精反比例函数综合复习讲义
反比例函数复习课完整版课件
通过观察反比例函数和直线图像的相对位置关系,可以直观判断交点的存在性及 个数。例如,当直线与双曲线有两个交点时,说明存在两个解;当直线与双曲线 相切时,说明存在一个解;当直线与双曲线无交点时,说明不存在解。
03 反比例函数在实际问题中 应用
生活中常见问题建模为反比例关系
路程、速度和时间的关系
当路程一定时,速度和时间成反比例关系。例如,从家到学校距离一定,步行速度越快, 所需时间越短。
工作总量、工作效率和工作时间的关系
当工作总量一定时,工作效率和工作时间成反比例关系。例如,完成一项任务所需的总工 作量是固定的,工作效率越高,所需时间越短。
矩形面积、长和宽的关系
当矩形面积一定时,长和宽成反比例关系。例如,一块固定面积的土地,长度越长,宽度 就越短。
我们探讨了反比例函数与直线交点的求解方法,以及交点存在
和不存在的条件。
学生自我评价报告分享
01
02
03
知识掌握情况
学生们表示通过本节课的 复习,对反比例函数的概 念、性质和应用有了更深 刻的理解。
学习方法反思
部分学生提到,在解决反 比例函数与直线交点问题 时,需要更加细心地处理 计算过程,以避免出错。
反比例函数定义
形如 $y = frac{k}{x}$ (其中 $k$ 为常 数,且 $k neq 0$) 的函数称为反比 例函数。
反比例函数表达式
比例系数的意义
$k$ 决定了反比例函数的图像和性质 ,当 $k > 0$ 时,图像位于第一、三 象限;当 $k < 0$ 时,图像位于第二 、四象限。
$y = frac{k}{x}$,其中 $x$ 是自变量 ,$y$ 是因变量,$k$ 是比例系数。
最新反比例函数综合复习讲义
反比例函数知识整理1、反比例函数的概念 一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质 当k>0时,函数图像的两个分支分别在第一、三象限。
在每个象限内,y 随x 的增大而减小。
当k<0时,函数图像的两个分支分别在第二、四象限。
在每个象限内,随x 的增大而增大。
4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。
由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义 如下图,过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙。
k S k xy xky ==∴=,, 。
考点一、反比例函数的性质 【例1】已知反比例函数10y x=,当1<x<2时,y 的取值范围是 ( ) (A )0<y<5 (B )1<y<2 (C )5<y<10 (D )y>10 【举一反三】1、已知y 是x 的反比例函数,当x >0时,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式2、已知一次函数y 1=kx +b (k <O )与反比例函数y 2=xm(m ≠O )的图象相交于A 、B 两点,其横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是( )A .x <-l 或O <x <3B .一1<x <O 或O <x <3C .一1<x <O 或x >3D .O <x <3 3、函数y =mx +n 与mxny =,其中m ≠0,n ≠0,那么它们在同一坐标系中的图象可能是( )A B C D 考点典例二、反比例函数图象上点的坐标特征【例2】(2015自贡)若点(1x ,1y ),(2x ,2y ),(3x ,3y ),都是反比例函数xy 1-=图象上的点,并且1230y y y <<<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .231x x x << 【举一反三】1、若点A (1,y 1)和点B (2,y 2)在反比例函数1y x=图象上,则y 1与y 2的大小关系是: y 1 y 2(填“>”、“<”或“=”).2、如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数ky x=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( )A .2≤k ≤9B . 2≤k ≤8C . 2≤k ≤5D . 5≤k ≤8 3、如图,P 是函数x y 21=(x >0)的图象上的一点,直线1+-=x y 分别交x 轴、y轴于点A 、B ,过点P 分别作PM ⊥x 轴于点M ,交AB 于点E ,作PN ⊥y 轴于点N ,交AB 于点F ,则AF ·BE 的值为 。
反比例综合辅导讲义
学生: 科目: 第 阶段第 次课 教师:教学内容考点(一)一次函数与反比例函数例题 已知反比例函数12y x=的图象和一次函数7y kx =-的图象都经过点P(m ,2).(1)求这个一次函数的解析式;(2)如果等腰梯形ABCD 的顶点A 、B 在这个一次函数的图象上,顶点C 、D 在这个反比例函数的图象上,两底AD 、BC 与y 轴平行,且A 和B 的横坐标分别为a 和a+2,求a 的值. 解:(1)点(,2)P m 在函数12y x=的图象上,所以122,6m m==,P 点坐标为(6,2).因为一次函数y=kx-7的图象经过点P(6,2),所以3672,2k k -==(2)因为点A 、B 的横坐标分别为a 和a+2,由此可得a=-4或a=2.经检验a=-4,a=2均为所求的值.点评 本题是综合考察学生能力,培养数形结合的思想,点在曲线上则点的坐标应满足函数方程.另外要注意检验 针对性练习1.如图1,一次函数的图象与x 轴、y 轴分别交于A 、B 两点,与反比例函数的图象交于C 、D 两点,如果A 点的坐标为(2,0),点C 、D 分别在第一、三象限,且OA=OB=AC=BD ,试求一次函数和反比例函数的解析式.课题 反比例函数与各知识点的综合教学目标 把反比例函数图像。
性质。
几何意义灵活运用 能够做到与各知识点结合重点、难点不仅要掌握运用反比例函数图像。
性质。
几何意义等知识 还要把已学过的各知识点与反比例函数知识点融合到一起 考点及考试要求不仅要掌握运用反比例函数图像。
性质。
几何意义等知识 还要把已学过的各知识点与反比例函数知识点融合到一起图12.如图2,一次函数y ax b =+的图象与反比例函数k y x=的图象交于M 、N 两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围. (2004贵阳)3.如图13-8-7已知一次函数8+-=x y 和反比例函数xk y =图象在第一象限内有两个不同的公共点A 、B . (1)求实数k 的取值范围;(2)若ΔAOB 的面积S =24,求k 的值.4.(2010年济宁市)如图4,正比例函数12y x =的图象与反比例函数k y x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知O A M ∆的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.OMxyA(第4题)M (2,m )xyON (-1,-4)(图2)y xAOB一次函数与反比例函数综合提高 5. 如图,在直角坐标平面内,函数m y x=(0x >,m 是常数)的图象经过(14)A ,,()B a b ,,其中1a >.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结A D ,D C ,C B . (1)若ABD △的面积为4,求点B 的坐标;(2)求证:D C A B ∥; (3)当A D B C =时,求直线A B 的函数解析式.考点(二)一次函数。
