九年级数学下册24.2圆的基本性质教案4沪科版
201x版九年级数学下册 24.2 圆的基本性质 24.2.2 圆的基本性质教案 沪科版
2019版九年级数学下册 24.2 圆的基本性质 24.2.2 圆的基本性质教案(新版)沪科版教学过程(一)、复习提问:1.你还记得我们学过图形中轴对称图形有哪些吗?分别有几条对称轴?(等腰三角形,等边三角形,矩形,菱形,正方形,等腰三角形。
)2.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?3.你是用什么方法解决上述问题的?与同伴进行交流.(可以利用折叠的方法,解决上述问题.把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴.)教师板书:圆是轴对称图形,其对称轴是任意一条过圆心的直线.(二)、探究新知问题1:作⊙O的直径CD,然后沿着CD对折⊙O,会出现什么现象,说明了什么?(说明圆是轴对称图形,它的对称轴是任意一条过圆心的直线.)问题2:在⊙O上取一点A,作AB⊥CD,垂足为E,在图中,你猜想一下会有那些等量关系。
(AE=BE,=,=.)这些等量关系如果用语言来叙述的话,我们可以说成什么?垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
首先我们分析一下这个定理的题设和结论。
题设:垂直于弦的直径。
结论:平分弦和弦所对的弧。
(学生完成)根据题设和结论,结合图形,我们找出已知、求证,并进行证明。
已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E。
求证:AE=BE,=,=分析:我们知道等腰三角形是轴对称图形,它的对称轴是底边垂线所在的直线,那么我们如何把等腰三角形和圆联系起来呢?连结OA,OB后我们可以得到一个等腰三角形,CD所在的直线既是等腰三角形的对称轴又是⊙O的对称轴,那么当把圆沿直径CD折叠时,会发现哪些部分重合(连结OA,OB, 并且有OA=OB。
两个半圆重合;A点、B点重合;弧AC、弧BC重合;弧AD、弧BD重合)既然AE,BE重合,我们就可以得到AE=BE;弧AC、弧BC重合,我们就可以得到=;弧AD、弧BD重合,我们就可以得到=。
沪科版数学九年级下册24.2《圆的基本性质-确定圆的条件》教案设计
义务教育课程标准实验教科书数学沪科版九年级下册第24章2.3确定圆的条件一、教学目标:1、知识目标:掌握不在同一条直线上的三个点确定一个圆,以及过不在同一条直线的三个点作圆的方法;了解三角形的外接圆、三角形的外心等概念。
2、能力目标:①经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力。
②通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略。
3、情感与价值观:①形成解决问题的一些策略,体验解决问题策略的多样性,发展实践能力与创新精神。
②学会与人合作,并能与他人交流思维的过程和结果。
二、教学重点:1、经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论。
2、掌握过不在同一条直线的三个点作圆的方法。
3、了解三角形的外接圆、三角形的外心等概念。
三、教学难点:经历不在同一条直线上的三个点确定一个圆的探索过程。
形成解决问题的一些策略。
四、教学方法:合作探究法五、教学流程:(一)类比联想,提出问题1.提问:同学们会画圆吗?学生回答:会.2.怎么画?作圆的关键是确定什么?学生回答:作一个圆,关键是确定圆心和半径。
3、提出问题,让学生思考,并进一步讨论:(1)经过一个点A,是否可以作圆?如果能作,可以作几个?学生讨论回答后,请一名学生说明(如图),并得出:经过一个点A作圆很容易,只要以点A外的任意一点为圆心,以这一点与点A的距离为半径就可以作出,这样的圆有无数多个(2)经过两个点A,B如何作圆呢?能作几个?同样,在学生讨论回答的基础上,再让一名学生说明,并得出:经过两个点A,B作圆,只要以与点A,B距离相等的点为圆心,即以线段AB的垂直平分线上任意一点为圆心,以这一点与点A或点B的距离为半径就可以作出,这样的圆也有无数多个.(如图)(以上两点由于有前边两节课的知识作铺垫,学生比较容易作出.) 二、动手实践,发现新知下面来研究,经过三个已知点作圆又会怎么样呢?仍然让学生讨论,自己动手作图,这时,学生会发现:由于两点确定一条直线,因此三个点就有在同一直线上的三点和不在同一直线上的三个点两种情况.1.作圆,使它经过不在同一直线上的三个已知点.例1 已知:不在同一直线上的三个已知点A,B,C(如图)求作:⊙O,使它经过点A,B,C.分析:作圆的关键是确定圆心和半径.由于所作圆要经过已知点,所以如果圆心的位置确定了,那么圆的半径也就随之确定.因此,这个问题就转化为找圆心的问题.因为所求的圆要经过A,B,C三点,所以圆心到这三点的距离相等.因此,这个点既要在线段AB的垂直平分线上,又要在线段BC的垂直平分线上,显然这两条垂直平分线交于一点且到这三点的距离相等.可见圆心、半径都确定了,圆便可以作出.学生口述,多媒体展示.证明:因为⊙O的半径为OA,所以点A在⊙O上,即⊙O经过点A,又因为点O在AB的垂直平分线DE上所以OB=OA则⊙O经过点B.同理可证⊙O经过点C.所以⊙O是所求的圆.结合以上作法和证明,请同学回答:师:经过不在同一直线上的三点A,B,C的圆是否存在?生:存在.师:是否还有其他符合条件的圆呢?生:没有.师:根据是什么?生:线段AB,BC的垂直平分线有且只有一个交点.这说明所作的圆心是唯一的,从而半径也是唯一的,则所作圆是唯一的.在黑板上写出:定理:过不在同一直线上的三个点确定一个圆.2.过同一直线上的三点能不能做圆呢?我们不妨试试看.