but here's one that anyone can understand.你能为我解释模态分析吗?嗯…说来有点话长,但下面的解释人人都可理解。

You're not the first one to ask me to explain modal analysis in simple terms so anyone can understand it. In a nutshell, we could say that modal analysis is a process whereby we describe a structure in terms of its natural characteristics which are the frequency,damping and mode shapes - its dynamic properties. Well that's a mouthful so let's explain what that means. Without getting too technical, I often explain modal analysis in terms of the modes of vibration of a simple plate. This explanation is usually useful for engineers who are new to vibrations and modal analysis.请我用简单的概念来解释模态分析,以便任何人都可以理解它,你不是第一个人。

7.1模态分析简介

7.1模态分析简介

工程振动测试技术模态分析简介在线性振动理论中,振动方程的矩阵表达式为非对角阵,存在动力耦合和静力耦合,为了求方程的解,首先应用正则振型(进行解耦)对其进行坐标变换,使其成为对角阵,然后求正则坐标的解,再将结果进行反变换得到物理坐标的解。

模态分析实质上也是一种坐标变换,与线性振动理论相似,其目的也在于把原物理坐标系统中描述的相应向量转换到“模态坐标系统”中来描述。

实验模态分析就是通过对结构实验数据的处理和分析,利用参数识别以求得“模态参数”的一种方法。

实验模态分析及参数识别是研究复杂机械和工程结构振动的重要手段。

由于固有频率、阻尼比和振型是振动的固有特性,这些参数可以由计算分析或实验分析得到,这样的分析过程称为模态分析。

模态分析有两种:1、计算模态分析2、实验模态分析计算模态分析就是利用线性振动理论,由有限元计算分析得到的,则称为计算模态分析。

计算模态分析的优点:1、在设计阶段,可根据设计图纸进行模态分析。

2、不需要物理模型,节约经费。

计算模态分析的缺点:误差较大,主要原因是1、计算模型和实际结构的误差较大2、边界条件很难准确确定3、某些大型结构的形状和动态特性十分复杂有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)如果是通过实验将输入与输出的振动信号经过分析计算和参数识别,获得模态参数,称为实验模态分析。

通常,如果不特别指明,模态分析都是指实验模态分析。

而实验模态分析则是对结构进行激励力激励,由力信号和响应信号求得系统的频响函数矩阵,再采用多种识别方法求出模态参数,得到结构固有的动态特性。

主要应用有 1、求出比较精确的固有频率、模态振型、模态阻尼、模态质量和模态刚度。

2、指导有限元理论模型的修正,使理论模型更趋完善和合理。

3、可以利用此方法建立一个子结构的数学模型,再将其组合到完整的结构中去。

4、进行结构动力学修改和反问题的计算等。

主要应用有5、进行响应计算和载荷识别。

由于理论模型计算很难得到模态阻尼(阻尼比),只能通过模态实验得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