反比例函数复习讲义
反比例函数复习讲义知识点一:反比例函数的概念ﻫ 一般地,如果两个变量x 、y 之间的关系可以表示成k y x=(k为常数,)的形式,那么称y 是x 的反比例函数.注:(1)反比例函数k y x =中的k x 是一个分式,自变量x ≠0, k y x=也可写成1y kx -=或xy k =,其中k≠0;ﻫ (2)在反比例函数1y kx -=(k≠0)中,x 的指数是-1。
如,5y x=也写成:15y x -=;ﻫ (3)在反比例函数k y x=(k ≠0)中要注意分母x的指数为1,如21y x=就不是反比例函数。
ﻫ知识点二:反比例函数的图象反比例函数(0)ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.ﻫ 注: (1)观察反比例函数(0)ky k x=≠的图象可得:x和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. (2)用描点法画反比例函数y=kx的图象时,应注意自变量x 的取值不能为0,一般应从1或-1开始对称取点.ﻫ (3)在一个反比例函数图象上任取两点P ,Q ,过点P ,Q分别作x 轴,y 轴的平行线,与两坐标轴分别围成的矩形面积为S 1,S2 则S 1=S 2. 知识点三:反比例函数的性质 1.图象位置与函数性质当k>0时,x 、y 同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当k<0时,x 、y 异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.2.若点(a ,b)在反比例函数(0)ky k x=≠的图象上,则点(-a,-b )也在此图象上,故反比例函数的图象关于原点对称;正比例函数反比例函数解析式图 像直线 有两个分支组成的曲线(双曲线)位 置k>0,一、三象限; k<0,二、四象限 k >0,一、三象限 k <0,二、四象限增减性k>0,y 随x 的增大而增大 k<0,y 随x 的增大而减小k>0,在每个象限,y 随x的增大而减小ﻫk<0,在每个象限,y随x的增大而增大4.反比例函数y =kx 中k 的意义 反比例函数y = k x (k ≠0)中比例系数k 的几何意义,即过双曲线y = kx(k≠0)上任意一点引x轴、y 轴垂线,所得矩形面积为│k│.ﻫ知识点四:反比例函数解析式的确定ﻫ 反比例函数解析式的确定方法是待定系数法.由于在反比例函数关系式(0)ky k x=≠中,只有一个待定系数k,确定了k的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入(0)ky k x =≠中即可求出k 的值,从而确定反比例函数的解析式.ﻫ知识点五:应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题。
反比例函数经典讲义绝对经典--
PART 01
反比例函数基本概念与性 质
定义及表达式
反比例函数定义
形如 $y = frac{k}{x}$($k$ 为常数,$k neq 0$)的函数称为反比例函数。
表达式解析
在反比例函数中,$x$ 是自变量,$y$ 是因变量,$k$ 是比例系数。当 $k > 0$ 时,函数图像位于第一、三象限;当 $k < 0$ 时,函数图像位于第二、四象 限。
在经济学中,价格和数量之间的关系往往呈现反比例关系。当价格上涨时,需求 量减少;反之,当价格下跌时,需求量增加。通过对这种数据的分析,可以揭示 市场供需平衡的规律。
社会学中的人口分布
在社会学中,人口分布与资源分配之间也存在反比例关系。当某个地区资源匮乏 时,人口会向其他地区迁移;反之,当某个地区资源丰富时,会吸引更多人口聚 集。通过对人口分布数据的解读,可以了解资源分配对社会结构的影响。
跨学科应用举例
环境科学中的污染物扩散
在环境科学中,污染物扩散与距离之间呈现反比例关系。随着距离的增加,污染物的浓度逐渐降低。 这种关系可以用反比例函数来描述,并为环境治理提供科学依据。
工程学中的结构设计
在工程学中,结构设计与材料强度之间也存在反比例关系。为了确保结构的安全性,需要在保证材料 强度的前提下进行结构设计。通过运用反比例函数,可以实现结构设计的优化和安全性评估。
在电路中,电阻、电流和电压之间满足反比例关系。当电阻 增大时,电流减小,电压保持不变。这种关系可以用反比例 函数来描述。
速度、时间和距离之间的关系
在物理学中,速度、时间和距离之间也有反比例关系。当速 度增大时,所需时间减少,而距离保持不变。这种关系同样 可以用反比例函数来表示。
数据分析与解读
(完整版)反比例函数讲义(一)
反比例例函数(一)一、知识点:1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
x k y =还可以写成kx y =1-2. 反比例函数解析式的特征:⑴等号左边是函数y ,等号右边是一个分式。
分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1.⑵比例系数0≠k⑶自变量x 的取值为一切非零实数。
⑷函数y 的取值是一切非零实数。
3. 反比例函数的图像⑴图像的画法:描点法① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序)③ 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,xk y =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。
⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线x k y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。
4二、范例讲解: (一)考察概念例1 已知函数 y = (5m — 3)x n -2 + (n+m )(1)当m ,n 为何值时,是一次函数?(2)当m ,n 为何值时,为正比例函数?(3)当m ,n 为何值时,为反比例函数?例2 已知y=y 1+y 2 ,y 1与x +1成正比例,y2与x +1成反比例,当x =0时,y=-5;当x =2时,y=-7。
(1)求y与x 的函数关系式;(2)当y=5时,求x 的值(二)考察函数图象和性质例3 在反比例函数y = x k 3-的图象上,当x >0时,y 随x 的增大而增大,则k 的取值范围为 。
例4 反比例函数y = x6的图象上有三点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),其中x 1<x 2<0<x 3,则y 1,y 2,y 3用“<”连接 。
反比例函数复习课课件
2023
REPORTING
THANKS
感谢观看
2023
PART 05
反比例函数的易错点与难 点解析
REPORTING
易错点的解析
混淆反比例函数与正比例函数
01
正比例函数是y=kx,而反比例函数是xy=k。学生常常将两者混
