Numerical Methods for Eigenvalue Distributions of Random Matrices
算术平均牛顿法的英文
算术平均牛顿法的英文Arithmetic-Geometric Mean Newton's Method.The arithmetic-geometric mean (AGM) Newton's method is an iterative algorithm used in numerical analysis to approximate the solution of equations, particularly those involving transcendental functions. This method is avariant of the classical Newton's method, which uses the tangent line to the function at a given point to approximate the root of the function. The AGM Newton's method incorporates the arithmetic-geometric mean (AGM) iteration, which is itself a fast converging method for computing the square root of a number.Background on Newton's Method:Newton's method is based on the Taylor series expansion of a function. Given a function f(x) and its derivativef'(x), the method starts with an initial guess x0 and iteratively updates the approximation using the formula:x_{n+1} = x_n f(x_n) / f'(x_n)。
张晟-西南交通大学人事处
以上成果发表学术论文2篇(独立作者1篇,通讯作者1篇),均被SCI收录。SCI他人引用2次。
2013.8-2016.7
Banach Space and Metric Geometry(NSF DMS-1301604)
美国国家科学基金
$293,000.00
参与(导师主持)
5、科研项目:
项目时间
项目名称
项目类型
经费
参与状况(排序)
6、出版专著
著作名称
作者
出版社
出版年份
ISBN号
7、专利情况
专利类别
基础数学
主要学术成绩、创新成果及评价
(限800字以内)
参与美国国家科学基金项目1项(NSF DMS-1301604)。研究方向为泛函分析,主要从事Banach空间的非线性几何理论以及度量几何等相关方面的研究。
1.首先提出了在大尺度几何意义下的非线性商映射的概念——粗商映射;给出了经典Banach空间 ( )的粗商的线性刻画;证明了序列空间 不是具有(β)性质的Banach空间的粗商,并且当 时,不存在从序列空间 到 的粗商映射。
第一作者或通信作者论文:A++2篇;A+篇;A篇;B+篇;B篇。
2、学习经历
学历/学位
起止时间
毕业学校
所学专业
导师
培养方式
本科
2004.9-2008.7
厦门大学
数学与应用数学
非凸松弛原子范数空时动目标参数估计算法
第45卷 第9期2023年9月系统工程与电子技术SystemsEngineeringandElectronicsVol.45 No.9September2023文章编号:1001 506X(2023)09 2761 07 网址:www.sys ele.com收稿日期:20220328;修回日期:20220610;网络优先出版日期:20220711。
网络优先出版地址:http:∥kns.cnki.net/kcms/detail/11.2422.TN.20220711.1517.024.html基金项目:国家重点研发计划(2022YFB3904303);天津市教委科研计划(2021KJ048)资助课题 通讯作者.引用格式:来燃,孙刚,张威,等.非凸松弛原子范数空时动目标参数估计算法[J].系统工程与电子技术,2023,45(9):2761 2767.犚犲犳犲狉犲狀犮犲犳狅狉犿犪狋:LAIR,SUNG,ZHANGW,etal.Space timemovingtargetparameterestimationalgorithmbasedonnon convexrelaxationofatomicnorm[J].SystemsEngineeringandElectronics,2023,45(9):2761 2767.非凸松弛原子范数空时动目标参数估计算法来 燃,孙 刚,张 威,章 涛(中国民航大学天津市智能信号与图像处理重点实验室,天津300300) 摘 要:针对参数稀疏恢复空时自适应处理中的动目标参数估计存在字典失配的问题,提出一种非凸松弛原子范数空时动目标参数估计算法。
该方法利用目标回波在角度多普勒域的稀疏特性,根据连续压缩感知和低秩矩阵恢复理论实现了运动目标方位角和速度的高精度、超分辨率估计,避免了稀疏恢复中的字典失配问题,有效提高了动目标参数估计性能。
仿真实验结果表明,相较于已有基于字典网格的稀疏恢复参数估计方法和原子范数估计方法,所提算法具有更高的参数估计精度和对空间紧邻目标的分辨能力。
A Schur complement method for eigenvalue problems
A SCHUR COMPLEMENT METHOD FOR EIGENV ALUE PROBLEMSAndreas StathopoulosComputer Science Department,V anderbilt UniversityNashville,TNYousef SaadComputer Science Department,University of MinnesotaMinneapolis,MNCharlotte F.FischerComputer Science Department,V anderbilt UniversityNashville,TNSUMMARYThe eigenvalues and eigenvectors of the Schur complement of a symmetric matrix can be used to derive a quadratic convergent algorithm to the eigenvalues of the large matrix.This note describes the algorithm and shows its equivalence with two previously appeared methods.Extensions are proposed that improve the algorithm’s accuracy and robustness.INTRODUCTIONDomain decomposition algorithms have received much attention in the last decade[2].The domain in which a differential equation is defined is partitioned in several subdomains,and the equation is solved in these domains.The local results are integrated to form the solution in the entire domain.Since the subdomains can be solved in parallel,domain decomposition has become very popular on parallel computers.Many domain decomposition algorithms for linear systems of equations are based on the Schur complement technique.Linear systems involving only the internal points of domains are solved independently,and the initial problem reduces to a problem on the interface points.The Schur complement represents the matrix of this interface problem[3].In matrix terms,if is to besolved for,with in the following symmetric form:...the solution is given by:The matrix of eq.(3)is the Schur complement and the problem is reduced to a smaller one on the interface points(order of()).THE EIGENV ALUE ALGORITHMFor the eigenvalue problem the above reduction is not as obvious because both the eigenvector and the eigenvalue are unknown.Consider the eigenvalue problem,with in the above form: Writing each block equation separately and solving for,we derive the Schur complement analogue for the eigenvalue problem:This system is of the same order as and the eigenvalue problem is reduced.Moreover,it holds:The proof is obvious(see[5]).Unfortunately,eq.(6)is not an eigenvalue problem because the matrix (called Schur matrix)depends on the unknown eigenvalue.In1958,Abramov proposed afixed point iteration,where the current eigenvalue estimate is used for computing,and the new eigenvalue estimate is obtained by solving the eigenvalue problem of eq.(6).Specifically,let be the eigenvalues of,the eigenvalues of,and the eigenvalues of the Schur matrix,all in ascending order.The method is shown below:Start with.Forpute as the eigenvalue of:The eigenvalues of the Schur matrix can be shown to converge to the corresponding outer eigenvalues of ,under the following assumptions.The proof is long and is given in[5].These assumptions are sufficient but not necessary for convergence. The abovefixed point method provides only linear convergence and is not efficient.The following method uses the Rayleigh quotient of the current eigenvector approximation,derived from the Schur complement problem,to compute the new eigenvalue estimate.Thus,it improves the efficiency of the Abramov’s method.Assume a starting value,approximating the eigenvalue of.Forpute.2.Solve the eigenvalue problem for the eigenpair.pute,withpute.Alternatively,the algorithm may start with an initial eigenvector guess,and step4.has to move at the beginning of each iteration.RELA TION WITH ABRAMOV’S METHODThere are several ways to prove that this method converges to some eigenvalue,and that convergence is quadratic.First,the eigenvalue iterates produced by the DD can be written as:The Lanczos in the PL algorithm is applied on the preconditioned Schur complement.After the Lanczos has yielded,the vector obtained by PL as in eq.