2011邢台市中考模拟数学试题
【3套试卷】邢台市中考第一次模拟考试数学试题
中考第一次模拟考试数学试题含答案一、选择题(共8小题,每小题3分,共24分)1.在数1,2,3和4中,是方程x2+x-6=0的根的为()A.1B.2C.3D.42.桌上倒扣着形状,大小,背面图案都相同的10张扑克牌,其中6张梅花、4张红桃,则()A.从中随机抽取1张,抽到梅花的可能性更大B.从中随机抽取1张,抽到梅花和红桃的可能性一样大C.从中随机抽取6张必有2张红桃D.从中随机抽取5张,可能都是红桃3.抛物线y=2(x-3)2-7的顶点坐标是()A.(3,7)B.(- 3,7)C. (3,-7)D. (- 3,- 7)4.在○O中,弦AB的长为8,00的半径为5,则圆心0到AB的距离为()A.4B.3C.2D.15.在平面直角坐标系中,有A(3,- 2),B(- 3,- 2),C(2,2),D(- 3,2)四点.其中关于原点对称的两点为()A.点A和点BB.点B和点CC.点C和点DD.点D和点A6.方程x2-x+2=0的根的情况是()A.两实数根的积为2B.两实数根的和为1C.没有实数根D.有两个不相等的实数根7.将抛物线y=-(x+1)2向右平移3个单位,再向卫平移2个单位后得到的抛物线的解析式为()A. y=-(x+4)2+2 B .y=-(x+4)2-2 C. y=-(x-2)2-2 D. y=-(x-2)2+28.如图,点O1是OABC的外心,以AB为直径作○O恰好经过点O1.若AC=2.BC=4,则A O1的长是()A.3B.C.2D.2二、填空题(共5个小题,每小题3分,共15分)11.掷一枚质地不均勾的骰子,做了大量的重复试验,发现“朝上一面为3点"出现的频率越来越稳定于0.3.那么,掷一次该骰子,“朝上一面为3点”的概率为______.12.如图.AB是○O的直径.点C,D在○O上.若∠CAB=40°.则∠ADC的度数为______ .12题图14题图15题图13.圆心角为125°的扇形的弧长是12. 5π。
中考2011年河北中考数学试卷
2011年河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(2011•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(2011•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(2011•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(2011•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。
2011年河北中考数学试题
2011年河北中考数学试题——解析版525、(2011•河北)如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.当α=90度时,点P到CD的距离最小,最小值为2.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO= 30度,此时点N到CD的距离是2.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP 绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=,cos41°=,tan37°=.)考点:直线与圆的位置关系;点到直线的距离;平行线之间的距离;旋转的性质;解直角三角形。
分析:思考:根据两平行线之间垂线段最短,以及切线的性质定理,直接得出答案;探究一:根据由MN=8,MO=4,OY=4,得出UO=2,即可得出得到最大旋转角∠BMO=30度,此时点N到CD的距离是2;探究二:(1)由已知得出M与P的距离为4,PM⊥AB时,点MP到AB的最大距离是4,从而点P到CD的最小距离为6﹣4=2,即可得出∠BMO的最大值;(2)分别求出α最大值为∠OMH+∠OHM=30°+90°以及最小值α=2∠MOH,即可得出α的取值范围.解答:解:思考:根据两平行线之间垂线段最短,直接得出答案,当α=90度时,点P到CD的距离最小,∵MN=8,∴OP=4,∴点P到CD的距离最小值为:6﹣4=2.故答案为:90,2;探究一:∵以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,∵MN=8,MO=4,OY=4,∴UO=2,∴得到最大旋转角∠BMO=30度,此时点N到CD的距离是2;探究二(1)由已知得出M与P的距离为4,∴PM⊥AB时,点MP到AB的最大距离是4,从而点P到CD的最小距离为6﹣4=2,当扇形MOP在AB,CD之间旋转到不能再转时,弧MP与AB相切,此时旋转角最大,∠BMO的最大值为90°;(2)如图3,由探究一可知,点P是弧MP与CD的切线时,α大到最大,即OP⊥CD,此时延长PO交AB于点H,α最大值为∠OMH+∠OHM=30°+90°=120°,如图4,当点P在CD上且与AB距离最小时,MP⊥CD,α达到最小,连接MP,作HO⊥MP于点H,由垂径定理,得出MH=3,在Rt△MOH 中,MO=4,∴sin∠MOH==,∴∠MOH=49°,∵α=2∠MOH,∴α最小为98°,∴α的取值范围为:98°≤α≤120°.点评:此题主要考查了切线的性质定理以及平行线之间的关系和解直角三角形等知识,根据切线的性质求解是初中阶段的重点题型,此题考查知识较多综合性较强,注意认真分析.26、(2011•河北)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c 经过点O和点P,已知矩形ABCD的三个顶点为 A (1,0),B (1,﹣5),D (4,0).(1)求c,b (用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,;(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.考点:二次函数综合题。
2011河北省中考数学试题及答案(Word版)