教师和学生一起用圆规和直尺按照上面的作法作圆,看能否作出圆来,再看不按上面的作法是否有办法作圆.实践的结果是不能作圆.实际上,假定过A,B,C三点可以作圆,不妨设这个圆心为O.由点的轨迹可知,点O在线段AB的垂直平分线l′上,并且在线段BC的垂直平分线l″上,即点O为l′与l″的交点,这与“过一点有且只有一条直线与已知直线垂直”相矛盾.(如图所示).所以,过同一直线上的三点不能作圆.(思考)经过四个点或四个以上的点是否能作一个圆?3.现在我们回过头来再看看,由于任意一个三角形的三个顶点都不在同一直线上,所以由定理可知,经过三角形三个顶点可以作且只能作一个圆.介绍有关概念:(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.由上面作图方法还可以看出:三角形的外心是三角形三边中垂线的交点.三、应用举例,巩固新知(一)抢答:填空:(投影打出)1、经过一个点可以作___ 个圆2、经过二个点可以作 ___ 个圆3、经过不在同一条直线上的三个点,可以作___个圆4、如右图:⊙O 是△ABC 的____圆, △ABC是⊙O 的____三角形,O 是△ABC 的____心(经过练习,巩固前边所学的知识)(二)判断:1、经过三个点一定可以作圆( )2、任意一个三角形有并且只有一个外接圆 ( )3、每个三角形都只有一个外心( )4、任意一个圆一定有一个内接三角形,并且只有一个内接三角形( )5、三角形的外心到三角形各顶点的距离都相等( )(三)生活应用:如图,这是一块残缺的砂轮,同学们能去配制一块和原来完全相同的砂轮吗?分析:要想知道圆轮的半径,只要作出圆轮残片所在圆的圆心,而从本节所学定理可知,经过不在同一直线上的三个点可确定一个圆,于B是可在残片的圆弧上任取三点,作过此三点的圆,即可确定残片的圆心和半径.(此题实际上是一个作图题,可由学生口述,教师板演)(四)动手操作:1、画边长分别为 2cm 、2.5cm 、3cm 的三角形,再画出这个三角形的外接圆,并量出这个圆的直径(要求尺规作图,结果精确到0.1cm)2、锐角三角形的外心在三角形的___ 部; 直角三角形的外心在___ ;钝角三角形的外心在三角形的___ 部。
新泸科版数学九下教案:24.2 第4课时 圆的确定
24.2 圆的基本性质第4课时圆的确定1.理解并掌握确定圆的条件;2.理解三角形的外接圆,三角形外心的概念,能够运用其性质进行计算(重点,难点);3.理解反证法的思想,能够运用反证法证明命题(难点).一、情境导入小明不慎把家中的一块圆形玻璃打碎了,其中四块碎片如图所示,为了配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃应该是哪一块?二、合作探究探究点一:确定圆的条件已知:不在同一直线上的三个已知点A,B,C(如图),求作:⊙O,使它经过点A,B,C.解析:根据线段垂直平分线上的点到线段两端点的距离相等,作出边AB、BC的垂直平分线相交于点O,以O为圆心,以OA为半径,作出圆即可.解:(1)连接AB、BC;(2)分别作出线段AB、BC的垂直平分线DE、GF,两垂直平分线相交于点O,则点O 就是所求作的⊙O的圆心;(3)以点O为圆心,OC长为半径作圆,则⊙O就是所求作的圆.方法总结:作经过三点的圆,即作这三点构成的三角形的外接圆,根据三角形的外接圆的性质可知,其圆心为三边垂直平分线的交点,依据此作图即可求解.变式训练:见《学练优》本课时练习“课后巩固提升”第5题 探究点二:三角形的外接圆【类型一】 与圆的内接三角形有关的坐标的计算如图,△ABC 的外接圆的圆心坐标是________.解析:由图可知△ABC 外接圆的圆心在BC 的垂直平分线上,即外接圆圆心在直线y =-1上,也在线段AB 的垂直平分线上,即外接圆圆心在直线y =x +1上,则有⎩⎪⎨⎪⎧y =-1,y =x +1,解得⎩⎪⎨⎪⎧x =-2,y =-1,则两线交点坐标为(-2,-1),故填(-2,-1). 方法总结:解题时可根据外接圆的圆心的性质:三角形外接圆圆心为三角形三边的垂直平分线的交点,列出相应的等式关系求解.变式训练:见《学练优》本课时练习“课后巩固提升”第3题 【类型二】 与圆的内接三角形有关线段的计算如图,在△ABC 中,O 是它的外心,BC =24cm ,O 到BC 的距离是5cm ,求△ABC的外接圆的半径.解:连接OB ,过点O 作OD ⊥BC ,则OD =5cm ,BD =12BC =12cm.在Rt △OBD 中,OB =OD 2+BD 2=52+122=13cm.即△ABC 的外接圆的半径为13cm.方法总结:由外心的定义可知外接圆的半径等于OB ,过点O 作OD ⊥BC ,易得BD =12cm.由此可求它的外接圆的半径.变式训练:见《学练优》本课时练习“课后巩固提升”第4题 探究点三:反证法用反证法证明:一个圆只有一个圆心.解析:反证法的步骤中,第一步是假设结论不成立,反面成立,可据此得出假设与已知定理矛盾,进而得出答案.证明:假设⊙O有两个圆心O及O′,在圆内任作一弦AB,设弦AB的中点为P,连结OP,O′P,则OP⊥AB,O′P⊥AB,过直线AB上一点P,同时有两条直线OP,O′P都垂直于AB,与垂线的性质矛盾,故一个圆只有一个圆心.方法总结:此题主要考查了反证法,解此题关键要懂得反证法的步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.变式训练:见《学练优》本课时练习“课堂达标训练”第9题三、板书设计1.确定圆的条件不在同一直线上的三个点确定一个圆.2.三角形的外接圆经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形的外心到三角形的三个顶点的距离相等.3.反证法证明的一般步骤(1)反设;(2)推理;(3)结论.教学过程中,强调三角形的外接圆的圆心到三角形三个顶点的距离相等,它是三角形三边垂直平分线的交点.在圆中充分利用这一点可解决相关的计算问题.。
