2019年河北中考数学专题复习第7讲 分式方程
2019版初三中考模拟(河北数学)课题7 分式方程(可编辑PPT)
12
2
以选择题的形式,以倒数、 代数式的值为问题情境,考 查根据实际问题列分式方 程
备考策略:在我省的中考中,分式方程是一个经常考查的内容,但单独考查的题目较少,常与方程、函数等知识进行综合考查,考查的内容以基础知
识为主,预计今后中考中对分式方程的考查不会有较大的
变化.
基础知识梳理
栏目索引
基础知识梳理
答案 设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米.
33 000 33 000 根据题意,得 - =11, x 1.2 x
解这个方程,得x=500. 经检验,x=500是原方程的解且符合题意, ∴1.2x=600.
答:实际平均每天施工600平方米.
易混易错突破 栏目索引
易混易错突破
B
)
易混易错突破 栏目索引
易错警示 本题的时间单位中,既有分钟也有小时,解题时容易出现时间单位
不统一的错误. 解析 若甲车的平均速度为4x千米/时,则乙车的平均速度为5x千米/时,根据
160 160 1 题意,得 - = . 4x 5x 2
答案 B
随堂巩固检测 栏目索引
随堂巩固检测
2 x2 1.解分式方程 + =3时,去分母后变形为 x 1 1 x
,把分式方程化为整式方程;
(3)验根:验根的目的是检验解整式方程所得的解是不是分式方程的⑤
增根
,验根的方法是把解整式方程所得的解代入最简公分母中,如果最简公分母 的值不为⑥ 0 ,那么这个解为原分式方程的根;如果最简公分母的值为⑦
0 ,那么这个解为原分式方程的增根.
基础知识梳理
栏目索引
▶温馨提示
验根是解分式方程时必不可少的一个解题步骤,必须体现在解
(中考数学真题复习)第7讲 一元一次方程及分式方程基础例题 附答案解析
中考数学复习一元一次方程及分式方程【基础演练】1.(2013·滨州)把方程12x=1变形为x=2,其依据是() A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质1解析把方程12x=1变形为x=2,其依据是等式的性质2.答案B2.(2013·泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.2300x+23001.3x=33 B.2300x+2300x+1.3x=33C.2300x+4600x+1.3x=33 D.4600x+2300x+1.3x=33解析设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:2300 x+2300x+1.3x=33.答案B3.(2013·丽水)分式方程1x-2=0的解是________.解析方程两边同乘以x,得1-2x=0,解得x=12.检验:当x=12时,x=12≠0,所以,原方程的解为x =12.答案x =124.(2012·宁波)分式方程x -2x +4=12的解是________.解析方程的两边同乘2(x +4),得2(x -2)=x +4,2x -4=x +4,解得x =8.检验:把x =8代入x +4=12≠0.故原方程的解为x =8.答案x =85.(2013·绍兴)分式方程2xx -1=3的解是________.解析方程两边同乘以x -1,得2x =3(x -1),解得x =3.检验:当x =3时,x -1=3-1=2≠0,所以,原方程的解为x =3.答案x =36.(2013·滨州)解方程:3x +52=2x -13.解去分母得:3(3x +5)=2(2x -1),去括号得:9x +15=4x -2,移项合并得:5x =-17,解得:x =-175.7.(2010·台州)解方程:3x =2x -1.解方程两边同乘以x (x -1),得3(x -1)=2x ,解得x =3.经检验:x =3是原方程的解,所以原方程的解是x =3.8.(2010·义乌市)解分式方程:2x2+1x+2=2x.解方程的两边同乘x+2,得2x2+1=2x2+4x,∴4x=1,∴x=1 4 .经检验,x=14是原方程的解.9.(2012·北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.解设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x-4)毫克,由题意得:10002x-4=550x,解得:x=22.经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.【能力提升】10.(2013·台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200-x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200-x)=24000解析若外套卖出x 件,则衬衫和裤子卖出(200-x )件,由题意得:0.6×250x +0.8×125(200-x )=24000,答案B11.(2012·山西)图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.解析长方体的高为x cm ,然后表示出其宽为30-4x ,根据题意得:30-4x =2x ,解得:x =5.故长方体的宽为10cm ,长为20cm 则长方体的体积为5×10×20=1000cm 3.答案100012.(2012·攀枝花)若分式方程:2+1-kx x -2=12-x有增根,则k =________.解析∵2+1-kx x -2=12-x,去分母得:2(x -2)+1-kx =-1,整理得:(2-k )x =2,当2-k =0时,此方程无解,不符合题意.∵分式方程2+1-kx x -2=12-x 有增根,∴x -2=0,2-x =0,解得:x =2,把x =2代入(2-k )x =2得:k =1.答案113.(2010·嘉兴)解方程:x x +1+x +1x=2.解设x x +1=y ,则原方程化为y +1y =2.整理得,y 2-2y +1=0,解之得,y =1.当y =1时,xx +1=1,此方程无解.故原方程无解.14.(2010·义乌市)我市举办的“义博会”是国内第三大展会,从1995年以来已成功举办了15届.(1)1995年“义博会”成交金额为1.01亿元,1999年“义博会”成交金额为35.2亿元,求1999年的成交金额比1995年的增加了几倍?(结果精确到整数)(2)2000年“义博会”的成交金额与2009年的成交金额的总和是153.99亿元,且2009年的成交金额是2000年的3倍少0.25亿元,问2009年“义博会”的成交金额是否突破了百亿元大关?解(1)(35.2-1.01)÷1.01≈34.答:1999年的成交金额比1995年约增加了34倍;(2)设2000年成交金额为x 亿元,则2009年成交金额为(3x -0.25)亿元.由题意得x +3x -0.25=153.99,解得x =38.56,∴3x -0.25=115.43>100,∴2009年“义博会”的成交金额突破了百亿元大关.。
专题07分式方程-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】
备战2023年中考数学必刷真题考点分类专练(全国通用)专题07分式方程一.选择题(共7小题)1.(2022•德阳)如果关于x 的方程2x+m x−1=1的解是正数,那么m 的取值范围是( )A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围. 【解析】两边同时乘(x ﹣1)得, 2x +m =x ﹣1, 解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1, ∴{x >0x ≠1,即{−1−m >0−1−m ≠1, 解得:{m <−1m ≠−2,∴m 的取值范围为:m <﹣1且m ≠﹣2. 故答案为:D .【点评】本题主要考查了分式方程的解,一元一次不等式,正确求得分式方程的解并考虑产生增根的情形是解题的关键.2.(2022•遂宁)若关于x 的方程2x =m 2x+1无解,则m 的值为( )A .0B .4或6C .6D .0或4【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或x =−12=−24−m ,求出m 的值即可. 【解析】2x =m 2x+1,2(2x +1)=mx , 4x +2=mx , (4﹣m )x =﹣2, ∵方程无解,∴4﹣m =0或x =−12=−24−m ,∴m =4或m =0, 故选:D .【点评】本题考查分式方程的解法,熟练掌握分式方程的解法,分式方程无解的条件是解题的关键. 3.(2022•广元)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N 95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N 95口罩花费9600元.已知一次性医用外科口罩的单价比N 95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x 元,则列方程正确的是( ) A .9600x−10=1600x B .9600x+10=1600xC .9600x=1600x−10D .9600x=1600x+10【分析】设该药店购进的一次性医用外科口罩的单价是x 元,则购进N 95口罩的单价是(x +10)元,利用数量=总价÷单价,结合购进两种口罩的只数相同,即可得出关于x 的分式方程.【解析】设该药店购进的一次性医用外科口罩的单价是x 元,则购进N 95口罩的单价是(x +10)元, 依题意得:9600x+10=1600x,故选:B .【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 4.(2022•云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( ) A .400x−50=300x B .300x−50=400xC .400x+50=300xD .300x+50=400x【分析】根据实际植树400棵所需时间与原计划植树300棵所需时间相同,可以列出相应的分式方程,本题得以解决. 【解析】由题意可得,400x=300x−50,故选:B .【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出等量关系,列出相应的方程.5.(2022•丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50002x=4000x−30,则方程中x 表示( )A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量【分析】设篮球的数量为x 个,足球的数量是2x 个,列出分式方程解答即可. 【解析】设篮球的数量为x 个,足球的数量是2x 个. 根据题意可得:50002x=4000x−30,故选:D .【点评】此题主要考查了由实际问题抽象出分式方程,得到相应的关系式是解决本题的关键.6.(2022•重庆)关于x 的分式方程3x−ax−3+x+13−x =1的解为正数,且关于y 的不等式组{y +9≤2(y +2)2y−a 3>1的解集为y ≥5,则所有满足条件的整数a 的值之和是( ) A .13B .15C .18D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出{y ≥5y >a+32,结合题意得出a ≤7,进而得出2<a ≤7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案. 【解析】解分式方程得:x =a ﹣2, ∵x >0且x ≠3, ∴a ﹣2>0且a ﹣2≠3, ∴a >2且a ≠5,解不等式组得:{y ≥5y >a+32,∵不等式组的解集为y ≥5, ∴a+32<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13, 故选:A .【点评】本题考查了分式方程的解,解一元一次不等式组,解一元一次不等式,一元一次不等式的整数解,正确求解分式方程,一元一次不等式组,一元一次不等式是解决问题的关键.7.(2022•重庆)若关于x 的一元一次不等式组{x −1≥4x−13,5x −1<a的解集为x ≤﹣2,且关于y 的分式方程y−1y+1=a y+1−2的解是负整数,则所有满足条件的整数a 的值之和是( )A .﹣26B .﹣24C .﹣15D .﹣13【分析】解不等式组得出{x ≤−2x <a+15,结合题意得出a >﹣11,解分式方程得出y =a−13,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解析】解不等式组{x −1≥4x−135x −1<a 得:{x ≤−2x <a+15,∵不等式组{x −1≥4x−135x −1<a 的解集为x ≤﹣2,∴a+15>−2,∴a >﹣11, 解分式方程y−1y+1=ay+1−2得:y =a−13, ∵y 是负整数且y ≠﹣1, ∴a−13是负整数且a−13≠−1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13, 故选:D .【点评】本题考查了分式方程的解,解一元一次不等式组,正确求解分式方程和一元一次不等式组是解决问题的关键.二.填空题(共6小题)8.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =1a +1b .若(x +1)⊗x =2x+1x,则x 的值为 −12 .【分析】根据新定义列出分式方程,解方程即可得出答案. 【解析】根据题意得:1x+1+1x=2x+1x,化为整式方程得:x +x +1=(2x +1)(x +1), 解得:x =−12,检验:当x =−12时,x (x +1)≠0, ∴原方程的解为:x =−12. 故答案为:−12.【点评】本题考查了解分式方程,新定义,根据新定义列出分式方程是解题的关键.9.(2022•江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为160x =140x−10.【分析】由实际问题找到合适的等量关系即可抽象出分式方程.【解析】设甲每小时采样x 人,则乙每小时采样(x ﹣10)人,根据题意得:160x=140x−10.故答案为:160x=140x−10.【点评】本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.10.(2022•金华)若分式2x−3的值为2,则x 的值是 4 .【分析】依据题意列出分式方程,解分式方程即可求得结论. 【解析】由题意得:2x−3=2,去分母得:2=2(x ﹣3), 去括号得:2x ﹣6=2, 移项,合并同类项得:2x =8, ∴x =4.经检验,x =4是原方程的根, ∴x =4. 故答案为:4.【点评】本题主要考查了解分式方程,解分式方程需要验根,这是容易丢掉的步骤.11.(2022•泸州)若方程x−3x−2+1=32−x 的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是 a <﹣1 .【分析】先解分式方程,再将x 代入不等式中即可求解. 【解析】x−3x−2+1=32−x ,x−3x−2+x−2x−2=−3x−2,2x−2x−2=0,解得:x =1, ∵x ﹣2≠0,2﹣x ≠0, ∴x =1是分式方程的解,将x =1代入不等式(2﹣a )x ﹣3>0,得: 2﹣a ﹣3>0, 解得:a <﹣1,∴实数a 的取值范围是a <﹣1, 故答案为:a <﹣1.【点评】本题考查分式方程的解,不等式的解集,解题的关键是正确求出分式方程的解,要注意分母不能为0.12.(2022•成都)分式方程3−x x−4+14−x=1的解为 x =3 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【解析】去分母得:3﹣x ﹣1=x ﹣4, 解得:x =3,经检验x =3是分式方程的解, 故答案为:x =3【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 13.