世界超级电容器发展动态
超级电容器的现状及发展趋势
MOx+C++e-↔ MOxC
超级电容器自面市以来,受到世界各国的广 泛关注。其全球需求快速扩大,已成为化学电源领 域内新的产业亮点。根据美国能源局测算,超级电 容的市场容量从2007 年的40 亿美元增长到2013 年 的120 亿美元,中国市场超级电容2013 年则达到了 31亿元人民币。
1 超级电容器发展进程
早在1879年,Helmholz 就发现了电化学双 电层界面的电容性质,并提出了双电层理论。但 是,超级电容器这一概念最早是于1979年由日本 人提出的。1957年,Becker申请了第一个由高比
图1 双电层电荷分布图
双电层电容器是利用双电层机理实现电荷 的存储和释放从而完成充放电的过程。充电时 电解液的正负离子聚集在电极材料/电解液的界 面双层,以补偿电极表面的电子。尤其是在充 电强制形成离子双层时,会有更多带相反电荷的 离子积累在正负极界面双层,同时产生相当高的 电场,从而实现能量的存储。放电时,随着两极 板间的电位差降低,正负离子电荷返回到电解液 中,电子流入外电路的负载,从而实现能量的释 放。如图2所示。
(1)碳电极 碳材料化学性质稳定,有良好的耐腐蚀性和 导电导热性,是应用最为广泛的电极材料,也是目 前仅有的商业化的超级电容器电极材料。根据电容 器特点和原理,作为超级电容器的优异碳基电极材 料需要具有发达的比表面积、合理的孔容和孔径分 布、良好的导电性和浸润性。材料表面除能产生双 电层电容外,最好能发生赝电容反应。从这些方面 考虑,目前主要的碳基电极材料有活性炭、活性炭 纤维、碳气凝胶、碳纳米管等。 活性炭具有原料丰富、价格低廉、成型性 好、电化学稳定性高、技术成熟等特点,是最早 作为电容器电极的碳材料。根据图5给出的专利 分布情况,我们不难发现活性炭电极的专利申请 量最大,但活性炭的导电性较差,且比电容值相 对较低。因此,开发具有赝电容行为的碳基材料 成为当前的研究热点。目前一些新型碳材料正被 广泛研究用于超级电容器电极材料,其中最有代 表的当属于碳纳米管和石墨烯。
超级电容器研究综述
一、超级电容器的发展与进步(一)概述在古代,人们发现了与琥珀及橡皮相摩擦,引起表面贮存电荷的可能性。
然而这一效应的缘由直到18世纪中叶方被人们理解。
140年后,人们开始对电有了分子原子级的了解。
早期的有关莱顿瓶的发现和研究,开启了电容器的序幕。
之后,电容器不断的发展起来,现如今,其发展起来的电化学超级电容器,已经应用于国防设备、电力设备、通讯设备、铁路设施、电子产品、汽车工业等方方面面,成为当代社会不可缺少的一部分。
电能能够以两种截然不同的方式存贮:一种间接方式是作为潜在可用的化学能,存贮在电池里。
另一种直接的方式,则是以静电学形式将正负电荷置于一个电容器的不同极板之间来存贮电能。
超级电容器在存贮电荷时有着两种原理,一种是通过双电层原理,以非法第模式来存贮电能;而另一种则是法拉第模式,通过发生氧化还原反应来产生赝电容。
目前双电层型超级电容器一般采用碳材料做电极,通过碳材料的大的比表面积来增加双电层的面积,而赝电容型超级电容器一般采用氧化物或聚合物的材料来做为电极。
同时,二者在制作超级电容器的时候也可以并用,从而使得超级电容器也可以划分为对称超级电容器和非对称超级电容器,对称即指电容器的两极的材料相同,非对称则不同。
在电解质方面,超级电容器绝大多数均采用液体电解质,如水及其它有机溶剂。
超级电容器的电化学性能分析有很多方法,但通常都包括以下四种图:循环伏安曲线,恒流充放电曲线,交流阻抗谱,循环稳定性曲线。
通过这四种图可以比较明确地判断出一个超级电容器的电化学性能的好坏,具体判断方法之后会详细说明。
超级电容器有着非常高的功率密度,但是其能量密度却比较低,它有着极好的循环充放电稳定性但是电压窗口却比较窄。
但是人们也在对其进行着不断的研究来改善超级电容器的这些弊端。
(二)超级电容器的原理超级电容器又称为电化学电容器,是介于传统电容器和电池之间的新型电化学储能器件,它的出现填补了Ragone图中传统电容器的高比功率和电池的高比能量之间的空白。
超级电容器的现状及发展趋势
超级电容器的现状及发展趋势一、本文概述随着科技的飞速发展和人类对能源需求的日益增长,超级电容器作为一种新兴的储能器件,正逐渐在能源储存和转换领域崭露头角。
本文旨在全面概述超级电容器的现状及其未来发展趋势,从而为相关领域的研究人员和技术人员提供有价值的参考。
本文将回顾超级电容器的历史发展,探讨其从概念提出到实际应用的过程。
文章将详细介绍超级电容器的基本原理、结构特点以及性能优势,以便读者对其有深入的理解。
在此基础上,文章将重点分析当前超级电容器在各个领域的应用状况,如交通运输、电力储能、电子设备等领域。
同时,文章还将探讨超级电容器在实际应用中面临的挑战和问题,如成本、安全性、寿命等。
本文还将关注超级电容器的未来发展趋势。
随着材料科学、纳米技术、电化学等领域的进步,超级电容器的性能有望得到进一步提升。
文章将预测超级电容器在未来可能的技术突破和市场应用前景,包括新型电极材料的开发、电容器结构的优化、以及与其他能源储存技术的融合等。
本文将全面梳理超级电容器的现状及其未来发展趋势,旨在为读者提供一个清晰、全面的视角,以便更好地把握超级电容器在能源储存和转换领域的发展动态。
二、超级电容器的现状超级电容器,作为一种介于传统电容器和电池之间的新型储能器件,以其独特的性能优势在现代能源领域引起了广泛的关注。
目前,超级电容器的应用已经渗透到了许多领域,包括交通、能源、工业、电子等。
在交通领域,超级电容器以其高功率密度和快速充放电的特性,被广泛应用于电动公交、混合动力汽车以及电动汽车的启动和加速过程中。
超级电容器能够在短时间内提供大量的电能,使车辆在短时间内达到较高的速度,从而提高车辆的动力性能。
超级电容器还可以作为车辆的辅助能源,与电池配合使用,延长车辆的续航里程。
在能源领域,超级电容器被用作风力发电和太阳能发电系统的储能装置。
在这些系统中,超级电容器可以平滑输出电能,避免由于风速和日照强度的不稳定而导致的电能波动。
超级电容器的主要应用领域..