九年级数学下册第24章圆24.2圆的基本性质教案新版沪科版
24.2 圆的基本性质第1课时圆的概念和性质教师:大豕看教材,你能用自己的语言口述圆的定义吗?学生看教材•学生:将线段0P的一个端点0固定,使线段0P绕着点0在平面内旋转一周,另一个端点P 运动所形成的封闭曲线叫做圆•看教材练习第1题•教师:你能举出一些圆形物体的实例吗?学生甲:太阳、盘子等•学生乙:车轮、表盘等•活动:利用圆规画一个O Q使O O的半径r = 3cm.教师:在平面内任意取一点P,点与圆有哪几种位置关系?学生:圆内、圆上和圆外•教师:分别在圆内、圆上、圆外各取一个点,量出这些点到圆心的距离,并比较它们与圆半径的大小.你有什么发现?学生小组讨论,教师参与•师生共同努力完成:如果O 0的半径为r,点P到圆心0的距离为d,那么点P在圆内?d v r,点P在圆上?d= r,点P在圆外?d>】教师:请大豕看教材内容,我们来认识一下弧、弦、直径等与圆有关的概念•请你把重要用师生共同探究的方法来唤起学生的参与意识,通过学生的自我学习或者小组学习完成对定义的深化•I教学小结丨【板书设计】圆的概念和性质1.圆的概念:平面内到定点的距离等于定长的所有点组成的图形2•点与圆的位置关系:⑴点P在O O上? OP= r;(2)点P在O O内?0代r;(3)点P有O 0外? 0P>r.3.圆的相关概念24.2 圆的基本性质第2课时垂径定理及其逆定理I教学过程设计丨教学过程一、创设情境,导入新课你知道赵州桥吗?它是1400多年前我国建造的,是我国古代人民勤劳与智慧的结晶,它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你能求出桥拱所在圆的半径吗?结合赵州桥资料向学生进行爱国主义教育和美育渗透,并引入新知识.通过本节课的学习,我们就会很容易解决这一问题.二、师生互动,探究新知1.实验发现实验:用纸剪一个圆(课前让学生做好),沿着圆的任意一条直径对折,重复几次,你发现了设计意图让学生亲自动手,进行实验、探究,得出圆的轴对称性什么?由此你得到了什么结论?结论:圆是轴对称图形,其对称轴是任意一条过圆心的直线2.探究活动1 :垂径定理如下图,在圆形纸上任意画一条垂直于直径思考:①上图是轴对称图形吗?如果是,其对称轴是什么?②你能发现图中有哪些等量关系?与同伴说一说你的想法• 通过讨论,可得下面定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧•验证:你能用逻辑的方法验证垂径定理吗?例1已知,如图,在O O中,CD是直径,AB是弦,CDL AB垂足为E通过该问题引导学生探究、定理,初步感知.发现垂径引导学生自主、合作探究辑推理能力•,培养学生逻求证:AE=EB A D = D B(或A C = C B)分析:如图,连接OA OB则OA= OB可通过证明Rt△ OAE和Rt△ OBE全等,结合轴对称证明•题吗?这个逆命题正确吗?平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧•若AB是O 0的一条弦,且Al BP过点P作直径CD则ABL CD A C = Be, A D = ?D .思考:平分弧的直径垂直于平分这条弧所对的弦吗?教师引导学生先写出垂径定理的逆命题,再判断出此逆命题是正确的.根据逆命题画出图形,写出已知,求证. 引导学生仿照垂径定理的证明来证明这个命题.指出思考的问题是正确的,也是垂径定理的逆定理.最后教师归纳垂径定理及其逆定理.例2出示教材例3,并让学生解决•让学生亲自动手,进行实验、探究,得出圆的轴对称性.三、运用新知,解决冋题2.如图,AB是O 0的直径,弦CD L AB于点M(1) ?C = 1cm,A D = 1cm,那么B D =cm,A C = cm,O O的周长是学会用类比的方法解决问题径定理的逆定理.,掌握垂会利用垂径定理解决问题进一步巩固所学知识,加深对定理的理1.教材练习第I教学小结I垂径定理及其逆定理垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧解题方法:连接一条半径,半径、弦心距、弦的一半构成直角三角形(如图).24.2 圆的基本性质第3课时弦、弧、圆心角、弦心距间的关系【教学目标】1. 了解圆是旋转对称图形及圆心角的概念 •2. 圆心角、弧、弦、弦心距之间的关系定理 .【重点难点】重点:圆心角、弧、弦、弦心距之间的关系定理难点:“圆心角、弧、弦、弦心距之间的关系定理”中的“在同圆或等圆”条件的理解 及定理的证明.丨教学过程设计丨教学过程设计意图一、 导入新课教师引导,学生自学教材知识•二、 师生互动,探究新知1. 教师出示两张透明纸,指导学生分别作半 径相等的O O 和o O ,然后把两张纸叠在一 起,使O o 与oO 重合,用图钉钉住圆心,将 上面一个圆旋转任意一个角度 •指出问题:两个圆还能重合吗?归纳:圆是旋转对称图形,对称中心为圆心.2. 将O O 绕圆心O 旋转任意角度以后,出现一 个角/ AOB 请同学们观察一下这个角有什么 特点?如图:通过教师和学生的共同努力 ,得到定 理,充分体现合作的价值.学生感受知识之间 的密切联系. 圆心角的概念:顶点在圆心的角叫做圆心角 3. 教师用多媒体课件出示教材图 24- 25.4. 提问:当/ AO 申/ A O B'时,根据圆的 旋转对称性,你能推测出,两个圆心角所对的通过学生自己的操作,充分感受圆是旋 转对称图形,并且也是中心对称图形.24.2 圆的基本性质第4课时圆的确定【教学目标】1.理解不在同一直线上的三个点确定一个圆并掌握它的运用2.了解三角形的外接圆和三角形外心的概念3.了解反证法的证明思想.