2011河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分:卷I 为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.计算30的结果是A .3B .30C .1D .0 2.如图1,∠1+∠2等于A .60°B .90°C .110°D .180°3.下列分解因式正确的是A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)24.下列运算中,正确的是A .2x -x =1B .x +x 4=x 5C .(-2x )3=-6x 3D .x 2y ÷y =x 25.一次函数y =6x +1的图象不经过... A .第一象限 B .第二象限 C .第三象限 D .第四象限6.将图2①围成图2②的正方体,则图②中的红心“ ”标志所在的正方形是正方体中的A .面CDHEB .面BCEFC .面ABFGD .面ADHG7.甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方并有分别是227S =甲,219.6S =乙,21.6S =丙,导游小王最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选 A .甲团 B .乙团 C .丙团 D .甲或乙团8.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面的函数关系式:h =-5(t -1)2+6,则小球距离地面的最大高度是 A .1米 B .5米 C .6米 D .7米9.如图3,在△ABC 中,∠C =90°,BC =6,D ,E 分别在AB ,AC 上,将△ABC 沿DE 折叠,使点A 落在A ′处,若A ′为CE 的中点,则折痕DE 的长为A .12B .2C .3D .410.已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为A .2B .3C .5D .13图1 ①②图211.如图4,在长方形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是12.根据图5中①所示的程序,得到了y 与x 的函数图象,如图5中②,若点M 是y 轴正半轴上任意一点,过点M 作PQ∥x 轴交图象于点P 、Q ,连接OP 、OQ ,则以下结论:①x <0时,y =2x②△OPQ 的面积为定值③x >0时,y 随x 的增大而增大 ④MQ =2PM⑤∠POQ 可以等于90° 其中正确结论是 A .①②④ B .②④⑤C .③④⑤D .②③⑤2011年河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅱ(非选择题,共90分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小是,每小题3分,共18分,把答案写在题中横线上) 13π,-4,0这四个数中,最大的数是___________.14.如图6,已知菱形ABCD ,其顶点A 、B 在数轴上对应的数分别为-4和1,则BC =_____.15.若︱x -3︱+︱y +2︱=0,则x +y 的值为_____________. 16.如图7,点O 为优弧ACB 所在圆的心,∠AOC =108°,点D 在AB 的延长线上,BD =BC ,则∠D =____________.图6ABCD图40 ①②ABC DO 图7C① ②图817.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置得到图②,则阴影部分的周长为_________18.如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”. 若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是____________.三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程 或演算步骤) 19.(本小题满分8分)已知2x y =⎧⎪⎨=⎪⎩x ,yy a =+的解.求(a +1)(a -1)+7的值 20.(本小题满分8分)如图10,在6×8的网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均为小正方形的顶点.⑴以O 为位似中心,在网格图...中作△A ′B ′C ′,使△A ′B ′C ′和△ABC 位似,且位似比为1:2⑵连接⑴中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号)图9如图11,一转盘被等分成三个扇形,上面分别标有关-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,鞭个扇形恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).⑴若小静转动转盘一次,求得到负数的概率;⑵小宇和小静分别转动一次,若两人得到的数相同,则称两人“不谋而合”,用列表法(或画树形图)求两人“不谋而合”的概率.22.(本小题满分8分)甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.⑴问乙单独整理多少分钟完工?⑵若乙因式作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?23.(本小题满分9分)如图12,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.⑴求证:①DE=DG;②DE⊥DG;⑵尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);⑶连接⑵中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想;⑷当1CECB n时,衣直接写出ABCDDEFGSS正方形正方形的值.图11小宇小静AB CD图11已知A 、B 两地的路程为240千米,某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现在有货运收费项目及收费标准表,行驶路程S (千米)与行驶时间t (时)的函数图象(如图13中①),上周货运量折线统计图(如图13中②)等信息如下:⑴汽车的速度为__________千米/时,火车的速度为_________千米/时;设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围)及x 为何值时y 汽>y 火;(总费用=运输费+冷藏费+固定费用)⑶请你从平均数、折线图走势两个角度分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?