2013年中考数学专题复习第十一讲:平面直角坐标系与函数(学生版)
中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(基础)
中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(基础)责编:常春芳【考纲要求】⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想;⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题.【知识网络】【考点梳理】考点一、平面直角坐标系1.平面直角坐标系平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.2.各象限内点的坐标的特点、坐标轴上点的坐标的特点点P(x,y)在第一象限0,0>>⇔y x ;点P(x,y)在第二象限0,0><⇔y x ; 点P(x,y)在第三象限0,0<<⇔y x ; 点P(x,y)在第四象限0,0<>⇔y x ;点P(x,y)在x 轴上0=⇔y ,x 为任意实数;点P(x,y)在y 轴上0=⇔x ,y 为任意实数;点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0). 3.两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等;点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数. 4.和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同; 位于平行于y 轴的直线上的各点的横坐标相同. 5.关于x 轴、y 轴或原点对称的点的坐标的特征点P 与点p ′关于x 轴对称⇔横坐标相等,纵坐标互为相反数; 点P 与点p ′关于y 轴对称⇔纵坐标相等,横坐标互为相反数; 点P 与点p ′关于原点对称⇔横、纵坐标均互为相反数. 6.点P(x,y)到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x +.要点诠释:(1)注意:x 轴和y 轴上的点,不属于任何象限; (2)平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标. 考点二、函数 1.函数的概念设在某个变化过程中有两个变量x 、y,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它相对应,那么就说y 是x 的函数,x 叫做自变量.2.自变量的取值范围对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.3.表示方法⑴解析法;⑵列表法;⑶图象法. 4.画函数图象(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来. 要点诠释:(1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量; (2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.考点三、几种基本函数(定义→图象→性质)1.正比例函数及其图象性质(1)正比例函数:如果y=kx(k 是常数,k ≠0),那么y 叫做x 的正比例函数. (2)正比例函数y=kx ( k ≠0)的图象: 过(0,0),(1,K )两点的一条直线.(3)正比例函数y=kx (k ≠0)的性质①当k >0时,图象经过第一、三象限,y 随x 的增大而增大; ②当k <0时,图象经过第二、四象限,y 随x 的增大而减小 . 2.一次函数及其图象性质(1)一次函数:如果y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数. (2)一次函数y=kx+b (k ≠0)的图象(3)一次函数y=kx+b (k ≠0)的图象的性质一次函数y =kx +b 的图象是经过(0,b )点和)0,(kb点的一条直线.①当k>0时,y 随x 的增大而增大; ②当k<0时,y 随x 的增大而减小.要点诠释:(1)当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例;(2)确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k.确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b. 解这类问题的一般方法是待定系数法.3.反比例函数及其图象性质 (1)定义:一般地,形如xky =(k 为常数,o k ≠)的函数称为反比例函数. 三种形式:ky x=(k ≠0)或kx y =1-(k ≠0)或xy=k(k ≠0). (2)反比例函数解析式的特征:①等号左边是函数y ,等号右边是一个分式.分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1; ②比例系数0≠k ;③自变量x 的取值为一切非零实数; ④函数y 的取值是一切非零实数.(3)反比例函数的图象①图象的画法:描点法列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数); 描点(由小到大的顺序); 连线(从左到右光滑的曲线).②反比例函数的图象是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交.③反比例函数的图象是轴对称图形(对称轴是x y =和x y -=)和中心对称图形(对称中心是坐标原点). ④反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意点引x 轴、y 轴的垂线,所得矩形面积为k .(4)反比例函数性质:反比例函数 )0(≠=k xky k 的符号k>0k<0图像性质①x的取值范围是x≠0,y的取值范围是y≠0;②当k>0时,函数图像的两个分支分别在第一、三象限.在每个象限内,y 随x 的增大而减小.①x的取值范围是x≠0,y的取值范围是y≠0;②当k<0时,函数图像的两个分支分别在第二、四象限.在每个象限内,y随x 的增大而增大.(5)反比例函数解析式的确定:利用待定系数法(只需一对对应值或图象上一个点的坐标即可求出k)(6)“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky=中的两个变量必成反比例关系. 要点诠释:(1)用待定系数法求解析式(列方程[组]求解);(2)利用一次(正比例)函数、反比例函数的图象求不等式的解集.【典型例题】类型一、坐标平面有关的计算1.已知点A(a,-5),B(8,b),根据下列要求确定a,b的值.(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点都在一、三象限的角平分线上.【思路点拨】(1)关于y轴对称,y不变,x变为相反数;(2)关于原点对称,x变为相反数,y变为相反数;(3)AB∥x轴,即两点的纵坐标不变即可;(4)在一、三象限两坐标轴夹角的平分线上的点的横纵坐标相等,即可得出a,b.【答案与解析】(1)点A(a,-5),B(8,b)两点关于y轴对称,则a=-8且b=-5.(2)点A(a,-5),B(8,b)两点关于原点对称,则a=-8且b=5.(3)AB∥x轴,则a≠8且b=-5.(4)A,B两点都在一、三象限的角平分线上,则a=-5且b=8.【总结升华】运用对称点的坐标之间的关系是解答本题的关键.在一、三象限角平分线上的点的横纵坐标相等,在二、四象限角平分线上的点的横纵坐标互为相反数.举一反三:【变式】已知点A 的坐标为(-2,-1).(1)如果B 为x 轴上一点,且10AB =,求B 点的坐标;(2)如果C 为y 轴上的一点,并且C 到原点的距离为3,求线段AC 的长; (3)如果D 为函数y =2x -1图象上一点,5AD =,求D 点的坐标. 【答案】(1)设B (x ,0),由勾股定理得22(2)(01)10AB x =+++=.解得x 1=-5,x 2=1. 经检验x 1=-5,x 2=1均为原方程的解.∴ B 点的坐标为(-5,0)或(1,0).(2)设C (0,y ),∵ OC =3,∴ C 点的坐标为(0,3)或(0,-3).∴ 由勾股定理得22(2)(31)25AC =-++=;或22AC =.(3)设D (x ,2x -1),AD =5,由勾股定理得22(2)(211)5x x ++-+=.解得115x =,21x =-. 经检验,115x =,21x =-均为原方程的解. ∴ D 点的坐标为(15,35-)或(-1,-3).2.已知某一函数图象如图所示.(1)求自变量x 的取值范围和函数y 的取值范围;(2)求当x =0时,y 的对应值; (3)求当y =0时,x 的对应值; (4)当x 为何值时,函数值最大; (5)当x 为何值时,函数值最小;(6)当y 随x 的增大而增大时,求x 的取值范围; (7)当y 随x 的增大而减小时,求x 的取值范围. 【思路点拨】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 【答案与解析】(1)x 的取值范围是-4≤x ≤4,y 的取值范围是-2≤y ≤4; (2)当x =0时,y =3;(3)当y =0时,x =-3或-1或4;(4)当x=1时,y的最大值为4;(5)当x=-2时,y的最小值为-2;(6)当-2≤x≤1时,y随x的增大而增大;(7)当-4≤x≤-2或1≤x≤4时,y随x的增大而减小.【总结升华】本题主要是培养学生的识图能力.举一反三:【变式1】下图是韩老师早晨出门散步时,离家的距离y与时间x的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是( )【答案】理解题意,读图获取信息是关键,由图可知某段时间内韩老师离家距离是常数,联想到韩老师是在家为圆心的弧上散步,分析四个选项知D项符合题意.答案:D【高清课程名称:平面直角坐标系与一次函数高清ID号:406069关联的位置名称(播放点名称):例1】【变式2】下列图形中的曲线不表示y是x的函数的是( ).【答案】C.类型二、一次函数3.(2015•盘锦)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a= ,b= ;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?【思路点拨】(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值;(2)利用待定系数法求正比例函数解析式求出y1,分x≤10与x>10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解即可.【答案与解析】解:(1)由y1图象上点(10,480),得到10人的费用为480元,∴a=×10=6;由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,480),∴10k1=480,∴k1=48,∴y1=48x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,800),∴10k2=800,∴k2=80,∴y2=80x,x>10时,设y2=kx+b,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴y2=64x+160;∴y2=;(3)设B团有n人,则A团的人数为(50﹣n),当0≤n≤10时,80n+48×(50﹣n)=3040,解得n=20(不符合题意舍去),当n>10时,800+64×(n﹣10)+48×(50﹣n)=3040,解得n=30,则50﹣n=50﹣30=20.答:A团有20人,B团有30人.【总结升华】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论.