【重点难点】重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆及其运用难点:讲授反证法的证明思路•3•作圆,使它经过已知点A、B、QA、B C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?引导学生得出:不在冋一直线上的三个点确定一个圆•连接3中的三个点,可得一个三角形,它叫做圆的内接三角形,圆叫做三角形的外接圆•三角形的外接圆的圆心叫做这个三角形的外心.三角形的外心到三角形的三个顶点距离相等•学生作直角、锐角、钝角三角形的外接圆,分别观察外心的位置•教师多媒体出示动画《王戎不摘李》片段•教师引导学生假设李子不是苦的,即李子是甜的,那么这长在人来人往的大路边的李子会不会被过路人摘去解渴呢?那么,树上的李子还会这么多吗?这与事实矛盾吗?说明李子是甜的这个假设是错的还是对的?教师引导学生归纳反证法的定义,根据学生总结的情况补充兀善•思考:经过同一直线上的三点能作出一个圆吗?教师出示问题,引导、点拨、分析•学生在教师的引导下,小组合作交流完成证明过程•教师总结:反证法的一般步骤先假设命题不成立一一从假设出发一一矛盾一一得出假设命题不成立通过该问题引导学生学会探究、发现结论,亲自体验经历数学发生发展的过程•教师通过引导学生自主、合作探究,培养学生分析问题、解决问题的意识和能力,养成良好的分析问题、解决问题的习惯•【板书设计】圆的确定1.圆的确定条件:不在同一直线上的三点确定一个圆2.三角形的外接圆及外心.3.反证法.。
沪科版数学九年级下册24.2.4圆的确定优秀教学案例
5.作业小结:设计具有针对性的作业,让学生巩固所学知识,提高学生的应用能力。同时,引导学生对作业进行自我检查和修改,培养学生的自主学习和自我纠错的能力。教师对学生的作业进行批改和评价,及时了解学生的学习情况,为下一步教学提供参考。
3.引导学生通过观察、操作、思考等途径,自主探索圆的确定方法,提高学生的解决问题的能力。
(三)小组合作
1.组织学生进行小组讨论,共同探讨圆的确定方法,培养学生的合作意识和团队精神。
2.设计具有挑战性的任务,让学生在合作中共同解决问题,提高学生的综合运用知识的能力。
3.鼓励学生相互倾听、交流、反馈,培养学生的沟通能力和批判性思维。
在教学过程中,我以生活实例导入,让学生思考在实际生活中如何确定一个圆的位置和大小。接着,我引导学生通过观察和动手操作,发现圆的确定方法。在学生理解圆的确定方法后,我设计了一系列练习题,让学生在实际问题中运用所学知识,巩固和提高对圆的确定的理解。
在教学过程中,我注重启发式教学,引导学生主动探究、积极思考,从而达到理解圆的确定的目的。同时,我关注学生的个体差异,根据学生的实际情况给予有针对性的指导,使他们在原有基础上得到提高。通过本节课的学习,学生不仅掌握了圆的确定方法,而且培养了学生的空间想象能力和逻辑思维能力,为后续学习打下了坚实的基础。
5.注重启发式教学,引导学生主动探究、积极思考,从而达到理解圆的确定的目的。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生学习数学的内在动力。
2.引导学生感受数学与实际生活的紧密联系,提高学生运用数学知识解决实际问题的意识。
沪科版数学九年级下册24.2《圆的基本性质》教学设计2
沪科版数学九年级下册24.2《圆的基本性质》教学设计2一. 教材分析《圆的基本性质》是沪科版数学九年级下册第24章第2节的内容。
本节主要介绍了圆的性质,包括圆的轴对称性、圆的周长和面积的计算公式、圆的标准方程等。
在学习本节内容之前,学生已经掌握了相似多边形的性质和判定,为本节课的学习提供了基础。
本节课的内容对于学生来说较为抽象,需要通过实例和练习来理解和掌握。
二. 学情分析九年级的学生在学习数学方面已经有了一定的基础,对于图形的性质和判定有一定的了解。
但是,对于圆的性质和计算公式的理解还需要通过实例和练习来加强。
此外,学生的学习动机和学习习惯也会影响到他们对本节课内容的理解和掌握。
三. 教学目标1.了解圆的基本性质,包括圆的轴对称性、圆的周长和面积的计算公式、圆的标准方程等。
2.能够运用圆的性质解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.圆的轴对称性2.圆的周长和面积的计算公式3.圆的标准方程五. 教学方法1.讲授法:通过讲解圆的性质和计算公式,让学生理解和掌握。
2.实例分析法:通过分析实例,让学生更好地理解圆的性质。
3.练习法:通过布置练习题,让学生巩固所学知识。
六. 教学准备1.PPT课件:制作相关的PPT课件,以便进行教学展示。
2.练习题:准备一些相关的练习题,以便进行课堂练习和巩固。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾相似多边形的性质和判定,为新课的学习做好铺垫。
2.呈现(10分钟)讲解圆的性质,包括圆的轴对称性、圆的周长和面积的计算公式、圆的标准方程等。
在此过程中,结合实例进行分析,让学生更好地理解圆的性质。
3.操练(10分钟)布置练习题,让学生运用所学知识进行解答。
在此过程中,引导学生互相讨论,共同解决问题。
4.巩固(10分钟)对学生的练习情况进行反馈,针对存在的问题进行讲解和巩固。
同时,引导学生总结圆的性质,加深对知识点的理解。
圆圆的基本性质教案-新版沪科版九年级数学下册