超级电容器的主要应用领域超级电容器发展展望:超级电容器也叫做电化学电容器,是介于传统电容器和充电电池之间的一种新型储能装置,比容量为传统电容器的20~200倍,比功率一般大于1000W/kg,循环寿命大于100000次,可储蓄的能量比传统电容要高得多,并且充电快速。
由于它们的使用寿命非常长,可被应用于终端产品的整个生命周期。
而且超级电容器对环境无污染,可以说,超级电容器是一种高效、实用、环保的能量储蓄装置。
当高能量电池和燃料电池与超级电容器技术相结合时,可实现高比功率、高比能量特性和长的工作寿命。
近年来,由于超级电容器在新能源领域所表现出的朝阳产业趋势,许多发达国家都已经把超级电容器项目作为国家重点研究和开发项目,超级电容器的国内外市场正呈现出前所未有的蓬勃景象。
依照美国国家能源局的数据预测,超级电容器在全球市场的容量预计将从2007年的4亿美元发展到2013年的120亿美元(见下图1),其中,在电动汽车/新能源汽车领域的市场规模有望在2013年达到40亿美元,在消费电子领域的市场规模有望在2013年达到30亿美元,在工业(风力发电、轨道交通、重型机械等)领域的市场规模有望在2013年达到40亿美元。
根据中商情报预测,截至2014年,我国超容产业的增长率都在30%以上。
超级电容器的主要应用领域:1.超级电容器在太阳能能源系统中的应用太阳能源的利用最终归结为太阳能利用和太阳光利用两个方面。
太阳能发电分为光伏发电和光热发电,其中光伏发电就是利用光伏电池将太阳能直接转化为电能。
光伏发电不论在转化效率、设备成本和发展前景尚都远远强于光热发电。
自从实用型多晶硅的光伏电池问世以来,世界上就便开始了太阳能光伏发电的应用。
目前,太阳能光伏发电系统有三个发展方向:独立运行、并网型和混合型光伏发电系统。
在独立运行系统中,储能单元一般是必须有的,它能将由日照时发出的剩余电能储存起来供日照不足或没有日照时使用。
目前,国际光伏能源产业的需求开始由边远农村和特殊应用向并网发电与建筑结合供电的方向发展,光伏发电已有补充能源向替代能源过渡。
超级电容器的发展现状
超级电容器的发展现状超级电容器(Supercapacitor),又称超级电容、超级电池、电化学超级电容等,是一种新型的能量存储装置。
与传统的电化学电池不同,超级电容器能够以更高的功率进行快速的充放电,其理论上的寿命更长,并且可以进行成千上万次的充放电循环。
目前,超级电容器的发展进展如下:1. 提高能量密度:超级电容器的能量密度一直是其发展中的关键问题。
近年来,研究人员通过改进电极材料、电解质和结构设计等方面的创新,使得超级电容器的能量密度获得了显著提高。
目前商业化的超级电容器已经能够达到100 Wh/kg,高能量密度的材料和结构设计研究也在不断进行中。
2. 提高功率密度:超级电容器的功率密度是其另一个重要指标。
功率密度指的是电容器能够在短时间内释放大量电能的能力。
近年来的研究表明,通过设计新的纳米结构和提高电解质导电性等方法,已经能够将超级电容器的功率密度提高到几千瓦/千克以上。
这使得超级电容器在需求瞬时高能量输出的领域,例如电动汽车的启动和制动系统,具有广阔的应用前景。
3. 提高循环寿命:超级电容器的循环寿命(即充放电循环次数)也是一个重要指标。
通过改善电极材料的结构和化学稳定性等方面的研究,已经成功地提高了超级电容器的循环寿命。
目前,一些商业化的超级电容器已经可以进行百万次的充放电循环,这使得超级电容器相比传统电化学电池更加持久耐用。
4. 增加应用领域:超级电容器因其快速充放电和长寿命的特点,在一些特定的领域已经开始商业化应用。
例如,超级电容器已经被广泛应用于电动车、电力电子设备、可再生能源储能系统等。
此外,超级电容器还在智能电网、医疗设备、航空航天等领域也有广阔的发展前景。
综上所述,超级电容器在能量密度、功率密度和循环寿命等方面都取得了显著的进展。
未来,随着科学技术的不断进步,超级电容器有望在更多领域发挥重要作用,并逐渐替代传统的电化学电池,成为一种重要的能量存储装置。
国内外超级电容器的研究发展现状
国内外超级电容器的研究发展现状作者:周晓航方鲲李玫来源:《新材料产业》 2015年第3期文/ 周晓航方鲲李玫1. 北京纳盛通(NST) 新材料科技有限公司2. 北京热塑性复合材料工程技术研究所超级电容器与新能源产业密切相关,它可以应用于各个不同的领域,如电动汽车等产业,并带动下游产业发展,近年来许多研究者都很有兴趣。
本文介绍了超级电容的背景,从理论上解释了超级电容器的电化学工作原理,并从工作原理上划分了几类超级电容器电极材料,最后从电容器设计的角度介绍了国内外的研究进展。
一、超级电容器的研发背景第一次工业革命以来,人口不断增长,全世界现代化自动化程度不断地进步和革新,能源的需求量也越来越大。
然而,传统的化石能源有不断消耗殆尽的趋势。
再加上数十年大量化石能源的消耗给地球环境带来了巨大影响。
例如,温室气体导致全球变暖和它所引发的一系列环境问题,大量能源开采对地质环境改变造成的诸多问题,燃烧化石能源产生的粉尘导致了空气恶化。
有数据显示近几年人类癌症病发率显著增加,可以断定是环境因素所引发。
因此,寻找新的可再生替代能源是维持人类可持续发展的唯一途径,也成为了本世纪众多科学家研究的重点课题。
可再生能源如风能、潮汐能、太阳能、生物质能等,储能技术将可以有效地将这些可再生能源转化为可稳定输出的能源,来匹配人类对能源的需求。
超级电容器,也被称为电化学电容器,提供了一个电能储存和传递的模型,和电池一样是电化学储能技术的一种。
