第18章勾股定理测试题

合集下载

第18章《勾股定理》单元检测试卷(含答案)

第18章《勾股定理》单元检测试卷(含答案)

第18章勾股定理单元测试一、选择题1.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A. 1、2、3B. 2、3、4C. 3、4、5D. 4、5、62.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A. 斜边长为25B. 三角形周长为25C. 斜边长为5D. 三角形面积为203.如图,已知O为圆锥的顶点,MN为圆锥底面的直径,一只蜗牛从M点出发,绕圆锥侧面爬行到N点时,所爬过的最短路线的痕迹(虚线)在侧面展开图中的位置是()A. B.C. D.4.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A. 9mB. 7mC. 5mD. 3m5.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD= ,则BC的长为()A. ﹣1B. +1C. ﹣1D. +16.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A. 0B. 1C.D.7.适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2 ;④∠A=38°,∠B=52°.A. 1个B. 2个C. 3个D. 4个8.如图字母B所代表的正方形的面积是()A. 12B. 13C. 144D. 1949.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A. 24cm2B. 36cm2C. 48cm2D. 60cm210.如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20B.25C.30D.3211.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程是(◆)A. 40 cmB. cmC. 20 cmD. cm二、填空题12.如图,有一圆柱体,它的高为8cm,底面周长为12cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是________ cm.13.请写出两组勾股数:________、________.14.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是________.15. 北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.其中正确结论序号是________16.已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距________ km.17.一根旗杆在离底部4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为________18.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为________ .19.学校有一块长方形的花圃如右图所示,有少数的同学为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步(假设1米=2步),却踩伤了花草,所谓“花草无辜,踩之何忍”!20.如图,长为12cm的弹性皮筋直放置在x轴上,固定两端A和B,然后把中点C向上拉升8cm至D点,则弹性皮筋被拉长了________.21. 在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为________三、解答题22.如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积.23.如图,四边形ABCD中,∠B=90°,AB=6,BC=8,CD=24,AD=26,求四边形ABCD的面积.24.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.25.我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2,也可表示为c3+4(ab),即(a+b)2=c2+4(ab)由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图(Ⅱ)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2.参考答案一、选择题C CD D D C C C A B C二、填空题12.1013.3、4、5;6、8、1014.15.①④16.5km17.12米18.42或3219.420.8cm21.49三、解答题22.解:如图,连接AC.在△ACD中,∵AD=4米,CD=3米,∠ADC=90°,∴AC=5米,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积= ×5×12﹣×3×4=24(平方米).23.解:连结AC,在△ABC中,∵∠B=90°,AB=6,BC=8,∴AC= =10,S△ABC= AB•BC= ×6×8=24,在△ACD中,∵CD=24,AD=26,AC=10,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD= AC•CD= ×10×24=120.∴四边形ABCD的面积=S△ABC+S△ACD=24+120=144.24.解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则有CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解之得:x=9,∴AD=12,∴S△ABC= BC•AD= ×14×12=8425.(1)解:S阴影=4×ab,S阴影=c2﹣(a﹣b)2,∴4×ab=c2﹣(a﹣b)2,即2ab=c2﹣a2+2ab﹣b2,则a2+b2=c2;(2)解:如图所示,大正方形的面积为x2+4y2+4xy,也可以为(x+2y)2,则(x+2y)2=x2+4xy+4y2.。