24.2 圆的基本性质第1课时圆的概念和性质┃教学过程设计┃的信息写下来.教师点拨,学生看教材写:圆弧:圆上任意两点间的部分叫做圆弧,简称弧.弦:连接圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.如右图,以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”;线段AB是⊙O的一条弦,弦CD是⊙O的一条直径.大于半圆的弧称为优弧,小于半圆的弧称为劣弧.圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆.半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.直径是弦,但弦不一定是直径.教师还要说明弓形,等圆,等弧的定义.通过小组交流,教师点拨,实现知识系统化.三、运用新知,解决问题1.教材练习第2题.2.教材练习第3题.主要是通过练习题来巩固学生所学习的知识,提高小组合作能力和水平.四、课堂小结,提炼观点今天我们学习了什么知识?你有哪些收获?还有什么问题吗?通过简短的总结,让学生对本节知识形成整体框架.五、布置作业,巩固提升教材习题24.2第1题.加深认识,深化提高.┃教学小结┃24.2 圆的基本性质第2课时垂径定理及其逆定理┃教学过程设计┃一、创设情境,导入新课你知道赵州桥吗?它是1400多年前我国建造的,是我国古代人民勤劳与智慧的结晶,它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你能求出桥拱所在圆的半径吗?通过本节课的学习,我们就会很容易解决这一问题.什么?由此你得到了什么结论?结论:圆是轴对称图形,其对称轴是任意一条过圆心的直线.2.探究活动1:垂径定理如下图,在圆形纸上任意画一条垂直于直径CD的弦AB,垂足为E,再将纸片沿CD对折.思考:①上图是轴对称图形吗?如果是,其对称轴是什么?②你能发现图中有哪些等量关系?与同伴说一说你的想法.通过讨论,可得下面定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧. 验证:你能用逻辑的方法验证垂径定理吗?例1 已知,如图,在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.求证:AE=EB,AD=DB (或AC=CB) 分析:如图,连接OA、OB,则OA=OB.可通过证明Rt△OAE和Rt△OBE全等,结合轴对称证明.3.探究活动2:垂径定理的推论.你能写出垂径定理的逆命通过该问题引导学生探究、发现垂径定理,初步感知.引导学生自主、合作探究,培养学生逻辑推理能力.三、运用新知,解决问题1.教材练习第1题.2.如图,AB是⊙O的直径,弦CD⊥AB于点M.(1)BC=1cm,AD=1cm,那么BD=______cm,AC=______cm,⊙O的周长是五、布置作业,巩固提升1.教材练习第1,3题.2.在直径为20cm的圆柱形油桶内装入一些油后,截面如图,如果油面宽AB=12cm,那么油的最大深度是多少?┃教学小结┃24.2 圆的基本性质第3课时弦、弧、圆心角、弦心距间的关系【教学目标】┃教学过程设计┃二、师生互动,探究新知1.教师出示两张透明纸,指导学生分别作半径相等的⊙O和⊙O′,然后把两张纸叠在一起,使⊙O与⊙O′重合,用图钉钉住圆心,将上面一个圆旋转任意一个角度.指出问题:两个圆还能重合吗?归纳:圆是旋转对称图形,对称中心为圆心.2.将⊙O绕圆心O旋转任意角度以后,出现一个角∠AOB,请同学们观察一下这个角有什么特点?如图:圆心角的概念:顶点在圆心的角叫做圆心角.3.教师用多媒体课件出示教材图24-25.4.提问:当∠AOB=∠A′O′B′时,根据圆的旋转对称性,你能推测出,两个圆心角所对的┃教学小结┃24.2 圆的基本性质第4课时圆的确定┃教学过程设计┃┃教学小结┃。
(完整版)沪科版九年级(下)数学:24.2《圆的基本性质》教案
24.2.3圆的确定教材分析:“圆的确定”是沪科版初中数学教材九年级下册第24章《圆》的内容之一,它是在学生学习了圆的基本性质等相关知识之后的延续学习,也为后面深入学习圆周角定理等相关内容奠定基础。
其重点内容是“过不在同一直线上三个点作圆”和反证法,本节课的学习,对于培养学生规范地操作技能、探索问题能力及条理地思维能力具有重要作用。
从解决问题的思想方法来看,渗透了分类讨论、类比、化归等数学思想方法。
所以本课时无论从知识性还是思想性来讲,在教学中都占有重要的地位,起着承上启下的作用。
学情分析:学生已经学习了确定圆的条件是圆心和半径,还学习了线段的垂直平分线的性质、判定和画法,这些知识的学习会为本节课的学习打下良好的基础。
而作一个符合要求的圆,发现圆心的分布规律是学生不易发现的,因此会产生一定的思维障碍,另外在圆心的找取上,由于学生不能建立圆与垂直平分线两者之间的关联而产生知识生成的困难;用反证法证明命题时,学生在运用反证法证明命题的过程中,可能会存在很大的困难。
大多数的学生在遇到困难懒于思索,在课堂活动中习惯性充当旁观者,而不是积极主动的探究者。
教学目标:知识技能目标:1、理解不在同一条直线上的三个点确定一个圆。
2、了解三角形的外接圆和三角形外心的概念及相关知识。
3、理解和掌握反证法的证明方法。
数学思考与问题解决目标:1、经历不在同一条直线上的三个点确定一个圆的探索过程和三角形的外心的性质、培养学生的探索能力。
2、通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略。
3、经历用反证法证明命题成立的方法,体会辩证的数学方法。
情感态度价值观1、形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力和创新精神。
2、感知数学来源于生活并服务于生活,树立探究数学问题的意识,通过问题解决过程中的相互合作和独立思考能力,体验成功的喜悦。
教学重点:1、过不在同一条直线上的三个点作圆的方法及其运用。
沪科版九年级数学下册教学设计:24.2圆的基本性质(4份打包)
沪科版九年级数学下册教学设计:24.2 圆的基本性质 (4份打包)一. 教材分析《圆的基本性质》这一节主要让学生了解和掌握圆的基本性质,包括圆的轴对称性、中心对称性以及圆的半径与圆心角的关系。