(2):which is the same as the DD one.When,both the PL and DD solve the Schur eigenvalue problem and give the same eigenvector,and thus they are equivalent.Provided that the preconditioner is bounded in norm,the asymptotically quadratic convergence of PL applies on DD as well.EXTENSIONS/RESULTSDespite the equivalence of the DD with other methods,the new method provides a more succinct and clear presentation of the method.In addition,PL method works only for the extreme eigenvalues while the theory behind the Abramov’s method implies convergence for interior eigenvalues under the assumptions of Proposition1.Several possibilities exist that can improve the robustness of the method.The eigenvector approximations can be saved and orthonormalized,so that a Rayleigh Ritz procedure is used instead of Rayleigh quotient.This results in faster and more robust convergence to the lowest or highest eigenvalues.Since ultimately the method converges quadratically,only a few vectors need to be stored. We refer to this scheme as“DD-1-vec”.When DD does not converge to the required eigenvalue,vectors in the wrong direction are stored byDD-1-vec,and the method is slow.Another option is to couple DD with a subspace method such as Davidson’s method.In every step,two vectors are added in the basis;the current eigenvector estimate and its residual.Assuming,the residual is easily obtainable from the eigenvector estimate:Preliminary results with this modification have shown that DD coupled with Davidson is more robust than,and usually as efficient as the Rayleigh Quotient Iteration.It also reduces the number of iterations from both Davidson and PL methods and the original DD method.This scheme is referred to as“DD-2-vec”.Preconditioning of the residual can further enhance convergence.The following block diagonal preconditioning has been used with the previous scheme.We refer to thisfinal scheme as“DD-2-prec”.Compared to the Davidson method using a similar domain decomposition preconditioner,it is more robust since an eigenvalue problem is solved instead of a linear system.Case(a):Convergence guaranteed for initial values lower than371370.Iterations for Initial V alues10000600005958803231--29DD569346DD-2-vec558wrong6for Initial V alues1000060000--DDDD-2-vec10algorithm converges to the wrong eigenpair(not the lowest).DD-1-vec is extremely slow,since it accumulates the DD eigenvectors which are not in the right direction.By using the residual,DD-2-vec offers new information in a subspace way,and it achieves faster convergence.DD-2-prec can also improve convergence,provided that the preconditioner does not approximate a different eigenpair.The robust preconditioning modification proposed in our previous work can be very effective in this case. Finally,since the reduced problem is an eigenvalue problem the process can be repeated in a multi-level fashion.The problem with this approach is that after only a few levels the Schur complement becomes dense,and not efficiently further reducible.REFERENCES[1]X.-C.Cai and Y.Saad,Preprint93-027,Army High Performance Computing Research Center,University of Minnesota,1993.[2]M.Dryza and O.B.Widlund,in:Third International Symposium on Domain Decomposition Methods for Partial Differential Equations,T.F.Chan,R.Glowinski,J.Periaux,and O.B.Widlund,eds.,(SIAM, Philadelphia,1990).[3]D.E.Keyes and W.D.Gropp,SIAM J.Sci.Statist.Comput.,8,2,(1987)s166.[4]R.B.Morgan and D.S.Scott,,SIAM put.14,3(1993)585.[5]Y.Saad,Ph.D.thesis,Institut National Polytechnique de Grenoble,1974.。
哈密尔顿系统的辛几何算法
哈密尔顿系统的辛几何算法哈密尔顿系统是一类具有特殊的物理意义的动力系统,其在物理学、力学、动力学和计算力学等领域有着广泛应用。
哈密尔顿系统通常具有一组关于位置和动量的相变量,其演化满足哈密尔顿方程。
由于哈密尔顿系统具有良好的保持量和结构稳定性,因此在数值模拟中的算法设计尤其重要。
辛几何算法是一类特殊的数值演化方法,其以保持哈密尔顿系统相变量守恒和辛结构稳定性为目标,常常用于哈密尔顿系统的数值积分。
辛几何算法最早由李约瑟于 1988 年提出,其不仅能够在数值计算中保持相变量的守恒,还能够在哈密尔顿系统的长期演化中保持辛结构稳定性。
辛几何算法主要由两个部分组成,即辛映射和辛算子。
辛映射指的是从一个相变量向下一个相变量的映射,它通常满足“保相量”和辛结构不变性的特点。
保相量指的是相变量在变化过程中的守恒,而辛结构不变性则指的是哈密尔顿系统在演化过程中的辛不变性。
而辛算子则是这个辛映射的数值逼近,常常采用辛波发方法、显式和隐式辛算法等方法。
在演化哈密尔顿系统时,辛几何算法通常采用显式辛算法进行数值模拟。
显式辛算法的主要思路是采用辛映射和辛算子的组合,来实现对哈密尔顿系统的数值模拟。
在模拟过程中,辛几何算法需要保证每一步的演化都是辛的,这样系统才能保持哈密尔顿量以及其他相变量不变。
因此,辛几何算法在数值模拟中的应用非常广泛。
然而,辛几何算法的实现却比较困难。
在数值模拟时,辛几何算法需要考虑一系列问题,如相变量的数值守恒、哈密尔顿量的捕获和重构、快速演化、长时间演化、难以计算的高维效应等等。
这些问题都需要采用一些特殊的技巧和策略来解决。
总的来说,辛几何算法是一种特殊的数值演化方法,其以保持哈密尔顿系统相变量守恒和辛结构稳定性为目标,在计算力学、物理学、动力学等领域有着广泛应用。
Hermitian Toeplitz矩阵特征值反问题
Hermitian Toeplitz矩阵特征值反问题李波;王金林;易福侠【摘要】研究了通过谱数据{λ*i}ni=1构造Hermitian Toeplitz矩阵的特征值反问题。
对于Hermitian Toeplitz矩阵,根据其具有的全对称结构,可通过酉相似变换,将该问题转化为含参数的实对称矩阵特征值反问题。
对于含参数的矩阵特征值反问题,用Cayley变换法求解,并给出了问题的具体算法及数值例子。
%In this paper,a kind of inverse eigenvalue problem for constructing an Hermitian Toeplitz matrix from its spectral data {λ*i}ni=1 is studied.For Hermitian Toeplitz matrix,according to its centrosymmetric structure,we transform it to the parameterized eigenvalue problems by unitary transformation.For parameterized inverse eigenvalue problems,we apply Cayley transformation method to solve this problem.Furthermore,corresponding numerical algorithms and examples are given.【期刊名称】《江西科学》【年(卷),期】2012(030)004【总页数】5页(P438-441,447)【关键词】Toeplitz矩阵;Hermitian;Toeplitz矩阵;Cayley变换法;特征值反问题【作者】李波;王金林;易福侠【作者单位】南昌航空大学数学与信息科学学院,江西南昌330063;南昌航空大学数学与信息科学学院,江西南昌330063;南昌航空大学数学与信息科学学院,江西南昌330063【正文语种】中文【中图分类】O241.6Hermitian Toeplitz矩阵在信号处理、图像处理、系统识别及生物信息处理等领域都有重要的应用[1~5]。
list of FEM books and articles
Books∙Finite Element Procedures, K. J. Bathe, Prentice Hall, Englewood Cliffs, NJ, 1996.∙The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, T. J.R. Hughes, Prentice Hall, Englewood Cliffs, NJ, 1987.∙The Finite Element Method, 4th ed., Vol. 1, O. C. Zienkiewicz and R. L. Taylor, McGraw-Hill, London, 1989.∙The Finite Element Method, 4th ed., Vol. 2, O. C. Zienkiewicz and R. L. Taylor, McGraw-Hill, London, 1991.∙Finite Elements of Nonlinear Continua, J. T. Oden, McGraw-Hill, New York, 1972.∙Nonlinear Finite Elements for Continua and Structures, 3rd ed., T. Belytschko, W. K.Liu and B. Moran, John Wiley & Sons, Chichester, UK, 2000.∙Finite Elements: their design and performance, R. H. MacNeal, Marcel Dekker, New York, New York, 1994.∙The Finite Element Analysis of Shells - Fundamentals, D. Chapelle and K. J. Bathe, Springer-Verlag, Berlin Heidelberg, 2003.∙Inelastic Analysis of Solids and Structures, M. Kojic and K. J. Bathe, Springer-Verlag, Berlin Heidelberg, 2005.∙Concepts and Applications of Finite Element Analysis, 4th ed., R. D. Cook, D. S.Malkus, M. E. Plesha and R. J. Witt, John Wiley & Sons, NJ, 2002.∙Finite Element Programming, 4th ed., E. Hinton and D. R. J. Owen, Academic Press, London, 1977.∙The Finite Element Method Displayed, G. Dhatt and G. Touzot, John Wiley & Sons, Norwich, 1984.∙Techniques of Finite Elements, B. Irons and S. Ahmad, John Wiley & Sons, New York, 1981.∙An Introduction to the Finite Element Method, 3rd ed., J. N. Reddy, McGraw-Hill, New York, 2006.∙Numerical methods for non-linear problems, Volume 2: Proceedings of the Second International Conference, Universidad Politecnica de Barcelona, Spain, April 9-13, 1984, C.Taylor, E. Hinton and D. R. J. Owen, Pineridge Press, Swansea, UK, 1984.∙An Introduction to Nonlinear Finite Element Analysis, J. N. Reddy, Oxford University Press, New York, 2004.∙Computer Methods in Structural Analysis, J. L. Meek, Chapman & Hall, London, 1991. ∙Finite Element Method: Basic Technique and Implementation, P. Tong and J. N.Rossettos, MIT Press, Cambridge, Mass., 1977.∙Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd ed., J. Bonet and R.D. Wood, Cambridge University Press, UK, 2008.∙Dynamics of Structures, 2nd ed., R. W. Clough and J. Penzien, McGraw-Hill, New York, 1993.∙Dynamics of Structures: Theory and Applications to Earthquake Engineering, 2nd ed.,A. K. Chopra, Prentice Hall, Upper Saddle River, NJ, 2001.∙Introduction to Finite Element Vibration Analysis, M. Petyt, Cambridge University Press, UK, 1990.