淆,导致在解题时出现错误。
忽视反比例函数的定义域
02
反比例函数的定义域是x不为0的实数,学生常常忽视这一点,
导致在解题时出错。
2023
PART 04
反比例函数的综合题解析
REPORTING
反比例函数的综合题解析
01
分析与照顾 into acts' intoic andic. of course, and will,, on the在这
பைடு நூலகம்02
saidcoupled =oman ofic ofic of and ofic and of intoic of and, and other神话 top similar 觉ungais'hipster
描述反比例函数的定义
详细描述
反比例函数是一种数学函数,其定义为 y = k/x,其中 k 是常数且 k ≠ 0。当 x 取任意非零实数时,y 的值都存在。
反比例函数的图像
总结词
描述反比例函数的图像特点
详细描述
反比例函数的图像通常在 x 轴和 y 轴上都有渐近线,即当 x 或 y 趋于无穷大时 ,函数值趋于 0。图像通常位于第一象限和第三象限。
反比例函数的性质
总结词:列举反比例函数 的性质
1. 当 k > 0 时,函数图像 在第一象限和第三象限;
3. 反比例函数是奇函数, 即 f(-x) = -f(x);
反比例函数复习讲义
初三 反比例函数复习一、知识点一:反比例函数概念:一般地,如果两个变量x 、y 之间关系可以表示成y=xk,(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。
反比例函数形式还可以写成:xy=k ,y=kx -1(k ≠0的常数) 练习:☆1、若函数1322)(+--=m m xm m y 是反比例函数,则m 的值是______。
二、知识点二:反比例函数图象的画法与性质:注意1:双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论。
注意2:反比例函数图象是以原点为对称中心的中心对称图形,是以直线y=x 和y=x -为对称轴的轴对称图形。
练习: ☆1.反比例函数y=xk图象在第二四象限,则一次函数y=kx-5的图象不经过_____象限。
☆2、已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y - 的值是 ( )A 、正数B 、 负数C 、非正数D 、不能确定 三、知识点三:反比例函数y=xk比例系数k 的意义: 1.过双曲线上任一点p (x 、y )作x 轴、y 轴垂线段PM 、PN 所得矩形PMON 的面积S=PM ·PN=|y|·|x|=|xy|,即反比例函数y=xk(k ≠0)中的比例系数k 的绝对值表示过双曲线上任意一点,作X 轴,Y 轴的垂线所得的矩形的面积。
2.过双曲线上一点Q 向X 轴或Y 轴引垂线,垂足是A ,则S △AOQ =k 21 练习:☆1、反比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-4☆☆2.如图,OABC 是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y =和y=的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①=; ②阴影部分面积是(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是 . 四、知识点四:待定系数法☆1.已知:y=y 1+y 2,其中y 1与x 成反比例,y 2与x-2成正比例,当x=1时, y=-1,当x=3时,y=3, 求函数y 的解析式。
《反比例函数讲义》word版
反比例函数1、反比例函数的概念及三种表达形式.一般地如果两个变量x ,y 之间的关系可以表示为xky =(k 是常数,k ≠0)的形式,那么称y 是x 的反比例函数。
(反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
) 2、反比例函数的图象反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
4、反比例函数解析式的确定确定反比例函数解析式的方法仍是待定系数法。
由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义过反比例函数)0(≠=k xky 图像上任一点P (x,y )作x 轴、y 轴的垂线PM ,PN ,垂足分别是M 、N ,则所得的矩形PMON 的面积S=PM•PN=xy x y =•。
6、反比例函数中常用考点(1)反比例函数与一次函数的交点坐标是两个函数解析式联立组成方程组的解. (2) 反比例函数与正比例函数的交点坐标关于坐标原点对称. (3) 反比例函数与一次函数的交点所组成三角形面积的求法. 7. 经典题解【例1】如图所示,一次函数y=kx+b 的图象与反比例函数y= kx (k ≠0)的图象交于M 、N两点.⑴求反比例函数和一次函数的解析式;⑵根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【例2】(2011山东聊城,24,10分)如图,已知一次函数y =kx +b 的图象交反比例函数42my x-=(x>0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式;【答案】(1)因反比例函数的图象在第四象限,所以4-2m <0,解得m >2;(2)因点A (2,-4)在反比例函数图象上,所以-4=224m-,解得m =6,过点A 、B 分别作A M ⊥OC 于点M ,B N ⊥OC 于点N ,所以∠B N C =∠A M C =90°,又因为∠BC N =∠A M C ,所以△BC N ∽△AC M ,所以AC BC AM BN =,因为31=AB BC ,所以41=AC BC ,即41=AM BN ,因为A M =4,所以B N =1,所以点B 的纵坐标为-1,因为点B 在反比例函数的图象上,所以当y =-1时,x =8,所以点B 的坐标为(8,-1),因为一次函数y =kx +b 的图象过点A (2,-4),B (8,-1),所以⎩⎨⎧-=+-=+1842b k b k ,解得⎪⎩⎪⎨⎧-==521b k ,所以一次函数的解析式为y =21x -5【例3】. (2011四川成都,19,10分) 如图,已知反比例函数)0(≠=k xky 的图象经过点(21,8),直线b x y +-=经过该反比例函数图象上的点Q(4,m ). (1)求上述反比例函数和直线的函数表达式;(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与反比例函数图象的另一个交点为P ,连结0P 、OQ ,求△OPQ 的面积.【例4】. (2011四川广安,24,8分)如图6所示,直线l 1的方程为y =-x +l ,直线l 2的方程为y =x +5,且两直线相交于点P ,过点P 的双曲线ky x=与直线l 1的另一交点为Q (3.M ).(1)求双曲线的解析式. (2)根据图象直接写出不等式kx>-x +l 的解集.【例5】. (2011四川内江,21,10分)如图,正比例函数11y k x =与反比例函数22k y x=相交于A 、B 点,已知点A 的坐标为(4,n ),BD ⊥x 轴于点D ,且S △BDO =4。
反比例函数经典讲义-绝对经典!!
