2012年高三数学立体几何解答题精选训练(文科有答案2)
2012年高考数学基础强化训练题 — 《立体几何》
A BCDEFGHI J2012年高考数学基础强化训练题 — 《立体几何》一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.给出下列四个命题①垂直于同一直线的两条直线互相平行.②垂直于同一平面的两个平面互相平行.③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行.④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线.其中假.命题的个数是 ( ) A .1 B .2 C .3 D .42.将正方形ABCD 沿对角线BD 折成一个120°的二面角,点C 到达点C 1,这时异面直线AD 与BC 1所成角的余弦值是 ( )A .22 B .21 C .43 D .433.一个长方体共一顶点的三个面的面积分别是2、3、6,这个长方体对角线的长为( )A .23B .32C .6D .64.已知二面角α-l -β的大小为600,m 、n 为异面直线,且m ⊥α,n ⊥β,则m 、n 所成的角为 ( )A .300B .600C .900D .12005.如图,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 、J 分别为AF 、AD 、BE 、DE 的中点.将△ABC 沿DE 、EF 、DF 折成三棱锥以后,GH 与IJ 所成角的度 数为 ( ) A .90° B .60° C .45° D .0° 6.两相同的正四棱锥组成如图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD 与正方 体的某一个平面平行,且各顶点...均在正方体的面上, 则这样的几何体体积的可能值有 ( )A .1个B .2个C .3个D .无穷多个7.正方体A ′B ′C ′D ′—ABCD 的棱长为a ,EF 在AB 上滑动,且|EF |=b (b <a =,Q 点在D ′C ′上滑动,则四面体A ′—EFQ 的体积为 ( ) A .与E 、F 位置有关 B .与Q 位置有关 C .与E 、F 、Q 位置都有关 D .与E 、F 、Q 位置均无关,是定值 8.(理)高为5,底面边长为43的正三棱柱形容器(下有底),可放置最大球的半径是( )A .23B .2C .223D .2(文)三个两两垂直的平面,它们的三条交线交于一点O ,点P 到三个平面的距离比为1∶2∶3,PO=214,则P 到这三个平面的距离分别是( )A .1,2,3B .2,4,6C .1,4,6D .3,6,9AB C DA 1B 1C 1D 1 第16题图 α9.如图,在四面体ABCD 中,截面AEF 经过四 面体的内切球(与四个面都相切的球)球心O , 且与BC ,DC 分别截于E 、F ,如果截面将四 面体分成体积相等的两部分,设四棱锥A - BEFD 与三棱锥A -EFC 的表面积分别是S 1, S 2,则必有 ( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1,S 2的大小关系不能确定10.已知球o 的半径是1,ABC 三点都在球面上,AB 两点和AC 两点的球面距离都是4p ,BC 两点的球面距离是3p ,则二面角B -OA -C 的大小是 ( ) A .4pB .3p C .2pD .23p 11.条件甲:四棱锥的所有侧面都是全等三角形,条件乙:这个四棱锥是正四棱锥,则条件甲是条件乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件12.已知棱锥的顶点为P ,P 在底面上的射影为O ,PO=a ,现用平行于底面的平面去截这个棱锥,截面交PO 于点M ,并使截得的两部分侧面积相等,设OM=b ,则a 与b 的关系是 ( )A .b =(2-1)aB .b =(2+1)aC .b =222a - D .b =222a+ 二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13.已知正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角等于_______________. 14.若一条直线与一个正四棱柱各个面所成的角都为α,则cos α=______.15.若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为___________. 16.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A 在平面α内,其余顶 点在α的同侧,正方体上与顶点A 相邻的三个顶 点到α的距离分别为1,2和4,P 是正方体的其余四个顶点中的一个,则P 到平面α的距离可能是: ( )①3; ②4; ③5; ④6; ⑤7 以上结论正确的为______________.(写出所有正确结论的编号..) 三、解答题(本大题共6小题, 共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)在长方体1111D C B A ABCD -中,已知3,41===DD DC DA ,求异面直线B A 1与CB 1所成角的大小(结果用反三角函数值表示). DBAOCEF18.(本小题满分12分)如图,1l 、2l 是互相垂直的异面直线,MN 是它们的公垂线段。
2012-2020年全国卷高考立体几何大题汇编(文科)
立体几何大题汇编(文科)1.(2020年全国一卷文19)如图、为圆锥曲线的顶点,底面的内接正三角形,为上一点,(1平面(2)设,圆锥的侧面积为,求三棱锥2.(2020年全国二卷文20的底面是正三角形,侧面是矩形,分别为,的中点,为上一点,过和的平面交于,交于(1)证明:面(2)设为的中心,若,面,且求四棱锥3.(2020年全国三卷文19)如图、在长方体中,点分别在棱,(1)证明:当时,(2)证明:点在平面内4.(2019年全国一卷文19)如图,直四棱柱的底面是棱形,,,,,分别是,的中点(1(2)求点到平面的距离5.(2019年全国二卷文科17)如图,长方体的底面是正方形,点在棱(1平面(2,,求四棱锥6.(2019年全国三卷文科19)图是矩形组成的一个平面图形,其中,将其沿,折起使得与重合,连接,如图(1)证明:图平面(2)求图中的四边形的面积7.(2018年全国三卷文科19)如图,边长为的正方形所在的平面与半圆弧所在平面垂直,是上异于的点(1(2)在线段上是否存在点?请说明理由8.(2018年全国二卷文科19)如图,在三棱锥中,,,为的中点(1(2)若点在棱,求点到平面的距离9.(2018年全国一卷文科18)如图,在平行四边形中,,以到达点(1平面(2)为线段上一点,为线段上一点,且,求三棱锥的体积10.(2017年全国三卷文科19)如图,在四面体是正三角形,(1(2)是直角三角形,,若为棱上与不重合的点,求四面体与四面体的体积比11.(2017年全国二卷文科18)如图,四棱锥中,侧面为等边三角形且垂直于底面,(1(2,求四棱锥的体积12.(2017年全国一卷文科18)如图,在四棱锥,,且(1平面(2)若,求该四棱锥的侧面积13.(2016年全国三卷文科19)如图,底面,,,,为线段,为的中点(1(2的体积14.(2016年全国二卷文科19)如图,菱形的对角线与交于点,点分别在,上,交于点(1(2)若,,15.(2016年全国一卷文科18)如图,的侧面是直角三角形,,顶点在平面内正投影为点,在平面内的正投影为点,连接并延长交于点(1)证明:是的中点(2)大答题卡第题中作出点在平面内的正投影(说明作法及理由),并求四面体的体积16.(2015年全国二卷文科19)如图,长方体中,,,点,分别在,上,,过点,的平面与此长方体的面相交,交线围成一个正方形。
22012年高考数学立体几何专题练习及答案
绝密★启用前2012届高三数学二轮精品专题卷:专题9 立体几何考试范围:立体几何一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个符合题目要求的)1.若直线l 与平面α垂直,则下列结论正确的是 ( )A .直线l 与平面α内所有直线都相交B .在平面α内存在直线m 与l 平行C .在平面α内存在直线m 与l 不垂直D .若直线m 与平面α平行,则直线l ⊥m 2.某个几何体的三视图如图所示,根据图中标出的长度,那么这个几何体的体积是 ( ) A .3 B .33C .332D .3 3.(理)如下图所示是一个半径等于2的半球,现过半球底面的中心作一个与底面成80°角的截面,则截面的面积为( )A .2πB .πC .π2D . 80sin π(文)如上图所示是一个半径等于2的半球,则这个半球的表面积为 ( ) A .π4 B .π8 C .π12 D .π16 4.(理)如下图,三棱锥P -ABC 中,三条侧棱两两垂直,且长度相等,点E 为BC 中点,则直线AE 与平面PBC 所成角的余弦值为 ( )A .33B .36C .31D .32(文)如上图,三棱锥P -ABC 中,三条侧棱两两垂直,且长度都为1,点E 为BC 上一点,则截面P AE 面积的最小值为 ( ) A .33 B .36 C .42 D .325.设a ,b ,c 表示三条直线,βα,表示两个平面,则下列命题中逆命题不成立的是 ( )A .α⊥c ,若β⊥c ,则βα∥B .α⊂b ,α⊄c ,若α∥c ,则c b ∥C .β⊂b ,若α⊥b ,则αβ⊥D .α⊂b a ,,P b a =⋂,b c a c ⊥⊥,,若βα⊥,则β⊂c6.一个圆锥的母线长为2,且侧面积为π2,则该圆锥的主视图面积为 ( ) A .1B .3C .2D .67.已知长方体ABCD D C B A -1111的外接球的体积为332π,则该长方体的表面积的最大值为 ( )A .16B .32C .36D .488.一个几何体是由若干个边长为1的正方体组成的,其主视图和左视图如图所示,若把这个几何体放到一个底面半径为π13的盛若干水的圆柱形容器,没入水中,则水面上升的高度(不溢出)最大为 ( )(1)121B .131C .π12D .π139.如图,四棱锥P -ABCD 的底面是边长为3的正方形,侧棱P A ⊥平面ABCD ,点E 在侧棱PC 上,且BE ⊥PC ,若6=BE ,则四棱锥P -ABCD 的体积为 ( )A .6B .9C .18D .2710.如图,四棱锥S -ABCD 的底面是边长为2的正方形,且6====SD SC SB SA ,E 是边BC 的中点,动点P 在表面上运动,并且总保持PE ⊥AC ,则动点P 的轨迹所围成的图形的面积为 ( )A .22B .1C .3D .6一、填空题(本大题共5小题,每小题5分,共25分.把正确答案填在题中横线上)11.已知一个空间几何体的三视图及其尺寸如图所示,则该空间几何体的体积是 .12.(理)平面P 与平面Q 所成的二面角是锐角α,直线AB ⊂平面P 且与二面角的棱成的角为锐角β,又AB 和平面Q 成的角为θ,则α,β,θ之间的某一三角函数关系为 . (文)我们知道,正三角形的内切圆和外接圆的圆心重合,且外接圆和内切圆的半径之比为2:1,类比这一结论,若一个三棱锥的所有棱长都相等,则其外接球与内切球的球心重合,则外接球与内切球半径之比为 .13.已知圆锥的母线和底面半径的夹角为60°,则其全面积与侧面积之比为 . 14.由曲线22x y =,2||=x 围成的图形绕y 轴旋转一周所得的旋转体的体积为1V ;满足422≤+y x ,1)1(22≥-+y x ,1)1(22≥++y x 的点组成的图形绕y 轴旋转一周所得的旋转体的体积为2V ,则1V :2V = .15.设圆锥的母线长为l ,底面半径为r ,满足条件“它的一个内接圆柱的侧面积等于圆锥侧面积的41”的情况有且只有一种,则=lr .三、解答题(本大题共6小题,满分75分.解答时应写出文字说明、证明过程或演算步骤) 16.(本题满分10分)如图,四棱锥P -ABCD 中,底面ABCD 是一个边长为2的正方形,P A ⊥平面ABCD ,且24=PC .M 是PC 的中点,在DM 上有点G ,过G 和AP 作平面交平面BDM 于GH .(1)求四棱锥P -ABCD 的体积; (2)求证:AP ∥GH .17.(本题满分12分)如图,已知三棱柱'''C B A ABC -的所有棱长都是2,且60''=∠=∠AC A AB A .(1)求证:点'A 在底面ABC 内的射影在∠BAC 的平分线上; (2)求棱柱'''C B A ABC -的体积.18.(本题满分13分)如图,多面体ABCD —EFG 中,底面ABCD 为正方形,GD //FC //AE ,AE ⊥平面ABCD ,其正视图、俯视图及相关数据如图:(1)求证:平面AEFC ⊥平面BDG ; (2)求该几何体的体积;(3)求点C 到平面BDG 的距离.19.(本题满分13分)如图一简单几何体的一个面ABC 内接于圆O ,G ,H 分别是AE ,BC 的中点,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC . (1)求证:GH //平面ACD ;(2)证明:平面ACD ⊥平面ADE ; (3)若AB =2,BC =1,23tan =∠EAB ,试求该几何体的体积V .20.(本题满分13分)边长为2的正方体1111D C B A A B C D -中,P 是棱CC 1上任一点,)20(<<m m CP =(1)是否存在满足条件的实数m ,使平面⊥1BPD 面11B BDD ?