教材通过具体的实例和图示,引导学生探究和发现这些性质,从而培养学生对圆的理解和认识。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质有一定的了解。
但是,他们对圆的理解可能还停留在直观的层面,对圆的性质缺乏深入的认识。
因此,在教学过程中,我需要引导学生通过观察、操作、探究等方式,发现和理解圆的基本性质。
三. 教学目标1.知识与技能:让学生掌握圆的基本性质,包括轴对称性、中心对称性和半径与圆心角的关系。
2.过程与方法:培养学生通过观察、操作、探究等方式发现和理解圆的性质的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极探究的精神。
四. 教学重难点1.重点:圆的基本性质的发现和理解。
2.难点:圆的轴对称性和中心对称性的证明。
五. 教学方法1.引导发现法:通过引导学生观察、操作、探究,让他们自己发现和理解圆的性质。
2.讲解法:对于一些难以理解的概念和性质,采用讲解法进行解释和阐述。
六. 教学准备1.教具:准备一些圆形的实物,如圆规、圆盘等,以便于学生观察和操作。
2.课件:制作课件,展示圆的性质的图示和实例。
七. 教学过程1.导入(5分钟)通过展示一些圆形的实物,如圆规、圆盘等,引导学生对圆进行观察,激发他们对圆的兴趣。
然后提出问题:“你们对圆有什么认识和理解?”,让学生自由发言,从而引出本节课的主题——圆的基本性质。
2.呈现(10分钟)通过课件展示圆的轴对称性和中心对称性的图示和实例,让学生观察和操作,引导他们发现和理解圆的这些性质。
对于一些难以理解的概念和性质,采用讲解法进行解释和阐述。
3.操练(10分钟)让学生分组进行讨论和操作,每组选择一个圆,通过剪切、折叠等方式,验证圆的轴对称性和中心对称性。
沪科版数学九年级下册24.2《圆的基本性质》教学设计
沪科版数学九年级下册24.2《圆的基本性质》教学设计一. 教材分析《圆的基本性质》是沪科版数学九年级下册第24章第2节的内容,主要讲述了圆的定义、圆的性质、圆的方程及其应用。
本节内容是学生对圆的基本概念和性质的掌握,为后续学习圆的方程和其他相关知识打下基础。
教材通过生动的实例和丰富的练习,引导学生探索和发现圆的性质,培养学生的逻辑思维能力和空间想象力。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本知识,如点、线、面的基本性质,对图形的变换有一定的了解。
但圆的概念和性质较为抽象,对学生来说是新的挑战。
因此,在教学过程中,需要关注学生的学习情况,引导学生从实际问题中发现圆的性质,激发学生的学习兴趣,帮助学生建立圆的概念和性质。
三. 教学目标1.理解圆的定义,掌握圆的基本性质;2.学会用圆的性质解决实际问题;3.培养学生的逻辑思维能力和空间想象力;4.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.圆的定义及其性质;2.圆的方程及其应用;3.圆的性质在实际问题中的运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现圆的性质;2.运用多媒体辅助教学,展示圆的性质和图形变换,增强学生的直观感受;3.采用分组讨论、合作学习的方式,培养学生的团队协作能力;4.注重练习,巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备相关教学课件和教学素材;2.安排学生分组讨论和合作学习的时间和空间;3.准备一些实际问题,用于课堂练习和拓展。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,如自行车轮子、地球等,引导学生思考这些问题的共同特点,从而引出圆的概念。
2.呈现(10分钟)介绍圆的定义,讲解圆的基本性质,如圆的轴对称性、中心对称性、旋转对称性等。
通过多媒体展示,让学生更直观地理解圆的性质。
3.操练(10分钟)分组讨论,让学生结合圆的性质,解决一些实际问题。
如:如何判断一个图形是否为圆?如何计算圆的周长和面积?4.巩固(10分钟)对圆的性质进行总结,强调重点知识点。
2018沪科版数学九年级下册24.2《圆的基本性质》教案4
这与事实矛盾吗?说明李子是甜的这个假设是错的还是对的?
教师引导学生归纳反证法的定义,根据学生总结的情况补充完善.
思考:
经过同一直线上的三点能作出一个圆吗?教师出示问题,引导、点拨、分析.
引导学生得出:
不在同一直线上的三个点确定一个圆.
连接3中的三个点,可得一个三角形,它叫做圆的内接三角形,圆叫做三角形的外接圆.三角形的外接圆的圆心叫做这个三角形的外心.三角形的外心到三角形的三个顶点距离相等.
学生作直角、锐角、钝角三角形的外接圆,分别观察外心的位置.
教师多媒体出示动画《王戎不摘李》片段.
二、师生互动,探究新知
教师出示下列问题:
1.作圆,使它经过已知点A,你能作出几个这样的圆?
2.作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?
3.作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?
学生在教师的引导下,小组合作交流完成证明过程.
教师总结:
反证法的一般步骤:
先假设命题不成立——从假设出发——矛盾——得出假设命题不成立是错误的——即所求证的命题正确.
引导学生用反证法证明定理:两条平行直线被第三条直线所截,同位角相等.
通过该问题引导学生学成及时总结的习惯.
五、布置作业,巩固提升
教材习题24.2第15、16题.
加深认识,深化提高.
┃教学小结┃
【板书设计】
圆的确定
1.圆的确定条件:
不在同一直线上的三点确定一个圆.