图13①图13 ②如图14①至图14④中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考:如图14①中,圆心为O的半圆形纸片在AB、CD之间(包括AB、CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α,当α=________度时,点P到CD的距离最小,最小值为____________.探究一在图14①的基础上,以点M为旋转中心,在AB、CD之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO=_______度,此时点N到CD的距离是______________.探究二将图14①中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB、CD之间顺时针旋转.⑴如图14③,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值:⑵如图14④,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数据:sin49°=34,cos41°=34,tan37°=34)BADC图14①BADC图14 ③BADC图14 ②BADC图14 ④M如图15,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(用含t的代数式表示);⑵当4<t<5时,设抛物线分别与线段AB、CD交于点M、N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=218;③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.参考答案:1.C2.B3.D4.D5.D6.A7.C8.C9.B 10.B 11.A 12. B. 13. π 14. 5 15. 1 16. 27° 17. 2 18. 319.解:将2,x y =y a =+中,得a =∴22(1)(1)7176a a a a +-+=-+=+=269+= 20. 解:⑴如图1.⑵ ''2AA CC ==在Rt ⊿''OA C 中,''OA OC ==2,得''A C =AC =∴四边形''AA C C 的周长=4+21. 解:⑴ P (得到负数)=13⑵用下表列举所有的可能结果:从上表可知,一共有九种可能,其中两人得到的数相同的有三种, 因此 P (两人“不谋而合”)=13(注:画树状图正确也相应给分)22. 解:⑴ 设乙单独整理x 分钟完工,根据题意得:202020140x++= 解得:80x =.经检验80x =是原方程的解.答:乙单独整理80分钟完工.⑵ 设甲整理y 分钟完工,根据题意得:308040y +≥1, 解得:y ≥25答:甲至少整理25分钟完工.(注:以下解答也给分.设甲、乙分别整理,y z 分钟,得18040z y +=.∴802.z y =- ∵30z ≤,∴80230y -≤,∴y ≥25.)23. 解:⑴证明:∵ 四边形ABCD 是正方形 ,∴DC DA =,90DCE DAG ∠=∠=°. 又∵CE AG =,∴⊿D C E ≌⊿D A G .∴EDC GDA ∠=∠,DE DG =.又∵90ADE EDC ∠+∠= ,∴90ADE GDA ∠+∠= ,∴DE DG ⊥.⑵如图2(注:图3或其它画法正确的相应给分)⑶四边形CEFK 是平行四边形. 证明:设,CK DE 相交于M 点.∵四边形ABCD 和四边形DEFG 都是正方形,∴AB ∥CD , AB=CD , EF=DG , EF ∥DG , ∵BK=AG , ∴KG=AB=CD , ∴四边形CKGD 为平行四边形. ∴CK=DG=EF , CK ∥DG . ∴90KME GDE DEF ∠=∠=∠=.∴180KME DEF ∠+∠=.∴CK ∥EF , ∴四边形CEFK 是平行四边形.(注:由CK ∥DG , EF ∥DG 得CK ∥EF 也可)⑷22=1ABCD DEFG S n S n +正方形正方形. 24. 解: ⑴ 60,100. ⑵依题意,得240=2402520060y x x ⨯+⨯+汽. =500200y x +汽.240=240 1.652280100y x x ⨯+⨯+火. =3962280y x +火.若y 汽 >y 火,得500200x +>3962280x +, ∴x >20.⑶上周货运量(17201922222324)72120X =++++++÷=>. 从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预定火车费用较省.25. 解:思考 90,2. 探究一 30,2.探究二、⑴由已知得M 与P 的距离为4,∴当MP AB ⊥时,点P 到AB 的最大距离是4,从而点P 到CD 的最小距离为642-=.当扇形MOP 在,AB CD 之间旋转到不能再转时, MP与AB 相切,此时旋转角最大,BMO ∠的最大值为90°.⑵如图4,由探究一可知,点P 是 MP与CD 的切点时,a 达到最大,即OP CD ⊥.此时,延长PO 交AB 于点H ,a 最大值为3090120OMH OHM ∠+∠=+=.如图5,当点P 在CD 上且与AB 距离最小时,MP CD ⊥,a 达到最小,连接MP ,作OH MP ⊥于点H ,由垂径定理,得3MH =,在Rt ⊿MOH 中,MO =4, ∴3sin ,4MH MOH OM ∠==∴49MOH ∠= ,∵2a MOH =∠,∴a 最小为98 . ∴a 的取值范围是98120a ≤≤.26. 解:⑴把0,0x y ==代入2y x bx c =++,得0c =.再把x t =,0y =代入2y x bx =+,得20t bt +=,∵0t >,∴b t =-.⑵①不变.如图6,当1x =时,1y t =-,故(1,1)M t -. ∵tan 1AMP ∠=.∴45AMP ∠=②PAM AMNP -S S S = 四边形=DPN PAM NDAM +-S S S 梯形 =[]111(416)(1)3(1)(1)222t t t t -+-⨯---(t-4)(4t-16)+=2315622t t -+ 解2315622t t -+=218,得1219,22t t ==. ∵45t <<,∴112t =舍去,∴92t =. ⑶71123t <<。
2011年中考数学模拟试卷
