2015-2016年江苏省南通市通州区初三上学期期末数学试卷及答案

合集下载

(完整word版)2015-2016学年度上学期期末质量检测九年级数学试卷

(完整word版)2015-2016学年度上学期期末质量检测九年级数学试卷

2015-2016学年度上学期期末质量检测九年级数学试卷说 明:1.本卷共六大题,全卷共 24题,满分120分,考试时间为120分钟2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答, 否则不给分c +d b c B . cCD.—221.下列各数中,为有理数的是( ▲ )A . nB . \ 3C.3.14D .—、32.已知5个正数a , b , c , d , e ,且 a v b v c v dv e ,则新一组数据 的中位数是(▲)、选择题(本大题共 6小题,每小题3分,共18分)每题只有一个正确的选项0,a ,b , c , d ,e3.某几何体的主视图和左视图完全一样如图所示, 则该几何体的俯视图不可能是(▲)A .4.关于x 的一元 A . 1Z I C.次不等式 x — b v 0恰有两个正整数解,则 B . 2.5C. 2D. 5.如图,△ ABC 中, BD=5, DC=2,AE 交BC 于点D ,DE 的长等于(▲AD=3,10 3b 的值可能是(3.56. 如图是二次函数 ①二次三项式 ax ③ 一元二次方程④ 使y<3成立的x 的取值范围是x 淘. 2y 二ax bx c 的图象,下列结论:2■ bx ' c 的最大值为 4 :②4a + 2b + c v 0;2ax bx 1的两根之和为一2;其中正确的个数有( A . 1 个 B▲) .2个 C8个小题,每小题.3个 D . 4个 3分,共24分) 8•点A (m,m - 3)在第一象限,则实数m 的取值范围为 ____ ▲9.已知:二均为锐角,且sin 。

-1 2(tan -1)^0,则: 二 ▲:B.O D. ▲)10.如图,直线a // b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于I,若/仁58°则/ 2= ▲;11. 从—1, 0, 2,这三个数中,任取两个数分别作为系数a, b代入ax2•bx::;,2 = 0中.在所有可能的结果中,任取一个方程为有实数解的一元二次方程的概率是▲; 12. 如图在平面直角坐标系中,点A在抛物线y = x2 - 4x • 6上运动.过点A作AC丄x轴于点C,以AC为对角线作矩形ABCD,则对角线BD的最小值为▲;613. 如图,已知点A在双曲线y 上,过点A作AC丄x轴于点C, OC=3,线段0A的x垂直平分线交0C于点8,则厶ABC的周长为▲;14. 菱形ABCD的对角线AC=6 cm,BD=4 cm,以AC为边作正方形ACEF,贝U BF长为三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:(—73 $ +(J2015 — J2016 X J2016 + J2015 )—2誓—tan”45.16. ( 1)如图,六边形ABCDEF满足:AB£EF,AF丄CD.仅用无刻度的直尺画出一条直线I,使得直线l能将六边形ABCDEF的面积给平分;(2)假设你所画的这条直线l与六边形ABCDEF的AF边与CD边(或所在的直线)分别交于点G与点H,则下列结论:①直线I还能平分六边形ABCDEF的周长;②点G与点H恰为AF边与CD边中点;③AG=CH ,FG=DH ;④AG=DH,FG=CH .其中,正确命题的序号为▲.217.已知关于x的一元二次方程x -(k-2)x,2k=0 .(1 )若x=1是这个方程的一个根,求k的值和它的另一根;2(2)当k=—1时,求X j -3X2的值.18.在不透明的袋子中有四张标着数字1, 2, 3,4的卡片,这些卡片除数字外都相同•甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加•如图是他所画的树状图的一部分.(1 )帮甲同学完成树状图;(2)求甲同学两次抽到的数字之和为偶数的概率.第18题图四、(本大题共4小题,每小题各 8分,共32分) 19.如图,四边形 ABCD 为菱形,M 为BC 上一点, 且/ABM=2/ BAM . (1) 求证:AG=BG ;(2) 若点M 为BC 的中点,且S B MG =1 , 试求△ ADG的面积.20.据报道,历经一百天的调查研究,景德镇 PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为 PM 2.5的最大来源,一辆车每行驶 20千米平均向大气里排放 0.035 千克污染物.校环保志愿小分队从环保局了解到景德镇 100天的空气质量等级情况,并制成统计图和表:空气质量等级优 良轻度污染 中度污染 重度污染 严重污染 天数(天)10a 12 825 b(2)彤彤是环保志愿者,她和同学们调查了 机动车每天的行驶路程,了解到每辆车 每天平均出行25千米.已知景德镇市 2016年机动车保有量已突破 50万辆, 请你通过计算,估计 2016年景德镇市 一天中出行的机动车至少要向大气里 排放多少千克污染物?21.如图ABCD 为正方形,点 A 坐标为(0, 1),点B 坐标为(k y的图象经过点 C , 一次函数y=ax + b 的图象经过 A 、x开始第一次 1234 /N 第二次2 3 4第19题图2016年景德镇市100天空气质量等级天数统计表(1)表中a= ▲, b= ▲ ,图中严重污染部分对应的圆心角n= ▲2016年景德镇市100天空气质量等级天数统计图第20题图(1) 求反比例函数与一次函数的解析式;(2) 若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.22.小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO 后,电脑转到AO B位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C丄OA 于点C, O' C=2cm.(1)求/ CAO的度数;(2)显示屏的顶部B'比原来升高了多少?第22题图五、(本大题共1小题,每小题10分,共10分)23.如图,抛物线y = -x2• bx • c交x轴于点A (- 3, 0)和点B,交y轴于点C (0, 3).(1) 求抛物线的函数表达式;(2) 若点P在抛物线上,且S AOP =4S.BOC,求点P的坐标;(3) 如图b,设点Q是线段AC上的一动点,作DQ丄x轴,交抛物线于点D, 求线段DQ长度的最大值.六、(本大题共1小题,每小题12分,共12分)M , N分别是AD , CD的中点,连接24.如图,在Rt△ ABC中,/ ACB=90°, AC=6, BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动, MN,设点D运动的时间为t.(1) 判断MN与AC的位置关系;(2) 求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3 )若厶DMN是等腰三角形,求t的值.2016学年第一次质量检测试卷九年级数学答案、选择题(本大题共 6小题,每小题3分,共18分)• x f - 3x 2 = -3x 4 2 - 3x 2 二-3(x 1 x 2) 2=11.(1 )补全树状图如图所示:.一…第一次 1 2/N z1\第二次 2 3 41 3 4(2)由树状图得:共有12种情况,两次抽到的数字之和为偶数的有四、(本大题共4小题,每小题各 8分,共32分) 19. (1)证明:•••四边形 ABCD 是菱形, •••/ABD = / CBD ,•••/ ABM =2 / BAM , ABD =Z BAM ,• AG=BG ;(2)解:T AD // BC ,ADG MBG ,•••点M 为BC 的中点, •竺=2,BM故P (两次抽到的数字之和为偶数)4 = 112 3ii.12. ____ 2 13.5 ____ 14.4小题,每小题各6分,共24分)15解原=2 .16解: (1) 如图;(2) ③. 17解: (1)k=-3,另一根为-6;(2) 当k= - 1时,方程变形为x 2 3x 2 =0 ,_3 X i18.解: 4种,• AG ADGM " BM32° 、解答2二 X i• BMG =1, 二 S A ADG =4.20.解:(1) a=25, b=20, c=72;答:2016年景德镇市一天中出行的机动车至少要向大气里排放21.解:(1 )•••点A 的坐标为(0, 1),点B 的坐标为(0,— 2),••• AB=1 + 2=3.即正方形 ABCD 边长为 3,二 C (3,— 2). 将C 点坐标代入反比例函数可得:k= — 6.丁八6•反比例函数解析式: y 二-丄.x(a ~ -1 将 C( 3, — 2), A ( 0, 1)代入 y=ax + b 解得:2 = 1• 一次函数解析式为 y=— x + 1.111•••—X 1 X | t |= 3 X 3,解得 t =± 18. • P 点坐标为(18, )或(-18,).23 322.解:(1 )• O' C 丄 OA 于 C , OA=OB=24cm ,OC OC 1 • sin / CAO = -------- = -------- = — ,•/ CAO=30OA OA2(2)过点B 作BD 丄AO 交AO 的延长线于 D .• O' C 丄 OA , / CAO=30°, •/ AO C=60° • / AO B' 120°, •/ AO B'+/ AO C = 180° .• O B + O' C — BD= 24 + 12— 12 3 =36 - 12上 3 . •显示屏的顶部 B'比原来升高(2)根据题意得:50 X 0.035 X 10000X=21875 (千克)20(2)设P(t, -• △ OAP 的面积恰好等于正方形 ABCD 的面积,21875千克污染物•/ sin / BOD =电OB '• BD=OB • sin / BOD ,• / AOB=120°, •/ BOD= 60• BD=OB • sin / BOD= 24 X了(36 —12、刁)cm.五、(本大题共1小题,每小题10分,共10分)2 223.解:(1 )将A (- 3, 0)、C (0, 3)代入y = —X +bx + c ,解得:y = —X — 2x + 3 .(2)由(1 )知,该抛物线的解析式为y = _x2_2x3,则易得B( 1, 0). 设P(x,-x2 -2x • 3 ),1 2 1•/ S^O^4S^OC,二{汇3汇一x _2x+3 = 4X[X1><3 . 解得:x - -1 或x - -1 二2'、2 .则符号条件的点P的坐标为(-1, 4)或(-1 2,2 , - 4)或(-1 -2、. 2 , - 4).(3)易知直线AC的解析式为y=x+ 3.设Q点坐标为(x, x+ 3) (- 3< x w 0),则D点坐标为(x, _ x^ 2x 3 ),2 23 2 9QD= ( -x - 2x 3 ) -( x + 3) =-x -3x=-(x )2 4•••当x =「3时,QD有最大值-.2 4六、(本大题共1小题,每小题12分,共12分)24. ( 1)v在厶ADC中,M是AD的中点,N是DC的中点,• MN // AC ;(2)如图1,分别取△ ABC三边AC, AB, BC的中点E, F , G,并连接EG, FG ,根据题意可得线段MN扫过区域的面积就是平行四边AFGE的面积,•/ AC=6, BC=8, • AE=3, GC=4,•••/ ACB=90 °二S 四边形AFGE=AE?GC=3 X 4=12.•线段MN所扫过区域的面积为12.1 1 1(3)据题意可知:MD=—AD , DN= —DC, MN = — AC=3 ,2 2 2①当MD=MN=3时,△ DMN为等腰三角形,此时AD=AC=6 , • t=6 ,1②当MD=DN时,AD=DC ,如图2,过点D作DH丄AC交AC于H ,则AH = — AC=32 ,-cosA= AD 爲• 3 6AD 一10 '解得AD=5 ,••• AD=t=5 .③如图3,当DN=MN=3时,AC=DC,连接MC,贝U CM丄AD , •/ coA=如一竺,即刎」,AC AB 6 1018 36AM= , • AD=t=2AM=^ ,5 5综上所述,当t=5或6或36时,△ DMN为等腰三角形.5DG。

九年级上册南通数学期末试卷(Word版 含解析)

九年级上册南通数学期末试卷(Word版 含解析)

九年级上册南通数学期末试卷(Word 版 含解析)一、选择题1.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定 2.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( ) A .1B .2C .0,1D .1,2 3.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π 4.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .235.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45°6.某篮球队14名队员的年龄如表:年龄(岁)18 19 20 21 人数 5 4 3 2则这14名队员年龄的众数和中位数分别是( )A .18,19B .19,19C .18,4D .5,47.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( )A .23B .1.15C .11.5D .12.58.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( )A .120,2x x ==B .122,4x x =-=C .120,4x x ==D .122,2x x =-=9.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 7210.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤ B .116k ≤ C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 11.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC 的度数等于( )A .50°B .49°C .48°D .47° 12.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27二、填空题13.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.14.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.15.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x,则可列方程____.16.如图,直线l1∥l2∥l3,A、B、C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=3,且12mn=,则m+n的最大值为___________.17.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.18.已知3a=4b≠0,那么ab=_____.19.若a bb-=23,则ab的值为________.20.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.21.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.22.如图,在△ABC中,AC:BC:AB=3:4:5,⊙O沿着△ABC的内部边缘滚动一圈,若⊙O的半径为1,且圆心O运动的路径长为18,则△ABC的周长为_____.23.如图,在□ABCD中,E、F分别是AD、CD的中点,EF与BD相交于点M,若△DEM的面积为1,则□ABCD的面积为________.24.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________ 三、解答题25.已知二次函数216y ax bx =++的图像经过点(-2,40)和点(6,-8),求一元二次方程2160ax bx ++=的根.26.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己的影长FG =4m .如果小华的身高为1.5m ,求路灯杆AB 的高度.27.某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x 件时,该网店从中获利y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?28.在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点及点O 都在格点上(每个小方格的顶点叫做格点).(1)以点O 为位似中心,在网格区域内画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 位似(A ′、B ′、C ′分别为A 、B 、C 的对应点),且位似比为2:1;(2)△A ′B ′C ′的面积为 个平方单位;(3)若网格中有一格点D ′(异于点C ′),且△A ′B ′D ′的面积等于△A ′B ′C ′的面积,请在图中标出所有符合条件的点D ′.(如果这样的点D ′不止一个,请用D 1′、D 2′、…、D n ′标出)29.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?30.定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°<α<90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数4yx=(x>0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.31.如图,点C在以AB为直径的圆上,D在线段AB的延长线上,且CA=CD,BC=BD.(1)求证:CD与⊙O相切;(2)若AB=8,求图中阴影部分的面积.32.某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.2.C解析:C【解析】【分析】分两种情况讨论,当m=0和m≠0,函数分别为一次函数和二次函数,由抛物线与x轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点;②若m ≠0,则函数y=mx 2+2x+1,是二次函数.根据题意得:b 2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x 轴的交点,抛物线与x 轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.3.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.4.B解析:B【解析】【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案.【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,∴△CEF ∽△AEB ,设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD , ∴CF=DF=BF =12BD =3, ∴32EF CF BE AB ==, 设EF =3x ,则2BE x =,∴()23BF CF DF x ===+,∴()()2223226CD DF x x ==+=+,()()233223DE DF EF x x x =+=++=+, ∴()()222232622EG DG DE x x ===+=+, ∴()()226262CG CD DG x x x =-=+-+=, ∴()62tan 312x EG ACD CGx +∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.5.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O 的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB ,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.6.A解析:A【解析】【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是19192=19(岁),故选:A.【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.7.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..8.C解析:C【解析】【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论.【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴关于t 的方程20at bt c ++=的解为11t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3解得:10x =,24x =,故选C .【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.9.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =,∴18EFCABCDSS=四边形,∴1176824AGH EFCABCDS SS+=+=四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.10.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.11.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.12.D解析:D【解析】【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题13.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF 、AG 的长度,由CG∥AB、AB=2CG 可得出CG 为△E解析:12【解析】【分析】根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出AF AB GF GD==2,结合FG =2可求出AF 、AG 的长度,由CG ∥AB 、AB =2CG 可得出CG 为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.14.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.15.720(1+x )2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019 解析:720(1+x )2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x ,则2018的全年收入为:720×(1+x )2019的全年收入为:720×(1+x )2.那么可得方程:720(1+x )2=845.故答案为:720(1+x )2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).16.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过 解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AE BE BF CF=,即x m n y =, xy mn ∴=, ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM=,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x =-=⨯-时,28128mn m ==最大, 94m ∴=最大, m n ∴+的最大值为927344⨯=. 故答案为:274. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m 的函数解析式是解题的关键.【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键. 解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键. 18..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.19.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.20.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 21.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时, ,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时, =0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。

江苏省南通市2015年初中毕业、升学考试数学试题(附答案)

江苏省南通市2015年初中毕业、升学考试数学试题(附答案)