举一反三:【高清课程名称:平面直角坐标系与一次函数高清ID号:406069关联的位置名称(播放点名称):例6】【变式1】(1)直线y=2x+1向下平移2个单位,再向右平移2个单位后的直线的解析式是_____ ___.(2)直线y=2x+1关于x轴对称的直线的解析式是___ _____;直线y=2x+l关于y轴对称的直线的解析式是___ ______;直线y=2x+1关于原点对称的直线的解析式是____ _____.(3)如图所示,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB平移后经过(3,4)点,则平移后的直线的解析式是__ ______.【答案】(1)y=2x-5;(2)y=-2x-1,y=-2x+1,y=2x-1;(3)y=2x-2.【变式2】某地夏天旱情严重.该地10号、15号的人日均用水量的变化情况如图所示.若该地10号、15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为( )A.23 B.24 C.25 D.26【答案】解析:设图中直线解析式为y =kx+b , 将(10,18),(15,15)代入解析式得1018,1515,k b k b +=⎧⎨+=⎩解得 3,524,k b ⎧=-⎪⎨⎪=⎩∴3245y x =-+.由题意知,324105x -+<,解得1233x >,∴送水号数应为24. 答案:B类型三、反比例函数4.(2015•安顺)如图,在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与反比例函数m y x=的图象交于A (2,3)、B (﹣3,n )两点.(1)求一次函数和反比例函数的解析式;(2)若P 是y 轴上一点,且满足△PAB 的面积是5,直接写出OP 的长.【思路点拨】(1)用待定系数法即可确定出反比例函数解析式;再将B 坐标代入反比例解析式中求出n 的值,确定出B 坐标,根据A 与B 坐标即可确定出一次函数解析式;(2)如图所示,对于一次函数解析式,令x=0求出y 的值,确定出C 坐标,得到OC 的长,三角形ABP 面积由三角形ACP 面积与三角形BCP 面积之和求出,由已知的面积求出PC 的长,即可求出OP 的长. 【答案与解析】解:(1)∵反比例函数my x=的图象经过点A (2,3), ∴m=6.∴反比例函数的解析式是y=,∵B 点(﹣3,n )在反比例函数y=的图象上,∴n=﹣2,∴B (﹣3,﹣2),∵一次函数y=kx+b 的图象经过A (2,3)、B (﹣3,﹣2)两点, ∴,解得:,∴一次函数的解析式是y=x+1;(2)对于一次函数y=x+1,令x=0求出y=1,即C (0,1),OC=1, 根据题意得:S △ABP =PC ×2+PC ×3=5, 解得:PC=2,则OP=OC+CP=1+2=3或OP=CP ﹣OC=2﹣1=1.【总结升华】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键. 举一反三:【变式】已知正比例函数y kx =(k 为常数,0k ≠)的图象与反比例函数5ky x-=(k 为常数,0k ≠)的图象有一个交点的横坐标是2. (1)求两个函数图象的交点坐标;(2)若点11()A x y ,,22()B x y ,是反比例函数5ky x-=图象上的两点,且12x x <,试比较12y y ,的大小. 【答案】(1)由题意,得522kk -=, 解得1k =.所以正比例函数的表达式为y x =,反比例函数的表达式为4y x=. 解4x x=,得2x =±.由y x =,得2y =±.所以两函数图象交点的坐标为(2,2),(22)--,.(2)因为反比例函数4y x=的图象分别在第一、三象限内, y 的值随x 值的增大而减小,所以当120x x <<时,12y y >. 当120x x <<时,12y y >.当120x x <<时,因为1140y x =<,2240y x =>,所以12y y <.类型四、函数综合应用5.如图,直线b x y +-=(b >0)与双曲线xky =(k >0)在第一象限的一支相交于A 、B 两点,与坐标轴交于C 、D 两点,P 是双曲线上一点,且PD PO =.(1)试用k 、b 表示C 、P 两点的坐标;(2)若△POD 的面积等于1,试求双曲线在第一象限的一支的函数解析式; (3)若△OAB 的面积等于34,试求△COA 与△BOD 的面积之和.【思路点拨】(1)根据直线的解析式求得点D 的坐标,再根据等腰三角形的性质即可求得点P 的横坐标,进而根据双曲线的解析式求得点P 的纵坐标;(2)①要求双曲线的解析式,只需求得xy 值,显然根据△POD 的面积等于1,即可求解;②由①中的解析式可以进一步求得点B 的纵坐标,从而求得直线的解析式,然后求得点B 的坐标,即可计算△COA 与△BOD 的面积之和. 【答案与解析】(1)C (0,b ),D (b ,0)∵PO =PD∴22b OD x P ==,b ky P 2=∴P (2b ,bk2)(2)∵1=∆POD S ,有1221=⋅⋅bkb ,化简得:k =1∴xy 1=(x >0)(3)设A (1x ,1y ),B (2x ,2y ),由AOB COD BOD COA S S S S ∆∆∆∆-=+得:34212121221-=+b by bx ,又b x y +-=22得38)(221-=+-+b b x b bx , 即38)(12=-x x b 得,再由⎪⎩⎪⎨⎧=+-=x y bx y 1得012=+-bx x , 从而b x x =+21,121=x x ,从而推出0)12)(4)(4(2=++-b b b ,所以4=b . 故348-=+∆∆BOD COA S S【总结升华】利用面积建立方程求解析式中的字母参数是常用方法.求两函数图像的交点坐标,即解由它们的解析式组成的方程组. 举一反三:【变式1】如图所示是一次函数y 1=kx+b 和反比例函数2my x=的图象,观察图象写出y 1>y 2时x 的取值范围________.【答案】利用图象比较函数值大小时,要看对于同一个自变量的取值,哪个函数图象在上面,哪个函数的函数值就大,当y 1>y 2时,-2<x <0或x >3. 答案:-2<x <0或x >3 【变式2】已知函数232(21)my m x -=-,m 为何值时,(1)y 是x 的正比例函数,且y 随x 的增大而增大? (2)函数的图象是位于第二、四象限的双曲线? 【答案】(1)要符合题意,m 需满足2210,32 1.m m ->⎧⎨-=⎩ 解得1,21.m m ⎧>⎪⎨⎪=±⎩ ∴ m =1.(2)欲符合题意,m 需满足2210,32 1.m m -<⎧⎨-=-⎩ 解得1,23.3m m ⎧<⎪⎪⎨⎪=±⎪⎩∴ 33m =-.6.已知直线11:n n l y x n n+=-+(n 是不为零的自然数).当n =1时,直线1:21l y x =-+与x 轴和y 轴分别交于点A 1和B 1,设△A 1OB 1(其中O 是平面直角坐标系的原点)的面积为S 1;当n =2时,直线231:22l y x =-+与x 轴和y 轴分别交于点A 2和B 2,设△A 2OB 2的面积为S 2,…,依此类推,直线n l 与x轴和y 轴分别交于点A n 和B n ,设△A n OB n 的面积为S n .(1)求11A OB △的面积S 1;(2)求S 1+S 2+S 3+…+S 6的面积.【思路点拨】此题是一道规律探索性题目,先根据函数解析式的通项公式得出每一个函数解析式,画出图象,总结出规律,便可解答. 【答案与解析】解:直线1:21l y x =-+,∴ 11OB =,112OA =.(1)111111112224S OB OA =⨯⨯=⨯⨯=. (2)由11n y x n n+=-+得,A 12123611A (0),(0,).n+1n11,,n+1n 1111,2n n+12(1)11,,212223111121222323426711111()21223346711(1)273.7n n n n n n OB B OA OB S n n S S S S S S ===⨯⨯=+==⨯⨯⨯⨯++++=++++⨯⨯⨯⨯⨯⨯⨯⨯=++++⨯⨯⨯⨯=-=△,【总结升华】借助直觉思维或对问题的整体把握运用归纳、概括、推理等思想获得合理的猜测.。
中考数学一轮复习课件:第3章 第1节平面直角坐标系与函数
例1[2020·邵阳]已知a+b>0,ab>0,则在如
[答案] B
图9-3所示的平面直角坐标系中,小手盖住 [解析]∵a+b>0,ab>0,∴a>0,b>0.(a,b)
的点的坐标可能是
(
)
在第一象限,(-a,b)在第二象限,(-a,-b)
-2
-5
的自变量 x 的取值范围是 ( D )
A.x≠5
B.x>2 且 x≠5
C.x≥2
D.x≥2 且 x≠5
7.已知点P(a,b)到x轴的距离为5,到y轴的距离为3,则点P的坐标为(3,5)或(-3,5)
或(-3,-5)或(3,-5)
____________
.
考向一
平面直角坐标系中点的坐标特征
画一个简单图形.
4.在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的
顶点坐标,并知道对应顶点坐标之间的关系.
5.探索简单实例中的数量关系和变化规律,了解常量、变量的意义.
6.结合实例,了解函数的概念和三种表示法,能举出函数的实例.
7.能结合图象对简单实际问题中的函数关系进行分析.
二、坐标系中的距离
点 P(x,y)到坐标轴及原点的距离
(1)到 y 轴的距离 d=⑫
|x|
两点间的距离(设 A(x1,y1),B(x2,y2),P(x2,y1))
(1)AP∥x 轴,AP=|x2-x1|;
;
(2)BP∥y 轴,BP=
(2)到 x 轴的距离 d=|y|;
⑭ |y1-y2▶演▶练
题组一 必会题
1.[2020·扬州]在平面直角坐标系中,点P(x2+2,-3)所在的象限是
沪科版数学八年级上册全册教案及单元知识点总结
【知识与技能】
在同一坐标系中,感受图形上的点的坐标与图形变化之间的关系.
【过程与方法】
经历图形在坐标系中的平移过程,培养学生形象思维能力和数形结合意识.
【情感与态度】
调动学生学习的主动性,培养合作探究的意识,体会坐标系中的图形平移的实际应用价值.
【教学重点】
重点是探究点或图形的平移引起的坐标变化的规律,另一个是研究图形上的点的坐标的某种变化引起的图形的平移变换.
选取直角坐标系的方法很多,在让学生充分交流的基础上,引导学生选择最优方案,那就是:选学校所在位置为原点,分别取正东、正北方向为x轴、y轴正方向建立直角坐标系,并取比例尺1:10000(图中1cm相当于实际中10000cm即100m).依题目所给的已知条件,取得小刚家的位置是(150,200),类似地,小强和小敏家的位置分别是(-150,350)和(300,-175).
【教学说明】将上节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.
二、范例学习,理解新知
例1在平面直角坐标系中描出下列各组点,并将各组内的点用线段顺次连接起来,说说你得到了什么图形,并计算它们的面积.
(1)A(5,2),B(2,2),C(2,-2).
(2)A(-1,2),B(-2,-1),C(2,-1),D(3,2).
【解】(1)得到的是一个直角三角形,如图①,它的面积是 ×3×4=6.
(2)得到的是一个平行四边形,如图②,它的面积是4×3=12.
【教学说明】教师给出规范解答步骤,学生模仿,便于今后在解决数学问题时有章可循.
例2如图(1),正方形ABCD的边长为4,请建立一个平面直角坐标系,并写出四边形的四个顶点A,B,C,D在这个平面直角坐标系中的坐标.
初三代数平面直角坐标系及函数的概念复习课课件
本课程将为您复习初三代数中的平面直角坐标系和函数的概念,帮助您更好 地掌握这一重要知识点。
平面直角坐标系
直角坐标系的定义
如何构建一个平面直角坐标系
坐标的概念
如何使用坐标表示一个点的位置
距离和斜率的计算
如何计算两点之间的距离和斜率
平面图形的表示
如何使用直角坐标系表示平面图形
现在是时间来回顾本节课所涉及的所有知识点并解决我们的错题。
3
函数的图像和奇偶性
函数的图像具有什么特征?函数的奇偶
函数的运算和复合函数
4
性如何确定?
如何进行函数的加、减、乘、除和复合 运算?
一次函数
定义和性质
一次函数的定义和特征
函数图像的特征
一次函数的图像具有什么特点?
截距和斜率的含义
如何计算函数的截距和斜率?