目前超级电容器已在很多小型电子设备中应用。
它如果与锂离子电池结合应用在电动车中,可以大大提高现有电动车性能,如更快的启动和爬坡速度、充电更快、电池寿命更长等。
第一台超级电容器在1957年被公开,它利用典型的多孔碳作为电极活性材料。
随后一种叫做电动电容器出现,它利用多孔碳在无水电解液中使用,可被充电到3V。
需要注意的是,这个装置的操作原理并非电动力学,电动电容器是一个错误的命名。
在1971年,研究人员认识到氧化钌的电化学特性类似电容器[1]。
超级电容器技术简介
超级电容器技术的研究背景及发展现状1. 研究背景随着科技的进步及社会文明程度的提高,能源问题已成为人类社会可持续发展战略的核心,是影响当前世界各国能源决策和科技导向的关键因素,同时,也是促进能源科技发展的巨大推动力。
进入二十一世纪之后,能源短缺和环境恶化的问题日益严重,这促使人们应更加重视建立确保经济可持续增长、有利于环境的能源供应体系,节能和扩大新能源开发利用成为世界性的趋势。
石油作为一种不可再生资源,随着人类需求的不断增长,已面临严重的短缺,并由此不断引发全球性的社会、经济、政治问题。
而且,全球燃油汽车消费量的不断增加,燃油汽车排放的NO x和CO x对全球环境带来严重污染,并导致地球温室效应。
开发更加清洁、环保的电动汽车被认为是解决能源问题和环保问题的一条有效途径,目前已成为全球性的研究热点。
电动汽车的研究经过多年的研发,特别是最近十年来的集中研究,已经对电动汽车有了比较统一的认识。
纯电动汽车(镍氢电池或锂离子电池作主电源)适合于短途应用,燃料电池电动车由于技术和成本因素在二十到三十年内不具备商业化应用的竞争力,而混合电动车(“油+电”混合,)被认为是最接近商业化的技术模式。
“油+电”混合电动车中的“电”主要是指二次电池,主要包括铅酸电池、镍氢电池和锂离子电池。
目前,商品化的二次电池虽然具有较高的比能量,但比功率都很低,一般不超过500W/kg,而且电池在高脉冲电流放电或大电流充电时会影响其使用寿命,并引起电池内部发热、升温,存在安全隐患。
燃料电池同样是一种低比功率的储能元件,耐大电流充放电能力差。
单独使用电池作为动力电源无法满足电动汽车对电源系统的要求。
从能源的利用形态来看,电能作为能量利用的最终形态,已成为人类物质生产和社会发展不可缺少的“源动力”。
近年来,小型分立的可移动电源的发展更是增加了电能的利用形式和应用范围。
电能除了通过固有的电网系统应用于工业和家庭生活外,通过可移动电源(如铅酸、镍镉、镍氢、锂离子电池)等“承载体”更是成为随时随地均可便捷使用的动力源,极大方便了人们的物质文化生活。
超级电容器技术的研究与发展趋势分析
超级电容器技术的研究与发展趋势分析第一章:引言超级电容器是一种新型的电化学器件,它具有高能量密度、高功率密度、长寿命、低内阻、低温容性等优点,在许多应用领域中有着广泛的应用前景,如储能系统、电动汽车、扩频通信、照明电源等领域。
本文将对超级电容器技术的研究与发展趋势进行分析,以期能够对相关领域的研究人员和工程师有所帮助。
第二章:超级电容器概述超级电容器是一种电化学器件,其具有高功率密度、高能量密度、长循环寿命、低内阻、低温容性等特点。
超级电容器的结构主要由金属电极、多孔质电介质、电解质、导体等组成。
其工作原理是利用电介质的孔隙结构和金属电极的导电性质,将电荷储存在电介质表面和金属电极之间的双电层中,并通过外部电路来实现能量的存储和放电。
超级电容器与锂离子电池相比,具有高功率密度、快速充放电、长寿命等优点。
但是其能量密度较低,循环稳定性较差,运行成本较高等不足之处,需要进一步加强研究和开发。
第三章:超级电容器的研究现状目前,超级电容器的研究主要集中在电极材料、电解质、导电质、包覆材料、制造工艺等方面。
1、电极材料超级电容器的电极材料主要包括活性炭、纳米碳管、金属氧化物等。
其中,活性炭具有高比表面积、孔隙度和良好的化学稳定性等优点,但其导电性和机械强度较差,需要进一步改进;纳米碳管具有较好的导电性、力学性能和高比表面积,但其生产成本较高;金属氧化物材料具有良好的电化学性能和耐久性能,但其往往具有低的电导率和比表面积。
2、电解质超级电容器的电解质主要包括有机溶剂、离子液体、凝胶聚合物等。
其中,离子液体具有较好的热稳定性和电化学稳定性,但其较高的粘度和成本限制了其应用;凝胶聚合物具有较好的保水性、热稳定性和化学稳定性,但其导电性差,需要进一步加强研究。
3、导电质超级电容器的导电质主要包括碳黑、金属纳米颗粒、聚苯胺等。
其中,碳黑具有良好的导电性和良好的机械稳定性,但其电化学性能较差;金属纳米颗粒具有优良的电化学性能、导电性能和高表面积等特点,但其较大的粒径限制了其应用;聚苯胺具有良好的导电性和化学稳定性,但其制备成本较高。
2023年超级电容行业市场分析
超级电容行业在近年来呈现出稳步增长的态势。根据市场研究公司 Technavio的数据,2018年至2021年期间,全球超级电容市场规模增 长了23%,达到约30亿美元。预计到2024年,这一数字将增长到约40 亿美元。
2.超级电容行业终端用户分析
从市场结构来看,超级电容行业主要由电池和电源解决方案供应商、汽 车制造商、电子设备制造商以及电力公司等终端用户组成。电池和电源 解决方案供应商如Nippon Chemi-Con、NPC等公司在超级电容市场 中占据主导地位,而汽车制造商如特斯拉、大众等也在积极布局超级电 容领域。
3.超级电容行业竞争激烈,传统企 业与新兴企业共同角力