【单元测验】第18章勾股定理

【单元测验】第18章勾股定理

【单元测验】第18章勾股定理一、选择题(共15小题)1.(2011•呼和浩特)如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.2.(2006•防城港)如图,在五边形ABCDE中,∠A=∠B,∠C=∠D=∠E=90°,DE=DC=4,AB=,则五边形ABCDE的周长是()A.B.C.D.3.(1998•绍兴)如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF的长是()A.B.6C.D.4.(2007•台湾)以下是甲、乙两人证明+≠的过程:(甲)因为>=3,>=2,所以+>3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形,两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠对于两人的证法,下列哪一个判断是正确的()A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确5.(2010•台湾)如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为()A.8B.8.8 C.9.8 D.106.(2004•镇江)如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是()A.10﹣15 B.10﹣5C.5﹣5 D.20﹣107.(2010•柳州)如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是()A.1.5 B.2C.2.25 D.2.58.(2001•江西)如图在Rt△ABC中,∠C=90°,AC=BC,点D在AC上,∠CBD=30°,则的值为()A.B.C.﹣1 D.不能确定9.(2004•淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A.(3+2)cm B.cm C.cm D.cm10.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个11.(2009•铁岭)将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A.B.C.D.12.(2009•滨州)已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6D.以上答案都不对13.直角三角形的三边为a﹣b,a,a+b且a、b都为正整数,则三角形其中一边长可能为()A.61 B.71 C.81 D.9114.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5B.25 C.7D.1515.如图,∠BAC=90°,AD⊥BC,则图中互余的角有()A.2对B.3对C.4对D.5对二、填空题(共15小题)(除非特别说明,请填准确值)16.(2011•贵阳)如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为_________.17.(2003•泸州)如图,一只昆虫要从边长为acm的正方体盒子的一个顶点爬到相距最远的另一个顶点,沿盒子表面爬行的最短路程是_________cm.18.(2010•厦门)如图,以第①个等腰直角三角形的斜边长作为第②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边长做为第③个等腰直角三角形的腰,依此类推,若第⑨个等腰直角三角形的斜边长为厘米,则第①个等腰直角三角形的斜边长为_________厘米.19.(2010•滨州)如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,EM+CM的最小值为_________.20.(2008•鄂州)如图,正方体的棱长为2,O为AD的中点,则O,A1,B三点为顶点的三角形面积为_________.21.(2006•玉溪)如图,小明要给正方形桌子买一块正方形桌布.铺成图1时,四周垂下的桌布,其长方形部分的宽均为20cm;铺成图2时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,则要买桌布的边长是_________cm.(提供数据:≈1.4,≈1.7)22.(2010•温州)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边PQ上,那么△PQR的周长等于_________.23.(2006•深圳)在△ABC中,AB边上的中线CD=3,AB=6,BC+AC=8,则△ABC的面积为_________.24.(2006•厦门)有古诗“葭生池中”:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问:水深、葭长各几何(1丈=10尺)回答:水深_________尺,葭长_________尺.25.(2007•宁夏)如图,网格中的小正方形边长均为1,△ABC的三个顶点在格点上,则△ABC中AB边上的高为_________.26.(2008•沈阳)在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有_________个.27.(2007•呼伦贝尔)如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是_________m.(结果不取近似值)28.(2008•金华)把两块含有30°的相同的直角三角尺按如图所示摆放,使点C、B、E在同一直线上,连接CD,若AC=6cm,则△BCD的面积是_________cm2.29.(2005•南通)如图,△P1OA1,△P2A1A2是等腰直角三角形,点P1,P2在函数y=(x>0)的图象上,斜边OA1,A1A2都在x轴上,则点A2的坐标是_________.30.(2007•重庆)已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为_________.【单元测验】第18章勾股定理参考答案与试题解析一、选择题(共15小题)1.(2011•呼和浩特)如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.考点:勾股定理.专题:计算题.分析:以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.在△BDF中,由勾股定理即可求出BD 的长.解答:解:以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.∵DC∥AB,∴=,∴DF=CB=1,BF=2+2=4,∵FB是⊙A的直径,∴∠FDB=90°,∴BD==.故选B.点评:本题考查了勾股定理,解题的关键是作出以A为圆心,AB长为半径的圆,构建直角三角形,从而求解.2.(2006•防城港)如图,在五边形ABCDE中,∠A=∠B,∠C=∠D=∠E=90°,DE=DC=4,AB=,则五边形ABCDE的周长是()A.B.C.D.考点:等腰直角三角形;多边形内角与外角.分析:可连接CE,作AF⊥CE,BG⊥CE于F、G,根据多边形的内角和定理和等腰直角三角形的性质即可求出AB、AE+BC,进而求出答案.解答:解:连接CE,作AF⊥CE,BG⊥CE于F、G,根据五边形的内角和定理和已知条件,可得△CDE,△AEF,△BCG都是等腰直角三角形,则CE=4,∴FG=AB=,∴AE+BC=3×=6,所以五边形的周长是4+4+6+=14+.故选B.点评:此题主要是作辅助线,发现等腰直角三角形.注意:等腰直角三角形的斜边是直角边的倍.3.(1998•绍兴)如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF的长是()A.B.6C.D.考点:勾股定理;全等三角形的性质;全等三角形的判定.分析:作PM⊥AC于点M可得矩形AEPM,易证△PFC≌△CMP,得到PE+PF=AC,在直角△ABC中,根据勾股定理就可以求得.解答:解:(1)作PM⊥AC于点M,可得矩形AEPM∴PE=AM,利用DB=DC得到∠B=∠DCB∵PM∥AB.∴∠B=∠MPC∴∠DCB=∠MPC又∵PC=PC.∠PFC=∠PMC=90°∴△PFC≌△CMP∴PF=CM∴PE+PF=AC∵AD:DB=1:3∴可设AD=x,DB=3x,那么CD=3x,AC=2x,BC=2x∵BC=∴x=2∴PE+PF=AC=2×2=4.(2)连接PD,PD把△BCD分成两个三角形△PBD,△PCD,S△PBD=BD•PE,S△BCD=BD•AC,所以PE+PF=AC=2×2=4.故选C.点评:解决本题的关键是作出辅助线,把所求的线段转移到一条线段求解.4.(2007•台湾)以下是甲、乙两人证明+≠的过程:(甲)因为>=3,>=2,所以+>3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形,两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠对于两人的证法,下列哪一个判断是正确的()A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确考点:勾股定理;实数大小比较;三角形三边关系.专题:阅读型.分析:分别对甲乙两个证明过程进行分析即可得出结论.解答:解:甲的证明中说明+的值大于5,并且证明小于5,一个大于5的值与一个小于5的值一定是不能相等的.乙的证明中利用了勾股定理,根据三角形的两边之和大于第三边.故选A.点评:本题解决的关键是正确理解题目中的证明过程,阅读理解题是中考中经常出现的问题.5.(2010•台湾)如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为()A.8B.8.8 C.9.8 D.10考点:勾股定理;等腰三角形的性质.分析:若AP+BP+CP最小,就是说当BP最小时,AP+BP+CP才最小,因为不论点P在AC上的那一点,AP+CP 都等于AC.那么就需从B向AC作垂线段,交AC于P.先设AP=x,再利用勾股定理可得关于x的方程,解即可求x,在Rt△ABP中,利用勾股定理可求BP.那么AP+BP+CP的最小值可求.解答:解:从B向AC作垂线段BP,交AC于P,在Rt△ABP中,BP2=AB2﹣AP2,在Rt△BCP中,BP2=BC2﹣CP2,∴AB2﹣AP2=BC2﹣CP2,∴52﹣x2=62﹣(5﹣x)2解得x=1.4,在Rt△ABP中,BP===4.8,∴AP+BP+CP=AC+BP=5+4.8=9.8.故选C.点评:直线外一点与直线上各点连接的所有线段中,垂线段最短.因此先从B向AC作垂线段BP,交AB于P,再利用勾股定理解题即可.6.(2004•镇江)如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是()A.10﹣15 B.10﹣5C.5﹣5 D.20﹣10考点:等边三角形的性质;勾股定理.专题:综合题.分析:根据轴对称的性质可得AE=ED,在Rt△EDC中,利用60度角求得ED=EC,列出方程EC+ED=(1+)EC=5,解方程即可求解.解答:解:∵AE=ED在Rt△EDC中,∠C=60°,ED⊥BC∴ED=EC∴CE+ED=(1+)EC=5∴CE=20﹣10.故选D.点评:本题考查等边三角形的性质,其三边相等,三个内角相等,均为60度.7.(2010•柳州)如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是()A.1.5 B.2C.2.25 D.2.5考点:勾股定理;翻折变换(折叠问题).分析:连接BM,MB′,由于CB′=3,则DB′=6,在Rt△ABM和Rt△MDB′中由勾股定理求得AM的值.解答:解:设AM=x,连接BM,MB′,在RT△ABM中,AB2+AM2=BM2,在RT△MDB'中,B′M2=MD2+DB′2,∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9﹣x)2+(9﹣3)2,解得x=2,即AM=2,故选B.点评:本题考查了翻折的性质,对应边相等,利用了勾股定理建立方程求解.8.(2001•江西)如图在Rt△ABC中,∠C=90°,AC=BC,点D在AC上,∠CBD=30°,则的值为()A.B.C.﹣1 D.不能确定考点:勾股定理.分析:先根据直角三角形的性质和勾股定理,求得CD与BC的关系,然后求得的值.解答:解:设CD=1,则BD=2,∵∠C=90°,∠CBD=30°,∴BC=,∴AD=﹣1,∴=﹣1.故选C.点评:本题主要考查了直角三角形的性质和勾股定理的运用,解题关键是表示AD、DC之间的关系,再求比值.9.(2004•淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶A.(3+2)cm B.cm C.cm D.cm考点:平面展开-最短路径问题.分析:作此题要把这个长方体中,蚂蚁所走的路线放到一个平面内,在平面内线段最短,根据勾股定理即可计算.解答:解:第一种情况:把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是9和4,则所走的最短线段是=;第二种情况:把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是7和6,所以走的最短线段是=;第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是10和3,所以走的最短线段是=;三种情况比较而言,第二种情况最短.所以选C.点评:此题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的线段.10.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()考点:勾股定理.专题:分类讨论.分析:可以分A、B、C分别是直角顶点三种情况进行讨论即可解决.解答:解:当AB是斜边时,则第三个顶点所在的位置有:C、D,E,H四个;当AB是直角边,A是直角顶点时,第三个顶点是F点;当AB是直角边,B是直角顶点时,第三个顶点是G.因而共有6个满足条件的顶点.故选D.点评:正确进行讨论,把每种情况考虑全,是解决本题的关键.11.(2009•铁岭)将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A.B.C.D.