微专题2 平衡中的临界与极值问题

合集下载

平衡中的临界与极值

平衡中的临界与极值

一. 教学内容:平衡问题中的临界与极值问题归纳二. 学习目标:1、掌握共点力作用下的物体平衡条件的应用问题的分析方法。

2、掌握平衡问题中临界与极值问题的特征。

3、熟练掌握典型的临界与极值问题的常用处理方法和技巧。

考点地位:共点力作用下的物体平衡问题中的极值与临界问题是处理平衡问题的难点所在,这部分内容重点体现与数学知识的融合,体现了高考大纲中所要求的运用数学方法分析物理问题的能力,同时这部分内容在高考中常与库仑力、安培力等相互结合,难度较大。

三. 重难点解析:1. 共点力作用下物体平衡的条件在共点力作用下物体平衡的条件是:物体所受的合力为零。

即(矢量式)。

用正交分解法解决有关在共点力作用下的物体平衡问题时,平衡条件可叙述为:用平衡条件的正交表达形式解题具有三大优点:其一,将矢量运算转变为代数运算,使难度降低。

其二,将求合力的复杂的解斜三角形问题,转变为正交分解后的直角三角形问题,使运算简便易行。

其三,当所求平衡问题中需求两个未知力时,这种表达形式可列出两个方程,使得求解十分方便。

2. 力的平衡作用在物体上所有力的合力为零,这种情形叫做力的平衡。

(1)当物体只受两个力作用而平衡时,这两个力大小一定相等,方向一定相反,且作用在同一直线上。

这两个力叫做一对平衡力。

(2)当物体受到三个力的作用而平衡时,这三个力必在同一平面内,且三个力的作用线或作用线的延长线相交于一点,这就是三力汇交原理。

3. 一对平衡力与一对作用力和反作用力的区别(1)平衡力作用于同一物体上。

作用力和反作用力分别作用在两个物体上。

(2)作用力与反作用力性质相同。

平衡力的性质不一定相同。

例如静止在水平桌面上的物体,重力与桌面的支持力是一对平衡力;支持力是弹力,与重力的性质不同。

(3)作用力与反作用力同时产生、同时变化、同时消失,平衡力中的某一力变化或消失时,其他力不一定变化或消失。

例如抽去桌面时,物体所受的支持力消失,但物体的重力仍然保持不变。

平衡中的临界极值问题

平衡中的临界极值问题

平衡中的临界和极值问题所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.至于是“出现”还是“不出现”,需视具体问题而定。

极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。

临界问题往往是和极值问题联系在一起的。

平衡物体的临界状态是指物体所处的平衡状态将要被破坏但尚未被破坏的状态。

求解平衡的临界问题一般用极限法。

极限分析法是一种预测和处理临界问题的有效方法,它是指:通过恰当选择某个变化的物理量将其推向极端(“极大”、“极小”、“极右”或“极左”等),从而把比较隐蔽的临界现象(或“各种可能性”)暴露出来,使问题明朗化,以便非常简捷地得出结论。

在平衡中最常见的临界问题有以下两类: 一、以弹力为情景1. 两接触物体脱离与不脱离的临界条件是:相互作用力为零。

2. 绳子断与持续的临界条件是:作用力达到最大值;绳子由弯到直(或由直变弯)的临界条件是:绳子的拉力等于零。

例1:如图所示,物体的质量为2kg ,两根轻绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=60°的拉力F ,若要使两绳都能伸直,求拉力F 的大小范围。

解:作出A 受力图如图所示,由平衡条件有:F .cos θ-F 2-F 1cos θ=0, F sin θ+F 1sin θ-mg =0要使两绳都能绷直,则有:F 10,02≥≥F 由以上各式可解得F 的取值范围为:N F N 33403320≤≤变式训练1:两根长度不一的细线a 和b ,一根连在天花板上,另一端打结连在一起,如图,已知a 、b 的抗断张力(拉断时最小拉力)分别为70N ,80N.它们与天花板的夹角分别为37°、53°, 现在结点O 处加一个竖直向下的拉力F ,(sin37°=cos53°=0.6, cos37°=sin53°=0.8) 求: (1)当增大拉力F 时,哪根细绳先断?(2)要使细线不被拉断,拉力F 不得超过多少?变式训练2两根长度相等的轻绳,下端悬挂一质量为m 的物体,上端分别固定在水平天花板上的M 、N 点,M 、N 两点间的距离为s ,如图所示,已知两绳所能承受的最大拉力均为T ,则每根绳的长度不得短于__ ____.例2:如图所示,半径为R ,重为G 的均匀球靠竖直墙放置,左下方有厚为h 的木块,若不计摩擦,用至少多大的水平推力F 推木块才能使球离开地面。