超级电容行业的竞争格局正在发生变化。一方面,传统超级电容制造商 如NPC、Nippon Chemi-Con等正在加强研发投入,以提高产品性能 和降低成本。另一方面,新兴企业如Power Electronics、SuperC电容 等也在凭借技术创新和成本优势在市场中崭露头角。
超级电容行业市场发展趋势
超级电容行业市场概览
超级电容行业市场概述
超级电容行业市场发展潜力巨大
超级电容行业市场发展趋势
超级电容市场预计复合年增长8.5%
根据最近的市场研究报告,超级电容行业市场正在经历显著的增长。2019年,全球超级电容市场规模为37.9亿美元,预计到2027年将达到87.1亿美元,在预测期内的复合年增长率为8.5%。其中,亚洲市场增长最快,占全 球市场份额的40%,其次是北美和欧洲,分别占全球市场份额的25%和20%。
同时,随着技术的发展,超级电容的性能也在不断提高。超级电容的能量密度已经提高了50倍,这使得它们在许多应用中成为可行的替代品,例如电动汽车和风能发电。此外,超级电容的寿命也在延长,使其成为长期储能 解决方案的有希望的候选者。
超级电容器发展现状
超级电容器发展现状
超级电容器是一种新型的电化学储能装置,具有高能量密度和高功率密度的特点,被广泛用于电动车、电网储能等领域。
目前,超级电容器的发展正处于快速增长的阶段,如下所述:
1. 技术改进:超级电容器技术在材料、结构和工艺方面都进行了重大突破和改进。
例如,采用新型电极材料、电解液和分离膜,可以提高能量密度和电容器的循环寿命。
2. 提高能量密度:超级电容器的能量密度一直是其发展的瓶颈,但近年来有了显著提高。
研究人员通过改善电极和电解液材料的性能,以及优化电容器结构,成功地提高了能量密度,并逐渐实现了与传统电池的竞争。
3. 增强循环寿命:超级电容器的循环寿命一直是限制其商业应用的一个关键问题。
近年来,通过优化电极材料、改进电极结构和添加电解液添加剂等手段,使得超级电容器的循环寿命得到了显著改善,并且能够满足许多应用的要求。
4. 应用领域扩大:随着技术的进步和成本的降低,超级电容器的应用领域正在不断扩大。
除了传统的电动车和电网储能应用,超级电容器还被应用于移动设备、智能家居、医疗器械等领域,为这些领域提供了更高效、更可靠的储能解决方案。
5. 市场前景广阔:超级电容器作为一种非常有前景的储能技术,其市场潜力巨大。
根据市场研究报告,预计到2030年,全球
超级电容器市场规模将达到数十亿美元,并且持续增长。
综上所述,超级电容器的发展正处于一个快速增长和改进的阶段。
未来,随着技术的不断创新和应用领域的扩大,超级电容器有望成为能源存储领域的重要组成部分,为我们的生活带来更多便利和可持续发展的机会。
超级电容器的发展现状和未来趋势分析
超级电容器的发展现状和未来趋势分析超级电容器作为一种新型储能设备,具有高能量密度、高功率密度、长寿命等优势,正逐渐引起全球能源领域的关注。
本文将从超级电容器的发展现状和未来趋势两个方面进行分析。
一、超级电容器的发展现状目前,超级电容器的应用领域主要集中在储能领域和传感器领域。
在储能方面,超级电容器因其高功率密度和长寿命的特点,被用于替代传统电池,为运动器械、电动车辆等提供高效的储能方案。
而在传感器领域,超级电容器因其快速响应和长寿命的特点,被应用于无线传感器网络、智能手机等领域。
然而,超级电容器在发展过程中仍然面临一些挑战。
首先,超级电容器的能量密度相对较低,无法满足某些高功率应用的需求。
其次,超级电容器的制造成本较高,限制了其大规模应用的推广。
最后,超级电容器的寿命和循环稳定性仍然存在问题,需要进一步改进和优化。
二、超级电容器的未来趋势1.材料与制备技术的突破超级电容器的材料与制备技术是推动其发展的关键因素。
未来,随着纳米技术、材料科学等领域的进步,预计会出现更多新型材料和制备技术,从而提高超级电容器的能量密度、功率密度和循环寿命等性能指标。
2.与其他能源存储技术的结合超级电容器作为一种储能设备,与其他能源存储技术的结合将进一步完善能源存储系统。
例如,将超级电容器与锂离子电池相结合,可以克服锂离子电池的长充电时间和寿命限制,为应用提供更高效的电力支持。
3.高倍率充放电技术的突破高倍率充放电是超级电容器面临的另一个挑战。
未来,预计会有更多的研究关注如何提高超级电容器的充放电速度,以满足各种高功率应用的需求。
4.应用领域的扩展随着技术的进步和超级电容器性能的改进,其应用领域将得到进一步拓展。
除了储能和传感器领域,超级电容器还有望应用于智能电网、新能源汽车、航空航天等领域,为人们的生活和产业发展带来更多便利。
综上所述,超级电容器作为一种新型储能设备,具有广阔的发展前景。
未来,超级电容器的发展将得到材料与制备技术的突破,与其他能源存储技术的结合,高倍率充放电技术的突破以及应用领域的扩展。
超级电容电池【发展背景+实际案例】
发展状况简介:目前超级电容电池的研发情况超级电容器是上世纪80年代后发展起来的新型储能器件,在欧洲、美国、日本已经开始形成新兴的产业。
国外研发情况从1990年开始,世界各国开始成立专门机构开发和生产超级电容器,目前,在该技术领域中处于领先地位的国家有俄罗斯、日本、德国和美国,这些发达国家已把超级电容器项目作为国家重点研究和开发项目,并提出了近期和中长期发展计划。
在超级电容器的实用性方面,俄罗斯走在世界的前列。
国内研发情况我国从九十年代开始研制超级双电层电容器,与国外先进水平还有一定的差距。
据有关资料表明,国内有些单位已经研制出比能量为10Wh/kg、比功率为600W/kg的高能量型及比能量为5Wh/kg、比功率为2500W/kg的高功率型超级电容器样品,循环使用次数可达50,000次以上。