© 2007 SolidWorks Corp. 机密文件。
29
案例二:风扇的频率分析
学习内容
– 带载荷的频率分析 – 频率分析结果处理 – 设计情形
© 2007 SolidWorks Corp. 机密文件。
30
案例二:风扇的频率分析
分析步骤(无离心力)
– – – – – – 打开零件fan,选择配置“section” 创建频率分析算例 定义频率数:5阶 定义材料:1060合金钢 添加约束:固定约束 网格划分 默认网格大小,高品质,勾选“自动过渡” – 运行算例
3
频率分析的相关知识
什么是振动?
– 钟摆和秋千的摆动,是我们身边最典型的振动现象。 – 乐器的弦振动而发出声音。 – 小提琴用弓拉弦,吉他用手指或拨片拨弦,在钢琴上敲击琴键则小锤 打击琴弦而使琴弦振动起来。 – 洗衣机在脱水时也会突突突地产生很大的振动现象。 – 按摩机是机械的振动,地震则是大地的振动。 – 如果在不平整的地上或公路上开车的话,也会感到让人心情变坏的烦 人的振动。
– 弹性模量 – 泊松比 – 质量密度
为了模拟惯性刚度,频率分析中模型的材料属性必须包括材料的密度
– 定义约束 模拟手柄被人手握住的效果
© 2007 SolidWorks Corp. 机密文件。
19
案例一:音叉的频率分析
分析步骤(带约束)
– 划分网格 默认网格大小,高品质 相对于同模型的应力分析而言,频率分析可采用更粗糙的网格。 – 运行 – 查看结果 查看各阶振型
12
频率分析的相关知识
频率分析就是计算结构的共振频率及对应振动模态,不计 算位移和应力
固有频率:结构趋向于振荡的频率,固有的振动频率。
– 基本频率:最低的固有频率
固有振动模态:特定的固有频率对应唯一的振动形式。
– 每种模态对应着特定的固有频率
© 2007 SolidWorks Corp. 机密文件。
© 2007 SolidWorks Corp. 机密文件。
20
案例一:音叉的频率分析
分析步骤(带约束)
– 查看结果 列举共振频率
© 2007 SolidWorks Corp. 机密文件。
21
案例一:音叉的频率分析
刚体模式
– 模型没有加约束或部分约束时为刚体运动模式,所有应变为零,固有 频率为零。 – 刚体模式的频率分析,必须用FFEPlus解算器。 – 当频率分析中包含载荷效果时,不能使用FFEPlus解算器。
© 2007 SolidWorks Corp. 机密文件。
17
案例一:音叉的频率分析
分析步骤(带约束)
– 打开零件:tuning fork – 新建频率分析算例 – 设置算例属性
© 2007 SolidWorks Corp. 机密文件。
18
案例一:音叉的频率分析
分析步骤(带约束)
– 定义材料: 需要的材料属性
© 2007 SolidWorks Corp. 机密文件。
22
案例一:音叉的频率分析
分析步骤(不带约束)
– – – – – 新建频率算例 定义材料 划分网格 运行 查看结果 查看各阶振型 列举共振频率 – 由【列举模式】窗口可知,最初的6个模式对应的频率接近为 0Hz。最初的6个振动模式对应着刚体模式。由于没有支撑,作 为刚体对应它有6个自由度:3个平移自由度和3个旋转自由度。
任何结构都具有其固有频率(固有周期),其值由其本身的结构所决定 自由振动是一种无衰减力的振动状态,它将永远不停地振动下去。
© 2007 SolidWorks Corp. 机密文件。
6
频率分析的相关知识
静力分析中,节点位移是主要的未知量。[K]d=F中[K]为刚度 矩阵,d为节点位移的未知量,而F为节点载荷的已知量。 在动力学分析中,增加阻尼矩阵[C]和质量矩阵[M]
© 2007 SolidWorks Corp. 机密文件。
14频率Βιβλιοθήκη 析 加载荷的频率分析– 压力或拉力载荷会改变结构体抗弯的能力。 – 应力硬化:拉力 – 应力软化:压力
© 2007 SolidWorks Corp. 机密文件。
15
案例一:音叉的频率分析
案例描述
– 设计在440Hz的频率下能够释放出一个较低的A音的音叉。运行一次 频率分析来验证音叉是否会在正确的频率下发生振动。此外,在音叉 末端加载450N的载荷,以判断它对共振频率的影响。
– 钟摆的振动所经过的时间越来越小,最后停了下来。 – 这是因为空气的阻碍、磨擦的阻碍等的阻力妨碍了钟摆的摆动(振 动)。 – 因为这样的阻力作用使振动衰减的力而起作用,被称为衰减力。 – 钟摆在没有外部而来的强迫它摆动的力(重力除外)作用下的振动称 为自由振动。 – 与此相对应,地震和汽车因为地基能、发动机等的强迫力作用下的振 动称为强迫振动。
要点:振动的形式(振形)称为振动模态。 一般从低频开始,称为1阶、2阶、3阶„„固有频率,并且具 有与各个固有频率对应的振动模态。