(2022•邵阳)分式方程5x−2−3x=0的解是 x =﹣3 .【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论. 【解析】去分母,得:5x ﹣3(x ﹣2)=0, 整理,得:2x +6=0,解得:x=﹣3,经检验:x=﹣3是原分式方程的解,故答案为:x=﹣3.【点评】本题主要考查解分式方程能力,熟练掌握解分式方程的步骤是关键.三.解答题(共10小题)14.(2022•苏州)解方程:xx+1+3x=1.【分析】先两边同乘以x(x+1)化为整式方程:x2+3(x+1)=x(x+1),解整式方程得x=−32,再检验即可得答案.【解析】方程两边同乘以x(x+1)得:x2+3(x+1)=x(x+1),解整式方程得:x=−3 2,经检验,x=−32是原方程的解,∴原方程的解为x=−3 2.【点评】本题考查解分式方程,解题的关键是掌握解分式方程的一般步骤,特别注意解分式方程必须检验.15.(2022•眉山)解方程:1x−1=32x+1.【分析】按照解分式方程的步骤,进行计算即可解答.【解析】1x−1=32x+1,方程两边同乘(x﹣1)(2x+1)得:2x+1=3(x﹣1),解这个整式方程得:x=4,检验:当x=4时,(x﹣1)(2x+1)≠0,∴x=4是原方程的解.【点评】本题考查了解分式方程,熟记解分式方程的步骤是解题的关键,需要特别注意解分式方程需要检验.16.(2022•嘉兴)(1)计算:(1−√83)0−√4.(2)解方程:x−32x−1=1.【分析】(1)分别利用0指数幂、算术平方根的定义化简,然后加减求解; (2)首先去分母化分式方程为整式方程,然后解整式方程,最后验根. 【解析】(1)原式=1﹣2=﹣1; (2)去分母得x ﹣3=2x ﹣1, ∴﹣x =3﹣1, ∴x =﹣2,经检验x =﹣2是分式方程的解, ∴原方程的解为:x =﹣2.【点评】本题分别考查了实数的运算和解分式方程,实数的运算主要利用0指数幂及算术平方根的定义,解分式方程的基本方法时去分母. 17.(2022•宿迁)解方程:2x x−2=1+1x−2.【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可. 【解析】2x x−2=1+1x−2, 2x =x ﹣2+1, x =﹣1,经检验x =﹣1是原方程的解, 则原方程的解是x =﹣1.【点评】此题考查了解分式方程,用到的知识点是解分式方程的步骤:去分母化整式方程,解整式方程,最后要把整式方程的解代入最简公分母进行检验.18.(2022•常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时.某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【分析】设平常的速度是x 千米/小时,根据“到达奶奶家时共用了5小时”列分式方程,求解即可. 【解析】设平常的速度是x 千米/小时, 根据题意,得(1−12)⋅4x x−20+2=5,解得x =60,经检验,x =60是原方程的根, 4×60=240(千米),答:小强家到他奶奶家的距离是240千米.【点评】本题考查了分式方程的应用,理解题意并根据题意建立等量关系是解题的关键.19.(2022•乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办.为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆.已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【分析】设摩托车的速度为x 千米/小时,则抢修车的速度为1.5x 千米/小时,根据时间=路程÷速度结合骑摩托车的维修工人比乘抢修车的工人多用10分钟到达,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解析】设摩托车的速度为x 千米/小时,则抢修车的速度为1.5x 千米/小时, 依题意,得:20x−201.5x=1060,解得:x =10,经检验,x =10是原方程的解,且符合题意. 答:摩托车的速度为10千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(2022•扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名? 【分析】设每个小组有学生x 名,由题意得:3603x−3604x=3,解分式方程并检验后即可得出答案.【解析】设每个小组有学生x 名, 由题意得:3603x−3604x=3,解得:x =10, 当x =10时,12x ≠0, ∴x =10是分式方程的根, 答:每个小组有学生10名.【点评】本题考查了分式方程的应用,根据题意列出分式方程是解决问题的关键.21.(2022•达州)某商场进货员预测一种应季T 恤衫能畅销市场,就用4000元购进一批这种T 恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T 恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T 恤衫每件的进价分别是多少元?(2)如果两批T 恤衫按相同的标价销售,最后缺码的40件T 恤衫按七折优惠售出,要使两批T 恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T 恤衫的标价至少是多少元?【分析】(1)设该商场购进第一批、第二批T 恤衫每件的进价分别是x 元和(x +4)元,根据所购数量是第一批购进量的2倍列出方程解答即可;(2)设每件T 恤衫的标价至少是y 元,根据题意列出不等式解答即可.【解答】(1)解:设该商场购进第一批、第二批T 恤衫每件的进价分别是x 元和(x +4)元,根据题意可得: 2×4000x=8800x+4, 解得:x =40,经检验x =40是方程的解, x +4=40+4=44,答:该商场购进第一批、第二批T 恤衫每件的进价分别是40元和44元; (2)解:400040+880044=300(件),设每件T 恤衫的标价至少是y 元,根据题意可得:(300﹣40)y +40×0.7y ≥(4000+8800)×(1+80%), 解得:y ≥80,答:每件T 恤衫的标价至少是80元.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 22.(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【分析】(1)根据题意可知:甲原来工作5天的工作量+后来2天的工作量=600,可以列出相应的方程,然后求解即可;(2)根据题意可知:甲、乙施工的长度都是900米,再根据题意可知,两个工程队施工天数相同,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,则原计划每天施工(x ﹣20)米, 由题意可得:5(x ﹣20)+2x =600,解得x =100,答:甲施工队增加人员后每天修建灌溉水渠100米;(2)设乙施工队原来每天修建灌溉水渠m 米,则技术更新后每天修建水渠m (1+20%)=1.2m 米, 由题意可得:360m +900−3601.2m =900100,解得m =90,经检验,m =90是原分式方程的解,答:乙施工队原来每天修建灌溉水渠90米.【点评】本题考查一元一次方程的应用、分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程和一元一次方程.23.(2022•自贡)学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【分析】根据题意可知:张老师骑车用的时间﹣汽车用的时间=2,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解析】设张老师骑车的速度为x 千米/小时,则汽车的速度为3x 千米/小时,由题意可得:45x −2=453x, 解得x =15,经检验,x =15是原分式方程的解,答:张老师骑车的速度是15千米/小时.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程.。
第7讲 分式方程及其应用 2019各省市中考数学优选知识点题型汇编
第7讲分式方程及其应用一、考点知识梳理【考点1 分式方程的概念及解分式方程】1.分母中含有未知数的方程叫做分式方程.2.解法步骤:(1)去分母:将方程两边都乘以最简公分母,把它化为整式方程;(2)解这个整式方程;3.检验方法:(1)利用方程的解的概念进行检验;(2)将解得的整式方程的根代入最简公分母,看计算结果是否为0,不为0就是原方程的根;若为0,则为增根,必须舍去;(3)增根:当分母的值为0时,分式方程无解,这样的根叫做分式方程的增根.【考点2 分式方程的应用】列分式方程解应用题的六个步骤:(1)审:弄清题目中涉及的已知量和未知量以及量与量之间的等量关系;(2)设:设未知数,根据等量关系用含未知数的代数式表示其他未知量;(3)列:根据等量关系,列出方程;(4)解:求出所列方程的解;(5)验:双检验.①检验是否是分式方程的解;②检验解是否符合题意;(6)答:写出答案.二、考点分析【考点1 分式方程的概念及解分式方程】【解题技巧】找最简公分母的方法:(1)取各分式的分母中各项系数的最小公倍数;(2)各分式的分母中所有字母或因式都要取到;(3)利用字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各个字母(或因式)的最高次幂的积即为最简公分母.【例1】(2019•哈尔滨)方程=的解为()A.x=B.x=C.x=D.x=【答案】C.【分析】将分式方程化为,即可求解x=;同时要进行验根即可求解;【解答】解:=,,∴2x=9x﹣3,∴x=;将检验x=是方程的根,∴方程的解为x=;故选:x=﹣1【一领三通1-1】(2019 湖北黄石中考)分式方程:﹣=1的解为.【答案】C.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4﹣x=x2﹣4x,即x2﹣3x﹣4=0,解得:x=4或x=﹣1,经检验x=4是增根,分式方程的解为x=﹣1,故答案为:x=﹣1【一领三通1-2】(2019 河北中考)已知方程1x-1=1的解是k,求关于x的方程x2+kx=0的解.【分析】先解方程,然后将x=k代入,即得.【解答】由1x-1=1,解得x=2,经检验x=2是原方程的解,∴k=2,∴x2+2x=0,解得x1=0,x2=-2.【一领三通1-3】(2019 云南中考)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x 千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【一领三通1-4】(2019•广西)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【分析】(1)设每袋国旗图案贴纸为x元,则有,即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,即可求解;(3)如果没有折扣,W=,分别求出a与b即可求解.【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b =a ,答:购买小红旗a 袋恰好配套;(3)如果没有折扣,则W =15a +20×a =40a ,依题意得40a ≤800,解得a ≤20,当a >20时,则W =800+0.8(40a ﹣800)=32a +160,即W =,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a ==48袋,b ==60袋,总费用W =32×48+160=1696元.【考点2 分式方程的应用】【解题技巧】(一)常见关系:分式方程的应用题主要涉及工作量问题、行程问题等,每个问题中涉及三个量的关系.如:工作时间=__工作量工作效率__,时间=__路程速度__. (二)列分式方程解应用题时,要验根作答,不但要检验是否为方程的增根,还要检验是否符合题意,即“双重验根”.【例2】(2019•济南)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A 种图书花费了3000元,购买B 种图书花费了1600元,A 种图书的单价是B 种图书的1.5倍,购买A 种图书的数量比B 种图书多20本.(1)求A 和B 两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A 种图书20本和B 种图书25本,共花费多少元?【分析】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,根据数量=总价÷单价结合花3000元购买的A 种图书比花1600元购买的B 种图书多20本,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量,即可求出结论.【解答】解:(1)设B种图书的单价为x元,则A种图书的单价为1.5x元,依题意,得:﹣=20,解得:x=20,经检验,x=20是所列分式方程的解,且符合题意,∴1.5x=30.答:A种图书的单价为30元,B种图书的单价为20元.(2)30×0.8×20+20×0.8×25=880(元).答:共花费880元.【一领三通2-1】(2019【答案】2.【分析】按照解分式方程的步骤解方程即可.【解答】去分母得:3x-3-x-1=0,解得:x=2,经检验x=2是分式方程的解.故答案为:2.【一领三通2-2】(2019 辽宁大连中考模拟)使得关于x的分式方程+=﹣2的解为正数,且关于x的不等式组有解的所有整数a的和为()A.﹣2 B.﹣3 C.﹣5 D.﹣6【答案】A.【分析】不等式组整理后,由题意确定出a的范围,分式方程去分母转化为整式方程,表示出整式方程的解,检验即可.【解答】解:+=﹣2,去分母得:1﹣ax+3=﹣2(x﹣4),4﹣ax=﹣2x+8,(a﹣2)x=﹣4,x=﹣>0,且a≠2,x≠4,∴a<2,不等式组整理得:,由不等式组有解,得到0<x≤a+3,∴a+3>0,a>﹣3,∴﹣3<a<2,当a=﹣2时,x=1;当a=0时,x=2;当a=1时,x=4,不符合题意;则满足题意a的值之和为﹣2+0=﹣2,故选:A.【一领三通2-3】(2019•威海)列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.【分析】直接利用小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,进而得出等式求出答案.【解答】解:设小明的速度是x米/分钟,则小刚骑自行车的速度是3x米/分钟,根据题意可得:﹣4=,解得:x=50,经检验得:x=50是原方程的根,故3x=150,答:小明的速度是50米/分钟,则小刚骑自行车的速度是150米/分钟.三、【达标测试】(一)选择题1.(2019 河北衡水中考模拟)关于x的方程有增根,则m的值()A.﹣2 B.2 C.1 D.﹣1【答案】C.【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,代入整式方程计算即可求出m 的值.【解答】解:去分母得:2x2﹣mx+m﹣1=0,由分式方程有增根,得到x﹣1=0或2x﹣1=0,即x=1或x=,把x=1代入整式方程,不合题意,把x=代入整式方程,可得m=1,故选:C.2.(2019 辽宁锦州中考模拟)如果关于x的不等式组的解集为x<1,且关于x的分式方程+=3有非负整数解,则符合条件的m的所有值的和是()A.5 B.6 C.8 D.9【答案】B.【分析】表示出不等式组的解集,确定出m的范围,根据分式方程有非负整数解确定出m的值,即可得到符合条件的m的所有值的和.