高考物理一轮复习 第二章 专题强化四 动态平衡问题 平衡中的临界、极值问题

高考物理一轮复习 第二章 专题强化四 动态平衡问题 平衡中的临界、极值问题

个状态均可视为平衡状态.
2.做题流程 受力分析 —化—“—动—”—为—静→画不同状态平衡图构造矢量三角形 —“—静—”—中—求—动→
—定—性—分—析→ 根据矢量三角形边长关系确定矢量的大小变化
三角函数关系
—定—量—计—算→ 正弦定理
找关系求极值
相似三角形
3.三力平衡、合力与分力关系 如图,F1、F2、F3共点平衡,三力的合 力 为 零 , 则 F1 、 F2 的 合 力 F3′ 与 F3 等 大 反 向 , F1 、 F2 、 F3′ 构 成 矢 量 三 角 形 , 即F3′为F1、F2的合力,也可以将F1、F2、 F3直接构成封闭三角形.
√A.MN上的张力逐渐增大
B.MN上的张力先增大后减小
C.OM上的张力逐渐增大
√D.OM上的张力先增大后减小
以重物为研究对象分析受力情况,受重力mg、OM绳上拉力F2、MN上 拉力F1,由题意知,三个力的合力始终为零,矢量三角形如图所示, F1、F2的夹角为π-α不变,在F2转至水平的过程中, 矢量三角形在同一外接圆上,由图可知,MN上的 张力F1逐渐增大,OM上的张力F2先增大后减小, 所以A、D正确,B、C错误.
以结点B为研究对象,分析受力情况,作出力的合成图如图,根据平 衡条件知,F、FN的合力F合与G大小相等、方向相反. 根据三角形相似得AFC合 =AFB=BFCN 又 F 合=G 得 F=AACB G,FN=BACC G ∠BCA缓慢变小的过程中,AB变小,而AC、BC 不变,则F变小,FN不变,故杆BC所产生的弹 力大小不变,故选A.
2.一力恒定(如重力),另一力与恒定的力不垂直但方向不变,作出不同状 态下的矢量三角形,确定力大小的变化,恒力之外的两力垂直时,有极 值出现. 基本矢量图,如图所示

动态平衡问题平衡中的临界、极值问题课件59

动态平衡问题平衡中的临界、极值问题课件59

问题解决能力
02
学生能够独立分析和解决一些复杂的动态平衡问题,具备了一
定的问题解决能力。
创新思维Байду номын сангаас养
03
课程鼓励学生提出新的想法和解决方案,培养了学生的创新思
维和解决问题的能力。
未来研究方向展望
更复杂的动态平衡问题
研究更复杂的动态平衡问题,如非线性、时变等条件下的临界、 极值问题。
临界、极值问题的优化算法
不等式法
通过构建不等式并求解,找到物体 的极值状态。
数值模拟法
通过计算机模拟物体的运动过程, 找到极值状态和对应的物理量。
03
CATALOGUE
平衡中的极值问题
极值条件的确定
确定平衡状态
首先分析物理系统或数学 模型的平衡状态,明确平 衡条件。
寻找极值条件
在平衡状态下,寻找使某 一物理量达到极值的条件 ,如最小势能、最大承载 力等。
动态平衡
物体在受到外力作用下,通过内部调节保持平衡状态,如人 体在行走中的平衡。
临界条件的确定
临界状态
物体处于平衡与不平衡之间的临界状态,稍微偏离平衡就会导致失稳。
临界条件
使物体保持平衡的最小条件,如支撑面的大小、摩擦系数等。
临界问题的求解方法
01
02
03
解析法
通过建立数学模型和方程 ,求解临界条件下的物理 量。
结果讨论
结合已有知识和文献资料,对实验结果进行深入 分析和讨论,解释实验现象的原因和机制。
结果应用
将实验结果应用于实际问题中,提出针对性的建 议和措施。
06
CATALOGUE
课程总结与展望
课程重点回顾
1 2 3

第二章 专题强化四 动态平衡问题 平衡中的临界、极值问题

第二章 专题强化四 动态平衡问题 平衡中的临界、极值问题
公式极值、三角函数极值).
(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过
程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.
例4
(2020·广东茂名市测试)如图6所示,质量分别为3m和m的两个可视
为质点的小球a、b,中间用一细线连接,并通过另一细线将小球a与天花
板上的O点相连,为使小球a和小球b均处于静止状态,且Oa细线向右偏
OA的长度不变,故FT1=FT2,F2>F1,故A、D错误,B、C正确.
1 2 3 4 5 6 7 8 9 10 11 12
3.(多选)(2016·全国卷Ⅰ·19)如图3,一光滑的轻滑轮用细绳OO′悬挂于
O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙
桌面上的物块b.外力F向右上方拉b,整个系统处于静止状态.若F方向不
A.F1减小

B.F1增大
D.F2减小

C.F2增大
1 2
图4
2.(多个物体的动态平衡问题)(多选)(2019·全国卷Ⅰ·19)如图5所示,一粗
糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其
一端悬挂物块N,另一端与斜面上的物块M相连,系统处于静止状态.现
用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°.已知
另一端有一小滑轮C,重物系一绳经C固定在墙上的A点,滑轮与绳的质量
及摩擦力均不计,若将绳一端从A点沿墙稍向上移,
系统再次平衡后,则
A.绳的拉力增大
B.轻杆受到的压力减小,且杆与AB的夹角变大