∙Fundamentals of Structural Dynamics, 2nd ed., R. R. Craig Jr. and A. J. Kurdila, John Wiley & Sons, New Jersey, 2006.∙Matrix Analysis of Structural Dynamics: Applications and Earthquake Engineering, F.Y. Cheng, Marcel Dekker, New York, 2001.∙Structural Dynamics: Theory and Applications, J. W. Tedesco, W. G. McDougal and C.A. Ross, Addison Wesley Longman, California, 1999.∙Structural Dynamics: Theory and Computation, 5th ed., M. Paz and W. Leigh, Springer Science, New York, 2004.∙Fundamentals of Finite Element Analysis, D. V. Hutton, McGraw-Hill, New York, 2004. ∙Analysis and Design of Elastic Beams - Computational Methods, W. D. Pilkey, John Wiley & Sons, NJ, 2002.∙Matrix Analysis of Framed Structures, 3rd ed., W. Weaver Jr. and J. R. Gere, Kluwer Academic Publishers, Massachusetts, 2001.∙Theory of Matrix Structural Analysis, J. S. Przemieniecki, McGraw-Hill, New York, 1968.∙Structural Analysis and Behavior, F. Arbabi, McGraw-Hill, New York, 1991.∙Matrix Structural Analysis, 2nd ed., W. McGuire, R. H. Gallagher and R. D. Ziemian, John Wiley & Sons, MA, 2000.∙Mechanics of Composite Materials, 2nd ed., R. M. Jones, Taylor & Francis, New York, 1999.∙Theory of Plates and Shells, 2nd ed., S. P. Timoshenko and S. Woinowsky-Krieger, McGraw-Hill, New York, 1959.∙Theory of Elasticity, 3rd ed., S. P. Timoshenko and J. N. Goodier, McGraw-Hill, New York, 1970.∙Strength of Materials, J. P. Den Hartog, Dover Publications, New York, 1977.∙Advanced Strength of Materials, J. P. Den Hartog, Dover Publications, New York, 1987.∙Formulas for Stress, Strain and Structural Matrices, 2nd ed., W. D. Pilkey, John Wiley & Sons, NJ, 2005.∙Roark's Formulas for Stress and Strain, 6th ed., W. C. Young, McGraw-Hill, New York, 1989.∙Matrix Computations, 3rd ed., G. H. Golub and C. F. Van Loan, John Hopkins University Press, Baltimore, 1996.∙Programming the Finite Element Method, 3rd ed., I. M. Smith and D. V. Griffiths, John Wiley & Sons, Chichester, UK, 1998.∙An Introduction to the Finite Element Method: Theory, Programming and Applications,E. G. Thompson, John Wiley & Sons, NJ, 2004.∙Applied Finite Element Analysis, L. J. Segerlind, John Wiley & Sons, New York, 1984. ∙Finite Element Analysis with Error Estimators: An Introduction to the FEM and Adaptive Error Analysis for Engineering Students, J. E. Akin, Elsevier Butterworth-Heinemann, MA, 2005.∙Non-linear Finite Element Analysis of Solids and Structures - Volume 1: Essentials, M.A. Crisfield, John Wiley & Sons, Chichester, UK, 1991.∙Non-linear Finite Element Analysis of Solids and Structures - Volume 1: Advanced Topics, M. A. Crisfield, John Wiley & Sons, Chichester, UK, 1997.∙Theory and Problems of Finite Element Analysis, G. R. Buchanan, Schaum's Outline Series, McGraw-Hill, New York, 1995.∙Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods, R. Szilard, John Wiley & Sons, NJ, 2004.∙Fundamental Finite Element Analysis and Applications, M. A. Bhatti, John Wiley & Sons, NJ, 2005.∙Advanced Topics in Finite Element Analysis of Structures, M. A. Bhatti, John Wiley & Sons, NJ, 2006.∙Introduction to Finite Elements in Engineering, 3rd ed., T. R. Chandrupatla and A. D.Belegundu, Prentice Hall, 2002.∙The Finite Element Method for Three-dimensional Thermomechanical Applications, G.Dhondt, John Wiley & Sons, Chichester, UK, 2004.∙Classical and Computational Solid Mechanics, Y. C. Fung, P. Tong, World Scientific Co. Pte. Ltd, UK, 2001.Articles∙R. H. MacNeal and R. L. Harder, A Proposed Standard Set of Problems to Test Finite Element Accuracy, Finite Element in Analysis and Design, North Holland, Vol. 1, pp 3-20, 1985.∙K. J. Bathe, Solution Methods of Large Generalized Problems in Structural Engineering, Report UC SESM 71-20, Civil Engineering Department, University of California, Berkeley, 1971.∙K. J. Bathe, H. Ozdemir and E. L. Wilson, Static and Dynamic Geometric and Material Nonlinear Analysis, Report UC SESM 74-4, Civil Engineering Department, University ofCalifornia, Berkeley, 1974.∙K. J. Bathe, Solution Methods for Large Eigenvalue Problems in Structural Engineering, Report UC SESM 71-20, Civil Engineering Department, University of California, Berkeley, 1971.∙ E. N. Dvorkin and K. J. Bathe, A Continuum Mechanics Based Four-Node Shell Element for General Nonlinear Analysis, Engineering Computations, Vol. 1, pp 77-88, 1984.∙ E. L. Wilson, Structural Analysis of Axisymmetric Solids, AIAA Journal, Vol. 3, No. 12, 1965, pp 2269-2274.∙ E. L. Wilson, Elastic Dynamic Response of Axisymmetric Structures, Report UC SEMM 69-02, Civil Engineering Department, University of California, Berkeley, 1969.∙ D. Chapelle and K. J. Bathe, Fundamental Considerations for the Finite Element Analysis of Shell Structures, Computers & Structures, Vol 66, No. 1, 1998, pp 19-36∙ D. Chapelle and K. J. Bathe, The mathematical shell model underlying general shell elements, Int. J. Numer. Meth. Engng., Vol 48, 2000, pp 289-313∙T. J. R. Hughes, R. L. Taylor and W. Kanoknukulchai, A Simple and Efficient Finite Element for Plate Bending, International Journal for Numerical Methods in Engineering, Vol.11, 1977, pp 1529-1543.∙T. J. R. Hughes and M. Cohen, The 'Heterosis' Finite Element for Plate Bending, Computers & Structures, Vol. 9, 1978, pp 445-450.∙T. J. R. Hughes and T. E. Tezduyar, Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element, Journal of Applied Mechanics, Vol. 48, 1981, pp 587-596.∙K. J. Bathe and Lee-Wing Ho, A Simple and Effective Element for Analysis of General Shell Structures, Computers & Structures, Vol 13, 1981, pp 673-681∙K. J. Bathe, A. Iosilevich and D. Chapelle, An evaluation of the MITC shell elements, Computers & Structures, Vol 75, 2000, pp 1-30∙S. F. Pawsey, The Analysis of Moderately Thick to Thin Shells by the Finite Element Method, Report UC SESM 70-12, Civil Engineering Department, University of California,Berkeley, 1977.∙J. P. Hollings and E. L. Wilson, 3-9 Node Isoparametric Planar or Axisymmetric Finite Element, Report UC SEMM 78-03, Civil Engineering Department, University of California, Berkeley, 1969.∙R. J. Melosh, Basis for Derivation of Matrices for the Direct Stiffness Method, AIAA Journal, Vol. 1, No. 7, 1963, pp 1631-1637.∙ B. M. Irons, Engineering Applications of Numerical Integration in Stiffness Methods, AIAA Journal, Vol. 4, No. 11, 1966, pp 2035-2037.∙ E.L. Wilson, A. Der Kiureghian, E.P. Bayo, Short Communications A Replacement for the SRSS Method in Seismic Analysis, Earthquake Engineering and Structural Dynamics, Vol.9, 1981, pp 187–194.∙J. S. Archer, Consistent Matrix Formulations for Structural Analysis Using Finite-Element Techniques, AIAA Journal, Vol. 3, No. 10, 1965, pp 1910-1918.。
Convergence and Preconditioning Eigenvalue Problems Iterative methods for eigenvalue pro
• Jacobi iteration
A1=D
A2=L+U
– A1-1 is easy to compute (1/ entries along diagonal) – This is easy to compute with the FMM – At element level
• Other classical iterations (Gauss-Seidel, SOR, etc. are harder to write in a way that FMM can be used).