应用题的解法
如何使用一次函数解决实际问题?
二次函数
定义和性质
二次函数的定义和特征
完全平方公式的应用
如何使用完全平方公式求解二次函数?
函数图像的特征
二次函数的图像具有什么特点?
应用题的解法
如何使用二次函数解决实际问题?
总结与练习
1 本节课所学的重点和难点
本节课所学的重点和难点是什么?
2 相关习题的解法
请尝试完成这些与本节课相关的习题
3 知识点串讲及错题解析
直线的表示
坐标系中直线的方程
如何使用斜率和截距表示直线的方程
点斜式和两点式表示直线
如何使用点斜式和两点式表示直线的方程
斜率的概念及计算方法
如何计算直线的斜率
不同类型直线的图像
中考总复习平面直角坐标系与一次函数反比例函数--知识讲解
中考总复习平面直角坐标系与一次函数反比例函数--知识讲解一、平面直角坐标系:平面直角坐标系是描述平面上点位置的一种工具,它由两条互相垂直的数轴(横轴和纵轴)构成。
横轴通常被称为x轴,纵轴通常被称为y轴。
通常,将x轴和y轴的交点称为坐标原点O。
在平面直角坐标系中,每一个点都可以用一个有序数对(x,y)来表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
例如,点A在x轴上的位置是2,在y轴上的位置是3,那么点A的坐标就是(2,3)。
二、一次函数:1.定义:一次函数是指形如y = ax + b的函数,其中a和b是常数,并且a≠0。
其中,a叫做一次函数的斜率,b叫做一次函数的截距。
2.斜率的性质:(1)当a>0时,一次函数是递增的,意味着随着x的增加,y也增加。
(2)当a<0时,一次函数是递减的,意味着随着x的增加,y减少。
3.截距的性质:截距是指一次函数与y轴的交点,在数学上记为点(0,b)。
(1)当b>0时,一次函数与y轴正向相交,函数图像在y轴上方。
(2)当b<0时,一次函数与y轴负向相交,函数图像在y轴下方。
4.一次函数的图像特点:一次函数的图像是一条直线,直线的斜率决定了直线的倾斜程度,而截距决定了直线与y轴的交点位置。
通过改变斜率和截距的值,可以改变直线的位置和倾斜程度。
三、反比例函数:1.定义:反比例函数也称为比例函数的倒数函数,当x≠0时,反比例函数可以表示为y=k/x,其中k≠0。
反比例函数的图像是图象关于坐标原点O对称的两个分离的曲线。
2.反比例函数的性质:(1)当x增大时,y减小;当x减小时,y增大。
(2)反比例函数不存在斜线,是一对曲线对称分离的图象。
四、平面直角坐标系与一次函数反比例函数的应用:平面直角坐标系和一次函数、反比例函数可以应用于很多实际问题中,如图形的绘制、方程的求解等。
1.图形的绘制:- 对于一次函数y = ax + b,通过改变a和b的值,可以得到不同的图形及其特点。
初中数学中考复习考点知识与题型专题讲解11 一次函数 (解析版)
初中数学中考复习考点知识与题型专题讲解专题11 一次函数【知识要点】考点知识一变量与函数变量:在一个变化过程中数值发生变化的量。
常量:在一个变化过程中数值始终不变的量。
【注意】1、变量是可以变化的,而常量是已知数,且它是不会发生变化的。
2、区分常量和变量就是在某个变化过程中该量的值是否发生变化。
函数的定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
【函数概念的解读】1、有两个变量。
2、一个变量的数值随另一个变量的数值变化而变化。
3、对于自变量每一个确定的值,函数有且只有一个值与之对应。
函数定义域:一般的,一个函数的自变量x允许取值的范围,叫做这个函数的定义域。
确定函数定义域的方法:(自变量取值范围)(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
函数值概念:如果在自变量取值范围内给定一个值a,函数对应的值为b,那么b叫做当自变量取值为a时的函数值。
函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。
函数的取值范围:使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
画函数图像的一般步骤:1、列表2、描点3、连线函数图像上点的坐标与解析式之间的关系:1、将点的坐标代入到解析式中,如解析式两边成立,则点在解析式上,反之,不在。
2、两个函数图形交点的坐标就是这两个解析式所组成的方程组的解。
函数的三种表示法及其优缺点1、解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
2018年中考数学专题复习第十一讲:平面直角坐标系与函数(学生版) 精品
2018年中考数学专题复习第十一讲:平面直角坐标系与函数【基础知识回顾】一、平面直角坐标系:1、定义:具有的两条的数轴组成平面直角坐标系,两条数轴分别称轴轴或轴轴,这两系数轴把一个坐标平面分成的四个部分,我们称作是四个2、有序数对:在一个坐标平面内的任意一个点可以用一对来表示,如A(a .b),(a .b)即为点A的其中a是该点的坐标,b是该点的坐标平面内的点和有序数对具有的关系。
3、各象限内点的特点:平面内点的坐标特征① P(a .b):第一象限第二象限第三象限第四象限X轴上Y轴上②对称点:P对称点③特殊位置点的特点:P(a .b)若在一、三象限角的平分线上,则若在二、四象限角的平分线上,则④对坐标轴的距离:P(a .b)到x轴的距离到y轴的距离到原点的距离⑤坐标平面内点的平移:将点P(a .b)向左右平移h个点位,对应点坐标为或向上(下)平移K个点位,对应点坐标为或【名师提醒:坐标平面内点的坐标所具备的特征必须结合坐标平面去理解和记忆,不可生硬死记一些结论】二、确信位置常用的方法:一、一般由两种:1、平面直角坐标系中的有序数时2、方位角与距离三、函数的有关概念:1、常量与变量:在某一变化过程中,始终保持的量叫做常量,数值发生的量叫做变量【名师提醒:常量与变量是相对的,在一个变化过程中,用一个量在不同情况下可以是常量,也可以是变量,要根据问题的条件来确定】2、函数:⑴、函数的概念:一般的在某个过程中如果有两个变量x、y对于x德每一个确定的值,y都有的值与之对应,我们就成x是y是x的⑵、自变量的取值范围:主要有两种情况:①、解析或有意义的条件,常见分式和二次根式两种情况②、实际问题有意义的条件:必须符合实际问题的背景⑶、函数的表示方法:通常有三种表示函数的方法:①、法②、法③、法⑷、函数的同象:对于一个函数,把自变象x和函数y的每对对应值作为点的与在平面内描出相应的点,组成这些点的图形叫做这个函数的同象【名师提醒:1、在确定自变量取值范围时要注意分式和二次根式同时存在,应保证两者都有意义,即被开数应同时分母应2、函数的三种表示方法应根据实际需要选择,有时需同时使用几种方法3、函数同象是在自变量取值范围内无限个点组成的图形,同象上任意一点的坐标是解析式方程的一个解,反之满足解析式方程的每一个解都在函数同象上】【重点考点例析】考点一:平面直角坐标系中点的特征例1 (2018•扬州)在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.对应训练1.(2018•怀化)在平面直角坐标系中,点(-3,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点二:平面直角坐标系与其只是例2 (2018•济南)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)对应训练2.(2018•莆田)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D (1,﹣2).把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)考点三:函数的概念及函数自变量的取值范围=x的取值范围是.例3 (2018•凉山州)在函数yx对应训练y=中自变量x的取值范围是()3.(2018•衡阳)函数考点四:函数图象的运用例 4 (2018•鸡西)一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离S(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是()A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回例5 (2018•铁岭)如图,ABCD的边长为8,面积为32,四个全等的小平行四边形对称中心分别在ABCD的顶点上,它们的各边与ABCD的各边分别平行,且与ABCD 相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是()A.B.C.D.对应训练4.(2018•绥化)甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2秒时间段,乙队的速度比甲队的速度快5.(2018•绥化)如图,点A、B、C、D为⊙O的四等分点,动点P从圆心O出发,沿OC-CD-DO的路线做匀速运动,设运动的时间为t秒,∠APB的度数为y度,则下列图象中表示y (度)与t(秒)之间函数关系最恰当的是()A.B.C.D.【备考真题过关】一、选择题1.(2018•柳州)如图,P1、P2、P3这三个点中,在第二象限内的有()A.P1、P2、P3B.P1、P2C.P1、P3D.P1 2.(2018•龙岩)在平面直角坐标系中,已知点P(2,﹣3),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2018•资阳)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是()A.B.C.D.4.(2018•河池)下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个5.(2018•自贡)伟伟从学校匀速回家,刚到家发现当晚要完成的试卷忘记在学校,于是马上以更快的速度匀速原路返回学校.这一情景中,速度v和时间t的函数图象(不考虑图象端点情况)大致是()A.B.C.D.6.(2018•重庆)2018年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A.B.C.D.7.(2018•岳阳)如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()A.B.C.D.A.y=x B.y=2x+1 C.y=x2+x+1 D.9.(2018•十堰)一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程S(千米)与行驶时间t(小时)的函数关系如图所示,则下列结论中错误的是()A.甲、乙两地的路程是400千米B.慢车行驶速度为60千米/小时C.相遇时快车行驶了150千米D.快车出发后4小时到达乙地10.(2018•青海)如图反映的过程是:小刚从家去菜地浇水,又去青稞地除草,然后回家,如果菜地和青稞地的距离为a千米,小刚在青稞地除草比在菜地浇水多用了b分钟,则a,b的值分别为()A.1,8 B.0.5,12 C.1,12 D.0.5,8 13.(2018•泸州)为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;(2)若每户居民每月用电量超过100度,则超过部份按0.80元/度计算(未超过部份仍按每度电0.50元计算).现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A.B.C.D.14.(2018•六盘水)如图是邻居张大爷去公园锻炼及原路返回时离家的距离y(千米)与时间t(分钟)之间的函数图象,根据图象信息,下列说法正确的是()A.张大爷去时所用的时间少于回家的时间B.张大爷在公园锻炼了40分钟C.张大爷去时走上坡路,回家时走下坡路D.张大爷去时速度比回家时的速度慢16.(2018•海南)星期六,小亮从家里骑直行车到同学家去玩,然后返回,图是他离家的路程y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法不一定正确的是()A.小亮到同学家的路程是3千米B.小亮在同学家逗留的时间是1小时C.小亮去时走上坡路,回家时走下坡路D.小亮回家时用的时间比去时用的时间少二、填空题19.(2018•绍兴)小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是(只需填序号).20.(2018•苏州)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD 的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).20.(21.(2018•无锡)函数y=1+中自变量x的取值范围是.22.(2018•鸡西)函数y=+中,自变量x的取值范围是.23.(2018•恩施州)当x=时,函数y=的值为零.24.(2018•宁德)五一节某超市搞促销活动:①一次性购物不超过150元不享受优惠;②一次性购物超过150元但不超过500元一律九折;③一次性购物超过500元一律八折.王宁两次购物分别付款120元、432元,若王宁一次性购买与上两次相同的商品,则应付款元.三、解答题26.(2018•无锡)如图1,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.(1)求A、B两点的坐标;(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.。
专题11 平面直角坐标系(课件)2023年中考数学一轮复习(全国通用)
知识点2:点的坐标在不同位置的特征
知识点梳理
5. 关于x轴、y轴或原点对称的点的坐标的特征:
点P与点P′关于x轴对称 横坐标相等,纵坐标互为相反数. 点P与点P′关于y轴对称 纵坐标相等,横坐标互为相反数. 点P与点P′关于原点对称 横、纵坐标均互为相反数.