C.绳的拉力大小不变

D.轻杆受的压力不变
图13
6 7

2021高考物理鲁科版新课程一轮复习:核心素养微专题系列 2平衡中的临界和极值问题

2021高考物理鲁科版新课程一轮复习:核心素养微专题系列 2平衡中的临界和极值问题
上。现用水平力F推物体A,在F由零逐渐增加至 3 mg再逐渐减为零的过程
2
中,A和B始终保持静止。对此过程下列说法正确的是 世纪金榜导学号
()
A.地面对B的支持力大于(M+m)g
B.A对B的压力的最小值为 3 mg,最大值为 3 3 mg
2
C.A所受摩擦力的最小值为0,最大值为
mg
4
4
D.A所受摩擦力的最小值为 1 mg,最大值为 3 mg
极限 法
数学 分析 法
物理 分析 法
正确进行受力分析和变化过程分析,找到平衡的临界点和极值点;临界 条件必须在变化中寻找,不能在一个状态上研究临界问题,要把某个物 理量推向极大或极小
通过对问题分析,根据平衡条件列出物理量之间的函数关系(画出函数 图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极 值)
1.临界、极值问题特征: (1)临界问题:当某物理量变化时,会引起其他几个物理量的变化,从而使物 体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用 “刚好”“刚能”“恰好”等语言叙述。 (2)极值问题:平衡物体的极值,一般指在力的变化过程中的最大值和最小值 问题。
2.解决极值和临界问题的三种方法:
学号( ) A.mg
C. 1 mg
2
B. 3 mg
3
D. 1 mg
4
【解析】选C。由图可知,要想CD水平,各绳均应绷紧,则AC与水平方向的夹角
为60°;结点C受力平衡,则受力分析如图所示,则CD绳的拉力T=mgtan30°=
3mg;D点受绳子拉力大小等于T,方向向左;要使CD水平,D点两绳的拉力与外
核心素养微专题系列 平衡中的临界和极值问题
内容索引

临界问题

临界问题

平衡中的临界与极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.3.解决极值问题和临界问题的方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,依据物体的平衡条件写出物理量之间的函数关系(画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.例1、(2016·东北三校二联)如图7所示,有一倾角θ=30°的斜面体B ,质量为M 。

质量为m 的物体A 静止在B 上。

现用水平力F 推物体A ,在F 由零逐渐增加至32mg 再逐渐减为零的过程中,A 和B 始终保持静止。

对此过程下列说法正确的是( )A .地面对B 的支持力大于(M +m )gB .A 对B 的压力的最小值为32mg ,最大值为334mgC .A 所受摩擦力的最小值为0,最大值为mg 4D .A 所受摩擦力的最小值为12mg ,最大值为34mg 例2、如图10所示,质量为m 的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.例3、质量为M的木楔倾角为θ,在水平面上保持静止,当将一质量为m的木块放在木楔斜面上时,它正好匀速下滑.如果用与木楔斜面成α角的力F拉着木块匀速上升,如图12所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F有最小值,求此最小值;(2)当α=θ时,木楔对水平面的摩擦力是多大?例4、拖把是由拖杆和拖把头构成的擦地工具(如图)。

5.相互作用点点清专题之平衡中的临界与极值问题

5.相互作用点点清专题之平衡中的临界与极值问题

4.相互作用点点清专题之平衡中的临界与极值问题一知能掌握1.平衡中的临界问题某种物理现象变化为另一种物理现象或物体从某种特性变化为另一种特性时,发生质的飞跃的转折状态为临界状态,临界状态也可理解为“恰好出现”或“恰好不出现”某种现象的状态,平衡物体的临界状态是指物体所处的平衡状态将要变化的状态,涉及临界状态的问题叫临界问题,解决这类问题一定要注意“恰好出现”或“恰好不出现”的条件。

2.平衡物体中的极值问题极值是指研究的平衡问题中某物理量变化时出现的最大值或最小值。

中学物理的极值问题可分为简单极值问题和条件极值问题,区分的依据就是是否受附加条件限制。

若受附加条件限制,则为条件极值。

3.平衡中的临界极值问题四种方法临界问题往往是和极值问题联系在一起的.解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件.要特别注意可能出现的多种情况.解决临界极值问题的四种方法(1)假设推理法。

假设推理法是解决临界问题的有效方法,即先假设达到临界条件,然后再结合平衡条件及有关知识列方程求解。

(2)解析法:根据物体的平衡条件列出平衡方程,在解方程时采用数学方法求极值.通常用到的数学知识有二次函数求极值、均分定理求极值、讨论分式极值、三角函数极值,以及几何法求极值等。

(3)图解法:此种方法通常适用于物体只在三个力作用下的平衡问题.首先根据平衡条件作出力的矢量三角形,如只受三个力,则这三个力构成封闭矢量三角形,然后根据矢量三角形进行动态分析,确定其最大值或最小值.此法简便、直观。

例如:在三角形中一条边a的大小和方向都确定,另一条边b只能确定其方向(即a、b间的夹角θ确定),欲求第三边c的最小值,则必有c垂直于b时最小,且c=asinθ,如下图所示。