江苏省南通市2015年初中毕业、升学考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果水位升高6 m时水位变化记作+6 m,那么水位下降6 m时水位变化记作()A.-3 m B.3 m C.6 m D.-6 m答案:D 【解析】本题考查正负数的意义,难度较小.因为正负数可以表示一组相反意义的量,故水位下降6 m的变化可以记作-6 m,故选D.2.下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个答案:B 【解析】本题考查三视图,难度较小.俯视图是从物体上面看到的几何体的形状,三棱柱从上面看是三角形;圆柱从上面看是圆;四棱锥从上面看是四边形;球从上面看是圆,俯视图是圆的几何体有2个,故选B.3.据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×106答案:D 【解析】本题考查用科学记数法表示较大的数,难度较小.科学记数法是将一个数写成a×10n的形式,其中1≤|a|<10,n为整数.当原数的绝对值大于等于10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值小于1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零).7700000=7.7×106,故选D.4.下列图形中既是轴对称图形又是中心对称图形的是()A B C D答案:A 【解析】本题考查轴对称图形与中心对称图形的概念,难度较小.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.A 既是轴对称图形,又是中心对称图形,正确;B 是轴对称图形,不是中心对称图形,错误;C 是轴对称图形,不是中心对称图形,错误;D 是轴对称图形,不是中心对称图形,错误,故选A .5.下列长度的三条线段能组成三角形的是 ( )A .5,6,10B .5,6,11C .3,4,8D .4a ,4a ,8a (a >0)答案:A 【解析】本题考查三角形的三边关系,难度较小.根据“三角形的任意两边之和大于第三边”,排除B ,C ,D ,故选A .6.如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是 ( )A .B .C .D .2答案:C 【解析】本题考查三角函数,难度较小.点(2,1)到x 轴的距离是1,到y 轴的距离2,故,故选C .7.在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为 ( )A .12B .15C .18D .21答案:B 【解析】本题考查频率与概率的关系、概率公式,难度中等.当试验次数很多时,可以用频率来估计概率,故摸到红球的概率是20%,即,解得a=15,故选B.8.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2 D.-3≤b<-2答案:D 【解析】本题考查解不等式的应用,难度中等.∵x-b>0,∴x>b,∵x有两个负整数解,故这两个负整数一定是-1和-2,∴-3≤b<-2,故选D.9.在20 km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10 km;③出发后1.5小时,甲的行程比乙多3 km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个答案:C 【解析】本题考查一次函数图象的应用,难度中等.根据图象可得甲的速度不变是,乙出发0.5 h前的速度是,0.5 h-1 h的速度是,即乙相遇前先比甲快,后比甲慢,①错;根据图象出发后1 h两人相遇,行程均为10 km,②对;出发1.5 h,甲的行程是1.5×10=15(km)乙的行程是10+0.5×4=12(km),甲的行程比乙多3 km,③对;跑完全程甲用2 h,乙大于2 h,甲比乙先到终点,④对.综上,正确的有3个,故选C.10.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB =6,AD=5,则AE的长为()A.2.5B.2.8C.3D.3.2答案:B 【解析】本题考查圆中的综合计算,难度较大.连接BD,∵AD平分∠BAC,∴∠CAD=∠DAB,.∵AB是直径,∴∠ACB=∠ADB=90°,∴△ACE∽△ADB,∴,即.设AC=5x,则AE=6x,DE=5-6x,连接OD交BC于点F,则DO⊥BC,∴OD∥AC,∴,,易得△ACE∽△DFE,∴,即,解得,则AE=6x=2.8,故选B.【易错分析】本题要注意常见辅助线的作法及充分应用相似三角形的性质.第Ⅱ卷(非选择题共120分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上)11.因式分解4m2-n2=________.答案:(2m+n)(2m-n) 【解析】本题考查用平方差公式分解因式,难度较小.根据平方差公式a2-b2=(a+b)(a-b)得原式=(2m+n)(2m-n).12.已知方程2x2+4x-3=0的两根分别为x1和x2,则x1+x2的值等于________.答案:-2 【解析】本题考查一元二次方程的根与系数的关系,难度较小.由题意.13.计算(x-y)2-x(x-2y)=________.答案:y2【解析】本题考查整式的乘法,难度较小.原式=x2-2xy+y2-x2+2xy=y2.14.甲乙两人8次射击的成绩如图所示(单位:环).根据图中的信息判断,这8次射击中成绩比较稳定的是____________(填“甲”或“乙”).答案:甲【解析】本题考查折线统计图,难度较小.由统计图可知,甲运动员成绩的图象比较平缓,故甲的成绩比较稳定.15.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13 cm,AB=24 cm,则CD=________cm.答案:8 【解析】本题考查垂径定理、勾股定理,难度较小.∵半径OD⊥弦BC,由垂径定理,连接OA,在Rt△AOC中,得,∴CD=OD-OC=13-5=8 cm.16.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=________度.答案:52 【解析】本题考查三角形内角和定理、等腰三角形的性质、外角性质,难度较小.∵AC=AD=BD,∴∠ADC=∠C,∠B=∠BAD,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD.设∠B=∠BAD=x°,则∠ADC=∠C=2x°,∴∠DAC=(180-4x)°,∠BAC=∠DAC+∠BAD=(180-4x+x)°=(180-3x)°,∵BAC=102°,∴180-3x=102,解得x=26,∠ADC=2x°=52°.17.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,,△CEF的面积为S1,△AEB的面积为S2,则的值等于________.答案:【解析】本题考查矩形性质、相似三角形的判定和性质,难度中等.∵AC⊥BF,∴∠FBC+∠ACB=90°.又∵∠ACB+∠ACD=90°,∴∠FBC=∠ACD.又∵∠ADC=∠FCB=90°,∴△ADC∽△FCB,∴,即,∴.又∵CD∥AB,∴△CEF∽△AEB,.18.关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根都在-1和0之间(不包括-1和0),则a的取值范围是_________.答案:【解析】本题考查二次函数的图象及性质,难度较大.应分两种情况讨论:(1)若a>0,则抛物线y=ax2-3x-1开口向上,若对应的一元二次方程ax2-3x-1=0的两个不相等的实数根都在-1和0之间,则∆=(-3)2+4a>0,解得,且当x=-1时,y>0,当x=0时,y>0,很显然当x=0,y=-1<0,不符合题意;(2)若a <0,则抛物线y=ax2-3x-1开口向下,若对应的一元二次方程ax2-3x-1=0的两个不相等的实数根都在-1和0之间,则∆=(-3)2+4a>0,解得,且当x=-1时,y<0,当x=0时,y<0,即解得a<-2,所以,综上,a的取值范围是.【易错分析】将方程问题转化为函数问题,结合函数图象找到解决问题的途径.在解题时还要注意分类,即a>0和a<0.三、解答题(本大题共10小题,共96分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算;;(2)解方程.答案:(1)本题考查实数的计算,难度较小.解:原式=4-4+1-9 (4分)=-8.(5分)(2)本题考查解分式方程,难度较小.将方程两边乘以最简公分母转化为整式方程,再解整式方程,最后需要检验整式方程的解是否是分式方程的解.解:方程两边乘2x(x+5),得x+5=6x,(7分)解得x=1,(8分)检验:当x=1时,2x(x+5)≠0,(9分)所以,原分式方程的解为x=1.(10分)20.(本小题满分8分)如图,一海轮位于灯塔P的西南方向,距离灯塔海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).答案:本题考查解直角三角形的应用,难度中等.解:过点P作PC⊥AB于点C.在Rt△ACP中,,∠APC=45°,,,∴,.(4分)在Rt△BCP中,∠BPC=60°,,∴,(7分)∴.答:航程AB为海里.(8分)21.(本小题满分10分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为________度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为________.答案:本题考查对条形统计图、扇形统计图的理解与应用,用列表法或画树状图求概率等,难度中等.既考查考生分析、处理数据的能力,又考查考生的阅读理解能力.解:(1)144.(3分)(2)16÷50=0.32,0.32×2000=640.答:估计全校约有640名同学获奖.(6分)(3).(10分)22.(本小题满分8分)有大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.答案:本题考查方程在实际生活中的应用,难度中等.解:本题答案不唯一,下列解法供参考.解法一问题:1辆大车一次运货多少吨,1辆小车一次运货多少吨?(3分)解:设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意得解得(7分)答:1辆大车一次运货4吨,1辆小车一次运货2.5吨.(8分)解法二问题:1辆大车一次运货多少吨?(3分)解:设1辆大车一次运货x吨,则1辆小车一次运货吨,根据题意得,解得x=4.(7分)答:1辆大车一次运货4吨.(8分)解法三问题:5辆大车与10辆小车一次可以运货多少吨?(3分)解:设1辆大车一次运货x吨,1辆小车一次运货y吨,根据题意得解得5x+10y=45.(7分)答:5辆大车与10辆小车一次可以运货45吨.(8分)23.(本小题满分8分)如图,直线y=mx+n与双曲线相交于A(-1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.答案:本题考查一次函数和反比例函数的图象和性质、三角形面积计算,难度中等.解:(1)把x=-1,y=2;x=2,y=b代入,解得k=-2,b=-1.(2分)把x=-1,y=2;x=2,y=-1代入y=mx+n,解得m=-1,n=1.(5分)(2)直线y=-x+1与y轴交点C的坐标为(0,1),所以点D的坐标为(0,-1),(6分)点B的坐标为(2,-1),所以△ABD的面积.(8分)24.(本小题满分8分)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4 cm,求图中阴影部分的面积.答案:本题考查切线的性质、解直角三角形、扇形面积计算,难度中等.解:(1)连接OA,OB.∵PA,PB分别与⊙O相切于A,B两点,∴∠PAO=90°,∠PBO=90°,(1分)∴∠AOB+∠P=180°.(2分)∵∠AOB=2∠C=120°,(3分)∴∠P=60°.(4分)(2)连接OP.∵PA,PB分别与⊙O相切于A,B两点,∴.(5分)在Rt△APO中,,∴.∵OA=4 cm,∴,(6分)∴阴影部分的面积为.(8分)25.(本小题满分8分)如图,在□ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.答案:本题考查平行四边形的判定与性质、全等三角形的判定与性质、难度中等.证明:(1)∵□ABCD,∴AD=CB,∠A=∠C,AD∥BC,(1分)∴∠ADB=∠CBD.∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,(2分)∴∠ADE=∠CBF,(3分)∴△AED≌△CFB.(4分)(2)作DH⊥AB,垂足为H.在Rt△ADH中,∠A=30°,∴AD=2DH.(5分)在Rt△DEB中,∠DEB=45°,∴EB=2DH.(6分)由题意易证四边形EBFD是平行四边形,∴FD=EB,∴DA=DF.(8分)26.(本小题满分10分)某网店打出促销广告:最潮新款服装30件,每件售出300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?答案:本题考查二次函数的应用,涉及知识点有列函数关系式、利用函数关系式求最值,难度中等.解:(1)(4分)(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;(6分)在10<x≤30时,y=-3x2+130x,当时,y取得最大值.因为x为整数,根据抛物线的对称性,得x=22时,y有最大值1408.(9分)因为1408>1000,所以顾客一次购买22件时,该网店从中获利最多.(10分)27.(本小题满分13分)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP =3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.答案:本题考查相似三角形的判定及性质、角平分线定义、利用函数求最值、勾股定理等,解题时注意数形结合、分类讨论及辅助线的作法,难度较大.解:(1)证明:在Rt△BAC中,AB=15,BC=9,∴.∵,,∴.又∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B.∴PQ∥AB.(4分)(2)连接AD,∵PQ∥AB,∴∠ADQ=∠DAB.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.(6分)在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12-4x,∴12-4x=2x,解得x=2,∴CP=3x=6.(8分)(3)当点E落在AB上时,∵PQ∥AB,∴∠DPE=∠PEB.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PEB,∴PB=PE=5x,∴3x+5x=9,解得.(9分)以下分两种情况讨论:①当时,T=PD+DE+PE=3x+4x+5x=12x,此时,.②当时,设PE交AB于点G,DE交AB于点F.作GH⊥PQ,垂足为H.∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴.∵PG=PB=9-3x,∴,∴,,∴,∴T=PG+PD+DF+FG,此时,(11分)∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;T=16时,即,解得.(12分)∵12≤T≤16,∴x的取值范围是.(13分)28.(本小题满分13分)已知抛物线y=x2-2mx+m2+m-1(m是常数)的顶点为P,直线l:y=x-1.(1)求证:点P在直线l上;(2)当m=-3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.答案:本题考查二次函数的图象与性质、相似三角形的判定与性质、一元二次方程的解法等,考查考生的阅读理解能力和逻辑推理能力,难度较大.解:(1)证明:∵y=x2-2mx+m2+m-1=(x-m)2+m-1,∴顶点P(m,m-1).将x=m代入y=x-1得y=m-1,∴点P在直线y=x-1上.(3分)(2)当m=-3时,抛物线解析式为y=x2+6x+5,点P的坐标为(-3,-4),点Q的坐标为(-2,-3),点A的坐标为(-5,0),点C的坐标为(0,5).(5分)作ME⊥y轴,PF⊥x轴,QG⊥x轴,垂足分别为E,F,G,∴QG=3,AG=5-2=3,∠CAO=∠ACO=45°,∴∠OAQ=45°.∵∠APF=90°-(∠PAQ+45°)=45°-∠PAQ,∠MCE=45°-∠A CM,∠ACM=∠PAQ,∴∠APF=∠MCE,∴Rt△CME∽Rt△PAF,(7分)∴.设点M的坐标为(x,x2+6x+5),则ME=-x,CE=-x2-6x,PF=4,AF=2,∴,解得x1=-4,x2=0(舍去),则x2+6x+5=-3,故点M(-4,-3).(9分)(3)m的值为0,.(13分)综评:本套试卷既体现对双基的重视,又体现对考生的分析能力的要求.试卷设计的思路具有以下几个特点:第一,注重双基和教学重点的考查;第二,体现新意,如第18,22,26,27题设计在不影响考生思维的前提下加强解释性,综合性问题控制条件,降低试题的复杂性,却依然存在较多的思维入口,利于考生发挥真实水平;第三,适度区分.中档题和较难题分散在不同试题中,既有利于适度区分,又有利于合理考查考生解决问题过程的认知水平差异.。

2015年江苏省南通市中考数学试卷及答案

2015年江苏省南通市中考数学试卷及答案

数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前江苏省南通市2015年初中毕业、升学考试数学 .................................................................. 1 江苏省南通市2015年初中毕业、升学考试数学答案解析 .. (5)江苏省南通市2015年初中毕业、升学考试数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果水位升高6m 时水位变化记作6m +,那么水位下降6m 时水位变化记作 ( ) A .3m -B .3mC .6mD .6m - 2.下面四个几何体中,俯视图是圆的几何体共有( )A .1个B .2个C .3个D .4个3.据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为( )A .70.7710⨯ B .77.710⨯C .60.7710⨯ D .67.710⨯4.下列图形中既是轴对称图形又是中心对称图形的是( )ABCD5.下列长度的三条线段能组成三角形的是( )A .5,6,10B .5,6,11C .3,4,8D .4,4,80()a a a a >6.如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是( )ABC .12D .27.在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为 ( ) A .12B .15C .18D .218.关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( )A .32b --<<B .32b --<≤C .32b --≤≤D .32b --≤<9.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法: ①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有 ( ) A .1个B .2个C .3个D .4个10.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为 ( )A .2.5B .2.8C .3D .3.2第Ⅱ卷(非选择题 共120分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上)11.因式分解224m n -= .12.已知方程22430x x +-=的两根分别为1x 和2x ,则12x x +的值等于 . 13.计算2(2())x y x x y ---= .14.甲乙两人8次射击的成绩如图所示(单位:环).根据图中的信息判断,这8次射击中成绩比较稳定的是 (填“甲”或“乙”).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)15.如图,在O 中,半径OD 垂直于弦AB ,垂足为C ,13cm OD =,24cm AB =,则CD = cm .第15题图第16题图第17题图16.如图,ABC △中,D 是BC 上一点,AC AD DB ==,102BAC =∠,则ADC =∠ 度. 17.如图,矩形ABCD 中,F 是DC 上一点,BF AC ⊥,垂足为E ,12AD AB =,CEF △的面积为1S ,AEB △的面积为2S ,则12S S 的值等于 . 18.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在1-和0之间(不包括1-和0),则a 的取值范围是 . 三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算:2021()((33)2)----;(2)解方程1325x x =+.20.(本小题满分8分)如图,一海轮位于灯塔P 的西南方向,距离灯塔海里的A 处,它沿正东方向航行一段时间后,到达位于灯塔P 的南偏东60方向上的B 处,求航程AB 的值(结果保留根号).21.(本小题满分10分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组()79.589.5”的扇形的圆心角为 度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为 .22.(本小题满分8分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(本小题满分8分)数学试卷 第5页(共24页) 数学试卷 第6页(共24页)如图,直线y mx n =+与双曲线ky x=相交于2()1,A -,()2,B b 两点,与y 轴相交于点C .(1)求,m n 的值;(2)若点D 与点C 关于x 轴对称,求ABD △的面积.24.(本小题满分8分)如图,,PA PB 分别与O 相切于,A B 两点,60ACB =∠. (1)求P ∠的度数;(2)若O 的半径长为4cm ,求图中阴影部分的面积.25.(本小题满分8分)如图,在□ABCD 中,点,E F 分别在,AB DC 上,且ED DB ⊥,FB BD ⊥. (1)求证:AED CFB △≌△;(2)若30A =∠,45DEB =∠,求证:DA DF =.26.(本小题满分10分) 某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元.设顾客一次性购买服装x 件时,该网店从中获利y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围; (2)顾客一次性购买多少件时,该网店从中获利最多?27.(本小题满分13分)如图,Rt ABC △中,90C =∠,15AB =,9BC =,点,P Q 分别在,BC AC 上,3CP x =,403()CQ x x =<<.把PCQ △绕点P 旋转,得到PDE △,点D 落在线段PQ 上. (1)求证:PQ AB ∥;(2)若点D 在BAC ∠的平分线上,求CP 的长;(3)若PDE △与ABC △重叠部分图形的周长为T ,且1216T ≤≤,求x 的取值范围.28.(本小题满分13分)已知抛物线2221y x mx m m =-++-(m 是常数)的顶点为P ,直线l :1y x =-. (1)求证:点P 在直线l 上;(2)当3m =-时,抛物线与x 轴交于,A B 两点,与y 轴交于点C ,与直线l 的另一个交点为,Q M 是x 轴下方抛物线上的一点,ACM PAQ =∠∠(如图),求点M 的坐标;(3)若以抛物线和直线l 的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m 的值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

通州区初三期末数学试题及答案

通州区初三期末数学试题及答案

通州区初三数学期末考试试卷2013 年 1 月考生须知:1.本试卷共有四个大题,24 个小题,共 6 页,满分 100 分. 2.考试时间为 90 分钟,请用蓝色或黑色钢笔、圆珠笔答卷. 三四 总分题 得号 一分二2021222324一、精心选一选:(每小题只有一个正确答案,每题3 分,共 30 分) 1.如图,已知 P 是射线 OB 上的任意一点,P M ⊥O A 于 M , BP且 O M : OP=4 : 5,则 cos α的值等于()3 4 4 3 4 5 3 5A .B .C .D .α OM A第1题图2.已知⊙O 的半径为 5,A 为线段 OP 的中点,若 OP=10,则点 A 在( A .⊙O 内B .⊙O 上C .⊙O 外D .不确定3. 若两圆的半径分别是1cm 和5c m ,圆心距为6cm ,则这两圆的位置关系是( A .内切B .相交C .外切D .外离4.如图,A 、B 、C 是⊙O 上的点,若∠A OB =70°,则∠ACB 的度数为( ))O C )A . 70°5.若一个正多边形的一个内角是 144°,则这个多边形的边数为( A. 12B . 11C.10D. 9B . 50°C .40°D .35°AB第4题图)O D O C6.如图,在△OAB 中, C D ∥ AB ,若 O C: OA =1:2,则下列结论:(1) ; O B OAS2S(2)AB =2 CD ;(3) . 其中正确的结论是( )OOABOC DA .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3) C D 7. 在平面直角坐标系中,以点(2,3)为圆心,2 为半径的圆必定( ) A .与 x 轴相离、与 y 轴相切 C .与 x 轴相切、与 y 轴相离 B .与 x 轴、y 轴都相离 D .与 x 轴、y 轴都相切 A B 第6题图8. 如图,直径为 10 的⊙A 经过点C( 0,5)和点O(0,0) ,与 x 轴的正半轴交于点 D ,B 是 y 轴右侧圆弧上一点,则 cos ∠OB C 的值为()12 3 3 54 D .5A .B .C .2y APC AOA BD Cx OD 60°BB P第10题图第8题图第9题图9.如图,等边△AB C 的边长为 3,P 为 BC 上一点,且 BP =1,D 为 AC 上一点,若∠AP D=60°,则 C D 的长为() 32 3 1 2 3 4A .B .C .D .2 10. 如图,⊙O 的半径为3 厘米,B 为⊙O 外一点,O B 交⊙O 于点 A ,AB=OA.动点 P 从点 A 出发,以 π厘米/秒的速度在⊙O 上按逆时针方向运动一周回到点 A 立即停止.当点 P 运动的时间为()秒时,BP 与⊙O 相切.C .0.5 或 5.5A .1B .5D . 1 或 5二、细心填一填:(每题 3 分,共 18 分) 11.计算:tan45°+ 2 cos45°=12. 如图,⊙O 的弦 AB=8,O D ⊥AB 于点 D ,O D= 3,则⊙O 的半径等于 ..y ax 2 bx c的部分图象,由图象可知方程ax 2b x c0的解是13.如图是二次函数 ________ ,___________.14. 如图,在⊙O 中,半径 OA ⊥BC ,∠A O B =50°,则∠A D C 的度数是________.A CBO OABDD第12题图第14题图15.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm , 母线长为 30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为________cm 2.(结果 保留 )16.图中各圆的三个数之间都有相同的规律,据此规律,第n 个圆中,m =__________(用含 n 的代数式表示).1 28 2 4 35 3 6 80 n 2nm 三、认真做一做:(共 22 分)第16题图A 17. (4 分)如图,在△ AB D 和△ AEC 中,E 为 AD 上一点,若∠DAC =∠B ,AE A C∠AEC =∠B D A. 求证:. EB D BA证明:BCD第17题图18.(6 分)如图,在△ABC 中,点 O 在 AB 上,以 O 为圆心的圆C经过 A ,C 两点,交 AB 于点 D ,已知 2∠A +∠B =90(1)求证:BC 是⊙O 的切线; (2)若 OA=6,BC=8,求 B D 的长. (1)证明: .AOD B第18题图(2)解:19. (6 分)在平面直角坐标系 xOy 中,二次函数 y mx 2 nx 2的图象过 A (-1,-2)、B (1,0)两点.(1)求此二次函数的解析式;P t ,0(2)点 是 x 轴上的一个动点,过点P 作 x 轴的垂线交直线 AB 于点 M ,交二次 函数的图象于点 N .当点 M 位于点 N 的上方时,直接写出 t 的取值范围. 解:(1)(2)-4 -3 -2 -1O 1 2 3 4 x-2-3 -4 第19题图3t an 20.(6 分) 如图是黄金海岸的沙丘滑沙场景.已知滑沙斜坡 AC 的坡度是 ,在与滑4沙坡底 C 距离 20 米的 D 处,测得坡顶 A 的仰角为 26.6°,且点 D 、C 、B 在同一直线 上,求滑坡的高 AB (结果取整数:参考数据:s in26.6°=0.45,cos26.6°=0.89, t an26.6°=0.50). 解:Aα26.6°20米DCB四、解答题:(共 30 分)第20题图21. (6 分)如图,A D 为⊙O 的直径,作⊙O 的内接等边三角形 ABC.黄皓、李明两位同学的作法分别是:黄皓:1.作O D的垂直平分线,交⊙O于B,C两点,2.连结AB,AC,△ABC即为所求的三角形.李明:1.以D为圆心,O D长为半径作圆弧,交⊙O于B,C两点,2.连结AB,BC,CA,△ABC即为所求的三角形.已知两位同学的作法均正确,请选择其中一种作法补全图形,并证明△ABC是等边三角形.A 解:我选择___________的作法.证明:OD第21题图22.(7分)已知:如图,在四边形ABC D中,BC<D C,∠BC D=60º,∠AD C=45º,C A平AAD22分∠BC D,AB,求四边形AB C D的面积.BC D第22题图23.(8分)将抛物线c:y=323沿x轴翻折,得到抛物线c,如图所示.x12(1)请直接写出抛物线c的表达式;2(2)现将抛物线c向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴1的交点从左到右依次为A,B;将抛物线c向右也平移m个单位长度,平移后得到的2新抛物线的顶点为N,与x轴的交点从左到右依次为D,E.①用含m的代数式表示点A和点E的坐标;②在平移过程中,是否存在以点A,M,E为顶点的三角形是直角三角形的情形?若存在,请求出此时m的值;若不存在,请说明理由.2②24.(9分)在平面直角坐标系xOy中,点B(0,3),点C是x轴正半轴上一点,连结BC,过点C作直线CP∥y轴.(1)若含45°角的直角三角形如图所示放置.其中,一个顶点与点O重合,直角顶点D 在线段BC上,另一个顶点E在C P上.求点C的坐标;(2)若含30°角的直角三角形一个顶点与点O重合,直角顶点D在线段BC上,另一个顶点E在CP上,求点C的坐标.y y yB P B BDEC x O x O xO备用图第24题图备用图解:(1)(2)通州区初三数学期末考试参考答案及评分标准2013.1一、精心选一选:(每小题只有一个正确答案,每题 3 分,共 30 分) 1.C 6.A2.B 7.A3.C 8.B4.D 5.C 9. B10. D二、细心填一填:(每题 3 分,共 18 分) 1 x 5;11. 2; 12. 5;13. x, 1225 270;9n 116..14. ;15.2 三、认真做一做:(共 22 分)17. 证明:∵∠DA C =∠B ,∠AE C =∠B D A ,∴△AEC ∽△B D A.……………… 2 分; ……………… 3 分; AE A CB D BA∴. ………………4 分.C18.(1)证明:连结 O C.…………1 分;CD ∵C D , AOD B∴C OD 2A,2A B 90 第18题图∵ ∴ , CO D B 90 . ………………2 分;在△O C B 中, OCB 90 ∴,∴BC 是⊙O 的切线 .(2)解: 在⊙O 中,∴O C=O A=O D=6, ………………3 分;……………… 4 分;OCB 90 ∵,OC BC 2 .∴OB2 2 10 ∴OB ∴ B D .……………… 5 分; ………………6 分.OB OD 10 6 4 .mx nx 2 19.解:(1)把 A (-1,-2)、B (1,0)分别代入 y 中,2m n2 2, ∴ ……………… 2 分;……………… 3 分;n 2 0; m 1 m解得:1. n ∴所求二次函数的解析式为 y 1 t 1. x 2x 2.……………… 4 分; ………………6 分.(2)20 米,ADB26.6°,B 9020. 解:由题意可知:D C.在 Rt △ ABC 中,AB 3 t an∵ , ……………… 1 分; ………………2 分;B C 43x BC 4x ,∴设 AB ,在 Rt △ AB D 中, ABt an ADB∴ , ……………… 3 分; D B 3x t an 26.60.5, ∴ ……………… 4 分; ………………5 分;4x 2010 解得: x ,3x 30 ∴ AB . 答:滑坡的高 AB 为 30 米.四、解答题:(共 30 分) ………………6 分.A 21. 解:我选择黄皓的作法. 如图画图正确. ………………2 分; OE证明:连结 OB 、O C.∵A D 为⊙O 的直径,BC 是半径 OD 的垂直平分线, CBACB D CD, ,∴ AB D1 1O E O D O C ,……………… 3 分; ………………4 分;第21题图2 2AC ∴ AB . 在 Rt △ OE C 中, O E 1∴ cos EO C, O C 2∴EO C 60 ∴BO C120 ,………………5 分;.∴BAC 60.∴△AB C 是等边三角形. 我选择李明的作法. ………………6 分.……………… 2 分;如图画图正确. 证明:连结 DB 、D C.由作图可知: A D B=D O =D C , 在⊙O 中, OC B∴OB=O D =O C ,∴△OB D 和△ OC D 都是等边三角形, ……… 3 分; D∴O D B ODC 60, ………4 分;AB AB A C AC , ∵ ,,,第21题图∴O D B ACB 60ABC OD C 60 ……………… 5 分; ………………6 分.∴△AB C 是等边三角形.22.解: 在 C D 上截取 CF=CB ,连结 AF. 过点 A 作 AE ⊥C D 于点 E. ……1 分;∵CA 平分∠BC D ,∠BC D =60º, AB BCA FCA 30 ∴ , 在△ ABC 和△ AFC 中CFEDB C F C ,第22题图ACB= ACF ,C A CA.∵ ∴△AB C ≌△AF C . ∴ AF=AB , ………………2 分;………………3 分;AB AD ∵ , AF AD ∴ .D 45 AB AD 2 2,,在 Rt △ ADE 中, AE2 ∴ s inADE, A D 2∴AE=E D =2 . ……………… 4 分;在 Rt △ AEC 中,ACE 30,AE 3 ∴ tanACE, E C 3∴CE 2 3.……………… 5 分;∵AE ⊥C D , ∴FE=E D=2 .1S2S2 CE AE ………6 分;2AB C DA CE12 2 32 43 = . ……………… 7 分.2F注: 另一种解法见下图,请酌情给分.AB CED第22题图y 3x 2 3 23. 解:(1)抛物线 c 的表达式是 ; ……………… 2 分; ……………… 3 分; ……………… 4 分;2 (2)①点 A 的坐标是(1 m,0),点 E 的坐标是(1 m,0).②假设在平移过程中,存在以点 A ,M ,E 为顶点的三角形是直角三角形. 由题意得只能是A ME 90.过点 M 作 M G ⊥x 轴于点 G. 由平移得: 点 M 的坐标是(m∴点 G 的坐标是(m, 3 ),……… 5 分;,0),yMG A 1 M G 3 ,∴ ,E G 2m 1,xAE在 Rt △A G M 中, M G 3 ∵ tanMA G, A G 1第23题图∴MA G 60,……………… 6 分;A ME 90 ∵ ∴, MEA 30 ,M G E G 3 ∴tanME G, 33 3∴, ……………… 7 分; ……………… 8 分.2m 1 3∴ m 1.所以在平移过程中,当m1时,存在以点 A ,M ,E 为顶点的三角形是直角三角形.y24. 解:(1)过点 D 分别作 D G ⊥x 轴于 G ,PBD H ⊥P C 于 H. ……………… 1 分; DH E ∴O G D EHD 90,∵△O D E 是等腰直角三角形, ∴O D=D E ,OD E 90∵CP ∥y 轴,,CxGO 第24题图∴ 四边形 D G C H 是矩形, ∴G D H 90……………… 2 分;,D H=G C.∴O D G GDE ED H GDE 90,∴O D G EDH∴△O D G ≌△E D H .∴D G=D H. ,……………… 3 分;∴D G=G C ,∴△D G C 是等腰直角三角形, ∴DC G 45, ……………… 4 分;O B∴tanDC GO C1,∴O C=O B=3.yP ∴点 C 的坐标为(3,0)(2) 分两种情况:……………… 5 分; B DH EDOE 60 当时,过点 D 分别作 DG ⊥x 轴于 G , D H ⊥P C 于 H.O C xG∴O G D EHD 90,∵△O D E 是直角三角形, O D3 ∴tanDE O, D E 3ODE 90 ,∵CP ∥y 轴,∴ 四边形 D G C H 是矩形, ∴G D H 90,D H=G C.∴O D G GDE ED H GDE 90,∴O D G EDH,∴△O D G ∽△E D H . ……………… 6 分;D G O D3 3 D H D E ∴. D GG C 3 ∴, 3D GG C 3 ∴tanDC G, , 3∴DC G 30,O B∴tan DC GO C 3 3∴O C=3 3.……………… 7 分;DOE 30 当时,y过点 D 分别作 DG ⊥x 轴于 G , D H ⊥P C 于 H. BD∴O G D EHD 90,E∵△O D E 是直角三角形, O D∴tanDE O3 , O GC xD EODE 90 ,∵CP ∥y 轴,∴ 四边形 D G C H 是矩形, ∴G D H 90,D H=G C.∴O D G GDE ED H GDE 90,∴O D G EDH,∴△O D G ∽△E D H . ……………… 8 分;D G O DD H DE 3 . ∴D GG C3 ∴ , D GG C ∴tan DC G 3 , , ∴DC G 30,O B∴tanDC GO C3 3 ∴O C= .……………… 9 分.,0)、(3 33 ∴点 C 的坐标为( ,0). 备注:点 E 在 x 轴下方,证法一样,不须分类讨论. (以上答案供参考,其它证法或解法酌情给分)感谢您的使用∵CP ∥y 轴,∴ 四边形 D G C H 是矩形, ∴G D H 90,D H=G C.∴O D G GDE ED H GDE 90,∴O D G EDH,∴△O D G ∽△E D H . ……………… 8 分;D G O DD H DE 3 . ∴D GG C3 ∴ , D GG C ∴tan DC G 3 , , ∴DC G 30,O B∴tanDC GO C3 3 ∴O C= .……………… 9 分.,0)、(3 33 ∴点 C 的坐标为( ,0). 备注:点 E 在 x 轴下方,证法一样,不须分类讨论. (以上答案供参考,其它证法或解法酌情给分)感谢您的使用。