若存在,求出m 的值;否则,请说明理由. (2)(理)试确定直线AP 与平面D 1BP 所成的角正弦值关于m 的函数)(m f ,并求)1(f 的值.(文)是否存在实数m ,使得三棱锥PAC B -和四棱锥1111D C B A P -的体积相等?若存在,求出m 的值;否则,请说明理由.21.(本题满分14分)如图,直角梯形ABCD 中, 90=∠=∠BAD ABC ,AB =BC 且△ABC 的面积等于△ADC 面积的21.梯形ABCD 所在平面外有一点P ,满足P A ⊥平面ABCD ,PB PA =.(1)求证:平面PCD ⊥平面PAC ;(2)侧棱PA 上是否存在点E ,使得//BE 平面PCD ?若存在,指出点E 的位置并证明;若不存在,请说明理由. (3)(理)求二面角C PD A --的余弦值.2012届专题卷数学专题九答案与解析1.【命题立意】本题考查直线与平面垂直的定义及直线与平面平行的简单性质. 【思路点拨】首先根据直线与平面垂直的定义判断出直线与平面内所有直线的位置关系,再根据直线与平面的平行性质分析直线之间的关系即可.【答案】D 【解析】根据直线和平面垂直的定义可知,直线l 与平面α内的直线都垂直,可能是异面也可能相交,故A 、B 、C 都是错误的;对于D ,在平面α内一定存在直线n 与m 平行,且l ⊥n ,故l ⊥m ,所以D 是正确的. 2.【命题立意】本题借助三视图考查三棱锥体积的求解.【思路点拨】把三视图对应的几何体还原成三棱锥,根据棱锥的体积计算公式即可求解. 【答案】B 【解析】根据三视图可知,原几何体是一个三棱锥,且底面是边长为2的正三角形,高为1,故体积为331331=⨯⨯=V .3.(理)【命题立意】本题主要考查球的结构及截面特征.【思路点拨】先根据条件分析出截面的特点,再利用相应面积公式计算即可. 【答案】C 【解析】所作截面是一个半大圆,面积为ππ2421=⨯.(文)【命题立意】本题主要考查球的面积计算.【思路点拨】此半球的表面积是一个半球面的面积加上一个大圆的面积. 【答案】C 【解析】图中半球的面积为πππ1284=+. 4.(理)【命题立意】本题借助特殊的三棱锥考查线面垂直的判定、直线和平面所成角的求解.【思路点拨】根据条件易知,P A ⊥平面PBC ,故直线AE 与平面PBC 所成的角即为∠APE ,再在Rt △P AE 中利用三角函数的定义即可求解. 【答案】A 【解析】因为P A ⊥PB ,P A ⊥PC ,所以P A ⊥平面PBC ,所以,直线AE 与平面PBC 所成的角即为∠APE ,设P A =PB =PC =1,则2===BC AC AB ,因为E 为BC 中点,所以26=AE ,故33cos 22=-==∠AE PA AE AEPEAPE .(文)【命题立意】本题借助特殊的三棱锥考查线面垂直的判定、截面面积的求解.【思路点拨】先判断三角形的形状,再根据面积的表达式求最小值.【答案】C 【解析】因为三条侧棱两两垂直且长度为1,所以AP ⊥平面PBC ,∴AP ⊥PE ,PE PE AP S PAE 2121=⋅=∆,故只需PE 的长度最小,所以PE ⊥BC 时,22=PE ,面积取得最小值42.5.【命题立意】本题借助命题真假的判定考查直线与平面、平面与平面之间的平行与垂直关系.【思路点拨】先写出每个命题的逆命题,再逐个判断即可.要注意每个命题逆命题的形式. 【答案】C 【解析】选项C 的逆命题是β⊂b ,若αβ⊥,则a b ⊥显然不成立. 6.【命题立意】本题以圆锥为载体考查圆锥的侧面积计算及三视图的特征.【思路点拨】先根据圆锥的侧面积公式计算出圆锥底面圆的半径,进而可知主视图三角形各边的长即可求出面积.【答案】B 【解析】设圆锥底面半径为r ,则侧面积为ππ22==r S ,故1=r ,314=-=h ,而主视图是一个等腰三角形,面积为3=hr .7.【命题立意】本题以长方体为载体考查长方体与球的组合体的关系及简单的不等式性质应用.【思路点拨】先根据球的体积求出其半径,再根据长方体边长与球半径的关系建立方程,进而利用不等式性质求出表面积的最大值. 【答案】B 【解析】设球的半径为R ,则343323R ππ=,故R =2,设长方体三边长分别为a ,b ,c ,则16)2(2222==++R c b a ,表面积为2222222()32ab bc ca a b c ++≤++=.即长方体表面积的最大值为32. 8.【命题立意】本题借助三视图考查组合体的特征及圆柱体积的计算.【思路点拨】先根据三视图计算出组合体的体积最大值,再结合圆柱的体积公式,利用体积相等即可计算出水面上升的高度.【答案】B 【解析】由题知,底部这一层最多摆放9个正方体,上面一层最多摆放4个正方体.故组合体的体积最大值为13,设水面上升的高度为h ,则h21313)(ππ=,则131=h .9.【命题立意】本题考查直线与平面垂直、性质的应用及空间几何体体积的计算问题.【思路点拨】把直线与平面垂直的条件转化为直角三角形,再利用三角形内的关系计算出高P A 即可.【答案】B 【解析】因为P A ⊥平面ABCD ,所以BC ⊥P A ,又ABCD 是正方形,所以BC ⊥P A ,故BC ⊥平面P AB ,所以BC ⊥PB .322=-=BE BC CE ,在Rt △PBC 中,易得CP CE BC ⋅=2,故33392===CE BC CP ,在Rt △P AC 中,322=-=AC CP PA ,故四棱锥P -ABCD 的体积为933312=⨯⨯.10.【命题立意】本题以三棱锥为载体考查直线与平面垂直的判定与性质的应用.【思路点拨】先分析出轨迹图形的形状,再根据所给数据进行计算即可.【答案】A 【解析】由6====SD SC SB SA 可知S 在底面ABCD 内的射影是底面的中心,即AC 与BD 交点O .要使得PE 保持与AC 垂直,只需使得P 在AC 的垂面上运动,如图中的△EFG 即为P 的轨迹,且2621===SD FG EG ,221==BD EF ,△EFG 的面积22)21(2122=-⋅=EF FG EF S .11.【命题立意】本题考查三视图的识别及棱台体积的求解.【思路点拨】根据所给三视图分析出对应几何体的特征,再利用相关公式即可求出体积. 【答案】314【解析】这个空间几何体是一个一条侧棱垂直于底面的四棱台,这个四棱台的高是2,上底面是边长为1的正方形、下底面是边长为2的正方形,故其体积V =13×(12+12×22+22)×2=143.12.(理)【命题立意】本题考查二面角、直线与平面所成角之间的关系及空间想象能力. 【思路点拨】先找出二面角、直线与平面所成角对应的平面角,把题中的三个角转化到直角三角形内,进而可以找出他们的关系.【答案】βαθsin sin sin =【解析】如图,过A 作AO ⊥平面Q 垂足为O ,过O 作OC ⊥交线l 于点C ,连结AC ,易证AC ⊥l ,∴ACO ∠为二面角P -l-Q 的平面角,即α=∠ACO ,β=∠ABC ,因为AO ⊥平面Q ,所以ABO ∠为A 和平面Q 所成的角,所以θ=∠ABO .分别在Rt △AOB 、Rt △AOC 、Rt △ACB 中,有ABAO =θsin ,ACAO =αsin ,ABAC =βsin ,故βαθsin sin sin =.(文)【命题立意】本题考查类比推理及与球有关的组合体的计算问题,对空间想象能力要求较高.【思路点拨】根据组合体的主视图进行分析,分别计算出外接球和内切球半径即可. 【答案】3:1【解析】设该三棱锥的边长为a ,计算可得高为a 36,设外接球半径为R ,则根据球和三棱锥的对称性可知,球心在高所在的线段上,由勾股定理可得222)33()36(R a R a =+-,则a R 46=,故内切球半径为a a a r 1264636=-=,故外接球与内切球半径之比为3:1.13.【命题立意】本题考查圆锥侧面积与全面积的计算方法.【思路点拨】根据条件求出底面半径与母线的关系,再表示出全面积与侧面积即可.【答案】23【解析】设圆锥的底面半径为r ,母线长为l ,则由条件可得。
高三数学专项训练立体几何解答题二
高三数学专项训练:立体几何解答题(二)1.如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=︒,2,6AB AC ==,点D 在线段1BB 上,且113BD BB =,11AC AC E =.(Ⅰ)求证:直线DE 与平面ABC 不平行;(Ⅱ)设平面1ADC 与平面ABC 所成的锐二面角为θ,若cos θ=,求1AA 的长; (Ⅲ)在(Ⅱ)的条件下,设平面1ADC 平面ABC l =,求直线l 与DE 所成的角的余弦值.2.三棱锥A BCD -中,E 是BC 的中点,,AB AD BD DC =⊥(I )求证:AE BD ⊥;(II ,且二面角A BD C --为60︒,求AD 与面BCD 所成角的正弦值。
3.如图,已知四棱锥E ABCD -的底面为菱形,且60ABC ∠=o , (I )求证:平面EAB ⊥平面ABCD ;(II )求二面角A EC D --的余弦值.4. 已知斜三棱柱ABC —A 1B 1C 1的底面是正三角形,侧面ABB 1A 1是菱形,且160A AB ∠=︒,M 是A 1B 1的中点,.MB AC ⊥(1)求证:MB ⊥平面ABC ; (2)求二面角A 1—BB1—C 的余弦值。
5.在四棱锥ABCD P -中,⊥PA 平面ABCD ,底面ABCD 为矩形,)0(>==a aBC PA AB .(Ⅰ)当1a =时,求证:BD PC ⊥;(Ⅱ)若BC 边上有且只有一个点Q ,使得QD PQ ⊥,求此时二面角Q PD A --的余弦值.6.如图,直三棱柱111ABC A B C -中,AB AC ⊥,D E 、分别为11AA B C 、的中点,1DE BCC ⊥平面,二面角A B Q DCPA BD C --的大小为3π. (Ⅰ)证明://DE ABC 平面;(Ⅱ)求1B C 与平面BCD 所成的角的大小.7.如图,在矩形ABCD 中,点P 为矩形ABCD 所在平面外一点,PA ⊥平面ABCD ,点E 为PA 的中点。
【新课标】备战2012年高考数学专题复习测试题——立体几何(文科)
南宁外国语学校2012年高考第一轮复习专题素质测试题立体几何(文科)班别______学号______姓名_______评价______ (考试时间120分钟,满分150分,试题设计:隆光诚)一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确)1.(10全国Ⅱ)与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点( )A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个2.(09福建)设,m n 是平面α内的两条不同直线;12,l l 是平面β内的两条相交直线,则//αβ的一个充分而不必要条件是( )A. 1////m l βα且B. 12////m l l 且nC. ////m n ββ且D.2////m n l β且3.(08四川)直线l α⊂平面,经过α外一点A 与l α、都成30︒角的直线有且只有( ) A.1条 B.2条 C.3条 D.4条4.(08宁夏)已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥mB. AC ⊥mC. AB ∥βD. AC ⊥β5.(10湖北)用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b .其中真命题是( ) A. ①②B. ②③C. ①④D.③④6.(10新课标)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A.3πa 2B.6πa 2C.12πa 2D. 24πa 2 7.(08全国Ⅱ)正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积A .3B .6C .9D .188.(09全国Ⅱ) 已知正四棱柱1111ABCD A BC D -中,1AA =2AB ,E 为1AA 中点,则异面直线BE 与1CD 所形成角的余弦值为( )B. 15C.D. 359.(09北京)若正四棱柱1111ABCD A BC D -的底面边长为1,1AB 与底面ABCD 成60°角,则11AC到底面ABCD 的距离为 ( )A B . 1 C .D 10.(10全国Ⅰ)正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦值为( )A.B. C.2311.(09全国Ⅰ)已知二面角l αβ--为600 ,动点P 、Q 分别在面,αβ内,P 到β的距离Q到α的距离为P 、Q 两点之间距离的最小值为( )A. 2B.2C.D.412.(10北京)正方体1111ABCD-A B C D 的棱长为2,动点E 、F 在棱11A B 上.点Q 是CD 的中点,动点P 在棱AD 上,若EF=1,DP=x ,1A E=y(x ,y 大于零),则三棱锥P-EFQ 的体积( ) A.与x ,y 都有关 B.与x ,y 都无关 C.与x 有关,与y 无关 D.与y 有关,二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上)13.(10四川)二面角l αβ--的大小是60︒,,AB B l α⊂∈,AB 与l 所成的角为30︒,则AB 与平面β所成角的正弦值是________________.14.