(4)极限法:极限法是一种处理极值问题的有效方法,它是指通过恰当选取某个变化的物理量将问题推向极端(如“极大”“极小”等),从而把比较隐蔽的临界现象暴露出来,快速求解.4.解决临界极值问题的基本步骤是:(1)选对象:明确研究对象;(2)析受力:对对象进行受力分析,画出物体的受力示意图;(3)列方程:结合临界条件、极限条件、平衡方程、几何条件列方程;(4)求结果:根据数学方法计算结果并讨论。

动态平衡问题和平衡中的临界极值问题

动态平衡问题和平衡中的临界极值问题

程转入另一个物理过程的转折状态。临界状态也可理解为“恰好出 现”和“恰好不出现”某种现象的状态。 常见的临界状态有: (1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为 两物体间的弹力为0); (2)绳子断与不断的临界条件为作用力达到最大值; (3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为 静摩擦力达到最大。 2.解答临界问题的关键是找到临界条件。
G ,故当绳变长时,θ减小,N、T均减小。A正确。
cos θ


2.如图所示,轻绳OA、OB一端分别固定于天花板上的A、B两点,轻绳 OC一端悬挂一重物。已知OA、OB、OC能承受的最大拉力分别为150 N、100 N、200 N。问悬挂的重物的重力不得超过多少?
答案 173.2 N
解析 设重物重力G较小,三绳所受拉力均没有超过其所能承受的最大 拉力。分析结点O受力情况如图所示。根据共点力平衡可得:
所谓动态平衡问题,是指通过控制某些物理量,使物体的状态发生 缓慢变化,而在这个过程中物体又始终处于一系列的平衡状态。解决此 类问题的常用方法有解析法和图解法。
1-1 (多选)如图所示,物体A用轻质细绳与圆环B连接,圆环固定在竖直 杆MN上。现用一水平力F作用在绳上的O点,将O点缓慢向左移动,使细 绳与竖直方向的夹角θ逐渐增大。关于此过程,下列说法中正确的是
动态平衡问题和平衡中的临界极值问题
知识梳理
一、动态平衡问题
“动态平衡”是指物体所受的力一部分是变力,是动态力,力的大小或 方向要发生变化,但变化过程中的每一时刻的状态均可视为平衡状态, 所以叫动态平衡,这是力平衡问题中的一类难题。 解动态平衡问题两种常用的方法是① 解析法 和② 图解法 。 二、平衡中的临界极值问题 1.临界状态:是从一种物理现象转变为另一种物理现象,或从一个物理过

平衡中的临界极值问题

平衡中的临界极值问题

平衡中的临界和极值问题所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.至于是“出现”还是“不出现”,需视具体问题而定。

极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。

临界问题往往是和极值问题联系在一起的。

平衡物体的临界状态是指物体所处的平衡状态将要被破坏但尚未被破坏的状态。

求解平衡的临界问题一般用极限法。

极限分析法是一种预测和处理临界问题的有效方法,它是指:通过恰当选取某个变化的物理量将其推向极端(“极大”、“极小”、“极右”或“极左”等),从而把比较隐蔽的临界现象(或“各种可能性”)暴露出来,使问题明朗化,以便非常简捷地得出结论。

在平衡中最常见的临界问题有以下两类: 一、以弹力为情景1. 两接触物体脱离与不脱离的临界条件是:相互作用力为零。

2. 绳子断与不断的临界条件是:作用力达到最大值;绳子由弯到直(或由直变弯)的临界条件是:绳子的拉力等于零。

例1:如图所示,物体的质量为2kg ,两根轻绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=60°的拉力F ,若要使两绳都能伸直,求拉力F 的大小范围。

解:作出A 受力图如图所示,由平衡条件有:F .cos θ-F 2-F 1cos θ=0, F sin θ+F 1sin θ-mg =0要使两绳都能绷直,则有:F 10,02≥≥F 由以上各式可解得F 的取值范围为:N F N 33403320≤≤变式训练1:两根长度不一的细线a 和b ,一根连在天花板上,另一端打结连在一起,如图,已知a 、b 的抗断张力(拉断时最小拉力)分别为70N ,80N.它们与天花板的夹角分别为37°、53°, 现在结点O 处加一个竖直向下的拉力F ,(sin37°=cos53°=0.6, cos37°=sin53°=0.8) 求: (1)当增大拉力F 时,哪根细绳先断?(2)要使细线不被拉断,拉力F 不得超过多少?变式训练2两根长度相等的轻绳,下端悬挂一质量为m 的物体,上端分别固定在水平天花板上的M 、N 点,M 、N 两点间的距离为s ,如图所示,已知两绳所能承受的最大拉力均为T ,则每根绳的长度不得短于__ ____.例2:如图所示,半径为R ,重为G 的均匀球靠竖直墙放置,左下方有厚为h 的木块,若不计摩擦,用至少多大的水平推力F 推木块才能使球离开地面。