【解答】解:解不等式组,可得,∵该不等式组的解集为x<1,∴m≥1,解关于x的分式方程+=3,可得x=,∵该分式方程有非负整数解,∴≥0,且≠1,∴m≤5,m≠3,∵当m=5或1时,是非负整数,∴符合条件的m的所有值的和是6,故选:B.3.(2019 黑龙江五常中考模拟)小王步行的速度比跑步慢50%,跑步的速度骑车慢50%.如果他骑车从A 城去B城,再步行返回A城共需2小时,问小王跑步从A城到B城需要()分钟.A.45 B.48 C.56 D.60【答案】B.【分析】此题可设骑车速度为x,则跑步速度为(1﹣50%)x,步行的速度为(1﹣50%)(1﹣50%)x,根据骑车从A城去B城,再步行返回A城共需2小时列出分式方程解答即可.【解答】解:设骑车速度为x,则跑步的速度为(1﹣50%)x,步行的速度为(1﹣50%)(1﹣50%)x,根据题意列方程得+,解得x=,跑步的速度为,小王跑步从A城到B城需要1÷=小时=48分钟.故选:B.4.(2019 山东淄博中考模拟)一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用()秒.A.12.5 B.10 C.D.【答案】A.【分析】设无风时的速度是x,风速是y,根据顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟可列出方程求解.【解答】解:设无风时的速度是x米/秒,风速是y米/秒,=,x=8y.又∵=10=10∴y=1,∴x=8.100÷8=12.5(秒).跑100米用的时间是12.5秒.故选:A.5.(2019 河南郑州中考模拟)一个人步行从A地出发,匀速向B地走去.同时另一个人骑摩托车从B地出发,匀速向A地驶去.二人在途中相遇,骑车者立即把步行者送到B地,再向A地驶去,这样他在途中所用的时间是他从B地直接驶往A地原计划所用时间的2.5倍,那么骑摩托车者的速度与步行者速度的比是()A.2:1 B.3:1 C.4:1 D.5:1【答案】B.【考点】B7:分式方程的应用.菁优网版权所有【分析】如果设步行者的速度为1,骑摩托车者的速度为v,AB两地相距s,那么根据时间=路程÷速度,可知骑摩托车者从B地直接驶往A地原计划所用时间为,而实际他在途中所用的时间可看作三段时间的和.当他骑摩托车从B地出发,匀速向A地驶去,与步行者在途中相遇用去时间;他把步行者送到B 地又用去时间;他再向A地驶去又用去时间,这三段时间的和是骑车者原计划所用时间的2.5倍,即,根据这个等量关系列出方程,求出v的值即可.【解答】解:设步行者的速度为1,骑摩托车者的速度为v,AB两地相距s.由题意,有+=,∴=,解得v=3,∴v:1=3:1.即骑摩托车者的速度与步行者速度的比是3:1.故选:B.6.(2019 河北唐山中考模拟)一轮船顺流航行100千米与逆流航行64千米所用的时间的和等于逆流航行80千米,再顺流航行返回所用的时间的和,则该船在静水中的速度与水流速度之比为()A.9:1 B.5:4 C.4:1 D.5:1【答案】B.【分析】本题的等量关系为:顺流100千米的时间+逆流64千米的时间=顺流80千米的时间+逆流80千米的时间.【解答】解:可直接设船在静水中的速度与水流速度之比为x,由于静水中的速度和水流速度都是未知数,可设水流速度为1,则静水速度就为x.则.解得x=9.所以船在静水中的速度与水流速度之比为9:1.经检验x =9是方程的根,故选A .7.(2008,山西省太原市)帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,两次人均捐款额相等,但第二次捐款人数比第一次多50人.该校第二次捐款( )人.A .240B .220C .200D .180 【答案】C .【分析】根据两次人均捐款额相等列方程求解,设第二次捐款人数为x 人,则第一次捐款人数为(x-50)人,两次人均捐款分别为9000x-50元、12000x元. 【解答】解:设第二次捐款的人数为x 人,则第一次捐款人数为(x-50)人,依题意,得9000x-50=12000x,解得x=200, 经检验,x=200是原方程的解,且符合题意.故选C .8. (2018,四川成都模拟)今年以来受各种因素的影响,猪肉的市场价格仍在不断上升.据调查,今年5月份一级猪肉的价格是1月份猪肉价格的1.25倍.小英同学的妈妈同样用20元钱在5月份购得一级猪肉比在1月份购得的一级猪肉少0.4斤,那么今年1月份的一级猪肉每斤是( )元?A .10B .15C .20D .25 【答案】A .【分析】设今年1月份的一级猪肉每斤x 元,则5月份一级猪肉的价格为1.25x 元/斤,那么20元分别购进5月份,1月份的猪肉斤数为201.25x 斤、20x斤,然后根据20元钱在5月份购 一级猪肉比1月份购进的一级猪肉少0.4斤,列方程即可求解.【解答】设今年1月份的一级猪肉每斤x 元,则5月份的一级猪肉每斤1.25x 元,依题意,得20x =201.25x+0.4,解得x=10元. 故选A .(二)填空题1. (2019 湖北孝感中考)方程=的解为 . 【答案】x =1.【分析】观察可得方程最简公分母为2x (x +3).去分母,转化为整式方程求解.结果要检验.【解答】解:两边同时乘2x(x+3),得x+3=4x,解得x=1.经检验x=1是原分式方程的根.故答案是x=1:2.(2019 辽宁沈阳中考模拟)已知:,则(y﹣x)的值是.【答案】4.【分析】先将原分式方程,化为一个二元一次方程组,解出可求出x、y的值,进一步代入原代数式即可求解.【解答】解:∵,∴,则有;方程组可化为:,解得.经检验:是原方程的解.∴(y﹣x)=4.故答案为:4.3.(2019 山东东营中考模拟)①已知x=3是方程=1的一个根,则a=;②已知x=1是方程的一个增根,则k=.【答案】①a=3.②k=﹣1.【分析】①中有两个未知数,但x的值是已知的,只需把x的值代入即可.②增根是由整式方程解出的不适合分式方程的根,所以要把x=1代入化为整式方程的方程来求解.【解答】解:①把x=3代入原方程,得,解得a=3,经检验,a=3是分式方程的解.②方程两边都乘(x+1)(x﹣1),得x(x+1)+k(x+1)=x(x﹣1),把x=1代入得,k=﹣1.4.(2019 山东烟台中考模拟)当时,分式的值为1.【答案】x=﹣2【分析】本题考查解分式方程的能力,根据题意可列方程为:=1,去分母,化为整式方程求解.【解答】解:根据题意可列方程为:=1,去分母,得x2﹣1=x2+x+1.解得x=﹣2,经检验x=﹣2是方程的解.5.(2019 河北张家口中考模拟)若关于x的方程﹣2=的解为正数,则m的取值范围是.【答案】m>﹣6且m≠﹣3.【分析】先去分母化成整式方程,求得x的值,然后根据方程的解大于0,且x﹣3≠0即可求得m的范围.【解答】解:去分母,得x﹣2(x﹣3)=﹣m,解得:x=m+6,根据题意得:m+6﹣3≠0且m+6>0,解得:m>﹣6且m≠﹣3.故答案是:m>﹣6且m≠﹣3.6.(2019 河北沧州中考模拟)已知关于x的分式方程=2+无解,则k的值为.【答案】4.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x﹣4=0求出x的值,代入整式方程求出k 的值即可.【解答】解:分式方程去分母得:x=2x﹣8+k,即x=8﹣k,由分式方程无解得到x﹣4=0,即x=4,代入整式方程得:4=8﹣k,解得:k=4,故答案为:4.7.(2019 福建福州中考模拟)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后来客户要求提前5天交货,为保证按时完成任务,则每天应多做件.【答案】24.【分析】设每天应多做x件.根据实际所用的时间比原计划所用的时间提前5天列方程求解.【解答】解:设每天应多做x件,则依题意得:﹣=5,解得:x=24.经检验x=24是方程的根,答:每天应多做24件,故答案为24.9.(2019 河北邯郸中考模拟)小明在解方程后得到,他不解方程:发现,请你以解方程为例(要写过程),并猜出方程的解是.(其中a、b、c、d为常数,且a+d=b+c)【答案】x==.【分析】先根据解分式方程的步骤求出方程的解,然后观察找出规律:方程的解正好等于7+3+6+2之和的四分之一,又因为7+2=6+3,所以方程的解x==,因此方程的解x==.【解答】解:方程两边通分得:=,=,(x﹣7)(x﹣3)=(x﹣6)(x﹣2),x2﹣10x+21=x2﹣8x+12,解得x=;经检验x=是元方程的解.观察方程可得:x===,所以方程的解为:x==.(三)解答题1.(2019 上海中考)解方程:﹣=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x2﹣8=x2﹣2x,即x2+2x﹣8=0,分解因式得:(x﹣2)(x+4)=0,解得:x=2或x=﹣4,经检验x=2是增根,分式方程的解为x=﹣4.2.(2019 山东威海中考模拟)阅读下列材料:∵,,,…,∴===.解答下列问题:(1)在和式中,第6项为,第n项是.(2)上述求和的想法是通过逆用法则,将和式中的各分数转化为两个数之差,使得除首末两项外的中间各项可以,从而达到求和的目的.(3)受此启发,请你解下面的方程:.【分析】此题是阅读分析题,解此题的关键是认真审题,找到规律(两个连续奇数的积的倒数等于它们的倒数差的一半),再依据规律解题即可.【解答】解:(1);(2)分式减法,对消;(3)将分式方程变形为=.整理得,方程两边都乘以2x(x+9),得2(x+9)﹣2x=9x,解得x=2.经检验,x=2是原分式方程的根.3.(2019•日照)“一带一路”战略给沿线国家和地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?【分析】设每件产品的实际定价是x元,则原定价为(x+40)元,根据“按原定价需花费5000元购买的产品,现在只花费了4000元”建立方程,解方程即可.【解答】解:设每件产品的实际定价是x元,则原定价为(x+40)元,由题意,得=.解得x=160.经检验x=160是原方程的解,且符合题意.答:每件产品的实际定价是160元.4.(2019 宁夏中考)解方程:+1=.【分析】方程两边同时乘以(x+2)(x﹣1),得x=4;【解答】解:+1=,方程两边同时乘以(x+2)(x﹣1),得2(x﹣1)+(x+2)(x﹣1)=x(x+2),∴x=4,经检验x=4是方程的解;∴方程的解为x=4;5.(2019•河北张家口模拟)在2018年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.(1)求甲、乙两种车辆单独完成任务分别需要多少天?(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.【分析】(1)根据题意可以得到相应的分式方程,从而可以解答本题;(2)根据题意和第(1)问中的结果可以分别求得三种方式的费用,从而可以解答本题.【解答】解:(1)设甲车单独完成任务需要x天,则乙车单独完成任务需要2x天,()×10=1解得,x=15∴2x=30即甲、乙两车单独完成任务分别需要15天,30天;(2)设甲车的租金每天a元,则乙车的租金每天(a﹣1500)元,[a+(a﹣1500)]×10=65000解得,a=4000∴a﹣1500=2500当单独租甲车时,租金为:15×4000=60000,当单独租乙车时,租金为:30×2500=75000,∵60000<65000<75000,∴单独租甲车租金最少.6.(2019•青岛)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.7.(2019•南通)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.【分析】设每套《三国演义》的价格为x元,则每套《西游记》的价格为(x+40)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之即可得出结论.【解答】解:设每套《三国演义》的价格为x元,则每套《西游记》的价格为(x+40)元,依题意,得:=2×,解得:x=80,经检验,x=80是所列分式方程的解,且符合题意.答:每套《三国演义》的价格为80元.8.(2019•台湾)市面上贩售的防晒产品标有防晒指数SPF,而其对抗紫外线的防护率算法为:防护率=×100%,其中SPF≥1.请回答下列问题:(1)厂商宣称开发出防护率90%的产品,请问该产品的SPF应标示为多少?(2)某防晒产品文宣内容如图所示.请根据SPF与防护率的转换公式,判断此文宣内容是否合理,并详细解释或完整写出你的理由.【分析】(1)根据公式列出方程进行计算便可;(2)根据公式计算两个的防护率,再比较可知结果.【解答】解:(1)根据题意得,,解得,SPF=10,答:该产品的SPF应标示为10;(2)文宣内容不合理.理由如下:当SPF=25时,其防护率为:;当SPF=50时,其防护率为:;98%﹣96%=2%,∴第二代防晒乳液比第一代防晒乳液的防护率提高了2%,不是提高了一倍.∴文宣内容不合理.。
中考数学第7 讲 分式方程及其应用
解:(1)设 A 种茶叶每盒进价为 x 元,则 B 种茶叶每盒进价为 1.4x 元,依题意,得:814.40x0 -40x00 =10,解得:x=200,经检验,x =200 是原方程的解,且符合题意,∴1.4x=280. 答:A 种茶叶每盒进价为 200 元,B 种茶叶每盒进价为 280 元;
(2)设第二次购进 A 种茶叶 m 盒,则购进 B 种茶叶(100-m)盒,
1. (2019·淄博)解分式方程1x--x2 =2-1 x -2 时,去分母变形正确的是
(D) A.-1+x=-1-2(x-2) B.1-x=1-2(x-2) C.-1+x=1+2(2-x) D.1-x=-1-2(x-2)
2. (2020·杭州)若分式x+1 1 的值等于 1,则 x=___0_.
例5 (2019·阜新)节能又环保的油电混合动力汽车,既可以用油做动力行 驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地, 若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用 为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元. (1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千 米? (2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元, 则至少需要用电行驶多少千米?
(1)甲、乙两公司各有多少人? (2)现甲、乙两公司共同使用这笔捐款购买A,B两种防疫物资,A种防 疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资 不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A, B两种防疫物资均需购买,并按整箱配送).
解:(1)设甲公司有 x 人,则乙公司有(x+30)人, 依题意,得:100x000 ×76 =1x4+003000 ,解得:x=150, 经检验,x=150 是原方程的解,且符合题意, ∴x+30=180.答:甲公司有 150 人,乙公司有 180 人;
中考数学专题复习方程与不等式分式方程公开课一等奖课件省赛课获奖课件
上一页
下一页
中考典例精析
首页
(1)(2011·芜湖)分式方程2xx--25=2-3 x的解为(
)
A.x=-2
B.x=2
C.x=1
D.x=1 或 x=2
(2)
2011·绥化
分式方程x-x 1-1=
x-1
m x+2
有增根,则 m
的值为( )
A.0 和 3
B.1
C.1 和-2
D.3
【点拨】(1)去分母得 2x-5=-3,解得 x=1.经检验 x=1 是原方
程的解.
(2)由(x-1)(x+2)=0 得增根可能是 x=1 或 x=-2,把方程两边
都乘(x-1)(x+2)得 x(x+2)-(x-1)·(x+2)=m,当 x=1 时,得 m=
3;当 x=-2 时,得 m=0,此时方程变为x-x 1-1=0,即 x=当 m=3 时, 原方程有增根 x=1.