沪科版九年级下册24.2圆的基本性质教学设计(共六课时)
沪科版初中数学九年级第24章圆教学设计24.2圆的基本性质(共六课时)第一课时一.教学背景(一)教材分析:圆是在学习了直线图形的有关性质的基础上来研究的一种特殊的曲线图形。
它是常见的几何图形之一,是初中几何中主要内容之一,《圆》这一章知识本身具有一定的高度和难度,是学生对所学几何知识的再一次综合与提升,是学生丰富对现实空间及图形的认识,建立初步空间观念的保证。
“圆的基本性质”是对已学过的旋转及轴对称等知识的巩固,也为本章即将探究的圆的性质,和圆与其他图形的位置、数量关系等知识打下基础。
(二)学情分析:九年级学生在过去的生活和学习中对圆的知识已经有了一些认识,初步体会到圆在生活、工农业生产、交通运输、土木建筑等方面均广泛存在,这对进一步探究圆的定义及相关性质奠定了一定的基础。
但对圆的相关性质掌握较少,对知识的转化能力较差,所以重在要学生参与,主动探究,增加解决实际问题的能力。
二.教学目标1.通过观察、操作、归纳等理解圆的定义、弦、弧、直径、等圆、等弧等相关概念;探索并掌握点与圆的位置关系; 2.学会圆、弧、弦等的表示方法. 3.感受圆和实际生活的联系,培养学生用数形结合思想方法分析解决问题的能力。
三.教学重难点教学重点:1.理解与圆有关的概念并会用符号语言表示.2.理解和掌握点与圆的位置关系。
教学难点:圆的概念的理解及点与圆的位置关系。
四.教学方法分析及学习方法指导教学方法分析:充分确立学生在教学中的主体地位,贯彻师生合作,民主教学的精神,通过课前延伸,自主学习,合作探究,让学生积极参与知识回顾和技能的训练过程,通过观察和动手操作,充分调动已有知识,采用“迁移法”、“发生法”和“教师引导法”,强化学生的思考和探究意识,提高学生的思维品质。
学习方法指导:教师引导,学生在观察、操作、概括应用的学习过程中,自主参与知识的发生、发展、形成的过程,进一步理解并运用由特殊到一般,数形结合和转化等数学思想方法解决问题。
沪科版数学九年级下册24.2《圆的基本性质》教学设计
沪科版数学九年级下册24.2《圆的基本性质》教学设计一. 教材分析《圆的基本性质》这一节主要是让学生掌握圆的基本概念和性质,包括圆的定义、圆心、半径、直径等。
通过这一节的学习,让学生能够理解和运用圆的相关知识,为后续学习圆的方程、弧、扇形等知识打下基础。
二. 学情分析九年级的学生已经学习过平面几何的基本知识,对图形的认识有一定的基础。
但是,对于圆的一些基本性质,如圆心角、弧、扇形等,可能还不是很清楚。
因此,在教学过程中,需要结合学生的实际情况,用生动形象的语言和举例,让学生理解和掌握圆的基本性质。
三. 教学目标1.了解圆的定义和基本性质,能够运用圆的知识解决一些实际问题。
2.学会使用圆规和直尺画圆,并能理解其背后的几何原理。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.圆的定义和性质的理解和运用。
2.使用圆规和直尺画圆的方法和原理。
五. 教学方法1.采用问题驱动的教学方法,让学生在解决问题的过程中,理解和掌握圆的基本性质。
2.使用几何画板或者实物模型,让学生直观地感受圆的性质,增强空间想象能力。
3.分组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备几何画板或者实物模型,用于展示圆的性质。
2.准备相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如车轮、地球等,引出圆的概念,激发学生的学习兴趣。
提出问题:“什么是圆?圆有哪些基本性质?”2.呈现(15分钟)通过几何画板或者实物模型,展示圆的基本性质,如圆的定义、圆心、半径、直径等。
引导学生观察和思考,理解圆的性质。
3.操练(15分钟)让学生分组讨论,用圆规和直尺尝试画圆,并解释其背后的几何原理。
每组选出一个代表,进行展示和讲解。
4.巩固(10分钟)针对圆的基本性质,设计一些练习题,让学生独立完成。
教师进行讲解和解答,巩固所学知识。
5.拓展(10分钟)引导学生思考:圆与其他几何图形的关系,如圆与圆、圆与直线、圆与多边形等。
2021版九年级数学下册 24.2 圆的基本性质 24.2.2 圆的基本性质教案 (全国通用版)沪科
科版的基本性质教案(全国通用版)沪科版科版教学过程(一)、复习提问:1.你还记得我们学过图形中轴对称图形有哪些吗?分别有几条对称轴?(等腰三角形,等边三角形,矩形,菱形,正方形,等腰三角形。
)2.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?3.你是用什么方法解决上述问题的?与同伴进行交流.(可以利用折叠的方法,解决上述问题.把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴.)教师板书:圆是轴对称图形,其对称轴是任意一条过圆心的直线.(二)、探究新知问题1:作⊙O的直径CD,然后沿着CD对折⊙O,会出现什么现象,说明了什么?(说明圆是轴对称图形,它的对称轴是任意一条过圆心的直线.)问题2:在⊙O上取一点A,作AB⊥CD,垂足为E,在图中,你猜想一下会有那些等量关系。
(AE=BE,=,=.)这些等量关系如果用语言来叙述的话,我们可以说成什么?垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
首先我们分析一下这个定理的题设和结论。
题设:垂直于弦的直径。
结论:平分弦和弦所对的弧。
(学生完成)根据题设和结论,结合图形,我们找出已知、求证,并进行证明。
已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E。
求证:AE=BE,=,=分析:我们知道等腰三角形是轴对称图形,它的对称轴是底边垂线所在的直线,那么我们如何把等腰三角形和圆联系起来呢?连结OA,OB后我们可以得到一个等腰三角形,CD所在的直线既是等腰三角形的对称轴又是⊙O的对称轴,那么当把圆沿直径CD折叠时,会发现哪些部分重合(连结OA,OB, 并且有OA=OB。
两个半圆重合;A点、B点重合;弧AC、弧BC重合;弧AD、弧BD重合)既然AE,BE重合,我们就可以得到AE=BE;弧AC、弧BC重合,我们就可以得到=;AE OA BDC科版 弧AD 、弧BD 重合,我们就可以得到=。
沪科版数学九年级下册24.2《圆的基本性质》教学设计4
沪科版数学九年级下册24.2《圆的基本性质》教学设计4一. 教材分析《圆的基本性质》是沪科版数学九年级下册第24章第2节的内容,本节课主要学习了圆的性质,包括圆的直径、半径、圆心角、弧、弦等。
通过本节课的学习,使学生能够理解并掌握圆的基本性质,能够运用圆的性质解决一些实际问题。
教材中通过大量的图片和实例,引导学生探究和发现圆的性质,激发学生的学习兴趣,培养学生动手操作和解决问题的能力。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质有一定的了解。
但是,对于圆的性质,学生可能还比较陌生,需要通过实例和操作来加深理解和掌握。