专题平衡状态中的临界极值问题

专题平衡状态中的临界极值问题

专题平衡状态中的临界极值问题一、相关基础知识:1、处于静止或匀速直线运动状态的物体所受合外力一定零。

反之,物体所受合外力为零,则一定处于静止或匀速直线运动状态,将这样的状态,称为平衡状态。

2、正确的对物体进行受力分析。

3、运用平行四边形定则或三角形定则按照解题的需要进行力的合成或分解;受多个力的情况下,正确运用正交分解。

4、临界状态是指物体从一种状态变为另一种状态的临界点。

二、典型习题1、质量为m的物体,物体与水平面间的动摩擦因数为μ,最大静摩擦力为F m。

则至少用多大的水平力才能拉动物体?物体被拉动后,需多大的才能维持物体做匀速运动?2、悬挂物体的轻质线能承受最大拉力是物体重力的2倍,用一水平力F将物体拉离原来的位置,细线与竖直方向的夹角β的最大值为多少?3、如图所示,轻质细线下拴一质量为m的小球,在力F作用下,保持细线与竖直方向夹角β不变,当力F与水平方向的夹角为θ多大时,力F最小?最小力为多少?4、质量为m的小物块,与半圆弧面间的动摩擦因数为μ=34,小物块的边长远小于圆弧半径。

最大静摩擦力等于滑动摩擦力。

要使小物块静止于圆弧面上,物块与圆心O 的连线与竖直方向的夹角θ最大为:5、(多选)如图所示,三根承受最大拉力相同的轻质细线OA、OB、OC系于同一点O,悬挂一质量为m的物体。

已知α<β<θ。

现逐渐增大物体的质量,则下列说法正确的是:A.可能OA先断B.可能OB先断C.可能OC先断D.可能OB、OC同时先断6、如图所示,一倾角为α粗糙斜面固定在地面上,斜面顶端装有光滑定滑轮,一细绳跨过滑轮,其一端悬挂质量为m物块,另一端与斜面上的质量为M物体相连,已知M与斜面间的动摩擦因数为μ<tanα,最大静摩擦力等于滑动摩擦力。

要使系统于静止状态,求m的取值范围。

7、如图所示,物体的质量为2kg,两根轻绳AB、AC的一端连接于竖直墙上,另一端系于物体上,两绳都拉直时,AB与水平方向成的角度θ=60O,AC与墙垂直。

平衡中的临界和极值

平衡中的临界和极值

平衡中的临界和极值在生活中,平衡是一个重要的概念。

无论是身体的平衡还是心灵的平衡,我们都需要在各个方面寻找一个稳定的状态。

然而,有时候平衡并不仅仅是指两个方向的均衡,而是涉及到临界与极值的问题。

临界是指我们在寻找平衡时,达到不可忽略的边界状态。

这种状态可能会引起突破或者转折,有时甚至可能导致平衡的破裂。

而极值则是指某一方向上的最大或最小值,是达到理想平衡状态的极限。

平衡中的临界与极值是一个复杂而微妙的主题,不同的领域和情境下有着不同的定义和解释。

在物理学中,临界点是指物质在一定条件下由一种状态转变为另一种状态的边界点。

当水温降低到0摄氏度时,水会从液态变为固态,这个临界点就是冰点。

而极值则可以用来描述物质的特性,比如熔点和沸点。

在生物学中,平衡中的临界与极值也有着重要的意义。

人体的各种生理指标,如体温、血压、血糖等,在一定范围内的波动是正常的,但一旦超出了临界值,就可能导致疾病的发生。

高血压和低血糖都会对身体健康产生重大影响。

此时,我们需要通过药物治疗或生活方式的改变来恢复平衡。

在心理学和哲学中,平衡中的临界与极值是更为抽象而深刻的概念。

心理学家卡尔·荣格提出的个体心理理论中,他认为个人必须在自我和集体无意识之间寻求平衡。

个体心理是我们日常意识所能察觉到的内容,而集体无意识则包含了我们的本能、冲动和潜意识。

荣格认为,只有当个体心理与集体无意识达到平衡时,我们才能达到身心的和谐。

在生活中,平衡中的临界与极值也经常存在。

我们在工作和生活之间寻求平衡时,常常会遇到工作压力和生活满足之间的临界点。

有时候我们会为了工作进入超负荷的状态,但如果长时间处于极限状态,可能会导致身心俱疲。

另放松和休息过多也可能导致懒惰和效率下降。

我们需要在工作和生活之间找到一个合适的平衡点,既能保持高效的工作状态,又能享受生活的乐趣。

与平衡中的临界和极值有关的还有人际关系。

在人际关系中,我们常常需要在个人的利益和集体的利益之间寻求平衡。

平衡中的临界、极值问题

平衡中的临界、极值问题

平衡中的临界、极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.常见的临界状态有:(1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为两物体间的弹力为0);(2)绳子断与不断的临界条件为作用力达到最大值;(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大。

2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.一般用图解法或解析法进行分析.3.解决临界问题和极值问题的方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,依据物体的平衡条件写出物理量之间的函数关系(画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.【例1】如图所示,轻绳OA、OB一端分别固定于天花板上的A、B两点,轻绳OC一端悬挂一重物。