考点:剪纸问题;等腰直角三角形.分析:由平面图形的折叠及立体图形的表面展开图的特点解结合实际操作解题.解答:解:拿一张纸具体剪一剪,结果为A.故选A.点评:本题着重考查学生对立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,由几何图形想象出实物的形状”的要求相一致,充分体现了实践操作性原则.要注意空间想象,哪一个平面展开图对面图案都相同.12.(2009•滨州)已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6D.以上答案都不对考点:勾股定理.专题:分类讨论.分析:高线AD可能在三角形的内部也可能在三角形的外部,本题应分两种情况进行讨论.分别依据勾股定理即可求解.解答:解:在直角三角形ABD中,根据勾股定理,得BD=15;在直角三角形ACD中,根据勾股定理,得CD=6.当AD在三角形的内部时,BC=15+6=21;当AD在三角形的外部时,BC=15﹣6=9.则BC的长是21或9.故选D.点评:当涉及到有关高的题目时,注意由于高的位置可能在三角形的内部,也可能在三角形的外部,所以要注意考虑多种情况.13.直角三角形的三边为a﹣b,a,a+b且a、b都为正整数,则三角形其中一边长可能为()A.61 B.71 C.81 D.91考点:勾股定理.分析:直角三角形的三边为a﹣b,a,a+b,由他们的大小关系可知,直角边为a﹣b,a,则根据勾股定理可知:(a ﹣b)2+a2=(a+b)2,解得a=4b.∴直角三角形的三边为3b、4b、5b,看给出的答案是不是3、4、5的倍数,如果是,就可能是边长.如果不是就一定不是.所以题中81能整除3,所以可能.解答:解:由题可知:(a﹣b)2+a2=(a+b)2,解之得:a=4b所以直角三角形三边分别为3b、4b、5b.当b=27时,3b=81.故选C.点评:此题主要考查了直角三角形的三边的关系.但做此题时要用到排除法,所以学生对做题的技巧也要有所掌握.14.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5B.25 C.7D.15考点:勾股定理;非负数的性质:绝对值;非负数的性质:偶次方.分析:本题可根据“两个非负数相加和为0,则这两个非负数的值均为0”解出x、y的值,然后运用勾股定理求出斜边的长.斜边长的平方即为正方形的面积.解答:解:依题意得:x2﹣4=0,y2﹣3=0,∴x=2,y=,斜边长==,所以正方形的面积=()2=7.故选C.点评:本题综合考查了勾股定理与非负数,解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.15.如图,∠BAC=90°,AD⊥BC,则图中互余的角有()A.2对B.3对C.4对D.5对考点:直角三角形的性质.分析:此题直接利用直角三角形两锐角之和等于90°的性质即可顺利解决.解答:解:∵∠BAC=90°∴∠B+∠C=90°①;∠BAD+∠CAD=90°②;又∵AD⊥BC,∴∠BDA=∠CDA=90°,∴∠B+∠BAD=90°③;∠C+∠CAD=90°④.故共4对.故选C.点评:本题主要考查了直角三角形的性质,根据互余定义,找到和为90°的两个角即可.二、填空题(共15小题)(除非特别说明,请填准确值)16.(2011•贵阳)如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为15.5.考点:等腰直角三角形;三角形的面积;勾股定理.专题:计算题;规律型.分析:根据△ABC是边长为L的等腰直角三角形,利用勾股定理分别求出Rt△ABC、Rt△ACD、Rt△ADE的斜边长,然后利用三角形面积公式分别求出其面积,找出规律,再按照这个规律得出第四个、第五个等腰直角三角形的面积,相加即可.解答:解:∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC==,AD==2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=2=23﹣2…∴第n个等腰直角三角形的面积是2n﹣2.∴S△AEF=24﹣2=4,S△AFG=25﹣2=8,由这五个等腰直角三角形所构成的图形的面积为+1+2+4+8=15.5.故答案为:15.5.点评:此题主要考查学生对等腰直角三角形、三角形面积公式和勾股定理的理解和掌握,解答此题的关键是根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积,找出规律.17.(2003•泸州)如图,一只昆虫要从边长为acm的正方体盒子的一个顶点爬到相距最远的另一个顶点,沿盒子表面爬行的最短路程是a cm.考点:平面展开-最短路径问题.专题:数形结合.分析:把此正方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.解答:解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.展开后由勾股定理得:AB2=a2+(a+a)2=5a2,故AB=acm,故答案为a.点评:本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.18.(2010•厦门)如图,以第①个等腰直角三角形的斜边长作为第②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边长做为第③个等腰直角三角形的腰,依此类推,若第⑨个等腰直角三角形的斜边长为厘米,则第①个等腰直角三角形的斜边长为厘米.考点:等腰直角三角形;勾股定理.专题:规律型.分析:先设第①个等腰直角三角形的斜边是x,第②个的等腰直角三角形的斜边是x,那么第③个等腰直角三角形的斜边是2x,从而有第n个等腰直角三角形的斜边是()n﹣1x,根据题意可得()9﹣1x=16,解即可.解答:解:设第①个等腰直角三角形斜边长是x,根据题意得:()9﹣1x=16,∴16x=16,∴x=.点评:此题关键是找出规律,然后才可以得出关于x的方程,解出x.19.(2010•滨州)如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,EM+CM的最小值为.考点:轴对称-最短路线问题;勾股定理.专题:动点型.分析:要求EM+CM的最小值,需考虑通过作辅助线转化EM,CM的值,从而找出其最小值求解.解答:解:连接BE,与AD交于点M.则BE就是EM+CM的最小值.取CE中点F,连接DF.∵等边△ABC的边长为6,AE=2,∴CE=AC﹣AE=6﹣2=4,∴CF=EF=AE=2,又∵AD是BC边上的中线,∴DF是△BCE的中位线,∴BE=2DF,BE∥DF,又∵E为AF的中点,∴M为AD的中点,∴ME是△ADF的中位线,∴DF=2ME,∴BE=2DF=4ME,∴BM=BE﹣ME=4ME﹣ME=3ME,∴BE=BM.在直角△BDM中,BD=BC=3,DM=AD=,∴BM==,∴BE=.∵EM+CM=BE∴EM+CM的最小值为.点评:考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.20.(2008•鄂州)如图,正方体的棱长为2,O为AD的中点,则O,A1,B三点为顶点的三角形面积为.考点:勾股定理.专题:计算题.分析:在直角△AA1O和直角△OBA中,利用勾股定理可以得到OA1和OB的值,在直角△A1AB中利用勾股定理可得A1B,要求△OA1B1的面积可以通过点O作高,交A1B与M,在Rt△OA1B中求得OM=后,直接求解即可.解答:解:直角△AA1O和直角△OBA中,利用勾股定理可以得到OA1=OB=,在直角△A1AB中,利用勾股定理得A1B=,过点O作高,交A1B与M,连接AM,则△AOM是直角三角形,则AM=A1B=,OM==,∴△OA1B的面积是.点评:本题主要考查了勾股定理,正确找出图形中的直角三角形,是解决的关键,考查空间想象能力.21.(2006•玉溪)如图,小明要给正方形桌子买一块正方形桌布.铺成图1时,四周垂下的桌布,其长方形部分的宽均为20cm;铺成图2时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,则要买桌布的边长是136cm.(提供数据:≈1.4,≈1.7)考点:勾股定理的应用.专题:应用题.分析:根据题意设桌子边长为xcm,则根据勾股定理,可得桌子对角线长,进而可得桌布边长为(x+40)cm,桌子对角线长为.再由等腰三角形的性质可得该等腰三角形直角边长,进而可列得关系式,解可求得桌子边长;进而可得要买桌布的边长.解答:解:设桌子边长为xcm,则根据勾股定理,桌子对角线长为=xcm,当x=20时,x=10,由勾股定理得:等腰子三角形的直角边长是=10,即桌布边长为(x+40)cm,由于四周垂下的桌布都是等腰直角三角形,则等腰三角形直角边长为cm,列方程得x=x+40,解可得x=40+40;于是桌布长为40+40+40=80+40≈136(cm).故要买桌布的边长是136cm.点评:此题将实际问题与勾股定理和列方程相结合,考查了同学们的阅读分析能力和应用数学知识解决实际问题的能力.22.(2010•温州)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边PQ上,那么△PQR的周长等于27+13.考点:勾股定理的证明.分析:在直角△ABC中,根据三角函数即可求得AC,进而由等边三角形的性质和正方形的性质及三角函数就可求得QR的长,在直角△QRP中运用三角函数即可得到RP、QP的长,就可求出△PQR的周长.解答:解:延长BA交QR于点M,连接AR,AP.∵AC=GC,BC=FC,∠ACB=∠GCF,∴△ABC≌△GFC,∴∠CGF=∠BAC=30°,∴∠HGQ=60°,∵∠HAC=∠BAD=90°,∴∠BAC+∠DAH=180°,又AD∥QR,∴∠RHA+∠DAH=180°,∴∠RHA=∠BAC=30°,∴∠QHG=60°,∴∠Q=∠QHG=∠QGH=60°,∴△QHG是等边三角形.AC=AB•cos30°=4×=2.则QH=HA=HG=AC=2.在直角△HMA中,HM=AH•sin60°=2×=3.AM=HA•cos60°=.在直角△AMR中,MR=AD=AB=4.∴QR=2+3+4=7+2.∴QP=2QR=14+4.PR=QR•=7+6.∴△PQR的周长等于RP+QP+QR=27+13.故答案为:27+13.点评:正确运用三角函数以及勾股定理是解决本题的关键.23.(2006•深圳)在△ABC中,AB边上的中线CD=3,AB=6,BC+AC=8,则△ABC的面积为7.考点:直角三角形的性质;勾股定理.分析:本题考查三角形的中线定义,根据条件先确定△ABC为直角三角形,再求得△ABC的面积.解答:解:如图,在△ABC中,CD是AB边上的中线,∵CD=3,AB=6,∴AD=DB=3,∴CD=AD=DB,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠1+∠3=90°,∴△ABC是直角三角形,∴AC2+BC2=AB2=36,又∵AC+BC=8,∴AC2+2AC•BC+BC2=64,∴2AC•BC=64﹣(AC2+BC2)=64﹣36=28,又∵S△ABC=AC•BC,∴S△ABC==7.点评:熟练运用三角形的中线定义以及综合分析、解答问题的能力.关键要懂得:在一个三角形中,如果获知一条边上的中线等于这一边的一半,那么就可考虑它是一个直角三角形,通过等腰三角形的性质和内角和定理来证明一个三角形是直角三角形.24.(2006•厦门)有古诗“葭生池中”:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问:水深、葭长各几何(1丈=10尺)回答:水深12尺,葭长13尺.考点:勾股定理的应用.分析:根据题意,构建直角三角形,利用勾股定理列方程求解.解答:解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺,根据题意列方程得:x2+52=(x+1)2,解得:x=12于是OA'=13尺.故答案为;12,13.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.25.(2007•宁夏)如图,网格中的小正方形边长均为1,△ABC的三个顶点在格点上,则△ABC中AB边上的高为.考点:等腰三角形的性质;勾股定理.专题:网格型.分析:由已知可得到三角形各边的长,从而根据勾股定理可求得BC边上的高,再根据面积公式即可求得AB边上的高的长.解答:解:由图知,△ABC是等腰三角形,AB=AC==,BC=,BC边上的高==,设AB边上的高为h,∴S△ABC=××=×h,∴h=.点评:此题主要考查等腰三角形的性质及勾股定理的运用.26.(2008•沈阳)在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有8个.考点:坐标与图形性质;勾股定理的逆定理.专题:分类讨论.分析:本题可先根据AB两点的坐标得出直线的方程,再设C点的坐标为:(x,y),根据点到直线的公式得出C 点的x与y的关系,然后分别讨论∠A为直角时或∠B为直角时或∠C为直角几种情况进行讨论即可得出答案.解答:解:到直线AB的距离为4的直线有两条.以一条直线为例,当∠A为直角时,可得到一个点;当∠B为直角时,可得到一个点;以AB为直径的圆与这条直线有2个交点,此时,∠C为直角.同理可得到另一直线上有4个点.点评:本题需注意:到一条直线距离为定值的直线有两条;需注意分情况讨论三角形为直角的情况.27.(2007•呼伦贝尔)如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)考点:平面展开-最短路径问题.专题:转化思想.分析:求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.解答:解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是m.故答案是:3.点评:正确判断小猫经过的路线,把曲面的问题转化为平面的问题是解题的关键.28.(2008•金华)把两块含有30°的相同的直角三角尺按如图所示摆放,使点C、B、E在同一直线上,连接CD,若AC=6cm,则△BCD的面积是27cm2.考点:勾股定理;含30度角的直角三角形.分析:本题考查直角三角形的性质和勾股定理,利用直角三角形的性质和勾股定理解答.解答:解:∵两块三角尺是有30°的相同的直角三角尺,∠ABC=∠EBD=30°,∴=,cos∠ABC=cos30°==,∴AB=BE=2AC=2DE=2×6=12,BC=×AB=×12=6,∴BD=6,过D作DF⊥BE,在Rt△BDF中,∠DBE=30°,∴==,DF=3,。