解得 x=-1.
检验:把 x=-1 代入 x-2 中 x-2≠0.
∴x=-1 是原方程的解 办法总结:
解分式方程时,一定要记得验根,使分母为零的未知数的值,即是方
程的增根.
上一页
下一页
中考典例精析
首页
(2011·德州)为创立“国家卫生都市”,进一步优化市中心城 区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公 用设施全方面更新改造,根据市政府建设的需要,须在60天内完毕工程, 现在甲、乙两个工程队有能力承包这个工程,经调查懂得:乙队单独完毕 此项工程的时间比甲队单独完毕多用25天,甲、乙两队合作完毕工程需要 30天,甲队每天的工程费用2 500元,乙队每天的工程费用2 000元.
上一页
下一页
备战九年级中考数学一轮复习第7课 分式方程的解法及应用(全国通用)
(1+50%)x km/h,依题意,得:25
解得 x=50,
x
x
30
50%
x
6 60
经检验,x=50是原方程的解,且符合题意, ∴(1+50%)x=75.
答:走路线B的平均速度为75 km/h.
A组 10.(202X·南京)方程 x x 1 的解是__x___14___.
x 1 x 2
11.(202X·广州)方程
1
2
4 x2
4
1.
解:方程两边都乘(x2-4),得 x+2-4=x2-4, 解得x1=2,x2=-1 检验:当x=2时,x2-4=0, ∴x=2不是原分式方程的解 当x=-1时,x2-4≠0, ∴原分式方程的解为x=-1.
考点2 分式方程的应用
8.【例4】(广东中考)某品牌瓶装饮料每箱价格26元,某商店
2.(202X·抚顺)随着快递业务的发展,某快递公司为快递员更换
了快捷的交通工具,公司投递快件的能力由每周3 000件提高到
4 200件,平均每人每周比本来多投递80件,若快递公司的快递
员人数不变,求本来平均每人每周投递快件多少件?设本来平
均每人每周投递快件x件,根据题意可列方程为( D )
A.3000 4200 x x 80
50%)x元/件,
依题意,得: 7200
1+50%
x
3200 x
40,
解得:x=40,
经检验,x=40是原方程的解,且符合题意,
∴(1+50%)x=60,32x0080, Nhomakorabea7200
1 50%
x
120
答:甲商品的进价为60元/件,乙商品的进价为40元/件,购
进甲商品120件,购进乙商品80件.
2019-2020年中考数学复习考点精练:第7课时 一元二次方程及其应用
2019-2020年中考数学复习考点精练:第7课时一元二次方程及其应用命题点1 解一元二次方程(近3年39套卷,2015年考查3次,2014年考查3次,2013 年考查3次)1. (2015徐州20(1)题5分)解方程:x2-2x-3=0.2. (2014徐州20(1)题5分)解方程:x2+4x-1=0.3. (2014泰州17(2)题6分)解方程:2x2-4x-1=0.命题点2 一元二次方程根的判别式及根与系数的关系(近3年39套卷,2015年考查6次,2014年考查6次,2013年考查5次)1. (2014苏州7题3分)下列关于x的方程有实数根的是()A.x2-x+1=0B.x2+x+1=0C. (x-1)(x+2)=0D. (x-1)2+1=02. (2015连云港6题3分)已知关于x的方程x2-2x+3k=0有两个不相等的实数根,则k的取值范围是()A. k<13B.k>-13C. k<13且k≠0 D. k>-13且k≠03. (2013镇江8题2分)写一个你喜欢的实数m的值_______,使关于x的一元二次方程x2-x+m=0有两个不相等的实数根.4. (2015南通12题3分)已知方程2x2+4x-3=0的两根分别为x1和x2,则x1+x2的值等于_______.5. (2015南京12题2分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是,m 的值是________.6. (2015镇江9题2分)关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是________.7. (2015徐州13题3分)已知关于x的方程x2x-k=0有两个相等的实数根,则k的值为_________.8. (2014扬州17题3分)已知a、b是方程x2-x-3=0的两个根,则代数式2a3+b2+3a2-11a-b+5的值为.9. (2015泰州18题8分)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.命题点3 一元二次方程的应用(近3年39套卷,2015年考查2次,2014年考查1次, 2013年考查3次)1. (2013南京14题2分)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:__________.第1题图2. (2014南京22题8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长.已知该养殖户第1年的可变成本为2.6万元.设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为_______万元;(2)如果该养殖户第3年的养殖成本....为7.146万元,求可变成本平均每年增长的百分率x.3. (2013连云港23题10分)小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能...等于48 cm2.”他的说法对吗?请说明理由.4. (2015淮安26题10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售. (1)若将这种水果每斤的售价降低x元,则每天的销售是_______斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?【答案】命题点1 解一元二次方程 1. 解:因式分解得:(x +1)(x -3)=0,…………………………………………………………(3分)即x +1=0或x -3=0,…………………………………………………………………………(4分)解得:x 1=-1 ,x 2=3.……………………………………………………………………………(5分)2. 解:原式可化为(x 2+4x +4-4)-1=0,即(x +2)2=5,…………………………………(3分)两边开方得,x +2=4分)解得x 1x 2.…………………………………………………………………(5分)3. 解:这里a =2,b =-4,c =-1,……………………………………………………………(2分)∵b 2-4ac =16+8=24,…………………………………………………………………………(4分)∴x =424b a -±±=.即x 1,x 2=22-.…………………………………………………………………(6分)命题点2 一元二次方程根的判别式及根与系数的关系1. C 【解析】A .b 2-4ac =(-1)2-4×1×1=-3<0,方程没有实数根,所以A 选项错误;B .b 2-4ac =12-4×1×1=-3<0,方程没有实数根,所以B 选项错误;C .x -1=0或x +2=0,则x 1=1,x 2=-2,所以C 选项正确;D .(x -1)2+1=0,方程左边为正数,方程右边为0,所以方程没有实数根,所以D 选项错误.2. A 【解析】∵方程x 2-2x +3k =0有两个不相等的实数根,∴b 2-4ac >0,即(-2)2-4×3k >0,解得k <13. 3. 0(答案不唯一)【解析】根据题意得:b 2-4ac =1-4m >0,解得:m <14,则m 可以为0,答案不唯一. 4. -2【解析】本题考查了一元二次方程根与系数的关系,∵a =2,b =4,c =-3,∴x 1+x 2=ba=-2. 5. 3,-4【解析】由题意及一元二次方程根与系数的关系知x 1x 2=3,得另一根为3,再由x 1+x 2=-m ,得m =-4.6. a >0【解析】本题考查了一元二次方程根的判别式,本题中的判别式b 2-4ac =-4a ,∵方程没有实数根,则-4a <0,∴a >0.7. -3【解析】本题考查了一元二次方程根的判别式,由于方程有两个相等的实数根,则)2-4×1×(-k )=0,解得k =-3.8. 23【解析】∵a ,b 是方程x 2-x -3=0的两个根,∴a 2-a -3=0,b 2-b -3=0,即a 2=a +3,b 2=b +3,∴2a 3+b 2+3a 2-11a -b +5=2a (a +3)+b +3+3(a +3)-11a -b +5=2a 2-2a +17=2(a +3)-2a +17=2a +6- 2a +17=23. 9. 解:(1)∵a =1,b =2m ,c =m 2-1,……………………………………………………………(1分)∴b 2-4ac =(2m )2-4×1×(m 2-1)=4>0,………………………………………………………(3分)∴方程x 2+2mx +m 2-1=0有两个不相等的实数根;…………………………………………(4分)(2)∵x 2+2mx +m 2-1=0有一个根是3,∴32+2m ×3+m 2-1=0,…………………………………………………………………………(6分)解得,m =-4或m =-2.…………………………………………………………………………(8分)命题点3 一元二次方程的应用1. (x +1)2=25(本题答案不唯一)【解析】解法一:分割法,如解图①,将图形分割成两个长方形,由题意,x (x +1)+x ×1=24即x 2+2x =24,∴x 2+2x -24=0.解法二:补图法,如解图②,将图形补成一个正方形,由题意,(x +1)2-1=24,∴(x +1)2=25.第1题解图2.4分)(2)【思路分析】由题意,等量关系为第三年养殖成本4+2.6(1+x )2万元等于7.146万元,可解方程得结论.解:根据题意,得4+2.6(1+x )2=7.146.解方程,得x 1=0.1,x 2=-2.1(不合题意,舍去). 答:可变成本平均每年增长的百分率是10%.……………………………………………(8分)3. (1)【思路分析】设剪成的较短的一段为x cm ,较长的一段就为(40-x )cm .就可以分别表示出这两个正方形的面积,根据两个正方形的面积之和等于58 cm 2建立方程求出其解即可.解:设剪成的较短的一段为xcm ,较长的一段则为(40-x ) cm ,由题意,得:(4x )2+(404x -)2=58, ………………………………………………………………………………………………(2分)解得:x 1=12,x 2=28,当x =12时,较长的为40-12=28 cm ,………………………………………………………(3分)当x =28时,较长的为40-28=12<28(舍去),…………………………………………(4分)∴较短的一段为12 cm ,较长的一段为28 cm .……………………………………………(5分)(2)【思路分析】设剪成的较短的一段为m cm ,较长的一段则为(40-m ) cm .就可以分别表示出这两个正方形的面积,根据两个正方形的面积之和等于48 cm 2建立方程,如果方程有解就说明小峰的说法错误,否则正确.解:设剪成的较短的一段为m cm ,较长的一段则为(40-m ) cm ,由题意,得: (4m )2+(404m -)2=48,……………………………………………………………………(7分)变形为:m 2-40m +416=0, ∵b 2-4ac =(-40)2-4×416=-64<0, ∴原方程无实数根,…………………………………………………………………………(9分)∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2.……………………(10分)4. (1)【思路分析】因为售价每降低0.1元,每天可多售出20斤,售价降低x 元,每天可多售出20×0.1x 斤,每天销售量为100+20×0.1x =(200x +100)(斤). 解:200x +100;………………………………………………………………………………(2分)(2)【思路分析】根据:每天销售利润=(原销售价-成本价-销售价降低部分)×每天销售量,建立方程求解.解:根据题意,得(200x+100)(4-2-x)=300,………………………………………………………………(4分)整理,得2x2-3x+1=0,………………………………………………………………………(6分)(x-1)(2x-1)=0,解得x1=1,x2=0.5,…………………………………………………………………………(8分)当x=0.5时,每天销售量为200×0.5+100=200<260,不合题意,舍去.………………(9分)答:销售这种水果要想每天销售盈利300元,张阿姨需将每斤销售价降低1元.……(10分)2019-2020年中考数学复习考点精练:第8课时分式方程及其应用命题点1 解分式方程(近3年39套卷,2015年考查5次,2014年考查7次,2013年考查9次)解分式方程考查的题型有选择题、填空题和解答题,其中以解答题为主,所给的分式方程有3种形式:①等号两边均为分式;②等号左边为分式,等号右边为常数项或分式与常数项的和或差;③等号左边为两个分式或常数项与分式,等号右边为常数项.1. (2015淮安9题3分)方程1x-3=0的解是__________.2. (2015宿迁12题3分)方程3x-22x-=0的解为________.3. (2015镇江19(1)题5分)解方程:3+4xx-=12.4. (2015南通19(2)题5分)解方程12x=1+5x.5. (2014苏州22题6分)解分式方程:2311xx x+=--.6. (2014连云港19题6分)解方程21322x x x-+=--.7. (2013泰州18题8分)解方程:22 222222x x xx x x x++--=--.命题点2 分式方程的应用(近3年39套卷,2015年考查3次,2014年考查2次,2013年考查2次)1. (2015苏州22题6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?2. (2015扬州24题10分)扬州建城2500年之际,为了加速美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?3. (2013扬州24题10分)某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况.(Ⅰ)九(1)班班长说:“我们班捐款总额为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总额也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.4. (2015连云港23题10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.【答案】命题点1 解分式方程1. x=13【解析】去分母得1-3x=0,移项得-3x=-1,系数化成1得x=13,因为x=13≠0,所以x =13是方程1x-3=0的解. 2. x =6【解析】给分式方程两边同时乘以x (x -2),得3(x -2)-2x =0,解得x =6,经检验x =6是原分式方程的根.3. 解:去分母,得6+2x =4-x ,……………………………………………………………(2分)解得x =-23,……………………………………………………………………………………(4分) 经检验,x =-23是原方程的解.所以,原方程的解为x =-23.………………………………………………………………(5分)4. 解:方程两边同时乘以2x (x +5),得x +5=6x ,………………………………………(2分) 解得x =1,……………………………………………………………………………………(3分) 检验:当x =1时,2x (x +5)≠0,……………………………………………………………(4分) 所以,原分式方程的解为x =1.………………………………………………………………(5分)5. 解:去分母得:x -2=3x -3, ………………………………………………………………(2分)解得:x =12,…………………………………………………………………………………(4分) 经检验x =12是分式方程的解.∴原分式方程的解为x =21. ………………………………………………………………(6分)6. 【思路分析】按照解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数 化为1求解.在去分母时,不要漏掉乘常数项,最后检验.解:去分母,得 2+3(x -2)=-(1-x ),……………………………………………………(2分) 去括号,得2+3x -6=-1+x , 移项,得3x -x =-1+6-2, 合并同类项,得2x =3,系数化为1,得x =32.………………………………………………………………………(4分) 检验:将x =32代入公分母x -2中,得x -2=32-2=-12≠0,……………………………(5分)∴原分式方程的解为x =32.…………………………………………………………………(6分)7. 解:方程两边同时乘以x (x -2)得:(2x +2)(x -2)-x (x +2)=x 2-2,……………(2分) 化简得:-4x =2,解得:x=-12,………………………………………………………………………………(4分)检验:把x=-12代入x(x-2)=54≠0,…………………………………………………(6分)故方程的解是:x=-12 .……………………………………………………………………(8分)命题点2 分式方程的应用1. 【思路分析】根据相等关系“甲做60面彩旗与乙做50面彩旗所用时间相等”列出方程求解,注意不能忘记检验.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗,…………………………(1分)根据题意,得6050x+=50x,………………………………………………………………(3分)解方程,得x=25,…………………………………………………………………………(4分)经检验,x=25是分式方程的解,∴x+5=30.……………………………………………………………………………………(5分)答:甲每小时做30面彩旗,乙每小时做25面彩旗.……………………………………(6分)2. 【思路分析】本题基本的关系是工作量除以工作效率即为工作的时间,关键的等量关系就是实际比原计划提前两天完成,理顺这两个关系即可,但注意解出分式方程的根后要进行验根.解:设原计划每天栽树x棵.………………………………………………………………(1分)根据题意,得1200x-(1120)20%x+=2,……………………………………………………(5分)解得x=100,………………………………………………………………………………(7分)经检验,x=100是原方程的解,…………………………………………………………(9分)答:原计划每天栽树100棵.………………………………………………………………(10分)3. 【思路分析】首先设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,然后根据九(1)班人数比九(2)班多8人,即可得方程:1200x-(1120)20%x+=8,解此方程即可求得答案.解:设九(1)班人均捐款数为x元,则九(2)班人均捐款数为(1+20%)x元,…(1分)由题意,得1200x-(1120)20%x+=8,………………………………………………………(5分)解得x =25,…………………………………………………………………………………(7分) 经检验,x =25是原分式方程的解,………………………………………………………(8分) 九(2)班的人均捐款数为:(1+20%)x =30.……………………………………………(9分) 答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.………………………(10分)4.(1)【信息梳理】设每张门票的原定票价为x 元,解:设每张门票的原定票价为x 元.……………………………………………………(1分) 由题意得:6000480080x x =-, 解得:x=400,经检验,x =400是原方程的解.答:每张门票的原定票价为400元.………………………………………………………(5分)(2)【信息梳理】设平均每次降价的百分率为y ,由(1)知原定票价为400元.解:设平均每次降价的百分率为y .由题意得:400(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去),答:平均每次降价10%.……………………………………………………………………(10分)。
2023年河北省中考数学复习全方位第7讲 一元一次不等式组及其应用 课件
(2)设甲整理y分钟完工.