已知OA、OB、OC能承受的最大拉力分别为150 N、100 N、200 N。

问悬挂的重物的重力不得超过多少?【例2】如图所示,质量为m 的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求: (1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.【例3】如图所示,一球A 夹在竖直墙与三角劈B 的斜面之间,三角劈的重力为G ,劈的底部与水平地面间的动摩擦因数为μ,劈的斜面与竖直墙面是光滑的,设劈的最大静摩擦力等于滑动摩擦力.问:欲使三角劈静止不动,球的重力不能超过多少?【例4】如图将质量为m 的小球a 用轻质细线悬挂于O 点,用力F 拉小球a ,使整个装置处于静止状态,且悬线与竖直方向的夹角θ=30°,重力加速度为g ,则F 的最小值为( ) A.√33mg B.12mgC.√32mgD.√2mg随堂练习1.倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G 的物体A ,物体A 与斜面间的动摩擦因数μ=0.5。

§2.6动态平衡、平衡中临界和极值问题

§2.6动态平衡、平衡中临界和极值问题

§2.6 动态平衡、平衡中的临界和极值问题【考点自清】一、平衡物体的动态问题(1)动态平衡:指通过控制某些物理量使物体的状态发生缓慢变化。

在这个过程中物体始终处于一系列平衡状态中。

(2)动态平衡特征:一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。

(3)平衡物体动态问题分析方法:解动态问题的关键是抓住不变量,依据不变的量来确定其他量的变化规律,常用的分析方法有解析法和图解法。

晶品质心_新浪博客解析法的基本程序是:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变物理量与自变物理量的一般函数关系式,然后根据自变量的变化情况及变化区间确定应变物理量的变化情况。

图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。

二、物体平衡中的临界和极值问题1、临界问题:(1)平衡物体的临界状态:物体的平衡状态将要变化的状态。

物理系统由于某些原因而发生突变(从一种物理现象转变为另一种物理现象,或从一种物理过程转入到另一物理过程的状态)时所处的状态,叫临界状态。

临界状态也可理解为“恰好出现”和“恰好不出现”某种现象的状态。

(2)临界条件:涉及物体临界状态的问题,解决时一定要注意“恰好出现”或“恰好不出现”等临界条件。

晶品质心_新浪博客平衡物体的临界问题的求解方法一般是采用假设推理法,即先假设怎样,然后再根据平衡条件及有关知识列方程求解。

解决这类问题关键是要注意“恰好出现”或“恰好不出现”。

2、极值问题:极值是指平衡问题中某些物理量变化时出现最大值或最小值。

平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题。

【重点精析】一、动态分析问题【例1】如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上。

2-3-4-考点强化:平衡中的临界、极值问题

2-3-4-考点强化:平衡中的临界、极值问题

1
3
23
A.2G B. 3 G C.G D. 3 G
解析 对 A 球受力分析可知,因 O、A 间绳竖直,则 A、B 间绳上的 拉力为 0。对 B 球受力分析如图所示,则可知当 F 与 O、B 间绳垂直时
F 最小,Fmin=Gsin θ,其中 sin θ=2ll=21,则 Fmin=21G,故选项 A 正确。
方向上有 F=FTsin θ。当 θ=60°时,FN1= 23m2g,由牛顿第三定律得小
球对半圆柱体的压力大小为 23m2g,B 错误;F=FTsin θ=12m2gsin 2θ, 当 θ=45°时,Fmax=21m2g,C 正确;FN=(m1+m2)g-m2gcos2θ,当 θ=
60°时,FN=m1g+34m2g,当换用半径更大的半圆柱体时,θ 改变,FN 改
17
@《创新设计》
目录
备选训练
【备选训练1】 倾角为θ=37°的斜面与水平面保持静止, 斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ
物体A在斜面上静止 有几个极端情况?各 自的受力情况如何?
=0.5。现给A施加一水平力F,如图示。设最大静摩擦力与
滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能
答案 A
4
@《创新设计》
目录
多维训练
1.如图17,倾角为45°的斜面体A放在水平地面上,A与地面间的动 摩擦因数为0.75,最大静摩擦力等于滑动摩擦力,光滑半球体B静止在 竖直墙和斜面体之间,已知A、B所受重力都为G,若在B的球心处施加 一竖直向下的力F,要保持斜面体静止不动,F的最大值是( )
A.G B.1.5G C.2G D.2.5G
解析 用整体法分析,把两个小球看做一个整体,此整体受到的外力为竖直向下的重 力2mg、水平向左的力F(甲受到的)、水平向右的力F(乙受到的)和细线1的拉力,两水 平力相互平衡,故细线1的拉力一定与重力2mg等大反向,即细线1一定竖直;再用隔 离法,分析乙球受力的情况,乙球受到向下的重力mg,水平向右的拉力F,细线2的 拉力F2。要使得乙球受力平衡,细线2必须向右倾斜。选项A正确。答案 A

平衡中的临界与极值问题(解析版)

平衡中的临界与极值问题(解析版)

突破5平衡中的临界与极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.常见的临界状态有:(1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为两物体间的弹力为0);(2)绳子断与不断的临界条件为绳中张力达到最大值;绳子绷紧与松弛的临界条件为绳中张力为0;(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大。