沪科版八年级数学下册第18章 勾股定理单元测试题

沪科版八年级数学下册第18章 勾股定理单元测试题

第18章勾股定理一、选择题(每题4分,共40分)1.下列几组数中,为勾股数的一组是()A.5,6,7B.3,-4,5C.0.5,1.2,1.3D.20,48,522.已知a,b,c是三角形的三边长,且满足(a-6)2++|c-10|=0,则该三角形是()A.等腰三角形B.等边三角形C.钝角三角形D.直角三角形3.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走(假设2步为1 m)()A.2步B.4步C.5步D.10步第3题图第5题图第6题图4.小明从一根长为6 m的钢条上截取一段,截取的钢条恰好与两根长分别为3 m,5 m的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.4 mB. mC.4 m或 mD.6 m5.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.806.如图,将两个大小、形状完全相同的△ABC和△A'B'C'拼在一起,其中点A'与点A重合,点C'落在AB边上,连接B'C.若∠ACB=∠A'C'B'=90°,AC=BC=3.则B'C的长为()A.3B.6C.3D.7.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米第7题图第8题图8.如图,分别以Rt△ABC的三边为边向外作等边三角形,若AB=4,则三个等边三角形的面积之和为()A.8B.6C.18D.129.如图,一张长方形纸片ABCD,AB=6,BC=9,将长方形纸片ABCD折叠,使点C与点A重合,则折痕EF的长为()A. B.2 C.5 D.7第9题图第10题图10.图1是我国著名的“赵爽弦图”,它是由四个全等的直角三角形所围成,将四个直角三角形的较短边(如AF)向外延长1倍分别得到点A',B',C',D',并顺次连接得到图2.若正方形EFGH与正方形A'B'C'D'的面积分别为1 cm2和85 cm2,则图2中阴影部分的面积是()A.15 cm2B.30 cm2C.36 cm2D.60 cm2二、填空题(每题5分,共20分)11.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是.12.如图,校园内有两棵树,相距8 m,一棵树高13 m,另一棵树高7 m,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞m.第12题图第13题图第14题图13.如图是一个底面周长为24 m,高为5 m的圆柱体,一只蚂蚁沿表面从点A到点B所经过的最短路线长为m.14.如图,已知1号、4号两个正方形的面积和为7,2号、3号两个正方形的面积和为4,则a,b,c三个正方形的面积和为.三、解答题(共90分)15.(8分)如图,在△ABC中,AB=10,BC=16,BC边上的中线AD=6.求证:AB=AC.16.(8分)某校要把一块形状是直角三角形的废地开发为小花园,如图,∠ACB=90°,AC=40 m,BC=30 m.计划建一条水渠CD,且点D在边AB上,已知水渠的造价为3 000元/m,点D距点A多远时,此水渠的造价最低?最低造价是多少?请在图上标出点D.17.(8分)如图,在由边长为1的小正方形组成的网格图中,四边形ABCD的顶点都在格点上.(1)求四边形ABCD的周长;(2)判断AD与DC是否垂直?并说明理由.18.(8分)如图所示的是一个十字路口,O是两条公路的交点,A,B,C,D表示公路上的四辆车.某一时刻,OC=8 m,AC=17 m,AB=5 m,BD=10 m,求C,D两辆车之间的距离.19.(10分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=5,且AC+BC=6,求AB的长.20.(10分)有一艘渔船在海上C处作业时发生故障,立即向搜救中心发出求救信号,此时搜救中心的两艘救助轮一号和二号分别位于海上A处和B处,B在A的正东方向,且距A 100海里.测得点C在A的南偏东60°方向上,在B的南偏东30°方向上,如图所示.若救助轮一号和二号的速度分别为40海里/时和30海里/时,问搜救中心应派哪艘救助轮才能尽快赶到C处救援?(≈1.7)21.(12分)如图,点A是5×5网格中的一个格点,图中每个小正方形的边长为1,请在网格中按下列要求操作(顶点都在格点上的多边形为格点多边形):(1)以点A为其中的一个顶点,在图1中画一个面积等于3的格点直角三角形;(2)以点A为其中的一个顶点,在图2中画一个面积等于的格点等腰直角三角形;(3)以点A为其中的一个顶点,在图3中画一个三边边长比为1∶∶,且最长边的长度为5的格点三角形.22.(12分)在△ABC中,AB=AC,∠BAC=2∠DAE=2α,点D关于直线AE的对称点为F.(1)如图1,若α=45°,求证:DE2=BD2+CE2;(2)如图2,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还成立吗?请说明理由.23.(14分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪灵感.他发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明勾股定理.下面是小聪利用图1证明勾股定理的过程.如图1,△ACB≌△DEA,∠DAB=90°,求证:a2+b2=c2.证明:连接DB,DC,过点D作DF⊥BC交BC的延长线于点F,则DF=EC=b-a.则S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b-a),∴b2+ab=c2+a(b-a),∴a2+b2=c2.请参照上述证法,利用图2证明勾股定理.如图2,△ACB≌△AED,∠DAB=90°,求证:a2+b2=c2.图1 图2答案15. 因为AD是BC边上的中线,所以BD=CD=BC=8,又因为AB=10,AD=6,所以AD2+BD2=AB2,所以△ADB是直角三角形,AD⊥BC.在Rt△ADC中,由勾股定理得AC2=AD2+CD2=62+82=102,所以AC=10,所以AB=AC.16. 如图,过点C作CD⊥AB于点D,则点D为所求的点.在Rt△ABC中,由勾股定理,得AB===50(m).∵S△ABC=AC·BC=AB·CD,∴CD===24(m).在Rt△ACD中,由勾股定理,得AD===32(m).∵水渠的造价为3 000元/m,∴水渠的最低造价为3 000×24=72 000(元).故当点D距点A 32 m时,此水渠的造价最低,最低造价是72 000元.17. (1)由题意可知AB==3,AD==,DC==2,BC==,∴四边形ABCD的周长为AB+BC+CD+AD=3++3.(2)AD⊥DC,理由如下:连接AC.∵AD=,DC=2,AC=5,∴AD2+CD2=AC2,∴△ACD是直角三角形,且∠ADC=90°,∴AD⊥DC.18. 在Rt△AOC中,由勾股定理得OA2+OC2=AC2,∴OA===15(m),∴OB=OA+AB=20 m.在Rt△BOD中,由勾股定理得BD2=OB2+OD2,∴OD===10(m),∴CD=OD-OC=10-8=2(m).19. 由勾股定理,得AC2+BC2=AB2,∴由题图可知S1+S2=π×()2+π×()2+×AC×BC-π×()2=(AC2+BC2-AB2)+×AC×BC=×AC×BC,∵S1+S2=5,∴AC×BC=10,∴AB===4.20. 如图,过点C作CD⊥AB交AB的延长线于点D.由题意得∠EAC=60°,∠FBC=30°,∴∠1=30°,∠2=60°.∵∠1+∠BCA=∠2,∴∠BCA=30°,∴∠1=∠BCA,∴BC=AB=100海里.在Rt△BDC中,BD=BC=50海里,∴DC==50海里,AD=AB+BD=150海里.在Rt△ADC中,由勾股定理,得AC==100 海里,∴救助轮一号所用的时间t1==≈4.25(时),救助轮二号所用的时间t2==≈3.33(时),∵3.33<4.25,∴搜救中心应派救助轮二号才能尽快赶到C处救援.21. (1)如图1所示.(画法不唯一)(2)如图2所示.(画法不唯一)(3)∵三角形的三边边长比为1∶∶,且最长边的长度为5,∴三边长分别为,,5,满足题意的格点三角形如图3所示.(画法不唯一)22. (1)∵点D,F关于直线AE对称,∴AD=AF,DE=EF,∠FAE=∠DAE=α.∴∠DAF=2α=∠BAC,∴∠DAF-∠DAC=∠BAC-∠DAC,即∠CAF=∠BAD,又∵AB=AC,AD=AF,∴△BAD≌△CAF,∴BD=CF,∠ACF=∠ABD.∵∠BAC=2α=90°,AB=AC,∴∠ABD=∠ACB=45°,∴∠ACF=45°,∴∠ECF=∠ACB+∠ACF=90°,∴EF2=EC2+CF2.∵BD=CF,DE=EF,∴DE2=BD2+CE2.(2)成立.理由如下:∵点D,F关于直线AE对称,∴AD=AF,DE=EF,∠FAE=∠DAE=α,∴∠DAF=2α=∠BAC,∴∠DAF-∠DAC=∠BAC-∠DAC,即∠CAF=∠BAD,又∵AB=AC,AD=AF,∴△BAD≌△CAF,∴BD=CF,∠ACF=∠ABD.∵∠BAC=2α=90°,AB=AC,∴∠ABD=∠ACB=45°,∴∠ACF=45°,∴∠ECF=180°-∠ACB-∠ACF=90°,∴EF2=CF2+CE2.∵EF=DE,CF=BD,∴DE2=BD2+CE2.23. 如图,连接BD,BE,过点B作BF⊥DE交DE的延长线于点F,则S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab. 又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b-a),∴ab+b2+ab=ab+c2+a(b-a),∴a2+b2=c2.。

2022年沪科版八年级数学下册第18章 勾股定理章节测评试题(含解析)

2022年沪科版八年级数学下册第18章 勾股定理章节测评试题(含解析)