+
根据题意,得 +
=1.解得x=80.
根据题意,得 + ≥1.
经检验,x=80是原分式方程的解.
解得y≥25.
答:乙单独整理80分钟完工.
答:甲至少整理25分钟才能完工.
考点 1 不等式的概念及性质
考点梳理
考点 2 一元一次不等式及其解法
A. +x≤5
B.
+x≥5
C. ≤5
+
D. +x=5
A)
返回子目录
命题点2
解一元一次不等式
2. (2021·河北,3)已知a>b,则一定有-4a
A. >
B. <
C. ≥
-4b,“
”中应填的符号是( B )
D. =
3. (2010·河北,5)把不等式-2x<4的解集表示在数轴上,正确的是( A )
7. (2011·河北,22)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要
40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.
(1)问乙单独整理多少分钟完工?
(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?
解:(1)设乙单独整理x分钟完工.
解的是(
− <
A. -1
B. 0
C. 2
C
)
D. 4
返回子目录
命题点4
一元一次不等式的应用
6.(2020·河北,20)已知两个有理数:-9和5.
第1部分 第2章 第7讲 分式方程及其应用(3分)
A.1 600 元
B.1 800 元
C.2 000 元
D.2 400 元
命题点一 解分式方程
1.解分式方程2xx-1-3=1-22x时,去分母正确的是( B )
A.x-3=-2
B.x-3(2x-1)=-2
C.x-3(2x-1)=2
D.x-6x-3=-2
2.方程x2-x2=x-2+x-4 2的解为( C )
A.11.250x0-1 5x00=20
B.1 5x00-11.250x0=20
C.1 5x00=20-11.250x0
D.1 2x00-11.550x0=20
10.(2020·鞍山)甲、乙两人加工某种机器零件,已知每小时甲比乙少
加工 6 个这种零件,甲加工 240 个这种零件所用的时间与乙加工 300 个这
题为背景,依据题目中的等量 关系列出分式方程,若在解答 题中考查,应注意增根的问题, 在求解后应检验所求结果是否 为原分式方程的根. 实例链接 见 P27,例 3.
序号 中考年份 命题点 1 2017 年 解分式方程(4)
标“ ”题解题指导见 P206 编者按:典型试题给出思维模型,使思维可视化,利用通性通法突破 此类试题.
A.2
B.2 或 4
C.4
D.无解
3.若方程x-x 4=2+x-a 4有增根,则 a 的值为( B )
A.-4
B.4
C.3
D.2
4.解方程: (1)x-x 1+x3-x1=4. 解:方程两边同乘 x(x-1),得(x-1)(x-1)+3x2=4x(x-1), 化简,得 2x+1=0,解得 x=-12. 检验:当 x=-12时,x(x-1)≠0. ∴原分式方程的解为 x=-12.
中考数学第一轮考点系统复习第二章方程(组)与不等式(组)第7讲分式方程及其应用(练本)课件
解:设该厂当前参加生产的工人有x人.
根据题意,得
16 8(x 10)
15 , 10x
解得x=30.
经检验,x=30是原分式方程的解,且符合题意.
答:该厂当前参加生产的工人有30人.
解:每人每小时完成的工作量为15÷10÷30=0.05(万剂).设还需要生产y天
A3. 7 1
x x6
3
Cx.
x
7
6
1
B. 3 10 1
x x6
D.
3 10 1 x x6
13.若关于x的方程 2 x mx 无解,则m的值为( B )
x 1 1 x
A.-1 C.1
B.-1或1
D.-1或-
5
3
14.(2020·枣庄)对于实数a,b,定义一种新运算“
这里等式右边是实数运算.例如,1
第二章 方程(组)与不等式(组)
第7讲 分式方程及其应用
1.(2021·哈尔滨)方程 1 2 的解为( A )
2 x 3x 1
A.x=5
B.x=3
C.x=1
D.x=2
2.解分式方程 2 3 6
x 1 x 1 x2 1
分以下四步,其中错误的一步是(
D
)
A.方程两边分式的最简公分母是(x-1)(x+1)
的平均速度为x km/h.
根据题意,得 240
x
270 1.5x
1,
解得x=60.
经检验,x=60是原分式方程的解,且符合题意,
∴x=90.
答:甲校师生所乘大巴车的平均速度为60 km/h,乙校师生所乘大巴车的平
均速度为90 km/h.
2019届冀教版中考《第7讲分式方程》知识梳理
第7讲分式方程一、知识清单梳理知识点一:分式方程及其解法关键点拨及对应举例1.定义分母中含有未知数的方程叫做分式方程.例:在下列方程中,①210x+=;②4x y+=-;③11xx=-,其中是分式方程的是③.2.解分式方程基本思路:分式方程整式方程例:将方程12211x x+=--转化为整式方程可得:1-2=2(x-1).解法步骤:(1)去分母,将分式方程化为整式方程;(2)解所得的整式方程;(3) 检验:把所求得的x的值代入最简公分母中,若最简公分母为0,则应舍去.3.增根使分式方程中的分母为0的根即为增根. 例:若分式方程11x=-有增根,则增根为1.知识点二:分式方程的应用4.列分式方程解应用题的一般步骤(1)审题;(2)设未知数;(3) 列分式方程;(4)解分式方程;(5)检验:(6)作答.在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又要检验所求未知数的值是不是符合题目的实际意义.方程两边同乘以最简公分母约去分母2019-2020学年数学中考模拟试卷一、选择题1.化简22 1x-÷11x-的结果是( )A.21x+B.2xC.21x-D.2(x+1)2.如图,AB是半圆O的直径,D为半圆上的点,在BA延长线上取点C,使得DC=DO,连结CD并延长交圆O于点E,连结AE,若∠C=18°,则∠EAB的度数为()A.18°B.21°C.27°D.36°3.轨道环线通车给广大市民带来了很大便利,如图是渝鲁站出口横截面平面图,扶梯AB的坡度i=1:2.4,在距扶梯起点A端6米的P处,用1.5米的测角仪测得扶梯终端B处的仰角为14°,扶梯终端B距顶部2.4米,则扶梯的起点A与顶部的距离是()(参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)A.7.5米B.8.4米C.9.9米D.11.4米4.据开化旅游部门统计,2018年开化各景点共接待游客约为12926000人次,数据12926000用科学记数法表示为()A.0.12926×108B.1.2926×106C.12.926×105D.1.2926×1075.经党中央批准、国务院批复自2018年起,将每年秋分日设立为“中国农民丰收节”,据国家统计局数据显示,2018年某省夏季粮食总产量达到2389000吨,将数据“2389000”用科学记数法表示为()A.238.9×104B.2.389×106C.23.89×105D.2389×1036.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G网络的商用示范.目前,北京市已经在怀柔试验场对5G进行相应的试验工作.现在4G网络在理想状态下,峰值速率约是100Mbps,未来5G网络峰值速率是4G网络的204.8倍,那么未来5G网络峰值速率约为( )A.1×102 Mbps B.2.048×102 MbpsC.2.048×103 Mbps D.2.048×104 Mbps7.如图是某手机店去年5~9月份某品牌手机销售额统计图.根据图中信息,可以判断相邻两个月该品牌手机销售额变化最大的是()A .5月至6月B .6月至7月C .7月至8月D .8月至9月8.若a =326,b =11,则实数a ,b 的大小关系为( ) A .a >bB .a <bC .a =bD .a≥b9.已知二次函数2y x bx c =-+,点()11,A y 与点()21,B t y +都在该函数的图象上,且t 是正整数,若满足12y y >的点B 有且只有3个,则b 的取值范围是( ) A .45b <≤B .56b <≤C .45b ≤<D .56b ≤<10.如图,直线a ∥b ,等边三角形ABC 的顶点B 在直线b 上,若∠1=34°,则∠2等于( )A .84°B .86°C .94°D .96°11.要组织一次羽毛球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排6天,每天安排6场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .()1x x 1362+= B .()1x x 1362-= C .()x x 136+= D .()x x 136-=12.如图,已知菱形OABC 的两个顶点O (0,0),B (2,2),若将菱形绕点O 以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D 的横坐标为( )A 2B .2C .1D .﹣1二、填空题13.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士象、马、车、炮”各两个,将所有棋子反面朝上放在棋盘中,任取一个不是士、象、帅的概率是14.若|a-2|+3b-=0,则a2-2b=______.15.下列说法中,正确的是()A.为检测我市正在销售的酸奶质量,应该采用普查的方式B.若两名同学连续五次数学测试的平均分相同,则方差较大的同学数学成绩更稳定C.抛掷一个正方体骰子,朝上的面的点数为奇数的概率是1 2D.“打开电视,正在播放广告”是必然事件16.二次函数y=12(x-2)2+3的顶点坐标是_____.17.已知关于x、y的方程组31223x y ax y a+=-⎧⎨-=-⎩,则代数式32x•9y=___.18.分解因式:3x2﹣6x﹣9=_____.三、解答题19.把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.20.如图,已知抛物线经过点A(1-,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P 是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)点P在线段AB上运动的过程中,是否存在点Q,使得以B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.(3)已知点F(0,12),点P在x轴上运动,试求当m为何值时,以D、M、Q、F为顶点的四边形是平行四边形.21.如图,在平面直角坐标系中,过点A2081,4,33B⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的直线l分别与x轴、y轴交于点C,D.(1)求直线l的函数表达式.(2)P为x轴上一点,若△PCD为等腰三角形直接写出点P的坐标.(3)将线段AB绕B点旋转90°,直接写出点A对应的点A的坐标.22.如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=36°,求∠CAO度数.23.如图,在△ABC中,AB=AC,以AC为直径做⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.(1)求证:FE⊥AB;(2)填空:当EF=4,35OAOF=时,则DE的长为.24.已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.25.如图,在平面直角坐标系中,直线122y x=-+分别交x轴,y轴于点A,B抛物线2322y ax x=--经过点A,且交x轴于另外一点C,交y轴于点D.(1)求抛物线的表达式;(2)求证:AB⊥BC;(3)点P为x轴上一点,过点P作x轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为m,当以B,D,Q,M为顶点的四边形是平行四边形时,求m的值.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C C D B D D B B C B B 二、填空题13.14.-215.C16.(2,3)17.19.18.3(x﹣3)(x+1).三、解答题19.见解析,49.【解析】【分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=49.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 20.(1)213222y x x =-++;(2)存在点Q ,使得以B 、Q 、M 为顶点的三角形与△BOD 相似,点Q 的坐标为(3,2)或(1-,0);(3)当1m =-或3m =或141m =+或114-时,以D 、M 、Q 、F 为顶点的四边形是平行四边形. 【解析】 【分析】(1)根据题意可设抛物线的解析式为(14y a x x =+-)(),得出a 的值,再代入解析式即可; (2)存在点Q ,使得以B 、Q 、M 为顶点的三角形与△BOD 相似,则分为以下两种情况①当∠DOB=∠MBQ=90°时,可以得到△MBQ ∽△BPQ 即可解答,②当∠BQM=90°时,此时点Q 与点A 重合,△BOD ∽△BQM′即可解答;(3)根据题意可知点D 坐标为(0,2-),得到直线BD 解析式为122y x =-,因为QM ⊥x 轴,P (m ,0),则221311|22|4|2222QM m m m m m =-++--=-++()|,因为F 0(,12)、D (0,2-),52DF =,所以当QM=DF ,即215422m m -++=时,以D 、M 、Q 、F 为顶点的四边形是平行四边形,即可解答. 【详解】(1)∵抛物线过点A (1-,0)、B (4,0), ∴可设抛物线的解析式为(14y a x x =+-)(), ∵抛物线经过点C (0,2), ∴42a -=, 解得:12a =-, ∴抛物线解析式为21131)(42222y x x x x =-+-=-++(); (2)存在点Q ,使得以B 、Q 、M 为顶点的三角形与△BOD 相似. 