坐标为
.
知识点2:点的坐标在不同位置的特征
典型例题
【考点】规律型:点的坐标;坐标与图形变化—旋 转;坐标与图形变化—平移;关于x轴、y轴对称的 点的坐标 【分析】根据变换的定义解决问题即可. 【解答】解:点(0,1)经过011变换得到点(-1,-1), 点(-1,-1)经过011变换得到点(0,1),点(0,1)经 过011变换得到点(-1,-1), 故答案为:(-1,-1).
知识点2:点的坐标在不同位置的特征
知识点梳理
1. 各象限内点的坐标的特征:
点P(x,y)在第一象限 x>0,y>0. 点P(x,y)在第二象限 x<0,y>0. 点P(x,y)在第三象限 x<0,y<0. 点P(x,y)在第四象限 x>0,y<0.
知识点2:点的坐标在不同位置的特征
知识点梳理
A的坐标为(0,2),点B的坐标为(2,0),则点C的坐标是( )
A.(2,2)
B.(1,2)
C.(1,1)
D.(2,Leabharlann )知识点1:平面直角坐标系及点的坐标
典型例题
【解答】解:如图所示:
点C的坐标为(2,1). 故选:D. 【点评】此题主要考查了点的坐标,正确得出原点位置是解题的关键.
知识点1:平面直角坐标系及点的坐标
初三代数平面直角坐标系及函数的概念复习课PPT课件
例4、已知点A(m,-2),点B(3,m-1),且直线AB∥x轴,则m值为 。 分析:根据平行于x轴的直线上所有点的纵坐标相同 ,可得m-1= -2,可得m= -1。 点评:平行于x轴的直线上所有点的纵坐标相同,平行于y轴的直线上所有点的横坐 标相同。 题型三、自变量取值范围 x 1 y 例5、函数 中自变量x的取值范围是( ) x 且 D.x 1 x 0 A.x -1 B.x 0 C.x -1且x 0 分析:要使 y
3、坐标平面内,点P(x,y)与有序实数对建立一一对应关系。
(3)偶次根式函数自变量的取 值范围是使被开方数为非负实数; (4)实际问题的函数,除满足上述要求外还要使实际问题有意义。 三、函数的常用的表示方法 (1)解析法;(2)列表法;(3)图象法。 四、中考题型例析 题型一、坐标平面内点的坐标特征 例1、如果点M(a+b,ab)在第二象限,那么点N(a,b)在第 象限。 分析:由M在第二象限,可知a+b<0,ab>0可确定a<0,b<0,从而确定N在第三象限。 例2、已知点P在第二象限,到x轴的距离是2,到y轴的距离是3,则点P的坐标为 。 分析:点P(x,y)到x轴的距离是 y ,到y轴的距离是 x ,且P在第二象限知x<0,y>0, 可确定P点坐标。 解:设P(x,y)且P在第二象限,∴x<0,y>0. 又∵P到x轴的距离是2,∴ y =2 ∵P到y轴的距离是3,∴ x =3, ∴P的坐标为(-3,2) 题型二、不同位置点的坐标特征 例3、在平面直角坐标系中,点P(-1,1)关于x轴的对称点在( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 分析:点P(-1,1)关于x轴对称点的横坐标不变,纵坐标相反,∴P(-1,1)关于x轴的 对称点坐标为(-1,-1)在第三象限。
平面直角坐标系与函数-中考数学第一轮总复习课件(全国通用)
中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第三单元 函数及其图象专题3.1 平面直角坐标系与函数知识点点的坐标特征01坐标系的几何意义02函数及其图象03拓展训练04【例1】已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是( )知识点一典例精讲点的坐标特征A 0.51A0.51B 0.501C0.51D名师点拨象限点:第一象限_____,第二象限_____,第三象限_____,第四象限_____,特殊位置点:x轴上_____, y轴上______. 平行x轴:______相同,_______为不相等的实数; 平行y轴:_______相同,_______为不相等的实数.P(x,y)在一、三象限角的平分线上,则____, P(x,y)在二、四象限角的平分线上,则______.(+,+) (-,+)(+,-) (-,-)(x,0)(0,y)横坐标纵坐标横坐标纵坐标x=yx=-y1.在平面直角坐标系中,若点P(m-2,m+1)在第二象限,则m的取值范围是( ) A.m<-1 B.m>2 C.-1<m<2 D.m>-12.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,污渍盖住的点的坐标可能是( ) A.(a,b) B.(-a,b) C.(-a,-b) D.(a,-b)3.在平面直角坐标系中,点P(m-3,4-2m)不可能在第_____象限.4.已知点A(m,-2),B(3,m-1),且直线AB∥x轴,则m的值是_____.一-1知识点一强化训练点的坐标特征C B yxO知识点点的坐标特征01坐标系的几何意义02函数及其图象03拓展训练04【例2】如图,直线m⊥n,在某直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( ) A.O 1B.O 2C.O 3D.O4A O 3O 4mnO 1BO 2A知识点二典例精讲坐标的几何意义考点聚集1.P(a,b)到x轴的距离____,到y轴的距离____,到原点的距离________.2.A(x 1,y 1),B(x 2,y 2)为坐标系中的点,则AB=_____________________.3.表示地理位置的方法|b ||a |①平面直角坐标系法②方位角+距离③经纬度1.在如图的方格纸中,每个小正方形的边长为1,如果以MN所在的直线为y 轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则这时C点的坐标可能是( ) A.(1,3) B.(2,-1) C.(2,1) D.(3,1)2.在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M、N的坐标分别为(-2,0),(2,0)则在第二象限内的点时_____.BA ADNCBMO知识点二强化训练坐标的几何意义BCAN知识点点的坐标特征01坐标系的几何意义02函数及其图象03拓展训练04【例3-1】(1)下列各式中y是x的函数关系的是( ) A .y 2=x+1 B .x 2+y 2=4 C .|y|=x D .y=|x| (2)在函数y= 中,自变量x的取值范围是( ) A.x<4 B. x≥4且x≠-3 C. x>4 D.x≤4且x≠-3DD【例3-2】新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头,骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来,当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S 1,S 2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( ) C OStBOStCOStDS 1S 1S 1OStAS 1S 2S 2S 2S 2【例3-3】如图,在矩形ABCD中,AB=4,BC=8.点P从点B出发,沿BC方向运动,到点C停止,速度为1单位/秒;点Q同时从点C出发,沿CD-DA-AB的路线运动,到点B停止,速度为2单位/秒.连接BQ,PQ,设△QBP的面积为y平方单位,运动时间为x秒,则表示y与x的函数关系的大致图象为( )DA C D QB P Oyx A O y x D O y x C O y x B 268268268268知识点三典例精讲函数及其图象1.凡凡和可可在才子大桥两端同时出发,相向而行,凡凡的速度是可可的1.5倍,下图是两人之间的距离S(单位:m)与可可行走的时间x(单位:min)的函数图象,根据这些信息判断,下列说法正确的是( ) A.凡凡的速度是60 m/min B.才子大桥长400 mC.点M表示的意义是两人相遇D.a=10/3D yO x200a b 4/3M2.如图①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚.在这个过程中,小球的运动速度v 与运动时间t 的函数图象如图②,则该小球的运动路程y 与运动时间t 之间的函数图象大致是( )C 图①O vt 图②O y t A O y t B O y t C O y t D 3.如图,全等的等腰直角△ABC和△DEF,∠B=∠DEF=90º,点B,C,E,F在直线l上.△ABC从左图的位置出发向右作匀速运动,而△DEF不动.设两个三角形重合部分的面积为y,运动的距离为x.下面表示y与x的函数图象大致是( )C O y x A O y x B O y x C O y xD A F D C(E)B l知识点点的坐标特征01坐标系的几何意义02函数及其图象03拓展训练041.著名画家达·芬奇不仅画艺超群,同时还是一个数学家,发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为____cm.2.如图1,长2米的梯子AB竖直放在墙角,在沿着墙角缓慢下滑直至水平地面过程中,梯子AB的中点P的移动轨迹长度为_______.10 APB OA P B0.5π3.一电工沿着如图的梯子NL往上爬,当他爬到中点M处时,由于地面太滑,梯子沿墙面与地面滑下,以地面为x轴,墙面为y轴建立平面直角坐标系,设点M 的坐标为(x,y)(x>0),则y与x之间的函数关系用图象表示大致是( )CLMN LMNyO xAyO xByO xCyO xD4.如图,AC经过圆心O,交⊙O于点的D,AB与⊙O相切于点B.若∠A=x(0º<x <90º),∠C=y,则y与x之间的函数关系图象是( )AABCD O OyxA45º90ºOyxB90º90ºOyxC45º45ºOyxD90º45º5.如图,在边长为6厘米的正方形ABCD中,点M,N同时从点A出发,均以1厘米/秒的速度分别沿折线A-D-C与折线A-B-C运动至点C.设阴影部分△AMN的面积为S,运动时间为t,则S关于t的函数图象大致为( )DAMN B C D O yx D O y x C O y x A O y x B 6.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()B7.如图,在菱形ABCD中,∠B=60º,AB=2cm,动点P从点B出发,以1cm/秒的速度沿折线BA→AC运动,同时动点Q从点A出发,以相同速度沿折线AC→CD运动,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间B为x秒,则下列图象能大致反映y与x之间函数关系的是( )8.如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运动到点C停止,动点Q从点C开始沿CD-DA方向运动,与点P同时出发,同时停止.这两点的运动速度均为每秒1个单位.若设他们的运动时间为x(秒),△EPQ 的面积为y,则y与x之间的函数关系的图象大致是( )A9.如图1,点P从△ABC的顶点B出发,沿B→C→A 匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是_____.12提升能力拓展训练平面直角坐标系与函数10.如图,等边△ABC中,边长AB=3,点D在线段BC上,点E在射线AC上,点D沿BC方向从B点以每秒1个单位的速度向终点C运动,点E沿AC方向从A点以每秒2个单位的速度运动,当D点停止时E点也停止运动,设运动时间为t秒,若D、E、C三点围成的图形的面积用S来表示,则S与t的图象是( )C A E D C B O S t A 1234321O S t D 1234321O S t C 1234321O S t B123432111.如图,爸爸从家(点O)出发,沿着扇形AOB上OA→AB→BO的路径去匀速散步,设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是( )C 提升能力拓展训练平面直角坐标系与函数12.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是( ) A.①B.④C.②或④D.①或③D13.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示的方向,每次移动1个单位,依次得到点1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P 6(2,0),…,则点P2017的坐标是_________.14.如图,在平面直角坐标系中,等腰直角△OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2021的坐标是__________.(672,1)yxOP1P13P11P10P8P7P5P4P2P12P9P6P3yxOA2A1AA7A6A5A4A3(21010,21010)16.如图,正六边形ABCDEF的边长为2,现要建立平面直角坐标系,使点A,B分别在x的正半轴、y的正半轴上,且点C,D,E,F第一象限或坐标轴上.当OA=OB时,点E的坐标为____________.A F EDCBOH。