Ax=b → x=A-1b
• Exceptions
– Analytical expression for inverse can be obtained, e.g.,
© Gumerov & Duraiswami, 2003
Direct solutions (2)
• Consumer level – Use LAPACK or MATLAB,
© Gumerov & Duraiswami, 2003
Conjugate Gradient
• Instead of minimizing each time along gradient, choose a set of basis directions to minimize along • Choose these directions to be from the Krylov subspace • Definition: Krylov subspace • Definition: Energy or A-norm of a vector ||x||A=(xt Ax)1/2 • Idea of conjugate gradient method
计算数学研究方向
计算数学研究方向网上摘抄:计算数学研究方向及网上资料计算数学目的为物理学和工程学作计算。
主要研究方向包括:数值泛函分析;连续计算复杂性理论;数值偏微与有限元;非线性数值代数及复动力系统;非线性方程组的数值解法;数值逼近论;计算机模拟与信息处理等;工程问题数学建模与计算等等。
目前发展最好的方向已经与应用数学的CAGD 方向合二为一。
现在最热的方向应该是微分方程的数值求解、数值代数和流形学习,数值计算名校:西安交通大学、北京大学、大连理工大学从计算数学的字面来看,应该与计算机有密切的联系,也强调了实践对于计算数学的重要性。
也许Parlett 教授的一段话能最好地说明这个问题:How could someone as brilliant as von Neumann think hard about a subject as mundane as triangular factoriz-ation of an invertible matrix and notperceive that, with suitable pivoting, the results are impressively good? Partial answers can be suggested-lack of hands-on experience, concentration on the inverse rather than on the solution of Ax = b -but I do not find them adequate. Why did Wilkinson keep the QR algorithm as a backup to a Laguerre-based method for the unsymmetric eigenproblem for at least two years after the appearance of QR? Why did more than 20 years pass before the properties of the Lanczos algorithm were understood? I believe that the explanation must involve the impediments to comprehension of the effects of finite-precision arithmetic.( 引自/siamnews/11-03/matrix.pdf)既然是计算数学专业的学生,就不能对自己领域内的专家不有所了解。
一类多项式特征值问题的向后误差分析及应用
一类多项式特征值问题的向后误差分析及应用袁飞【摘要】给出了一类形如(λkAT +λLA)z=0(A为稀疏矩阵)的矩阵方程的多项式特征值问题向后误差分析.并通过高速列车的振动分析中的一类二次特征值问题(λ2AT+λQ+A)z =0的例子,应用该方法讨论此类二次特征值问题的向后误差.【期刊名称】《厦门大学学报(自然科学版)》【年(卷),期】2018(057)002【总页数】5页(P233-237)【关键词】向后误差;多项式特征值问题;振动分析;二次特征值问题【作者】袁飞【作者单位】厦门大学嘉庚学院信息科学与技术学院,福建漳州363105【正文语种】中文【中图分类】O241.7本文中考虑如下多项式特征值的向后误差:(λkAT+λlA)z,(1)其中,k,l∈Z,A是一个n×n复矩阵,它只在右上角有一个m×m块为非零块且m≤n/2,λ和z为特征值和特征向量.本文中引用了参考文献[1]中多项式特征值问题向后误差的定义和标记,其重要性在于研究算法的稳定性和质量,它与向前误差、条件数之间有如下关系:向前误差≤向后误差×条件数.可以看出向后误差与条件数会直接影响到数值结果的误差估计.扰动理论和向后误差分析有广泛应用,如:线性系统[2]、最小二乘问题、一般特征值问题和广义特征值问题[3-4],以及物理学中的过阻尼物理系统[5-6].近年来有很多文献对向后误差的概念进行了阐述[1,3-4],Rigal等[2]给出了线性系统的向后误差分析,Fraysse等[3-4]将向后误差分析推广到了多项式特征值问题,Duffin[6]介绍了一些特殊矩阵的向后误差,Stewart等[7]也提到了一些特殊矩阵的向后误差.本文中考虑的多项式特征值(λ4AT+λlA)z=0来自于二次特征值问题(λ2A T+A)z=0,本文中把它推广到(λkAT+λlA)z=0,在后面的应用举例中,将以铁轨在高速列车通过时的振动问题的有限元模型中产生的二次特征值问题为例,使用本文中的方法求出该问题的向后误差.二次特征值问题在许多领域有丰富的应用[8-13],如汽车制动系统中的有限元系统[11],地震工程[9],保守结构系统和非保守结构系统分析[12-13],以及最小二乘问题[10]等.但是二次以上特征值问题的向后误差分析并没有很好地得到解决,很多问题难以求出向后误差.本文中的例子是铁轨在高速列车通过时的振动问题的有限元模型中产生的二次特征值问题[14-16].该问题对文献[17]的对称多项式特征值问题以及文献[18-22]有很大的推动作用.Chu等[18]为该问题建立了有限元模型,Guo等[23]对该问题提出一种高精度的保持特征值结构的doubling算法,Lu等[24-25]对该算法进行改进,减少了计算量和计算时间.袁飞等[26]使用回文特征值问题向后误差的分析方法给出了该问题在文献[22]的定义下的一种向后误差.由于参考文献[1]定义的多项式特征值问题向后误差更为精准和实用,本文中将会用新的方法,给出该二次特征值问题在参考文献[1]定义下的向后误差.1 相关定义定理1.1 一些基本定义考虑如下非线性特征值问题:P(λ)z=0,(2)其中,矩阵P(λ)的元素为含λ的多项式,形式为P(λ)=λsAs+λs-1As-1+…+A0,其中,Al∈Cn×n,l=0,1,…,s,称P为λ-矩阵[1].在本文中,ΔAl表示Al的误差.为方便表示,令ΔP(λ)=λsΔAs+λs-1ΔAs-1+…+ΔA0.对于复数λ,令本文中使用的2-范数与文献[1]相同,为‖x‖2=(x*x)1/2,‖A‖2=max{‖Ax‖2:‖x‖2=1}.1.2 多项式特征值问题向后误差的定义本文中引用了文献[1]中多项式特征值问题向后误差的定义和标记.对于方程(2)的一对近似解矩阵El(l=0:s)为任意给定的矩阵,定义向后误差如下: :‖ΔAl‖2≤‖El‖2,l=0,1,…,s}.(3)由此可由文献[23]中的定理求出.定理1[23] 向后误差可由如下公式求出:(4)其中从定理1可以看出,求多项式特征值问题向后误差的关键在于求出每个‖ΔAl‖2对应的上界‖El‖2.作为对比,给出文献[26]中定义的二次特征值问题的向后误差.对于P(λ)=λ2AT+λQ+A,定义A0=A,A1=Q,A2=AT.假设(ξ,ν)是P(λ)的一个近似特征值对,则定义高速列车震动分析问题的向后误差ΔF:其中,矩阵A0,A1满足常量ρ2-l=ρl≥0,通常取自Al的某些范数,等式右边的范数可以为2-范数或者F-范数.2 向后误差的求法在本节中,将讨论多项式特征值问题(1)的向后误差:(λkAT+λlA)z=0,其中k,l∈Z,A是一个n×n复矩阵,它只在右上角有一个m×m块为非零块且m≤n/2,λ和z为特征值和特征向量.在1.2的讨论中可以知道,求该问题向后误差的关键在于求出‖ΔA‖2的上界.由本文中对2-范数的定义可以得到‖A‖2≤‖A‖F.于是,只需要求出‖ΔA‖F的下界,即可得出‖ΔA‖2的上界.本文中利用如下定理来求式(1)的向后误差.定理2 对于多项式特征值问题:(λkAT+λlA)z=0,其中k,l∈Z,A是一个n×n复矩阵,它只在右上角有一个m×m块为非零块且m≤n/2,λ和z为特征值和特征向量,该问题对应于一对近似解的向后误差可以表示为其中Z+为Z的Moore-Penrose逆矩阵[27].证明首先把式(1)写成分块矩阵的形式:(5)其中A12是m×m块为非零块且m≤n/2.把z写为如下形式:z=(z1 z2 z3)T,其中z1和z3是m×1向量,z2是剩余部分.于是式(5)可以表示为(6)对于方程(5)的一对近似解的误差为ΔA12,由向后误差的定义式(3)可以得到:(7)把它写成类似式(6)的形式:(8)设则可以得到关于ΔA12的方程组:只需求出‖ΔA12‖F的下界即可得到‖ΔA‖F的下界.令ΔA12={aij},i,j=1,2,…,m,ai:表示ΔA12的第i行;a:j表示ΔA12的第j列,则式(9),(10)可分别写成如下形式:(11)(12)其中,0都表示1×m的一行0,那么整个系数矩阵(11),(12)均是m×m2阶的. 把式(11)和(12)整合起来写成如下方程:Zx=a,(13)其中令x*=Z+a,Z+,为Z的Moore-Penrose逆矩阵[27].那么则得到了如式(3)中定义的多项式特征值问题向后误差:证毕.3 高速列车振动分析问题的向后误差在高速列车的振动分析[23-25]中,P(λ)=λ2AT+λQ+A,对应特征方程为:(λ2AT+λQ+A)z=0.(14)其中A和Q为n×n复矩阵,且具有如下特殊结构:Q=Kt+iωDt-ω2Mt∈Cn×n,A=Kc+iωDc-ω2Mc∈Cn×n,其中,i为虚数单位,ω>0为外力的频率,Kt、Dt、Mt、Kc、Dc、Mc都是m×m 的分块实矩阵,每个块有k×k个元素.A和Q都是m×m的分块矩阵,每个块有k×k个元素,即n=m×k;此外,Q是块三对角阵,A只有位于(1,m)位置的一个块为非零块A13.本文中仅讨论矩阵A的向后误差.下面将用第2节中的方法讨论此二次特征值问题在第1节定义下的向后误差.按照第1节中的定义,对于特征方程(14)的一对近似解矩阵El为任意给定的矩阵,定义向后误差如下::(15)该问题等价于本文中第2节中研究的特征多项式(1)在k=2,l=0时的向后误差问题.故可直接用第2节中的方法解决这个问题.由第2节的定理1,可以得到问题(15)的向后误差为其中,其中Z+为Z的Moore-Penrose逆矩阵[27].4 数值实验下面给出数值结果,本节使用的矩阵与文献[23-25]给出的模型相同.用于数值实验的3个矩阵的大小分别为(k,m)=(159,11),(303,19),(705,51).系数矩阵A和Q的形式由本文引言部分给出.振动频率ω的取值为1 000.对于每组系数矩阵A和Q对应的二次特征值问题P(λ)z=0,本文中首先使用文献[5]中的算法求出它的全部近似特征值和特征向量,然后随机从中取出一个近似特征值对(λ,z).使用文献[26]中定理3方法求出该问题的向后误差表示为ΔF,用本文中的方法求出的向后误差表示为ΔA,结果如表1所示,可见ΔA的误差更小.表1 数值实验结果Tab.1 Numerical experimentresults(k,m)ΛΔFΔA2(159,11)0.87-0.12i7.8e-087.1e-09(303,19)0.77-0.18i1.2e-079.8e-08(705,51)0.60-0.27i3.6e-091.3e-095 结论本文中介绍了多项式特征值问题向后误差相关的概念,并且使用文献[1]中多项式特征值问题向后误差的定义,求出了特征值问题(λkAT+λlA)z=0的向后误差.铁轨在高速列车通过时的振动问题的有限元模型中产生的二次特征值问题(λ2AT+λQ+A)z=0属于回文二次特征值问题,所以参考文献[26]中处理回文二次特征值问题的方法来分析该二次特征值问题的向后误差.由于文献[1]定义的多项式特征值问题向后误差更为精准和实用,本文中使用新的方法,给出该二次特征值问题在参考文献[1]定义下的向后误差.