(10江西)长方体1111ABCD A B C D-的顶点均在同一个球面上,11AB AA ==,BC =A ,B 两点间的球面距离为 .15.(08全国Ⅰ)已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于 . 16.(09安徽)对于四面体ABCD ,下列命题正确的是_________(写出所有正确命题的编号).①相对棱AB 与CD 所在的直线是异面直线;②由顶点A 作四面体的高,其垂足是△BCD 的三条高线的交点; ③若分别作△ABC 和△ABD 的边AB 上的高,则这两条高的垂足重合; ④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤) 17.(本题满分10分,08安徽19)如图,在四棱锥O ABCD -中,底面ABCD 是边长为1的菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点.(Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离.18. (本题满分12分,09全国Ⅱ19)如图,直三棱柱111ABC A B C -中,AB AC ⊥,D E 、分别为11AA B C 、的中点,DE ⊥平面1BCC . (Ⅰ)证明:AB AC =;(Ⅱ)设二面角A BD C --为60°,求1B C 与平面BCD 所成的角的大小.19.(本题满分12分,09浙江19)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平面ABE 所成角的正弦值.ACB A 1B 1C 1DE20. (本题满分12分,10全国Ⅱ19)如图,直三棱柱ABC-A 1B 1C 1中,AC =BC ,AA 1=AB ,D 为BB 1的中点,E 为AB 1上的一点,AE=3EB 1. (Ⅰ)证明:DE 为异面直线AB 1与CD 的公垂线;(Ⅱ)设异面直线AB 1与CD 的夹角为45o ,求二面角A 1-AC 1-B 1的大小.21.(本题满分12分,10山东20)在如图所示的几何体中,四边形ABCD 是正方形,BCD A MA 平面⊥,PD ∥MA ,E GF 、、分别为MB 、PC PB 、的中点,且2MA PD AD ==.(Ⅰ)求证:平面PDC EFG 平面⊥;(Ⅱ)求三棱锥的体积之比与四棱锥ABCD P MAB P --.A A 1EB D B 1C C 122. 本题满分12分,(08全国Ⅰ18)四棱锥A - BCDE 中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,BC =2,CD =AB AC =. (Ⅰ)证明:AD ⊥CE ;(Ⅱ)设侧面ABC 为等边三角形,求二面角C - AD - E 的大小.C DB E A参考答案:一、选择题答题卡: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D BBDCBBCDDCC二、填空题 13.43. 14.3π. 15.23. 16.①④⑤三、解答题17.解:(Ⅰ)作AP CD ⊥于点P ,因为.22,1,45==∴=︒=∠PD AP AD AODP分别以AB 、AP 、AO 所在直线为,,xy z 轴建立空间直角坐标系A —xyz.则(0,0,0),(1,0,0),(0,((0,0,2),(0,0,1)222A B PD O M -, 设AB 与MD 所成的角为θ,(1,0,0),(1)AB MD ==--∵,1c o s ,23AB MDAB MD πθθ===⋅∴∴.∴AB 与MD 所成角的大小为3π.(Ⅱ))2,22,22(),0,0,1(--===,设平面OCD 的法向量为),,(z y x n =,由⎪⎩⎪⎨⎧=⋅=⋅00得⎪⎩⎪⎨⎧=-+-=0222220z y x x ,).2,4,0(=(1,0,2)OB =-∵,所以点B 到平面OCD 的距离为.322322||===n d . 18. 解:(Ⅰ)以A 为坐标原点,射线AB 为x 轴的正半轴,建立如图所示的直角坐标系A —xyz.设).,,1(),2,0,2(),,0,0(),2,0,0(),0,2,0(),0,0,2(11c b E c B c D c A b C B 则(b >0,c >0) 于是.2||,2||),0,2,2(),0,,1(b AC AB b b ==-== 由DE ⊥平面1BCC 知DE ⊥BC ,由DE BC =0得0222=+-b ,求得1=b ,所以AB AC =.(Ⅱ)设平面BCD 的法向量),,(z y x =, 又).0,2,2(),,0,2(-=-=c由⎪⎩⎪⎨⎧=⋅=⋅00得⎩⎨⎧=+-=+-002y x cz x ,令c x =, 则)2,,(c c =又平面ABD 的法向量)0,2,0(==, 由二面角C BD A --为60°知,︒>=<60,, 故214222||||,cos 2=+=⋅>=<c c n m ,求得2=c . 于是)22,2,2()2,2,2(1-==CB ,,设1B C 与平面BCD 所成的角为θ,则.30,2122424sin 1︒==⨯==θθ 所以C B 1与平面BCD 所成的角为30°.19.(Ⅰ)证明:在ABE ∆中,Q P ,分别是AB AE ,的中点,所以PQ 是ABE ∆的中位线,从而PQ ∥EB. 又因为//EB DC ,所以PQ ∥DC.zxy而⊄PQ 平面ACD ,DC ⊂平面ACD , 所以//PQ 平面ACD .(Ⅱ)在ABC ∆中,BQ AQ BC AC ===,2,120ACB ∠=,所以AB CQ ⊥,3,1===BQ AQ CQ .如图所示的空间直角坐标系Q —xyz ,则)1,1,3(--=AD , 面ABE 的法向量为).0,1,0(== 记AD 与平面ABE 所成的角为θ, 所以.5551sin ===θ 20.解:(Ⅰ)以B 为坐标原点,射线BA 为x 轴正半轴,建立如图所示的空间直角坐标系B xyz -.设)0,3,1(),0,2,0(),0,4,0(),0,0,4(,411E D B A AB A A 则==.又设),0,4,4(),0,1,1(),,0,2(1B c C =-==则因为0,01=⋅=⋅B ,所以.,1B ⊥⊥即1DE B A DE ⊥⊥,所以DE 为异面直线1AB 与CD 的公垂线.(Ⅱ)因为1,B A DC <>等于异面直线1AB 与CD 的夹角,故11cos 45B A DC B A DC =,即22824162⨯+⨯=c . 解得22=c ,故).22,4,2(1C又).22,4,2(.),0,4,0(111-===AC BB设面11C AA 、面11C AB 的法向量分别为).,,(),,,(c b a z y x ==由⎪⎩⎪⎨⎧=⋅=⋅0011AA AC 得⎩⎨⎧==++-0022y z y x ,).1,0,2(=由⎪⎩⎪⎨⎧=⋅=⋅0011B AC 得⎩⎨⎧=-=++-022b a c b a ,).1,2,2(-=.1515531||||,cos =⨯=⋅>=<∴n m 由于,m n <>等于二面角A 1—AC 1—B 1的平面角, 所以二面角A 1—AC 1—B 1的大小为. 21.(Ⅰ)证明:由已知ABCD,PD MA,MA ⊥平面∥.ABCD PD 平面⊥∴ 又BC ABCD ⊂平面,所以PD DC ⊥. 因为四边形ABCD 为正方形,所以BC DC ⊥. 又PD DC=D ⋂,因此BC PDC ⊥平面. 在△PBC 中,因为G F 、分别为PB PC 、的中点, 所以GF ∥BC. 因此GF PDC ⊥平面.又GF EFG ⊂平面,所以EFG PDC ⊥平面平面.(Ⅱ)解:因为PD ABCD ⊥平面,四边形ABCD 为正方形,不妨设MA=1,则PD =A D =2,所以P-ABCD ABCD 1V =S 3正方形·8PD=3.由于DA MAB ⊥面,且PD MA ∥,所以DA 即为点P 到平面MAB 的距离.三棱锥32221213131=⨯⨯⨯⨯=⋅=∆-DA S V MAB MAB P .所以 4:1:=--ABCD P MAB P V V .22. (Ⅰ)证明:作AO ⊥BC ,垂足为O ,由题设知AO ⊥底面BCDE ,且O 为BC 的中点,以O 为坐标原点,射线OC 为x设A (0,0,t ),由已知条件有C(1,0,0), D(1,2,0), E(-1, 2),2,1(),0,2,2(t AD CE -=-=.所以0=⋅,得AD ⊥CE.(Ⅱ)△ABC 为等边三角形,则)3,2,1(),3,0,0(-=AD A ,).00,2(),0,2,0(==设面ACD 、面AED 的法向量分别为).,,(),,,(c b a z y x ==由⎪⎩⎪⎨⎧=⋅=⋅00CD m AD m 得⎪⎩⎪⎨⎧==-+02032y z y x ,).1,0,3(=m 由⎪⎩⎪⎨⎧=⋅=⋅00ED n 得⎩⎨⎧==-+02032a c b a ,).2,3,0(=1010522||||,cos =⨯=⋅>=<∴n m 故二面角C —AD —E 为1010arccos-π..精品资料。
2012年全国高考(新课标-)文科数学试卷及参考答案-2
2012年普通高等学校招生全国统一考试 (新课标文科数学试卷及参考答案)第Ⅰ卷一、选择题1.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ 2.复数z =-3+i2+i的共轭复数是 ( )(A )2+i (B )2-i (C )-1+i (D )-1-i 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 ( )(A )-1 (B )0 (C )12(D )14.设F 1、F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角E 的离心率为( )(A )12 (B )23 (C )34 (D )455.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值是( )(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)6.如果执行右边的程序框图,输入正整数N(N ≥2)和数a 1,a 2,…,a N ,输出A,B ,则( ) (A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的7.如图,网格纸上小正方形的边长为1,粗线画出的何体的三视图,则此几何体的体积为( ) (A )6 (B )9 (C )12 (D )188.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )(A )6π (B )43π (C )46π (D )63π9.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x 条相邻的对称轴,则φ=( )(A )π4 (B )π3 (C )π2 (D )3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( )(A ) 2 (B )2 2 (C )4 (D )811.当0<x ≤12时,4x<log a x ,则a 的取值范围是 ( )(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 12.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ) (A )3690 (B )3660 (C )1845 (D )1830 第Ⅱ卷二.填空题13.曲线y =x (3ln x +1)在点(1,1)处的切线方程为________14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______ 15.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=16.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M+m =____三、解答题17.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA (1) 求A(2) 若a =2,△ABC 的面积为3,求b ,c 18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。
2012年(全国卷II)(含答案)高考文科数学
A.y=x2-1(x≥0)
B.y=x2-1(x≥1)
C.y=x2+1(x≥0)
D.y=x2+1(x≥1)
3.若函数 f (x)
sin x 3
(φ∈[0,2π])是偶函数,则 φ=(
)
A. π 2
B.
2π 3
C.
3π 2
D.
5π 3
4.已知 α 为第二象限角,sin
3 5
,则
sin2α=(
)
A. 24 25
22.已知抛物线 C:y=(x+1) 与圆 M:(x-1) +(y- 1 ) =r (r>0)有一个
2
2
22 2
公共点 A,且在 A 处两曲线的切线为同一直线 l.
(1)求 r;
(2)设 m,n 是异于 l 且与 C 及 M 都相切的两条直线,m,n 的交点为 D,求
D 到 l 的距离.
4
2012年普通高等学校招生全国统一考试(2 全国卷)
|PF1|=2|PF2|,则 cos∠F1PF2=(
A. 1 4
B.
3 5
)
C.
3 4
D.