八年级数学下册第18章勾股定理章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1C.6,8,13 D.5,12,152、如图,数轴上点A所表示的数是()A B C D 13、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m4、如图,在Rt△ABC中,∠C=90°,AC=12,AB=13,AB边的垂直平分线分别交AB、AC于N、M两点,则△BCM的周长为()A.18 B.16 C.17 D.无法确定5、如图,在△ABC中,∠A=90°,AB=6,BC=10,EF是BC的垂直平分线,P是直线EF上的任意一点,则PA+PB的最小值是()A.6 B.8 C.10 D.126、下列条件中,能判断△ABC是直角三角形的是()A.a:b:c=3:4:4 B.a=1,b,cC.∠A:∠B:∠C=3:4:5 D.a2:b2:c2=3:4:57、下列命题中,逆命题不正确的是()A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.全等三角形对应角相等D.直角三角形的两条直角边的平方和等于斜边的平方8、下列命题属于假命题的是()A.3,4,5是一组勾股数B.内错角相等,两直线平行C.三角形的内角和为180°D.9的平方根是39、下列各组数中,能作为直角三角形三边长的是()A.1,2B.8,9,10 C D10、如图所示,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD,则BC的长为()A B C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、圆锥体的高为4cm,圆锥的底面半径为3cm,则该圆锥的表面积为___________.2、如图,△ABC中,∠ACB=90°,AC=4,BC=3,射线CD与边AB交于点D,点E、F分别为AD、BD中点,设点E、F到射线CD的距离分别为m、n,则m+n的最大值为________.3、禅城区某一中学现有一块空地ABCD如图所示,现计划在空地上种草皮,经测量90∠,B= ====,若每种植1平方米草皮需要300元,总共需投入______元AB BC m CD AD3m,4,13m,12m4、如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”:当AC=6,BC=8时,则阴影部分的面积为_____.5、如图,点A为等边三角形BCD外一点,连接AB、AD且AB=AD,过点A作AE∥CD分别交BC、BD 于点E、F,若3BD=5AE,EF=6,则线段AE的长 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,∠C 90°.(1)用尺规作图,保留作图痕迹,不写作法:在边BC 上求作一点D ,使得点D 到AB 的距离等于DC 的长;(2)在(1)的条件下,若AC =6,AB =10,求CD 的长.2、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.3、在Rt ACB ∆中,90ACB ∠=︒,6CA CB ==,点P 是线段CB 上的一个动点(不与点B ,C 重合),过点P 作直线l CB ⊥交AB 于点Q .给出如下定义:若在AC 边上存在一点M ,使得点M 关于直线l 的对称点N 恰好在.ACB △的边上...,则称点M 是ACB △的关于直线l 的“反称点”.例如,图1中的点M 是ACB △的关于直线l 的“反称点”.(1)如图2,若1CP =,点1M ,2M ,3M ,4M 在AC 边上且11AM =,22AM =,34AM =,46AM =.在点1M ,2M ,3M ,4M 中,是ACB △的关于直线l 的“反称点”为______;(2)若点M 是ACB △的关于直线l 的“反称点”,恰好使得ACN △是等腰三角形,求AM 的长;(3)存在直线l 及点M ,使得点M 是ACB △的关于直线l 的“反称点”,直接写出线段CP 的取值范围.4、如图,在△ABC 和△DEB 中,AC ∥BE ,∠C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC ≌△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.5、如图,ABC 是边长为6cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,点P 沿射线AB 运动,点Q 沿折线BC CA -运动,且它们的速度都为1cm/s .当点Q 到达点A 时,点P 随之停止运动连接PQ ,PC ,设点P 的运动时间为(s)t .(1)当点Q在线段BC上运动时,BQ的长为_______(cm),BP的长为_______(cm)(用含t的式子表示);(2)当PQ与ABC的一条边垂直时,求t的值;(3)在运动过程中,当CPQ是等腰三角形时,直接写出t的值.-参考答案-一、单选题1、B【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、52+42≠62,不能构成直角三角形,故不符合题意;B、12+122,能构成直角三角形,故符合题意;C、62+82≠132,不能构成直角三角形,故不符合题意;D、122+52≠152,不能构成直角三角形,故不符合题意.故选:B.【点睛】本题考查勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.2、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.3、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.解:在Rt△ABC中,∠C=90°,AC=12,AB=13,∴由勾股定理得,5BC=,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C.【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键.5、B【分析】如图,由线段垂直平分线的性质可知PB=PC,则有PA+PB=PA+PC,然后可知当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长.【详解】解:如图,连接PC,∵EF是BC的垂直平分线,∴PB=PC,∴PA +PB =PA +PC ,∴PA +PB 的最小值即为PA +PC 的最小值,当点A 、P 、C 三点共线时,PA +PB 取得最小值,即为AC 的长,∴在Rt △ABC 中,∠A =90°,AB =6,BC =10,由勾股定理可得:8AC ,∴PA +PB 的最小值为8;故选B .【点睛】本题主要考查垂直平分线的性质及勾股定理,熟练掌握垂直平分线的性质及勾股定理是解题的关键.6、B【分析】根据勾股定理的逆定理,以及三角形的内角等于180︒逐项判断即可.【详解】A ,设3a x =,4b x ,4=c x ,此时()()()222344x x x +≠,故ABC 不能构成直角三角形,故不符合题意;B ,2221+=,故ABC 能构成直角三角形,故符合题意 C ,::3:4:5A B C ∠∠∠=且180A B C ∠+∠+∠=︒,设3A x ∠=,4B x ∠=,5C x ∠=,则有12180x =︒,所以15x =︒,则75C ∠=︒,故ABC 不能构成直角三角形,故不符合题意;D ,设23a x =,24b x =,25c x =,则345x x x +≠,即222a b c +≠,故ABC 不能构成直角三角形,故不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,和三角形的内角和等知识,能熟记勾股定理的逆定理内容和三角形内角和等于180 是解题关键.7、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.8、D【分析】利用勾股数的定义、平行线的判定、三角形的内角和及平方根的定义分别判断后即可确定正确的选项.【详解】解:A、3,4,5是一组勾股数,正确,是真命题,不符合题意;B、内错角相等,两直线平行,正确,是真命题,不符合题意;C、三角形的内角和为180°,正确,是真命题,不符合题意;D、9的平方根是±3,故原命题是假命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解勾股数的定义、平行线的判定、三角形的内角和及平方根的定义,难度不大.9、A【分析】比较较小的两边的平方和是否等于较长边的平方来判定即可.【详解】解:A、222+=,能构造直角三角形,故符合题意;12B、222081,不能构造直角三角形,故不符合题意;9C、222+≠,不能构造直角三角形,故不符合题意;D、222+≠,不能构造直角三角形,故不符合题意;故选:A.【点睛】此题考查勾股定理的逆定理,三角形的两边的平方和等于第三边的平方,则此三角形为直角三角形,熟练运用这个定理是解题关键.10、B【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【详解】解:∵∠ADC =2∠B ,∠ADC =∠B +∠BAD ,∴∠B =∠DAB ,∴BD =AD ,在Rt△ADC 中,∠C =90°,∴DC,∴BC =BD +DC 故选:B .【点睛】本题考查了等角对等边,勾股定理,求得BD AD =是解题的关键.二、填空题1、224cm π【分析】先利用勾股定理求出SA 的长,再根据表面积公式进行求解即可.【详解】解:∵圆锥体的高为4cm ,圆锥的底面半径为3cm ,∴5cm SA =,∴该圆锥的表面积22=15924cm rl r πππππ+=+=,故答案为:224cm π.【点睛】本题主要考查了圆锥的表面积,勾股定理,求出母线长是解题的关键.2、2.5【分析】连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,首先根据中线的性质和三角形面积公式得出132FCE ABC S S ∆∆==,然后证明出当CD 的长度最小时,m +n 的值最大,然后根据垂线段最短和等面积法求出CD 的最小值,即可求出m +n 的最大值.【详解】解:连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,∵点E 是AD 的中点,点F 是BD 的中点,∴CE 是ACD ∆中AD 边上的中线,CF 是BCD ∆中BD 边上的中线, ∴12ACE DCE ACD S S S ∆∆∆==,12BCF DCF BCD S S S ∆∆∆==, ∴11111322222FCE DCE DCF ACD BCD ABC S S S S S S AC BC ∆∆∆∆∆∆=+=+==⨯⨯⨯=, ∴11322CD EM CD FN ++=,∴()132CD EM FN +=,即()132CD m n +=, ∴()6CD m n +=,∴当CD 的长度最小时,m +n 的值最大,∴当CD AB ⊥时,CD 的长度最小,此时m +n 的值最大,∵△ABC 中,∠ACB =90°,AC =4,BC =3,∴AB 5, ∴162CD AB ⨯⨯=,解得:125CD =, ∴将125CD =代入()6CD m n +=得: 2.5m n +=. 故答案为:2.5.