反比例函数经典讲义-绝对经典!!初三反比例函数讲义第1节 反比例函数本节内容: 反比例函数定义 反比例函数定义的应用(重点)1、 反比例函数的定义 电流I 、电阻R 、电压U 之间满足关系式:U=IR 当U=220V 时,可以用含有R 的代数式表示I :__________________舞台灯光的亮暗就是通过改变电阻来控制电流的变化实现的。
当电流I 较小时,灯光较暗;当电流I 较大时,灯光较亮。
一般地,如果两个变量x 、y 之间的关系可以表示成xk y =k (为常数,)0≠k 的形式,那么称y 是x 的反比例函数。
反比例函数的自变量x 不能为零。
小注:(1)x k y =也可以写成1-=kx y 或k xy =的形式;■例1■例2由欧姆定律可知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=12.5欧姆,电流强度I=0.2安培。
(1)求I与R的函数关系式;(2)当R=5欧姆时,求电流强度。
1xy2、某工人打算利用一块不锈钢条加工一个面积为0.82m的矩形模具,假设模具的长与宽分别为y与x。
(1)你能写出y与x之间的函数表达式吗?变量y 与x之间是什么函数?(2)若想使模具的长比宽多1.6m,已知每米这34、已知y =21y y +,1y 与x 成正比例,2y 与x 成反比例,并且当x =2时,y = —4;当x = —1时,y =5,求出y 与x 的函数关系式。
6、(2008·安徽)函数xk y =的图象经过点A (1,—2),则k 的值为( )。
A .21 B. 21- C. 2 D. —27、若函数132)1(+++=m m xm y 是反比例函数,则m 的值为( )。
A .m = —2 B. m = 1C. m = 2或m = 1D. m = —2,或m = —18、若甲、乙两城市间的路程为1000千米,车速为每小时x 千米,从甲市到乙市所需的时间为y 小时,那么y 与x 的函数表达式是_______________________(不必写出x 的取值范围),y 是x 的__________函数。
《反比例函数》 讲义
《反比例函数》讲义一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。
需要注意的是,这里的x 不能为0,因为在分数中,分母不能为0。
例如,当速度 v 一定时,路程 s 与时间 t 的关系可以表示为 s = vt。
如果路程一定,为常数 s₀,那么时间 t 与速度 v 的关系就可以表示为 t = s₀/v,此时 t 是 v 的反比例函数。
二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x (k 为常数,k≠0)这是最基本的形式,也是我们最常见的形式。
2、 xy = k (k 为常数,k≠0)将 y = k/x 两边同乘 x 就可以得到 xy = k。
3、 y = kx⁻¹(k 为常数,k≠0)因为 x⁻¹= 1/x,所以这种形式与 y = k/x 是等价的。
三、反比例函数的图象反比例函数的图象是双曲线。
当 k > 0 时,双曲线的两支分别位于第一、三象限,在每一象限内y 随 x 的增大而减小;当 k < 0 时,双曲线的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。
例如,函数 y = 2/x,因为 k = 2 > 0,所以它的图象在第一、三象限,在每个象限内,当 x 增大时,y 会减小。
而函数 y =-3/x,因为 k =-3 < 0,所以它的图象在第二、四象限,在每个象限内,当 x 增大时,y 会增大。
四、反比例函数图象的性质1、对称性反比例函数的图象既是轴对称图形,又是中心对称图形。
它的对称轴有两条,分别是直线 y = x 和直线 y = x。
其对称中心是坐标原点(0,0)。
2、渐近线当 x 趋向于正无穷大或负无穷大时,反比例函数的图象无限接近坐标轴,但永远不会与坐标轴相交。
也就是说,x 轴和 y 轴是反比例函数图象的渐近线。
3、增减性在反比例函数 y = k/x 中,当 k > 0 时,在每个象限内,y 随 x 的增大而减小;当 k < 0 时,在每个象限内,y 随 x 的增大而增大。
反比例函数讲义(知识点+典型例题)
变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
反比例函数讲义
小注:
(1)这两支曲线通常称为双曲线.