4 5
1
11.已知 x=ln π,y=log52, z=e 2 ,则( )
A.x<y<z
B.z<x<y
C.z<y<x
D.y<z<x
12.正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上,AE=
BF=
1 3
.动点
P
从
E
出发沿直线向
F
运动,每当碰到正方形的边时反弹,反弹
时反射角等于入射角.当点 P 第一次碰到 E 时,P 与正方形的边碰撞的次数为
2012年高考文科立体几何(无错版)
立体几何(一)1.(安徽12)某几何体的三视图如图所示,该几何体的表面积是 9212(25)4(2544922S =⨯⨯+⨯++++⨯=2.(广东6) 某几何体的三视图如图1所示,它的体积为( C )()A 12π ()B 45π ()C π57 ()D π81221353573V πππ=⨯⨯+⨯=3.(湖北4)已知某几何体的三视图如图所示,则该几何体的体积为( B )A .8π3 B .3π C .10π3D .6π 4.(福建)如图,在长方体1111D C B A ABCD -中,11==AD AA ,E 为CD 中点。
(Ⅰ)求证:11AD E B ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得//DP 平面AE B 1?若存在,求AP 的长;若不存在,说明理由。
(Ⅲ)若二面角11A E B A --的大小为030,求AB 的长。
解:Ⅰ)长方体1111D C B A ABCD -中,11==AD AA 得:1111111111,,AD A D AD A B A D A B A A D ⊥⊥=⇔⊥ 面11A B CD1B E ⊂面11A B CD 11B E AD ⇒⊥(Ⅱ)取1AA 的中点为P ,1AB 中点为Q ,连接PQ侧(左)视图 正(主)视图 45 俯视图42 俯视图侧视图正视图4在11AA B ∆中,111111//,////////22PQ A B DE A B PQ DE PD QE PD ⇒⇒⇒面AE B 1 此时11122AP AA == (Ⅲ)设11A D AD O = ,连接AO ,过点O 作1OH B E ⊥于点H ,连接AH1AO ⊥面11A B CD ,1O H B E ⊥1A H B E⇒⊥ 得:AHO ∠是二面角11A E B A --的平面角30AHO ο⇒∠=在Rt AOH ∆中,30,90,2AHO AOH AH OH οο∠=∠==⇒=在矩形11A B CD 中,1,CD x A D ==11112222222228B OE x xS x ∆=--⨯-⨯=122x =⇔= 得:2AB =5.(湖南3)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( D )6.(辽宁13)一个几何体的三视图如图所示,则该几何体的表面积为 387.(辽宁16)已知正三棱锥-P ABC ,点,,,P A B C 的球面上,若,,PA PB PC 两两相互垂直,则球心到截面ABC 的距离为38.(江苏7)如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 6 cm 3。
立体几何文科汇编(答案)
……13 分
如图所示,在正方体 ABCD A1B1C1D1 中, E 是棱 DD1 的中点. (Ⅰ)证明:平面 ADC1B1 平面 A1 BE ; (Ⅱ)在棱 C1 D1 上是否存在一点 F , 使 B1 F //平面 A1 BE ?证明你的结论. B B1 A1 C1 A C D1
E D
【答案】解: (Ⅰ)证明: 因为多面体 ABCD A1 B1C1 D1 为正方体, 所以 B1C1 面ABB1 A1 ; 因为 A1B 面ABB1 A1 ,所以 B1C1 A1B .
…………8 分 ……9 分
1 x (4 x) 2 [ ] 2. 2 2
1 1 SEFC NE x(4 x) . 3 2
……11 分 ………13 分
当且仅当 x 4 x ,即 x 2 时,四面体 NFEC 的体积最大. ………14 分 【2012 北京市门头沟区一模文】17. (本小题满 分 13 分) 已知边长为 2 的正方形 ABCD 所在平面外有一 点 P, PA 平面 ABCD,且 PA 2 ,E 是 PC 上的一 点. (I)求证:AB//平面 PCD ; (II)求证:平面 BDE 平面 PAC ; (III)线段 PE 为多长时, PC 平面 BDE ? B
AB BC , AB BB1 , BB1 BC B
∴ AB ⊥平面 B1 BCC1 ………………………3 分
B1C 平面 B1 BCC1
∴ B1C AB ,即 B1C GB …………………5 分 又 BN BG B ∴ B1C 平面 BNG …………………………………6 分
点, G 是棱 AB 上的动点. (Ⅰ)求证: B1C 平面 BNG ; (Ⅱ)若 CG //平面 AB1 M ,试确定 G 点的位置,并给出证明. 【答案】(I) 证明:∵在直三棱柱 ABC A1B1C1 中, BC CC1 ,点 N 是 B1C 的中点, ∴ BN B1C …………………………1 分
最新高考文科数学立体几何_(答案详解)汇总
2012高考文科数学立体几何_(答案详解)选择题1.(12年四川卷)如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面 α成45角的平面与半球面相交,所得交线上 到平面α的距离最大的点为B ,该交线上的 一点P 满足60BOP ∠=,则A 、P 两点 间的球面距离为 ( ) A. 2arccos4R B. 4R π C. 3arccos 3R D. 3Rπ 2.(12年广东卷)某几何体的三视图如图1所示,它的体积为( )A. 72πB. 48πC. 30πD. 24π3.(12年重庆卷)设四面体的六条棱的长分别为1,1,1,1,2和a 且长为a 的棱与长为2的棱异面,则a 的取值范围是( ) A. (0,2) B. (0,3) C. (1,2) D. (1,3)4.(12年浙江卷)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A.1cm 3B.2cm 3C.3cm 3D.6cm 3αCAODBP 图1 1 A P 1E a F1 1 25.(12年浙江卷)设l 是直线,αβ,是两个不同的平面 ( ) A.若l ∥α,l ∥β,则α∥β B. 若l ∥α,l ⊥β,则α⊥β C. 若α⊥β,l ⊥α,则l ⊥β D. 若α⊥β, l ∥α,则l ⊥β6.(12年新课标卷)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为( )A .6B .9C .12D .187. 某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .2865+B .3065+C .56125+D . 60125+ 8.(12年福建卷)一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱9.(12年湖南卷)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能...是( )10.(12年江西卷)若一个几何体的三视图如图所示,则此几何体的体积为 ( )A .112 B.5 C.4D. 9211.(12年大纲卷)已知正四棱柱1111ABCD A B C D -中,2AB =,122CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为( ) A .2 B .3 C .2 D .1 12.(12年陕西卷)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为( )1 1 左视图1 1 1 主视图 俯视图 11 1填空题1.(12年湖北卷)已知某几何体的三视图如图所示,则该几何体的体积为 .侧视图正视图俯视图2.(12年四川卷)如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD ,1CC 的中点,则异面直线1A M 与DN 所成的角的大小是____________.3.(12年山东卷)如图,正方体1111D C B A ABCD -的棱长为1,E 为线段C B 1上的一点,则三棱锥1DED A -的体积为___________ .4.(12年安徽卷)某几何体的三视图如图所示,该几何体的体积是_____.5.(12年江苏卷)如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 cm 3.NA 1A BCC 1A 1 侧(左)视图正(主)视图4俯视图 5426.(12年辽宁卷)一个几何体的三视图如图所示,则该几何体的体积为_______________.7.(12年辽宁卷)已知点P A B C D ,,,,是球O 表面上的点,PA ABCD ⊥平面,四边形ABCD 是边长为23.若6PA =OAB∆的面积为______________.8.(12年大纲卷)已知正方形1111ABCD A B C D -中,,E F 分别为1BB ,1CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为 .9.(12年上海卷)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为 .10.(12年天津卷)一个几何体的三视图如图所示(单位:m ),则该几何体的体积 3m .12120.50.52.(12年山东卷)(本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .3.(12年广东卷)(本小题满分13分)如图所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高. (1)证明:PH ⊥平面ABCD ;(2)若1,2,1PH AD FC ===,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB .6.(12年新课标卷)(本小题满分12分) 如图,三棱柱111ABC A B C -中,侧棱垂直底面,o 90ACB ∠=,112AC BC AA ==,D 是棱1AA 的 中点.(I) 证明:平面BDC ⊥平面1BDCG E AB FCPD H(Ⅱ)平面1BDC 分此棱柱为两部分,求这两部分体积的比.选择题1.【答案】A【分析】由已知可知,AOP CBD ⊥面面,∴cos cos cos AOP AOB BOP =∠∠∠,带入数据得12cos ==224AOP ∠,arccos4AP R ∴=. 2. 【答案】C【分析】几何体是半球与圆锥叠加而成它的体积为32141π3π330π233V =⨯⨯+⨯⨯3.【答案】:A【分析】:如图所示,取,E F 分别为,PC AB 的中点,依题意可得PB BC ⊥,所以BE ==.在BEF ∆中,BF BE <,所以2AB BF =<4. 【答案】C【分析】由题意判断出,底面是一个直角三角形,两个直角边分别为1和2,整个棱锥的高由侧视图可得为3,所以三棱锥的体积为11123132⨯⨯⨯⨯=.5.【答案】B【分析】利用排除法可得选项B 是正确的,∵l ∥α,l ⊥β,则α⊥β.如选项A :l ∥α,l ∥β时,α⊥β或α∥β;选项C :若α⊥β,l ⊥α时,l ∥β或l β⊂;选项D :若α⊥β,l ∥α时,l ∥β或l ⊥β.6. 【答案】B【分析】由三视图知,其对应几何体为三棱锥,其底面为一边长为6,底边上高为3的等腰三角形,棱锥的高为3,故其体积为 1163332⨯⨯⨯⨯=9,故选B. 7. 【答案】B【分析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:=10=10=10S S S S 后右左底,,,30S =+,故选B .8. 【答案】D【分析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆.9. 【答案】D【分析】本题是组合体的三视图问题,由几何体的正视图和侧视图均相同,原图下面部分应为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A ,B ,C 都可能是该几何体的俯视图,D 不可能是该几何体的俯视图,因为它的正视图上面部分应为中间有条虚线的矩形.. 10. 【答案】C 【分析】通过观察几何体的三视图可知,该几何体是一个底面为六边形(2条对边长为1,其余4),高为1的直棱柱.所以该几何体的体积为112122142V sh ⎛⎫==⨯+⨯⨯⨯⨯= ⎪⎝⎭,故选D.11. 【答案】D【分析】因为底面的边长为2,高为,AC BD ,得到交点为O ,连接EO ,1//EO AC ,则点1C 到平面BDE 的距离等于C 到平面BDE 的距离,过点C 作CH OE ⊥,则CH 即为所求,在三角形OCE 中,利用等面积法,可得1CH =,故选答案D. 12.【答案】B【分析】显然从左边看到的是一个正方形,因为割线1AD 可见,所以用实线表示;而割线1B C不可见,所以用虚线表示.故选B .填空题1. 【答案】12π【分析】该几何体的左中右均为圆柱体,其中左右圆柱体全等,是底面半径为2,高为1的圆柱体;中间部分是底面半径为1,高为4的圆柱体,所以所求的体积为:22π212π14=12πV =⨯⨯⨯+⨯⨯.2. 【答案】o 90【分析】方法一:连接D 1M ,易得DN ⊥A 1D 1 ,DN ⊥D 1M ,所以,DN ⊥平面A 1MD 1,又A 1M ⊂平面A 1MD 1,所以,DN ⊥A 1M ,故夹角为o 90方法二:以D 为原点,分别以DA , DC , DD 1为x , y , z 轴,建立空间直角坐标系D —xyz .设正方体边长为2,则D (0,0,0),N (0,2,1),M (0,1,0),A 1(2,0,2)故1(0,2,1)(2,1,2)DN MA ==-,所以, 111cos ,0DN MA DN MA DN MA <>==,故DN ⊥A 1M ,所以夹角为o 90.3. 【答案】61 【分析】求1DED A -的体积,显然为定值,也就是说三棱锥的底面面积与三棱锥的高都为定值,因此,我们需要找一个底面为定值的三角形,三角形1ADD 的面积为21(为定值),而E 点到底面1ADD 的高恰为正方体的高为1(为定值),因此体积为61. 4. 【答案】56【分析】该几何体是底面是直角梯形,高为4的直四棱柱,几何体的的体积是:()12544562V =⨯+⨯⨯= 5. 【答案】6【分析】∵长方体底面ABCD 是正方形 ,∴△ABD 中BD ,BD 边上的高是(它也是四棱锥11A BB D D -的高)∴四棱锥11A BB D D -的体积为123⨯ 6. 【答案】12π+【分析】由三视图可知该几何体为一个长方体和一个等高的圆柱的组合体,其中长方体的长、宽、高分别为4、3、1,圆柱的底面直径为2,高位1,所以该几何体的体积为3411112ππ⨯⨯+⨯⨯=+7. 【答案】【分析】点P A B C D O 、、、、为球内接长方体的顶点,14O OAB ∴∆球心为该长方体对角线的中点,的面积是该长方体对角面面积的, 123,26,236334OAB AB PA S ∆==∴=⨯⨯= 8. 【答案】35【分析】首先根据已知条件,连接DF ,则由//DF AE 可知1DFD ∠或其补角为异面直线AE 与1D F 所成的角,设正方体的棱长为2,则可以求解得到115,2DF D F DD ===,再由余弦定理可得22211115543cos 2255D F DF D D DFD D F DF +-+-∠===⋅⨯. 9. 【答案】π6【分析】根据该圆柱的底面周长得底面圆的半径为1=r ,所以该圆柱的表面积为:22π2π4π2π6πS rh r =+=+=.10. 【答案】30【分析】由三视图可知这是一个下面是个长方体,上面是个平躺着的底面为直角梯形的直四棱柱构成的组合体.长方体的体积为24243=⨯⨯,直四棱柱的体积是6412)21(=⨯⨯+,所以几何体的总体积为30.2. 【证明】(Ⅰ)设BD 的中点为O ,连接,OC OE ,则由BC CD CO BD =知垂直又CE BD ⊥,所以BD OCE ⊥平面所以BD OE ⊥,即OD 是BE 的垂直平分线BE DE =所以 (Ⅱ)取AB 的中点为N ,连接MN ,DN因为M 是AE 的中点,,所以//MN BE因为ABD ∆是等边三角形,所以DN ⊥AB由o o 12030BCD CBD ∠=∠=知,所以o 90ABC ∠=,即BC ⊥AB所以ND //BC所以平面MND //平面BEC ,故DM //平面BECON M3. 【解】(1)AB ⊥平面PAD ,PH ⊂面PAD PH AB ⇒⊥ 又,PH AD AD AB A PH ⊥=⇒⊥面ABCD(2)E 是PB 中点⇒点E 到面BCF 的距离1122h PH ==三棱锥E BCF -的体积11111133262BCF V S h FC AD h ∆=⨯=⨯⨯⨯⨯=⨯= (3)过D 作DG PA G ⊥于,连接EG ,易得EG PAD ⊥面 由AB ⊥平面PAD ⇒面PAD ⊥面PAB DG ⇒⊥面PAB E PB EG PA AB PA 是的中点,⊥,⊥11//,//////22EG AB DF AB EG DF DG EF ⇒⇒⇒ 得:EF ⊥平面PAB6. 【解】(Ⅰ)由题设知1BC CC ⊥,BC AC ⊥,1CC AC C =∩,∴BC ⊥面11ACC A又∵1DC ⊂面11ACC A ,∴1DC BC ⊥,由题设知01145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥, 又∵DC BC C =∩,∴1DC ⊥面BDC , ∵1DC ⊂面1BDC , ∴面BDC ⊥面1BDC ;(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132+⨯⨯⨯=12, 由三棱柱111ABC A B C -的体积V =1,∴11():V V V -=1:1,∴平面1BDC 分此棱柱为两部分体积之比为1:1.。