2020年中考数学一轮复习第课时11平面直角坐标系和函数初步 练习题(无答案)
初三中考第一轮复习课题11:平面直角坐标系与函数初步【课前练习】1.(2018·扬州)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,-4)B .(4,-3)C .(-4,3)D .(-3,4)2.(2018·沈阳)在平面直角坐标系中,点B 的坐标是(4,-1),点A 与点B 关于x 轴对称,则点A 的坐标是A .(4,1)B .(-1,4)C .(-4,-1)D .(-1,-4)3.(2018海南)如图1,在平面直角坐标系中,△ABC 位于第一象限,点A 的坐标是(4, 3),把△ABC 向左平移 6个单位长度,得到△A 1B 1C 1,则点B 1的坐标是A .(-2,3)B .( 3,-1)C .(-3,1)D .(-5, 2) xy–1–2–3–4–512345–11234OA CB A1B1C14.(2018·宿迁)函数11-=x y 中,自变量x 的取值范围是 A .0≠x B .1<x C .1>xD .1≠x5.(2019•南岸区)在平面直角坐标系中,将点A (2,﹣3)向右平移3个单位后得到点B ,则点B 的坐标为 .6.(2018秋•高邮市期末)已知点A (m ﹣1,﹣5)和点B (2,m +1),若直线AB ∥x 轴,则线段AB 的长为 .7.(2018•资阳)如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是 .【知识点回顾】(1)平面上的点与一对有序实数对一一对应(2) 坐标的意义:1.位置 2.距离 3.平移(3) 各个位置上的点的特征:第一象限(+,+);第二象限(—,+);第三象限(—,—);第四象限(+,—);x 轴上的点纵坐标=0;y 轴上的点横坐标=0;一三象限的角平分线(直线y=x )横坐标=纵坐标;二四象限的角平分线(直线y=-x )横坐标、纵坐标互为相反数(4)点的位置变换:a) 平移:左右平移变化横坐标,左减右加,上下平移变化纵坐标,上加下减b) 轴对称:关于x 轴对称,横坐标不变,纵坐标互为相反数;关于y 轴对称,纵坐标不变,横坐标互为相反数 c) 中心对称:关于O 点对称,横纵坐标都互为相反数d) 位似:相似比为k ,则横纵坐标都乘以k 或﹣k(1)变量,函数的概念(2)函数的自变量a) 整式中的自变量取值为任意实数。
中考数学专题复习《平面直角坐标系与函数》知识点梳理及典型例题讲解课件
③在某个变化过程中处于主导地位的变量即为自变量,随之变
化且对应值有唯一确定性的另一个变量即为该自变量的函数.
(4)函数自变量取值范围.
①不同类型的函数关系式中自变量取值范围的求解方法:
函数解析式
整式型(y=ax+b)
自变量的取值范围
全体实数,但在实际问题中要注意限
向上平移b个单位
向下平移b个单位
平移后点P'的坐标
特征
(x-a,y)
左减
(x+a,y)
(x,y+b)
(x,y-b)
右加
上加
下减
(Βιβλιοθήκη )中心对称的坐标特征:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)
关于原点的对称点为P'(-x,-y).
(8)图形在坐标系中的旋转的坐标特征.
图形(点)的旋转与坐标变化:
① 点 P ( x , y ) 绕 坐 标 原 点 顺 时 针 旋 转 9 0 °, 其 坐 标 变 为
P'(y,-x);
②点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P'
(-x,-y);
③点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P’
(-y,x);
④点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P'
间的距离为|y1-y2|.
任意两点P1(x1,y1),P2(x2,y2),则线段P1P2的中点坐标
1 +2 1 +2
为(
,
);
2
2
任 意 两 点 P1 ( x1 , y1 ) , P2 ( x2 , y2 ) , 则 线 段 P1P2 =
平面直角坐标系与函数基础知识(解析版)--2024年中考数学真题分类汇编
平面直角坐标系与函数基础知识一、单选题1.(2024·江西·中考真题)将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数y℃与时间x min的关系用图象可近似表示为()A. B. C. D.【答案】C【分析】本题考查了函数图象,根据温度计上升到一定的温度后不变,可得答案;注意温度计的温度升高到60℃时温度不变.【详解】解:将常温中的温度计插入一杯60℃(恒温)的热水中,注意温度计的温度升高到60℃时温度不变,故C选项图象符合条件,故选:C.2.(2024·甘肃·中考真题)敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为15,16,那么有序数对记为12,17对应的田地面积为()A.一亩八十步B.一亩二十步C.半亩七十八步D.半亩八十四步【答案】D【分析】根据15,16可得,横从上面从右向左看,纵从右边自下而上看,解答即可.本题考查了坐标与位置的应用,熟练掌握坐标与位置的应用是解题的关键.【详解】根据15,16可得,横从上面从右向左看,纵从右边自下而上看,故12,17对应的是半亩八十四步,故选D.3.(2024·山东威海·中考真题)定义新运算:①在平面直角坐标系中,a,b表示动点从原点出发,沿着x轴正方向(a≥0)或负方向(a<0).平移a 个单位长度,再沿着y轴正方向(b≥0)或负方向(b<0)平移b 个单位长度.例如,动点从原点出发,沿着x轴负方向平移2个单位长度,再沿着y轴正方向平移1个单位长度,记作-2,1.②加法运算法则:a,b,其中a,b,c,d为实数.+c,d=a+c,b+d若3,5,则下列结论正确的是()+m,n=-1,2A.m=2,n=7B.m=-4,n=-3C.m=4,n=3D.m=-4,n=3【答案】B【分析】本题考查了新定义运算,平面直角坐标系,根据新定义得出3+m=-1,5+n=2,即可求解.【详解】解:∵a,b=-1,2+m,n,3,5+c,d=a+c,b+d∴3+m=-1,5+n=2解得:m=-4,n=-3故选:B.4.(2024·广西·中考真题)如图,在平面直角坐标系中,点O为坐标原点,点P的坐标为2,1,则点Q的坐标为()A.3,0D.1,2C.3,2B.0,2【答案】C【分析】本题主要考查点的坐标,理解点的坐标意义是关键.根据点P的坐标可得出横、纵轴上一格代表一个单位长度,然后观察坐标系即可得出答案.【详解】解:∵点P的坐标为2,1,∴点Q的坐标为3,2,故选:C.5.(2024·四川广元·中考真题)如果单项式-x2m y3与单项式2x4y2-n的和仍是一个单项式,则在平面直角坐标系中点m,n在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】本题主要考查同类项和确定点的坐标,根据同类项的性质求出m,n的值,再确定点m,n的位置即可【详解】解:∵单项式-x2m y3与单项式2x4y2-n的和仍是一个单项式,∴单项式-x2m y3与单项式2x4y2-n是同类项,∴2m=4,2-n=3,解得,m=2,n=-1,∴点m,n在第四象限,故选:D6.(2024·四川广安·中考真题)向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满.在注水过程中,设容器内底部所受水的压强为y(单位:帕),时间为x(单位:秒),则y关于x的函数图象大致为()A. B.C. D.【答案】B【分析】此题主要考查了函数图象.由于压强与水面的高度成正比,而上下两个容器粗细不同,那么水面高度h随时间x变化而分两个阶段.【详解】解:最下面的容器较粗,那么第一个阶段的函数图象水面高度h随时间x的增大而增长缓慢,用时较长,即压强y随时间x的增大而增长缓慢,用时较长,最上面容器最小,则压强y随时间x的增大而增长变快,用时最短.故选:B.7.(2024·甘肃·中考真题)如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为()A.y =3xB.y =4xC.y =3x +1D.y =4x +1【答案】B 【分析】本题主要考查了列函数关系式,观察可知,小桌的长是小桌宽的两倍,则小桌的长是2x ,再根据长桌的长等于小桌的长加上2倍的小桌的宽列出对应的函数关系式即可.【详解】解:由题意可得,小桌的长是小桌宽的两倍,则小桌的长是2x ,∴y =x +x +2x =4x ,故选:B .8.(2024·内蒙古包头·中考真题)如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是O 0,0 ,A 1,2 ,B 3,3 ,C 5,0 ,则四边形OABC 的面积为()A.14B.11C.10D.9【答案】D 【分析】本题考查了坐标与图形,过A 作AM ⊥OC 于M ,过B 作BN ⊥OC 于N ,根据A 、B 、C 的坐标可求出OM ,AM ,MN ,BN ,CN ,然后根据S 四边形OABC =S △AOM +S 梯形AMNB +S △BCN 求解即可.【详解】解∶过A 作AM ⊥OC 于M ,过B 作BN ⊥OC 于N ,∵O0,0,A1,2,B3,3,C5,0,∴OM=1,AM=2,ON=BN=3,CO=5,∴MN=ON-OM=2,CN=OC-ON=2,∴四边形OABC的面积为S△AOM+S梯形AMNB+S△BCN=12×1×2+12×2+3×2+12×3×2=9,故选:D.9.(2024·广西·中考真题)激光测距仪L发出的激光束以3×105km s的速度射向目标M,ts后测距仪L收到M反射回的激光束.则L到M的距离dkm与时间ts的关系式为()A.d=3×1052t B.d=3×105t C.d=2×3×105t D.d=3×106t 【答案】A【分析】本题考查列函数关系式,熟练掌握路程=速度×时间是解题的关键.根据路程=速度×时间列式即可.【详解】解:d=12×3×105⋅t=3×1052t,故选:A.10.(2024·湖北武汉·中考真题)如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h与注水时间t的函数关系的是()A. B.C. D.【答案】D【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D.11.(2024·青海·中考真题)化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是()A.