【点睛】此题考查了勾股定理,中线的性质,三角形面积的应用,垂线段最短等知识,解题的关键是根据题意作出辅助线,正确分析出当CD AB ⊥时m +n 的值最大.3、10800【分析】仔细分析题目,需要求得四边形的面积才能求得结果,在直角三角形ABC 中可求得AC 的长,由AC 、AD 、DC 的长度关系可得ACD △为直角三角形,CD 为斜边;由此可知,四边形ABCD 由t R ABC 和Rt ACD △构成,即可求解.【详解】解:在t R ABC 中,∵222222=345AC AB BC +=+=,∴AC =5.在ACD △中,2213CD =,2212AD =,而22212513+=,即222AC AD CD +=,∴90DAC ∠=︒, 即:11=22BAC DAC ABCD S SS BC AB CD AC +=+四边形 =11431253622⨯⨯+⨯⨯=.所以需费用:3630010800⨯=(元).故答案为10800.【点睛】本题考查了勾股定理,逆定理的相关知识,以及割补法求图形的面积,熟练掌握勾股定理及其逆定理是解答本题的关键.4、24【分析】根据勾股定理求出AB ,分别求出三个半圆的面积和△ABC 的面积,两小半圆与直角三角形的和减去大半圆即可得出答案.【详解】解:在Rt △ACB 中∠ACB =90°,AC =6,BC =8,由勾股定理得:AB =10,阴影部分的面积2221618111068242222222S πππ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯+⨯⨯-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:24.【点睛】本题主要考查勾股定理和圆有关的不规则图形的阴影面积.利用规则图形面积的和差关系求阴影面积是这类题型的关键.勾股定理是解决三角形中线段问题最有效的方法之一.5、9【分析】连接AC交BD于点O,可得AC是BD的垂直平分线,设BD=5x,则AE=3x,求出OF=OB-BF=52x-6,AF=AE-EF=3x-6,证明△BOE是等边三角形,得30AFE∠=︒,利用AF=2OF列出方程求出x的值,进而可得AE的长.【详解】解:如图,连接AC交BD于点O,∵3BD=5AE,∴53 BDAE=,设BD=5x,则AE=3x,∵△BCD是等边三角形,∴BC=CD=BD=5x,∠DCB=∠DBC=60°,∵AB=AD,BC=CD,∴AC是BD的垂直平分线,∴OB=OD=52x,OC平分∠BCD,∴∠DCO=12∠DCB=30°,∵AE ∥CD ,∴∠DCO =30°,∴OC ==, ∵AE ∥CD ,∴∠AEB =∠BCD =60°,∴∠AEB =∠FBE =∠BFE =60°,∴△BEF 是等边三角形,∴BE =BF =EF =6,∴OF =OB -BF =52x -6,AF =AE -EF =3x -6,∵60BFE ∠=︒∴30AFE ∠=︒∴2AF OF = ∴5362(6)2x x -=-解得x =3,∴AE =AF +EF =3x -6+6=3x =9.故答案为:9.【点睛】本题考查了垂直平分线的判定与性质,勾股定理,等边三角形的判定与性质,直角三角形的性质,解决本题的关键是得到AF =2OF 列出方程求解.三、解答题1、(1)图见详解;(2)3.【分析】(1)根据题意作∠BAC 的平分线交BC 于D ,根据角平分线的性质得到点D 满足条件;(2)根据题意作DE ⊥AB 于E ,先根据勾股定理计算出BC =8,再根据角平分线性质得到DC =DE ,通过证明Rt △ACD ≌Rt △AED 得到AE =AC =6,则EB =4,设CD =x ,则BD =8-x ,在Rt △BED 中,利用勾股定理得到x 2+42=(8-x )2,解方程求出即可.【详解】解:(1)如图,点D 即为所作;(2)作DE ⊥AB 于E ,如上图,在Rt △ABC 中,BC ,∵AD 为角平分线,∴DC =DE ,在Rt △ACD 和Rt △AED 中AD AD DC DE =⎧⎨=⎩, ∴Rt △ACD ≌Rt △AED (HL ),∴AE =AC =6,∴EB =AB -AE =10-6=4设CD =x ,则DE =x ,则BD =8-x ,在Rt△BED中,x2+42=(8-x)2,解得x=3,∴CD=3.【点睛】本题考查作图-复杂作图以及全等三角形判定和角平分线定理、勾股定理,注意掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.2、(1)见解析;(2)x<-3;x>-3;(3)BC=【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x <-3时,一次函数y =-2x -6的图象在x 轴上方;当x >-3时,一次函数y =-2x -6的图象在x 轴下方.∴不等式-2x -6>0的解集是x <-3;不等式-2x -6<0的解集是x >-3.故答案是:x <-3,x >-3;(3)∵B (-3,0),C (0,-6),∴OB =3,OC =6,∴BC =【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x 轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.3、(1)2M 和4M ;(2)3或6;(3)03CP <≤【分析】(1)根据反称点的定义进行判断即可;(2)ACN △是等腰三角形分三种情况讨论求解即可;(3)根据“反称点的定义”判断出CP 的取值范围即可.【详解】解:(1)∵CP =1∴M 点到PQ 的距离为1∵M 、N 关于PQ 对称,∴N 点到PQ 的距离为1∴MN =2如图,1N 在ABC ∆外部,3N 在ABC ∆内部,均不符合题意,∵90ACB ∠=︒,6CA CB ==,∴ABC ∆是等腰直角三角形,∴45A B ∠=∠=︒∵222222,2,AM M N M N AC ==⊥∴2N 在AB 边上,∵46AM =,∴4M 与点C 重合,4M 与4N 关于PQ 对称,4N 在BC 上,∴点1M ,2M ,3M ,4M 中,是ACB △的关于直线l 的“反称点”为2M 和4M故答案为:2M 和4M(2)ACN △是等腰三角形分三种情况:如图,①当11AN CN =时,∵ABC ∆是等腰直角三角形∴1N 是AB 边的中点,1116322AM AC ==⨯= ②当2AC AN =时,此时2=6AN∵22M N //BC∴2290AM N ∠=︒∵45A ∠=︒∴22AM N ∆是等腰直角三角形,且222AM M N =∴2222222AM M N AN +=∴22226AM =∴2AM =③当3AC CN =时,此时,3N 与点B 重合,3M 与点C 重合,∴3AM =AC =6综上,AM 的长为3或6;(3)如图,∵M 是AC 边上的点,CB =6∴当03CP <≤时,在AC 边上至少有一个点M 关于PQ 的对称点在AB 边上,当3CP '>时,如图所示,此时AC 上的所有点到P Q ''的距离都大于3,即6MN >,M 关于P Q ''的对称点都在ABC ∆的外部,∴03CP <≤【点睛】本题主要考查了等腰直角三角形的性质,勾股定理,对称的性质等知识,正确理解反对称点的定义是解答本题的关键4、(1)见解析;(2)【分析】(1)根据平行可得∠DBE =90°,再由HL 定理证明直角三角形全等即可;(2)构造Rt AHE ,利用矩形性质和勾股定理即可求出AE 长.【详解】(1)∵AC ∥BE ,∴∠C +∠DBE =180°.∴∠DBE =180°-∠C =180°-90°=90°.∴△ABC 和△DEB 都是直角三角形.∵点D 为BC 的中点,12AC BC =,∴AC =DB . ∵AB =DE ,∴Rt △ABC ≌Rt △DEB (HL ).(2)AE =过程如下:连接AE 、过A 点作AH ⊥BE ,∵∠C =90°,∠DBE =90°.∴AC BH ∥,AH BC ∥,∴AH =BC =4, 122BH AC BC ===,∴2EH EB EH =-=,在Rt AHE 中,AE =【点睛】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH =BC ,从而利用勾股定理求AE .5、(1)t ;()6t -;(2)当2t =或4t =或8t =时,PQ 与ABC 的一条边垂直;(3)当3t =或9t =时,ΔΔΔΔ为等腰三角形.【分析】(1)根据点的位置及运动速度可直接得出;(2)根据题意分三种情况讨论:①当PQ CB ⊥时,90PQB ∠=︒;②当PQ AB ⊥时,90QPB ∠=︒;③当PQ AC ⊥时,90AQP ∠=︒;作出图形,分别应用直角三角形中30︒角的特殊性质求解即可得;(3)根据题意,分四种情况进行讨论:①当点Q 在BC 边上时,CQ PQ =时;②当点Q 在BC 边上时,CP CQ =时;③当点Q 在BC 边上时,CP PQ =时;④当点Q 在AC 边上时,只讨论CP PQ =情况;分别作出四种情况的图形,然后综合运用勾股定理及解一元二次方程求解即可.【详解】解:(1)点Q 从点B 出发,速度为1/cm s ,点P 从点A 出发,速度为1/cm s ,∴BQ tcm =,AP tcm =,∴()6BP t cm =-,故答案为:t ;()6t -;(2)根据题意分三种情况讨论:①如图所示:当PQ CB ⊥时,90PQB ∠=︒,∵三角形ABC 为等边三角形,∴60A ACB ABC ∠=∠=∠=︒,∴30QPB ∠=︒, ∴12QB PB =,由(1)可得:()162t t =-, 解得:2t =;②如图所示:当PQ AB ⊥时,90QPB ∠=︒,∵60ABC ∠=︒,∴30BQP ∠=︒,∴2QB PB =,由(1)可得:()26t t =-,解得:4t =;③如图所示:当PQ AC ⊥时,90AQP ∠=︒,∵60A ∠=︒,∴30APQ ∠=︒,∴2AP QA =,由(1)可得:()212t t =-,解得:8t =;综上可得:当2t =或4t =或8t =时,PQ 与ABC 的一条边垂直;(3)根据题意,分情况讨论:①当点Q 在BC 边上时,CQ PQ =时,如图所示:过点Q 作QE AB ⊥,∵60ABC ∠=︒,∴30BQE ∠=︒, ∴1122BE BQ t ==,∴QE =, 6CQ t =-,136622PE t t t =--=-,∴PQ ==∵CQ PQ =,∴()2223662t t ⎫⎛⎫-=-+⎪ ⎪⎪⎝⎭⎝⎭,解得:3t =或0t =(舍去);②当点Q 在BC 边上时,CP CQ =时,如图所示:过点P 作PF AC ⊥,∵60CAB ∠=︒,∴30APF ∠=︒, ∴1122AF AP t ==,∴PF =, 6CQ t =-,162CF t =-,∴CP ==∵CP CQ =,∴()2221662t t ⎫⎛⎫-=-+⎪ ⎪⎪⎝⎭⎝⎭, 解得: 0t =(舍去);③当点Q 在BC 边上时,CP PQ =时,如图所示:由图可得:60CQP ∠>︒,60QCP ∠<︒,CQP QCP ∠≠∠,∴这种情况不成立;④当点Q 在AC 边上时,只讨论CP PQ =情况,如图所示:过点Q 作QE AB ⊥,过点C 作CF AB ⊥,∵60CAB ∠=︒,ABC ∆为等边三角形,∴30AQE ∠=︒,3AF BF ==,∴CF =12AQ t =-, ∴162AE t =-,∴)12QE t =-, ∴136622EP t t t ⎛⎫=--=- ⎪⎝⎭,∴PQ ==∵CF =3PF t =-,∴PC =∵PC PQ =,∴()(()222233126342t t t ⎛⎫-+-=+- ⎪⎝⎭, 解得:19t =或26t =(舍去),综上可得:当3t =或9t =时,ΔΔΔΔ为等腰三角形.【点睛】题目主要考查三角形与动点问题,包括勾股定理的应用,含30︒角的直角三角形的特殊性质,等腰三角形的判定和性质,求解一元二次方程等,根据题意,作出相应图形,然后利用勾股定理求解是解题关键.。