(2)这两支曲线关于原点对称.
(3)反比例函数的图象与 轴、 轴没有公共点.
反比例函数
k的符号
k>0
k<0
图象
(双曲线)
x、y
取值范围
x的取值范围x≠0
【作5】设有反比例函数 , 、 为其图象上的两点,若 时, ,则 的取值范围是___________.
【作6】反比例函数 在第一象限内的图象如图,点M是图象上一点,
MP垂直 轴于点P,如果△MOP的面积为1,那么 的值是.
【作7】 是 关于 的反比例函数,且图象在
第二、四象限,则 的值为.
【作8】 正比例函数 和反比例函数 在同一坐标系内的图象为( )
A. B. C. 2 D. —2
【例4】已知 = , 与 成正比例, 与 成反比例,并且当 =2时, =—4;当 =—1时, =5,求 与 的函数关系式.
知识点:反比例函数的图象与性质
【例5】已知 是反比例函数,则函数的图象在( )
A、一、三象限B、二、四象限C、一、四象限D、三、四象限
【例6】 函数 与 (k≠0)在同一坐标系内的图象可能是( )
第2讲反比例函数
第一节知识要点
一:反比例函数的定义
一般地,如果两个变量 、 之间的关系可以表示成 为常数, 的形式,那么称 是 的反比例函数.
反比例函数的自变量 不能为零.
小注:
(1) 也可以写成 或 的形式;
(2)若 是反比例函数,则 、 、 均不为零;
二:反比例函数的图象与性质
反比例函数复习讲义副本
反比例函数复习讲义
复习目标
1、会根据反比例函数的主要性质解决问题
2、能在实际问题中建立反比例函数模型,进而解决问题
3、了解用“数形结合”的思想与方法解决数学问题。
4、学会用数学语言与同伴交流,能阐述自己的观点。
力争使自己由“会做”向“会讲”转变。
复习重点
1、反比例函数的性质
2、综合反比例函数的知识解决综合问题
复习过程:
一、基础知识梳理
1.反比例函数的概念
反比例函数y=k
x 中的k
x
是一个分式,自变量x≠0,函数与x轴、y轴无交
点,y=k
x
也可写成y=kx-1(k≠0),注意自变量x的指数为-1, 在解决有关自变量指数问题时应特别注意系数k≠0这一限制条件.
2.反比例函数的图象
在用描点法画反比例函数y=k
x
的图象时,应注意自变量x的取值不能为0,应从1或-1开始对称取点.
3.反比例函数y=k
x
中k的意义
注意:反比例函数y=k
x
(k≠0)中比例系数k的几何意义,即过双曲线
y=k
x
(k≠0)上任意一点引x轴、y轴垂线,所得矩形面积为│k│.
二、主要考点及典例
知识点一、反比例函数的意义
反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=或(k为常数,k≠0)的形式,那么称y是x的反比例函数.
1 / 7。
反比例函数期末复习讲义
反比例函数全章复习与巩固(一)【知识网络】【典型例题】类型一、确定反比例函数的解析式例1、已知函数()32k y k x -=+是反比例函数,则k 的值为 .举一反三:【变式】反比例函数5n y x+=图象经过点(2,3),则n 的值是( ). A. 2- B. 1-C. 0D. 1类型二、反比例函数的图象及性质 例2、已知,反比例函数42my x-=的图象在每个分支中y 随x 的增大而减小,试求21m -的取值范围.举一反三:【变式】已知反比例函数2k y x-=,其图象位于第一、第三象限内,则k 的值可为________(写出满足条件的一个k 的值即可).例3、在函数||k y x-=(0k ≠,k 为常数)的图象上有三点(-3,1y )、(-2,2y )、(4,3y ),则函数值的大小关系是( )A .123y y y <<B .321y y y <<C .231y y y <<D .312y y y <<【变式1】(2014春•海口期中)在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是( ).A. B.C. D.【变式2】已知>b a ,且,0,0,0≠+≠≠b a b a 则函数b ax y +=与xba y +=在同一坐标系中的图象不可能是( ) .例4、如图,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y=的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k= .【变式】如图,过反比例函数)(0x x2y >=的图象上任意两点A 、B ,分别作x 轴的垂线,垂足为''B A 、,连接OA ,OB ,'AA 与OB 的交点为P ,记△AOP 与梯形B B PA ''的面积分别为21S S 、,试比较21S S 与的大小.类型三、反比例函数与一次函数综合 例5、已知反比例函数ky x=和一次函数y mx n =+的图象的一个交点坐标是(-3,4),且一次函数的图象与x 轴的交点到原点的距离为5,分别确定反比例函数和一次函数的表达式.举一反三:【变式】如图所示,A 、B 两点在函数(0)my x x=>的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.类型四、反比例函数应用 例6、(2015•兴化市三模)一辆客车从甲地出发前往乙地,平均速度v (千米/小时)与所用时间t (小时)的函数关系如图所示,其中60≤v ≤120. (1)直接写出v 与t 的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A 、B ,它们相距200千米,当客车进入B 加油站时,货车恰好进入A 加油站(两车加油的时间忽略不计),求甲地与B 加油站的距离.【巩固练习】 一.选择题1.(2014•宜阳县校级模拟)若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是( ) A .(2,3) B .(3,2) C .(﹣2,3) D .(﹣2,﹣3)2. 函数与在同一坐标系内的图象可以是( )3. (2016•兰州)反比例函数是y=的图象在( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限 4. 数22(1)m y m x-=-是反比例函数,则m 的值是( )A .±1B .1 C.-1y x m =+(0)my m x=≠5. 如图所示,直线2y x =+与双曲线ky x=相交于点A ,点A 的纵坐标为3,k 的值为( ).A .1B .2C .3D .46. 点(-1,1y ),(2,2y ),(3,3y )在反比例函数21k y x--=的图象上.下列结论中正确的是( ).A .123y y y >>B .132y y y >>C .312y y y >>D .231y y y >> 7. 已知111(,)P x y 、222(,)P x y 、333(,)Px y 是反比例函数2y x=图象上的三点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是( )A .321y y y <<B .123y y y <<C .213y y y <<D .231y y y << 8. 