性能指标已经达到国际先进水平,成本较国际平均价格有大幅度下降,初步具备应用水平。
目前,国内厂商大多生产液体双电层电容器,重要企业有锦州富辰公司、北京集星公司、上海奥威公司、锦州锦容公司、石家庄高达公司、北京金正平公司、锦州凯美公司、大庆振富公司、江苏双登公司、哈尔滨巨容公司、南京集华公司等十多家。
据称,国产超级电容器已占有中国市场60%~70%的份额。
国内从事大容量超级电容器研发的厂家共有50多家,然而,能够批量生产并达到实用化水平的厂家不到20家。
国内厂商大多生产液体双电层电容器,重要企业有锦州凯美能源(原锦州富辰、锦州锦容)、北京集星电子、上海奥威等十多家。
锦州凯美能源是国内最大的超级电容器专业生产厂,主要生产纽扣型和卷绕型超级电容器。
北京集星可生产卷绕型和大型电容器,而上海奥威产品多集中在车用超级电容器上。
国内厂商很注重超级电容器的大功率应用,如环保型交通工具、电站直流控制、车辆应急启动装置、脉冲电能设备等。
在超级电容器的产业化方面,美国、日本、俄罗斯、瑞士、韩国、法国的一些公司凭借多年的研究开发和技术积累,目前处于领先地位,如美国的Maxwell,日本的NEC、松下、T okin和俄罗斯的Econd公司等,这些公司目前占据着全球大部分市场。
超级电容器的现状及发展趋势综述
文献综述超级电容器的现状及发展趋势目录1 前言2 超级电容器发展现状3 超级电容的特点4 超级电容器电压均衡技术解决方案5 超级电容器的发展趋势与展望6 小结21.前言随着化石能源资源的日益匮乏和人们强烈的环保意识,有力地促进了太阳能和风能等可再生能源的发展。
但太阳能、风能具有波动性和间歇性,需要有效的储能装置保证其能够稳定的在电网中并网工作。
同时,电动汽车产业的快速发展也迫切需要发展低沉本、环境友好、能量密度高的储能装置。
超级电容器也叫做双电层电容器是一种具有高能量密度的新型储能元器件,它可提供大功率并具有超长寿命,是一种兼备电容和电池特性的新型元件,在混合动力电动车、脉冲电源系统和应急电源等领域具有广泛的应用前景。
而对于大功率系统来说,由于超级电容单体的电压值和能量都比较低,不能满足应用系统功率、放电时间及电压要求。
为满足实际应用工况的电压需求,需将多个单体串并联以提高储能模块的工作电压,单体电容器参数的分散性是制约超级电容器模块寿命和可靠性的主要因素。
然而市面上同一型号规格的超级电容器在电压、内阻、容量等参数上存在着不一致,并且在超级电容器使用过程中,工作环境不同以及电压不均匀的积累又加剧了超级电容器的参数不一致性。
这种离散性极易造成超级电容的过充或过放,从而影响系统的使用寿命和可靠性。
因此,研究和实现超级电容器的电压均衡对于提高超级电容器的整体性能是十分必要和关键的技术。
基于此本文将主要对超级电容器的发展现状、优缺点、电压均衡方法及未来的发展趋势进行阐述。
2.发展现状超级电容器利用双电层原理直接存储电能,其容量可达数万法拉,是介于蓄电池和传统电容器之间的一种新型储能装置。
超级电容器储存的能量E=25.0V C ⨯⨯,与容量C 和工作电压V 的平方成正比,具有较大的比电容、充电时间短、使用寿命长、温度特性好、节约能源和绿色环保的特点。
同时,与化学电源相比较,超级电容具有跟高的比功率,能够在短时间内释放化学电源所难达到的大电流,这一性质很好带地满足了某些电设备对瞬时大电流的需求,具有很大的发展潜能。
国内外超级电容器的发展状况(Ⅱ)
美 国 的 Pn a l R s ac n t ue ( R ) in ce e e rh Isi t P 1 t
电化学双 电层 超 级 电容器 与蓄 电池 组合 应 用 具备 以下优 点 :保证 发 电机 平稳 启动 :工 作 温度
容器 还 可用于 需 要高脉 冲功率 放 电模式 的任 何 装
置 或短 时需求 的备 用能 源 ,如 电信 系统 、大型计 算机 房 的备用 电源 、新 型激 光武器 或 电磁 武器 电 源。 小型 的超 级双层 电容 器作 为存储 备 用 电源 系
统在 电器 方面 的应 用 已有接 近 1 0年 了 , 比如 收
目前 日本 的 P n s nc公 司在 小 型超 级 电容 aao i
器 的研 发和商业 化方面 处于领 先地位 ,其 3V1 0 5 0
F的超 级 电容 器 经 过 Ia oN t n l n i e i d h ai a E gn r g o e n
L b rt r 测 ,性 能 如 下 :重量 2 0g a oaoy检 9 ,体 积 6 3 c ,重 量 比 能 量 3 W hk ,体 积 比 能 量 9 m。 /g
范 围宽 ( 5 一 0~7 0℃ ) :在 瞬 间 高 电压 和短 路 高
在 军用超 级 电容 器 的研 发和 商业 化 方面 处于 领 先 地 位 ,其主 要开 发 的是 过渡 金属 氧化 物超 级 电容 器 ,P l R 的装 置采 用 了在 钽 基体 上 形成 的一 薄层
电流情 况 下 ,能起缓 作 用 ,使 能量 系统 保 持稳 中
传 统 储 能装 置 进 行 了 比较 ,得 出超 级 电容 器 具 有 的特 点 和 优 势 。 关 键 词 :超 级 电容 器 ;工 作 原 理 ; 分类 ;常 见 储 能 装 置
2023年超级电容器行业市场调研报告
2023年超级电容器行业市场调研报告超级电容器是一种逐渐受到关注和重视的储能设备,其具有高能量密度、高功率密度、快速充放电和长寿命等特点,被广泛应用于电子、汽车、照明、电源等领域。