加入絮凝剂的体积越大,净水率越高B.未加入絮凝剂时,净水率为0C.絮凝剂的体积每增加0.1mL,净水率的增加量相等D.加入絮凝剂的体积是0.2mL时,净水率达到76.54%【答案】D【分析】本题考查从图像上获取信息,能从图像上获得信息是解题的关键,根据图像信息对选项进行判断即可【详解】A、从图像上可以看到,加入絮凝剂的体积在0.5mL达到最大净水率,之后净水率开始降低,不符合题意,选项错误;B、未加入絮凝剂时,净水率为12.48%,故不符合题意,选项错误;C、当絮凝剂的体积为0.3mL时,净水率增加量为84.60%-76.54%=8.06%,絮凝剂的体积为0.4mL时,净水率增加量为86.02%-84.60%=1.42%;故絮凝剂的体积每增加0.1mL,净水率的增加量不相等,不符合题意,选项错误;D 、根据图像可得,加入絮凝剂的体积是0.2mL 时,净水率达到76.54%,符合题意,选项正确;故选:D12.(2024·湖南·中考真题)在平面直角坐标系xOy 中,对于点P x ,y ,若x ,y 均为整数,则称点P 为“整点”.特别地,当y x(其中xy ≠0)的值为整数时,称“整点”P 为“超整点”,已知点P 2a -4,a +3 在第二象限,下列说法正确的是()A.a <-3B.若点P 为“整点”,则点P 的个数为3个C.若点P 为“超整点”,则点P 的个数为1个D.若点P 为“超整点”,则点P 到两坐标轴的距离之和大于10【答案】C【分析】本题考查了新定义,点到坐标轴的距离,各象限内点的特征等知识,利用各象限内点的特征求出a 的取值范围,即可判断选项A ,利用“整点”定义即可判断选项B ,利用“超整点”定义即可判断选项C ,利用“超整点”和点到坐标轴的距离即可判断选项D .【详解】解:∵点P 2a -4,a +3 在第二象限,∴2a -4<0a +3>0 ,∴-3<a <2,故选项A 错误;∵点P 2a -4,a +3 为“整点”,-3<a <2,∴整数a 为-2,-1,0,1,∴点P 的个数为4个,故选项B 错误;∴“整点”P 为-8,1 ,-6,2 ,-4,3 ,-2,4 ,∵1-8=-18,2-6=-13,3-4=-34,4-2=-2∴“超整点”P 为-2,4 ,故选项C 正确;∵点P 2a -4,a +3 为“超整点”,∴点P 坐标为-2,4 ,∴点P 到两坐标轴的距离之和2+4=6,故选项D 错误,故选:C .13.(2024·湖北武汉·中考真题)如图,小好同学用计算机软件绘制函数y =x 3-3x 2+3x -1的图象,发现它关于点1,0 中心对称.若点A 10.1,y 1 ,A 20.2,y 2 ,A 30.3,y 3 ,⋯⋯,A 191.9,y 19 ,A 202,y 20 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则y 1+y 2+y 3+⋯⋯+y 19+y 20的值是()A.-1B.-0.729C.0D.1【答案】D【分析】本题是坐标规律题,求函数值,中心对称的性质,根据题意得出y1+y2+y3+⋯y9+y11⋯+y19= 0,进而转化为求y10+y20,根据题意可得y10=0,y20=1,即可求解.【详解】解:∵这20个点的横坐标从0.1开始依次增加0.1,∴0.1+1.92=0.2+1.82=⋅⋅⋅0.9+1.12=1,∴y1+y2+y3+⋯y9+y11⋯+y19=0,∴y1+y2+y3+⋯⋯+y19+y20=y10+y20,而A101,0即y10=0,∵y=x3-3x2+3x-1,当x=0时,y=-1,即0,-1,∵0,-1关于点1,0中心对称的点为2,1,即当x=2时,y20=1,∴y1+y2+y3+⋯⋯+y19+y20=y10+y20=0+1=1,故选:D.14.(2024·山东威海·中考真题)同一条公路连接A,B,C三地,B地在A,C两地之间.甲、乙两车分别从A地、B地同时出发前往C地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离y(km)与时间x(h)的函数关系.下列结论正确的是()A.甲车行驶83h与乙车相遇 B.A,C两地相距220kmC.甲车的速度是70km/hD.乙车中途休息36分钟【答案】A【分析】本题考查了函数图象,根据函数图象结合选项,逐项分析判断,即可求解.【详解】解:根据函数图象可得AB 两地之间的距离为40-20=20(km )两车行驶了4小时,同时到达C 地,如图所示,在1-2小时时,两车同向运动,在第2小时,即点D 时,两车距离发生改变,此时乙车休息,E 点的意义是两车相遇,F 点意义是乙车休息后再出发,∴乙车休息了1小时,故D 不正确,设甲车的速度为akm /h ,乙车的速度为bkm /h ,根据题意,乙车休息后两车同时到达C 地,则甲车的速度比乙车的速度慢,a <b∵2b +20-2a =40即b -a =10在DE -EF 时,乙车不动,则甲车的速度是40+201=60km/h ,∴乙车速度为60+10=70km/h ,故C 不正确,∴AC 的距离为4×60=240千米,故B 不正确,设x 小时两辆车相遇,依题意得,60x =2×70+20解得:x =83即83小时时,两车相遇,故A 正确故选:A .15.(2024·四川凉山·中考真题)匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度h 随时间t 变化的大致图象是()A. B.C. D.【答案】C【分析】本题考查了函数图象,根据容器最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大即可判断求解,正确识图是解题的关键.【详解】解:由容器可知,最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大,所以一开始水面高度h上升的很快,然后很慢,最后又上升的更快点,故选:C.16.(2024·河南·中考真题)把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是()A.当P=440W时,I=2AB.Q随I的增大而增大C.I每增加1A,Q的增加量相同D.P越大,插线板电源线产生的热量Q越多【答案】C【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当P=440W时,I=2A,故选项A正确,但不符合题意;根据图2知:Q随I的增大而增大,故选项B正确,但不符合题意;根据图2知:Q随I的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C错误,符合题意;根据图1知:I随P的增大而增大,又Q随I的增大而增大,则P越大,插线板电源线产生的热量Q越多,故选项D正确,但不符合题意;故选:C.17.(2024·内蒙古呼伦贝尔·中考真题)已知某同学家、体育场、图书馆在同一条直线上.下面的图象反映的过程是:该同学从家跑步去体育场,在那里锻炼了一阵后又步行回家吃早餐,饭后骑自行车到图书馆.图中用x表示时间,y表示该同学离家的距离.结合图象给出下列结论:(1)体育场离该同学家2.5千米;(2)该同学在体育场锻炼了15分钟;(3)该同学跑步的平均速度是步行平均速度的2倍;(4)若该同学骑行的平均速度是跑步平均速度的1.5倍,则a的值是3.75;其中正确结论的个数是()A.1B.2C.3D.4【答案】C【分析】本题考查利用函数图像解决实际问题,正确的读懂图像给出的信息是解题的关键.利用图象信息解决问题即可.【详解】解:由图象可知:体育场离该同学家2.5千米,故(1)正确;该同学在体育场锻炼了30-15=15(分钟),故(2)正确;该同学的跑步速度为2.5÷15=16(千米/分钟),步行速度为2.5÷65-30=14(千米/分钟),则跑步速度是步行速度的16÷114=73倍,故(3)错误;若该同学骑行的平均速度是跑步平均速度的1.5倍,则该同学骑行的平均速度为1.5×16=14(千米/分钟),所以a=14×103-88=3.75,故(4)正确,故选:C.18.(2024·内蒙古呼伦贝尔·中考真题)点P x,y在直线y=-34x+4上,坐标x,y是二元一次方程5x-6y=33的解,则点P的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】本题考查了一次函数图象上点的特征,解二元一次方程组等知识,联立方程组y=-34x+45x-6y=33 ,求出点P的坐标即可判断.【详解】解∶联立方程组y=-34x+4 5x-6y=33 ,解得x =6y =-12,∴P 的坐标为6,-12,∴点P 在第四象限,故选∶D .19.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P 2,1 按上述规则连续平移3次后,到达点P 32,2 ,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点Q 16-1,9 ,则点Q 的坐标为()A.6,1 或7,1B.15,-7 或8,0C.6,0 或8,0D.5,1 或7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照Q 16的反向运动理解去分类讨论:①Q 16先向右1个单位,不符合题意;②Q 16先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为6,1 ,那么最后一次若向右平移则为7,1 ,若向左平移则为5,1 .【详解】解:由点P 32,2 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到P 42,3 ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到P 41,3 ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位⋯⋯,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点Q 16-1,9 ,则按照“和点”Q 16反向运动16次求点Q 坐标理解,可以分为两种情况:①Q 16先向右1个单位得到Q 150,9 ,此时横、纵坐标之和除以3所得的余数为0,应该是Q 15向右平移1个单位得到Q 16,故矛盾,不成立;②Q 16先向下1个单位得到Q 15-1,8 ,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到Q 16,故符合题意,那么点Q 16先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为-1+7,9-8 ,即6,1 ,那么最后一次若向右平移则为7,1 ,若向左平移则为5,1 ,故选:D .二、填空题20.(2024·湖北·中考真题)铁的密度约为7.9 kg/cm3,铁的质量m kg成正比例.与体积V cm3一个体积为10 cm3的铁块,它的质量为kg.【答案】79【分析】本题考查了正比例函数的应用.根据铁的质量m kg成正比例,列式计算与体积V cm3即可求解.【详解】解:∵铁的质量m kg成正比例,与体积V cm3∴m关于V的函数解析式为m=7.9V,当V=10时,m=7.9×10=79kg,故答案为:79.21.(2024·山东·中考真题)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy中,将点x,y中的x,y分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x,y均为正整数.例如,点6,3,经过第2次运算得到点10,5,以经过第1次运算得到点3,10此类推.则点1,4经过2024次运算后得到点.【答案】2,1【分析】本题考查了新定义,点的规律,根据新定义依次计算出各点的坐标,然后找出规律,最后应用规律求解即可.