突破临界问题的三种方法(1)【解析】法根据物体的平衡条件列方程,在解方程时采用数学知识求极值。

通常用到的数学知识有二次函数求极值、讨论分式求极值、三角函数求极值以及几何法求极值等。

(2)图解法根据平衡条件作出力的矢量图,如只受三个力,则这三个力构成封闭矢量三角形,然后根据矢量图进行动态分析,确定最大值和最小值。

(3)极限法极限法是一种处理临界问题的有效方法,它是指通过恰当选取某个变化的物理量将问题推向极端(“极大”、“极小”、“极右”、“极左”等),从而把比较隐蔽的临界现象暴露出来,使问题明朗化,便于分析求解。

2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.一般用图解法或【解析】法进行分析.处理极值问题的两种基本方法(1)【解析】法:根据物体的平衡条件列方程,通过数学知识求极值的方法.此法思维严谨,但有时运算量比较大,相对来说较复杂,而且还要依据物理情境进行合理的分析讨论.学%科网(2)图解法:根据物体的平衡条件作出力的矢量三角形,然后由图进行动态分析,确定极值的方法.此法简便、直观.【典例1】倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5。

现给A施加一水平力F,如图所示。

设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()A.3B.2C.1D.0.5【答案】 A【典例2】如图所示,一球A夹在竖直墙与三角劈B的斜面之间,三角形劈的重力为G,劈的底部与水平地面间的动摩擦因数为μ,劈的斜面与竖直墙面是光滑的,问欲使三角劈静止不动,球的重力不能超过多大?(设劈的最大静摩擦力等于滑动摩擦力)【答案】:球的重力不得超过G【跟踪短训】1. 将两个质量均为m的小球a、b用细线相连后,再用细线悬挂于O点,如图所示。

平衡中的临界与极值问题

平衡中的临界与极值问题

平衡中的临界与极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.常见的临界状态有:(1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为两物体间的弹力为0);(2)绳子断与不断的临界条件为绳中张力达到最大值;绳子绷紧与松驰的临界条件为绳中张力为0;(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大.研究的基本思维方法:假设推理法.2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.一般用图解法或解析法进行分析.例1 重为G 的木块与水平地面间的动摩擦因数为μ,一人欲用最小的作用力F 使木块做匀速运动,则此最小作用力的大小和方向应如何?解析 木块在运动过程中受摩擦力作用,要减小摩擦力,应使作用力F 斜向上,设当F 斜向上与水平方向的夹角为α时,F 的值最小.木块受力分析如图所示,由平衡条件知:F cos α-μF N =0,F sin α+F N -G =0解上述二式得:F =μG cos α+μsin α令tan φ=μ,则sin φ=μ1+μ2,cos φ=11+μ2可得F =μG cos α+μsin α=μG1+μ2cos (α-φ) 可见当α=φ时,F 有最小值,即F min =μG1+μ2答案μG 1+μ2与水平方向成α角且tan α=μ 解决极值问题和临界问题的方法(1)图解法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.(2)数学解法:通过对问题的分析,依据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值). 突破训练1 如图1 所示,质量均为m 的小球A 、B 用两根不可伸长的轻绳连接后悬挂于O 点,在外力F 的作用下,小球A 、B 处于静止状态.若要使两小球处于静止状态且悬线OA 与竖直方向的夹角θ保持30°不变,则外力F 的大小 ( )图1A .可能为33mgB .可能为52mgC .可能为2mgD .可能为mg答案 BCD 解析 本题相当于一悬线吊一质量为2m 的物体,悬线OA 与竖直方向夹角为30°,与悬线OA 垂直时外力F 最小,大小为mg ,所以外力F 大于或等于mg ,故B 、C 、D 正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小。
考点二
栏目索引
答案 (1) (2)60° 解析 (1)物体沿斜面匀速下滑时,物体受力平衡。 对物体进行受力分析,由平衡条件得 mg sin 30°=μmg cos 30°
3 解得μ=tan 30°= 。 3
3 3
(2)设斜面倾角为α时,物体沿斜面匀速向上滑行,其受力情况如图所示, 由平衡条件得: F cos α=mg sin α+Ff FN=mg cos α+F sin α Ff=μFN
B.μ≥
1 tan θ
D.μ≥ cos θ
考点二
栏目索引
答案 B 滑块的受力如图所示,建立直角坐标系,将力F正交分解,由物 体的平衡条件可知,竖直方向有FN=mg+F sin θ,水平方向有F cos θ=Ff≤ μFN。由以上两式联立解得F cos θ≤μmg+μF sin θ。因为力F很大,所以 上式可以写成F cos θ≤μF sin θ,故应满足的条件为μ≥ ,B项正确。
界条件为绳中张力为0。 3.极值问题
平衡物体的极值问题,一般指在力的变化过程中的最大值和最小值问 题。一般用图解法或解析法进行分析。
考点一
栏目索引
例1 物体A的质量为2 kg,两根轻细绳b和c的一端连接于竖直墙上,另 一端系于物体A上,在物体A上另施加一个方向与水平面成θ角的拉力F, 相关几何关系如图所示,θ=60°。若要使两绳都能伸直,求拉力F的大小 范围。(g取10 m/s2)
1 tan θ
考点二
栏目索引
方法技巧 临界与极值问题的分析技巧 (1)求解平衡状态下的临界问题和极值问题时,首先要正确地进行受力 分析和变化过程分析,找出平衡中的临界点和极值点。 (2)临界条件必须在变化过程中寻找,不能停留在一个状态来研究临界 问题,而是要把某个物理量推向极端,即极大或极小,并依此做出科学的 推理分析,从而给出判断或结论。
b绳刚好伸直时,拉力F最大,物体A受力如图乙所示