学生在学习过程中可能存在对圆的性质理解不深,不能灵活运用圆的性质解决实际问题的情况。
因此,在教学过程中,需要注重引导学生通过观察、操作、思考、交流等方式,理解和掌握圆的性质。
三. 教学目标1.知识与技能:使学生理解并掌握圆的基本性质,能够运用圆的性质解决一些实际问题。
2.过程与方法:通过观察、操作、思考、交流等方式,培养学生动手操作和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的观察能力、思考能力和创新能力。
四. 教学重难点1.圆的直径、半径、圆心角、弧、弦等基本性质。
2.如何运用圆的性质解决实际问题。
五. 教学方法1.引导探究法:通过实例和操作,引导学生探究和发现圆的性质。
2.小组合作法:学生在小组内进行讨论和交流,共同解决问题。
3.直观演示法:通过图片和实物,让学生直观地理解圆的性质。
六. 教学准备1.教材和教辅材料。
2.圆形物品:如圆规、圆盘等。
3.图片和实例。
4.黑板和粉笔。
七. 教学过程1.导入(5分钟)教师通过展示一些与圆相关的图片和生活实例,引导学生关注圆的性质,激发学生的学习兴趣。
2.呈现(10分钟)教师通过讲解和展示,呈现圆的直径、半径、圆心角、弧、弦等基本性质,让学生初步了解和感知圆的性质。
3.操练(10分钟)教师提出一些有关圆的性质的问题,让学生动手操作,如用量尺和圆规画圆,测量圆的直径、半径等。
沪科版数学九下24.2《圆的基本性质(4)》教案设计
24.2.3圆心角、弧、弦、弦心距之间的关系教学目标 知识与能力:了解圆心角概念,理解并掌握圆心角,弧,弦,弦心距之间关系。
过程与方法:通过运用圆心角的概念,培养学生分析问题、解决问题的能力。
情感态度价值观:通过探讨圆心角、弧、弦、弦心距之间的关系,渗透数形结合的数学思想,培养学生良好的学习习惯。
教学重难点重点:圆心角的概念。
难点:掌握圆心角,弧,弦,弦心距之间关系教学过程一、 复习导入1.垂径定理及其逆定理的内容是什么?垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
2.什么叫弦心距?弦心距:圆心到弦的距离叫做弦心距。
3.你对圆的对称性有哪些了解?圆不仅是轴对称图形、中心对称图形,而且还有 旋转对称性。
本节课,我们将根据圆的旋转对称性,探究圆心角、弧、弦、弦心距之间关系.二、学习目标1、掌握圆心角定义,理解并掌握圆心角,弧,弦,弦心距之间关系2、理解并掌握圆心角的度数与它所对的弧的度数之间的关系。
3、能利用圆心角、弧、弦、弦心距之间的关系解决有关的证明与计算问题。
三、自学提纲看书本上第18~20页内容,解决以下问题1、掌握圆心角定义2、圆心角,弧,弦,弦心距之间的相等关系定理及其推论的内容是什么?怎样用符号语言来表述?3、理解圆心角的度数等于它所对弧的度数4、看懂书本上例4,5,6,领会解题方法与解题步骤。
四、合作探究1、把一个圆绕它的圆心旋转任意一个角度,它能和原来的图形重合吗?圆是旋转对称图形,圆心是它的旋转中心;圆具有旋转不变性.同时,圆还是轴对称图形和中心对称图形.2.什么叫圆心角?顶点在圆心的角叫做圆心角.如图:∠AOB 是圆心角.3.图中还有哪些圆心角,聪明的你,能说一说吗?:AB AOB AOB OMAB ∠∠如图是所对的弧,AB 是所对的弦是弦的弦心距.'','','','?AOB A OB AB A B AB A B OM OM ∠=∠当时与弦与弦心距与之间有什么关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
初中数学九年级教案-沪科版-24.2 圆的基本性质(第4课时)
24.2圆的基本性质
第四课时
教学目标
【知识与能力】
1.了解不在同一直线上的三个点确定一个圆,掌握过不在同一直线上的三个点作圆的方法;
2.了解三角形的外接圆、三角形的外心、圆的内接三角形的概念。
【过程与方法】
经历对不在同一直线上的三个点确定一个圆的探索,掌握过不在同一直线上的三个点作圆的方法,了解反证法的证明思想。
【情感态度价值观】
通过本节知识的学习,感知数学就在身边,从而更加热爱生活,激发学生学习数学的兴趣。
教学重难点
【教学重点】
理解和掌握不在同一直线上的三点确定一个圆及三角形的外接圆和外心等概念。
【教学难点】
能正确地过不在一条直线上的三点作圆,会用外心的性质解决有关问题。
课前准备
课件、圆规、直尺、三角板等。
教学过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第24章圆
24.2圆的基本性质(4)
【教学内容】圆的确定。
【教学目标】
知识与技能
了解不在同一直线上的三个点确定一个圆并掌握它的运用.
了解三角形的外接圆和三角形外心的概念.
了解反证法的证明思想
过程与方法
通过引导学生添加辅助线,培养学生的创造能力。
情感、态度与价值观
在运用数学知识解决问题的过程中,建立学习数学的自信心。
【教学重难点】
重点:圆的确定条件。
难点:圆的确定条件、反证法。
【导学过程】
【知识回顾】
1、圆的两种定义是什么?
2、爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。
他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。
如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?
【情景导入】
自学教材内容,尝试自主解决以下问题:
思考:平面上的一个圆把平面上的点分成哪几部分?各部分的点与圆有什么共同特征?
【新知探究】
探究一、
探究、实践、交流:
(1)、平面上有一点A,经过已知A点的圆有个,圆心为
(2)、平面上有两点A、B,经过已知点A、B的圆有个,它们的圆心分布的特点是(3)、平面上有三点A、B、C,经过A、B、C三点的圆分为两类:一种是三点在一条直线上,这时的圆有个,圆心为;三点不在一条直线上,这时经三点作圆。
上述结论用于三角形,可得:经过三角形的三个顶点作圆。
3有关概念:
①经过三角形的三个顶点可以做一个圆,并且只能画一个圆,这个圆叫做.
②外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的.
③三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形的离
、
相等。
4、想一想
①一个三角形的外接圆有几个?一个圆的内接三角形有几个?
②什么是反证法?用反证法证明的第一步是什么?
5教师提示:可根据本班的具体情况而定。
【知识梳理】
本节课你有哪些收获?请与同学们分享。
【随堂练习】
1、已知矩形ABCD的边AB=3厘米,AD=4厘米
(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?
2、判断下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( ).
(2)任意一个圆有且只有一个内接三角形( )
(3)经过三点一定可以确定一个圆( )
(4)三角形的外心到三角形各顶点的距离相等( )。