【详解】解:点1,4,经过1次运算后得到点为1×3+1,4÷2,即为4,2经过2次运算后得到点为4÷2,2÷1,,即为2,1经过3次运算后得到点为2÷2,1×3+1,,即为1,4⋯⋯,发现规律:点1,4,经过3次运算后还是1,4∵2024÷3=674⋯2,∴点1,4,经过2024次运算后得到点2,1故答案为:2,1.三、解答题22.(2024·浙江·中考真题)小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小丽跑步时中间休息了两次.跑步机上C档比B档快40米/分、B档比A档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s(米)与小明跑步时间t(分)的函数关系如图所示.时间里程分段速度档跑步里程小明16:00~16:50不分段A档4000米小丽16:10~16:50第一段B档1800米第一次休息第二段B档1200米第二次休息第三段C档1600米(1)求A,B,C各档速度(单位:米/分);(2)求小丽两次休息时间的总和(单位:分);(3)小丽第二次休息后,在a分钟时两人跑步累计里程相等,求a的值.【答案】(1)80米/分,120米/分,160米/分(2)5分(3)42.5【分析】此题考查函数图象获取信息,一元一次方程的应用,读懂图象中的数据是解本题的关键.(1)由小明的跑步里程及时间可得A档速度,再根据C档比B档快40米/分、B档比A档快40米/分可得B,C档速度;(2)结合图象求出小丽每段跑步所用时间,再根据总时间即可求解;(3)由题意可得,此时小丽在跑第三段,所跑时间为a-10-15-10-5=a-40(分),可得方程80a=3000+160a-40,求解即可.【详解】(1)解:由题意可知,A档速度为4000÷50=80米/分,则B档速度为80+40=120米/分,C档速度为120+40=160米/分;(2)小丽第一段跑步时间为1800÷120=15分,小丽第二段跑步时间为3000-1800÷120=10分,小丽第三段跑步时间为4600-3000÷160=10分,则小丽两次休息时间的总和=50-10-15-10-10=5分;(3)由题意可得:小丽第二次休息后,在a分钟时两人跑步累计里程相等,此时小丽在跑第三段,所跑时间为:a-10-15-10-5=a-40(分)可得:80a=3000+160a-40,解得:a=42.5.23.(2024·北京·中考真题)小云有一个圆柱形水杯(记为1号杯),在科技活动中,小云用所学数学知识和人工智能软件设计了一个新水杯,并将其制作出来,新水杯(记为2号杯)示意图如下,当1号杯和2号杯中都有VmL水时,小云分别记录了1号杯的水面高度h1(单位:cm)和2号杯的水面高度h2(单位:cm),部分数据如下:V/mL040100200300400500h1/cm0 2.5 5.07.510.012.5h2/cm0 2.8 4.87.28.910.511.8(1)补全表格(结果保留小数点后一位);(2)通过分析数据,发现可以用函数刻画h1与V,h2与V之间的关系.在给出的平面直角坐标系中,画出这两个函数的图象;(3)根据以上数据与函数图象,解决下列问题:①当1号杯和2号杯中都有320mL水时,2号杯的水面高度与1号杯的水面高度的差约为cm(结果保留小数点后一位);②在①的条件下,将2号杯中的一都分水倒入1号杯中,当两个水杯的水面高度相同时,其水面高度约为cm(结果保留小数点后一位).【答案】(1)1.0(2)见详解(3)1.2,8.5【分析】本题考查了函数的图像与性质,描点法画函数图像,求一次函数解析式,已知函数值求自变量,正确理解题意,熟练掌握知识点是解题的关键.(1)设V与h1的函数关系式为:V=kh1k≠0,由表格数据得:100=2.5k,则可求V=40h1,代入V= 40即可求解;(2)画h2与V之间的关系图象时,描点,连线即可,画h1与V的关系图像时,由于V=40h1是正比例函数,故只需描出两点即可;(3)①当V=320ml时,h1=320=8cm,由图象可知高度差CD≈1.2cm;②在V=320ml左右两侧找40到等距的体积所对应的高度相同,大致为8.5cm.【详解】(1)解:由题意得,设V与h1的函数关系式为:V=kh1k≠0,由表格数据得:100=2.5k,解得:k=40,∴V=40h1,∴当V=40时,40h1=40,∴h1=1.0cm;(2)解:如图所示,即为所画图像,=8cm,由图象可知高度差CD≈1.2cm,(3)解:①当V=320ml时,h1=32040故答案为:1.2;②由图象可知当两个水杯的水面高度相同时,估算高度约为8.5cm,故答案为:8.5.。
初中数学_《平面直角坐标系》复习课教学设计学情分析教材分析课后反思
《平面直角坐标系》学情分析只有掌握学生的基本情况才能更好的因材施教。
从年龄特点来看,七年级学生已经能够建立初步的抽象思维去思考问题,对数字与图形已有一定的认识,是本课学习数与形结合的平面直角坐标系的良好基础。
七年级学生积极性高,乐于思考且好表现,活跃的课堂气氛对于新课的教学会起到事半功倍的作用。
本节课的设计充分彰显学生的主观能动性,自己设计本章知识点,以思维导图的形式进行展示,充分调动的学生的学习积极性。
好的教学方法是实现教学目标、提高教学质量的关键所在。
教法:1、演练结合法;2、提问法;学法:1、小组合作探究法;2、动手操作法这种学习方法的灵活运用,能劳逸结合,让学生在快乐中学习。
效果分析自主检测部分的题目,五个题目,五个类型。
出现错误较多的是第四题和第五题,第四题是有的学生忽略多解,由距离转化为实际“数”的时候,应该有两种考虑,从而横纵坐标衍生出一共四种情况;第五题作为解答题,学生有的步骤不规范,还有的师典型错误,就是知道AB∥ x轴,所以其纵坐标相等,但是要同时保证横坐标不相等,这是学生忽略的地方。
中考链接的题目,德州这部分多以综合题的形式出现,所以列举的是其他省市的中考题,这三个题目出现错误的很少,主要是第三题的方法,用本节课所拓宽的知识,用左右平移与坐标的关系解决更为简单。
中考预备所设置的这个阅读理解题,是为了以后初三学习中的抛物线中的平行四边形存在性问题做的铺垫,需要记住其中的中点公式。
学生在解决这个问题的时候,看似简单,却忽略了应该说明AB∥ x 轴,否则即使说明DE∥ x轴,,也无法说明EF∥ AB,所以学会审题是关键!学为主体教为主导全面促进宁要改革的微词,不要僵化的危机。
恰逢本学期我们学校进行“五三制”教学改革,我对于传统的复习课如何转为新型的展示课和检测课,如何提高单元复习课的有效性,做了初步的探索。
传统的复习课多以老师对本章知识进行汇总罗列,然后做题巩固,整个过程学生的参与的太少,主动性太差,收效甚微,久而久之会消磨学生的学习积极性。
中考复习专题第11讲:平面直角坐标系与函数
第三章函数及其图象第十一讲平面直角坐标系与函数【基础知识回顾】1、有序数对:在一个坐标平面内的任意一个点可以用一对来表示,如A(a .b),(a .b)即为点A的其中a是该点的坐标,b是该点的坐标平面内的点和有序数对具有的关系。
2、平面内点的坐标特征① P(a .b):第一象限第二象限第三象限第四象限X轴上 Y轴上②对称点:③特殊位置点的特点:P(a .b)若在一、三象限角的平分线上,则若在二、四象限角的平分线上,则④到坐标轴的距离:P(a .b)到x轴的距离到y轴的距离到原点的距离⑤坐标平面内点的平移:将点P(a .b)向左(或右)平移h个单位,对应点坐标为(或),向上(或下)平移k个单位,对应点坐标为(或)。
3、常量与变量:在某一变化过程中,始终保持的量叫做常量,数值发生的量叫做变量。
4、函数:自变量的取值范围:主要有两种情况:①、解析式有意义的条件,常见分式和二次根式两种情况②、实际问题有意义的条件:必须符合实际问题的背景【重点考点例析】考点一:平面直角坐标系中点的特征例1 在平面直角坐标系中,点(﹣4,4)在第__象限.考点二:规律型点的坐标例2在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)考点三:函数自变量的取值范围例3函数y=中的自变量x的取值范围是()A. x≥0B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1考点四:函数的图象例4汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.考点四:动点问题的函数图象例5如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.C. D .【聚焦中考】1.下列函数中,图象经过原点的是()A.y=3x B.y=1﹣2x C.y=D.y=x2﹣12.如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b+2)3.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )A . 体育场离张强家2.5千米B . 张强在体育场锻炼了15分钟C . 体育场离早餐店4千米D . 张强从早餐店回家的平均速度是3千米/小时4.若点M (x ,y )满足2222x y x y +=+()﹣,则点M 所在象限是( ) A .第一象限或第三象限 B .第二象限或第四象限C .第一象限或第二象限D .不能确定5.如图,已知函数y=2x+b 与函数y=kx-3的图象交于点P ,则不等式kx-3>2x+b 的解集是 _________.【备考真题过关】一、选择题1.已知线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点B (﹣4,﹣1)的对应点D 的坐标为( )A .(1,2)B . (2,9)C . (5,3)D . (﹣9,﹣4)2.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A. 1 B.1或5 C.3D.53.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()4.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)5.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB =BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?( )A.2 B.3 C.4 D.5二、填空题1.点A(﹣2,3)关于x轴的对称点A′的坐标为___________.2.小明从家跑步到学校,接着马上步行回家. 如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行米.3.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.4.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是________.5.如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为________.6.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.7.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为_________.三.解答题1.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为____________;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为____________.。
初三代数平面直角坐标系及函数的概念复习课课件
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
06
复习题与答案解析
基础题
01
02
03
04
题目