本报告通过对超级电容器行业的市场调研,对该产业的现状、发展趋势和竞争状况做出了分析和策略建议。
一、产业现状1、市场容量超级电容器是一种新兴的储能设备,全球市场规模在逐年扩大。
据市场分析,超级电容器行业的市场规模预计将从2021年的60.3亿美元增长到2028年的163.2亿美元。
其中,亚太地区是超级电容器市场的主要增长动力,占据了绝大部分市场份额。
2、应用领域目前,超级电容器主要应用于以下领域:(1)电动汽车超级电容器作为一种辅助储能设备,可以辅助电池储能系统平衡电流和电压,提高车辆动力性能和续航里程。
(2)可再生能源超级电容器可以在瞬间接收和释放大量电能,解决可再生能源发电的波动性问题,提高能源利用率和稳定性。
(3)工业自动化超级电容器可以提供大量的瞬间电能,为机器和设备提供瞬时的电源支持,在电网电压波动或中断时保证稳定的能源供应。
(4)物联网超级电容器可以为小型设备和传感器等提供小功率电源支持,延长其使用寿命并提高性能。
二、发展趋势随着科技的进步和市场需求的变化,超级电容器行业将会迎来以下几个发展趋势:1、技术创新超级电容器行业将会不断推出新产品和新技术,如高能量密度、高功率密度、长寿命等,以满足市场需求。
2、应用拓展随着超级电容器技术的不断成熟和市场需求的增加,超级电容器的应用领域将会不断拓展,如风力发电、太阳能电池、电动自行车、航空航天等领域。
3、市场竞争加剧随着市场规模的不断扩大和应用领域的不断拓展,超级电容器行业的市场竞争将会加剧,各家企业将会进一步提高技术水平和市场营销能力。
三、竞争状况当前,全球超级电容器行业的竞争局面已经形成,主要企业包括日本的日立化成、美国的Maxwell、韩国的LS Mtron等。
电化学储能技术中的超级电容器
电化学储能技术中的超级电容器电化学储能技术早在1990年代就开始了,但直到最近几年才开始普及。
超级电容器是其中一个重要部分,中文里也称为超级电容器或电化学电容器。
和传统的电池不同,超级电容器可以快速地储存和释放能量,以及具有很长的使用寿命和高的效率。
一、超级电容器的原理和发展历史超级电容器是基于电荷积累原理的。
原理非常简单,就是两个电极之间通过电解质相互联系,作为介质进行电荷的储存,具有储能和快速放电的特性,并具有长寿命和可重复使用的优点。
超级电容器在1860年就被发明了。
在变电站和其他大电容器中使用铝箔和电解液充当超级电容器,是一种广泛使用的电子元件。
1957年,一款高电容电池产品问世,将超级电容器应用于商业产品,飞利浦是其中一家,该产品被称为电容性电池电解质。
充电、放电和移动商品储备金的商业应用被广泛实施。
1991年,Ning Pan博士在南加利福尼亚大学发明了超级电容器的一种新型,开创了第一代炭电容器。
比起传统的电化学电容器,新型电容器充放电速度更快,能量密度更高。
自那以后,超级电容器在各个领域得到快速的发展。
二、超级电容器与传统电池的区别传统电池使用化学能储存能量,通过化学反应才能释放能量。
电池储存能量的容量是电化学反应的结果。
电池的储能量密度更高,但充电和放电速度较慢。
而超级电容器使用电场来储存能量,极板的间距和吸附体系确定了储能量。
超级电容器的储能效率较高,充电和放电速度非常快。
三、超级电容器的应用1. 光伏发电与储能系统。
超级电容器可以在短时间内存储大量的电量,并在光伏发电过程中平衡电流,解决电压波动和突发负载等问题。
2. 汽车领域。
超级电容器可以作为汽车能量储存单元,用于启动、加速、导航等电子器件,同时因为其长寿命和高效性能具备了较强的市场竞争力。
3. 船舶领域。
使用超级电容器来平衡电力系统负载和稳定船舶行驶,可以大大提高船舶的运营效率。
4. 其他领域。
超级电容器也可以用于通信和智能电网系统,甚至在简单的家庭电器中也有应用。
超级电容储能发展历史
超级电容储能发展历史超级电容储能是一种能够高效储存和释放电能的先进技术。
它的发展历史可以追溯到上世纪60年代初,当时科学家们开始研究电化学电容器,以寻找一种比传统电池更高效的能量储存方式。
最初的电化学电容器是由两个电极和一个电解质组成的,通过在电极上施加电压,电荷可以在电极和电解质之间移动,实现能量的储存和释放。
然而,由于电极材料的限制,这种电容器的能量密度很低,无法满足实际应用的需求。
随着科学技术的不断进步,研究人员开始寻找新的电极材料,以提高电化学电容器的能量密度。
在20世纪80年代,碳材料被引入到电容器中作为电极材料,这种新型电容器被称为超级电容器。
碳材料具有很高的比表面积和导电性能,可以大大增加电容器的能量密度。
在超级电容器的发展过程中,研究人员还不断改进电解质和电极结构,以提高电容器的性能。
一种重要的改进是使用活性材料作为电极,这可以增加电容器的能量密度,并扩大其应用范围。
例如,金属氧化物和导电聚合物等材料被广泛应用于电极制备中。
随着对超级电容器研究的深入,人们发现它具有很多优点。
首先,超级电容器的充放电速度非常快,可以在几秒钟内完成充放电过程。
其次,超级电容器具有很长的寿命,可以进行数万次的充放电循环。
此外,超级电容器还具有较高的功率密度和较低的内阻,可以满足高功率应用的需求。
超级电容器的发展为许多领域带来了新的机遇。
在交通运输领域,超级电容器可以用于回收制动能量,并提供额外的动力输出。
在可再生能源领域,超级电容器可以与太阳能电池和风力发电机等设备结合使用,平衡能源供应和需求。
此外,超级电容器还可以应用于电网调峰、储能系统和便携设备等领域。