如图所示:∵QM ∥DC ,∴∠ODB=∠QMB , 分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB ∽△MBQ , 则2142DO BM OB BQ ===, ∵∠MBQ=90°, ∴∠MBP+∠PBQ=90°, ∵∠MPB=∠BPQ=90°, ∴∠MBP+∠BMP=90°, ∴∠BMP=∠PBQ , ∴△MBQ ∽△BPQ , ∴BM BPBQ PQ=, ∵P (m ,0),B (4,0), ∴BP 4m =-,213222PQ m m =-++, ∴214132222mm m -=-++, 解得:1234m m ==、,当4m =时,点P 、Q 、M 均与点B 重合,不能构成三角形,舍去, ∴3m =,点Q 的坐标为(3,2); ,②当∠BQM=90°时,此时点Q 与点A 重合,△BOD ∽△BQM′, 此时m=-1,点Q 的坐标为(1-,0);综上,点Q 的坐标为(3,2)或(1-,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似. (3)∵点D 与点C (0,2)关于x 轴对称, ∴点D 坐标为(0,2-), 设直线BD 解析式为y kx b =+,则有:402k b b +=⎧⎨=-⎩,解得:122k b ⎧=⎪⎨⎪=-⎩,∴直线BD 解析式为122y x =-, ∵QM ⊥x 轴,P (m ,0),∴Q213222m m m -++(,)、M 122m m -(,), 则221311|22|4|2222QM m m m m m =-++--=-++()|, ∵F 0(,12)、D (0,2-),∴52DF =, ∵QM ∥DF ,∴当QM=DF ,即215422m m -++=时,以D 、M 、Q 、F 为顶点的四边形是平行四边形, 解得:m=-1或m=3或1m =1即m=-1或m=3或1m =+1-D 、M 、Q 、F 为顶点的四边形是平行四边形. 【点睛】此题综合考查了二次函数的性质,三角形相似和平行四边形的判断,解题关键在于熟练掌握各个知识点的性质,并且作出辅助线.21.(1)483y x =-+;(2)(﹣6,0),(﹣4,0),(16,0)或(﹣73,0);(3)点A′的坐标为(0,﹣13)或(8,173). 【解析】 【分析】(1)由点A ,B 的坐标,利用待定系数法可求出直线l 的函数表达式;(2)利用一次函数图象上点的坐标特征可求出点C ,D 的坐标,进而可得出CD 的长,分DC =DP ,CD =CP ,PC =PD 三种情况考虑:①当DC =DP 时,利用等腰三角形的性质可得出OC =OP 1,进而可得出点P 1的坐标;②当CD =CP 时,由CP 的长度结合点C 的坐标可得出点P 2,P 3的坐标;③当PC =PD 时,设OP 4=m ,利用勾股定理可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出点P 4的坐标.综上,此问得解; (3)过点B 作直线l 的垂线,交y 轴于点E ,则△DOC ∽△DBE ,利用相似三角形的性质可求出点E 的坐标,由点B ,E 的坐标,利用待定系数法可求出直线BE 的函数表达式,设点A′的坐标为(n ,34n ﹣13),由A′B=AB 可得出关于n 的一元二次方程,解之即可得出点A′的坐标,此题得解. 【详解】(1)设直线l 的函数表达式为y =kx+b (k≠0), 将A (1,203),B (4,83)代入y =kx+b , 得:20384+b=3k b k ⎧+=⎪⎪⎨⎪⎪⎩,解得:438k b ⎧=-⎪⎨⎪=⎩,∴直线l 的函数表达式为y =﹣43x+8. (2)当x =0时,y =﹣43x+8=8, ∴点D 的坐标为(0,8); 当y =0时,﹣43x+8=0,解得:x =6,∴点C 的坐标为(6,0), ∴CD =10.分三种情况考虑(如图1所示):①当DC =DP 时,OC =OP 1, ∴点P 1的坐标为(﹣6,0); ②当CD =CP 时,CP =10,∴点P 2的坐标为(﹣4,0),点P 3的坐标为(16,0); ③当PC =PD 时,设OP 4=m , ∴(6+m )2=82+m 2, 解得:m =73, ∴点P 4的坐标为(﹣73,0). 综上所述:点P 的坐标为(﹣6,0),(﹣4,0),(16,0)或(﹣73,0). (3)过点B 作直线l 的垂线,交y 轴于点E ,如图2所示,∵点B (4,83),点D (0,8), ∴BD 228(04)(8)3-+-=203, ∵∠CDO =∠EDB ,∠DOC =∠DBE =90°, ∴△DOC ∽△DBE ,∴DE DBDC DO=,即203108DE =, ∴DE =253,∴点E 的坐标为(0,﹣13).利用待定系数法可求出直线BE 的函数表达式为y =34x ﹣13,设点A′的坐标为(n ,34n ﹣13),∵A′B=AB , ∴(4﹣n )2+[83﹣(34n ﹣13)]2=(4﹣1)2+(83﹣203)2,即n 2﹣8n =0, 解得:n 1=0,n 2=8, ∴点A′的坐标为(0,﹣13)或(8,173). 【点睛】本题考查了待定系数法求一次函数解析式、等腰三角形的性质、勾股定理、相似三角形的性质以及解一元二次方程,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)分DC =DP ,CD =CP ,PC =PD 三种情况,利用等腰三角形的性质求出点P 的坐标;(3)利用相似三角形的性质及待定系数法,求出过点B 且垂直于直线l 的直线的解析式. 22.(1)证明见解析(2)18° 【解析】 【分析】(1)根据HL 证明Rt △ABC ≌Rt △BAD 即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可. 【详解】(1)证明:∵∠D =∠C =90°, ∴△ABC 和△BAD 都是Rt △, 在Rt △ABC 和Rt △BAD 中,AD BCAB BA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △BAD (HL ); (2)∵Rt △ABC ≌Rt △BAD , ∴∠ABC =∠BAD =36°, ∵∠C =90°, ∴∠BAC =54°,∴∠CAO =∠CAB ﹣∠BAD =18°. 【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”.23.(1)详见解析;(2)6. 【解析】【分析】(1)连接OD,如图,先根据切线的性质得到OD⊥DF,然后利用等腰三角形的性质和平行线的判定证明OD ∥AB,从而可判断EF⊥AB;(2)根据平行线分线段比例,由AE∥OD得35DE OADF OF==,然后根据比例性质可求出DE.【详解】(1)连接OD,如图,∵DF为⊙O的切线,∴OD⊥DF,∵OC=OD,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴EF⊥AB;(2)∵AE∥OD,∴35 DE OADF OF==,即345DEDE=+,解得DE=6,故答案为:6.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活运用相似比进行几何计算.也考查了等腰三角形的性质和切线的性质.24.(1)见解析;(25【解析】【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【详解】(1)∵△=[﹣(m+2)]2﹣4×2m=(m﹣2)2≥0,∴不论m 为何值,该方程总有两个实数根; (2)∵AB 、AC 的长是该方程的两个实数根, ∴AB+AC =m+2,AB•AC=2m , ∵△ABC 是直角三角形, ∴AB 2+AC 2=BC 2,∴(AB+AC )2﹣2AB•AC=BC 2, 即(m+2)2﹣2×2m=32,解得:m ,∴m 又∵AB•AC=2m ,m 为正数,∴m 【点睛】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.25.(1)y =12x 2﹣32x ﹣2;(2)见解析;(3)m 的值是2或或1 【解析】 【分析】 (1)令y =﹣12x+2=0,解得:x =4,即可求解,然后把点A 的坐标代入抛物线解析式,借助于方程求得a 的值即可;(2)把由函数图象上点的坐标特征求得点B 、C 的坐标,然后利用两点间的距离公式和勾股定理的逆定理证得结论;(3)以B 、D 、Q ,M 为顶点的四边形是平行四边形时,利用|MQ|=BD 即可求解. 【详解】 (1)令y =﹣12x+2=0,解得:x =4,y =0,则x =2, 即:点A 坐标为:(4,0).代入2322y ax x =--中,得16a ﹣8=0,得a =12. ∴该抛物线解析式为:y =12x 2﹣32x ﹣2.(2)由(1)知,抛物线解析式为:y =12x 2﹣32x ﹣2.∴当y =0时,x 1=﹣1,x 2=4,的C (﹣1,0). 故OC =1.于是AB 2=20,BC 2=5,AC 2=25. 从而AB 2+BC 2=AC 2. ∴AB ⊥BC ;(3)由(1)知,抛物线解析式为: 213222y x x =--.当x=0时,y=2,得D(0,﹣2),∴BD=4.当MQ=(﹣12m+2)﹣213222m m⎛⎫--⎪⎝⎭=212m-﹣m﹣4=4时,得m=2或m=0(舍去).当MQ=(12m2﹣32m﹣2)﹣(﹣12m+2)=212m﹣m﹣4=4时,得m=m=1.综上所述,m的值是2或1.【点睛】主要考查了二次函数综合题,需要注重二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.2019-2020学年数学中考模拟试卷一、选择题1.下列计算正确的是( ) A .a 4+a 3=a 7B .a 4•a 3=a 12C .(a 4)3=a 7D .a 4÷a 3=a2.下列运算中,正确的是( ) A .x 8÷x 2=x 4B .2x ﹣x =1C .(x 3)3=x 6D .x+x =2x3.已知二次函数y=(x+m )2–n 的图象如图所示,则一次函数y=mx+n 与反比例函数y=mnx的图象可能是( )A. B. C. D.4.目前世界上能制造的芯片最小工艺水平是5纳米,国产芯片的最小工艺水平理论上是12纳米,已知1纳米910-=米,用科学记数法将12纳米表示为( )米 A.91210-⨯B.101.210-⨯C.81.210-⨯D.80.1210-⨯5.如图,已知正方形ABCD ,E 为AB 的中点,F 是AD 边上的一个动点,连接EF 将△AEF 沿EF 折叠得△HEF ,延长FH 交BC 于M ,现在有如下5个结论:①△EFM 定是直角三角形;②△BEM ≌△HEM ;③当M 与C 重合时,有DF =3AF ;④MF 平分正方形ABCD 的面积;⑤FH•MH=214AB ,在以上5个结论中,正确的有( )A .2B .3C .4D .56.最小的素数是( ) A .1B .2C .3D .47.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为A .8B .6C .4D .28.如图,在菱形ABCD 中,AB =4,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 的长为半径画弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE ,则BE 的值为( )A.7B.27C.37D.479.关于分式的约分或通分,下列哪个说法正确( ) A .211x x +-约分的结果是1xB .分式211x -与11x -的最简公分母是x ﹣1 C .22xx 约分的结果是1 D .化简221x x -﹣211x -的结果是110.如图,有一块边长为22的正方形厚纸板ABCD ,做成如图①所示的一套七巧板(点O 为正方形纸板对角线的交点,点E 、F 分别为AD 、CD 的中点,CE ∥BI ,IH ∥CD ),将图①所示七巧板拼成如图②所示的“鱼形”,则“鱼尾”MN 的长为( )A.22 C.3211.已知m 2=3|m|的估算正确的( ) A .2<|m|<3B .3<|m|<4C .4<|m|<5D .5<|m|<612.|-3|的值等于( )A.3B.-3C.±3D.二、填空题13.用彩色和单色的两种地砖铺地,彩色地砖14元/块,单色地砖12元/块,若单色地砖的数量比彩色地砖的数量的2倍少15块,买两种地砖共用了1340元,设购买彩色地砖x 块,单色地砖y 块,则根据题意可列方程组为_______________. 14.计算:12019(2)(1)--+-=__________.15.小鲁在一个不透明的盒子里装了5个除颜色外其他都相同的小球,其中有3个是红球,2个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是__________. 16.用一组, a b 的值说明命题“对于非零实数, a b ,若a b <,则11a b>”是错误的,这组值可以是a =______,b =_____.17.如图,在中,,,以点为圆心,的长为半径画弧,与边交于点,将绕点旋转后点与点恰好重合,则图中阴影部分的面积为_____.18.如图,四边形ABCD 内接于⊙O ,E 为CD 的延长线上一点.若110B ∠=°,则ADE ∠的大小为____________.三、解答题19.如图,已知AB =AD ,∠ABC =∠ADC .试判断AC 与BD 的位置关系,并说明理由.20.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠CAB 的平分线交⊙O 于点D ,过点D 作ED ⊥AE ,垂足为E ,交AB 的延长线于F .(1)求证:ED 是⊙O 的切线;(2)若AD =2,AB =6,求FD 的长.21.