Fmax sin θ-mg=0
40 3 N mg = 解得Fmax=
故拉力F的大小范围是
20 3 40 3 N≤F≤ N。 3 3
sin θ
3
考点一
栏目索引
变式1 如图所示,轻绳AC与水平面的夹角α=30°,BC与水平面的夹角β= 60°,若AC、BC能承受的最大拉力不能超过100 N,那么物重G不能超过 多少?(设悬挂重物的绳CD强度足够大)
考点一
栏目索引
答案
200 3
3
N
解析 选结点C为研究对象,C点只受三个力且合力为零,所以最简单的 求解方法就是力的合成或分解。
由于重物静止时绳DC对C点的拉力T=G,拉力产生两个效果:拉伸绳BC
和绳AC,其力的矢量关系如图所示。从图中关系可以看出TBC>TAC,即当 重力G增加时,TBC先达到100 N,因此重力G的极限值就等于TBC=100 N时 所对应的T的数值,由几何关系得T= BC =
200 3 不能超过 N。 3
T N,所以重物的重力G cos30 200 3 3
考点一
栏目索引
方法技巧 突破临界问题的三种方法 (1)解析法:根据物体的平衡条件列方程,在解方程时利用数学知识求极 值。通常用到的数学知识有二次函数求极值、讨论分式求极值、三角 函数求极值以及几何法求极值等。 (2)图解法:根据平衡条件作出力的矢量图。如只受三个力,则这三个力 构成封闭矢量三角形,然后根据矢量图进行动态分析,确定最大值和最 小值。 (3)极限法:极限法是一种处理临界问题的有效方法,它是指通过恰当选
考点二
栏目索引
例2 (2017陕西宝鸡联考)如图所示,质量为m的物体放在一固定斜面
上,当斜面倾角为0°时物体恰能沿斜面匀速下滑。对物体施加一大小
为F、水平向右的恒力,物体可沿斜面匀速向上滑行。设最大静摩擦力 等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力 F多大,都不能使物体沿斜面向上滑行,试求:
取某个变化的物理量将问题推向极端(“极大”“极小”“极右”
“极左”等),从而把比较隐蔽的临界现象暴露出来,使问题明朗化,便于 分析求解。
考点二
栏目索引
考点二
1.临界条件
摩擦力临界问题
存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静 摩擦力达到最大。 2.常见的摩擦临界问题 (1)斜面上的物体刚好不上(下)滑:静摩擦力为最大静摩擦力,物体平衡。 (2)保持物体静止在斜面上的最小水平推力:静摩擦力为最大静摩擦力, 物体平衡。 (3)拉动物体的最小力:静摩擦力为最大静摩擦力,物体平衡。
解得F=
mg sin α μmg cos α cos α μ sin α
当cos α-μ sin α=0,即tan α= 3 时,F→∞,即“不论水平恒力F多大,都不能 使物体沿斜面向上滑行”,此时,临界角θ0=α=60°。
考点二
栏目索引
变式2 在机械设计中常用到下面的力学原理,如图所示,只要使连杆AB 与质量为m的滑块所在平面间的夹角θ大于某个值,那么,无论连杆AB对 滑块施加多大的作用力,都不可能使之滑动,且连杆AB对滑块施加的作 用力越大,滑块就越稳定,工程力学上称为“自锁”现象。设滑块与所 在平面间的动摩擦因数为μ,为使滑块能“自锁”,应满足的条件是 ( B ) A.μ≥tan θ C.μ≥sin θ
栏目索引
微专题2 平衡中的临 界与极值问题
总纲目录
栏目索引
总纲目录
考点一
弹力临界问题
考点二
摩擦力临界问题
考点一
栏目索引
考点一
1.临界问题
弹力临界问题
当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡 状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”“刚 能”“恰好”等语言叙述。研究临界问题的基本思维方法是假设推理法。 2.常见的临界状态 (1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为两 物体间的弹力为0)。 (2)绳子断与不断的临界条件为绳中张力达到最大值;绳子绷紧与松弛的临
考点一
栏目索引
答案
20 3 3
N≤F≤
40 3 N 3
解析 c绳刚好伸直时,拉力F最小,物体A受力如图甲所示。
甲 由平衡条件得 Fmin sin θ+Fb sin θ-mg=0 Fmin cos θ-Fb cos θ=0
考点一
栏目索引
mg 20 3 解得Fmin= = N 2sin θ 3
相关文档
最新文档