B2011年中考数学模拟试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 3-的相反数是(冀教七上P 31…例二改编)( )A .13B .13-C .3D .3-2、下列计算中,正确的是( )(原创)A .325a b ab +=B .44a a a =∙ C .623a a a ÷= D .3262()ab a b =3、如图,AB ∥CD ,∠1=110°∠ECD=70°,∠E 的 大小是( )(原创)A .30°B .40°C .50°D .60°4、下列事件中,属于必然事件的是( )(原创)A .中秋节晚上能看到月亮B .抛掷一枚质地均匀的硬币,正面向上C .早晨的太阳从东方升起D .明天唐山市区有雷阵雨5、不等式组2133x x +⎧⎨>-⎩≤ 的解集在数轴上表示正确的是( )(冀教版八上P16习题1改编)6、对于反比例函数2y x=,下列说法不正确...的是( )(冀教版九上P100习题1改编) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y随x 的增大而增大D .当0x <时y 随x 的增大而减小 7、如图所示,DEF △是由ABC △点O 是位似中心,D E F ,,分别是OA OB OC ,,点,则DEF △与ABC △的面积比是( )(冀教版九上P78习题2改编) A .1:6 B .1:5 C .1:4 D .1:28、如图,CD 是Rt △ABC 斜边AB 上的高,将△CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 于( )(09唐山模拟7题)A .25°B .30°C .45°D .60°9、河北省2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )(09安徽中考7题改编) A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%+7%=2×x%D .2(112%)(17%)(1%)x ++=+10. 如图,小明家(图中点O处)门前有一条东西走向的公路,经测得有一学校(图中点A处)在她家北偏A .B .C .D .A北D东60度500m 处,那么学校所在的位置到公路的距离AB 是( ). (09河北中考8题改编) A.250mB.D.11、如图,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( ) (2007陕西中考7题) A .2y x =-+ B .2y x =+ C .2y x =-D .2y x =--12、根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).(09陕西中考10题) x … 1- 0 1 2 … y … 1- 74- 2-74- … A .只有一个交点 B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点卷Ⅱ(非选择题,共96分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13、2009年8月7日,“莫拉克”台风登陆宝岛台湾,使台湾同胞造成重大损失,唐山人民心系灾区,截至8月25日,市红十字会共收到各界捐款128000元。
2011年河北中考数学试题及答案
数学试卷
第 3 页(共 14 页)
三、解答题(本大题共 8 个小题,共 72 分.解答应写出文字说明、证明过程或演算步骤) 得 分 评卷人 19. (本小题满分 8 分)
x=2 已知 是关于 x,y 的二元一次方程 3x=y+a 的解. y= 3
求(a+1) (a–1)+7 的值
得 分
评卷人 20. (本小题满分 8 分)
5.一次函数 y=6x+1 的图象不经过 ... A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.将图 2-1 围成图 2–2 的正方体,则图 2-1 中 的红心“ ”标志所在的正方形的是正方形 是下文体中的 A.面 CDHE C.面 ABFG B.面 BCEF D.面 ADHG
7.甲、乙、丙三个旅行团的游客人数相等,且每团游客的平均年龄都是 32 岁,这三个团
11.如图 4,在矩形中截取两个相同的圆作为圆柱的上、 下底面,剩余的矩形作为圆柱的侧面,刚好能组合成 圆柱.设矩形的长和宽分别为 y 和 x,则 y 与 x 的函 数图象大致是
12.根据图 5-1 所示的程序,得到了 y 与 x 的函数图象,如图 5-2.若点 M 是 y 轴正半轴上 任意一点, 过点 M 作 PQ∥x 轴交图象于点 P, Q,连接 OP,OQ.则以下结论: ①x<0 时,y=x
数学试卷
第 8 页(共 14 页)
得 分
评卷人 25. (本小题满分 10 分)
如图 14-1 至 14-4 中,两平行线 AB,CD 间的距离均为 6,点 M 为 AB 上一定点. 思考 如图 14-1,圆心为 O 的半圆形纸片在 AB,CD 之间 (包括 AB,CD) ,其直径 MN 在 AB 上,MN=8, .. 点 P 为半圆上一点,设∠MOP=α. 当 α=_____度时,点 P 到 CD 的距离最小,最小 值为_______ 探究一 在图 14-1 的基础上, 以点 M 为旋转中心, 在 AB, CD 之间顺时针旋转该半圆形纸片,直到不能再转动 为止,如图 14-2,得到最大旋转角∠BMO=_____度, 此时点 N 到 CD 的距离是_______. 探究二 将图 14-1 中的扇形纸片 NOP 按下面对 α 的要求 剪掉,使户型纸片 MOP 绕点 M 在 AB,CD 之间 顺时 .. 外旋转. (1)如图 14-3,当 α=60° 时,求在旋转过程中, 点 P 到 CD 的最小距离, 并请指出旋转角∠ BMO 的最大值 (2)如图 14-4,在扇形纸片 MOP 旋转过程中, 要保证点 P 能落在直线 CD 上, 请确定 α 的 取值范围. (参考数据:sin49° =4,cos41° =4,tan37° =4)
2011年河北省中考数学试卷及答案解析
2011年河北省中考数学试卷及答案解析一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(2011•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(2011•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(2011•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(2011•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。
2011年河北中考数学试题
2011年河北中考数学试题——解析版315、(2011•河北)若|x﹣3|+|y+2|=0,则x+y的值为1.考点:非负数的性质:绝对值。
专题:计算题。