2012年立体几何高考真题(文科)
2012年高考(文科)数学立体几何汇编1.(2012安徽)平面图形111A B B A C C 如图4所示,其中11BB C C 是矩形,12,4B C B B ==,2AB AC ==,11115A B AC ==。
现将该平面图形分别沿BC 和11B C 折叠,使ABC ∆与111A B C ∆所在平面都与平面11BB C C 垂直,再分别连接111,,AA BA CA ,得到如图2所示的空间图形,对此空间图形解答下列问题。
(Ⅰ)证明:1AA BC ⊥;(Ⅱ)求1AA 的长;(Ⅲ)求二面角1A BC A --的余弦值。
2.(2012江苏)如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .1A1CFDCAE1B3.(2012安徽)如图,长方体1111D C B A ABCD -中,底面1111D C B A 是正方形,O 是BD 的中点,E 是棱1AA 上任意一点。
(Ⅰ)证明:BD 1EC ⊥ ;(Ⅱ)如果AB =2,AE =2,1EC OE ⊥,,求1AA 的长。
4.(2012北京)如图1,在Rt ABC ∆中,90C ∠=,,D E 分别为,AC AB 的中点,点F 为线段CD 上的一点,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A F CD ⊥,如图2。
(Ⅰ)求证://DE 平面1ACB ;(Ⅱ)求证:1A F BE ⊥; (Ⅲ)线段1A B 上是否存在点Q ,使1AC ⊥平面DEQ ?5.(2012福建)如图,在长方体1111D C B A ABCD -中,2,11===AA AD AB ,M 为棱1DD 上的一点。
(I )求三棱锥1MCC A -的体积;(II )当MC M A +1取得最小值时,求证:⊥M B 1平面MAC 。
2012高考文科数学立体几何_(答案详解)
选择题1.(12年四川卷)如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45 角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的 一点P 满足60BOP ∠= ,则A 、P 两点 间的球面距离为 ( )A. arccos4R B. 4R πC. arccos 3RD. 3R π 2.(12年广东卷)某几何体的三视图如图1所示,它的体积为( )A. 72πB. 48πC. 30πD. 24π3.(12年重庆卷)设四面体的六条棱的长分别为1,1,1,1和a 且长为a的棱与长为的棱异面,则a 的取值范围是( )A.B.C.D.4.(12年浙江卷)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( ) A.1cm 3 B.2cm 3 C.3cm 3 D.6cm3图1C5.(12年浙江卷)设l 是直线,αβ,是两个不同的平面 ( )A.若l ∥α,l ∥β,则α∥βB. 若l ∥α,l ⊥β,则α⊥βC. 若α⊥β,l ⊥α,则l ⊥βD. 若α⊥β, l ∥α,则l ⊥β6.(12年新课标卷)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为( )A .6B .9C .12D .187. 某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+ B.30+ C.56+ D .60+ 8.(12年福建卷)一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱 9.(12年湖南卷)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能...是( )10.(12年江西卷)若一个几何体的三视图如图所示,则此几何体的体积为 ( )A B C DA .112B.5C.4D. 9211.(12年大纲卷)已知正四棱柱1111ABCD A B C D -中,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为( )A .2BCD .1 12.(12年陕西卷)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为( )填空题1.(12年湖北卷)已知某几何体的三视图如图所示,则该几何体的体积为 .左视图主视图俯视图侧视图正视图俯视图2.(12年四川卷)如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD ,1CC 的中点,则异面直线1A M 与DN 所成的角的大小是____________.3.(12年山东卷)如图,正方体1111D C B A ABCD -的棱长为1,E 为线段C B 1上的一点,则三棱锥1DED A -的体积为___________ .4.(12年安徽卷)某几何体的三视图如图所示,该几何体的体积是_____.5.(12年江苏卷)如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 cm 3.NA 1A B CC 1 A 1 侧(左)视图正(主)视图 4俯视图 5 4 26.(12年辽宁卷)一个几何体的三视图如图所示,则该几何体的体积为_______________.7.(12年辽宁卷)已知点P A B C D ,,,,是球O 表面上的点,PA ABCD ⊥平面,四边形ABCD是边长为.若PA =,则OAB ∆的面积为______________. 8.(12年大纲卷)已知正方形1111ABCD A B C D -中,,E F 分别为1BB ,1CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为 .9.(12年上海卷)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为 . 10.(12年天津卷)一个几何体的三视图如图所示(单位:m ),则该几何体的体积 3m.2.(12年山东卷)(本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .3.(12年广东卷)(本小题满分13分)如图所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若1,1PH AD FC ===,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB . 6.(12年新课标卷)(本小题满分12分) 如图,三棱柱111ABC A B C -中,侧棱垂直底面,o 90ACB ∠=,112AC BC AA ==,D 是棱1AA 的 中点.(I) 证明:平面BDC ⊥平面1BDC(Ⅱ)平面1BDC 分此棱柱为两部分,求这两部分体积的比.选择题1.【答案】A【分析】由已知可知,AOP CBD ⊥面面,∴cos cos cos AOP AOB BOP = ∠∠∠,带入数据得1cos ==224AOP ∠,arccos4AP R ∴=. 2. 【答案】C【分析】几何体是半球与圆锥叠加而成它的体积为32141π3π330π233V =⨯⨯+⨯⨯= 3.【答案】:A【分析】:如图所示,取,E F 分别为,PC AB 的中点,依题意可得PB BC ⊥,所以GEAB FCPD HBE ==.在BEF ∆中,BF BE <,所以2AB BF =<4. 【答案】C【分析】由题意判断出,底面是一个直角三角形,两个直角边分别为1和2,整个棱锥的高由侧视图可得为3,所以三棱锥的体积为11123132⨯⨯⨯⨯=. 5.【答案】B【分析】利用排除法可得选项B 是正确的,∵l ∥α,l ⊥β,则α⊥β.如选项A :l ∥α,l ∥β时,α⊥β或α∥β;选项C :若α⊥β,l ⊥α时,l ∥β或l β⊂;选项D :若α⊥β,l ∥α时,l ∥β或l ⊥β.6. 【答案】B【分析】由三视图知,其对应几何体为三棱锥,其底面为一边长为6,底边上高为3的等腰三角形,棱锥的高为3,故其体积为1163332⨯⨯⨯⨯=9,故选B. 7. 【答案】B 【分析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:=10=10=10S S S S 后右左底,,,因此该几何体表面积30S =+,故选B .8. 【答案】D【分析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆.9. 【答案】D【分析】本题是组合体的三视图问题,由几何体的正视图和侧视图均相同,原图下面部分应为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A ,B ,C 都可能是该几何体的俯视图,D 不可能是该几何体的俯视图,因为它的正视图上面部分应为中间有条虚线的矩形..10. 【答案】C【分析】通过观察几何体的三视图可知,该几何体是一个底面为六边形(2条对边长为1,其余4,高为1的直棱柱.所以该几何体的体积为112122142V sh ⎛⎫==⨯+⨯⨯⨯⨯= ⎪⎝⎭,故选D.11. 【答案】D【分析】因为底面的边长为2,高为,AC BD ,得到交点为O ,连接EO ,1//EO AC ,则点1C 到平面BDE 的距离等于C 到平面BDE 的距离,过点C 作CH OE ⊥,则CH 即为所求,在三角形OCE 中,利用等面积法,可得1CH =,故选答案D. 12.【答案】B【分析】显然从左边看到的是一个正方形,因为割线1AD 可见,所以用实线表示;而割线1B C 不可见,所以用虚线表示.故选B .填空题1. 【答案】12π【分析】该几何体的左中右均为圆柱体,其中左右圆柱体全等,是底面半径为2,高为1的 圆柱体;中间部分是底面半径为1,高为4的圆柱体,所以所求的体积为:22π212π14=12πV =⨯⨯⨯+⨯⨯.2. 【答案】o 90【分析】方法一:连接D 1M ,易得DN ⊥A 1D 1 ,DN ⊥D 1M ,所以,DN ⊥平面A 1MD 1,又A 1M ⊂平面A 1MD 1,所以,DN ⊥A 1M ,故夹角为o 90 方法二:以D 为原点,分别以DA , DC , DD 1为x , y , z 轴,建立空间直角坐标系D —xyz .设正方体边长为2,则D (0,0,0),N (0,2,1),M (0,1,0),A 1(2,0,2)故1(0,2,1)(2,1,2)DN MA ==- , 所以, 111cos ,0DN MA DN MA DN MA <>==,故DN ⊥A 1M ,所以夹角为o 90.3. 【答案】61 【分析】求1DED A -的体积,显然为定值,也就是说三棱锥的底面面积与三棱锥的高都为定值,因此,我们需要找一个底面为定值的三角形,三角形1ADD 的面积为21(为定值),而E 点到底面1ADD 的高恰为正方体的高为1(为定值),因此体积为61. 4. 【答案】56 【分析】该几何体是底面是直角梯形,高为4的直四棱柱,几何体的的体积是:()12544562V =⨯+⨯⨯=5. 【答案】6【分析】∵长方体底面A B C D 是正方形 ,∴△ABD 中BD cm ,BD 边上的高(它也是四棱锥11A BB D D -的高)∴四棱锥11A BB D D -的体积为123⨯6. 【答案】12π+【分析】由三视图可知该几何体为一个长方体和一个等高的圆柱的组合体,其中长方体的长、宽、高分别为4、3、1,圆柱的底面直径为2,高位1,所以该几何体的体积为3411112ππ⨯⨯+⨯⨯=+7.【答案】【分析】点P A B C D O 、、、、为球内接长方体的顶点,14O OAB ∴∆球心为该长方体对角线的中点,的面积是该长方体对角面面积的,164OAB AB PA S ∆===⨯=8. 【答案】35【分析】首先根据已知条件,连接DF ,则由//DF AE 可知1DFD ∠或其补角为异面直线AE 与1D F 所成的角,设正方体的棱长为2,则可以求解得到112DF D F DD ===,再由余弦定理可得22211115543cos 2255D F DF D D DFD D F DF +-+-∠===⋅⨯. 9. 【答案】π6【分析】根据该圆柱的底面周长得底面圆的半径为1=r ,所以该圆柱的表面积为:22π2π4π2π6πS rh r =+=+=.10. 【答案】30【分析】由三视图可知这是一个下面是个长方体,上面是个平躺着的底面为直角梯形的直四棱柱构成的组合体.长方体的体积为24243=⨯⨯,直四棱柱的体积是6412)21(=⨯⨯+,所以几何体的总体积为30.2. 【证明】(Ⅰ)设BD 的中点为O ,连接,OC OE , 则由BC CD CO BD =知垂直 又CE BD ⊥,所以BD OCE ⊥平面 所以BD OE ⊥,即OD 是BE 的垂直平分线BE DE =所以(Ⅱ)取AB 的中点为N ,连接MN ,DN 因为M 是AE 的中点,,所以//MN BEO NM因为ABD ∆是等边三角形,所以DN ⊥AB由o o 12030BCD CBD ∠=∠=知,所以o 90ABC ∠=,即BC ⊥AB 所以ND //BC所以平面MND //平面BEC ,故DM //平面BEC3. 【解】(1)AB ⊥平面PAD ,PH ⊂面PAD PH AB ⇒⊥ 又,PH AD AD AB A PH ⊥=⇒⊥ 面ABCD (2)E 是PB 中点⇒点E 到面BCF 的距离1122h PH ==三棱锥E BCF -的体积11111133262BCF V S h FC AD h ∆=⨯=⨯⨯⨯⨯=⨯=(3)过D 作DG PA G ⊥于,连接EG ,易得EG PAD ⊥面 由AB ⊥平面PAD ⇒面PAD ⊥面PAB DG ⇒⊥面PAB E P B E GP A A B P是的中点,⊥,⊥ 11//,//////22EG AB DF AB EG DF DG EF ⇒⇒⇒ 得:EF ⊥平面PAB6. 【解】(Ⅰ)由题设知1BC CC ⊥,BC AC ⊥,1CC AC C =∩,∴BC ⊥面11ACC A又∵1DC ⊂面11ACC A ,∴1DC BC ⊥,由题设知01145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥, 又∵DC BC C =∩,∴1DC ⊥面BDC , ∵1DC ⊂面1BDC , ∴面BDC ⊥面1BDC ;(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132+⨯⨯⨯=12,由三棱柱111ABC A B C -的体积V =1,∴11():V V V -=1:1,∴平面1BDC 分此棱柱为两部分体积之比为1:1.。