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,……均是直角三角形,其直角顶点P1(4,4),P2,P3……P n均在反比例函数y=kx(k>0)的图象上(1)求k的值;(2)分别求出P2、P3的坐标;(3)试用含n的式子表示P n的坐标(直接写出).22.十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)12200 1150 12500 1340015894.0917490.92 19545.22 20768.73森林覆盖率12.7% 12% 12.98% 13.92% 16.55% 18.21% 20.36% 21.63% 表2北京森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)33.74 37.88 52.05 58.81森林覆盖率11.2% 8.1% 12.08% 14.99% 18.93% 21.26% 31.72% 35.84%(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1)从第次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到万公顷(用含a和b的式子表示).23.如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y.(1)求y与x之间的函数关系式;(2)当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,如图2,求经过G,O,B三点的抛物线的解析式;(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在△POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.24.231125123x xxx+≥+⎧⎪+⎨-<-⎪⎩25.阅读下列材料,解决材料后的问题:材料一:对于实数x、y,我们将x与y的“友好数”用f(x,y)表示,定义为:f(x)=2xy+,例如17与16的友好数为f (17,16)=17162+=1718.材料二:对于实数x ,用[x]表示不超过实数x 的最大整数,即满足条件[x]≤x<[x]+1,例如: [﹣1.5]=[﹣1.6]=﹣2,[0]=[0.7]=0,[2.2]=[2.7]=2,……(1)由材料一知:x 2+2与1的“友好数”可以用f (x 2+2,1)表示,已知f (x 2+2,1)=2,请求出x 的值;(2)已知[12a ﹣1]=﹣3,请求出实数a 的取值范围; (3)已知实数x 、m 满足条件x ﹣2[x]=72,且m≥2x+112,请求f (x ,m 2﹣32m )的最小值.【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D D C C C B D B D C AA二、填空题13.14121340215x y y x +=⎧⎨=-⎩,,14.32- 15.162516.1a =- 1b =17.2-. 18.110° 三、解答题19.AC ⊥BD ,理由见解析. 【解析】 【分析】AC 与BD 垂直,理由为:由AB=AD ,利用等边对等角得到一对角相等,利用等式性质得到∠BDC=∠DBC ,利用等角对等边得到DC=BC ,利用SSS 得到三角形ABC 与三角形ADC 全等,利用全等三角形对应角相等得到∠DAC=∠BAC ,再利用三线合一即可得证. 【详解】 AC ⊥BD ,理由为: ∵AB =AD (已知),∴∠ADB =∠ABD (等边对等角),∵∠ABC =∠ADC (已知),∴∠ABC ﹣∠ABD =∠ADC ﹣∠ADB (等式性质),即∠BDC =∠DBC ,∴DC =BC (等角对等边),在△ABC 和△ADC 中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS ),∴∠DAC =∠BAC (全等三角形的对应角相等),又∵AB =AD ,∴AC ⊥BD (等腰三角形三线合一).【点睛】此题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.(1)证明见解析;(2. 【解析】【分析】(1)连接OD ,根据等腰三角形的性质和角平分线的性质可求得∠1=∠3,再由“内错角相等,两直线平行”可得AE ∥OD ,然后再由垂线的定义和切线的判定即可证明;(2)连接BD ,由切线的性质及勾股定理可求出BD 的长,然后再根据三角形相似的判定和性质求得BF=4DF ,然后再在Rt △ODF 中,求DF 即可. 【详解】(1)证明:连接OD ,如图,∵OA =OD ,∴∠2=∠3,∵AD 平分∠EAB ,∴∠1=∠2,∴∠1=∠3,∴AE ∥OD ,∵ED ⊥CA ,∴OD ⊥ED ,∵OD 是⊙O 的半径,∴ED 是⊙O 的切线;(2)连接BD ,如图,∵AB 是直径,∴∠ADB =90°.∴BD =22226(42)AB AD -=-=2,∵EF 是⊙O 的切线,∴OD ⊥EF ,∴∠4+∠5=90°,∵∠3+∠5=90°,∴∠4=∠3=∠2,∵∠F =∠F ,∴△FBD ∽△FDA , ∴42BF BD DF AD ==, ∴BF =2DF , 在Rt △ODF 中,∵(3+BF )2=32+DF 2,∴(3+2DF )2=32+DF 2, ∴DF =122.【点睛】本题主要考查了等腰三角形的性质、角平分线的性质、平行线的判定、切线的性质及判定、勾股定理等知识点,综合性比较强,熟练掌握基础知识是解题的关键.21.(1)16(2)(2323(3)(n 1n -n ﹣1n -【解析】【详解】(1)把点P 1(4,4)代入反比例函数y =k x(k >0),求出k =16即可; (2)作P 1A ⊥OA 1于A ,P 2B ⊥A 1A 2于B ,P 3⊥A 2A 3于C ,证出AA 1=OA =4,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,……均是等腰直角三角形,得出OA 1=8,设P 2(8+b ,b ),则b (8+b )=16,解得b =﹣2,得出OB =8﹣4+42=4+42,因此P 2(4+42,﹣4+42),A 2A 1=2b =﹣8+82,同理得出P 3(42+43,﹣42+43);(3)由(2)得出规律,即可得出结果.【解答】解:(1)∵点P 1(4,4)在反比例函数y =k x(k >0)的图象上, ∴k =4×4=16;(2)作P 1A ⊥OA 1于A ,P 2B ⊥A 1A 2于B ,P 3⊥A 2A 3于C ,如图所示:∵P 1(4,4),∴OA =P 1A ,△OAP 1时等腰直角三角形,∴∠OP 1A =45°,∴∠A 1P 1A =45°,∵P 1A ⊥OA 1,∴△AA 1P 1是等腰直角三角形,∴AA 1=OA =4,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,……均是等腰直角三角形,∴OA 1=8,设P 2(8+b ,b ),则b (8+b )=16,解得:b 1=﹣4﹣42(舍去),b 2=﹣4+42,∴OB =8﹣4+42=4+42,∴P 2(4+42,﹣4+42),A 2A 1=2b =﹣8+82,∴OA 2=8﹣8+82=82,设P 3(82+c ,c ),则c (82+c )=16,解得:c 1=﹣42﹣43(舍去),c 2=﹣42+43,∴OC =82﹣42+4=42+43,∴P 3(42+43,﹣42+43);(3)由(2)得:P n 的坐标为(4n +41n -,4n ﹣41n -).【点睛】本题考查了反比例函数解析式的应用、坐标与图形性质、等腰直角三角形的判定与性质、解方程等知识;证明各个三角形是等腰直角三角形是解题的关键.22.(1)四;(2)见解析;(3)0.2715ab.【解析】【分析】(1)比较两个折线统计图,找出满足题意的调查次数即可;(2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;(3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果.【详解】解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率;故答案为:四;(2)补全折线统计图,如图所示:(3)根据题意得:ab×27.15%=0.2715ab,则全国森林面积可以达到0.2715ab万公顷,故答案为:0.2715ab.【点睛】此题考查了折线统计图,弄清题中的数据是解本题的关键.23.(1)y=x2;(2)y=﹣15x2+85x;(3)点P的坐标为(46,2)或(6,2)或(426﹣2)或(26,﹣2)时,△POB的面积S=8.【解析】【分析】(1)判断出△ABO是等腰直角三角形,根据等腰直角三角形的性质可得∠AOB=45°,然后求出AO⊥CO,再根据平移的性质可得AO⊥C′O′,从而判断出△OO′G是等腰直角三角形,然后根据等腰直角三角形的性质列式整理即可得解;(2)求出OO′,再根据等腰直角三角形的性质求出点G的坐标,然后设抛物线解析式为y=ax2+bx,再把点B、G的坐标代入,利用待定系数法求二次函数解析式解答;(3)设点P 到x 轴的距离为h ,利用三角形的面积公式求出h ,再分点P 在x 轴上方和下方两种情况,利用抛物线解析式求解即可.【详解】(1)∵AB =OB ,∠ABO =90°,∴△ABO 是等腰直角三角形,∴∠AOB =45°,∵∠yOC =45°,∴∠AOC =(90°﹣45°)+45°=90°,∴AO ⊥CO ,∵C′O′是CO 平移得到,∴AO ⊥C′O′,∴△OO′G 是等腰直角三角形,∵射线OC 的速度是每秒2个单位长度,∴OO′=2x ,∴其以OO′为底边的高为x ,∴y =12×(2x )•x=x 2; (2)当x =3秒时,OO′=2×3=6, ∵12×6=3, ∴点G 的坐标为(3,3), 设抛物线解析式为y =ax 2+bx ,则9336480a b a b +=⎧⎨+=⎩, 解得1585a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为y =21855x x -+; (3)设点P 到x 轴的距离为h ,则S △POB =12×8h=8, 解得h =2, 当点P 在x 轴上方时,21855x x -+=2, 整理得,x 2﹣8x+10=0,解得x 1=4,x 2=,此时,点P 的坐标为(4,2)或(,2);当点P 在x 轴下方时,21855x x -+=﹣2, 整理得,x 2﹣8x ﹣10=0,解得x 1=4,x 2=,此时,点P 的坐标为(4,﹣2)或(,﹣2),综上所述,点P 的坐标为(4,2)或(,2)或(4,﹣2)或(,﹣2)时,△POB 的面积S =8.【点睛】本题是二次函数综合题型,主要利用了等腰直角三角形的判定与性质,待定系数法求二次函数解析式,二次函数与坐标轴的交点,三角形的面积,平移的性质,二次函数图象上点的坐标特征,(3)要注意分情况讨论.24.原不等式组无解.【解析】【分析】分别解两个不等式后,利用“同大取大,同小取小,大小小大中间找,大大小小找不到”确定不等式组的解集即可.【详解】231125123x x x x +≥+⎧⎪⎨+-<-⎪⎩①② 解不等式①得,x≥8;解不等式②得,x<45; 所以,原不等式组无解.【点睛】本题考查的是解一元一次不等式组,掌握解一元一次不等式组一般步骤及方法是关键.25.(1)x =±2;(2)﹣4≤a<﹣2;(3)当m =34时,y 有最大值是﹣238,此时f (x ,m 2﹣32m )有最小值,最小值是﹣4023. 【解析】【分析】(1)由题意得到22212x +=+,计算即可得到答案; (2)由题意得到131312a -≤-<-+,解不等式即可得到答案;(3)先由题意得到171712424x x x -≤<-+,则7322x -≤<-,设1724x k -=,由题意得到111222m x ≥+=,设y =﹣2m 2+3m ﹣4,根据二次函数的性质即可得到答案. 【详解】解:(1)∵f (x 2+2,1)=2, ∴22212x +=+, ∴x 2=4,∴x =±2;(2)∵[x]≤x<[x]+1, ∴131312a -≤-<-+, 解得﹣4≤a<﹣2;(3)∵x ﹣2[x]=74, ∴[x]=1724x -, ∴171712424x x x -≤<-+, ∴7322x -≤<-, 设1724x k -=, 又x =2k+72, ∴7522k -≤<-, ∴整数k =﹣3,∴x =52-, 又111222m x ≥+=, ∴f (x ,m 2﹣32m ),=2322xm m -+, =252322m m --+, =25234m m -+-, 设y =﹣2m 2+3m ﹣4, 则y =﹣2(m 34-)2238-, ∵﹣2<0,∴当m =34时,y 有最大值是238-,此时f (x ,m 2﹣32m )有最小值,最小值是5238-=﹣4023, 此时最小值为﹣4023. 【点睛】本题考查分式方程的计算和二次函数,解题的关键是读懂题意,掌握分式方程的计算和二次函数的性质.。
(河北专版)2019年中考数学一轮复习第二章方程与不等式2.3分式方程(讲解部分)素材(pdf)
3 1 - = 0, 解析㊀ 原方程变形,得 +2) x( x x( x -2) 方程两边同乘 x( x +2) ( x -2) ,
得 3( x -2) -( x +2) = 0,解这个整式方程,得 x = 4, 经检验,x = 4 是原方程的根,ʑ 原方程的根是 x = 4.
方法二㊀ 利用分式方程解应用题
3. 增根:增根是分式方程化成的整式方程的根, 但它使得原
(3) 检验,得出结论.一般代入原方程的④㊀ 最简公分母㊀ 进行检验.
������������������������������������������
考点二㊀ 分式方程的应用
㊀ ㊀ 1. 常见题型有行程问题和工程问题. 缺一不可.
不是⑥㊀ 原分式方程㊀ 的根, 再检验方程的根是否符合 ⑦㊀ 题意 ㊀ ,
经检验,x = 15 是原分式方程的解且符合题意. x +5 = 15+5 = 20.