2015.1通州九年级期末数学检测试题及答案

2015.1通州九年级期末数学检测试题及答案

OCB AF D E通州区初三数学期末学业水平质量检测2015年1月一、选择题:(共8个小题,每小题3分,共24分)在每个小题的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填在题后的括号内.1. 抛物线221y x x =-+的顶点坐标是( ) A .(1,0)B .(-1,0)C .(-2,1)D .(2,-1)2. 如图,点A 、B 、C 都在⊙O 上,且点C 在弦AB 所对的优弧上,如果72AOB ∠=︒,那么ACB ∠的度数是( )A .18°B .30°C .36°D .72°3. 有8个型号相同的足球,其中一等品5个,二等品2个,三等品1个,从中随机抽取1个足球,恰好是一等品的概率是( ) A .81B .82 C .41 D .85 4. 如图,直线123l l l ∥∥,另两条直线分别交1l ,2l ,3l 于点A B C ,,及点D E F ,,,且3AB =,4DE =,2EF =,那么下列等式正确的是( )A .:1:2BC DE =B .:2:3BC DE =C .8BC DE = D .6BC DE =5. 下列函数中,当x > 0时,y 值随x 的值增大而减小的是( ). A .2y x =B .1y x=C .34y x =D .1y x =-6. 如图,为了测楼房BC 的高,在距离楼房10米的A 处,测得楼顶B 的仰角为α,那么楼房BC 的高为( ) A .10tan α(米) B .10tan α(米) C .10sin α(米)D .10sin α(米) 7. 如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸 中的格点,为使△DEM ∽△ABC ,则点M 所在位置应是 F 、G 、H 、K 四点中的( ) A .K B .H C .GD .FA D E BFCl 1 l 2 l 3B A CDE8. 已知二次函数y =2310x x +-的图象为抛物线C ,将抛物线C 平移得到新的二次函数图象C '.如果两个二次函数的图象C 、C '关于直线1x =对称,则下列平移方法中,正确的是( ) A .将抛物线C 向右平移52个单位 B .将抛物线C 向右平移3个单位 C .将抛物线C 向右平移5个单位D .将抛物线C 向右平移6个单位二、填空(共8道小题,每题4分,共32分) 9. 如果23a b b =-,那么ab=________________; 10. 计算:在Rt △ABC 中,∠C =90º,∠A =30º,那么sin A +cos B 的值等于___________; 11. 一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别. 现从中任意摸出一个球,要使摸到黑球的概率为14,需要往这个口袋再放入同种黑球__________个.12. 如图,已知D 、E 分别是△ABC 的AB 、AC 边上的点,D E B C //,且1ADEDBCE SS :=:8四边形,那么:AE AC 等于_____.13. 已知反比例函数图象经过点(-1,3),那么这个反 比例函数的表达式为_______________.14. 如图,在等腰直角三角形ABC 中,90C ∠=︒,6AC =,D 是AC 上一点,如果1tan 5,DBA ∠=那么AD 的长为__________.15. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD = 则阴影部分图形的面积为_________(用含有π的代数式表示). 16. 如图,在平面直角坐标系中,A (-2,0),B (0,1),有一组抛物线n l ,它们的顶点),(n n n y x C 在直线AB 上,并且经过点)0,(1+n x ,当n = 1,2,3,4,5…时,2n x =,3,5,8,13…,根据上述规律,写出抛物线1l 的表达式为___________,抛物线6l 的顶点坐标为_________,抛物线6l 与x 轴的交点坐标为__________________. 三、解答题(17—20每题7分,21、22每题8分,共44分) 17. 已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点. 求这个二次函数的表达式.18. 如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG , AE 与CG 相交于点M ,CG 与AD 相交于点N . 求证:AN DN CN MN =19. 如图,M 是AB 的中点,过点M 的弦MN 交弦AB 于点C ,⊙O 的半径为4cm , MN =.(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.20. 某大型超市为了缓解停车难的问题,建筑设计师提供了楼顶停车场的设计示意图(如图AC 与ME 平行).按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.请根据下图求出汽车通过坡道口的限高DF 的长.(结果精确到0.1m ) (参考数据: sin28°≈0.47,cos28°≈0.88, tan28°≈0.53)21. 如图,在Rt △ABC 中,∠C = 90°,BC =9,CA =12,∠ABC 的平分线BD 交AC 于点D , DE ⊥DB交AB 于点E . 点O 在AB 上,⊙O 是△BDE 的外接圆,交BC 于点F ,连结EF. 求EFAC的值.ABCMN O·22. 如图,在平面直角坐标系xOy中,已知点B的坐标为(2,0),点C的坐标为(0,8),sin∠CAB=45, E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连结CE.(1)求AC和OA的长;(2)设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;(3)在(2)的条件下试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.初三数学期末检测参考答案及评分标准一、 选择题(每题3分共24分)1. A2. C3. D4. D5. B6. A7. B8. C 二、 填空题(每题4分共32分)9. ; 10.1 ; 11. ; 12. ; 13.; 14. ; 15.;16.1l 的解析式(顶点式)为22(2)2y x =--+,顶点坐标23(21,)2; 它与x 轴的交点坐标(34,0),(8,0)17.(17-20每题7分,21、22每题8分,共44分)(1)把A (2,0)、B (0,-6)代入得: ……………………………………(3分)解得 ………………………………(6分)∴这个二次函数的解析式为 ………………(7分) 18.证明:(1)∵四边形ABCD 和四边形DEFG 都是正方形, ∴AD =CD ,DE =DG ,∠ADC =∠EDG =90°, ……………………(1分) ∵∠ADE =90°+∠ADG ,∠CDG =90°+∠ADG ,∴∠ADE =∠CDG , ……………………………………………………(2分) 在△ADE 和△CDG 中 ∵⎪⎩⎪⎨⎧=∠=∠=DG DE CDG ADE CD AD , ∴△ADE ≌△CDG (SAS ),∴∠DAE=∠DCG , ……………………………………………(3分) 又∵∠ANM =∠CND , …………………………………………(4分) ∴△AMN ∽△CDN , …………………………………………(5分) ∴, ……………………………………………(6分) 即AN•DN = CN•MN . ………………………………………(7分) 19.解:(1)连结OM ,作OD ⊥MN 于D ………………(1分) ∵点M 是AB 的中点,∴OM ⊥AB . ………………………………………(2分) 过点O 作OD ⊥MN 于点D ,…………………………………(3分) 由垂径定理,得. ……………………………(4分)在Rt △ODM 中,OM =4,∴OD =故圆心O 到弦MN 的距离为2 cm . ………………………………(5分)(2)cos ∠OMD = , ………………………………(6分)∴∠OMD =30°,∴∠ACM =60°. ……………………………………(7分) 20.解:在Rt △ABC 中,∠A =28°,AC =9∴77.453.0928tan =⨯≈⋅= AC BC …………………………………(3分) ∴27.45.077.4=-=-=CD BC BD …………………………………(4分) ∴在Rt △BDF 中, BDF =∠A = 28°,BD = 4.27………………………(5分) 8.37576.388.027.428cos ≈=⨯≈⋅=∴ BD DF ………………………(6分) 答:坡道口限高DF 的长是3.8m . …………………………………(7分) 21.解:连接OD ,设⊙O 的半径为r ,在Rt △ABC 中, 22222912225AB BC CA =+=+=,∴15AB = ……………………………………………(1分) ∵BD 平分∠ABC , ∴∠ABD=∠DBC ∵OB =OD∴∠ABD=∠ODB ∴∠ODB=∠DBC ∴OD//BC∴90ADO C ∠=∠=, ……………………………………(2分) 又A A ∠=∠,∴△ADO ∽△ACB. …………………………………………(3分) ∴AO ODAB BC =. ∴15159r r-= ………………………………………………(4分) ∴458r =.∴454BE = ………………………………………………(5分)又∵BE 是⊙O 的直径.∴90BFE ∠= .…………………………………………………(6分)∴△BEF∽△BAC …………………………………………………(7分)∴4534154EF BEAC BA===.………………………………………………(8分)22.解:(1)∵点B的坐标为(2,0),点C的坐标为(0,8),∴OB=2,OC=8.在Rt△AOC中,sin∠CAB=OCAC =4 5,∴84.5AC=∴AC=10.……………………………………(1分)∴6OA=…………………(2分)(2)依题意,AE=m,则BE=8-m.∵EF∥AC,∴△BEF∽△BAC.∴EFAC=BEAB.…………………(3分)即EF10=8-m8.∴EF=40-5m4.………………(4分)过点F作FG⊥AB,垂足为G. 则sin∠FEG=sin∠CAB=4 5.∴FGEF=45.∴FG=45⨯40-5m4=8-m.……………………………(5分)∴S=S△BCE -S△BFE=11(8)8(8)(8)22m m m-⨯---=-12m2+4m.自变量m的取值范围是0<m<8.………………………(6分)(3)S存在最大值.∵S=-12m2+4m=21(4)82m--+,且-12<0,∴当m=4时,S有最大值,S最大值=8.…………………(7分)∵m=4,∴点E的坐标为(-2,0).∴△BCE为等腰三角形.…………………………(8分)。