2012年高考题立体几何
2012年高考题1.[2012·陕西卷] (1)如图所示,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证法一:如下图,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λb +μn ,则a·c =a ·(λb +μn )=λ(a·b )+μ(a·n ),因为a ⊥b ,所以a·b =0,又因为a π,n ⊥π,所以a·n =0,故a·c =0,从而a ⊥c .证法二:如图,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P 作PO ⊥π,垂足为O ,则O ∈c .∵PO ⊥π,a π,∴直线PO ⊥a ,又a ⊥b ,b 平面P AO ,PO ∩b =P , ∴a ⊥平面P AO ,又c 平面P AO ,∴a ⊥c .(2)逆命题为:a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.2.[2012·全国卷] 如图,四棱锥P -ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.解:方法一:(1)因为底面ABCD 为菱形,所以BD ⊥AC ,又P A ⊥底面ABCD ,所以PC ⊥BD .设AC ∩BD =F ,连结EF .因为AC =22,P A =2,PE =2EC ,故PC =23,EC =233,FC =2,从而PC FC =6,AC EC = 6.因为PC FC =AC EC,∠FCE =∠PCA ,所以△FCE ∽△PCA ,∠FEC =∠P AC =90°,由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED .(2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC .又平面P AB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC .BC 与平面P AB 内两条相交直线P A ,AG 都垂直,故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,PD =P A 2+AD 2=2 2.设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD ⊄平面PBC ,BC ⊂平面PBC ,故AD ∥平面PBC ,A 、D 两点到平面PBC 的距离相等,即d =AG = 2.设PD 与平面PBC 所成的角为α,则sin α=d PD =12.所以PD 与平面PBC 所成的角为30°.方法二:(1)以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0).于是PC →=(22,0,-2),BE →=⎝⎛⎭⎫23,b ,23,DE →=⎝⎛⎭⎫23,-b ,23, 从而PC →·BE →=0,PC →·DE →=0,故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP →=(0,0,2),AB →=(2,-b,0).设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP →=0,m ·AB →=0,即2z =0,且2x -by =0,令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC →=0,n ·BE →=0,即22p -2r =0且2p 3+bq +23r =0,令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b ,2. 因为面P AB ⊥面PBC ,故m·n =0,即b -2b=0,故b =2,于是n =(1,-1,2),DP →=(-2,-2,2),cos 〈n ,DP →〉=n ·DP →|n ||DP →|=12,〈n ,DP →〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP →〉互余,故PD 与平面PBC 所成的角为30°.3.[2012·福建卷] 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.解:(1)以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE .此时DP →=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ ax +z =0,ax 2+y =0. 取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. (3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D .∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1).设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n ||AD 1→|=-a 2-a 21+a 24+a 2. ∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°,即3a221+5a 24=32, 解得a =2,即AB 的长为2.4. [2012·江苏卷] 如图,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1;(2)直线A 1F ∥平面ADE .证明:(1)因为ABC -A 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC ,又AD ⊂平面ABC ,所以CC 1⊥AD .又因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1.又AD ⊂平面ADE ,所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点,所以A 1F ⊥B 1C 1.因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1,所以CC 1⊥A 1F .又因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1,所以A 1F ⊥平面BCC 1B 1.由(1)知AD ⊥平面BCC 1B 1,所以A 1F ∥AD .又AD ⊂平面ADE ,A 1F ⊄平面ADE ,所以A 1F ∥平面ADE .5.[2012·辽宁卷] 如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.解:(1)(证法一)连结AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱.所以M 为AB ′中点.又因为N 为B ′C ′的中点.所以MN ∥AC ′.又MN ⊄平面A ′ACC ′, AC ′⊂平面A ′ACC ′,因此MN ∥平面A ′ACC ′.(证法二)取A ′B ′中点P ,连结MP ,NP ,M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′,所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′,又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′,而MN ⊂平面MPN ,因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1).所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1.设m =(x 1,y 1,z 1)是平面A ′MN 的法向量, 由⎩⎪⎨⎪⎧ m ·A ′M →=0,m ·MN →=0得⎩⎨⎧ λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由⎩⎪⎨⎪⎧ n ·NC →=0,n ·MN →=0得⎩⎨⎧ -λ2x 2+λ2y 2-z 2=0,λ2y 2+12z 2=0.可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m ·n =0.即-3+(-1)×(-1)+λ2=0,解得λ= 2.6.[2012·重庆卷] 如图,在直三棱柱ABC -A 1B 1C 1中,AB =4,AC =BC =3,D 为AB 的中点.(1)求点C 到平面A 1ABB 1的距离;(2)若AB 1⊥A 1C ,求二面角A 1-CD -C 1的平面角的余弦值.解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =BC 2-BD 2= 5.(2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此AA 1AD =A 1B 1AA 1,即AA 21=AD ·A 1B 1=8,得AA 1=2 2. 从而A 1D =AA 21+AD 2=2 3.所以,在Rt △A 1DD 1中,cos ∠A 1DD 1=DD 1A 1D =AA 1A 1D =63.解法二:如图,过D 作DD 1∥AA 1交A 1B 1于点D 1,在直三棱柱中,易知DB ,DC ,DD 1两两垂直.以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),C 1(0,5,h ),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ).由AB 1→⊥A 1C →,有8-h 2=0,h =2 2.故DA 1→=(-2,0,22),CC 1→=(0,0,22),DC →=(0,5,0).设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即⎩⎨⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1), 设平面C 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥CC 1→,即⎩⎨⎧5y 2=0,22z 2=0,取x 2=1,得n =(1,0,0),所以cos 〈m ,n 〉=m·n |m ||n |=22+1·1=63. 所以二面角A 1-CD -C 1的平面角的余弦值为63. 7. [2012·浙江卷] 如图1-5所示,在四棱锥P -ABCD 中,底面是边长为23的菱形,∠BAD =120°,且P A ⊥平面ABCD ,P A =26,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A -MN -Q 的平面角的余弦值.解:(1)因为M ,N 分别是PB ,PD 的中点,所以MN 是△PBD 的中位线,所以MN ∥BD . 又因为MN ⊄平面ABCD ,所以MN ∥平面ABCD .(2)方法一:连结AC 交BD 于O .以O 为原点,OC ,OD 所在直线为x ,y 轴,建立空间直角坐标系Oxyz ,如图所示.在菱形ABCD 中,∠BAD =120°,得AC =AB =23,BD =3AB =6.又因为P A ⊥平面ABCD ,所以P A ⊥AC .在Rt △P AC 中,AC =23,P A =26,AQ ⊥PC ,得QC =2,PQ =4.由此知各点坐标如下,A (-3,0,0),B (0,-3,0),C (3,0,0),D (0,3,0),P (-3,0,26),M ⎝⎛⎭⎫-32,-32, 6,N ⎝⎛⎭⎫-32,32, 6,Q ⎝⎛⎭⎫33,0,263. 设m =(x ,y ,z )为平面AMN 的法向量.由AM →=⎝⎛⎭⎫32,-32,6,AN →=⎝⎛⎭⎫32,32,6知⎩⎨⎧ 32x -32y +6z =0,32x +32y +6z =0.取z =-1,得m =(22,0,-1).设n =(x ,y ,z )为平面QMN 的法向量.由QM →=⎝⎛⎭⎫-536,-32,63,QN →=⎝⎛⎭⎫-536,32,63知⎩⎨⎧ -536x -32y +63z =0,-536x +32y +63z =0,取z =5,得n =(22,0,5).于是cos 〈m ,n 〉=m·n |m |·|n |=3333.所以二面角A -MN -Q 的平面角的余弦值为3333. 方法二:在菱形ABCD 中,∠BAD =120°,得AC =AB =BC =CD =DA ,BD =3AB . 又因为P A ⊥平面ABCD ,所以P A ⊥AB ,P A ⊥AC ,P A ⊥AD .所以PB =PC =PD .所以△PBC ≌△PDC .而M ,N 分别是PB ,PD 的中点,所以MQ =NQ ,且AM =12PB =12PD =AN . 取线段MN 的中点E ,连结AE ,EQ ,则AE ⊥MN ,QE ⊥MN ,所以∠AEQ 为二面角A -MN -Q 的平面角.由AB =23,P A =26,故在△AMN 中,AM =AN =3,MN =12BD =3,得AE =332. 在直角△P AC 中,AQ ⊥PC ,得AQ =22,QC =2,PQ =4.在△PBC 中,cos ∠BPC =PB 2+PC 2-BC 22PB ·PC =56,得MQ =PM 2+PQ 2-2PM ·PQ cos ∠BPC =5.在等腰△MQN 中,MQ =NQ =5,MN =3,得QE =MQ 2-ME 2=112. 在△AEQ 中,AE =332,QE =112,AQ =22,得cos ∠AEQ =AE 2+QE 2-AQ 22AE ·QE =3333. 所以二面角A -MN -Q 的平面角的余弦值为3333. 8. [2012·天津卷] 如图所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 与棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.解:方法一:如图所示,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛⎭⎫-12,12,0,P (0,0,2).(1)易得PC →=(0,1,-2),AD →=(2,0,0),于是PC →·AD →=0,所以PC ⊥AD .(2)PC →=(0,1,-2),CD →=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·PC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1,可得n =(1,2,1). 可取平面P AC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m·n |m|·|n |=16=66,从而sin 〈m ,n 〉=306.所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE →=⎝⎛⎭⎫12,-12,h ,由CD →=(2,-1,0),故cos 〈BE →,CD →〉=BE →·CD →|BE →||CD →|=3212+h 2×5=310+20 h 2, 所以,310+20 h 2=cos30°=32,解得h =1010,即AE =1010. 