分析:根据非负数的性质,可求出x、y的值,然后将x,y再代入计算.解答:解:∵|x﹣3|+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴则x+y 的值为:3﹣2=1,故答案为1.点评:此题主要考查了绝对值的性质,根据题意得出x,y的值是解决问题的关键.16、(2011•河北)如图,点0为优弧所在圆的圆心,∠AOC=108°,点D在AB延长线上,BD=BC,则∠D=27°.考点:圆周角定理;三角形的外角性质;等腰三角形的性质。
专题:计算题。
分析:根据圆周角定理,可得出∠ABC的度数,再根据BD=BC,即可得出答案.解答:解:∵∠AOC=108°,∴∠ABC=54°,∵BD=BC,∴∠D=∠BCD=∠ABC=27°,故答案为27°.点评:本题考查了圆周角定理、三角形外角的性质以及等腰三角形的性质,是基础知识比较简单.17、(2011•河北)如图1,两个等边△ABD,△CBD的边长均为1,将△ABD 沿AC方向向右平移到△A’B’D’的位置,得到图2,则阴影部分的周长为2.考点:平移的性质;等边三角形的性质。
专题:几何图形问题。
分析:根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+O E=A′D′+CD=1+1=2,即可得出答案.解答:解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为:2.点评:此题主要考查了平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.18、(2011•河北)如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是3.考点:规律型:图形的变化类。
2011年河北中考数学试题(word及答案)
2011河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分:卷I 为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.计算30的结果是A .3B .30C .1D .0 2.如图1,∠1+∠2等于A .60°B .90°C .110°D .180°3.下列分解因式正确的是A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)2 4.下列运算中,正确的是A .2x -x =1B .x +x 4=x 5C .(-2x )3=-6x 3D .x 2y ÷y =x 2 5.一次函数y =6x +1的图象不经过... A .第一象限 B .第二象限 C .第三象限 D .第四象限6.将图2①围成图2②的正方体,则图②中的红心“”标志所在的正方形是正方体中的 A .面CDHE B .面BCEF C .面ABFG D .面ADHG7.甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方并有分别是227S =甲,219.6S =乙,21.6S =丙,导游小王最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选A .甲团B .乙团C .丙团D .甲或乙团8.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面的函数关系式:h =-5(t -1)2+6,则小球距离地面的最大高度是 A .1米 B .5米 C .6米 D .7米9.如图3,在△ABC 中,∠C =90°,BC =6,D ,E 分别在AB ,AC 上,将△ABC 沿DE 折叠,使点A 落在A ′处,若A ′为CE 的中点,则折痕DE 的长为A .12B .5米C .6米D .7米10.已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为图1 ① ②图2A .2B .3C .5D .1311.如图4,在长形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆住的侧面,刚好能组合成圆住.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是12.根据图5中①所示的程序,得到了y 与x 的函数图象,如图5中②,若点M 是y 轴正半轴上任意一点,过点M 作PQ ∥x 轴交图象于点P 、Q ,连接OP 、OQ ,则以下结论:①x <0时,y =2x②△OPQ 的面积为定值③x >0时,y 随x 的增大而增大 ④MQ =2PM⑤∠POQ 可以等于90° 其中正确结论是 A .①②④ B .②④⑤C .③④⑤D .②③⑤2011年河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅱ(非选择题,共90分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小是,每小题3分,共18分,把答案写在题中横线上) 13π,-4,0这四个数中,最大的数是___________.14.如图6,已知菱形ABCD ,其顶点A 、B 在数轴上对应的数分别为-4和1,则BC =_____.15.若︱x -3︱+︱y +2︱=0,则x +y 的值为_____________. 16.如图7,点O 为优弧ACB 所在圆的心,∠AOC =108°,点D 在AB 的延长线上,BD =BC ,图6ABCD图4①②ABC DO 图7C① ②图8则∠D =____________.17.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置得到图②,则阴影部分的周长为_________18.如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”. 若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是____________.三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程 或演算步骤) 19.(本小题满分8分)已知2x y =⎧⎪⎨=⎪⎩是关于x ,yy a =+的解.求(a +1)(a -1)+7的值20.(本小题满分8分)如图10,在6×8的网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均为小正方形的顶点.⑴以O 为位似中心,在网格图...