总的来说,超级电容器的发展经历了数十年的研究和改进。
通过不断改进电极材料、电解质和电极结构,超级电容器的能量密度和性能得到了显著提高。
超级电容器的应用范围也不断扩大,为各个领域的发展带来了新的机遇。
相信随着科学技术的不断进步,超级电容器将在未来发挥更重要的作用,为人类创造更加绿色、高效的能源未来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题特写:电容53今日电子 · 2008年12月世界超级电容器发展动态国际电气电子工程师学会高级会员 于凌宇濮阳职业技术学院教授级高级工程师 冯玉萍超级电容器又称超大容量电容器、金电容、黄金电容、储能电容、法拉电容、电化学电容器或双电层电容器(英文名称为EDLC,即Electric DoubleLayer Capacitors),是靠极化电解液来存储电能的新型电化学装置。
它是近十几年随着材料科学的突破而出现的新型功率型储能元件,其批量生产不过几年时间。
超级电容器自面市以来,全球需求量快速扩大,已成为化学电源领域内新的产业亮点。
超级电容器在电动汽车、混合燃料汽车、特殊载重汽车、电力、铁路、通信、国防、消费性电子产品等众多领域有着巨大的应用价值和市场潜力,被世界各国所广泛关注。
美国《探索》杂志2007年1月号,将超级电容器列为2006年世界七大科技发现之一,认为超级电容器是能量储存领域的一项革命性发展,并将在某些领域取代传统蓄电池。
全球超级电容器技术生产新动态目前全球已有上千家超级电容器生产商,可以提供多种类的超级电容器产品,大部分产品都是基于一种相似的双电层结构,采用的工艺流程为:配料→混浆→制电极→裁片→组装→注液→活化→检测→包装。
超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型,三者在容量上大致归类为5F以下、5~200F、200F以上。
钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中。
而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件。
2007年,全球钮扣型超级电容器产业规模为10.2亿美元,卷绕型和大型超级电容器产业规模为34.8亿美元,超级电容器产业总规模为45亿美元,同比增长45%;预计2008年全球钮扣型超级电容器产业规模为15.3亿美元,卷绕型和大型超级电容器产业规模为为52.2亿美元,超级电容器产业总规模为67.5亿美元,同比增长50%。
在超级电容器的产业化方面,美国、日本、俄罗斯、瑞士、韩国、法国的一些公司凭借多年的研究开发和技术积累,目前处于领先地位,如美国的Maxwell,日本的NEC、松下、Tokin和俄罗斯的Econd公司等,这些公司目前占据着全球大部分市场。
我国超级电容器技术生产新动态近年来,由于看好这一领域广阔的应用前景,中国一些公司也开始积极涉足这一产业,并已经具备了一定的技术实力和产业化能力。
目前国内从事大容量超级电容器研发的厂家共有50多家,然而,能够批量生产并达到实用化水平的厂家只有10多家。
2005年,中国超级电容器产业总规模达到3.9亿元人民币,较2004年的2.48亿元增长57.2%,其中,纽扣型超级电容器为4千万元,卷绕型和大型超级电容器为3.5亿元。
2006年产业总规模达到5.7亿元人民币,增速高达46.2%。
其中,钮扣型超级电容器市场规模为9千万元,卷绕型和大型超级电容器为4.8亿元。
2007年产业总规模达到8.6亿元人民币,增速高达50%。
其中,钮扣型超级电容器市场规模为1.4亿元,卷绕型和大型超级电容器为7.2亿元。
预计2008年产业总规模可达13.3亿元人民币,增速可达55%。
其中,钮扣型超级电容器市场规模可达2.1亿元,卷专题特写:电容今日电子 · 2008年12月54绕型和大型超级电容器市场规模可达11.2亿元。
目前,国内厂商大多生产液体双电层电容器,重要企业有锦州富辰公司、北京集星公司、上海奥威公司、锦州锦容公司、石家庄高达公司、北京金正平公司、锦州凯美公司、大庆振富公司、江苏双登公司、哈尔滨巨容公司、南京集华公司等十多家。
据称,国产超级电容器已占有中国市场60%~70%的份额。
由于新兴公司不断涌现,超级电容器在国内的大规模应用也渐行渐近。
国内供应商正积极地从不同角度来应对规模应用所面临的问题。
例如,由于是一个相对较新的产业,国内供应商目前正积极地进行市场及技术推广工作,越来越多的买家也逐步开始了解并认可超级电容器。
此外,目前供应商正积极从事应用开发,帮助买家开发出成熟的替代方案。
在克服大功率应用超级电容器一次性投入成本较高的问题上,国内供应商也在通过提高其性价比方面积极努力。
业内人士指出,超级电容器相对蓄电池的优越性要靠性价比来体现。
以铅酸蓄电池为例,目前一般可充放电5000次,但超级电容器理论上的充放电次数可达数万次乃至数十万次,就实际水平而言,国内某些厂商的超级电容器已经可以实现充放电20 000次。
这样一来,如果超级电容器在使用寿命上是蓄电池的4~5倍,而价格却仅为其3倍左右,就可以体现出更具竞争优势的性价比。
在具体应用开发上,国内供应商已经开始在各自擅长的领域取得具体应用成果。
在小功率应用超级电容器方面,国内不少厂商都开发出了相应的应用或替代方案,使其产品获得了具体应用。
部分公司的产品已经应用到太阳能高速公路指示灯、玩具车和微机后备电源等领域。
目前,国内厂商也很注重超级电容器的大功率应用,如环保型交通工具、电站直流控制、车辆应急启动装置、脉冲电能设备等。