2016通州区初三(上)期末数学

2016通州区初三(上)期末数学

2016通州区初三(上)期末数学一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个. 1.(3分)已知2a=3b,则的值为()A.B.C.D.2.(3分)函数y=中自变量x的取值范围是()A.x≠1 B.x≠0 C.x>0 D.全体实数3.(3分)下列图形中有可能与图相似的是()A.B.C.D.4.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值为()A.B.C.D.5.(3分)如图,A,B,C,D是⊙O上的四个点,AD∥BC.那么与的数量关系是()A.=B.>C.<D.无法确定6.(3分)如图,图象对应的函数表达式为()A.y=5x B. C. D.7.(3分)在抛物线y=﹣2(x﹣1)2上的一个点是()A.(2,3)B.(﹣2,3)C.(1,﹣5)D.(0,﹣2)8.(3分)如图,某学校数学课外活动小组的同学们,为了测量一个小湖泊两岸的两棵树A和B之间的距离,在垂直AB的方向AC上确定点C,如果测得AC=75米,∠ACB=55°,那么A和B之间的距离是()米.A.75•sin55°B.75•cos55° C.75•tan55° D.9.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点A,B,C,则对系数a和b判断正确的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>010.(3分)如图,在⊙O中,直径AB⊥CD于点E,AB=8,BE=1.5,将沿着AD对折,对折之后的弧称为M,则点O与M所在圆的位置关系为()A.点在圆上B.点在圆内C.点在圆外D.无法确定二、填空题(本题共18分,每小题3分)11.(3分)计算cos60°=.12.(3分)把二次函数y=x2﹣2x+3化成y=a(x﹣h)2+k的形式为.13.(3分)如图,A,B,C,D分别是∠α边上的四个点,且CA,DB均垂直于∠α的一条边,如果CA=AB=2,BD=3,那么tanα=.14.(3分)如图,在△ABC中,点O是△ABC的内心,∠BOC=118°,∠A=°.15.(3分)二次函数y=x2﹣x﹣2的图象如图所示,那么关于x的方程x2﹣x﹣2=0的近似解为(精确到0.1).16.(3分)数学课上,老师介绍了利用尺规确定残缺纸片圆心的方法.小华对数学老师说:“我可以用拆叠纸片的方法确定圆心”.小华的作法如下:第一步:如图1,将残缺的纸片对折,使的端点A与端点B重合,得到图2;第二步:将图2继续对折,使的端点C与端点B重合,得到图3;第三步:将对折后的图3打开如图4,两条折痕所在直线的交点即为圆心O.老师肯定了他的作法.那么他确定圆心的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:3tan30°+cos245°﹣sin60°.18.(5分)计算:(π﹣3)0+4sin45°﹣+|1﹣|.19.(5分)已知△ABC,求作△ABC的内切圆.20.(5分)如图,四边形ABCD∽四边形EFGH,连接对角线AC,EG.求证△ACD∽△EGH.21.(5分)二次函数y=x2+(2m+1)x+m2﹣1与x轴交于A,B两个不同的点.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时A,B两点的坐标.22.(5分)在平面直角坐标系xOy中,直线y=﹣x+1与双曲线y=相交于点A(m,2).(1)求反比例函数的表达式;(2)画出直线和双曲线的示意图;(3)过动点P(n,0)且垂于x轴的直线与y=﹣x+1及双曲线y=的交点分别为B和C,当点B位于点C上方时,根据图形,直接写出n的取值范围.23.(5分)如图,⊙O的直径AB垂直弦CD于点E,AB=8,∠A=22.5°,求CD的长.24.(5分)在数学活动课上,老师带领学生去测量操场上树立的旗杆的高度,老师为同学们准备了如下工具:①高为m米的测角仪,②长为n米的竹竿,③足够长的皮尺.请你选用以上的工具,设计一个可以通过测量,求出国旗杆高度的方案(不用计算和说明,画出图形并标记可以测量的长度或者角度即可,可测量的角度选用α,β,γ标记,可测量的长度选用a,b,c,d标记,测角仪和竹竿可以用线段表示).(1)你选用的工具为:;(填序号即可)(2)画出图形.25.(5分)如图,在△ABC中,F是AB上一点,以AF为直径的⊙O切BC于点D,交AC于点G,AC∥OD,OD与GF交于点E.(1)求证:BC∥GF;(2)如果tanA=,AO=a,请你写出求四边形CGED面积的思路.26.(5分)有这样一个问题:探究函数y=x﹣的图象与性质.小东根据学习函数的经验,对函数y=x﹣的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x﹣的自变量x的取值范围是;(2)下表是y与x的几组对应值,求m的值;2 ﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第三象限内的最高点的坐标是(﹣2,﹣),结合函数的图象,写出该函数的其它性质(一条即可).27.(7分)已知:过点A(3,0)直线l1:y=x+b与直线l2:y=﹣2x交于点B.抛物线y=ax2+bx+c的顶点为B.(1)求点B的坐标;(2)如果抛物线y=ax2+bx+c经过点A,求抛物线的表达式;(3)直线x=﹣1分别与直线l1,l2交于C,D两点,当抛物线y=ax2+bx+c与线段CD有交点时,求a的取值范围.28.(7分)在等边△ABC中,E是边BC上的一个动点(不与点B,C重合),∠AEF=60°,EF交△ABC外角平分线CD 于点F.(1)如图1,当点E是BC的中点时,请你补全图形,直接写出的值,并判断AE与EF的数量关系;(2)当点E不是BC的中点时,请你在图(2)中补全图形,判断此时AE与EF的数量关系,并证明你的结论.29.(8分)在平面直角坐标系xOy中,若P和Q两点关于原点对称,则称点P与点Q是一个“和谐点对”,表示为[P,Q],比如[P(1,2),Q(﹣1,﹣2)]是一个“和谐点对”.(1)写出反比例函数y=图象上的一个“和谐点对”;(2)已知二次函数y=x2+mx+n,①若此函数图象上存在一个和谐点对[A,B],其中点A的坐标为(2,4),求m,n的值;②在①的条件下,在y轴上取一点M(0,b),当∠AMB为锐角时,求b的取值范围.参考答案与试题解析一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个. 1.【解答】两边都除以2b,得=,故选:B.2.【解答】函数y=中自变量x的取值范围是x≠0.故答案为:x≠0.3.【解答】观察图形知该图象是一个四边形且有一个角为直角,只有C符合,故选C.4.【解答】∵∠C=Rt∠,AC=4,BC=3,∴AB===5,∴sinB==.故选D.5.【解答】证明:连接AC,∵AD∥BC,∴∠DAC=∠ACB,∴=.故选:A.6.【解答】∵函数的图象为双曲线,∴为反比例函数,∵反比例函数的图象位于二、四象限,∴k<0,只有D符合,故选D.7.【解答】A、x=2时,y=﹣2(x﹣1)2=﹣2≠3,点(2,3)不在抛物线上,B、x=﹣2时,y=﹣2(x﹣1)2=﹣18≠3,点(﹣2,3)不在抛物线上,C、x=1时,y=﹣2(x﹣1)2=0≠﹣5,点(1,﹣5)不在抛物线上,D、x=0时,y=﹣2(x﹣1)2=﹣2,点(0,﹣2)在抛物线上,故选D.8.【解答】根据题意,在Rt△ABC,有AC=75,∠ACB=55°,且tanα=,则AB=AC×tan55°=75•tan55°,故选C.9.【解答】由题意知,二次函数y=ax2+bx的图象经过点A,B,C,则函数图象如图所示,∴a>0,﹣<0,∴b>0,故选:A.10.【解答】过O作OF⊥AD,交⊙O于G,交M于H,连接OD,∵AB为⊙O的直径,AB=8,∴OA=OB=OG=OD=4,∵BE=1.5,∴OE=4﹣1.5=2.5,在Rt△OED中,由勾股定理得:DE===,在RtAED中,AD====2,∵OF⊥AD,∴AF=AD=,由勾股定理得:OF===,由折叠得:M所在圆与圆O是等圆,∴M所在圆的半径为4,∴FH=FG=4﹣,∵4﹣>,∴FH>OF,∴O在M所在圆内,故选B.二、填空题(本题共18分,每小题3分)11.【解答】cos60°=.故答案为:.12.【解答】y=x2﹣2x+3,=x2﹣2x+1+2,=(x﹣1)2+2,所以,y=(x﹣1)2+2.故答案为:y=(x﹣1)2+2.13.【解答】∵AC⊥OB,BD⊥OB,∴∠OAC=∠OBD=90°,∴tanα=,∵CA=AB=2,BD=3,∴,∴OA=4,∴tanα==;故答案为:.14.【解答】∵∠BOC=118°,∴∠OBC+∠OCB=180°﹣118°=62°.∵点O是△ABC的∠ABC与∠ACB两个角的角平分线的交点,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=124°,∴∠A=180°﹣124°=56°.故答案为:56.15.【解答】∵抛物线y=x2﹣x﹣2与x轴的两个交点分别是(﹣1.3,0)、(4.3,0),又∵抛物线y=x2﹣x﹣2与x轴的两个交点,就是方程x2﹣x﹣2=0的两个根,∴方程x2﹣x﹣2=0的两个近似根是4.3或﹣1.3故答案为x1=﹣1.3,x2=4.3.16.【解答】如图,第一步对折由轴对称图形可知OC是AB的中垂线,点O在AB中垂线上;第二步对折由轴对称图形可知OD是BC的中垂线,点O在BC中垂线上;从而得出点O在AB、BC中垂线交点上,故答案为:轴对称图形的性质及圆心到圆上各点的距离相等.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.【解答】3tan30°+cos245°﹣sin60°==.18.【解答】==1+2﹣2+﹣1=.19.【解答】20.【解答】证明:∵四边形ABCD∽四边形EFGH,∴,∴△ADC∽△EHG.21.【解答】(1)∵二次函数y=x2+(2m+1)x+m2﹣1与x轴交于A,B两个不同的点,∴一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴△=(2m+1)2﹣4(m2﹣1)=4m+5>0,解得:m>﹣.(2)当m=1时,原二次函数解析式为y=x2+3x,令y=x2+3x=0,解得:x1=﹣3,x2=0,∴当m=1时,A、B两点的坐标为(﹣3,0)、(0,0).22.【解答】(1)∵点A(m,2)在直线y=﹣x+1上,∴﹣m+1=2,解得,m=﹣1,∴A(﹣1,2),∵点A(﹣1,2)在双曲线y=上,∴k=﹣2,∴反比例函数的表达式为:y=﹣;(2)直线和双曲线的示意图如图所示:(3)由图象可知,当0<n<2,n<﹣1时,点B位于点C上方.23.【解答】∵AB=8,∴OC=OA=4,∵∠A=22.5°,∴∠COE=2∠A=45°,∵直径AB垂直弦CD于E,∴,∴.24.【解答】(1)选用的工具为:①③;故答案为:①③;(2)如图所示:可以量出AM,AC,AB的长,以及α,β的度数,即可得出DC,NC的长.25.【解答】证明:(1)∵⊙O切BC于点D,∴OD⊥BC,∵AC∥OD,∴∠C=∠ODB=90°,∵AF为⊙O直径,∴∠AGF=90°=∠C,∴BC∥GF.解:(2)∵AC∥OD,BC∥GF∴四边形CGED为平行四边形,∵∠C=90°,∴四边形CGED为矩形,∵tanA=,∴sinA=,∵AF=2AO=2a,OF=a,∴GF=AF•sinA=2a×=,∵OD⊥BC,∴GE=EF==,在Rt△OEF中,OE===,∴DE=OD﹣OE=a﹣=,∴S四边形CGED=GE•DE=×=.26.【解答】(1)∵x2在分母上,∴x≠0.故答案为:x≠0.(2)当x=4时,m=x﹣=×4﹣=.(3)连线,画出函数图象,如图所示.(4)观察图象,可知:当x>0时,y随x的增大而增大.故答案为:当x>0时,y随x的增大而增大.27.【解答】(1)将A(3,0)代入直线l1:y=x+b中,0=3+b,解得:b=﹣3,∴直线l1:y=x﹣3.联立直线l1、l2表达式成方程组,,解得:,∴点B的坐标为(1,﹣2).(2)设抛物线y=ax2+bx+c的顶点式为y=a(x﹣h)2+k,∵抛物线y=ax2+bx+c的顶点为B(1,﹣2),∴y=a(x﹣1)2﹣2,∵抛物线y=ax2+bx+c经过点A,∴a(3﹣1)2﹣2=0,解得:a=,∴抛物线的表达式为y=(x﹣1)2﹣2.(3)∵直线x=﹣1分别与直线l1,l2交于C、D两点,∴C、D两点的坐标分别为(﹣1,﹣4),(﹣1,2),当抛物线y=ax2+bx+c过点C时,a(﹣1﹣1)2﹣2=﹣4,解得:a=﹣;当抛物线y=ax2+bx+c过点D时,a(﹣1﹣1)2﹣2=2,解得:a=1.∴当抛物线y=ax2+bx+c与线段CD有交点时,a的取值范围为﹣≤a≤1且a≠0.28.【解答】(1);∵△ABC是等边三角形,点E是BC的中点,∴∠EAC=30°,∵∠AEF=60°,∴∠CEF=30°,∵CD平分△ABC外角,∴∠ECF=120°,∴∠EFC=30°,∴CE=CF,∴AC垂直平分EF,∴AE=AF;∴△AEF是等边三角形,∴AE=EF;(2)连接AF,EF与AC交于点G.∵在等边△ABC中,CD是它的外角平分线.∴∠ACF=60°=∠AEF,∵∠AGE=∠FGC∴△AGE∽△FGC,∴,∴,∵∠AGF=∠EGC,∴△AGF∽△EGC,∵∠AFE=∠ACB=60°,∴△AEF为等边三角形,∴AE=EF.29.【解答】(1)∵y=,∴可取[P(1,1),Q(﹣1,﹣1)];(2)①∵A(2,4)且A和B为和谐点对,∴B点坐标为(﹣2,﹣4),将A和B两点坐标代入y=x2+mx+n,可得,∴;②(ⅰ)M点在x轴上方时,若∠AMB 为直角(M点在x轴上),则△ABC为直角三角形,∵A(2,4)且A和B为和谐点对,∴原点O在AB线段上且O为AB中点,∴AB=2OA,∵A(2,4),∴OA=,∴AB=,在Rt△ABC中,∵O为AB中点∴MO=OA=,若∠AMB 为锐角,则;(ⅱ)M点在x轴下方时,同理可得,,综上所述,b的取值范围为或.。

2015通州区初三(上)期末数学

2015通州区初三(上)期末数学

2015通州区初三(上)期末数学一、选择题(共10小题,每小题3分,满分30分)1.(3分)已知点(﹣2,2)在二次函数y=ax2上,那么a的值是()A.1 B.2 C.D.﹣2.(3分)在Rt△ABC中,∠C=90°,AB=2BC,那么sinA的值为()A.B.C.D.13.(3分)如图所示某几何体的三视图,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥4.(3分)如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()A.8 B.6 C.4 D.105.(3分)如图是一个正方体的表面展开图,则原正方体中与“祝”字所在的面相对的面上标的字是()A.考B.试C.顺D.利6.(3分)如果点M(﹣2,y1),N(﹣1,y2)在抛物线y=﹣x2+2x上,那么下列结论正确的是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y27.(3分)如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度是()A.7m B.6m C.5m D.4m8.(3分)如果弧长为6π的弧所对的圆心角为60°,那么这条弧所在的圆的半径是()A.18 B.12 C.36 D.69.(3分)如图,AB是⊙O的切线,B为切点,AO的延长线交⊙O于C点,连接BC,若∠A=30°,AB=2,则AC 等于()A.4 B.6 C. D.10.(3分)如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为()A.O→B→A→OB.O→A→C→OC.O→C→D→OD.O→B→D→O二、填空题(共6小题,每小题3分,满分18分)11.(3分)请写出一个开口向上,并且与y轴交于点(0,﹣1)的抛物线的解析式.12.(3分)把二次函数的表达式y=x2﹣4x+6化为y=a(x﹣h)2+k的形式,那么h+k=.13.(3分)如图,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,记=k,我们把k叫做这个菱形的“形变度”.若变形后的菱形有一个角是60°,则形变度k=.14.(3分)学习相似三角形和解直角三角形的相关内容后,张老师请同学们交流这样的一个问题:“如图,在正方形网格上有△A1B1C1和△A2B2C2,这两个三角形是否相似?”.那么你认为△A1B1C1和△A2B2C2.(填相似或不相似);理由是.15.(3分)小明四等分弧AB,他的作法如下:(1)连接AB(如图);(2)作AB的垂直平分线CD交弧AB于点M,交AB于点T;(3)分别作AT,TB的垂直平分线EF,GH,交弧AB于N,P两点,则N,M,P三点把弧AB四等分.你认为小明的作法是否正确:,理由是.16.(3分)如图,弦AB的长等于⊙O的半径,那么弦AB所对的圆周角的度数是.三、解答题(共13小题,满分72分)17.(5分)如图,已知∠1=∠2,∠AED=∠C,求证:△ABC∽△ADE.18.(5分)已知二次函数y=x2+bx+c的图象经过(2,﹣1)和(4,3)两点,求二次函数y=x2+bx+c的表达式.19.(5分)已知:如图,A,B,C为⊙O上的三个点,⊙O的直径为4cm,∠ACB=45°,求AB的长.20.(5分)如果三角形有一个边上的中线长恰好等于这个边的长,那么称这个三角形是“有趣三角形”,这条中线为“有趣中线”.如图,在△ABC中,∠C=90°,较短的一条直角边BC=1,且△ABC是“有趣三角形”,求△ABC的“有趣中线”的长.21.(5分)如图所示,以平行四边形ABCD的顶点A为圆心,AB为半径作圆,作AD,BC于E,F,延长BA交⊙A 于G,判断弧EF和EG是否相等,并说明理由.22.(5分)如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,S△DEF:S△ABF=4:25,求DE:EC的值.23.(5分)一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=30cm,点A到地面的距离AD=8cm,旅行箱与水平面AE成60°角,求拉杆把手处C到地面的距离(精确到1cm).(参考数据:)24.(5分)(1)抛物线m1:y1=a1x2+b1x+c1中,函数y1与自变量x之间的部分对应值如表:设抛物线m1的顶点为P,与y轴的交点为C,则点P的坐标为,点C的坐标为.(2)将设抛物线m1沿x轴翻折,得到抛物线m2:y2=a2x2+b2x+c2,则当x=﹣3时,y2=.(3)在(1)的条件下,将抛物线m1沿水平方向平移,得到抛物线m3.设抛物线m1与x轴交于A,B两点(点A在点B的左侧),抛物线m3与x轴交于M,N两点(点M在点N的左侧).过点C作平行于x轴的直线,交抛物线m3于点K.问:是否存在以A,C,K,M为顶点的四边形是菱形的情形?若存在,请求出点K的坐标;若不存在,请说明理由.25.(5分)如图,在平面直角坐标系xOy中,⊙A与y轴相切于点,与x轴相交于M、N两点.如果点M的坐标为,求点N的坐标.26.(5分)根据下列要求,解答相关问题.(1)请补全以下求不等式﹣2x2﹣4x>0的解集的过程.①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.27.(7分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于D.(1)动手操作:利用尺规作圆O,使圆O经过点A、D,且圆心O在AB上;并标出圆O与AB的另一个交点E,与AC的另一个交点F(保留作图痕迹,不写作法)(2)综合应用:在你所作的图中.①判断直线BC与圆O的位置关系,并说明理由;②如果∠BAC=60°,CD=,求线段BD、BE与劣弧DE所围成的图形面积(结果保留根号和π).28.(7分)王华在学习相似三角形时,在北京市义务教育教科书九年级上册第31页遇到这样一道题,如图1,在△ABC中,P是边AB上的一点,连接CP,要使△ACP∽△ABC,还需要补充的一个条件是,或.请回答:(1)王华补充的条件是,或.(2)请你参考上面的图形和结论,探究,解答下面的问题:如图2,在△ABC中,∠A=30°,AC2=AB2+AB•BC.求∠C的度数.29.(8分)定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是;当m=5,n=2时,如图2,线段BC与线段OA的距离为;(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,①求出点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【解答】∵点(﹣2,2)在二次函数y=ax2上,∴4a=2,解得a=.故选C.2.【解答】∵∠C=90°,AB=2BC,∴sinA==,故选:A.3.【解答】∵几何体的主视图和俯视图都是三角形,∴该几何体是一个锥体,∵俯视图是一个圆,∴该几何体是一个圆锥;故选D.4.【解答】连接OA,∵OA=5,OC=3,OC⊥AB,∴AC===4,∵OC⊥AB,∴AB=2AC=2×4=8.故选A.5.【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“利”是相对面,“你”与“试”是相对面,“考”与“顺”是相对面.故选D.6.【解答】抛物线y=﹣x2+2x的对称轴是x=﹣=1,∵a=﹣1<0,抛物线开口向下,﹣2<﹣1<1,∴y1<y2.故选:A.7.【解答】如图;AD=6m,AB=21m,DE=2m;由于DE∥BC,所以△ADE∽△ABC,得:,即,解得:BC=7m,故树的高度为7m.故选:A.8.【解答】∵l=,∴r===18,故选A.9.【解答】连接OB.∵AB是⊙O的切线,B为切点,∴OB⊥AB,在直角△OAB中,OB=AB•tanA=2×=2,则OA=2OB=4,∴AC=4+2=6.故选B.10.【解答】当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,y由45°逐渐增加到90°.故点P的运动路线可能为O→C→D→O.故选:C.二、填空题(共6小题,每小题3分,满分18分)11.【解答】抛物线的解析式为y=x2﹣1.故答案为:y=x2﹣1(答案不唯一).12.【解答】∵y=x2﹣4x+6=x2﹣4x+4﹣4+6=(x﹣2)2+2,∴h=2,k=2,∴h+k=2+2=4.故答案为4.13.【解答】由题意得,∠B=60°,在Rt△ABC中,∠B=60°,∴h=AC=ABsin∠B=a,∴k==.故答案为:.14.【解答】由题意得:A1C1=4,A2C2=2,由勾股定理得:A1B1==2,B1C1==2,A2B2==,B2C2==,∴==2,==2,==2,∴===2,∴△A1B1C1∽△A2B2C2.故答案为:相似,==.15.【解答】小明的作法不正确.理由是:如图,连结AN并延长,交CD于J,连结MN,设EF与AB交于I.由作法可知,EF∥CD,AI=IT,∴AN=NJ,∵∠NMJ>∠NJM,∴NJ>MN,∴AN>MN,∴弦AN与MN不相等,则≠.故答案为不正确;弦AN与MN不相等,则≠.16.【解答】:在优弧上取点C,连接AC,BC,在劣弧AB上取点D,连接AD,BD,∵弦AB的长等于⊙O的半径,∴△OAB是等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=30°,∴∠ADB=180°﹣∠ACB=150°,∴弦AB所对的圆周角的度数是:30°或150°.故答案为:30°或150°.三、解答题(共13小题,满分72分)17.【解答】证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠BAC,∵∠AED=∠C,∴△ABC∽△ADE.18.【解答】把(2,﹣1)和(4,3)代入y=x2+bx+c得,解得,所以二次函数解析式为y=x2﹣4x+3.19.【解答】连接OA,OB,∵∠ACB=45°,∴∠AOB=2∠ACB=90°,∵⊙O的直径为4cm,∴OA=OB=2cm,∴AB==2(cm).20.【解答】“有趣中线”有三种情况:若“有趣中线”为斜边AB上的中线,直角三角形的斜边的中点到三顶点距离相等,不合题意;若“有趣中线”为BC边上的中线,根据斜边大于直角边,矛盾,不成立;若“有趣中线”为另一直角边AC上的中线,如图所示,BC=1,设BD=2x,则CD=x,在Rt△CBD中,根据勾股定理得:BD2=BC2+CD2,即(2x)2=12+x2,解得:x=,则△ABC的“有趣中线”的长等于.21.【解答】相等.理由:连接AF.∵A为圆心,∴AB=AF,∴∠ABF=∠AFB,∵四边形ABCD为平行四边形,∴AD∥BC,∠AFB=∠DAF,∠GAD=∠ABF,∴∠DAF=∠GAD,∴=.22.【解答】∵四边形ABCD是平行四边形,∴AB∥CD.∴△DEF∽△BAF.∴.∴.又∵AB=CD,∴DE:EC=2:3.23.【解答】作CG⊥AE于点G.在直角△ACG中,AC=AB+BC=50+30=80cm.sin∠CAG=,∴CG=AC•sin∠CAG=80×=40≈69.2(cm).则拉杆把手处C到地面的距离是:69.2+8=77.2≈77cm.24.【解答】(1)把(﹣1,0),(1,4),(2,3)分别代入y1=a1x2+b1x+c1得,解得.所以抛物线m1的解析式为y1=﹣x2+2x+3=﹣(x﹣1)2+4,则P(1,4),当x=0时,y=3,则C(0,3);(2)因为抛物线m1沿x轴翻折,得到抛物线m2,所以y2=(x﹣1)2﹣4,当x=﹣3时,y2=(x+1)2﹣4=(﹣3﹣1)2﹣4=12.故答案为(1,4),(0,3),12;(3)存在.当y1=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),∵抛物线m1沿水平方向平移,得到抛物线m3,∴CK∥AM,CK=AM,∴四边形AMKC为平行四边形,当CA=CK时,四边形AMKC为菱形,而AC==,则CK=,当抛物线m1沿水平方向向右平移个单位,此时K(,3);当抛物线m1沿水平方向向左平移个单位,此时K(﹣,3).25.【解答】连接AB、AM、过A作AC⊥MN于C,设⊙A的半径是R,∵⊙A与y轴相切于B,∴AB⊥y轴,∵点,与x轴相交于M、N两点,点M的坐标为,∴AB=AM=R,CM=R﹣,AC=,MN=2CM,由勾股定理得:R2=(R﹣)2+()2,R=2.5,∴CM=CN=2.5﹣=2,∴ON=+2+2=4,即N的坐标是(4,0).26.【解答】①图1所示:②方程﹣2x2﹣4x=0即﹣2x(x+2)=0,解得:x1=0,x2=﹣2;则方程的解是x1=0,x2=﹣2,图象如图1;③函数y=x2﹣2x+1的图象是图2:当y=4时,x2﹣2x+1=4,解得:x1=3,x2=﹣1.则不等式的解集是:x≥3或x≤﹣1.27.【解答】(1)如图1;(2)①直线BC与⊙O的位置关系为相切.理由如下:如图1,连接OD,∵OA=OD,∴∠OAD=∠ADO,∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD,∴∠CAD=∠ADO,∴AC∥OD,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,即直线BC是⊙O的切线,∴直线BC与⊙O的位置关系为相切;②如图2,∵∠BAC的角平分线AD交BC于D,∠BAC=60°,∠C=90°,∴∠CAD=∠DAB=30°,∠B=30°,∴∠DAB=∠B=30°,∴BD=AD.∵在Rt△ADC中,∠C=90°,∠CAD=30°,CD=,∴AD=2CD=2,AC=CD=3,∴BD=2,AB=2AC=6.设⊙O的半径为r,在Rt△OBD中,OD2+BD2=OB2,即r2+(2)2=(6﹣r)2,解得r=2,OB=6﹣r=4,∵∠ODB=90°,∠B=30°,∴∠DOB=60°,∴S扇形ODE==π,S△ODB=OD•BD=×2×2=2,∴线段BD、BE与劣弧DE所围成的图形面积为:S△ODB﹣S扇形ODE=2﹣π.28.【解答】∵∠A=∠A,∴当∠ACP=∠B,或∠APC=∠ACB;或,即AC2=AP•AB时,△ACP∽△ABC;故答案为:∠ACP=∠B(或∠APC=∠ACB),或AC2=AP•AB;(1)王华补充的条件是:∠ACP=∠B(或∠APC=∠ACB);或AC2=AP•AB;理由如下:∵∠A=∠A,∴当∠ACP=∠B,或∠APC=∠ACB;或,即AC2=AP•AB时,△ACP∽△ABC;故答案为:∠ACP=∠B(或∠APC=∠ACB),或AC2=AP•AB;(2)延长AB到点D,使BD=BC,连接CD,如图所示:∵AC2=AB2+AB•BC=AB(AB+BC)=AB(AB+BD)=AB•AD,∴,又∵∠A=∠A,∴△ACB∽△ADC,∴∠ACB=∠D,∵BC=BD,∴∠BCD=∠D,在△ACD中,∠ACB+∠BCD+∠D+∠A=180°,∴3∠ACB+30°=180°,∴∠ACB=50°.29.【解答】(1)当m=2,n=2时,如题图1,线段BC与线段OA的距离(即线段BN的长)=2;当m=5,n=2时,B点坐标为(5,2),线段BC与线段OA的距离,即为线段AB的长,如答图1,过点B作BN⊥x轴于点N,则AN=1,BN=2,在Rt△ABN中,由勾股定理得:AB===.(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长,ON=m,AN=OA﹣ON=4﹣m,在Rt△ABN中,由勾股定理得:∴d===.(3)①依题意画出图形,点M的运动轨迹如答图3中粗体实线所示:由图可见,封闭图形由上下两段长度为8的线段,以及左右两侧半径为2的半圆所组成,其周长为:2×8+2×π×2=16+4π,∴点M随线段BC运动所围成的封闭图形的周长为:16+4π.②结论:存在.∵m≥0,n≥0,∴点M位于第一象限.∵A(4,0),D(0,2),∴OA=2OD.如答图4所示,相似三角形有三种情形:(I)△AM1H1,此时点M纵坐标为2,点H在A点左侧.如图,OH1=m+2,M1H1=2,AH1=OA﹣OH1=2﹣m,由相似关系可知,M1H1=2AH1,即2=2(2﹣m),∴m=1;(II)△AM2H2,此时点M纵坐标为2,点H在A点右侧.如图,OH2=m+2,M2H2=2,AH2=OH2﹣OA=m﹣2,由相似关系可知,M2H2=2AH2,即2=2(m﹣2),∴m=3;(III)△AM3H3,此时点B落在⊙A上.如图,OH3=m+2,AH3=OH3﹣OA=m﹣2,过点B作BN⊥x轴于点N,则BN=M3H3=n,AN=m﹣4,由相似关系可知,AH3=2M3H3,即m﹣2=2n (1)在Rt△ABN中,由勾股定理得:22=(m﹣4)2+n2(2)由(1)、(2)式解得:m1=,m2=2,当m=2时,点M与点A横坐标相同,点H与点A重合,故舍去,∴m=.综上所述,存在m的值使以A、M、H为顶点的三角形与△AOD相似,m的取值为:1、3或.。