中作△A ′B ′C ′,使△A ′B ′C ′和△ABC 位似,且位似比为1:2⑵连接⑴中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号)21.(本小题满分8分)如图11,一转盘被等分成三个扇形,图9图11小宇小静上面分别标有关-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,鞭个扇形恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).⑴若小静转动转盘一次,求得到负数的概率;⑵小宇和小静分别转动一次,若两人得到的数相同,则称两人“不谋而合”,用列表法(或画树形图)求两人“不谋而合”的概率.22.(本小题满分8分)甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.⑴问乙单独整理多少分钟完工?⑵若乙因式作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?23.(本小题满分9分)如图12,四边形ABCD 是正方形,点E ,K 分别在BC ,AB 上,点G 在BA 的延长线上,且CE =BK =AG .⑴求证:①DE =DG ;②DE ⊥DG ;⑵尺规作图:以线段DE ,DG 为边作出正方形DEFG (要求:只保留作图痕迹,不写作法和证明);⑶连接⑵中的KF ,猜想并写出四边形CEFK 是怎样的特殊四边形,并证明你的猜想;⑷当1C E C B n 时,衣直接写出ABCD D EFGS S 正方形正方形的值.24.(本小题满分9分)已知A 、B 两地的路程为240千米,某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.A B CD图11现在有货运收费项目及收费标准表,行驶路程S (千米)与行驶时间t (时)的函数图象(如图13中①),上周货运量折线统计图(如图13中②)等信息如下:货运收费项目及收费标准表⑴汽车的速度为__________千米/时, 火车的速度为_________千米/时; 设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围)及x 为何值时y 汽>y 火;(总费用=运输费+冷藏费+固定费用)⑶请你从平均数、折线图走势两个角度分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?25.(本小题满分10分)如图14①至图14④中,两平行线AB 、CD 音的距离均为6,点M 为AB 上一定点.图13①图13 ②思考:如图14①中,圆心为O 的半圆形纸片在AB 、CD 之间(包括AB 、CD ),其直径MN 在AB 上,MN =8,点P 为半圆上一点,设∠MOP =α,当α=________度时,点P 到CD 的距离最小,最小值为____________.探究一在图14①的基础上,以点M 为旋转中心,在AB 、CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO =_______度,此时点N 到CD 的距离是______________.探究二将图14①中的扇形纸片NOP 按下面对α的要求剪掉,使扇形纸片MOP 绕点M 在AB 、CD 之间顺时针旋转.⑴如图14③,当α=60°时,求在旋转过程中,点P 到CD 的最小距离,并请指出旋转角∠BMO 的最大值:⑵如图14④,在扇形纸片MOP 旋转过程中,要保证点P 能落在直线CD 上,请确定α的取值范围.(参考数据:sin 49°=34,cos 41°=34,tan 37°=34)26.(本小题满分12分)如图15,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以每秒1个单位长BAD CBA D C 图14 ③BADC图14 ②BADC图14 ④M的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(用含t的代数式表示);⑵当4<t<5时,设抛物线分别与线段AB、CD交于点M、N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=218;③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.新课标第一网。
2011河北中考数学试题及答案
2011河北中考数学试题及答案考试是评价学生学习成绩的一种常见方式,而数学试题作为其中的一部分,对于学生的数学水平有着重要的检验作用。
本文将为大家介绍2011年河北中考数学试题及答案,帮助学生们更好地了解考试内容和解题思路。
2011年河北中考数学试题题目一:已知正方形ABCD的边长为4cm,点E是BC延长线上的一点,且BE=2cm,连接AE交对角线BD于F。
求EF的长度。
解析:首先,根据正方形ABCD的性质,可以得知BD是对角线,在点E处交对角线BD得到弦EF。
我们可通过相似三角形的知识来求解。
在△ABF和△DEC中,由于正方形ABCD为等腰直角三角形,故△ABF和△DEC为相似三角形,且由比例关系可得BF/DE=AB/DC=1。
根据已知条件,我们可以得到BE=2cm,BF=BC-FC=4-FC,DE=2cm,代入比例关系可得(4-FC)/2=1,解得FC=2cm。
由△ABF与△CFE的相似关系可知,AB/CF=AF/CE=BF/EF,代入已知数据可得4/(2+EF)=2/EF,解得EF=1cm。
综上所述,EF的长度为1cm。
题目二:甲乙两人进行长跑比赛,已知甲第一圈跑完全程的1/4,第二圈跑完全程的1/2,第三圈跑完全程的1/3,如此往复。
乙第一圈跑完全程的1/5,第二圈跑完全程的1/4,第三圈跑完全程的1/3,如此往复。
如果两人同时开始比赛,两人相遇时甲刚好跑完第n圈,求n 的值。
解析:通过观察题目中给出的比例关系可以得知,甲和乙两人分别每一圈的跑步长度从第一圈开始逐渐递增。
我们可以列出甲乙两人每一圈的跑步长度的等差数列,并找到二者的公共项。
甲的每一圈跑步长度为1/4,1/2,1/3...,是一个等差数列,而乙的每一圈跑步长度为1/5,1/4,1/3...,也是一个等差数列。
根据等差数列的性质,公式为an=a1+(n-1)d,其中an代表第n项,a1代表首项,d代表公差。
设甲第n圈时刚好跑完全程,乙第m圈时刚好跑完全程,则有:1/4+1/2+1/3+...+1/n=11/5+1/4+1/3+...+1/m=1通过计算等差数列的和,我们可以得到甲乙两人各自跑的圈数:n=4m=5综上所述,两人相遇时甲刚好跑完第4圈,即n的值为4。
河北省2011中考数学考前模拟测试精选题2冀教版