如图所示,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P ',则在第一象限内,经过点P '的反比例函数图象的解析式是( ).A .5(0)y x x =-> B .5(0)y x x => C .6(0)y x x =-> D .6(0)y x x=> 二.填空题9. (2016•徐州)若反比例函数的图象过点(3,﹣2),则其函数表达式为 . 10.(2014秋•大竹县校级期末)若函数y=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围___________. 11.反比例函数)0(≠=k xky 的图象叫做__________.当0k >时,图象分居第__________象限,在每个象限内y 随x 的增大而_______;当0k <时,图象分居第________象限,在每个象限内y 随x 的增大而__________.12. 若点A(m ,-2)在反比例函数的图像上,则当函数值y ≥-2时,自变量x 的取值范围是___________.13.若变量y 与x 成反比例,且2x =时,3y =-,则y 与x 之间的函数关系式是________,在每个象限内函数值y 随x 的增大而_________.14.已知函数x m y =,当21-=x 时,6=y ,则函数的解析式是__________. 15.如图,面积为3的矩形OABC 的一个顶点B 在反比例函数xky =的图象上,另三点在坐标轴上,则_______k =.16.在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积V 时,气体的密度ρ也随之改变.在一定范围内,密度ρ是容积V 的反比例函数.当容积为53m 时,密度是1.43/kg m ,则ρ与V 的函数关系式为_______________. 三.解答题17. 一辆汽车匀速通过某段公路,所需时间t(h )与行驶速度v(/km h )满足函数关系:kt v=,其图象为如图所示的一段曲线且端点为A(40,1)和B(m ,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60/km h ,则汽车通过该路段最少需要多少时间?4y x=18. 在压力不变的情况下,某物体承受的压强P (Pa )是它的受力面积S ()的反比例函数,其图象如图所示.(1) 求P 与S 之间的函数关系式; (2) 求当S =0.5时物体承受的压强P .19.(2015•淄博模拟)如图,直线y=x 与双曲线y=(x >0)交于点A ,将直线y=x 向下平移个6单位后,与双曲线y=(x >0)交于点B ,与x 轴交于点C. (1)求C 点的坐标. (2)若=2,则k 的值为?20.如图所示,一次函数112y k x =+与反比例函数22k y x=的图象交于点A(4,m )和B(-8,-2),与y 轴交于点C .(1)1k = ________,2k =________;(2)根据函数图象可知,当12y y >时,x 的取值范围是________;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当31ODE ODAC S S =△四边形::时,求点P 的坐标.反比例函数全章复习与巩固(二)【典型例题】类型一、确定反比例函数的解析式例1、在平面直角坐标系中,反比例函数y=(x >0,k >0)的图象经过点A (m ,n ),B (2,1),且n >1,过点B 作y 轴的垂线,垂足为C ,若△ABC 的面积为2,求点A 的坐标.举一反三:【变式】已知反比例函数ky x=与一次函数y ax b =+的图象都经过点P(2,-1),且当1x = 时,这两个函数值互为相反数,求这两个函数的关系式.类型二、反比例函数的图象及性质 例2、已知反比例函数ky x=(k <0)的图象上有两点A(11x y ,),B(22x y ,),且12x x <,则12y y -的值是( ).A .正数B .负数C .非负数D .不能确定 举一反三:【变式】已知0a b ⋅<,点P (a b ,)在反比例函数xay =的图象上,则直线b ax y +=不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 例3、(2016•淄博)反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M 在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( )A .0B .1C .2D .3例4、反比例函数与一次函数在同一平面直角坐标系中的图象可能是( )举一反三:【变式】已知>b a ,且,0,0,0≠+≠≠b a b a 则函数b ax y +=与xba y +=在同一坐标系中的图象不可能是( ) .类型三、反比例函数与一次函数综合例5、如图所示,在平面直角坐标系中,一次函数y kx b =+(k ≠0)的图象与反比例函数my x=(m ≠0)的图象相交于A 、B 两点.求:(1)根据图象写出A 、B 两点的坐标并分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x 为何值时,一次函数值大于反比例函数值.xmy =)0(≠-=m m mxy举一反三:【变式】如图所示,一次函数3y kx =+的图象与反比例函数(0)my x x=>的图象交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且27DBP S =△,12OC CA =.(1)求点D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?类型四、反比例函数的实际应用例6、制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃),从加热开始计算的时间为()min x .据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5min 后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【巩固练习】一.选择题1. 已知函数25(1)m y m x -=+的反比例函数,且图象在第二、四象限内,则m 的值是( ).A .2B .-2C .±2D .12- 2. 如图是三个反比例函数x k y 1=、x k y 2=、xk y 3=在x 轴上方的图象,由此观察得到123k k k ,,的大小关系( ).A .123k k k >>B .321k k k >>C .231k k k >>D .312k k k >>3. 如图,等腰直角三角形ABC 位于第一象限,AB =AC =2,直角顶点A 在直y x =上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线k y x=(k ≠0)与ABC ∆有交点,则k 的取值范围是( )A .12k <<B .13k ≤≤C .14k ≤≤D .14k ≤<4.