江苏省南通市九年级(上)期末数学试卷(含答案)

江苏省南通市九年级(上)期末数学试卷(含答案)

江苏省南通市九年级(上)期末数学试卷(含答案)一、选择题1.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒2.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.4 3.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm4.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A.20°B.25°C.30°D.50°5.如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在格点上,点E 在AB的延长线上,以A为圆心,AE为半径画弧,交AD的延长线于点F,且弧EF经过点C,则扇形AEF的面积为()A.5πB.58πC.54πD.5π6.△ABC的外接圆圆心是该三角形()的交点.A.三条边垂直平分线B.三条中线C.三条角平分线D.三条高7.已知二次函数y=(a﹣1)x2﹣x+a2﹣1图象经过原点,则a的取值为()A.a=±1 B.a=1 C.a=﹣1 D.无法确定8.如图,点A、B、C都在⊙O上,若∠ABC=60°,则∠AOC的度数是()A.100°B.110°C.120°D.130°9.如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于()A.20°B.40°C.70°D.80°10.某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个根是x=1 D.不存在实数根11.cos60︒的值等于()A.12B.22C.32D.3312.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A.点B.点C.点D.点13.如图,点P(x,y)(x>0)是反比例函数y=kx(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变14.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()A.②④B.①③④C.①④D.②③15.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A .4233π-B .8433π-C .8233π-D .843π- 二、填空题16.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.17.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表x… -1 0 1 2 3 … y … -3 -3 -1 39 … 关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.18.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .19.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____.20.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)21.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).22.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)23.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .24.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________. 25.如图,抛物线214311515y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.26.若点 M (-1, y 1 ),N (1, y 2 ),P (72, y 3 )都在抛物线 y =-mx 2 +4mx+m 2 +1(m >0)上,则y 1、y 2、y 3 大小关系为_____(用“>”连接).27.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____. 28.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表x… -1 0 1 2 3 … y … -3 -3 -1 39 … 关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.29.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则2MN PM=_____.30.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.三、解答题31.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?32.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD、CE是△ABC的高,M是BC的中点,点B、C、D、E是否在以点M为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B、C、D、E在以点M为圆心的同一个圆上”,在连接MD、ME的基础上,只需证明.(2)初步思考:如图②,BD、CE是锐角△ABC的高,连接DE.求证:∠ADE=∠ABC,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD、CE、AF是锐角△ABC的高,三条高的交点G叫做△ABC的垂心,连接DE、EF、FD,求证:点G是△DEF的内心.33.利用一面墙(墙的长度为20m),另三边用长58m的篱笆围成一个面积为200m2的矩形场地.求矩形场地的各边长?34.如图,抛物线y=ax2+bx+4(a≠0)与x轴交于点B (-3 ,0) 和C (4 ,0)与y轴交于点A.(1) a = ,b = ;(2) 点M从点A出发以每秒1个单位长度的速度沿AB向B运动,同时,点N从点B出发以每秒1个单位长度的速度沿BC向C运动,当点M到达B点时,两点停止运动.t为何值时,以B、M、N为顶点的三角形是等腰三角形?(3) 点P是第一象限抛物线上的一点,若BP恰好平分∠ABC,请直接写出此时点P的坐标.35.化简并求值: 22+24411m m m m m ++÷+-,其中m 满足m 2-m -2=0. 四、压轴题36.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点(1)求b 的值; (2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.37.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切?38.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为(5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒; ()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.39.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度;(3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.40.如图,抛物线2y x bx c =-++与x 轴的两个交点分别为(1,0)A ,(30)B ,.抛物线的对称轴和x 轴交于点M .(1)求这条抛物线对应函数的表达式;(2)若P 点在该抛物线上,求当PAB △的面积为8时,求点P 的坐标.(3)点G 是抛物线上一个动点,点E 从点B 出发,沿x 轴的负半轴运动,速度为每秒1个单位,同时点F 由点M 出发,沿对称轴向下运动,速度为每秒2个单位,设运动的时间为t .①若点G 到AE 和MF 距离相等,直接写出点G 的坐标.②点C是抛物线的对称轴上的一个动点,以FG和FC为边做矩形FGDC,直接写出点E 恰好为矩形FGDC的对角线交点时t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.2.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,∴AB DE BC EF=,∵AB=1.5,BC=2,DE=1.8,∴1.5 1.82EF= , ∴EF=2.4故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.3.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.4.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC,然后根据圆周角定理计算∠ADC的度数.【详解】∵BC 的度数为50°,∴∠BOC=50°,∵半径OC ⊥AB ,∴=AC BC ,∴∠ADC=12∠BOC=25°. 故选B .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理. 5.B解析:B【解析】【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC ,则r=AC=22251=+扇形的圆心角度数为∠BAD=45°,∴扇形AEF 的面积=()2455360π⨯⨯=58π 故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.6.A解析:A【解析】【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【详解】解:△ABC 的外接圆圆心是△ABC 三边垂直平分线的交点,故选:A .【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.7.C解析:C【解析】【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1 即可得出a的值.【详解】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故选:C.【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.8.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.C解析:C【解析】【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA =OD ,∴∠BAD =∠ADO =12(180°﹣40°)=70°. 故选C .【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.10.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.11.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=12. 故选A.【点睛】本题考查了特殊角的三角函数值.12.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.13.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y =k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |. 14.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1,∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△=b2-4ac决定:△>0时,抛物线与x轴有2个交点;△= 0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.15.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.二、填空题16.1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.17.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴322 -≤≤-,∴-3≤−1−2≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式. 18.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.19.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠m解析:2【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.20.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】根据黄金分割比为12计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有AC=12AB=12×10=5, 当AC<BC 时,则有×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.21.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC=AB .故答案为:.【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分解析:51 2 -【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=51-AB.故答案为:512-.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则51 ACBC-=,正确理解黄金分割的定义是解题的关键.22.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 23..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB解析:103. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴103AD =考点: 1.相似三角形的判定与性质;2.勾股定理.24.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键.25.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令2111515y x x =--中y=0,得x 1x 2∴直线AC的解析式为1y =-, 设P (x ,31x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(31x )2-1, =242837533x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.26.y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=mx2 +4mx+m2 +1(m>0),对称轴为x=,观察二次函数的图象可知:y1<y3<y2.故答案为:y解析:y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=-mx2 +4mx+m2 +1(m>0),对称轴为x=422mm-=-,观察二次函数的图象可知:y1<y3<y2.故答案为:y1<y3<y2.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.27.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.28.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴=,∵1x<0,∴1x=−1-2<0,∵-4≤-3,∴3222-≤-≤-,∴-≤ 2.5-, ∵整数k 满足k <x 1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.29.【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算即可解答本题.【详解】解:∵二次函数y =2x2﹣4x+4=2(x ﹣1)2+2,∴点P 的坐标为(1解析:【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算2MN PM即可解答本题. 【详解】解:∵二次函数y =2x 2﹣4x +4=2(x ﹣1)2+2,∴点P 的坐标为(1,2),设点M 的坐标为(a ,2),则点N 的坐标为(a ,2a 2﹣4a +4), ∴2MN PM =()222442(1)a a a -+--=()22222212422121a a a a a a a a -+-+=-+-+=2, 故答案为:2.【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P 左边,设出点M 、点N 的坐标,表达出2MN PM . 30.30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1∴DG =DH =PE =QE =FN =FM =1,则有矩形DEPG 、矩形EQNF 、矩形DFMH ,∴DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN,∠PEF =90°又∵∠CPE =∠CQE =90°, PE =QE =1∴四边形CPEQ 是正方形,∴PC =PE =EQ =CQ =1,∵⊙O的半径为1,且圆心O运动的路径长为18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:5,设DE=3k(k>0),则EF=4k,DF=5k,∵DE+EF+DF=18,∴3k+4k+5k=18,解得k=32,∴DE=3k=92,EF=4k=6,DF=5k=152,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x+92+1=x+5.5,BC=CQ+QN+BN=1+6+y=y+7,AB=AH+HM+BM=x+152+y=x+y+7.5,∵AC:BC:AB=3:4:5,∴(x+5.5):(y+7):(x+y+7.5)=3:4:5,解得x=2,y=3,∴AC=7.5,BC=10,AB=12.5,∴AC+BC+AB=30.所以△ABC的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.三、解答题31.(1)20%;(2)8640万元.【解析】【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x,根据题意得,5000(1+x)2=7200解得,x1=0.2=20%,x2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b(a、b、x、n分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.32.(1)ME=MD=MB=MC;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)要证四个点在同一圆上,即证明四个点到定点距离相等.(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE为圆内接四边形,故有对角互补.(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E 四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.【详解】解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上故答案为:ME=MD=MB=MC(2)证明:连接MD、ME∵BD、CE是△ABC的高∴BD⊥AC,CE⊥AB∴∠BDC=∠CEB=90°∵M为BC的中点∴ME=MD=12BC=MB=MC∴点B、C、D、E在以点M为圆心的同一个圆上∴∠ABC+CDE=180°∵∠ADE+∠CDE=180°。

九年级上册南通数学期末试卷(Word版 含解析)

九年级上册南通数学期末试卷(Word版 含解析)

九年级上册南通数学期末试卷(Word 版 含解析)一、选择题1.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①②B .②③C .①③D .①②③2.下列是一元二次方程的是( ) A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 3.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36° 4.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( )A .5B .2C .5或2D .2或7-15.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数6.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .433B .23C .334D .3227.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定8.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .129.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( )①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0).A .1B .2C .3D .410.如图,△ABC 中,∠C =90°,∠B =30°,AC =7,D 、E 分别在边AC 、BC 上,CD =1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .23B .33C .27D .3711.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值: x… ﹣1﹣120 121322523 …y (2)m﹣1﹣74 ﹣2 ﹣74﹣1 142 …可以推断m 的值为( ) A .﹣2B .0C .14D .212.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或二、填空题13.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm .14.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .15.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.16.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.17.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm . 18.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.19.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x=的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.20.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .21.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.22.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.23.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.24.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.三、解答题25.二次函数y =ax 2+bx +c 中的x ,y 满足下表 x…-113…y…0310…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质:(1);(2);(3).26.现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64m的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3m处达到最高,高度为1m.(1)求喷灌出的圆形区域的半径;(2)在边长为16m的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)27.如图1,矩形OABC的顶点A的坐标为(4,0),O为坐标原点,点B在第一象限,连接AC, tan∠ACO=2,D是BC的中点,(1)求点D的坐标;(2)如图2,M是线段OC上的点,OM=23OC,点P是线段OM上的一个动点,经过P、D、B三点的抛物线交x轴的正半轴于点E,连接DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时点P的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M 时,点G也随之运动,请直接写出点G运动的路径的长.28.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?29.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,求a的取值范围.30.在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点及点O都在格点上(每个小方格的顶点叫做格点).(1)以点O为位似中心,在网格区域内画出△A′B′C′,使△A′B′C′与△ABC位似(A′、B′、C′分别为A、B、C的对应点),且位似比为2:1;(2)△A′B′C′的面积为个平方单位;(3)若网格中有一格点D′(异于点C′),且△A′B′D′的面积等于△A′B′C′的面积,请在图中标出所有符合条件的点D′.(如果这样的点D′不止一个,请用D1′、D2′、…、D n′标出)31.定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M ,N 两点,若∠MPN 绕点P 旋转时始终满足OM •ON =OP 2,则称∠MPN 是∠AOB 的“相关角”.(1)如图1,已知∠AOB =60°,点P 为∠AOB 平分线上一点,∠MPN 的两边分别与射线OA ,OB 交于M ,N 两点,且∠MPN =150°.求证:∠MPN 是∠AOB 的“相关角”; (2)如图2,已知∠AOB =α(0°<α<90°),OP =3,若∠MPN 是∠AOB 的“相关角”,连结MN ,用含α的式子分别表示∠MPN 的度数和△MON 的面积; (3)如图3,C 是函数4y x=(x >0)图象上的一个动点,过点C 的直线CD 分别交x 轴和y 轴于点A ,B 两点,且满足BC =3CA ,∠AOB 的“相关角”为∠APB ,请直接写出OP 的长及相应点P 的坐标.32.甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大;故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确. 故选C. 【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.2.B解析:B 【解析】 【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解. 【详解】解:A 、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B 、方程x 2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C 、方程y 2+x =1含有两个未知数,是二元二次方程,故不是一元二次方程;D 、方程1x=1不是整式方程,是分式方程,故不是一元二次方程. 故选:B. 【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.3.C解析:C【解析】【分析】【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.4.D解析:D【解析】【分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2210AC AB BC=+= ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴1111686810 2222r r r ,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2227AC BC AB ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB AC AB OF BC OD AC OE ,∴11116276827 2222r r r ,∴r=71.故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.5.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差6.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴1333322ABCS=⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.7.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.8.A解析:A【解析】【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以2CE ==CD 的长. 【详解】∵CD AB ⊥,AB 为直径,∴CE DE =, ∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6,∴622CE ===∴2CD CE ==故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.9.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.【详解】①y =x 2+2x +3,a =1>0,函数的图象的开口向上,故①错误;②y =x 2+2x +3的对称轴是直线x =221-⨯=﹣1, 即函数的对称轴是过点(﹣1,3)且平行于y 轴的直线,故②正确;③y =x 2+2x +3,△=22﹣4×1×3=﹣8<0,即函数的图象与x 轴没有交点,故③正确;④y =x 2+2x +3,当x =0时,y =3,即函数的图象与y 轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B .【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.10.B解析:B【解析】【分析】如图,作CH ⊥BE ′于H ,设AC 交BE ′于O .首先证明∠CE ′B =∠D ′=60°,解直角三角形求出HE ′,BH 即可解决问题.【详解】解:如图,作CH ⊥BE ′于H ,设AC 交BE ′于O .∵∠ACB =90°,∠ABC =30°,∴∠CAB =60°,∵DE ∥AB , ∴CD CA =CE CB ,∠CDE =∠CAB =∠D ′=60° ∴'CD CA ='CE CB, ∵∠ACB =∠D ′CE ′,∴∠ACD ′=∠BCE ′,∴△ACD ′∽△BCE ′,∴∠D ′=∠CE ′B =∠CAB ,在Rt △ACB 中,∵∠ACB =90°,AC ,∠ABC =30°,∴AB =2AC =,BC AC ,∵DE ∥AB , ∴CD CA =CE CB ,,∴CE∵∠CHE ′=90°,∠CE ′H =∠CAB =60°,CE ′=CE∴E ′H =12CE CH HE ′=32,∴BH∴BE ′=HE ′+BH =故选:B .【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.11.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.12.C解析:C【解析】【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,0),∴抛物线与x轴的另一个交点为(−3,0),∴当−3<x<1时,y>0.故选:C .【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x 轴的交点.二、填空题13.6;【解析】解:设圆的半径为x ,由题意得:=5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l=(弧长为l ,圆心角度数为n ,圆的半径为R ).解析:6;【解析】解:设圆的半径为x ,由题意得:150180x π =5π,解得:x =6,故答案为6. 点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 14.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,15.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 16.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.17.2-2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AP=12AB ,代入运算即可. 【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则=)21cm , 故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的12,难度一般. 18.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键. 19.24【解析】【详解】点B 是抛物线y=﹣x2+4x+2的顶点,∴点B 的坐标为(2,6),2018÷6=336…2,故点P 离x 轴的距离与点B 离x 轴的距离相同,∴点P 的坐标为(2018,6),解析:24【解析】【详解】点B 是抛物线y =﹣x 2+4x +2的顶点,∴点B 的坐标为(2,6),2018÷6=336…2,故点P 离x 轴的距离与点B 离x 轴的距离相同,∴点P 的坐标为(2018,6),∴m =6;点B (2,6)在k y x =的图象上, ∴k =6; 即12y x=, 2025÷6=337…3,故点Q 离x 轴的距离与当x =3时,函数12y x =的函数值相等, 又 x =3时,1243y ==, ∴点Q 的坐标为(2025,4),即n =4,∴mn =6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P 、Q 在A ﹣B ﹣C 段上的对应点是解题的关键.20.4【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.21.【解析】【分析】△ABF和△ABE等高,先判断出,进而算出,△ABF和△ AFD等高,得,由,即可解出.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵E是▱解析:2 5【解析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF ∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.22.7【解析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 23.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+)2﹣,∴函数的对称轴为x=﹣,∴当﹣1≤x≤0时,函数有最解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.三、解答题25.(1)抛物线与x轴交于点(-1,0)和(3,0);与y轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x<1时,y随x的增大而增大【解析】【分析】根据表格中数据,可得抛物线与x轴交点坐标,与y轴交点坐标,抛物线的对称轴直线以及抛物线在对称轴左侧的增减性,从而进行解答.【详解】解:由表格数据可知:当x=0时,y=3;当y=0时,x=-1或3∴该函数三条不同的性质为:(1)抛物线与x 轴交于点(-1,0)和(3,0);与y 轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x <1时,y 随x 的增大而增大【点睛】 本题考查二次函数性质,数形结合思想解题是本题的解题关键.26.(1)8m ;(2)不可以,水管高度调整到0.7m ,理由见解析.【解析】【分析】(1)根据题意设最远的抛物线形水柱的解析式为2(3)1y a x =-+,然后将(0,0.64)代入解析式求得a 的值,然后求解析式y=0时,x 的值,从而求得半径;(2)利用圆与圆的位置关系结合正方形,作出三个等圆覆盖正方形的图形,然后利用勾股定理求得圆的半径,从而使问题得解.【详解】解:(1)由题意,设最远的抛物线形水柱的解析式为2(3)1y a x =-+,将(0,0.64)代入解析式,得910.64a +=解得:125a =- ∴最远的抛物线形水柱的解析式为21(3)125y x =--+ 当y=0时,21(3)1025x --+= 解得:128;2x x ==-所以喷灌出的圆形区域的半径为8m ;(2)如图,三个等圆覆盖正方形设圆的半径MN=NB=ME=DE=r ,则2r 2r∴在Rt△AMN 中,22216)(162)r r r -+-=(2(162)2560r r -++=解得:8r =+(其中816+>,舍去)∴88.5r =+≈设最远的抛物线形水柱的解析式为2(3)1y a x =-+,将(8.5,0)代入 25.51=0a +解得: 4=121a -∴24(3)1121y x =--+ 当x=0时,y=850.7121≈ ∴水管高度约为0.7m 时,喷灌区域恰好可以完全覆盖该绿化带【点睛】本题考查待定系数法求二次函数解析式,根据题意设抛物线为顶点式是本题的解题关键.27.(1)D (2,2);(2)①P (0,0);②13 【解析】【分析】(1)根据三角函数求出OC 的长度,再根据中点的性质求出CD 的长度,即可求出D 点的坐标;(2)①证明在该种情况下DE 为△ABC 的中位线,由此可得F 为AB 的中点,结合三角形全等即可求得E 点坐标,结合二次函数的性质可设二次函数表达式(此表达式为交点式的变形,利用了二次函数的平移的特点),将E 点代入即可求得二次函数的表达式,根据表达式的特征可知P 点坐标;②可得G 点的运动轨迹为'GG ,证明△DFF'≌△FGG',可得GG'=FF',求得P 点运动到M 点时的解析式即可求出F'的坐标,结合①可求得FF'即GG'的长度.【详解】解:(1)∵四边形OABC 为矩形,∴BC=OA=4,∠AOC=90°,∵在Rt △ACO 中,tan ∠ACO=OA OC=2, ∴OC=2,又∵D 为CB 中点,∴CD=2,∴D (2,2);(2)①如下图所示,若点B 恰好落在AC 上的'B 时,根据折叠的性质1'','2BDF B DF BDB BD B D ∠=∠=∠=, ∵D 为BC 的中点,∴CD=BD,∴'CD B D =,∴1''2BCA DB C BDB ∠=∠=∠, ∴BCA BDF ∠=∠,∴//DF AC ,DF 为△ABC 的中位线,∴AF=BF,∵四边形ABCD 为矩形∴∠ABC=∠BAE=90°在△BDF 和△AEF 中,∵ABC BAE BF AF BFD AFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BDF ≌△AEF ,∴AE=BD=2,∴E(6,0),设(2)(4)2ya x x ,将E (6,0)带入,8a+2=0 ∴a=14-,则二次函数解析式为21342y x x =-+,此时P (0,0); ②如图,当动点P 从点O 运动到点M 时,点F 运动到点F',点G 也随之运动到G'.连接GG'.当点P 向点M 运动时,抛物线开口变大,F 点向上线性移动,所以G 也是线性移动.∵OM=23OC=43 ∴4(0,)3M ,当P 点运动到M 点时,设此时二次函数表达式为1(2)(4)2ya x x ,将4(0,)3M 代入得14823a ,解得1112a ,所以抛物线解析式为1(2)(4)212y x x ,整理得21141223y x x =-++. 当y=0时,211401223x x -++=,解得x=8(已舍去负值), 所以此时(8,0)E , 设此时直线'DF 的解析式为y=kx+b ,将D (2,2),E (8,0)代入2208k b k b =+⎧⎨=+⎩解得1383k b ⎧=-⎪⎪⎨⎪=⎪⎩, 所以1833y x =-+, 当x=4时,43y =,所以4'3AF =, 由①得112AF AB ==, 所以1''3FF AF AF =-=, ∵△DFG 、△DF'G'为等边三角形,∴∠GDF =∠G'DF'=60°,DG =DF ,DG'=DF',∴∠GDF ﹣∠GDF'=∠G'DF'﹣∠GDF',即∠G'DG =∠F'DF ,在△DFF'与△FGG'中,''''DF DG F DF G DG DF DG =⎧⎪∠=∠⎨⎪=⎩,∴△DFF'≌△FGG'(SAS ),∴GG'=FF',即G 运动路径的长为13. 【点睛】本题考查二次函数综合,解直角三角形,全等三角形的性质与判定,三角形中位线定理,一次函数的应用,折叠问题.(1)中能根据正切求得OC 的长度是解决此问的关键;(2)①熟练掌握折叠前后对应边相等,对应角相等是解题关键;②中能通过分析得出G 点的运动轨迹为线段GG',它的长度等于FF',是解题关键.28.(1)50,72;(2)作图见解析;(3)90.【解析】【分析】(1)用A 类学生的人数除以A 类学生的人数所占的百分比即可得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C 类学生数和C 类与D 类所占的百分比,从而可以将统计图补充完整;(3)用该校九年级男生的人数乘以该校九年级男生“引体向上”项目成绩为C 类的的学生所占得百分比即可得答案.【详解】(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A 类所对的圆心角是:360°×20%=72°,(2)C 类学生数为:50﹣10﹣22﹣3=15,C 类占抽取样本的百分比为:15÷50×100%=30%,D 类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C 类的有90名.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.29.a<2且a≠1【解析】【分析】根据一元二次方程的定义和判别式的意义得到a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,然后解两个不等式得到它们的公共部分即可.【详解】∵关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,∴a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,解得:a<2且a≠1.【点睛】本题考查了一元二次方程根的情况与判别式的关系,对于一元二次方程ax2+bx+c=0(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;注意a≠0这一隐含条件,避免漏解.30.(1)详见解析;(2)10;(3)详见解析【解析】【分析】(1)依据点O为位似中心,且位似比为2:1,即可得到△A′B′C′;(2)依据割补法进行计算,即可得出△A′B′C′的面积;(3)依据△A′B′D′的面积等于△A′B′C′的面积,即可得到所有符合条件的点D′.【详解】解:(1)如图所示,△A′B′C′即为所求;(2)△A′B′C′的面积为4×6﹣12×2×4﹣12×2×4﹣12×2×6=24﹣4﹣4﹣6=10;故答案为:10;(3)如图所示,所有符合条件的点D′有5个.。