2011年初中毕业生学业考试(模拟考)科试卷数学在每小题给出的四个选项中,只有一3分,共15分)一.选择题(本大题共5小题,每小题个是正确的,请将正确选项的字母写在答题卷相应的答题位置上。
1.25的算术平方根是55.±A . 5 B.±5 C. D)2.到三角形各顶点的距离相等的点是三角形(.三条高的交点 A.三条角平分线的交点 B D.三条中线的交点C.三边的垂直平分线的交点3.一个几何体及它的主视图和俯视图如图所示,视主那么它的左视图正确的是________图DC A B 视俯图条结果,其搜索“玉树捐款”获得约7945000204.玉树地震后,各界爱心如潮,4月日)保留三个有效数字用科学记数法表示应为中7945000__________(6556 10.10A. 7.94×B. 7.94×10 C 7.95×10 D. 7.95× 5.某青年排球队12名队员的年龄情况如下:22 20 21 18 年龄(单位:岁) 192342人数 1______________则这个队队员年龄的众数和中位数是19 ,20.5 D、2019、、A19,20 B19,19 C、,二、填空题(4×5=20分)2?a3?27.分解因式:. 6ACABABCDE7.如图,在△、中,点分别是边、的中点,题)(第7BCDE=___ ___cm已知.=6cm,则 10%元,若以9折降价出售,仍可获利,则1328.一件衬衣标价是元.这件衬衣的进价是9.为了测量一个圆形铁环的半径,某同学采用了如下办法:将°的三角板和一30铁环平放在水平桌面上,用一个锐角为个刻度尺,按如图所示的方法得到相关数据,进而可求得铁PA=5cm,则铁环的半径是cm.环的半径,若测得10.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个α.,,大正方形的面积为100大正方形.如果小正方形的面积为4___________ α的值等于直角三角形中较小的锐角为α,则tan30分)小题,每小题6分,共三、解答题(本大题5计算11.12. 如图,要在一块形状为直角三角形A的铁皮上裁出一个半圆形的铁皮,需先C为直角)(∠上,在这块铁皮上画出一个半圆,使它的圆心在线段AC C请你用直尺和圆规画出来(要求且与AB、BC都相切.B13图用尺规作图,保留作图痕迹,不要求写作法).DAABCDABBCCD的各边上,、、、13.如图,在DNKCMBLLKMNA=、=、、、,,使分别取点KLMN为平行四边形。
2011年河北中考数学试卷(2)
2011年河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(2011•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(2011•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(2011•河北)下列分解因式正确的是()A、﹣3=﹣a(12)B、2a﹣42=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣21=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣3=﹣a(1﹣a2)=﹣a(1)(1﹣a),故本选项错误;B、2a﹣42=2(a﹣21),故本选项错误;C、a2﹣4=(a﹣2)(2),故本选项错误;D、a2﹣21=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(2011•河北)下列运算中,正确的是()A、2x﹣1B、45C、(﹣2x)3=﹣6x3D、x2y÷2考点:整式的除法;合并同类项;幂的乘方与积的乘方。
专题:计算题。
分析:A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.解答:解:A中整式相减,系数相减再乘以未知数,故本选项错误;B,不同次数的幂的加法,无法相加,故本选项错误;C,整式的幂等于各项的幂,故本选项错误;D,整式的除法,相同底数幂底数不变,指数相减.故本答案正确.故选D.点评:本题考查了整式的除法,A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.本题很容易判断.5、(2011•河北)一次函数61的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限考点:一次函数的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷 第1页 (共10页)2011年河北省初中毕业生升学文化课考试数学模拟试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答在试卷上无效.一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的相反数是A .3-B .3C .13D .13-2.如图1,直线a//b ,直线c 与a 、b 相交,若∠1=45°,则∠2等于A .155°B .145°C .135°D .125°3.下列计算中,正确的是A .222()a b a b +=+ B .4282510a a a ⋅=C .2x x x +=D .326()a a -=4.2011年一季度,全国城镇新增就业人数为2930000,用科学记数法表示这个数,正确的是A .293×410 B .29.3×510 C .2.93×610 D .2.93×7105.函数y =中,自变量的取值范围是A .3x ≥B .x >3C .3x ≠D .3x < 6.如图2,在Rt △ABC 中,AC =2,BC =3,则tan B 的值是A .23B .32C D1 a图1bc 2B图2数学试卷 第2页 (共10页)7.如图3,在⊙O 中,CD 是直径,AB 是弦,CD ⊥AB 于点E . 已知CD =10,AB =8,则OE 的长为A .3B .4C .5D .6 8.某公司2009年的盈利额为300万元,预计2011年的盈利额 将达到363万元. 设这两年盈利额的平均增长率为x ,所列方 程正确的是A .300363x =B .2300363x = C .300(1)363x +=D .2300(1)363x +=9.把不等式组211,3x x ->⎧⎨≤⎩的解集表示在数轴上,正确的是10.在1、2、3 …… 98、99、100这一百个自然数中,满足“被7除余3,且被3除余1”的最大的是A .93B .94C .95D .9611.如图4,把△ABC 沿DE 折叠,当点A 落在四边形BCDE内部时,∠A 与∠+∠12之间的数量关系是 A .