© 2007 SolidWorks Corp. 机密文件。
9
频率分析的相关知识
共振(以荡秋千为例)
– 荡得好的人荡几下马上就能荡得很高 – 这是因为与秋千摆动的节拍和时间配合起来的原因。 – 换句话说,与秋千的固有频率(固有周期)相配合,这种状况,称为 共振。 – 共振,对于机械和结构一般是应该要避免的一种现象。
© 2007 SolidWorks Corp. 机密文件。
24
案例一:音叉的频率分析
分析步骤(带载荷)
– 查看结果 振型 列举共振频率
压力降低抗弯能力,使结构变柔,频率变低。 拉力提高抗弯能力,使结构变刚,频率变大。
© 2007 SolidWorks Corp. 机密文件。
25
案例一:音叉的频率分析
© 2007 SolidWorks Corp. 机密文件。
11
频率分析的相关知识
设计就要避免出现共振现象
共振产生时的条件有以下两条: 激振力的周期(频率)和物体的固有周期(固有频率)相一致或接近 激振力的持续时间长到使物体振动以充分发展的时间
© 2007 SolidWorks Corp. 机密文件。
学习内容
– 频率分析的流程 – 刚体模式 – 列举共振频率
© 2007 SolidWorks Corp. 机密文件。
16
案例一:音叉的频率分析
关键步骤
– 添加约束。在音叉末端添加固定几何体的约束,以模拟该手柄被人手 握住的效果。 – 对模型划分网格 – 运行分析 – 后处理结果 – 移除固定几何体:移除约束以获得更多的振型 – 加载后的影响。在音叉上作用一个载荷,并观察添加预应力后对振动 模式有何影响
振幅:大 振幅:小
– 振动频率:是单位时间里摆动的次数。 – 1秒钟内的次数用Hz(赫兹)来表示。 – 周期:摆动1次所需要的时间。 – 钟摆的形状(长度)决定了其固有的数值。 – 钟摆越长周期越长,钟摆越短周期越短。
© 2007 SolidWorks Corp. 机密文件。
5
频率分析的相关知识
固有频率(以钟摆为例)
© 2007 SolidWorks Corp. 机密文件。
31
案例二:风扇的频率分析
分析步骤(无离心力)
– 查看结果
© 2007 SolidWorks Corp. 机密文件。
32
案例二:风扇的频率分析(参阅)
整个风扇不加载频率分析(设置频率数:10阶) 前5阶振型为单个叶片的上下摆动,频率类似。
为便于理解振动现象,我们从了解固有频率(固有周期),固有模态, 共振等表示振动特有现象的术语开始
© 2007 SolidWorks Corp. 机密文件。
4
频率分析的相关知识
固有频率(以钟摆为例)
– 摆动钟摆,则钟摆以一定的周期和一定的频率有规律地振动起来了。 – 振动的幅度(振幅)大也好小也好,周期和频率总是一定的。
13
频率分析的相关知识
设计产品时,应保证产品的固有频率不与激励频率相吻合。 一般可将其固有频率设计成远离激振频率10~20%以上。 为了改变结构的固有频率在危险范围外,可通过改变产品 的几何结构、材料、避震特性或在适当的地方添加质量单 元。
– 对于结构的固有频率,如果结构变刚,则频率高,如果变柔,则频 率低。 – 另外,振动部件的重量重,则频率变低,重量轻,频率变高。 – 结构要变刚,即提高结构的刚性,可以加厚构件,可以加入补强材。 – 结构要变柔,也即进行结构变刚那样反过来设计,则可以用弹簧来 支承。对于汽车或电车之类的乘用车的车轮使用了弹簧。
© 2007 SolidWorks Corp. 机密文件。
33
案例二:风扇的频率分析(参阅)
整个风扇不加载频率分析(设置频率数:10阶) 后5阶振型为单个叶片的左右扭动,频率类似。
总结
– 无论有无支撑,频率分析都可以用于分析结构变形的刚体模式。但现 实中没有无约束的情况,所以是没有意义的。 – 频率分析只计算固有频率及对应的振动模态,并不计算振幅或应力。 只考虑较低阶次的固有频率及振动模态。 – 频率分析位移结果只能在相同的振动模式中比较模型不同部位的相对 位移,其大小没有意义。 – 载荷作用下会导致结构的固有频率改变,想要正确地分析,任何产生 预应力的载荷都需要考虑在内。
要点:振动外力的周期和结构固有周期一致或接近则要发生共振。 共振因为会使振动变得越来越强,一般应该避免。
© 2007 SolidWorks Corp. 机密文件。
10
频率分析的相关知识
设计就要避免出现共振现象
– 洗衣机脱水结束,马达的转速低下来时,停止前发出突突的响声并晃 动起来。 – 这是洗衣机的固有频率和马达的转速一致时产生的共振现象。 – 要把脱水时马达的转速设计成洗衣机的1阶固有频率以上。从而,在脱 水过程中不会产生共振现象。 – 洗衣机的马达的转速直到停止前与它的固有频率相一致,产生共振, 发出突突声音。此后,因为很短时间即停止,洗衣机不会损坏。
相关文档
最新文档