在本文中最后,对于参考文献[23-25]给出的3个铁轨在高速列车通过时的振动问题的有限元模型,给出了一些数值实例,并且与参考文献[26]给出的向后误差进行对比.[1] TISSEUR F.Backward error and condition of polynomial eigenvalue problems[J].Linear Algebra and Its Applications,2000,309:339-361.[2] RIGAL J L,GACHES J.On the compatibility of a given solution with the data of a linear system[J].Journal of the ACM,1967,14(3):543-548.[3] FRAYSSE V,TOUMAZOU V.A note on the normwise perturbation theory for the regular generalized eigenpro-blem[J].Numerical Linear Algebra with Applications,1998,5(1):1-10.[4] HIGHAM D J,HIGHAM N J.Structured backward error and condition of generalized eigenvalue problems[J].SIAM Journal on Matrix Analysis and Applications,1998,20(2):493-512.[5] LANCASTER P,SNEDDON I N,STARK M,et mbda-matrices and vibrating systems[M].Oxford:Pergamon Press,1966:187-190.[6] DUFFIN R J.A minimax theory for overdamped networks[J].J Rat Mech Anal,1954,4(2):221-233.[7] STEWART G W,SUN J.Matrix perturbation theory[M].London:Academic Press,1990:1-94.[8] MACKEY D S,MACKEY N,MEHL C,et al.Numerical methods for palindromic eigenvalue problems:computing the anti-triangular schur form[J].Numerical Linear Algebra with Applications,2009,16(1):63-86. [9] GANDER W,GOLUB G H,VON MATT U.A constrained eigenvalue problem[J].Linear Algebra and Its Applications,1989,114/115:815-839. [10] CLOUGH R W,MOJTAHEDI S.Earthquake response analysis considering non-proportional damping[J].Earthquake Engineering & Structural Dynamics,1976,4(5):489-496.[11] KOMZSIK L.Implicit computational solution of genera-lized quadratic eigenvalue problems[J].Finite Elements in Analysis &Design,2001,37(10):799-810.[12] SMITH H A,SINGH R K,SORENSEN D C.Formulation and solution of the non-linear,damped eigenvalue problem for skeletalsystems[J].International Journal for Numerical Methods in Engineering,1995,38(18):3071-3085.[13] ZHENG Z C,REN G X,WANG W J.A reduction method for large scale unsymmetric eigenvalue problems in structural dynamics[J].J Sound and Vibration,1997,199(2):253-268.[14] KOMZSIK L.Implicit computational solution of genera-lized quadratic eigenvalue problems[M].Manuscript:the MacNeal-SchwendlerCorporation,1998:56-72.[15] SMITH H A,SINGH R K,SORENSEN D C.Formulation and solution of the non-linear,damped eigenvalue problem for skeletalsystems[J].International Journal for Numerical Methods in Engineering,1995,38(18):3071-3085[16] IPSEN I C F.Accurate eigenvalues for fast trains[J].SIAMNews,2004,37(9):1-2.[17] MACKEY D S,MACKEY N,MEHL C,et al.Structured polynomial eigenvalue problems:good vibrations from good linearizations[J].SIAM Journal on Matrix Analysis and Applications,2006,28(4):1029-1051. [18] CHU E K W,HWANG T M,LIN W W,et al.Vibration of fasttrains,palindromic eigenvalue problems and structure-preserving doubling algorithms[J].Journal of Computational and AppliedMathematics,2008,219(1):237-252.[19] HUANG T M,LIN W W,QIAN J.Structure-preserving algorithms for palindromic quadratic eigenvalue problems arising from vibration of fast trains[J].SIAM Journal on Matrix Analysis and Applications,2008,30(4):1566-1592.[20] KRESSNER D,SCHRÖDER C,WATKINS D S.Implicit QR algorithms for palindromic and even eigenvalue problems[J].NumericalAlgorithms,2009,51(2):209-238.[21] LANCASTER P,PRELLS U,RODMAN L.Canonical structures for palindromic matrix polynomials[J].Oper Matrices,2007,1(4):469-489. [22] LI R C,LIN W W,WANG C S.Structured backward error for palindromicpolynomial eigenvalue problems[J].NumerischeMathematik,2010,116(1):95-122.[23] GUO C H,LIN W W.Solving a structured quadratic eigenvalue problem by a structure-preserving doubling algorithm[J].SIAM Journal on Matrix Analysis and Applications,2010,31(5):2784-2801.[24] LU L,YUAN F,LI R C.A new look at the doubling algorithm for a structured palindromic quadratic eigenvalue problem[J].Numerical Linear Algebra with Applications,2015,22:393-409.[25] LU L,YUAN F,LI R C.An improved structure-preserving doubling algorithm for a structured palindromic quadratic eigenvalueproblem[R].Arlington,UT:University of Texas at Arlington,2014.[26] 袁飞,卢琳璋,李仁仓.一类二次特征值问题的向后误差分析[J].厦门大学学报(自然科学版),2016,55(1):97-102.[27] PENROSE R.A generalized inverse for matrices[J].Mathematical Proceedings of the Cambridge Philosophical Society,1955,51(3):406-413.。
基于粒子群求解帕累托曲面前沿
基于粒子群求解帕累托曲面前沿摘要:一、引言1.粒子群优化算法简介2.帕累托前沿简介3.本文研究内容二、粒子群优化算法原理1.粒子群优化算法基本思想2.粒子群优化算法的数学模型3.粒子群优化算法的参数设置三、帕累托前沿的数学模型1.帕累托前沿的定义2.帕累托前沿的性质3.帕累托前沿的求解方法四、基于粒子群求解帕累托曲面前沿的方法1.优化问题描述2.粒子群优化算法参数设置3.求解过程及算法实现五、实验与分析1.实验数据及参数设置2.结果分析与对比3.结果讨论与结论六、展望与未来工作1.算法改进方向2.应用领域拓展3.潜在问题与挑战正文:一、引言随着科学技术的不断发展,优化问题在各领域中都有着广泛的应用。
粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体行为的优化算法,具有良好的全局搜索能力。
帕累托前沿(Pareto Frontier)是一种表示系统最优解集合的概念,能够用于解决多目标优化问题。
本文主要研究了基于粒子群优化算法求解帕累托曲面前沿的方法及应用。
二、粒子群优化算法原理粒子群优化算法是一种模仿自然界中鸟群觅食行为的优化算法,通过搜索策略和局部更新策略来寻找最优解。
粒子群优化算法的数学模型主要包括以下几个部分:1.粒子群:由多个粒子组成,每个粒子代表一个解。
2.目标函数:用于评估解的质量。
3.惯性权重:影响粒子群搜索策略的重要参数。
4.学习因子:影响粒子群局部更新策略的重要参数。
三、帕累托前沿的数学模型帕累托前沿是一种表示多目标优化问题最优解集合的概念,具有以下性质:1.帕累托前沿上的每个解都是满足约束条件的有效解。
2.帕累托前沿上的任意两个解之间不存在第三个解能够同时优于这两个解。
求解帕累托前沿的方法有很多,如遗传算法、模拟退火算法等。
四、基于粒子群求解帕累托曲面前沿的方法本文提出了一种基于粒子群优化算法求解帕累托曲面前沿的方法。
首先,将帕累托前沿求解问题转化为多目标优化问题,并定义目标函数。
求解Allen-Cahn方程的两种高效数值格式
(
)
286
郑楠 等
从而 G (τ , k ) ≤ 1 ,此格式无条件稳定。 由于 S B 是精确求解,所以此定理表明整个分裂算法的格式都是稳定的。
2.3. 四阶紧致差分格式计算热传导方程
δ x2ui =
则方程(4)有如下 CN 格式:
ui +1 − 2ui + ui −1 h2
(9)
uin+1 − uin 1 2 n+1 = δ x ui + δ x2uin τ 2
(
)
(10)
容易验证上式精度为 O τ 2 + h 2 ,进一步化简可得:
1 2 1 −τ ⋅ uin−+ ⋅ uin+1 − τ ⋅ uin++ τ uin−1 + −2τ + 2h 2 ⋅ uin + τ ⋅ uin+1 1 + 2τ + 2h 1 =⋅