【单元测验】第18章 勾股定理

【单元测验】第18章 勾股定理

【单元测验】第18章勾股定理【单元测验】第18章勾股定理一、选择题(共10小题)1.(2011•宜宾)如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()2.(2011•菏泽)如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为()D.3.(2010•雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是()C D.4.(2011•泰安)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为().C D5.(2011•黄石)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()cm D.cm6.(2010•南宁)如图,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系式()7.(2010•宁德)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是()8.(2010•钦州)如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为()9.(2010•河池)如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()10.(2009•綦江县)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是()2二、填空题(共10小题)(除非特别说明,请填准确值)11.(2011•杭州)在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,则点F到直线BC的距离为_________.12.(2011•玉溪)如图,在△ABC中,∠ABC=90°,分别以BC、AB、AC为边向外作正方形,面积分别记为S1、S2、S3,若S2=4,S3=6,则S1=_________.13.(2010•北海)如图,在Rt△ABC中,∠C=90°,作AB的垂直平分线,交AB于D,交AC于E,连接BE.已知∠CBE=40°,则∠A=_________度.14.(2011•荆州)如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为_________cm.15.(2010•淄博)如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最多可以作出以格点为端点、长度为的线段_________条.16.(2009•遵义)如图,在Rt△ABC中,∠C=90°,AC+BC=2,S△ABC=1,则斜边AB的长为_________.17.(2010•内江)下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有_________个,图3中以格点为顶点的等腰直角三角形共有_________个,图4中以格点为顶点的等腰直角三角形共有_________个.18.(2010•山西)如图,在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE⊥AC于点E,则DE 的长是_________.19.(2009•宜宾)已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为_________.20.(2009•厦门)如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=10cm,AC=8cm,那么D点到直线AB的距离是_________cm.【单元测验】第18章勾股定理参考答案与试题解析一、选择题(共10小题)1.(2011•宜宾)如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()==42.(2011•菏泽)如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为()D.∠=.3.(2010•雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是()C D..4.(2011•泰安)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为().C D,x=﹣=25.(2011•黄石)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()cm D.cm,6.(2010•南宁)如图,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系式()AC==5=BC==AB=4=7.(2010•宁德)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是()=,2+28.(2010•钦州)如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为()=10cmBE=AB=5cm9.(2010•河池)如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()×xy+4=49x+y=×,故此选项不正确.10.(2009•綦江县)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是()2,AP=2,∴2二、填空题(共10小题)(除非特别说明,请填准确值)11.(2011•杭州)在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,则点F到直线BC的距离为.AB==,故答案为:12.(2011•玉溪)如图,在△ABC中,∠ABC=90°,分别以BC、AB、AC为边向外作正方形,面积分别记为S1、S2、S3,若S2=4,S3=6,则S1=2.13.(2010•北海)如图,在Rt△ABC中,∠C=90°,作AB的垂直平分线,交AB于D,交AC于E,连接BE.已知∠CBE=40°,则∠A=25度.14.(2011•荆州)如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为13cm.15.(2010•淄博)如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最多可以作出以格点为端点、长度为的线段8条.,那么根据勾股定理容易得到长度为的线段,然后可以找出所有这的线段全部画出,共有条.此题是一个探究试题,首先探究如何找到长度为16.(2009•遵义)如图,在Rt△ABC中,∠C=90°,AC+BC=2,S△ABC=1,则斜边AB的长为2.AC217.(2010•内江)下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有10个,图3中以格点为顶点的等腰直角三角形共有28个,图4中以格点为顶点的等腰直角三角形共有50个.的就是以个直角边为个直角边长为斜边为18.(2010•山西)如图,在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE⊥AC于点E,则DE的长是.BC=5===故答案为:19.(2009•宜宾)已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为.×+×+×.20.(2009•厦门)如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=10cm,AC=8cm,那么D点到直线AB的距离是6cm.。

沪科版八年级下册数学第18章勾股定理单元测试卷(含答案)

沪科版八年级下册数学第18章勾股定理单元测试卷(含答案)

沪科版八年级数学第18章 勾股定理 单元测试卷一、选择题(每题3分,共30分)1、在直角三角形中,若勾为3,股为4,则弦为( )A .5B .6C .7D .82、如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. 53,54,1 B.3,4,5 C.6,8,10 D. 2,3,43、如图,在正方形网格中,每个正方形的边长为1,则在△ABC 中,边长为无理数的边数有( )个A .0B .1C .2D .34、如图,数轴上点A 对应的数是0,点B 对应的数是1,BC ⊥AB ,垂足为B ,且BC =3,以A 为圆心,AC 为半径画弧,交数轴于点D ,则点D 表示的数为( )A .2.2B .C .√10D .5、)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.36、有一个三角形的两边长分别是4和5,若这个三角形是直角三角形,则第三边长为( )A.3B.√41C.3或√41D.无法确定7、如图,已知正方形B的面积为144,正方形C的面积为169,那么正方形A的边长为()A.√5B.25C.5D.6.258、.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.365B.1225C.94D.3√349、如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD5,则BC的长为()A.3-1B.3+1C.5-1D.5 +110、在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”.设这个人的身高是5尺,秋千的绳索始终拉的很直,则绳索长为()A.12.5尺B.13.5尺C.14.5尺D.15.5尺二、填空题(每小题3分,共24分)11、若CD是△ABC的高,AB=2√3,AC=2,BC=2√2,则CD的长为.12、.如图,在△ABC 中,∠ACB =90°,AC =40,CB =9,点M ,N 在AB 上,且AM =AC ,BN =BC ,则MN 的长为13、三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________.14、如图所示,有两棵树,一棵树高10 m ,另一棵树高4 m ,两树相距8 m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行 米 15、如图,长方形网格中每个小正方形的边长是1,△ABC 是格点三角形(顶点都在格点上),则点C 到AB 的距离为 .16、如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则x 2+(y −4)2的值为_________.17、如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________. M A BCN18、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为三、解答题(共66分)19、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.(8分)20、“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)(8分)21、已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,求BC的长(10分)22、如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗? (10分)23、如图,一个长为2.5m的梯子,斜靠在竖直的墙上,这时梯子的底端距离墙面0.7m;如果梯子顶端沿墙下滑0.4m,那么梯子底端将向左滑动多少米?(10分)24、如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.(8分)25、如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.②若AD=EC,求的值.(12分)参考答案一、选择题ADDCD CCADC√612、8 13、直角24 14、10 15、1.2二、11、2316、16 17、√4118、24三、19、解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC=√AB2-AC2=√202-102=10√3.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=1BC=5√3,2∴CM=√BC2-BM2=√(10√3)2-(5√3)2=15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5√3,∴CD=CM-MD=15-5√3.20、解:如图,设折断处离地面的高度OA是x尺,根据题意可得:x2+42=(10﹣x)2,解得:x=4.2,答:折断处离地面的高度OA是4.2尺.21、解:分两种情况:①当△ABC是锐角三角形,如图1,∵CD⊥AB,∴∠CDA=90°,∵CD=,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4﹣1=3,∴BC===2;②当△ABC 是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC===2; 综上所述,BC 的长为2或2. 故答案为:2或2. 22、解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =12ab,S △C'A'D'=12ab,S 直角梯形A'D'BA =12(a+b)(a+b)=12(a+b)2,S △ACA'=12c 2.(2)由题意可知S △ACA'=S 直角梯形A'D'BA -S △ABC -S △C'A'D'=12(a+b)2-12ab-12ab=12(a 2+b 2),而S △ACA'=12c 2.所以 a 2+b 2=c 2.23、解:如图AB =CD =2.5米,AO =0.7米,BD =0.4,求AC 的长. 在直角三角形AOB 中,AB =2.5,AO =0.7,由勾股定理,得BO =2.4, ∵BD =0.4,∴OD =2,∵CD =2.5,在直角三角形COD 中,由勾股定理,得OC =1.5,∵OA =0.7,∴AC =0.8.即梯子底端将滑动了0.8米. 24、解:连接AC ,∵∠B =90°∴AC 2=AB 2+BC 2.∵AB =BC =2∴AC 2=8.∵∠D =90°∴AD2=AC2﹣CD2.∵CD=1,∴AD2=7.∴.25、解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°﹣∠BCD=31°;(2)①由勾股定理得,AB==,∴AD=﹣a,解方程x2+2ax﹣b2=0得,x==﹣a,∴线段AD的长是方程x2+2ax﹣b2=0的一个根;②∵AD=AE,∴AE=EC=,由勾股定理得,a2+b2=(b+a)2,整理得,=.。