∠=∠+∠A 12 B . 212∠=∠+∠A C . 3212∠=∠+∠A D . 3212∠=∠+∠A ()12.如图5,某工厂有两个大小相等蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内 的注水量不变,那么,从注水开始,水池乙水面 上升的高度h 与注水时间t 之间的函数关系的图 像大致是D 图3C乙甲 图5图42ABCDE 1 B DC A2011年河北省初中毕业生升学文化课考试数学模拟试卷卷II(非选择题,共96分)注意事项:1.答卷II前,将密封线左侧的项目填写清楚.2.答卷II时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.分解因式:34m m-=.14.从分别标有2、3、4的三张卡片中,任意抽取两张,这两张卡片上的数字之和为偶数的概率是.15.反比例函数kyx=的图像经过点(2,3)M-,当0x>时,y随x的增大而.16.某公司销售一种进价为24元的产品,按标价的九折销售,仍可获利20%,则此产品的标价为元.17.若一个圆锥的侧面积为8πcm2,侧面展开图是半圆,则该圆锥的底面圆半径是cm.18.如图6,正方形ABCD边长为2,E为CD边上的一点,DE=1,以点A为中心,把△ADE顺时针旋转90°得△ABF,连接EF,则EF的长等于.AB D EF图6数学试卷第3页(共10页)数学试卷 第4页 (共10页)三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)已知2x =,求231()112x x x x x x --⋅-++的值.20.(本小题满分8分)如图7,在正方形网格中,每个小正方形的边长都是1.四边形ABCD 的四个顶点都在格点上,点O 为AD 的中点. 把四边形ABCD 绕点O 顺时针旋转180°,(1)画出四边形ABCD 旋转后的图形;(2)求点C 在旋转过程中所经过的线路的长(结果保留π).图721.(本小题满分9分)某公司营销人员的工资由两部分组成,一部分为基本工资,每人每月500元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励工资10元. 设营销员李亮月销售产品x件,他应得的工资为y元,(1)写出y与x之间的函数关系式;(2)若李亮3月份的工资为2000元,他这个月销售了多少件产品?(3)李亮要想4月份的工资超过2360元,他在4月份月的销售量应当超过多少件?数学试卷第5页(共10页)数学试卷 第6页 (共10页)22.(本小题满分9分)某校九年级学生进行体育测试,从女生1分钟仰卧起坐成绩中抽取了部分数据.下列 图表中提供了这些数据的有关信息,根据这些信息解答问题.已知A 、B 两组个数直方图高度比为1:5.(1)A 组的频数是多少?本次调查样本容量是多少? (2)求C 组的频数,并补全直方图;(3)该校九年级有300名女生,请估计,1分钟仰卧起坐不低于30个的人数.ABC D E 20% 28%40% 图8人数 图9(1)如图10,Rt△ABC的三边长分别为3、4、5,求△ABC内切圆的半径;(2)如图11,△ABC的三边长分别为a、b、c,面积为S,其内切圆的半径为r,试用a、b、c和S表示r;(3)如图12,四边形ABCD的周长为l,面积为S,其内切圆的半径为r,试用l、S 表示r;(4)若一个n边形的周长为l,面积为S,其内切圆的半径为r,直接写出r、l和S的关系.图10 图11 图12数学试卷第7页(共10页)数学试卷 第8页 (共10页)24.(本小题满分10分)如图13,AB =3AC ,DA 平分∠BAC ,BD ⊥AD ,BC 交AD 于点E ,CF//BD . (1)求证:△ACG ≌△AFG ;(2)求F G B D 的值;(3)求E G E D的值;(4)判断AE 和DE 之间的数量关系,并说明理由.图13ADBCEFG数学试卷 第9页 (共10页)25.(本小题满分12分)如图14,已知点(2,0)A -、点(0,2)B 、点D (1,0)和(,0)E m ,二次函数2y x bx c =++的图像过点B ,且与x 轴交于点D 和点E . (1)写出直线AB 的函数表达式; (2)求b 、c 的值;(3)求m 的值;(4)直线AB 上有点C ,其横坐标为4,那么点C 是抛物线上的点吗?为什么?图14数学试卷 第10页 (共10页)26.(本小题满分12分)如图15,四边形OABC 是菱形,点C 在x 轴上,AB 交y 轴于点H ,AC 交y 轴于点M . 点P 从点A 出发,以2单位长/秒的速度沿折线A-B-C 运动,到达点C 终止. 已知点A (-3, 4).(1)求点C 和点B 的坐标; (2)求点M 的坐标;(3)设点P 的运动时间为t (秒),△PMB 的面积为s (平方单位),求s 与t 的函数关系式;(4)求s 的最大值.图15数学试卷 第11页 (共10页)答案一、BCDCBA ADABBC 二、13. (2)(2)m m m +- 14.1315. 增大 16. 32 17. 218. 三、19. 原式=2(2)2x x x ++=2x . 5分当2x =时,原式. 8分20. (1)如图1. 4分 (2. 8分 21.(1)10500y x =+. 3分 (2)150件. 6分 (3)x 186> 9分 22.(1)A 的频数是1,样本容量50 . 3分 (2)20,如图2. 7分 (3)144. 9分 23.(1)r =1. 2分 (2)2S r a b c =++. 5分(3)2S r l=. 8分(4)2S r l=. 10分24.(1) ∵DA 平分∠BAC ,∴∠F AG =∠CAG , ∵BD ⊥AD ,CF//BD , ∴CF ⊥AD ,∴∠AGF =∠AGC =90°. 在△AFG 和△ACG 中,∵∠F AG =∠CAG ,AG =AG ,∠AGF =∠AGC ,∴△AFG ≌△ACG . 4分 (2)13F G B D=. 6分人数 图2图1数学试卷 第12页 (共10页)(3)13E G E D=. 8分(4)AE =DE .理由:设EG =x ,则ED =3x .143A G A G A DA G x==+,解143A G A G x=+得AG =2x ,∴AE =3x =DE . 10分25.(1)2y x =+. 2分 (2)3b =-,c =2. 4分 (3)m =2. 8分 (4)是,点C 的坐标是(4,6),满足232y x x =-+. 12分 26.(1)(5,0)C ,(2,4)B . 2分 (2)5(0,)2M . 4分(3)当502t ≤<时,31524s t =-+;当552t <≤时,52524s t =-. 8分(4)254. 12分。