(2015•眉山)如图,A 、B 是双曲线y=上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .43B .83C .3D .4 5. (2016•宜昌)函数y=的图象可能是( ) A . B . C . D .6. 如图所示,在同一直角坐标系中,函数1y kx =+和函数k y x=(k 是常数且k ≠0)的图象只可能是( ).7. 如图所示,反比例函数4y x =-的图象与直线13y x =-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则△ABC 的面积为( ).A .8B .6C .4D .28. 如图,反比例函数的图象经过点A(-1,-2).则当x >1时,函数值y 的取值范围是( )A. y >1B.0<y <1C. y >2D.0<y <2二.填空题9.直线()0y kx k =>与双曲线4y x=交于A (11x y ,),B (22x y ,)两点,则122127x y x y - =___________.10.已知1y 与x 成正比例(比例系数为1k ),2y 与x 成反比例(比例系数为2k ),若函数12y y y =+的图象经过点(1,2),(2,),则1285k k +的值为________.11. 在函数x k y 22--=(k 为常数)的图象上有三个点(-2,1y ),(-1,2y ),(21,3y ),函数值1y ,2y ,3y 的大小为_________.12.已知点A(a ,5),B(2,b )关于x 轴对称,若反比例函数的图象经过点C(a ,b ),则这个反比例函数的表达式为____________.13.已知(11x y ,),(22x y ,),(33x y ,)是反比例函数2y x=-的图象上的三个点,并且1230y y y >>>,则123x x x ,,的大小关系是 .14.设有反比例函数1k y x+=,(1x ,1y ),(2x ,2y )为其图象上两点,若120x x <<,12y y >,则k 的取值范围是_______.15.(2015•齐齐哈尔)如图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则这个反比例函数的解析式为 .k y x=1216.如图所示是一次函数1y kx b =+和反比例函数2m y x=的图象,观察图象写出当12y y > 时,x 的取值范围为________.三.解答题17. (2016•吉林)如图,在平面直径坐标系中,反比例函数y=(x >0)的图象上有一点A (m ,4),过点A 作AB ⊥x 轴于点B ,将点B 向右平移2个单位长度得到点C ,过点C 作y 轴的平行线交反比例函数的图象于点D ,CD=(1)点D 的横坐标为 (用含m 的式子表示);(2)求反比例函数的解析式.18.如图所示,已知双曲线(0)k y k x=>,经过Rt △OAB 斜边OB 的中点D ,与直角边AB 交于点C ,DE ⊥OA ,3OBC S =△,求反比例函数的解析式.19. 如图所示,一次函数y x b =+的图象经过点B(-1,0),且与反比例函数k y x=(k 为不等于0的常数)的图象在第一象限交于点A(1,n ).求:(1)一次函数和反比例函数的解析式;(2)当1≤x ≤6时,反比例函数y 的取值范围.20.(2015•绵阳)如图,反比例函数y=(k>0)与正比例函数y=ax相交于A(1,k),B(﹣k,﹣1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数y=(k>0)的图象交于C(x1,y1),D(x2,y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数知识整理1、反比例函数的概念 一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质 当k>0时,函数图像的两个分支分别在第一、三象限。
在每个象限内,y 随x 的增大而减小。
当k<0时,函数图像的两个分支分别在第二、四象限。
在每个象限内,随x 的增大而增大。
4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。
由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义 如下图,过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙。
k S k xy xky ==∴=,, 。
考点一、反比例函数的性质 【例1】已知反比例函数10y x=,当1<x<2时,y 的取值范围是 ( ) (A )0<y<5 (B )1<y<2 (C )5<y<10 (D )y>10 【举一反三】1、已知y 是x 的反比例函数,当x >0时,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式2、已知一次函数y 1=kx +b (k <O )与反比例函数y 2=xm(m ≠O )的图象相交于A 、B 两点,其横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是( )A .x <-l 或O <x <3B .一1<x <O 或O <x <3C .一1<x <O 或x >3D .O <x <3 3、函数y =mx +n 与mxny =,其中m ≠0,n ≠0,那么它们在同一坐标系中的图象可能是( )A B C D 考点典例二、反比例函数图象上点的坐标特征【例2】(2015自贡)若点(1x ,1y ),(2x ,2y ),(3x ,3y ),都是反比例函数xy 1-=图象上的点,并且1230y y y <<<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .231x x x << 【举一反三】1、若点A (1,y 1)和点B (2,y 2)在反比例函数1y x=图象上,则y 1与y 2的大小关系是: y 1 y 2(填“>”、“<”或“=”).2、如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数ky x=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( )A .2≤k ≤9B . 2≤k ≤8C . 2≤k ≤5D . 5≤k ≤8 3、如图,P 是函数x y 21=(x >0)的图象上的一点,直线1+-=x y 分别交x 轴、y轴于点A 、B ,过点P 分别作PM ⊥x 轴于点M ,交AB 于点E ,作PN ⊥y 轴于点N ,交AB 于点F ,则AF ·BE 的值为 。
考点典例三、反比例函数图象上点的坐标与方程的关系 【例3】已知函数1y x=的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程ax 2+bx +c = 0的两根x 1,x 2判断正确的是【 】 A .x 1 + x 2 >1,x 1·x 2 > 0 B .x 1 + x 2 < 0,x 1·x 2 > 0 C .0 < x 1 + x 2 < 1,x 1·x 2 > 0 D .x 1 + x 2与x 1·x 2 的符号都不确定 【举一反三】1、(2015·湖南常德)已知A (1AC 经过点A及坐标原点且与反比例函数图象的另一支交于点C ,求C 的坐标及反比例函数的解析式。