2015~2016学年度第一学期期末教学质量检测九年级数学试卷附答案

2015~2016学年度第一学期期末教学质量检测九年级数学试卷附答案

2015~2016学年度第一学期期末教学质量检测九年级数学试卷说明:1、全卷共4页,五道大题。

2、考试时间100分钟,满分120分。

一、单项选择题(共10小题,每小题3分,共30分)1、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D2、下列事件是必然事件的是()A、明天太阳从西边升起B、掷出一枚硬币,正面朝上C、打开电视机,正在播放“新闻联播”D、任意画一个三角形,它的内角和等于180°3、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋里随机摸出一个球,摸出的球是红色的概率是()A 、B 、 C、D 、4、在半径为6的⊙O中,60°圆心角所对的弧长是()A、 B、2 C、4 D、65、用配方法解方程x2+10x+9=0,配方后可得()A、(x+5)2=16B、(x+5)1=1C、(x+10)2=91D、(x+10)2=1096、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A、-1B、-2C、-3D、-47、如图,∠O =30°,C为OB上的一点,且OC=6,以点C为圆心、半径为3的圆与OA的位置关系是()A、相离B、相交C、相切D、以上三种情况均有可能8、如图,在⊙O中直径垂直于弦AB,若∠C=25°则∠BOD的度数是()A、25°B、30°C、40°D、50°9、某校准备修建一个面积为180平方米的矩形活动场所,它的长比宽多11米,设场地的宽为x米,则可列出的方程为()A、x(x-11)=180B、2x+2(x-11)=180C、x(x+11)=180D、2x+2(x+11)=18010、二次函数y=ax2+bx+c(a≠0)的大致图像见如图,关于该函数的说法错误的是()A、函数有最小值第7题图第8B 、对称轴是直线x=1/2C 、当x ﹤1/2,y 随x 增大而减小D 、当-1﹤x ﹤2时,y ﹥0二、填空题(共6小题,每小题4分,共24分)11、如图,将△ABC 绕点A 按顺时针方向旋转60°,得△ADE ,则∠BAD= 度。

九年级上册南通数学期末试卷(Word版 含解析)

九年级上册南通数学期末试卷(Word版 含解析)

九年级上册南通数学期末试卷(Word版含解析)一、选择题1.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧BC上一点,如果∠AOB=58º,那么∠ADC的度数为()A.32º B.29º C.58º D.116º2.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD=1,BD=2,则DE BC的值为()A.12B.13C.14D.193.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点,43=BMCN,当∠CAN与△CMB中的一个角相等时,则BM的值为()A.3或4 B.83或4 C.83或6 D.4或64.已知OA,OB是圆O的半径,点C,D在圆O上,且//OA BC,若26ADC∠=︒,则B的度数为()A.30B.42︒C.46︒D.52︒5.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80° 6.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位 7.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A .平均分不变,方差变大B .平均分不变,方差变小C .平均分和方差都不变D .平均分和方差都改变 8.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( )A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+39.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( )A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 10.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC 的度数等于( )A .50°B .49°C .48°D .47° 11.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( )A .a <2B .a >2C .a <﹣2D .a >﹣2 12.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252 B .25C .251 D 52二、填空题13.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.14.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm .15.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.16.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.17.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)18.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)19.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 20.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.21.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.22.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm .23.一组数据3,2,1,4,x 的极差为5,则x 为______.24.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .三、解答题25.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x 交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.26.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.27.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.28.如图,抛物线y=ax2+bx+4(a≠0)与x轴交于点B (-3 ,0) 和C (4 ,0)与y轴交于点A.(1) a = ,b = ;(2) 点M从点A出发以每秒1个单位长度的速度沿AB向B运动,同时,点N从点B出发以每秒1个单位长度的速度沿BC向C运动,当点M到达B点时,两点停止运动.t为何值时,以B、M、N为顶点的三角形是等腰三角形?(3) 点P是第一象限抛物线上的一点,若BP恰好平分∠ABC,请直接写出此时点P的坐标.29.如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在点A处用高1.5米∠为45︒,此时教学楼顶端点G恰好在视线DH 的测角仪测得古树顶端点H的仰角HDE∠为60︒,点A、上,再向前走7米到达点B处,又测得教学楼顶端点G的仰角GEFB、C点在同一水平线上.(1)计算古树BH的高度;≈).(2)计算教学楼CG的高度.(结果精确到0.1米,参考数据:2 1.4≈,3 1.7 30.如图,AB为O的直径,PD切O于点C,交AB的延长线于点D,且∠=∠.2D A∠的度数.(1)求D(2)若O的半径为2,求BD的长.31.某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.32.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调=-+. 查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y2x80设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据垂径定理可得AB AC =,根据圆周角定理可得∠AOB=2∠ADC ,进而可得答案.【详解】解:∵OA 是⊙O 的半径,弦BC ⊥OA ,∴AB AC =,∴∠ADC=12∠AOB=29°. 故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 2.B解析:B【解析】试题分析:∵DE ∥BC ,∴AD DE AB BC =,∵13AD AB =,∴31DE BC =.故选B . 考点:平行线分线段成比例. 3.D解析:D【解析】【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴CMB CAB CAN ∠>∠>∠,AB=10,CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽, ∴CN AC AC CB=, ∴3668k =, 32k ∴=, 6BM ∴=.②当CAN MCB∠=∠时,如图2中,过点M作MH CB⊥,可得BMH BAC∆∆∽,∴BM MH BHBA AC BC==,∴41068k MH BH==,125MH k∴=,165BH k=,1685CH k∴=-,MCB CAN∠=∠,90CHM ACN∠=∠=︒,ACN CHM∴∆∆∽,∴CN MHAC CH=,∴123516685kkk=-,1k∴=,4BM∴=.综上所述,4BM=或6.故选:D.【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.4.D解析:D【解析】【分析】连接OC,根据圆周角定理求出∠AOC,再根据平行得到∠OCB,利用圆内等腰三角形即可求解.【详解】连接CO,∵26ADC∠=︒∴∠AOC=252ADC∠=︒∵//OA BC∴∠OCB=∠AOC=52︒∵OC=BO ,∴B =∠OCB=52︒故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.5.C解析:C【解析】【分析】设∠A 、∠C 分别为x 、2x ,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A 、∠C 分别为x 、2x ,∵四边形ABCD 是圆内接四边形,∴x +2x =180°,解得,x =60°,即∠A =60°,故选:C .【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.6.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.7.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.8.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.故选:A.【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.9.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k ≤且k ≠0. 故选:C .【点睛】 本题考查一元二次方程根的判别式与实数根的情况,注意k ≠0.10.A解析:A【解析】【分析】连接OC ,根据等边三角形的性质得到∠BOC =60°,得到∠AOC =100°,根据圆周角定理解答.【详解】连接OC ,由题意得,OB =OC =BC ,∴△OBC 是等边三角形,∴∠BOC =60°,∵∠AOB =40°,∴∠AOC =100°,由圆周角定理得,∠ADC =∠AOC =50°,故选:A .【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.11.B解析:B【解析】【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论.【详解】∵1a =,2b =-,1c a =-,由题意可知:()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2,故选:B . 【点睛】 本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.12.A解析:A【解析】根据黄金比的定义得:512AP AB -= ,得514252AP -=⨯=- .故选A. 二、填空题13.12【解析】【分析】根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出2,结合FG=2可求出AF 、AG 的长度,由CG ∥AB 、AB=2CG 可得出CG 为△E解析:12【解析】【分析】根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出AF AB GF GD==2,结合FG =2可求出AF 、AG 的长度,由CG ∥AB 、AB =2CG 可得出CG 为△EAB 的中位线,再利用三角形中位线的性质可求出AE 的长度,此题得解.【详解】 ∵四边形ABCD 为正方形,∴AB =CD ,AB ∥CD ,∴∠ABF =∠GDF ,∠BAF =∠DGF ,∴△ABF ∽△GDF ,∴AF AB GF GD==2,∴AF =2GF =4,∴AG =6. ∵CG ∥AB ,AB =2CG ,∴CG 为△EAB 的中位线,∴AE =2AG =12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF 的长度是解题的关键.14.6;【解析】解:设圆的半径为x ,由题意得:=5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l= (弧长为l ,圆心角度数为n ,圆的半径为R ).解析:6;【解析】解:设圆的半径为x ,由题意得:150180x π =5π,解得:x =6,故答案为6. 点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 15.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.16.【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.解析:π【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°, ∴此扇形的弧长为603180π⨯=π. 故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键. 17.()【解析】设它的宽为xcm .由题意得.∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10)【解析】设它的宽为x cm .由题意得:20x =. ∴10x =.点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之,近似值约为0.618. 18.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有解析:5或1555【解析】【分析】计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有×10=5,当AC<BC时,-,则有×10=5∴AC=AB-BC=10-(5)=15-,∴AC长为5 cm或1555 cm.故答案为:55或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.19.【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主解析:【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得635x,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.20.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,解析:x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.21.16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠C解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA==,,DE AB220解得OA=16.故答案为16.22.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.23.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.24.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.三、解答题25.(1)y=﹣(x﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0)【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x−1,求得BD于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得MN ONAB BC=或MN ONBC AB=,可求得N点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a (x ﹣1)2+1,又抛物线过原点,∴0=a (0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+1,即y=﹣x 2+2x ,联立抛物线和直线解析式可得22-2y x x y x ⎧=+⎨=⎩﹣, 解得20x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩,∴B (2,0),C (﹣1,﹣3); (2)设直线AC 的解析式为y=kx+b ,与x 轴交于D ,把A (1,1),C (﹣1,﹣3)的坐标代入得13k b k b =+⎧⎨-=-+⎩, 解得:21k b =⎧⎨=-⎩, ∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32, ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ON BC AB=, ①当MN ON AB BC =时,∴=|x||﹣x+2|=13|x|, ∵当x=0时M 、O 、N 不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N 点坐标为(53,0)或(73,0); ②当或MN ON BC AB =时,∴=,即|x||﹣x+2|=3|x|, ∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N 点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.26.(1)(﹣7,﹣2),(﹣1,﹣2),(3,﹣2),(﹣7,1),(﹣1,1),(3,1),(﹣7,6),(﹣1,6),(3,6);(2)2 9 .【解析】【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率.(1)直接利用表格或树状图列举即可解答.(2)利用(1)中的表格,根据第三象限点(-,-)的特征求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【详解】解:(1)列表如下:(2)∵点A落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)两种情况,∴点A落在第三象限的概率是29.27.(1)证明见解析;(2)2ACπ=【解析】【分析】【详解】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.详证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴AC BD=,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴AC=7252 180ππ⨯=.点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答.28.(1)13-,13;(2)52530,,21111t=;(3)511(,)24【解析】【分析】(1)直接利用待定系数法求二次函数解析式得出即可;(2)分三种情况:①当BM=BN时,即5-t=t,②当BM=NM=5-t时,过点M作ME⊥OB,因为AO⊥BO,所以ME∥AO,可得:BM BEBA BO=即可解答;③当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=即可解答;(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=32,设出点P坐标,易证△BGO∽△BPD,所以BO GOBD PD=,即可解答.【详解】解:解:(1)∵抛物线过点B (-3 ,0) 和C (4 ,0),∴9340 16440a ba b-+⎧⎨++⎩==,解得:1313ab⎧=-⎪⎪⎨⎪=⎪⎩;(2)∵B (-3 ,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,在Rt△ABO中,由勾股定理得:AB=5,t秒时,AM=t,BN=t,BM=AB-AM=5-t,①如图:当BM=BN时,即5-t=t,解得:t=5 2 ;,②如图,当BM=NM=5-t时,过点M作ME⊥OB,因为BN=t,由三线合一得:BE=12BN=12t,又因为AO⊥BO,所以ME∥AO,所以BM BEBA BO=,即15-253tt=,解得:t=3011;③如图:当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=,即5t253t-=,解得:t=2511.(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=32,设P(m ,-13m 2+13m+4),因为GO ∥PD ,∴△BGO ∽△BPD ,∴BO GO BD PD= ,即2332113+433m m m =-++ ,解得:m 1=52,m 2=-3(点P 在第一象限,所以不符合题意,舍去),m 1=52时,-13m 2+13m+4=114 故点P 的坐标为511(,)24【点睛】本题考查用待定系数法求二次函数解析式,还考查了等腰三角形的判定与性质、相似三角形的性质和判定.29.(1)8.5米;(2)18.0米【解析】【分析】(1)先根据题意得出DE=AB=7米,AD=BE=1.5米,在Rt △DEH 中,可求出HE 的长度,进而可计算古树BH 的高度;(2)作HJ ⊥CG 于G ,设HJ=GJ=BC=x ,在Rt △EFG 中,利用特殊角的三角函数值求出x 的值,进而求出GF ,最后利用 CG=CF+FG 即可得出答案.【详解】解:(1)由题意:四边形ABED 是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt △DEH 中,∵∠EDH=45°,∴HE=DE=7米.∴BH=EH+BE=8.5米.答:古树BH 的高度为8.5米.(2)作HJ ⊥CG 于G .则△HJG 是等腰直角三角形,四边形BCJH 是矩形,设HJ=GJ=BC=x .在Rt △EFG 中,tan60°=73GF x EF x +== ∴7(31)2x =, ∴3x ≈16.45∴CG=CF+FG=1.5+16.45≈17.95≈18.0米.答:教学楼CG 的高度为18.0米.【点睛】本题主要考查解直角三角形,能够数形结合,构造出直角三角形是解题的关键.30.(1)45D ∠=︒;(2)222BD =.【解析】【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A ,求出∠D=∠COD ,根据切线性质求出∠OCD=90°,即可求出答案;(2)由题意O 的半径为2,求出OC=CD=2,根据勾股定理求出BD 即可. 【详解】解:(1)∵OA=OC ,∴∠A=∠ACO ,∴∠COD=∠A+∠ACO=2∠A ,∵∠D=2∠A ,∴∠D=∠COD ,∵PD 切⊙O 于C ,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD ,O 的半径为2,∴OC=OB=CD=2,在Rt △OCD 中,由勾股定理得:22+22=(2+BD )2, 解得:222BD =.【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键.31.(1)14;(2)14. 【解析】【分析】 (1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A 通道通过的概率=14, 故答案为:14; (2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E ,它的发生有4种可能:(A ,A )、(B ,B )、(C ,C )、(D ,D )∴P (E )=416=14. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.32.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.。