方法二:(1)由P A ⊥平面ABCD ,可得P A ⊥AD .又由AD ⊥AC ,P A ∩AC =A ,故AD ⊥平面P AC , 又PC ⊂平面P AC ,所以PC ⊥AD .(2)如图所示,作AH ⊥PC 于点H ,连接DH .由PC ⊥AD ,PC ⊥AH ,可得PC ⊥平面ADH ,因此DH ⊥PC ,从而∠AHD 为二面角A -PC -D 的平面角.在Rt △P AC 中,P A =2,AC =1,由此得AH =25.由(1)知AD ⊥AH .故在Rt △DAH 中,DH =AD 2+AH 2=2305.因此sin ∠AHD =AD DH =306.所以二面角A -PC -D 的正弦值为306. (3)如图所示,因为∠ADC <45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF .故∠EBF 或其补角为异面直线BE 与CD 所成的角.由BF ∥CD ,故∠AFB =∠ADC .在Rt △DAC 中,CD =5,sin ∠ADC =15, 故sin ∠AFB =15 .在△AFB 中,由BF sin ∠F AB =AB sin ∠AFB ,AB =12,sin ∠F AB =sin135°=22,可得BF =52. 由余弦定理,BF 2=AB 2+AF 2-2AB ·AF ·cos ∠F AB ,可得AF =12.设AE =h . 在Rt △EAF 中,EF =AE 2+AF 2=h 2+14.在Rt △BAE 中,BE =AE 2+AB 2=h 2+12. 在△EBF 中,因为EF <BE ,从而∠EBF =30°,由余弦定理得cos30°=BE 2+BF 2-EF 22BE ·BF ,可解得h =1010.所以AE =1010. 9.[2012·四川卷] 如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.答案:90° [解析] 因为ABCD -A 1B 1C 1D 1为正方体,故A 1在平面CDD 1C 1上的射影为D 1,即A 1M 在平面CDD 1C 1上的射影为D 1M ,而在正方形CDD 1C 1中,由tan ∠DD 1M =tan ∠CDN =12, 可知D 1M ⊥DN ,由三垂线定理可知,A 1M ⊥DN .10. [2012·江苏卷] 如图1-4,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1;(2)直线A 1F ∥平面ADE .证明:(1)因为ABC -A 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC ,又AD ⊂平面ABC ,所以CC 1⊥AD .又因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1.又AD ⊂平面ADE ,所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点,所以A 1F ⊥B 1C 1.因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1,所以CC 1⊥A 1F .又因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1,所以A 1F ⊥平面BCC 1B 1.由(1)知AD ⊥平面BCC 1B 1,所以A 1F ∥AD .又AD ⊂平面ADE ,A 1F ⊄平面ADE ,所以A 1F ∥平面ADE .11. [2012·湖南卷] 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面P AE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.解:解法1:(1)如下图(1),连结AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)过点B 作BG ∥CD ,分别与AE 、AD 相交于点F ,G ,连结PF .由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.由题意∠PBA =∠BPF ,因为sin ∠PBA =P A PB ,sin ∠BPF =BF PB,所以P A =BF . 由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD ,所以四边形BCDG 是平行四边形.故GD =BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A = 13×16×855=128515.解法2:如上图(2),以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)由题设和(1)知,CD →,P A →分别是平面P AE ,平面ABCD 的法向量.而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos 〈CD →,PB →〉|=|cos 〈P A →,PB →〉|,即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪P A →·PB →|P A →|·|PB →|.由(1)知,CD →=(-4,2,0),P A →=(0,0,-h ),又PB →=(4,0,-h ),故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2.解得h =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.。
高三立体几何习题文科含答案(K12教育文档)
高三立体几何习题文科含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高三立体几何习题文科含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高三立体几何习题文科含答案(word版可编辑修改)的全部内容。
23正视图 图1侧视图 图22 2图3立几习题21若直线l 不平行于平面a ,且l a ∉,则 A .a 内的所有直线与异面 B .a 内不存在与l 平行的直线C .a 内存在唯一的直线与l 平行D .a 内的直线与l 都相交2.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A )12l l ⊥,23l l ⊥13//l l ⇒(B )12l l ⊥,23//l l ⇒13l l ⊥(C )233////l l l ⇒1l ,2l ,3l 共面(D)1l ,2l ,3l 共点⇒1l ,2l ,3l 共面3.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为A .3.4 C .3.24。
某几何体的三视图如图所示,则它的体积是( )A 。
283π- B.83π-C 。
8-2πD 。
23π5、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线EF‖平面PCD;(2)平面BEF⊥平面PAD5(本小题满分13分)如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,1OA=,OD=,△OAB,△OAC,△ODE,△ODF都是正三角形。
福建省2012高考数学总复习专题训练:立体几何(文).pdf
立几专题(文) 1.(本小题共12分) 2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于. (1)求证:; (2)若四边形ABCD是正方形,求证; (3)在(2)的条件下,求四棱锥的体积. 2.(12分)一个多面体的直观图和三视图如图所示,其中,分别是AB,A的中点,是F上的一动点. (Ⅰ)求证:⊥AC; (Ⅱ)若点是F的中点,求证:A∥平面F. 2的正方体中,、分别为、的中点. (Ⅰ)求证://平面; (Ⅱ)求证:; (Ⅲ)求三棱锥的体积. 4.(本小题满分12分) 如图,已知直三棱柱ABC—A1B1C1,,,,E、F分别是棱CC1、AB中点..,求三棱锥F- EGC的体积 6.(本小题满分12分) 已知几何体E—ABCD如图所示,其中四边形ABCD为矩形,为等边三角形,且 点F为棱BE上的动点。
(I)若DE//平面AFC,试确定点F的位置; (II)在(I)条件下,求几何体D—FAC的体积。
1.(本小题满分12分) (1)证明:在圆柱中: 上底面//下底面, 且上底面∩截面ABCD=,∩截面ABCD= //……………………………………………………………………….2 又AE、DF是圆柱的两条母线, 是平行四边形,所以,又// …………………………………………………………………….4分 (2)AE是圆柱的母线, 下底面,又下底面,…………………………….7分 又截面ABCD是正方形,所以⊥,又 ⊥面,又面,……………………………8分 (3)因为母线垂直于底面,所以是三棱锥的高 EO就是ABCD的边长为x,则AB=EF=x, 又,,EF⊥BE, BF为直径,即BF= 在中,即 , (10) ………………………12分 2. (I)证明:由三视图可得直观图为直三棱柱且底面ADF中AD⊥DF,DF=AD=DC……………1分 连接DB,可知B、N、D共线,且AC⊥DN………………3分 又FD⊥AD FD⊥CD, FD⊥面ABCD FD⊥AC ………………5分 AC⊥面FDN GN⊥AC ………………6分 (II) 证明:取DC中点S,连接AS、GS、GA G是DF的中点,GS//FC,AS//CM ………………9分 面GSA // 面FMC………………10分 GA // 面FMC ………………12分 ,在中,、分别为,的中点,则 (Ⅱ) (Ⅲ) 且 , ∴ 即==4.(1)解:CF//平面AEB1,证明如下: 取AB1的中点G,联结EG,FG。
文科数学立体几何历年高考解答题
图 4GEF ABCD图 5DGBFCAE文科数学立体几何历年高考解答题1、(2013)如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中22BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.2、 (2012)如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高。
(1)证明:PH ⊥平面ABCD ; (2)若1,2,1PH AD FC ===,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB .3、(2011)如图所示,将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面水平向右平移得到的,,,,A A B B ''分别为,,,,CD C D DE D E ''''的中点,1122,,,'O O O O '分别为,,,CD C D DE D E ''''的中点.(Ⅰ)证明:12',,,O A O B '四点共面; (Ⅱ)设G 为AA '中点,延长1''A O 到H ',使得11''O H A O ''=,证明: 2'BO ''⊥面H B G .4、(2010)如图4,弧AEC 是半径为a 的半圆,AC 为直径,点E 为弧AC 的中点,点B 和点C为线段AD的三等分点,平面AEC外一点F满足FC⊥平面BED,FB=a5(1)证明:EB⊥FD(2)求点B到平面FED的距离.5、(2009)某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P —EFGH,下部分是长方体ABCD —EFGH. 图5和图6分别是该标识墩的正(主)视图和俯视图.(1)请画出该安全标识墩的侧(左)视图;(2)求该安全标识墩的体积;(3)证明: 直线BD⊥平面PEG.侧视图4 图5 图6 E6、(2008)如图5所示,四棱锥P-ABCD 的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,∠ABD =60°,∠BDC =45°,△ADP ~△BAD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何训练题1.(2010上海高考20题)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1) 当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米); (2) 若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).2. (2011山东高考19)如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,2AB AD =,11AD A B =,60BAD ∠=. (1)证明:1AA BD ⊥; (2)证明:1//CC 平面1A BD .3. (2011江苏高考16)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB AD =,60BAD ∠= ,,E F 分别是,AP AD 的中点. (1)求证:直线//EF 平面PCD ; (2)求证:平面BEF ⊥平面PADCA D4.(2010北京高考17)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直。
//EF AC ,AB =,1CE EF ==.(1)求证://AF 平面BDE ; (2)求证:CF ⊥平面BDE ;5.(2010安徽高考19)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,22AB EF ==,//AB EF ,EF FB ⊥,90BFC ∠= ,BF FC =,H 为BC 的中点, (1)求证://FH 平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求四面体B DEF -的体积;6.(2011江西高考18)如图,在ABC ∆中,2B π∠=,2AB BC ==,P 为AB 边上一动点,PD 平行BC 交AC 于点D ,现将PDA ∆沿PD 翻折至'PDA ∆,使平面'PDA ⊥平面PBCD . (1)当棱锥'A PBCD -的体积最大时,求PA 的长;(2)若点P 为AB 的中点,E 为'A C 的中点,求证:'A B DE ⊥.BCC7.(2010新课标18题)如图,已知四棱锥P ABCD -的底面为等腰梯形,AB ∥CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高。