2 1 (1 + λ ) − λ eikjh − e−ikjh 2 kh 2 1 − λ (1 − cos kh ) 1 − 2 ⋅ λ sin 2 = = 1 + λ (1 − cos kh ) 1 + 2 ⋅ λ sin 2 kh 2
1 (1 − λ ) + λ ( eikjh + e−ikjh )
关键词
算子分裂算法,热传导方程,帕德逼近,四阶紧致差分格式,能量递减
Copyright © 2017 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). /licenses/by/4.0/
Numerical Methods for Differentiations and Integrations
Lecture 2: Numerical Methods for Differentiations and IntegrationsAs we have discussed in Lecture 1 that numerical simulation is a set of carefully planed numerical schemes to solve initial value problems numerically. Let us consider the following three types of differential equations.dy (t )dt=f (t ) (2.1) dy (t )dt=f (y ,t )(2.2) ∂y (x ,t )∂t =f (t ,y ,∂y ∂x ,∂2y∂x2,...,ydx ,...∫)(2.3)The numerical methods for time integration of these equations will be discussed in the next section (Section 4). Before we conduct the time integration, we need to determine thedifferentiations∂y ∂x ,∂2y∂x 2,... and integrations ydx ,...∫ on the left hand side of the equation(2.3) at each grid point.In this section, we are going to discuss the following four types of numerical methods, which are commonly used in spatial differentiations and integrations.1. Finite Differences (based on Taylor’s expansion)2. FFT (Fast Fourier Transform)3. Cubic Spline2.1. Finite DifferencesFor convenience, we shall use the following notation in the rest of this lecture notes.f ijk n =f (x =i Δx ,y =j Δy ,z =k Δz ,t =n Δt )=f (x i ,y j ,z k ,t n )Given a tabulate functioni :12...N x i :x 1x 2...x N f i :f 1f 2...f NUsing finite difference method, we can obtain derivatives of a tabulated function f . Table 2.1 lists examples of the first-order and second-order finite-difference expressions of[d f /dx ]x =x i , [d 2f /dx 2]x =x i , and [d 3f /dx 3]x =x i . Table 2.2 lists examples of the finite∫,difference expressions of y=f dxTable 2.1. The numerical differentiations based on finite difference methodExercise 2.1.(a) Show that the Central Difference shown in Table 2.1 is a second-order scheme(b) Show that the Forward Difference and the backward difference shown in Table 2.1 arefirst-order schemes., and(c) Determine the forth order central difference expressions of [d f/dx]x=x i, based on the Taylor expansions of the function f.[d2f/dx2]x=x iExercise e the first-order, the second-order, and the forth-order finite-differences expressions to determine the d f/dx, and d2f/dx2, an analytical function f with a fixed Δx. Determine the numerical errors in your results. Compare the numerical errors obtained from different finite differences expressions.Figure 2.1. A summary diagram of the central difference, forward difference, and the backward difference schemes.Table 2.2. The spatial integrations based on finite difference methodExercise 2.3.Use the first order, the second order, and the forth order integration expressions listed in Table 2.2 to determine y (x =π/4) with dy (x )/dx =cos(x ) and boundary conditiony (x =0)=0. Determine the numerical errors in your results. Compare the numericalerrors obtained from different integration expressions.2.2. FFT (Fast Fourier Transform)A function can be expanded by a complete set of sine and cosine functions. In the Fast Fourier Transform, the sine and cosine tables are calculated in advance to save the CPU time of the simulation.For a periodic function f , one can use FFT to determine its differentiations and integrations, i.e.,d fdx=FFT −1{ik [FFT (f )]} fdx ∫=FFT −1{1ik [FFT (f )]} for k >0.Exercise 2.4.Use an FFT subroutine to determine the first derivatives of a periodic analytical functionf . Determine the numerical errors in your results.Exercise 2.5.Use an FFT subroutine to determine the first derivatives of a non-periodic analytical function f . Determine the numerical errors in your results.2.3. Cubic SplineA tabulate function can be fitted by a set of piece-wise continuous functions, in which the first and the second derivatives of the fitting functions are continuous at each grid point. One need to solve a tri-diagonal matrix to determine the piece-wise continuous cubic spline functions. The inversion of the tri-diagonal matrix depends only on the position of grid points. Thus, for simulations with fixed grid points, one can evaluate the inversion of the tri-diagonal matrix in advance to save the CPU time of the simulation.For a non-periodic function f, it is good to use the cubic spline method to determine its differentiations and integrations at each grid point.Results of differentiations obtained from the cubic spline show the same order of accuracy as the results obtained from the forth order finite differences scheme.Exercise 2.6.Use a Cubic Spline subroutine to determine the first derivatives of an analytical functionf. Determine the numerical errors in your results.ReferencesHildebrand, F. B., Advanced Calculus for Applications, 2nd edition,Prentice-Hall, Inc., Englewood, Cliffs, New Jersey, 1976.Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (in C or in FORTRAN and Pascal), Cambridg e University Press, Cambridge, 1988.System/360 Scientific Subroutine Package Version III, Programmer’s Manual,5th edition, IBM, New York, 1970.。
eigen读取科学计数法浮点数
eigen读取科学计数法浮点数
在Eigen中,可以使用科学计数法来表示浮点数。
科学计数法是一种表示非常大或非常小的数字的方法,它使用一个基数(通常是10)乘以10的幂。
在Eigen中,你可以直接使用科学计数法来初始化浮点数类型的变量。
例如,你可以使用如下方式来初始化一个科学计数法表示的浮点数:
cpp.
double num = 6.022e23;
这里的6.022e23表示6.022乘以10的23次方,即阿伏伽德罗常数的科学计数法表示。
在Eigen中,你可以直接将这样的科学计数法表示的浮点数赋值给Matrix或Array类型的变量。
例如:
cpp.