㊀ ㊀ 变式训练 1 ㊀ ( 2014 内蒙古呼和浩特, 17 ( 2 ) , 5 分 ) 解方 程: 3 1 - = 0. x +2x x 2 -2x
2
和 15 元. 用题:
答:科普类图书和文学类图书平均每本的价格分别为 20 元
最美书屋 ,购买了一批图书,其中科普类图书平均每本的价格
例 2㊀ ( 2017 湖北黄冈, 18, 6 分 ) 黄麻中学为了创建全省
例 1㊀ ( 2018 内蒙古呼和浩特,17 ( 2 ) ,5 分 ) 计算: 解方程: x -3 3 +1 = ,x -3+ x -2 = -3,解得 x = 1. x -2 2- x 检验:当 x = 1 时,x -2ʂ0, 所以,x = 1 是原分式方程的解.
10 ㊀
5 年中考 30
2019届冀教版中考《第7讲分式方程》知识梳理
第7讲分式方程一、知识清单梳理知识点一:分式方程及其解法思路:分式方程1-简公分母为使分式方程中的分母为:分式方程的应用)) (5)检验:在检验这一步中,既要检验所求未知数的值是的值是不是符合题目的实际意义2019-2020学年数学中考模拟试卷一、选择题1.如图,已知∠ABC=∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A.∠C=∠DB.∠CAB=∠DBAC.AC=BDD.BC=AD2.二次函数y =ax 2+bx+c (a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①a ﹣3b+2c >0;②3a ﹣2b ﹣c =0;③若方程a (x+5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;④若方程|ax 2+bx+c|=1有四个根,则这四个根的和为﹣8.其中正确的结论有( )A .1个B .2个C .3个D .4个3.将抛物线y =2x 2﹣1沿直线y =2x 方向向右上方平移 )A.y =2(x+2)2+3B.22(1y x =--C.221y x =+D.y =2(x ﹣2)2+34.若m >n ,则下列不等式正确的是( ) A .m+2<n+2B .m ﹣2<n ﹣2C .﹣2m <﹣2nD .m 2>n 25.下列运算正确的是( ) A .22321a a -=B .22122a a a ⋅=C .623a a a ÷=D .()()3223a ba b b -÷=-6.计算|﹣3|﹣20180的结果是( ) A .﹣2021B .﹣2015C .﹣4D .27.一张矩形纸片在太阳光线的照射下,形成影子不可能是( ) A .平行四边形B .矩形C .正方形D .梯形8.在平面直角坐标系中,以点(3,2)为圆心、2为半径的圆,一定( ) A .与x 轴相切,与y 轴相切 B .与x 轴相切,与y 轴相离 C .与x 轴相离,与y 轴相切D .与x 轴相离,与y 轴相离9.如图,AB 是⊙O 直径,若∠AOC =130°,则∠D 的度数是( )A .20°B .25°C .40°D .50°10.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则-a b 的值为( )A.1B.3C.14-D.7411.如图,菱形ABCD 的边AB=5,面积为20,∠BAD <90°,⊙O 与边AB 、AD 都相切,AO=2,则⊙O 的半径长等于( )A .5B .5C .5D .512.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA+MD+ME 的最小值为( )D.10二、填空题13.如图,AD 和BE 分别为三角形ABC 的中线和角平分线,AD BE ⊥,若4AD BE ==,则AC 的长__________.14.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______. 15.若一个多边形内角和等于1260°,则该多边形边数是______.16.墙壁CD 上D 处有一盏灯(如图),小明站在A 处测得他的影长与身长相等,都为1.6m ,他向墙壁走1m 到B 处时发现影子刚好落在A 点,则灯泡与地面的距离CD =____.17.因式分解:xy ﹣y =_____.18.我县某楼盘准备以每平方米6500元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米5265元的均价开盘销售,则每次下调的百分率是_____. 三、解答题19.在四边形ABCD 中,AB ∥DC ,AB=AD ,对角线AC ,BD 交于点O ,AC 平分∠BAD ,过点C 作CE ∥DB 交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形;(2)若∠DAB=60°,且AB=4,求OE 的长.20.先化简,再求值:24()224a a a a a a ÷---- ,其中a +2. 21.如图,将正方形ABCD 折叠,使点C 与点D 重合于正方形内点P 处,折痕分别为AF 、BE ,如果正方形ABCD 的边长是2,那么△EPF 的面积是_____.22.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为_____ ; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为_____ ;(3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲 分式方程命题点1 分式方程的解法(近八年未单独考查) 命题点2 分式方程的应用1.(2013·河北T7·3分)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m .依题意,下面所列方程正确的是(A)A.120x =100x -10B.120x =100x +10C.120x -10=100xD.120x +10=100x2.(2016·河北T12·2分)在求3x 的倒数的值时,嘉淇同学将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是(B)A.13x =18x -5 B.13x =18x +5 C.13x=8x -5D.13x=8x +5重难点1 分式方程的解法解方程:23x -1-1=36x -2.【自主解答】解:方法一:去分母,得4-2(3x -1)=3.解得x =12.检验:当x =12时,2(3x -1)≠0,∴x =12是原分式方程的解.方法二:设3x -1=y 则原方程可化为2y -1=32y ,去分母,得4-2y =3. 解得y =12.∴3x -1=12.解得x =12.检验:当x =12时,6x -2≠0,∴x =12是原分式方程的解.方法三:移项,得23x -1-36x -2=1.通分,得16x -2=1.由分式的性质,得6x -2=1. 解得x =12.检验:当x =12时,6x -2≠0,∴x =12是原分式方程的解.【变式训练1】解方程:(1)52x -1=3x +2;解:由题意,得5(x +2)=3(2x -1). 解得x =13.检验:当x =13时,(x +2)(2x -1)≠0, ∴x =13是原分式方程的解. (2)1x -2+2=1-x 2-x. 解:去分母,得1+2(x -2)=x -1. 解得x =2.检验:当x =2时,x -2=0,∴x =2是增根. ∴原分式方程无解. 教师提示切入点1:常规解法——去分母,方程两边同乘以2(3x -1),转化为整式方程,求解并检验.切入点2:换元法,先设3x -1为y ,然后将原方程化为4-2y =3,解得y =12,最后求出x 的值并检验.切入点3:通分法,移项得23x -1-36x -2=1,将等号左边含未知数的项合并,使原方程简化.特别值得指出的是:用此法解分式方程很少有增根现象.K方法指导把分式方程转化为整式方程,再按照解整式方程的步骤解题,不同的是解分式方程需要验根. 易错提示1.忘记验根.2.去分母时漏乘不含分母的整数项. 3.移项时没有注意符号变化. 重难点2 分式方程的实际应用(2017·河北模拟改编)某工程需在规定日期内完成,若甲工程队独做,恰好如期完成,若乙工程队独做,则超过规定日期3天完成,现在甲、乙两队合作2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.【自主解答】 解:设规定日期为x 天,则甲工程队单独完成要x 天,乙工程队单独完成要(x +3)天.根据题意,得方法一:2x +xx +3=1.解得x =6.经检验,x =6是原方程的根. 答:规定的日期为6天. 方法二:2(1x +1x +3)+x -2x +3=1.方法三:2x =3x +3.【变式训练2】(2018·宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x 万部,则实际每月生产智能手机(1+50%)x 万部,根据题意,得300x -300(1+50%)x =5,解得x =20. 经检验,x =20是原方程的解,且符合题意. ∴(1+50%)x =30.答:每月实际生产智能手机30万部.,教师提示设规定日期为x 天,总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x ;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x +3.切入点1:根据甲2天工作量+乙x 天工作量=1,列方程即可.切入点2:根据甲、乙两队合作2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.切入点3:因为甲做了2天,所以乙队就提前3天完成了任务,因此可得等量关系:甲2天工作量=乙3天工作量.方法指导列分式方程解决实际问题的关键是找到等量关系,恰当地设出未知数,列出方程. 易错提示利用分式方程解应用题一定要注意检验,找出符合实际情况的答案.1.(2018·张家界)若关于x 的分式方程m -3x -1=1的解为x =2,则m 的值为(B)A .5B .4C .3D .22.(2018·唐山乐亭县二模)方程x -2x -3=xx +1的解为(B)A .x =-1B .x =1C .x =2D .x =33.(2018·德州)分式方程x x -1-1=3(x -1)(x +2)的解为(D)A .x =1B .x =2C .x =-1D .无解4.(2018·河北模拟)对于非零实数a ,b ,规定ab =1a -1b .若2(2x -1)=1,则x 的值为(A)A .-12B.14C .-14D.125.(2018·昆明)甲、乙两船从相距300 km 的A ,B 两地同时出发相向而行,甲船从A 地顺流航行180 km 时与从B 地逆流航行的乙船相遇,水流的速度为6 km/h.若甲、乙两船在静水中的速度均为x km/h ,则求两船在静水中的速度,可列方程为(A)A.180x +6=120x -6 B.180x -6=120x +6 C.180x +6=120xD.180x =120x -66.(2018·保定莲池区模拟)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x 千米/小时,则所列方程正确的是(C)A.10x -102x=20B.102x -10x=20C.10x -102x =13D.102x -10x =137.(2018·唐山路北区三模)某校为进一步开展“阳光体育”活动,购买了一批篮球和足球,已知购买足球数量是篮球的2倍,购买足球用了4 000元,购买篮球用了2 800元,篮球单价比足球贵16元.若可列方程4 0002x =2 800x -16表示题中的等量关系,则方程中x 表示的是(D)A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量8.(2018·邯郸一模)某工厂计划生产1 500个零件,但是在实际生产时,……,求实际每天生产零件的个数.在这个题目中,若设实际每天生产零件x 个,可得方程1 500x -5-1 500x=10,则题目中用“……”表示的条件应是(B)A .每天比原计划多生产5个,结果延期10天完成B .每天比原计划多生产5个,结果提前10天完成C .每天比原计划少生产5个,结果延期10天完成D .每天比原计划少生产5个,结果提前10天完成 9.(2018·广西)解分式方程:x x -1-1=2x3x -3.解:两边都乘3(x -1),得3x -3(x -1)=2x.解得x =1.5.检验:x =1.5时,3(x -1)=1.5≠0. 所以分式方程的解为x =1.5.10.(2018·河北模拟)甲、乙两地相距72千米,嘉嘉骑自行车往返两地一共用了7小时,已知他去时的平均速度比返回时的平均速度快13,求嘉嘉去时的平均速度是多少?下框是淇淇同学的解法.解:设嘉嘉去时的平均速度是x 千米/时,则回时的平均速度是(1-13)x 千米/时,由题意,得72x+72(1-13)x=7,… 你认为淇淇同学的解法正确吗?若正确,请写出该方程所依据的等量关系,并完成剩下的步骤;若不正确,请说明原因,并正确地求出嘉嘉去时的平均速度.解:淇淇同学的解法不正确;因为“去时的平均速度比返回时的平均速度快”并不等于“返回时的平均速度比去时的平均速度慢13”.设嘉嘉返回时的平均速度是x 千米/时,则去时的平均速度是(1+13)x 千米/时,由题意得72(1+13)x+72x =7,解得x =18.经检验,x =18是方程的解,且符合题意.(1+13)x =24.所以嘉嘉去时的平均速度是24千米/时.11.(1)(2018·河北模拟)关于x 的分式方程2x -mx +1=3的解是正数,则字母m 的取值范围是(D)A .m>3B .m<3C .m>-3D .m<-3(2)(2018·兰州)关于x 的分式方程2x +ax +1=1的解为负数,则a 的取值范围为(D)A .a ≥1B .a<1C .a<1且a ≠-2D .a>1且a ≠212.(2018·河北第二次模拟大联考改编)对于两个不相等的实数a ,b ,我们规定符号max{a ,b}表示a ,b 中的较大值,例如:max{2,4}=4,按照这个规定:(1)方程max{-2,-3}=3x -2-x2-x的解为(C)A .x =-2B .x =-3C .x =13D .x =34(2)方程max{x ,-x}=2x +1x的解为(D)A .x =1- 2B .x =2- 2C .x =1+2或x =1- 2D .x =1+2或x =-113.(1)(2018·潍坊)当m =2时,解分式方程x -5x -3=m3-x会出现增根;(2)(2018·达州)若关于x 的分式方程x x -3+3a 3-x =2a 无解,则a 的值为1或12.14.(2018·河北中考预测)在解分式方程1x +1-2x -1=3x -1时,下面是嘉淇的部分解答过程: 解:去分母,得x -1-2(x +1)=3. …移项,得①________. ②________,得-x =6. …则①和②处分别是(C)A .x -1-2x -2=3,去括号B .x -2x =3+1+2,移项C .x -2x =3+1+2,合并同类项D .x -1-2x -2=3,系数化为115.(2018·吉林)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.解分式方程:甲、乙两个工程队,甲队修路400米与乙队修路600米所用时间相等,乙队每天比甲队多修20米,求甲队每天修路的长度.冰冰:400x =600x +20庆庆:600y -400y=20根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示甲队每天修路的长度; 庆庆同学所列方程中的y 表示甲队修路400米所用时间; (2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.解:(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度-甲队每天修路的长度=20米(选择一个即可). (3)选冰冰的方程:400x =600x +20,解得x =40.经检验,x =40是原方程的根. 答:甲队每天修路的长度为40米.选庆庆的方程:600y -400y =20,解得y =10.经检验,y =10是原方程的根. ∴400y=40. 答:甲队每天修路的长度为40米.。