通州区2015-2016学年度第一学期期末九年级数学试题及答案word

通州区2015-2016学年度第一学期期末九年级数学试题及答案word

初三数学期末考试试卷2016年1月考生须知1.本试卷共8页,共三道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷上准确填写学校名称、班级、姓名.3.试题答案一律书写在答题卡上各题指定区域内的相应位置上. 4.请用蓝色或黑色钢笔、圆珠笔答卷. 5.考试结束,请将本试卷和答题卡一并交回. 1. 已知点(-2,2)在二次函数2y ax =的图象上,那么a 的值是( ).A .1B .2C .12 D .12- 2.在Rt △ABC 中,90C ∠=o,2AB BC =,那么sin A 的值为( ).A .21B .22C .23D .13.右图是某几何体的三视图,那么这个几何体是( ).A .三菱锥B .圆柱C .球D .圆锥4. 如图,⊙O 的半径为5,AB 为弦,OC ⊥AB ,垂足为C , 如果OC = 3,那么弦AB 的长为( ). A. 4 B. 6 C. 8 D. 10BA OC 祝5.如图是一个正方体的表面展开图,那么原正方体中与“祝”字所在的面相对的面上标的字是( ).A .考B .试C .顺D .利6. 如果点M (-2,1y ),N (-1,2y )在二次函数22y x x =-+的图象上,那么下列结论正确的是( ).A .1y <2yB .1y >2yC .1y ≤2yD .1y ≥2y7. 如图,为了测量某棵树的高度,小刚用长为2m 的竹竿 做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好 落在地面的同一点. 此时,竹竿与这一点距离相距6m , 与树相距15m ,那么这棵树的高度为( ).A. 5mB. 7mC. 7.5mD. 21m8. 如果弧长为6π的弧所对的圆心角为60°,那么这条弧所在的圆的半径是 ( ). A. 18 B. 12 C. 36 D. 69. 如图,AB 是⊙O 的切线,B 为切点,AO 的延长线交⊙O 于C 点,连接BC ,如果30A ∠=o,23AB =,那么AC 的长等于( ) . A. 4 B. 6 C. 43 D. 6310.如图1,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发沿图中某一个扇形顺.时针..匀速运动,设∠APB =y (单位:度),如果y 与点P 运动的时间x (单位:秒)的函数关系的图象大致如图2所示,那么点P 的运动路线可能为( ).y90AOC45CAOA .O →B →A →OB .O →A →C →OC .O →C →D →O D .O →B →D →O二、填空题(本题共18分,每小题3分)11.请写出一个开口向上,并且与y 轴交于点(0,-1)的抛物线的表达式是:__________. 12. 把二次函数的表达式246y x x =-+化为()2y a x h k =-+的形式,那么h k +=_____.13.如图,边长为a 的正方形发生形变后成为边长为a 的菱形,如果设这个菱形的一组对边之间的距离为h ,记ak h=,我们把k 叫做这个菱形 的“形变度”.如果变形后的菱形有一个角是60o, 那么形变度k = .14. 学习相似三角形和解直角三角形的相关内容后,张老师请同学们 交流这样的一个问题:“如图,在正方形网格上有△111A B C 和△222A B C ,这两个三角形是否相似?”,那么你认为△111A B C和△222A B C _______,(填相似或不相似);理由是________________________________.15. 小明四等分»AB ,他的作法如下 : (1)连接AB (如图) ;形变haa aM P NTABC E G A2B2C2C 1B 1A 1(2)作AB 的垂直平分线CD 交»AB 于点M ,交AB 于点T ; (3)分别作AT ,TB 的垂直平分线EF ,GH ,交»AB 于N ,P 两点. 则N ,M ,P 三点把»AB 四等分. 你认为小明的作法是否正确:_________,理由是______________________.16.如图,弦AB 的长等于⊙O 的半径,那么弦AB 所对的圆周角的度数是____________.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17. 如图,已知 ∠1 = ∠2,∠AED = ∠C ,求证:△ABC ∽△ADE .18. 已知二次函数2y x bx c =++的图象经过(2,-1)和(4 ,3)两点.求二次函数2y x bx c =++的表达式.21DCABOA19.已知:如图,A 、B 、C 为⊙O 上的三个点,⊙O 的直径为4cm ,∠ACB =45°,求AB 的长.20.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”. 如图,在△ABC 中,∠C =90°,较短的一条直角边BC =1,且△ABC 是“有趣三角形”,求△ABC 的“有趣中线”的长.BOACAB21.如图,以□ABCD的顶点A为圆心,AB为半径作⊙A,分别交BC,AD于E,F两点,交BA的延长线于G,判断»EF和»FG是否相等,并说明理由.22.如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,S△DEF∶S△ABF = 4∶25,求DE∶EC的值.FC EDGFEA DB C23. 如左图是春运期间的一个回家场景. 一种拉杆式旅行箱的示意图如右图所示,箱体长AB =50cm ,拉杆最大伸长距离BC =30cm ,点A 到地面的距离AD =8cm ,如果旅行箱与水平面AE 成60°角,求拉杆把手处C 到地面的距离(精确到1cm ).(参考数据:3 1.73 )60°CFDABE24.(1)抛物线C 1:2y x bx c =-++中,函数y 与自变量x 之间的部分对应值如表:x … ﹣2 ﹣1 1 2 4 5 … y…﹣543﹣5﹣12…设抛物线C 1与y 轴的交点为C ,那么点C 的坐标为__________,抛物线C 1 的表达式为_____________________________.(2)在(1)的条件下,将抛物线C 1沿水平方向平移,得到抛物线C 2.设抛物线C 1与x轴交于A ,B 两点(点A 在点B 的左侧),抛物线C 2与x 轴交于M ,N 两点(点M 在点N 的左侧).过点C 作平行于x 轴的直线,交抛物线C 2于点K .问:是否存在以A ,C ,K ,M 为顶点的四边形是菱形的情形?如果存在,请求出点K 的坐标;如果不存在,请说明理由.25. 如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.NAB MO yx26.阅读下面解题过程,解答相关问题.求一元二次不等式224x x -->0的解集的过程. ① 构造函数,画出图象:根据不等式特征构造二次函数x x y 422--=;并在坐标系中画出二次函数x x y 422--=的图象(如图1).② 求得界点,标示所需:当y =0时,求得方程0422=--x x 的解为12x =-,20x =;并用锯齿线标示出函数x x y 422--=图象中y >0的部分(如图2). ③借助图象,写出解集:由所标示图象,可得不等式224x x -->0的解集为20x -<<.请你利用上面求一元二次不等式解集的过程,求不等式221x x -+≥4的解集.y43227.如图,在Rt △ABC 中,90C ∠=o,BAC ∠的角平分线AD 交BC 于D .(1)动手操作:利用尺规作⊙O ,使⊙O 经过点A 、D ,且圆心O 在AB 上;并标出⊙O与AB 的另一个交点E ,与AC 的另一个交点F .(保留作图痕迹, 不写作法); (2)综合应用:在你所作的图中,① 判断直线BC 与⊙O 的位置关系,并说明理由;② 如果60BAC ∠=o,3CD =,求线段BD 、BE 与劣弧»DE所围成的图形面积(结果保留根号和π).D A28.王华在学习相似三角形时,在北京市义务教育教科书九年级上册第31页遇到这样一道题:如图1,在△ABC 中,P 是边AB 上的一点,连接CP .要使△ACP ∽△ABC ,还需要补充的一个条件是____________,或_____________. 请回答:(1)王华补充的条件是____________________,或____________________________. (2)请你参考上面的图形和结论,探究、解答下面的问题:如图2,在△ABC 中,∠A =30°,22AC AB AB BC =+⋅. 求∠C 的度数.29.定义:P ,Q 分别是两条线段a 和b 上任意一点,线段PQ 长度的最小值叫做线段a 与线段b 的距离. 已知O (0,0),A (4,0),B (m ,n ),C (m +4,n )是平面直角坐标系中的四点.图2图1CPA(1)根据上述定义,当m =2,n =2时,如图1,线段BC 与线段OA 的距离是_____; 当m =5,n =2时,如图2,线段BC 与线段OA 的距离是______ .(2)如图3,如果点B 落在圆心为A ,半径为2的圆上,写出线段BC 与线段OA 的距离d .(3)当m 的值变化时,动线段BC 与线段OA 的距离始终为2,如果线段BC 的中点为M ,直接写出点M 随线段BC 运动所形成的图形的周长是 .图2图1yxxyCB -33-11-26-25A321OCB-33-11-26-25A321O-12-12图3yxC-33-11-26-25A321O-12B初三数学期末检测参考答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案CADCDABABC二、填空题(本题共18分,每小题3分)11. 21y ax =-(0a >即可); 12. 4; 13.323; 14.相似,两角分别相等,两三角形相似(12A A ∠=∠,12C C ∠=∠)或两边对应成比例且夹角相等,两三角形相似(12A A ∠=∠,111122222A B A CA B A C ==)或三边对应成比例,两三角形相似(1111112222222A B A C B CA B A C B C ===); 15. 不正确,AT 、TB 不是弦;16. 30︒、150︒;三、解答题(本题共72分,)17. 如图,已知 ∠1 = ∠2,∠AED = ∠C ,求证:△ABC ∽△ADE .证明:∵∠1 = ∠2,∴12BAE BAE ∠+∠=∠+∠即DAE BAC ∠=∠ ………………… 2分; 在△ADE 和△ABC 中∵ .AED C DAE BAC ∠=∠⎧⎨∠=∠⎩,∴△ABC ∽△ADE . ………………… 5分.18. 解:(2,-1)和(4 ,3)代入2y x bx c =++ 中,4211643b c b c ++=-⎧⎨++=⎩; ………………… 2分; 解得:43b c =-⎧⎨=⎩; ………………… 4分;二次函数的表达式为243y x x =-+. ………………… 5分. 19. 已知:如图,A 、B 、C 为⊙O 上的三个点,⊙O 的直径为4cm ,∠ACB =45°,求AB 的长. 解:连接OA 、OB .BOAC21DA∴OA OB =, ………………… 1分;∵»»AB AB =,45ACB ∠=o , ∴290AOB ACB ∠=∠=o, ………………… 3分; ∴△AOB 是等腰直角三角形,∴45ABO ∠=o,或22222228AB OA OB =+=+=……………… 4分; ∴sin OAABO AB∠=, ∴222AB=, ∴22AB = ………………… 5分, 答:AB 的长为22另解:过点B 作直径BD ,连接AD . ………………… 1分;∴DB 是⊙O 的直径, ∴90DAB ∠=o,∵»»AB AB =,45ACB ∠=o , ∴45D ACB ∠=∠=o,………………… 3分; ∴sin ABD DB=, ………………… 4分; ∴224AB =, DBOAC∴22AB =, ………………… 5分. 答:AB 的长为2220. 如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”. 如图,在△ABC 中,∠C =90°,较短的一条直角边BC =1,且△ABC 是“有趣三角形”,求△ABC 的“有趣中线”的长. 解:根据题意画出△ABC 的“有趣中线”BE . ………………… 2分; ∴2BE AC EC ==,设EC x =,则2EB x =,在Rt △BCE 中,∠C =90°, ∴222EC BC BE +=∴()22212x x +=, ………………… 4分;解得:33x =(舍去负值) ∴232EB x ==………………… 5分. 答:△ABC 的“有趣中线”BE 的长为233. 另解:根据题意画出△ABC 的“有趣中线”BE . ………………… 2分; ∴2BE AC EC ==, 设EC x =,则2EB x =,AB在Rt △BCE 中,∠C =90°, ∴1sin 22EC x EBC EB x ∠===, ∴30EBC ∠=o,………………… 4分; ∵cos BCEBC EB∠=, ∴13cos30EB ==o, ∴23EB =………………… 5分. 答:△ABC 的“有趣中线”BE 23. 21.如图,以□ABCD 的顶点A 为圆心,AB 为半径作⊙A ,分别交BC ,AD 于E ,F 两点,交BA 的延长线于G ,判断»EF和»FG 是否相等,并说明理由. 结论:»»EFFG =. ………………… 1分; 证法一:连接AE . ∴AB AE =,∴B AEB ∠=∠,………………… 2分; ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,G FE ADBC∴B GAF ∠=∠,FAE AEB ∠=∠,………………… 3分; ∴GAF FAE ∠=∠, ………………… 4分;在⊙A 中,∴»»EFFG =. ………………… 5分. 结论:»»EFFG =. ………………… 1分; 证法二:连接GE . ∵BG 是⊙A 的直径,∴90BEG ∠=o. ………………… 2分;∴GE BE ⊥.∵四边形ABCD 是平行四边形,∴AD ∥BC , ………………… 3分; ∴AD GE ⊥ ………………… 4分;∴»»EFFG =. ………………… 5分. 证法三:参考上面给分22.如图,在平行四边形ABCD 中,E 为CD 上一点,连结AE ,BD ,且AE ,BD 交于点F ,S △DEF ∶S △ABF = 4∶25,求DE ∶EC 的值. 解:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB =DC ,………………… 1分; ∴DEF FAB ∠=∠,EDF FBA ∠=∠,GF E ADBCFCEDG FE ACB∴△DEF ∽△BAF . ………………… 2分; ∵S △DEF ∶S △ABF = 4∶25, ∴24()25DE AB =. ………………… 3分; ∴25DE AB =. ………………… 4分; ∴25DE DC =. ∴23DE EC =. ………………… 5分.23. 如左图是春运期间的一个回家场景. 一种拉杆式旅行箱的示意图如右图所示,箱体长AB =50cm ,拉杆最大伸长距离BC =30cm ,点A 到地面的距离AD =8cm ,旅行箱与水平面AE 成60°角,求拉杆把手处C 到地面的距离(精确到1cm ).3 1.73≈) 解:过点C 作CG ⊥AE 于点G . …………… 1分; 根据题意知∠CAE =60°, AC =AB +BC =80cm.在Rt △CGA 中,∠CGA =90°,∴sin CGCAG AC∠=, ………………… 2分; ∴3sin 6080CG ==o, ∴3CG = ………………… 4分;60°GCFDAB E∴403877.277CG AD +=+=≈………………… 5分. 答:拉杆把手处C 到地面的距离为77cm.24. (1)点C 的坐标为 (0,3) .抛物线C 1的表达式为223y x x =-++………………… 2分;(2)存在.当0y =时,2230x x -++=,解得11x =-,23x =,则A (-1,0),B (0,3), ∴222221310AC OA OC =+=+=,∴10AC ………………… 3分; ∵抛物线C 1沿水平方向平移,得到抛物线C 2, ∴CK ∥AM ,CK =AM ,∴四边形AMKC 为平行四边形,当CA =CK 时,四边形AMKC 为菱形,∴10CK = 或假设存在以A ,C ,K ,M 为顶点的四边形是菱形, ∴CA =CK当抛物线C 110K 103);当抛物线C 110K (103).…… 5分. 25.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .………………… 1分;∵⊙A 与y 轴相切于点B (0,32), y∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴, ∴四边形BOCA 为矩形.∴AC =OB =32,OC =BA .……… 2分; ∵AC ⊥MN ,∴∠ACM = 90°,MC =CN . …………………………… 3分∵M (12,0), ∴OM =12. 在 Rt △AMC 中,设AM =x .根据勾股定理得:222MC AC AM +=.即22213()()22x x -+=,求得x=52. ………………… 4分;∴⊙A 的半径为52. 即AM =CO =AB =52. ∴MC =CN=2 .∴N(92,0) . ………………………………………5分.解法二:连接BM、BN,作直径BC,连接MC.证△BOM∽△NOB.26.解:①构造函数,画出图象:根据不等式特征构造二次函数221y x x=-+或223y x x=--;并在坐标系中画出二次函数221y x x=-+或223y x x=--;的图象(如图). …………………2分;②求得界点,标示所需:当y=4时,求得方程2214x x-+=的解为11x=-,23x=;并用锯齿线标示出函数221y x x=-+图象CNABMOyx中y ≥4的部分(如图).或当y =0时,求得方程2230x x --=的解为11x =-,23x =;并用锯齿线标示出函数223y x x =--图象中y ≥0的部分(如图). ………………… 4分;③借助图象,写出解集:∴不等式221x x -+≥4的解集为x ≤-1或x ≥3. ………………… 5分; 27.如图,在Rt △ABC 中,90C ∠=o,BAC ∠的角平分线AD 交BC 于D .(1)动手操作:利用尺规作⊙O ,使⊙O 经过点A 、D ,且圆心O 在AB 上;并标出⊙O与AB 的另一个交点E ,⊙O 与AC 的另一个交点F .(保留作图痕迹, 不写作法); (2)综合应用:在你所作的图中,① 判断直线BC 与⊙O 的位置关系,并说明理由;② 如果60BAC ∠=o,3CD =,求线段BD 、BE 与劣弧»DE所围成的图形面积(结果保留根号和π).(1)如图:………………… 2分;F EODABC(2)综合应用:① 直线BC 与⊙O 相切; 证明:连接OD . ∵OA OD =, ∴OAD ODA ∠=∠, ∵AD 平分BAC ∠, ∴OAD CAD ∠=∠, ∴ODA CAD ∠=∠,∴OD ∥AC. ………………… 3 ∵90C ∠=o,∴90ODB C ∠=∠=o,…………… 4分; ∴直线BC 与⊙O 相切; ②解:过点O 作OG ⊥AF 于点G . ∵90C ∠=o,90ODC ∠=o, ∴四边形OGCD 是矩形.∴3OG CD == ………………… 5分; 在Rt △AGO 中,60BAC ∠=o,F EODACGF EODA C∵sin OG BAC OA ∠=,∴33sin 602OA ==o ,∴2OA =. ………………… 6分; ∵OD ∥AC ,∴60BOD BAC ∠=∠=o,在Rt △BOD 中,60BOD ∠=o,2OD OA ==,∴tan BD BOD OD ∠=,∴tan 6032BD==o∴23BD =∴21160π22=22323π223603EOD OD BD S ⨯⨯⋅⋅-⨯⨯=o o扇形.… 7分. 28.(1)∠APC =∠ACB ,∠ACP =∠B ,或AP ACAC AB=…………2分; (2)如图,延长AB 到点D ,使BD =BC ,连接CD . ………3分∵22AC AB AB BC =+⋅,∴2()()AC AB AB BC AB AB BD AB AD =+=+=⋅,∴AC ADAB AC=B∵∠A=∠A,∴△ACB∽△ADC.………………5分;∴∠ACB=∠D,………………6分;∵BC=BD,∴∠BCD=∠D,在△ACD中,∵∠ACB+∠BCD+∠D +∠A=180°,∴3∠ACB +30°=180°,∴∠ACB=50°. ………………7分.解法二:作∠ABD=∠C交AC于点D.ADB29.解:(1)当m=2,n=2时,线段BC与线段OA的距离是2;………………1分;当m=5,n=2时,线段BC与线段OA5. ………………2分;(2)当2≤m <4时, ()22224812d n m m m ==--=-+-(-2≤n ≤2). ………………4分;当4≤m ≤6时,2d =. ………………6分;(3)当m 的值变化时,动线段BC 与线段OA 的距离始终为2,如果线段BC 的中点为M ,直接写出点M 随线段BC 运动所形成的图形的周长是164π+.………………8分.xy-33-11-26-25A321O-12。

2015-2016学年第一学期期末考试九年级数学附答案

2015-2016学年第一学期期末考试九年级数学附答案
14.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为每平方米7800元,设该楼盘这两年房价平均降低率为x,根据题意可列方程为▲.
15.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为▲.
16.某数学兴趣小组研究二次函数y=mx2-2mx+1(m≠0)的图像时发现:无论m如何变化,该图像总经过两个定点(0,1)和(▲,▲).
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(8分)(1)解方程:3x(x-2)=x-2(2)x2-4x-1=0
18.(6分)如图,利用标杆BE测量建筑物的高度,如果标杆BE长1.2m,测得AB=1.6m,BC=8.4m,楼高CD是多少?
25.(8分)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).
26.(10分)如图①,A、B、C、D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
2015-2016学年第一学期期末考试九年级数学
(满分:120分考试时间:120分钟)
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.方程x(x+2) =0的解是(▲)
A.-2
B.0,-2
C.0,2
D.无实数根
2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是(▲)

江苏省南通市第一学期九年级数学期末试卷(含解析)

江苏省南通市第一学期九年级数学期末试卷(含解析)
21.在比例尺为1∶500000的地图上,量得A、B两地的距离为3cm,则A、B两地的实际距离为_____km.
22.在△ABC中,∠C=90°,若AC=6,BC=8,则△ABC外接圆半径为________;
23.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB= ,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;
8.二次函数 图象的顶点坐标是()
A. B. C. D.
9.如图,四边形 中, , , ,设 的长为 ,四边形 的面积为 ,则 与 之间的函数关系式是()
A. B. C. D.
10.方程 的解是()
A.x=0B.x=1C.x=0或x=1D.x=0或x=-1
11.如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于( )
17.若 是方程 的一个根,则代数式 的值是______.
18.若记 表示任意实数的整数部分,例如: , ,…,则 (其中“+”“-”依次相间)的值为______.
19.如图,四边形的两条对角线 、 相交所成的锐角为 ,当 时,四边形 的面积的最大值是______.
20.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.
A.80°B.40°C.50°D.20°
6.已知二次函数y=(a﹣1)x2﹣x+a2﹣1图象经过原点,则a的取值为( )
A.a=±1B.a=1C.a=﹣1D.无法确定
7.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()
A.74B.44C.42D.40

南通市苏科版九年级上期末数学试卷含答案解析初三数学试题试卷.doc

南通市苏科版九年级上期末数学试卷含答案解析初三数学试题试卷.doc

2015-2016学年江苏省南通市XX 中学九年级(上〉期末数学试卷一. 选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有 一项是符合题目要求的,请将正确选项的字母代号填涂在答.题.卡.相.应.位.置.上) 1.同时抛掷两枚质地均匀的正方体骰子1次,下列事件中是不可能事件的是() A.朝上的点数之和为13 B.朝上的点数之和为12C.朝上的点数之和为2D.朝上的点数之和小于32•点A (-1, 1)是反比例函数y 二卫的图象上一点,则m 的值为( )XA. 0B. -2C. -1D. 1 3.如图,四边形ABCD 是。

0的内接四边形,若ZB-11O 0 ,则ZADE 的度数为() A. 55° B. 70° C. 90°D. 110° 4.已知:如图,四边形ABCD 是00的内接正方形,点P 是劣弧上不同于点C 的任意一点,则 BD 交于点 0,若 D0二3, B0=5, DC 二4,则 AB 长为()C. 75°D. 90° A.6 B. 8 C.fD.Jf6. 从1到9这九个自然数中任取一个,是偶数的概率是()A. -|B.寻C.寻D.舟 9 9 9 3 7. 如图,已知AADE 与AABC 的相似比为仁2,则AADE 与ZXABC 的面积比为( )8. 为了估计池塘中鱼的数量,老张从鱼塘中捕获20条鱼,在每条鱼身上做好记号后把这些鱼放归池塘,过了一段时间,他再从池塘中随机打捞60条鱼,发现其中有15条鱼有记号,则 池塘中鱼的条数约为( )A. 300B. 400C. 600 D ・ 8009. 如图是二次函数y 二axSbx+c 图象的一部分,图象过点A (-3, 0),对称轴为直线x=- 1,下列结论: ① b 2>4ac ;② 2a+b 二0;③ a+b+c>0 ;④若B (-5, y 〔)、C (-1, 丫2 )为函数图象上的两点,则y,<y 2.10. 如图,在平面直角坐标系中,的半径为1,且与y 轴交于点B,过点B 作直线BC 平行 于x 轴,点M (a, C.①④ D.②③1)在直线BC±,若在上存在点N,使得Z0MN二45。