(1)证明:平面PAC ⊥ 平面PBD ;(2)若AB =,APB ADB ∠=∠=60°,求四棱锥P ABCD -8.(2011珠海模拟16)在边长为6cm 的正方形ABCD 中,,E F 分别为,BC CD 的中点,,M N 分别为,AB CF 的中点,现沿,,AE AE EF 折叠,使,,B C D 三点重合,构成一个三棱锥. (1)判别MN 与平面AEF 的位置关系,并给出证明; (2)求多面体E AFMN -的体积.9.(2011韶关模拟18题)如图,长方体1111D C B A ABCD -中,11==AA AB ,2=AD ,E 是BC 的中点.(1)求证:直线//1BB 平面DE D 1; (2)求证:平面AE A 1⊥平面DE D 1; (3)求三棱锥DE A A 1-的体积.1B A F M F CA BABCD 1A 1B 1C A)(C 1B 10.(2011广州二模19题)一个几何体是由圆柱11ADD A 和三棱锥E ABC -组合而成,点A 、B 、C 在圆O 的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中EA ABC ⊥平面, AB AC ⊥,AB AC =,2AE =. (1)求证:AC BD ⊥;(2)求三棱锥E BCD -的体积.11.(2011佛山模拟19题)如图,已知直四棱柱1111ABCD A B C D -的底面是直角梯形,AB BC ⊥,//AB CD ,E ,F 分别是棱BC ,11B C 上的动点,且1//EF CC ,11CD DD ==,2,3AB BC ==.(1)证明:无论点E 怎样运动,四边形1EFD D 都为矩形; (2)当1EC =时,求几何体1A EFD D -的体积.12. (2011深圳第二高级中学高三模拟17题)如图)1(是一个水平放置的正三棱柱111C B A ABC -,D 是棱BC 的中点.正三棱柱的正(主)视图如图)2(. ⑴求正三棱柱111C B A ABC -的体积; ⑵证明:11//ADC B A 平面;⑶图)1(5中垂直于平面11B BCC 的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明) AODE正(主)视图 E A侧(左)视图A 1D 1A D 1A 1EBCO DP )(P AA B C D DC B 图5 直观图 俯视图 13.(2011温州模拟题)一个简单多面体的直观图和三视图如图所示,它的主视图和侧视图都是腰长为1的等腰直角三角形,俯视图为正方形,.(1)若E 是PD 的中点,求证: //PB ACE 平面; (2)求证:PC BD ⊥; (3)求三棱锥C PAB -的体积.14.(2011东莞模拟18题)如图,四棱锥ABCD P -,PAB ∆≌CBA ∆,在它的俯视图ABCD 中,CD BC =,1=AD ,︒=∠=∠60BAD BCD .⑴求证:PBC ∆是直角三角形; ⑵求四棱锥P ABCD -的体积.15.(2011惠州模拟18)如图,在四棱锥P ABCD -中,PD 垂直于底面ABCD ,底面ABCD 是直角梯形,//,90DC AB BAD ︒∠=,且2224AB AD DC PD ====(单位:cm ),E 为PA 的中点。
(1)若正视方向与AD 平行,请在下面作出该几何体的正视图并求出正视图面积; (2)证明://DE 平面PBC ;(3)证明:DE ⊥平面PAB ;B主视图俯视图左视图(P )B (A )B (C )(D )C (D C答案1.(2010上海高考20题)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1) 当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米); (2) 若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图 (作图时,不需考虑骨架等因素).【答案】.(1) 设圆柱形灯笼的母线长为l ,则l =1.2-2r (0<r <0.6),S =-3π(r -0.4)2+0.48π,所以当r =0.4时,S 取得最大值约为1.51平方米;(2) 当r =0.3时,l =0.6,作三视图为两个圆,一个正方形.2. (2011山东高考19)如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,2AB AD =,11AD A B =,60BAD ∠=. (1)证明:1AA BD ⊥; (2)证明:1//CC 平面1A BD . 【答案】.证法二:C3. (2011江苏高考16)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB AD =,60BAD ∠= ,,E F 分别是,AP AD 的中点.求证:(1)直线//EF 平面PCD ; (2)平面BEF ⊥平面PAD .4.(2010北京高考17)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直。
//EF AC , 2AB =,1CE EF ==.(1)求证://AF 平面BDE ; (2)求证:CF ⊥平面BDF ;【答案】. 证明:(Ⅰ)设AC 于BD 交于点G 。
因为EF ∥AG,且EF=1,AG=12AG=1 所以四边形AGEF 为平行四边形 所以AF ∥EG因为EG ⊂平面BDE,AF ⊄平面BDE, 所以AF ∥平面BDE(Ⅱ)连接FG 。
因为EF ∥CG,EF=CG=1,且CE=1,所以平行四边形CEFG 为菱形。
所以CF ⊥EG.因为四边形ABCD 为正方形,所以BD ⊥AC.又因为平面ACEF ⊥平面ABCD,且平面ACEF ∩平面ABCD=AC,所以BD ⊥平面ACEF.所以CF ⊥BD.又BD ∩EG=G,所以CF ⊥平面BDE.EFA DCBCF5.(2010安徽高考19题)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,EF ∥AB,EF ⊥FB,∠BFC=90°,BF=FC,H 为BC 的中点,(Ⅰ)求证:FH ∥平面EDB; (Ⅱ)求证:AC ⊥平面EDB; (Ⅲ)求四面体B —DEF 的体积;【答案】.(1),1//,21//,2////AC BD G G AC EG GH H BC GH AB EF AB EFGH EG FH EG EDB FH EDB ∴∴⊂∴证:设与交于点,则为的中点,连,由于为的中点,故又四边形为平行四边形,而平面,平面C0,.,..//,,90,.FB BFG FH FH BF FG H BC FH BC FH ABCD FH AC FH EG AC EG AC BD EG BD G AC EDBFB BFC BF CDEF BF B DEF BC A ∏⊥∴⊥⊥∴⊥∴⊥∴⊥=∴⊥∴⊥∴⊥∴⊥⊥⋂=∴⊥⊥∠=∴⊥∴-= ()证:由四边形ABCD 为正方形,有AB BC 。
又EF//AB ,EF BC 。
而EF ,EF 平面EF AB 又为的中点,。
平面又,又,平面(Ⅲ)解:EF 平面为四面体的高,又2,111*.323B DEF B BF FC V -=∴====6.(2011江西高考18)如图,在=2,2ABC B AB BC P AB π∆∠==中,,为边上一动点,PD//BC 交AC 于 点D,现将C'',PDA. PDA PD PDA PBCD ∆∆⊥沿翻折至使平面平面(1)当棱锥'A PBCD-的体积最大时,求PA的长;(2)若点P为AB的中点,E为''.AC B DE⊥的中点,求证:A【答案】.7.(2010新课标18题)如图,已知四棱锥P ABCD-的底面为等腰梯形,AB∥CD,AC BD⊥,垂足为H,PH是四棱锥的高。
(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,APB ADB∠=∠=60°,求四棱锥P-【答案】.(1)因为PH是四棱锥P-ABCD的高。
所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH BD=H.所以AC⊥平面PBD.故平面PAC平面PBD. ……..6分(2)因为ABCD为等腰梯形,AB CD,AC⊥所以因为∠APB=ADR=600所以可得等腰梯形ABCD的面积为S=12……..9分所以四棱锥的体积为V=13x(33+……..12分8.(2011珠海模拟16题)在边长为6cm的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.(1)判别MN与平面AEF的位置关系,并给出证明;(2)求多面体E-AFMN的体积.【答案】.AMNFB CA DA FBA 1B 1C 1D 1ABCDE(1)因翻折后B 、C 、D 重合(如图),所以MN 应是ABF ∆的一条中位线,………………3分则////MN AF MN AEF MN AEF AF AEF ⎫⎪⊄⇒⎬⊂⎪⎭平面平面平面.………6分 (2)因为}AB BE AB AB AF⊥⇒⊥⊥平面BEF ,……………8分且6,3AB BE BF ===,∴9A BEF V -=,………………………………………10分 又3,4E AFMN AFMN E ABF ABC V S V S --∆== ∴274E AFMN V -=.…………………………………12分9(2011韶关模拟18题).如图,长方体1111D C B A ABCD -中,11==AA AB ,2=AD ,E 是BC 的中点.(1)求证:直线//1BB 平面DE D 1; (2)求证:平面AE A 1⊥平面DE D 1; (3)求三棱锥DE A A 1-的体积.【答案】.(Ⅰ)证明:在长方体1111D C B A ABCD -中,11//DD BB ,又 ∵ ⊄1BB 平面DE D 1,⊆1DD 平面DE D 1∴ 直线//1BB 平面DE D 1 ………………………4分 (Ⅱ)证明:在长方形ABCD 中,∵11==AA AB ,2=AD ,∴2==DE AE ,∴2224AD DE AE ==+,故DE AE ⊥, ………………………6分 ∵在长方形ABCD 中有⊥1DD 平面ABCD ,⊆AE 平面ABCD , ∴ ⊥1DD AE , ………………………7分 又∵D DE DD = 1,∴直线AE ⊥平面DE D 1, ………………………8分 而⊆AE 平面AE A 1,所以平面AE A 1⊥平面DE D 1. ………………………10分(Ⅲ)=-DE A A V 1 =⨯=∆-ADE ADE A S AA V 1311312121131=⨯⨯⨯⨯.………………………14分10.(2011广州二模19题)一个几何体是由圆柱11ADD A 和三棱锥E ABC -组合而成,点A 、B 、C 在圆O 的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA ABC ⊥平面, AB AC ⊥,AB AC =,2AE =. (1)求证:AC BD ⊥;(2)求三棱锥E BCD -的体积.EEAA A 1EC【答案】.(本小题主要考查锥体体积,空间线线、线面关系,三视图等知识,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.)(1)证明:因为EA ABC ⊥平面,C A ABC ⊂平面,所以EA AC ⊥,即ED AC ⊥.又因为AC AB ⊥,AB ED A = ,所以AC ⊥平面EBD . 因为B D⊂平面,所以A ⊥.………………………………………………………………4分 (2)解:因为点A 、B 、C 在圆O 的圆周上,且AB AC ⊥,所以BC 为圆O 的直径.设圆O 的半径为r ,圆柱高为h,根据正(主)视图、侧(左)视图的面积可得, 12210,2122212.2rh r rh r ⎧+⨯=⎪⎪⎨⎪+⨯⨯=⎪⎩…………………………………………6分 解得2,2.r h =⎧⎨=⎩所以4BC =,AB AC ==8分以下给出求三棱锥E BCD -体积的两种方法: 方法1:由(1)知,AC ⊥平面EBD ,所以13E BCD C EBD EBD V V S CA --∆==⨯.……………………………………………10分 因为EA ABC ⊥平面,AB ABC ⊂平面, 所以EA AB ⊥,即ED AB ⊥.其中224ED EA DA =+=+=,因为AB AC ⊥,AB AC ==,所以11422EBD S ED AB ∆=⨯⨯=⨯⨯=.………………………………13分所以11633E BCD V -=⨯=.………………………………………14分方法2:因为EA ABC ⊥平面,所以111333E BCD E ABC D ABC ABC ABC ABC V V V S EA S DA S ED ---∆∆∆=+=⨯+⨯=⨯.其中224ED EA DA =+=+=,因为AB AC ⊥,AB AC ==,所以11422ABC S AC AB ∆=⨯⨯=⨯=.…………………………13分AD 1A 1 EBC OD所以1164433E BCD V -=⨯⨯=.……………………………………………14分11.(2011佛山模拟19题)如图,已知直四棱柱1111ABCD A B C D -的底面是直角梯形,AB BC ⊥,//AB CD ,E ,F 分别是棱BC ,11B C 上的动点,且1//EF CC ,11CD DD ==,2,3AB BC ==.(Ⅰ)证明:无论点E 怎样运动, 四边形1EFD D 都为矩形; (Ⅱ)当1EC =时,求几何体1A EFD D -的体积.19.解:(Ⅰ)在直四棱柱1111ABCD A B C D -中,11//DD CC , ∵1//EF CC ,∴1//EF DD , ---------------------------------------2分 又∵平面//ABCD 平面1111A B C D , 平面ABCD 平面1EFD D ED =, 平面1111A B C D 平面11EFD D FD =,∴1//ED FD ,∴四边形1EFD D 为平行四边形,-----------------------------4分 ∵侧棱1DD ⊥底面ABCD ,又DE ⊂平面ABCD 内,∴1DD DE ⊥,∴四边形1EFD D 为矩形; ---------------------------------6分 (Ⅱ)证明:连结AE ,∵四棱柱1111ABCD A B C D -为直四棱柱, ∴侧棱1DD ⊥底面ABCD ,又AE ⊂平面ABCD 内,∴1DD AE ⊥, ----------------8分在Rt ABE ∆中,2AB =,2BE =,则AE = -----------------------9分在Rt CDE ∆中,1EC =,1CD =,则DE =; ------------10分 在直角梯形中ABCD,AD ==∴222AE DE AD +=,即AE ED ⊥,又∵1ED DD D = ,∴AE ⊥平面1EFD D ; ----------------------------12分 由(Ⅰ)可知,四边形1EFD D为矩形,且DE =11DD =,∴矩形1EFD D的面积为11EFD D S DE DD =⋅=∴几何体1A EFD D -的体积为11114333A EFD D EFD D V S AE -=⋅==.----------------14分12. (2011深圳第二高级中学高三模拟17题)如图)1(5是一个水平放置的正三棱柱111C B A ABC -,D 是棱BC 的中点.正三棱柱的正(主)视图如图)2(5.图ABCD1A1B1CA)(C1B⑴求正三棱柱111CBAABC-的体积;⑵证明:11//ADCBA平面;⑶图)1(5中垂直于平面11BBCC的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明)⒘⑴依题意,在正三棱柱中,3=AD,31=AA,从而2=AB……2分,所以正三棱柱的体积121AAADABShV⨯⨯⨯==……4分,3333221=⨯⨯⨯=……5分.⑵连接CA1,设EACCA=11,连接DE……6分,因为CCAA11是正三棱柱的侧面,所以CCAA11是矩形,E是CA1的中点……7分,所以DE是BCA1∆的中位线,BADE1//……8分,因为1ADCDE平面⊂,11ADCBA平面⊄,所以11//ADCBA平面……10分.⑶平面ABC、平面111CBA、平面DAC1……13分(每对个给1分).13.(温州中学高三2008学年第一学期期末考试数学试卷文). (本小题满分14分)一个简单多面体的直观图和三视图如图所示,它的主视图和侧视图都是腰长为1的等腰直角三角形,俯视图为正方形,E是PD的中点.(1)求证:PB ACE平面;(2)求证:PC BD⊥;(3)求三棱锥C PAB-的体积.2.(1)证明:依题意,该三视图所对应的直观图为一侧棱PA垂直于底面ABCD的四棱锥,且PA=AB=AD=1,四边形ABCD为正方形;分别连结AC、BD交于O,连结EO,∵E是PD的中点,∴PB∥EO,又PB⊄平面ACE,EO⊂平面ACE,∴PB∥平面ACE。