Eigen::MatrixXd matrix(2, 2);
matrix << 6.022e23, 1.602e-19,。
2.998e8, 9.81;
这里的matrix就是一个2x2的矩阵,其中包含了科学计数法表示的浮点数。
当你打印这个矩阵的时候,它会以科学计数法的形式显示出来。
另外,在Eigen中,你也可以直接对科学计数法表示的浮点数进行运算,Eigen会自动处理这些浮点数的计算。
例如:
cpp.
double result = 6.022e23 1.602e-19;
这里的result就是两个科学计数法表示的浮点数相乘的结果。
总的来说,Eigen对科学计数法表示的浮点数有很好的支持,你可以直接使用科学计数法来初始化变量、赋值给矩阵或数组,以及进行运算,而无需额外的处理。
希望这些信息能够帮助到你。
eigengwas方法
eigengwas方法
"Eigengwas" 可能是 "Eigenwert" 的拼写错误,而 "Eigenwert" 是德语中
的一个词,意思是“特征值”。
在数学、物理和工程学中,"特征值"(Eigenvalue)是一个重要的概念,它描述了一个矩阵或线性变换的特性。
如果你是在询问关于特征值的方法或算法,那么你可能是在说“特征值分解”(Eigenvalue Decomposition)。
特征值分解是一种数学分析方法,用于
找到矩阵的特征值和特征向量。
它常用于物理、工程和经济等领域。
这个方法的主要步骤如下:
1. 对给定的矩阵A进行运算,以找到它的特征值λ和特征向量v。
2. 确定矩阵A的特征多项式。
3. 解特征多项式以找到特征值λ。
4. 使用找到的特征值和原始矩阵A来计算对应的特征向量v。
这个过程可以用来解决许多问题,例如:确定物体的振动模式、解决电路问题、进行经济分析等。
特征抽取中的度量学习方法介绍
特征抽取中的度量学习方法介绍特征抽取是机器学习中的重要环节,它能够从原始数据中提取出具有代表性的特征,为后续的分类、聚类等任务提供有力的支持。
而度量学习方法则是特征抽取中的一种重要技术,它通过学习一个度量函数,将原始数据映射到一个更加有意义的特征空间中,从而提高特征的判别能力和鲁棒性。
在度量学习方法中,最简单直观的方法是欧氏距离度量。
它假设特征空间中的每个维度都是独立、均匀分布的,通过计算样本之间的欧氏距离来度量它们之间的相似性。
然而,在实际应用中,欧氏距离度量往往难以满足复杂数据的分布特征,因此需要引入更加灵活的度量学习方法。
一种常用的度量学习方法是基于对比学习的方法。
对比学习是通过比较样本对之间的相似性来学习度量函数的方法。
其中,孪生网络是一种常用的对比学习模型。
它通过将两个相同结构的神经网络分别作用于两个样本,学习它们之间的相似性。
通过最小化同类样本对之间的距离,最大化异类样本对之间的距离,孪生网络能够学习到一个判别性的度量函数。
除了对比学习,还有一类度量学习方法是基于流形学习的方法。
流形学习是一种通过学习数据的低维流形结构来进行度量学习的方法。
它认为高维数据往往存在于一个低维流形上,通过学习流形的结构,可以更好地度量数据之间的相似性。
流形学习方法的典型代表是局部线性嵌入(Locally Linear Embedding,简称LLE)。
LLE通过保持样本之间的局部线性关系,学习到一个能够保持数据流形结构的度量函数。
此外,还有一类度量学习方法是基于核函数的方法。
核函数是一种能够将数据映射到一个高维特征空间中的函数。
通过学习一个核函数,可以将原始数据映射到一个更加有判别性的特征空间中,从而提高特征的判别能力。
支持向量机(Support Vector Machine,简称SVM)是一种常用的基于核函数的度量学习方法。
SVM通过最大化样本之间的间隔,学习到一个能够将样本分开的超平面,从而实现数据的分类。
TheEigenvalueDec...
Lecture13 Eigenvalue ProblemsMIT18.335J/6.337J Introduction to Numerical MethodsPer-Olof Persson(***************)October24,20071The Eigenvalue Decomposition •Eigenvalue problem for m×m matrix A:Ax=λxwith eigenvaluesλand eigenvectors x(nonzero)•Eigenvalue decomposition of A:A=XΛX−1or AX=XΛwith eigenvectors as columns of X and eigenvalues on diagonal ofΛ•In“eigenvector coordinates”,A is diagonal:Ax=b→(X−1b)=Λ(X−1x)2Multiplicity•The eigenvectors corresponding to a single eigenvalueλ(plus the zero vector)form an eigenspace•Dimension of Eλ=dim(null(A−λI))=geometric multiplicity ofλ•The characteristic polynomial of A isp A(z)=det(zI−A)=(z−λ1)(z−λ2)···(z−λm)•λis eigenvalue of A⇐⇒p A(λ)=0–Since ifλis eigenvalue,λx−Ax=0.ThenλI−A is singular,so det(λI−A)=0•Multiplicity of a rootλto p A=algebraic multiplicity ofλ•Any matrix A has m eigenvalues,counted with algebraic multiplicity3Similarity Transformations•The map A→X−1AX is a similarity transformation of A•A and B are similar if there is a similarity transformation B=X−1AX •A and X−1AX have the same characteristic polynomials,eigenvalues, and multiplicities:–The characteristic polynomials are the same:p X−1AX(z)=det(zI−X−1AX)=det(X−1(zI−A)X)=det(X−1)det(zI−A)det(X)=det(zI−A)=p A(z)–Therefore,the algebraic multiplicities are the same–If Eλis eigenspace for A,then X−1Eλis eigenspace for X−1AX,so geometric multiplicities are the same4Algebraic Multiplicity≥Geometric Multiplicity •Let nfirst columns ofˆV be orthonormal basis of the eigenspace forλ•ExtendˆV to square unitary V,and formB=V∗AV=λI C0D•Sincedet(zI−B)=det(zI−λI)det(zI−D)=(z−λ)n det(zI−D) the algebraic multiplicity ofλ(as eigenvalue of B)is≥n•A and B are similar;so the same is true forλof A5Defective and Diagonalizable Matrices•If the algebraic multiplicity for an eigenvalue>its geometric multiplicity,it is a defective eigenvalue•If a matrix has any defective eigenvalues,it is a defective matrix•A nondefective or diagonalizable matrix has equal algebraic and geometric multiplicities for all eigenvalues•The matrix A is nondefective⇐⇒A=XΛX−1–(⇐=)If A=XΛX−1,A is similar toΛand has the sameeigenvalues and multiplicities.ButΛis diagonal and thus nondefective.–(=⇒)Nondefective A has m linearly independent eigenvectors.Take these as the columns of X,then A=XΛX−1.6Determinant and Trace•The trace of A is tr(A )=mj =1a jj•The determinant and the trace are given by the eigenvalues:det(A )=m j =1λj ,tr(A )=m j =1λj since det(A )=(−1)m det(−A )=(−1)m p A (0)=mj =1λj andp A (z )=det(zI −A )=z m−m j =1a jj z m −1+···p A (z )=(z −λ1)···(z −λm )=z m −m j =1λj z m −1+···7Unitary Diagonalization and Schur Factorization•A matrix A is unitary diagonalizable if,for a unitary matrix Q ,A =Q ΛQ ∗•A hermitian matrix is unitarily diagonalizable,with real eigenvalues(because of the Schur factorization,see below)•A is unitarily diagonalizable ⇐⇒A is normal (A ∗A =AA ∗)•Every square matrix A has a Schur factorization A =QT Q ∗with unitaryQ and upper-triangular T•Summary,Eigenvalue-Revealing Factorizations–Diagonalization A=X ΛX −1(nondefective A )–Unitary diagonalization A=Q ΛQ ∗(normal A )–Unitary triangularization (Schur factorization)A=QT Q ∗(any A )8Eigenvalue Algorithms•The most obvious method is ill-conditioned:Find roots of p A (λ)•Instead,compute Schur factorization A =QT Q ∗by introducing zeros •However,this can not be done in a finite number of steps:Any eigenvalue solver must be iterative•To see this,consider a general polynomial of degree mp (z )=z m +a m −1z m −1+···+a 1z +a 0•There is no closed-form expression for the roots of p :(Abel,1842)In general,the roots of polynomial equations higher than fourth degree cannot be written in terms of a finite number of operations9Eigenvalue Algorithms•(continued)However,the roots of p are the eigenvalues of the companionmatrixA =0−a 010−a 110−a 21.........0−am −21−a m −1•Therefore,in general we cannot find the eigenvalues of a matrix in a finitenumber of steps (even in exact arithmetic)•In practice,algorithms available converge in just a few iterations1011Two Phases of Eigenvalues Computations•General A :First to upper-Hessenberg form,then to upper-triangular××××××××××××××××××××××××× A =A ∗Phase 1−→ ×××××××××××××××××××H Phase 2−→ ××××××××××××××× T•Hermitian A :First to tridiagonal form,then to diagonal×××××××××××××××××××××××××A =A ∗Phase 1−→ ××××××××××××× T Phase 2−→ ×××××D12。
eigen value
eigen value 指特征值。
特征值是线性代数中的一个重要概念。
在数学、物理学、化学、计算机等领域有着广泛的应用。
基本简介
在A变换的作用下,向量ξ仅仅在尺度上变为原来的λ倍。
称ξ是A 的一个特征向量,λ是对应的特征值(本征值),是(实验中)能测得出来的量,与之对应在量子力学理论中,很多量并不能得以测量,当然,其他理论领域也有这一现象。
eigen value又称本征值。