应用需求及市场前景广阔无限业内专家预测,目前中国市场的年需求量可达2150万只,约1.2亿Wh,且每年都在以约50%的速度增长;整个亚太地区的年需求量超过9000万只,约5.4亿Wh,增长速度约为90%;全球的年需求量约为2亿只,约12亿Wh,增长速度约为160%。
由此可知,市场前景非常广阔。
美国市场研究公司Frost &Sullivan发布的一份报告预计,2002年到2009年之间,全球超级电容器产业的产量和销售收入将分别以157%和49%的年复合增长率保持高速增长。
目前,超级电容器占世界能量储存装置(包括电池、电容器)的市场份额不足1%,在我国所占市场份额约为0.5%,因此超级电容器存在着巨大的市场潜力。
由于超级电容器具有充放电速度快、对环境无污染、循环寿命长等优点,有希望成为本世纪新型的绿色能源。
当前,国内厂商纷纷推出产能扩张项目,产品也更加全面,产能正节节攀升。
即使如此,由于国内能规模生产的厂家较少,年供应量不到500万只,这样的生产规模还远远无法满足国内市场的需求,所以国内大多数用户还是通过进口来满足需要。
在市场需求迅速增长的强力推动下,国内现有的超级电容器生产企业正积极融资扩产,国际超级电容器生产大鳄也把战略投资的目光锁定中国,而相关的生产企业(如铝电解电容器生产企业)也正跃跃欲试准备介入这一新兴市场。
目前,在发达国家,超级电容器的应用备受重视,俄罗斯已在载重汽车上批量采用,德国也在客车启动上应用此类产品,这些产品正在向规模化、市场化、大众化方向迅速发展。
而在国内,超级电容器的应用尚处于起步阶段。
在钮扣型超级电容器市场中,海外产品几乎占据了90%以上的份额,竞争异常激烈。
中国厂商正采取替代手段,利用低价策略(约为国外产品的40%~60%)、快速供货、销售布局完善,对中国终端应用市场更加熟悉,技术支持与服务优于国际品牌等各种优势来争夺市场。
在卷绕型和大型超级电容器方面,中国产品的技术水平与国际接近,市场份额较为理想。
新能源汽车是全球汽车行业重点关注的领域,超级电容是其要害部件。
尽管超级电容诞生的时间不长,国际上对这项新技术的研究还处于探索阶段,关键性能指标还有待进一步提升。
然而,我国却在超级电容公交电车的应用方面领先一步。
2006年8月28日,上海11路超级电容公交电车,即“上海科技登山行动计划超级电容公交电车示范线”投入运营,在实际应用领域走在了世界前列。
专题特写:电容55今日电子 · 2008年12月该车采用上海奥威科技公司开发的具有完全自主知识产权的超级电容。
因此,国产超级电容受到了国内外同行的广泛关注。
运营中的超级电容客车,整体布局与申沃柴油客车基本相同。
该车起步动作迅速有力,满载时最高时速能达到50km。
到了冬季,即使天天开空调,充一次电跑个三五站地也没问题。
该车运行时清洁、经济、方便,在车顶上且不太显眼的可伸缩受电弓可快速升降,与专用充电车站上方的高压馈线碰触就可充电。
中途充电30s即可,总站充电也不过90s。
一次充电可行驶3.5~8km。
一圈跑下来,充一两次电即可,甚至不充电也行。
电源并非来自原无轨电车上方的触线,而是便道旁的馈线。
该车单车实际耗电每公里0.88度,比普通无轨电车节能60%,比设计标准节能20%。
每百公里收益比普通电车提高70%,经济效益大大高于燃油客车。
这种零排放且没有像铅酸蓄电池那样对环境造成二次污染的新能源客车,前景十分看好。
尽管目前超级电容客车价格比普通公交车高一些,但随着应用范围的逐步扩大,工艺技术的不断改进,生产成本的日益减少,进入大规模产业化生产阶段后,价格还可以大幅度下降。
再者,还可以通过对车重量、体积、底盘结构以及各关键部件的匹配进行系统优化,从而进一步降低单车成本。
由此可以预言,为期不久,质优价廉的新能源客车一定能够迅速普及。
而且,随着技术的不断改进和日趋成熟,绿色环保的新能源轿车和新能源货车也会大批涌现,多种类大批量的电动车辆必将在中国大地及世界大地上承载希望驶向未来,超级电容器也必将具有更加广阔远大的市场前景。
常用电容器铝电解电容器用浸有糊状电解质的吸水纸夹在两条铝箔中间卷绕而成,薄的化氧化膜作介质的电容器.因为氧化膜有单向导电性质,所以电解电容器具有极性.容量大,能耐受大的脉动电流容量误差大,泄漏电流大;普通的不适于在高频和低温下应用,不宜使用在25kHz以上频率低频旁路、信号耦合、电源滤波。
钽电解电容器用烧结的钽块作正极,电解质使用固体二氧化锰温度特性、频率特性和可靠性均优于普通电解电容器,特别是漏电流极小,贮存性良好,寿命长,容量误差小,而且体积小,单位体积下能得到最大的电容电压乘积对脉动电流的耐受能力差,若损坏易呈短路状态超小型高可靠机件中。
薄膜电容器结构与纸质电容器相似,但用聚脂、聚苯乙烯等低损耗塑材作介质频率特性好,介电损耗小不能做成大的容量,耐热能力差滤波器、积分、振荡、定时电路。
瓷介电容器穿心式或支柱式结构瓷介电容器,它的一个电极就是安装螺丝。
引线电感极小,频率特性好,介电损耗小,有温度补偿作用不能做成大的容量,受振动会引起容量变化特别适于高频旁路。
独石电容器(多层陶瓷电容器)在若干片陶瓷薄膜坯上被覆以电极桨材料,叠合后一次绕结成一块不可分割的整体,外面再用树脂包封而成小体积、大容量、高可靠和耐高温的新型电容器,高介电常数的低频独石电容器也具有稳定的性能,体积极小,Q值高容量误差较大噪声旁路、滤波器、积分、振荡电路。
纸质电容器一般是用两条铝箔作为电极,中间以厚度为0.008~0.012mm的电容器纸隔开重叠卷绕而成。