2015年江苏省南通市中考数学试卷及解析

2015年江苏省南通市中考数学试卷及解析

数学试卷 第1页(共22页)数学试卷 第2页(共22页)绝密★启用前江苏省南通市2015年初中毕业、升学考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果水位升高6m 时水位变化记作6m +,那么水位下降6m 时水位变化记作 ( ) A .3m -B .3mC .6mD .6m - 2.下面四个几何体中,俯视图是圆的几何体共有( )A .1个B .2个C .3个D .4个3.据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为( ) A .70.7710⨯B .77.710⨯C .60.7710⨯D .67.710⨯4.下列图形中既是轴对称图形又是中心对称图形的是( )ABCD5.下列长度的三条线段能组成三角形的是( )A .5,6,10B .5,6,11C .3,4,8D .4,4,80()a a a a > 6.如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是( )A .55 B .5 C .12D .27.在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为 ( ) A .12B .15C .18D .218.关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( )A .32b --<<B .32b --<≤C .32b --≤≤D .32b --≤<9.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法: ①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有 ( ) A .1个B .2个C .3个D .4个10.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为 ( )A .2.5B .2.8C .3D .3.2第Ⅱ卷(非选择题 共120分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上) 11.因式分解224m n -= .12.已知方程22430x x +-=的两根分别为1x 和2x ,则12x x +的值等于 . 13.计算2(2())x y x x y ---= .14.甲乙两人8次射击的成绩如图所示(单位:环).根据图中的信息判断,这8次射击中成绩比较稳定的是 (填“甲”或“乙”).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页)数学试卷 第4页(共22页)15.如图,在O 中,半径OD 垂直于弦AB ,垂足为C ,13cm OD =,24cm AB =,则CD = cm .第15题图第16题图第17题图16.如图,ABC △中,D 是BC 上一点,AC AD DB ==,102BAC =∠,则ADC =∠ 度. 17.如图,矩形ABCD 中,F 是DC 上一点,BF AC ⊥,垂足为E ,12AD AB =,CEF △的面积为1S ,AEB △的面积为2S ,则12SS 的值等于 .18.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在1-和0之间(不包括1-和0),则a 的取值范围是 .三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算:20231()((3643)2)----+-;(2)解方程1325x x =+.20.(本小题满分8分)如图,一海轮位于灯塔P 的西南方向,距离灯塔402海里的A 处,它沿正东方向航行一段时间后,到达位于灯塔P 的南偏东60方向上的B 处,求航程AB 的值(结果保留根号).21.(本小题满分10分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组()79.589.5”的扇形的圆心角为 度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖? (3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为 .22.(本小题满分8分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(本小题满分8分)如图,直线y mx n =+与双曲线ky x=相交于2()1,A -,()2,B b 两点,与y 轴相交于点C .(1)求,m n 的值; (2)若点D 与点C 关于x 轴对称,求ABD △的面积.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)24.(本小题满分8分)如图,,PA PB 分别与O 相切于,A B 两点,60ACB =∠. (1)求P ∠的度数;(2)若O 的半径长为4cm ,求图中阴影部分的面积.25.(本小题满分8分)如图,在□ABCD 中,点,E F 分别在,AB DC 上,且ED DB ⊥,FB BD ⊥. (1)求证:AED CFB △≌△;(2)若30A =∠,45DEB =∠,求证:DA DF =.26.(本小题满分10分) 某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元.设顾客一次性购买服装x 件时,该网店从中获利y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围; (2)顾客一次性购买多少件时,该网店从中获利最多?27.(本小题满分13分)如图,Rt ABC △中,90C =∠,15AB =,9BC =,点,P Q 分别在,BC AC 上,3CP x =,403()CQ x x =<<.把PCQ △绕点P 旋转,得到PDE △,点D 落在线段PQ 上. (1)求证:PQ AB ∥;(2)若点D 在BAC ∠的平分线上,求CP 的长;(3)若PDE △与ABC △重叠部分图形的周长为T ,且1216T ≤≤,求x 的取值范围.28.(本小题满分13分)已知抛物线2221y x mx m m =-++-(m 是常数)的顶点为P ,直线l :1y x =-. (1)求证:点P 在直线l 上;(2)当3m =-时,抛物线与x 轴交于,A B 两点,与y 轴交于点C ,与直线l 的另一个交点为,Q M 是x 轴下方抛物线上的一点,ACM PAQ =∠∠(如图),求点M 的坐标;(3)若以抛物线和直线l 的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m 的值.江苏省南通市2015年初中毕业、升学考试毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共22页) 数学试卷 第8页(共22页)数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】根据正数和负数具有相反意义的量,水位上升记为“+”,水位下降记为“-”,所以水位下降6m 时水位变化记作6m -,故选D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省南通市通州区初三上学期期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(3分)下列图形,是中心对称图形但不是轴对称图形的是()A.等边三角形B.平行四边形C.圆D.正五边形2.(3分)下列各点中,在函数y=﹣图象上的是()A.(﹣1,4)B.(2,2)C.(﹣1,﹣4)D.(4,1)3.(3分)如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1B.2C.3D.44.(3分)如图,⊙O的弦AB=8,OM⊥AB于点M,且OM=3,则⊙O的半径为()A.8B.4C.10D.55.(3分)抛物线y=x2+4x﹣5的对称轴为()A.x=﹣4B.x=4C.x=﹣2D.x=26.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.35°B.45°C.55°D.65°7.(3分)已知圆锥的母线长为5cm,高为4cm,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.20πcm2D.25πcm2 8.(3分)如图,下列条件不能判定△ABD∽△CBA的是()A.∠BAD=∠C B.∠ADB=∠BAC C.AB2=BD•BC D.=9.(3分)“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.﹣﹣苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根10.(3分)如图,△ABC内接于⊙O,∠ACB=30°,在CB的延长线上取一点D,使得AD=AC,若⊙O的半径等于1,则OD的长不可能为()A.3B.2.5C.2D.1.5二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)若两个相似多边形的周长的比是1:2,则它们的面积比为.12.(3分)质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为.13.(3分)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=54°,则∠BAC=°.14.(3分)将抛物线y=2x2向右平移1个单位,所得抛物线的解析式为.15.(3分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为50m,则这栋楼的高度为m.16.(3分)以点A(1,﹣2)为中心,把点B(2,0)顺时针旋转90°,得到点C,则点C的坐标为.17.(3分)如图,半径为1的⊙O与正五边形ABCDE相切于点A、C,则劣弧的长度为.18.(3分)如图,已知点A、B在双曲线y=(m>0)上,点C、D在双曲线y=(n<0)上,AC∥BD∥y轴,AC=3,BD=4,AC与BD的距离为7,则m﹣n的值为.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)已知二次函数y=x2﹣2x﹣3.(1)用配方法将解析式化为y=(x﹣h)2+k的形式;(2)求这个函数图象与x轴的交点坐标.20.(8分)如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且∠DAE=∠DAC.求证:DB=DC.21.(8分)已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.22.(8分)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.23.(8分)如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1.(1)用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,添加一定的条件,可以求出线段AB扫过的面积.(不再添加字母和辅助线,线段的长可用a、b、c…表示,角的度数可用α、β、γ…表示).你添加的条件是.24.(10分)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.现在随机取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.25.(10分)如图,AC切⊙O于点C,AB过圆心O交⊙O于点B、D,且AC=BC,(1)求∠A的度数;(2)若⊙O的半径为2,求图中阴影部分的面积.26.(10分)如图①,正方形ABCD,EFGH的中心P,Q都在直线l上,EF⊥l,AC=EH.正方形ABCD以1cm/s的速度沿直线l向正方形EFGH移动,当点C 与HG的中点I重合时停止移动.设移动时间为x s时,这两个正方形的重叠部分面积为y cm2,y与x的函数图象如图②.根据图象解答下列问题:(1)AC=cm;(2)求a的值,并说明点M所表示的实际意义;(3)当x取何值时,重叠部分的面积为1cm2?27.(13分)如图,△ABC中,AB=AC=8,BC=12,点P、Q分别在AB、BC边上,且∠AQP=∠B.(1)求证:△BQP∽△CAQ;(2)若BP=4.5,求∠BPQ的度数;(3)若在BC边上存在两个点Q,满足∠AQP=∠B,求BP长的取值范围.28.(13分)如图,经过点A(0,﹣2)的抛物线y=x2+bx+c与x轴相交于点B (﹣1,0)和C,D为第四象限内抛物线上一点.(1)求抛物线的解析式;(2)过点D作y轴的平行线交AC于点E,若AD=AE,求点D的坐标;(3)连接BD交AC于点F,求的最大值.2015-2016学年江苏省南通市通州区初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(3分)下列图形,是中心对称图形但不是轴对称图形的是()A.等边三角形B.平行四边形C.圆D.正五边形【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:B.2.(3分)下列各点中,在函数y=﹣图象上的是()A.(﹣1,4)B.(2,2)C.(﹣1,﹣4)D.(4,1)【解答】解:A、∵当x=﹣1时,y=﹣=4,∴此点在函数图象上,故本选项正确;B、∵当x=﹣1时,y=﹣=﹣2≠2,∴此点不在函数图象上,故本选项错误;C、∵当x=﹣1时,y=﹣=4≠﹣4,∴此点不在函数图象上,故本选项错误;D、∵当x=4时,y=﹣=﹣1≠1,∴此点不在函数图象上,故本选项错误.故选:A.3.(3分)如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1B.2C.3D.4【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.4.(3分)如图,⊙O的弦AB=8,OM⊥AB于点M,且OM=3,则⊙O的半径为()A.8B.4C.10D.5【解答】解:∵OM⊥AB,∴AM=AB=4,由勾股定理得:OA===5;故选:D.5.(3分)抛物线y=x2+4x﹣5的对称轴为()A.x=﹣4B.x=4C.x=﹣2D.x=2【解答】解:∵抛物线的解析式为y=x2+4x﹣5,∴a=,b=4,∴其对称轴直线x=﹣=﹣=﹣4.故选:A.6.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.35°B.45°C.55°D.65°【解答】解:∵△ABC绕点C按顺时针方向旋转35°得到△A′B′C,∴∠ACA′=35°,∠A=∠A′,∵∠A′DC=90°,∴∠A′=90°﹣35°=55°,∴∠A=55°.故选:C.7.(3分)已知圆锥的母线长为5cm,高为4cm,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.20πcm2D.25πcm2【解答】解:∵圆锥的母线长为5cm,高为4cm,∴底面圆的半径为3cm,圆锥的侧面积=π×3×5=15π(cm2).故选:B.8.(3分)如图,下列条件不能判定△ABD∽△CBA的是()A.∠BAD=∠C B.∠ADB=∠BAC C.AB2=BD•BC D.=【解答】解:∵∠B是公共角,∴当∠ABD=∠C或∠ADB=∠BAC时,△ABD∽△CBA(有两角对应相等的三角形相似);故A与B正确;当时,即AB2=BD•BC,则△ABD∽△CBA(两组对应边的比相等且夹角对应相等的两个三角形相似);故C正确;当时,∠B不是夹角,故不能判定△ABD与△CBA相似,故D错误.故选:D.9.(3分)“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.﹣﹣苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根【解答】解:将方程变形﹣1=(x﹣1)2,设y1=﹣1,y2=(x﹣1)2,在坐标系中画出两个函数的图象如图所示:可看出两个函数图象有一个交点(1,0).故方程x2﹣2x=﹣2有一个实数根.故选:C.10.(3分)如图,△ABC内接于⊙O,∠ACB=30°,在CB的延长线上取一点D,使得AD=AC,若⊙O的半径等于1,则OD的长不可能为()A.3B.2.5C.2D.1.5【解答】解:连接OA、OB,作△ABD的直径AE,连接BE,∵∠ACB=30°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=0A=1,∵AD=AC,∠ACB=30°,∴∠ACB=30°,∴AE=2AB=2,∴OD<1+2,即OD<3,故选:A.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)若两个相似多边形的周长的比是1:2,则它们的面积比为1:4.【解答】解:相似多边形的周长的比是1:2,周长的比等于相似比,因而相似比是1:2,面积的比是相似比的平方,因而它们的面积比为1:4.12.(3分)质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为.【解答】解:∵质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的有3种情况,∴投掷这个骰子一次,则向上一面的数字是偶数的概率为:=.故答案为:.13.(3分)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=54°,则∠BAC=36°.【解答】解:由圆周角定理得,∠B=∠ADC=54°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠B=36°,故答案为:36.14.(3分)将抛物线y=2x2向右平移1个单位,所得抛物线的解析式为y=2(x ﹣1)2.【解答】解:由“左加右减”的原则可知,将抛物线y=2x2右平移1个单位,所得函数解析式为:y=2(x﹣1)2.故答案为:y=2(x﹣1)2.15.(3分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为50m,则这栋楼的高度为30m.【解答】解:设这栋楼的高度为x米,由题意得,=,解得x=30.故答案为:30.16.(3分)以点A(1,﹣2)为中心,把点B(2,0)顺时针旋转90°,得到点C,则点C的坐标为(3,﹣3).【解答】解:如图作AE⊥OB,CM⊥OB,AF⊥CM垂足分别为E、M、F.∵∠AEM=∠EMF=∠AFM=90°,∴四边形AEMF是矩形,∴∠EAF=90°,AE=FM=2∵∠BAC=90°,∴∠EAF=∠BAC,∴∠EAB=∠FAC,在△AEB和△AFC中,,∴△AEB≌△AFC,∴AE=AF=2,BE=CF=1,CM=3,∴点C(3,﹣3).故答案为C(3,﹣3).17.(3分)如图,半径为1的⊙O与正五边形ABCDE相切于点A、C,则劣弧的长度为.【解答】解:连接OA、OC,如图.∵五边形ABCDE是正五边形,∴∠E=∠D==108°.∵AE、CD与⊙O相切,∴∠OAE=∠OCD=90°,∴∠AOC=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,∴的长为=.故答案为.18.(3分)如图,已知点A、B在双曲线y=(m>0)上,点C、D在双曲线y=(n<0)上,AC∥BD∥y轴,AC=3,BD=4,AC与BD的距离为7,则m﹣n的值为12.【解答】解:∵点A、B在双曲线y=(m>0)上,点C、D在双曲线y=(n <0)上,∴设A(x,),则C(x,).∵AC与BD的距离为7,∴B(x﹣7,),D(x﹣7,).∵AC=3,BD=4,∴﹣=3,﹣=4,∴,∴﹣3x=4x﹣28,解得x=4,∴m﹣n=12.故答案为:12.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)已知二次函数y=x2﹣2x﹣3.(1)用配方法将解析式化为y=(x﹣h)2+k的形式;(2)求这个函数图象与x轴的交点坐标.【解答】解:(1)y=(x2﹣2x+1)﹣4=(x﹣1)2﹣4;(2)令y=0,得x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴这条抛物线与x轴的交点坐标为(3,0),(﹣1,0).20.(8分)如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且∠DAE=∠DAC.求证:DB=DC.【解答】证明:∵∠DAE是⊙O的内接四边形ABCD的一个外角,∴∠DAE=∠DCB,∵∠DAE=∠DAC,∴∠DCB=∠DAC,∵∠DAC=∠DBC,∴∠DCB=∠DBC,∴DB=DC.21.(8分)已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.【解答】解:(1)∵在反比例函数y=图象的每个分支上,y随x的增大而增大,∴m﹣5<0,解得:m<5;(2)将y=3代入y=﹣x+1中,得:x=﹣2,∴反比例函数y=图象与一次函数y=﹣x+1图象的交点坐标为:(﹣2,3).将(﹣2,3)代入y=得:3=解得:m=﹣1.22.(8分)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.23.(8分)如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1.(1)用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,添加一定的条件,可以求出线段AB扫过的面积.(不再添加字母和辅助线,线段的长可用a、b、c…表示,角的度数可用α、β、γ…表示).你添加的条件是∠AOA1=α,OA=a;OB=b.【解答】解:(1)如图,点O为所作;(2)添加的条件为:∠AO A1=α,OA=a;OB=b.故答案为24.(10分)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.现在随机取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.【解答】解:(1)设两把不同的锁为A、B,能把两锁打开的钥匙分别为a、b,第三把钥匙为c,根据题意,可以画出如下树形图:由上图可知,上述试验所有可能结果分别为Aa,Ab,Ac,Ba,Bb,Bc.(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有6种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴P(一次打开锁)==.25.(10分)如图,AC切⊙O于点C,AB过圆心O交⊙O于点B、D,且AC=BC,(1)求∠A的度数;(2)若⊙O的半径为2,求图中阴影部分的面积.【解答】解:(1)连接OC.∵AC切⊙O于点C,∴OC ⊥AC .∴∠ACO=90°,设∠A=x°,∵AC=BC ,∴∠B=∠A=x°.∵OB=OC ,∴∠OCB=∠B=x°.∴∠AOC=∠OCB +∠B=2x°.在Rt △ACO 中,∵∠A +∠AOC=90°,∴x +2x=90.∴x=30.即∠A=30°.(2)连接DC .在Rt △ACO 中,∠AOC=90°﹣∠A=60°.又∵OD=OC ,∴△OCD 是等边三角形.∴CD=OD=2,∠AOC=60°.∵BD 是直径,∴∠DCB=90°,BD=4.由勾股定理得BC=2. ∴AC=BC=2.∴S △ACO =AC•OC=2, S 扇形ODC =π•22=π,∴S 阴影=S △ACO ﹣S 扇形ODC =2﹣π.26.(10分)如图①,正方形ABCD,EFGH的中心P,Q都在直线l上,EF⊥l,AC=EH.正方形ABCD以1cm/s的速度沿直线l向正方形EFGH移动,当点C 与HG的中点I重合时停止移动.设移动时间为x s时,这两个正方形的重叠部分面积为y cm2,y与x的函数图象如图②.根据图象解答下列问题:(1)AC=4cm;(2)求a的值,并说明点M所表示的实际意义;(3)当x取何值时,重叠部分的面积为1cm2?【解答】解:(1)当这两个正方形的重叠部分面积为8时,也就是小正方形的面积为8,得出小正方形的边长为2cm,所以AC=×2=4cm.故答案为:4.(2)当x=4时,点A与点I重合,y===8,∴a的值为8.点M所表示的实际意义为:当x=4s时,重叠部分面积最大,最大面积为8cm2;(3)由题意,可知:当0≤x≤2时,y=x2,此时y的取值范围是0≤y≤4;当2≤x≤6时,y=﹣(x﹣4)2+8,此时y的取值范围是4≤y≤8;当6≤x≤8时,y=(8﹣x)2,此时y的取值范围是0≤y≤4.当y=1时,得x2=1,解得x=1(负值舍去),或(8﹣x)2=1,解得x=7或x=9(不合题意,舍去),∴当x的值为1或7时,重叠部分的面积为1.27.(13分)如图,△ABC中,AB=AC=8,BC=12,点P、Q分别在AB、BC边上,且∠AQP=∠B.(1)求证:△BQP∽△CAQ;(2)若BP=4.5,求∠BPQ的度数;(3)若在BC边上存在两个点Q,满足∠AQP=∠B,求BP长的取值范围.【解答】解:(1)∵AB=AC,∴∠B=∠C.∵∠AQP=∠B.∴∠AQP=∠C.又∵∠AQB=∠AQP+∠PQB,∠AQB=∠CAQ+∠C,∴∠PQB=∠CAQ.∴△BQP∽△CAQ.(2)∵△BQP∽△CAQ,∴=.∴=,解得BQ=6.∵BC=12,∴BQ=CQ=6.又∵AB=AC,∴AQ⊥BC,∴∠CQA=90°.∵△BQP∽△CAQ,∴∠BPQ=∠CQA=90°.(3)∵△BQP∽△CAQ,∴=.设BQ=x,BP=m,则=,整理得x2﹣12x+8m=0.∵在BC边上存在两个点Q,∴方程有两个不相等的正实数根,∴△=122﹣32m>0,解得m <,∴BP长的取值范围为0<BP <.28.(13分)如图,经过点A(0,﹣2)的抛物线y=x2+bx+c与x轴相交于点B (﹣1,0)和C,D为第四象限内抛物线上一点.(1)求抛物线的解析式;(2)过点D作y轴的平行线交AC于点E,若AD=AE,求点D的坐标;(3)连接BD交AC于点F ,求的最大值.【解答】解:(1)∵点A(0,﹣2)和点B(﹣1,0)均在抛物线上,∴有,解得,∴抛物线的解析式为y=x2﹣x﹣2.(2)过点A作AH⊥DE,垂足为H,如图1.第21页(共23页)在y=x2﹣x﹣2中,令y=0得,x=﹣1或x=4,∴点C坐标为(4,0).∵点A坐标为(0,﹣2),∴直线AC的解析式为y=x﹣2.设点D坐标为(m ,m2﹣m﹣2),则点E坐标为(m ,m﹣2),点H坐标为(m,﹣2).∵AD=AE,AH⊥DE,∴DH=HE,即﹣2﹣(m2﹣m﹣2)=m﹣2﹣(﹣2),解得m1=2,m2=0(不合题意,舍去).此时,m2﹣m﹣2=﹣3,∴点D的坐标为(2,﹣3).(3)过点D作DG⊥AC,垂足为G,连接AB,DE交x轴于点P,如图2.由(2)得,DE=﹣m2+2m.∵点A(0,﹣2),点B(﹣1,0),点O(0,0),点C(4,0),∴AB=,AC=2,BC=5,OC=4,OA=2.第22页(共23页)∵DE∥y轴,DG⊥AC,∴∠DGE=∠CPE=90°,∵∠DEG=∠CEP(对顶角),∴∠EDG=∠ECP=∠ACO.又∵∠DGE=∠COA=90°,∴△DGE∽△COA,∴===,∴DG=DE=(﹣m2+2m)=﹣(m2﹣4m).∵AB=,AC=2,BC=5,∴AB2+AC2=BC2,∴∠BAC=90°,又∵∠DFG=∠BFA,∴△DGF∽△BAF.∴==﹣(m2﹣4m)=﹣(m﹣2)2+.∴的最大值为.第23页(共23页)。

相关文档
最新文档