设A是向量空间的一个线性变换,如果空间中某一非零向量通过A 变换后所得到的向量和X 仅差一个常数因子,即AX=kX ,则称k为A的特征值,X称为A的属于特征值k的特征向量或特征矢量(eigenvector)。
如在求解薛定谔波动方程时,在波函数满足单值、有限、连续性和归一化条件下,势场中运动粒子的总能量(正)所必须取
特征值
特征值
的特定值,这些值就是正的本征值。
设M是n阶方阵,I是单位矩阵,如果存在一个数λ使得M-λI 是
奇异矩阵(即不可逆矩阵,亦即行列式为零),那么λ称为M的特征值。
折叠编辑本段计算方法
特征值的计算方法n阶方阵A的特征值λ就是使齐次线性方程组(λE-A)x=0有非零解的值λ,也就是满足方程组|λE-A|=0的λ都是矩阵A的特征值。
另外,λ1和λ2都是矩阵A的特征值的话,k1λ1+k2λ2(k1,k2不等于0)也是矩阵A的特征值。
二维核密度估计 自适应 r语言
二维核密度估计自适应 r语言标题:使用自适应方法进行二维核密度估计的实践引言:二维核密度估计是一种常用的统计方法,用于估计二维数据的概率密度分布。
在R语言中,我们可以使用自适应方法来进行二维核密度估计,从而更准确地描述数据的分布特征。
方法介绍:自适应方法是一种根据数据的密度情况动态调整核函数带宽的方法。
在二维核密度估计中,我们可以根据数据点周围的密度情况自动调整核函数的带宽,从而更好地适应不同密度区域的数据分布。
在R语言中,我们可以使用ks和ksdensity函数来实现自适应的二维核密度估计。
首先,我们需要将数据转换成二维数组的形式,然后通过ksdensity函数计算出每个点的密度值。
接着,我们可以使用contour函数将密度值可视化为等高线图,以便更直观地观察数据的分布情况。
实例展示:让我们以一个实际例子来展示自适应二维核密度估计的应用。
假设我们有一个二维数据集,包含了一些坐标点的信息。
我们希望通过二维核密度估计来揭示这些点的分布情况。
我们需要加载数据集,并将其转换成二维数组的形式。
接着,我们可以使用ksdensity函数计算每个点的密度值,并使用contour函数将其可视化。
结果分析:通过观察等高线图,我们可以看到数据点的密度分布情况。
密度较高的区域对应着数据点较为密集的区域,而密度较低的区域则表示数据点较为稀疏的区域。
通过这样的可视化方式,我们可以更直观地了解数据的分布特征。
结论:自适应二维核密度估计是一种有效的统计方法,可以帮助我们揭示数据的分布情况。
通过R语言中的ks和ksdensity函数,我们可以很方便地实现自适应的二维核密度估计,并通过等高线图将结果可视化。
这种方法不仅可以用于数据分析和可视化,还可以应用于其他领域,如模式识别和异常检测等。
总结:本文介绍了使用自适应方法进行二维核密度估计的实践。
我们通过R语言中的ks和ksdensity函数,展示了如何对二维数据进行核密度估计,并通过等高线图进行可视化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Here, N (0, 2) is a zero-mean Gaussian with variance 2, and χd is the squareroot of a χ2 distributed number with d degrees of freedom. Note that the
The problem with this technique is that the computational requirements and the memory requirements grow fast with n, which should be as large as possible in order to be a good approximation of infinity. Just storing the matrix A requires n2 double-precision numbers, so on most computers today n has to be less than 104 . Furthermore, computing all the eigenvalues of a full Hermitian matrix requires a computing time proportional to n3 . This means that it will take many days to create a smooth histogram by simulation, even for relatively small values of n. To improve upon this situation, another matrix can be studied that has the same eigenvalue distribution as A above. In [2], it was shown that this is true for the following symmetric matrix when β = 2: N (0, 2) χ(n−1)β χ(n−1)β N (0, 2) χ(n−2)β 1 . . . .. .. .. (3) Hβ ∼ √ . 2 χ2β N (0, 2) χβ χβ N (0, 2)
3
β=1
β=2
β=4
0.6 0.5 Probability Probability 0.4 0.3 0.2 0.1 0
0.6 0.5 0.4 0.3 0.2 0.1 0 Probability
0.6 0.5 0.4 0.3 0.2 0.1 0
−6 −4 −2 0 2 4 Normalized and Scaled Largest Eigenvalue
1
Largest Eigenvalue Distributions
In this section, the distributions of the largest eigenvalue of matrices in the β -ensembles are studied. Histograms are created first by simulation, then by solving the Painlev´ e II nonlinear differential equation.
for ii=1:trials A=randn(n)+i*randn(n); A=(A+A’)/2; lmax=max(eig(A)); lmaxscaled=n^(1/6)*(lmax-2*sqrt(n)); % Store lmax end % Create and plot histogram
1.1
Simulation
The Gaussian Unitary Ensemble (GUE) is defined as the Hermitian n × n matrices A, where the diagonal elements xjj and the upper triangular elements xjk = ujk + ivjk are independent Gaussians with zero-mean, and Var(xjj ) = 1, 1 ≤ j ≤ n, 1 Var(ujk ) = Var(vjk ) = 2 , 1 ≤ j < k ≤ n. (1)
arXiv:math-ph/0501068v1 27 Jan 2005
Numerical Methods for Eigenvalue Distributions of Random Matrices
Alan Edelman and Pe 3, 2008
Since a sum of Gaussians is a new Gaussian, an instance of these matrices can be created conveniently in MATLAB:
1
A=randn(n)+i*randn(n); A=(A+A’)/2;
√ The largest eigenvalue of this matrix is about 2 n. To get a distribution that converges as n → ∞, the shifted and scaled largest eigenvalue λ′ max is calculated as √ 1 6 λ (2) λ′ max − 2 n . max = n It is now straight-forward to compute the distribution for λ′ max by simulation:
−6 −4 −2 0 2 4 Normalized and Scaled Largest Eigenvalue
−6 −4 −2 0 2 4 Normalized and Scaled Largest Eigenvalue
Figure 1: Probability distribution of scaled largest eigenvalue (105 repetitions, n = 109 ) where the function histdistr below is used to histogram the data. It assumes that the histogram boxes are equidistant.
Abstract We present efficient numerical techniques for calculation of eigenvalue distributions of random matrices in the beta-ensembles. We compute histograms using direct simulations on very large matrices, by using tridiagonal matrices with appropriate simplifications. The distributions are also obtained by numerical solution of the Painlev´ e II and V equations with high accuracy. For the spacings we show a technique based on the Prolate matrix and Richardson extrapolation, and we compare the distributions with the zeros of the Riemann zeta function.
n=1e9; nrep=1e4; beta=2; cutoff=round(10*n^(1/3)); d1=sqrt(n-1:-1:n+1-cutoff)’/2/sqrt(n); ls=zeros(1,nrep); for ii=1:nrep d0=randn(cutoff,1)/sqrt(n*beta); ls(ii)=maxeig(d0,d1); end ls=(ls-1)*n^(2/3)*2; histdistr(ls,-7:0.2:3)
1
(4)
Matrices of size n = 1012 can then easily be used since the computations can 1 be done on a matrix of size only 10n 3 = 105 . Also, for these large values of n the approximation χ2 n ≈ n is accurate. A histogram of the distribution for n = 109 can now be created using the code below.
2
matrix is symmetric, so the subdiagonal and the superdiagonal are always equal. This matrix has a tridiagonal sparsity structure, and only 2n doubleprecision numbers are required to store an instance of it. The time for computing the largest eigenvalue is proportional to n, either using Krylov subspace based methods or the method of bisection [7]. In MATLAB, the built-in function eigs can be used, although that requires dealing with the sparse matrix structure. There is also a large amount of overhead in this function, which results in a relatively poor performance. Instead, the function maxeig is used below to compute the eigenvalues. This is not a built-in function in MATLAB, but it can be downloaded from /∼persson/mltrid. It is based on the method of bisection, and requires just two ordinary MATLAB vectors as input, corresponding to the diagonal and the subdiagonal. 1 It also turns out that only the first 10n 3 components of the eigenvector corresponding to the largest eigenvalue are significantly greater than zero. Therefore, the upper-left ncutoff by ncutoff submatrix has the same largest eigenvalue (or at least very close), where ncutoff ≈ 10n 3 .