2、如图,若双曲线xky =与边长为5的等边△AOB 的边OA ,AB 分别相交于C ,D 两点,且OC =3BD ,则实数k 的值为 .3、如图,直线6y x =-交x 轴、y 轴于A 、B 两点,P 是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。
则AF BE ⋅=( )A .8B .6C .4 D.第3题图 第4题图 第5题图4、如上图中,正比例函数x y 3=的图象与反比例函数)0(>=k xky 的图象交于点B ,若k 取1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…,20S ,则1S +2S +…+20S = ;5、两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等; ②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等; ④当点A 是PC 的中点时,点B 一定是PD 的中点. 其中一定正确的是 。
考点典例四、反比例函数与一次函数的交点问题【例4】如图,一次函数y 1=k 1x+b 的图象和反比例函数y 2=的图象交于A (1,2),B (﹣2,﹣1)两点,若y 1<y 2,则x 的取值范围是( )A .x <1B .x <﹣2C .﹣2<x <0或x >1D .x <﹣2或0<x <1 【举一反三】1、如图,在平面直角坐标系中,A(-3,1),以点O 为直角顶点作等腰直角三角形AOB ,双曲线11k y x=在第一象限内的图象经过点B ,设直线AB 的解析式为22y k x b =+,当12y y >时,x 的取值范围是( ).A .51x -<<B .0<<1x 或<5x -C .61x -<<D .01x <<或6x <-2、已知反比例函数xk y 2=与一次函数12-=x y ,其中一次函数的图象经过(a ,b )、(a +1,b +k )两点.(1)求反比例函数的解析式;(2)如图,已知A 点是上述两函数图象在第一象限内的交点,求A 点的坐标;(3)利用(2)的结果,在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,请把所有符合条件的P 点坐标都求出来;若不存在,请说明理由.3、如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数ky x=(k ≠0)在第一象限内的图象经过点D 、E ,且tan ∠BOA =21. (1)求反比例函数的解析式和n 的值;(2)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交于点H 、G ,求线段OG 的长.考点典例五、反比例函数的图象和k 的几何意义 【例5】(2015凉山州)以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线3y x=经过点D ,则正方形ABCD 的面积是( )A .10B .11C .12D .13 【举一反三】1、如图,A .B 是双曲线xky =上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( ) A .34 B .38C .3D .42、如图,正方形OABC 的面积是4,点B 在反比例函数(00)ky k x x=><,的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则当S =m (m 为常数,且0<m <4)时,则点R 的坐标是 。
(用含m 的代数式表示)G3、如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分 别交函数x k 1y =(x >0)和xk2y =(x >0)的图象于点P 和Q ,连接OP 、 OQ ,则下列结论正确的是( )A .∠POQ 不可能等于900B .21K K QM PM =C .这两个函数的图象一定关于x 轴对称D . △POQ 的面积是)(|k ||k |2121+ 4、如图,点A (x 1,y 1)、B (x 2,y 2)都在双曲线(0)ky x x=>上,且214x x -=,122y y -=;分别过点A 、B 向x 轴、y 轴作垂线段,垂足分别为C 、D 、E 、F ,AC 与BF 相交于G 点,四边形FOCG 的面积为2,五边形AEODB 的面积为14,那么双曲线的解析式为 . 课后练习 一、选择题1. 已知反比例函数的图象2y x=-上有两点A (x 1,y 1)、B (x 2,y 2),若y 1>y 2,则x 1﹣x 2的值是( )A . 正数B . 负数C . 非正数D . 不能确定 2. (2015.河北省,第10题,3分)一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是( )A. B. C. D.3..(2015·湖北武汉,9题,3分)在反比例函数xmy 31-=图象上有两点A(1x ,1y )、B(2x ,2y ),1x <0<2x ,1y <2y ,则m 的取值范围是( )A .m >31B .m <31C .m ≥31D .m ≤314.(2015·黑龙江绥化)如图,反比例函数y=xk(x <0)的图象经过点P ,则k 的值为( ) A. -6 B. -5 C.6 D. 55.(2015.宁夏,第8题,3分)函数ky x=与2=-+y kx k (0k ≠)在同一直角坐标系中的大致图象可能是( )6.(2015·辽宁葫芦岛)(3分)如图,一次函数2y kx =+与反比例函数4y x=(0x >)的图象交于点A ,与y 轴交于点M ,与x 轴交于点N ,且AM :MN =1:2,则k = .7.(2015·黑龙江省黑河市、齐齐哈尔市、大兴安岭)如图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则这个反比例函数的解析式为 .8.(2015.山东临沂第14题,3分)在平面直角坐标系中,直线y =-x +2与反比例函数1y x=的图象有唯一公共点. 若直线y x b =-+与反比例函数1y x=的图象有2个公共点,则b 的取值范围是( )(A) b ﹥2. (B) -2﹤b ﹤2. (C) b ﹥2或b ﹤-2.(D) b ﹤-2.二、填空题 9.已知双曲线k 1y x-=经过点(﹣2,1),则k 的值等于 ▲ . 10.(2015.河南省,第11题,3分)如图,直线y=kx 与双曲线)0(2>=x xy 交于点A (1,a ),则k= .11. (2015.陕西省,第13题,3分)如图,在平面直角坐标系中,过点M(-3,2)分别作x 轴、y 轴的垂线与反比例函数xy 4=的图象交于A 、B 两点,则四边形MAOB 的面积为______________。