已知点A(2,3),B(-3,2),求线段AB的长度。
答案
线段AB的长度为5。
题目
已知点A(3,5),B(-4, 1),求线段AB的中点坐标。
答案
线段AB的中点坐标为(-0.5 ,3)。
当 x = 3 时,y = 2。
题目
答案
已知函数 y = -x^2 + 4x - 3,当 x = -1 时 ,求 y 的值。
当 x = -1 时,y = -6。
正比例函数的定义与图像
正比例函数的定义
正比例函数是一种特殊的函数,其表 达式为 y = kx (k ≠ 0),其中 x 和 y 是自变量和因变量,k 是常数。
正比例函数的图像
正比例函数的图像是一条通过原点的直线。当 k > 0 时,图像在第一象限和第三象限内均为 正值,且随着 x 的增大,y 值也逐渐增大;当 k < 0 时,图像在第二象限和第四象限内均为 负值,且随着 x 的增大,y 值逐渐减小。
斜率
一次函数图像的倾斜程度 由斜率k决定,k>0时,函 数图像为上升直线;k<0 时,函数图像为下降直线 。
截距
b为y轴上的截距,当x=0 时,y=b。
一次函数的图像
绘制方法
通过代入一组x值计算对应的y值 ,得到一系列点,将这些点连接
成直线即为一次函数的图像。
图像特征
一次函数图像是一条直线,斜率为 k,y轴上的截距为b。
进阶题
题目
平面直角坐标系和一次函数的复习课件
一次函数的应用
解方程
线性方程可以使用一次函数的 相关知识进行求解。
统计学
在统计学中,一次函数常用来 探索变量之间的线性关系。
实际应用
一次函数在各种现实生活问题 中都有着广泛的应用。
一次函数和平面直角坐标系的联系
平面直角坐标系的定义
是一个平面上的几何工具,可以用于描述点 和图形的位置。
平面直角坐标系的坐标轴
一次函数的定义和特点
1 定义
2 特点
定义: $y=kx+b$,其中$k$是斜率,$b$是 截距。
图像是直线,斜率为直线的倾斜程度,截 距表示图像与$y$轴交点的高度。
平面直角坐标系中一次函数的图像
图像
一次函数的图像是一条直线, 可以通过特殊点如截距点,斜率 等来讨论。
斜率截距式
斜率截距式为$y=kx+b$,$k$ 是斜率,$b$是截距。
联系
平面直角坐标系的坐标轴和一次函数的图像 都可以用于定位和描述位置。
坐标轴将平面分为四个象限,用于定位点的 位置。
一次函数的定义
是代数工具,用于描述变量之间的线性关系。
一次函数的图像
一次函数的斜率和截距唯一地决定了图像的 位置。Βιβλιοθήκη 复习和总结平面直角坐标系
可以用于描述平面上的点和图形的位置。
应用
可以解方程,处理统计学中的数据和应对现 实生活中的问题。
一次函数的定义
是代数工具,用于描述变量之间的线性关系, 包括斜率和截距。
截距
截距是线段与$y$轴相交点离 原点的距离,$x$轴也有相应 的截距。
一次函数的斜率和截距
1
斜率
表示直线的倾斜程度,计算公式为: $k=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学专题复习第十一讲:平面直角坐标系与函数【基础知识回顾】一、平面直角坐标系:1、定义:具有的两条的数轴组成平面直角坐标系,两条数轴分别称轴轴或轴轴,这两系数轴把一个坐标平面分成的四个部分,我们称作是四个2、有序数对:在一个坐标平面内的任意一个点可以用一对来表示,如A(a .b),(a .b)即为点A的其中a是该点的坐标,b是该点的坐标平面内的点和有序数对具有的关系。
3、各象限内点的特点:平面内点的坐标特征① P(a .b):第一象限第二象限第三象限第四象限X轴上Y轴上②对称点:P对称点③特殊位置点的特点:P(a .b)若在一、三象限角的平分线上,则若在二、四象限角的平分线上,则④对坐标轴的距离:P(a .b)到x轴的距离到y轴的距离到原点的距离⑤坐标平面内点的平移:将点P(a .b)向左右平移h个点位,对应点坐标为或向上(下)平移K个点位,对应点坐标为或【名师提醒:坐标平面内点的坐标所具备的特征必须结合坐标平面去理解和记忆,不可生硬死记一些结论】二、确信位置常用的方法:一、一般由两种:1、平面直角坐标系中的有序数时2、方位角与距离三、函数的有关概念:1、常量与变量:在某一变化过程中,始终保持的量叫做常量,数值发生的量叫做变量【名师提醒:常量与变量是相对的,在一个变化过程中,用一个量在不同情况下可以是常量,也可以是变量,要根据问题的条件来确定】2、函数:⑴、函数的概念:一般的在某个过程中如果有两个变量x、y对于x德每一个确定的值,y都有的值与之对应,我们就成x是y是x的⑵、自变量的取值范围:主要有两种情况:①、解析或有意义的条件,常见分式和二次根式两种情况②、实际问题有意义的条件:必须符合实际问题的背景⑶、函数的表示方法:通常有三种表示函数的方法:①、法②、法③、法⑷、函数的同象:对于一个函数,把自变象x和函数y的每对对应值作为点的与在平面内描出相应的点,组成这些点的图形叫做这个函数的同象【名师提醒:1、在确定自变量取值范围时要注意分式和二次根式同时存在,应保证两者都有意义,即被开数应同时分母应2、函数的三种表示方法应根据实际需要选择,有时需同时使用几种方法3、函数同象是在自变量取值范围内无限个点组成的图形,同象上任意一点的坐标是解析式方程的一个解,反之满足解析式方程的每一个解都在函数同象上】【重点考点例析】考点一:平面直角坐标系中点的特征例1 (2012•扬州)在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.对应训练1.(2012•怀化)在平面直角坐标系中,点(-3,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点二:平面直角坐标系与其只是例2 (2012•济南)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)对应训练2.(2012•莆田)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D (1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)考点三:函数的概念及函数自变量的取值范围例3 (2012•凉山州)在函数y=中,自变量x的取值范围是.x对应训练3.(2012•衡阳)函数y=中自变量x的取值范围是()考点四:函数图象的运用例 4 (2012•鸡西)一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离S(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是()A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回例5 (2012•铁岭)如图, ABCD的边长为8,面积为32,四个全等的小平行四边形对称中心分别在 ABCD的顶点上,它们的各边与 ABCD的各边分别平行,且与 ABCD 相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是()A.B.C.D.对应训练4.(2012•绥化)甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2秒时间段,乙队的速度比甲队的速度快5.(2012•绥化)如图,点A、B、C、D为⊙O的四等分点,动点P从圆心O出发,沿OC- C D-DO的路线做匀速运动,设运动的时间为t秒,∠APB的度数为y度,则下列图象中表示y (度)与t(秒)之间函数关系最恰当的是()A.B.C.D.【备考真题过关】一、选择题1.(2012•柳州)如图,P1、P2、P3这三个点中,在第二象限内的有()A.P1、P2、P3B.P1、P2C.P1、P3D.P12.(2012•龙岩)在平面直角坐标系中,已知点P(2,﹣3),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2012•资阳)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是()A.B.C.D.4.(2012•河池)下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个5.(2012•自贡)伟伟从学校匀速回家,刚到家发现当晚要完成的试卷忘记在学校,于是马上以更快的速度匀速原路返回学校.这一情景中,速度v和时间t的函数图象(不考虑图象端点情况)大致是()A.B.C.D.6.(2012•重庆)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A.B.C.D.7.(2012•岳阳)如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()A.B.C.D.A.y=x B.y=2x+1 C.y=x2+x+1 D.9.(2012•十堰)一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程S(千米)与行驶时间t(小时)的函数关系如图所示,则下列结论中错误的是()A.甲、乙两地的路程是400千米B.慢车行驶速度为60千米/小时C.相遇时快车行驶了150千米D.快车出发后4小时到达乙地10.(2012•青海)如图反映的过程是:小刚从家去菜地浇水,又去青稞地除草,然后回家,如果菜地和青稞地的距离为a千米,小刚在青稞地除草比在菜地浇水多用了b分钟,则a,b的值分别为()A.1,8 B.0.5,12 C.1,12 D.0.5,8 13.(2012•泸州)为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;(2)若每户居民每月用电量超过100度,则超过部份按0.80元/度计算(未超过部份仍按每度电0.50元计算).现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A.B.C.D.14.(2012•六盘水)如图是邻居张大爷去公园锻炼及原路返回时离家的距离y(千米)与时间t(分钟)之间的函数图象,根据图象信息,下列说法正确的是()A.张大爷去时所用的时间少于回家的时间B.张大爷在公园锻炼了40分钟C.张大爷去时走上坡路,回家时走下坡路D.张大爷去时速度比回家时的速度慢16.(2012•海南)星期六,小亮从家里骑直行车到同学家去玩,然后返回,图是他离家的路程y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法不一定正确的是()A.小亮到同学家的路程是3千米B.小亮在同学家逗留的时间是1小时C.小亮去时走上坡路,回家时走下坡路D.小亮回家时用的时间比去时用的时间少二、填空题19.(2012•绍兴)小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是(只需填序号).20.(2012•苏州)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD 的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).20.(21.(2012•无锡)函数y=1+中自变量x的取值范围是.22.(2012•鸡西)函数y=+中,自变量x的取值范围是.23.(2012•恩施州)当x=时,函数y=的值为零.24.(2012•宁德)五一节某超市搞促销活动:①一次性购物不超过150元不享受优惠;②一次性购物超过150元但不超过500元一律九折;③一次性购物超过500元一律八折.王宁两次购物分别付款120元、432元,若王宁一次性购买与上两次相同的商品,则应付款元.三、解答题26.(2012•无锡)如图1,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.(1)求A、B两点的坐标;(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.。