人教版 勾股定理综合检测题检测试题及答案(共2套)

人教版 勾股定理综合检测题检测试题及答案(共2套)

数学:第18章勾股定理综合检测题检测试题(1)(总分:120分,时间:90分钟)一、认真选一选,你一定很棒!(每题3分,共30分)1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2B.3C.4D.52,已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( )A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶13,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( ) A.52B.3C.3+2D.332+ 4,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B.800米C.1000米D.不能确定6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( )A.L 1 C.L 3 D.L 47,(2006年山西吕梁课改)如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是A.5,4,3B.13,12,5C.10,8,6D.26,24,109,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( )A.1B.2C.3D.210,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( ) A.182 B.183 C.184 D.185 二、仔细填一填,你一定很准!(每题3分,共24分)11,根据下图中的数据,确定A =_______,B =_______,x =_______.12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 13,直角三角形的三边长为连续偶数,则这三个数分别为__________.14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米. 15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________. 16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm.17,[2008年河北省]如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .18,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里. 三、细心做一做,你一定会成功!(共66分)19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一AB CABC图25mBCAD图1BCAED 图3图5图420,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?21,如图7,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?22,(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm,宽为2cm的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)23,清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=m;第二步:m=k;第三步:分别用3、4、5乘以k,得三边长”.(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.24,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.图6AB小河东北牧童小屋图7图8 图9北A图10数学:第18章勾股定理综合检测题检测试题(1)参考答案:一、1,B ;2,B ;3,D ;4,A ;5,C .点拨:画出图形,东南方向与西南方向成直角;6,B .点拨:在Rt △ACD 中,AC =2AD ,设AD =x ,由AD 2+CD 2=AC 2,即x 2+52=(2x )2,x =253≈2.8868,所以2x =5.7736;7,A ;8,D .点拨:设斜边为13x ,则一直角边长为5x ,另一直角边为22(13)(5)x x -=12x ,所以 13x +5x +12x =60,x =2,即三角形分别为10、24、26;9,D .点拨:AE =22DE AD +=221CD AC++=2211BC AB+++=211++=2;10,A .二、11,15、144、40;12,1360;13,6、8、10;14,24;15,16;16,17;17,:76 ;18,30.三、19,设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,有(3m )2+(4m )2=(5m )2,所以以3m 、4m 、5m 为边长的三角形是直角三角形.20,15m.21,如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt △A ′DB 中,由勾股定理求得A ′B =17km.22,(1)设直角三角形的两条边分别为a 、b (a >b ),则依题意有22513a b a b +=⎧⎨+=⎩由此得ab=6,(a -b )2=(a+b)2-4ab =1,所以a -b =1,故小正方形的面积为1.(2)如图:23,(1)当S =150时,k =m=1502566S ===5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k ,•而三角形为直角三角形且3k 、4k 为直角边.其面积S =12(3k )·(4k )=6k 2,所以k 2=6S,k =6S (取正值),即将面积除以6,然后开方,即可得到倍数.24,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).ABDPNM数学:第18章勾股定理综合检测题检测试题(2)一﹑选择题(每小题3分, 共30分)1. 一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为 ( )A . 4B . 8C . 10D . 122.小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( ) A. 小丰认为指的是屏幕的长度 B. 小丰的妈妈认为指的是屏幕的宽度 C. 小丰的爸爸认为指的是屏幕的周长 D. 售货员认为指的是屏幕对角线的长度3.如图1,中字母A 所代表的正方形的面积为( ) A. 4 B. 8 C. 16 D. 644. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形5. 一直角三角形的一条直角边长是7cm , 另一条直角边与斜边长的和是49cm , 则斜边的长( ) A. 18cm B. 20 cm C. 24 cm D. 25cm6. 适合下列条件的△ABC 中, 直角三角形的个数为( ) ①;51,41,31===c b a ②,6=a ∠A=450;③∠A=320, ∠B=580;④;25,24,7===c b a⑤.4,2,2===c b aA. 2个B. 3个C. 4个D. 5个 7. 在⊿ABC 中,若1,2,122+==-=n c n b n a ,则⊿ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形8. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( ) A. 15° B. 30° C. 45° D. 60° 9.已知,如图2,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) 2222北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里B .30海里C .35海里D .40海里二﹑填空题 (每小题3分, 共24分)11. (2008年湖州市)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .12.如图5, 等腰△ABC 的底边BC 为16, 底边上的高AD 为6, 则腰长AB 的长为____________. 13.如图6,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B200m ,结果他在水中实际游了520m ,求该河流的宽度为_________ m.14. 小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走了12米到了B 点,则________=AB 米.15. 一个三角形三边满足(a+b)2-c 2=2ab, 则这个三角形是 三角形.16. 木工做一个长方形桌面, 量得桌面的长为60cm, 宽为32cm, 对角线为68cm, 这个桌面(填”合格”或”不合格”).17. 直角三角形一直角边为cm 12,斜边长为cm 13,则它的面积为 .18. 如图7,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着A289225(图1)(图4) ( 图5) AB C200m520mDCBA(图6)D CB AOA BEFD北南 A东(图3)D ˊABCD A ˊB ˊC ˊ三、 解答题 (共66分)19. (8分) 如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)20. (8分)如图, 在△ABC 中, AD ⊥BC 于D, AB=3, BD=2, DC=1, 求AC 2的值. AB D C21. (10分) “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?22. (10分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?23.(10分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”: “平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”24.(10分)如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1) A 城是否受到这次台风的影响?为什么?(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?四、创新探索题(10分)一只蚂蚁如果沿长方体的表面从A 点爬到B ’点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm 、宽为1cm 、高为4cm.八年级勾股定理单元检测题参考答案(2)一1.C 2.D 3.D 4.C 5.D 6.A 7.D 8.C 9.A 10.D 二11、勾股定理,222ab c +=;12、10;13、480; 14、15;15、直角;16、合格;17、观测点BCA东北 FE AB30;18、25. 三19、13米 20、AC 2=6 21、20 v米/秒=72千米/时>70千米/时,超速。

2021年新人教版第十八章勾股定理练习题

2021年新人教版第十八章勾股定理练习题

第十八章《勾股定理》提要:本节内容的重点是勾股定理及其应用.勾股定理是解几何中有关线段计算问题的重要依据,也是以后学习解直角三角形的主要依据之一,在生产生活实际中用途很大,它不仅在数学中,而且在其他自然科学中也被广泛地应用.本节内容的难点是勾股定理的证明.勾股定理的证明方法有多种,课本是通过构造图形,利用面积相等来证明的,证明思路的获得是我们感到困难的,这里涉及到了解决几何问题的方法之一:割补法值得我们去注意.习题:一、填空题1.填空:(1)一个直角三角形的三边从小到大依次为x,16,20,则x=_______;(2)在△ABC中∠C=90°,AB=10,AC=6,则另一边BC=________,面积为______,• AB边上的高为________;(3)若一个矩形的长为5和12,则它的对角线长为_______.2.三角形三边长分别为6、8、10,那么它最短边上的高为______.3.已知一直角三角形两边长分别为3和4,则第三边的长为______.4.若等腰直角三角形斜边长为2,则它的直角边长为_______.5.测得一个三角形花坛的三边长分别为5c m,12c m,•13c m,•则这个花坛的面积是________.使点B与点D重合,折痕为EF,则DE=_______c m.7.如图18-2,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_________.8.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距________海里.9.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当他把绳子的下端拉开5m•后,发现下端刚好接触地面,你能帮助他把旗杆的高度求出来是__________.10.如图18-3,△ABC中,CD⊥AB于D,若AD=2BD,AC=6,BC=3,则BD的长为( )A.3 B.12C.1 D.411.等腰三角形底边上的高为8,周长为32,则该等腰三角形面积为_______.12.△ABC中,∠C=90°,c=10,a:b=3:4,则a=______,b=_______.13.等腰三角形的腰长为5,底边长为8,则它底边上的高为_____,面积为____.14.如果直角三角形的斜边与一直角边的长分别是13c m•和5c m,那么这个直角三角形的面积是________c m2.15.在△ABC中,若三边长分别为9、12、15,•则以这样的三角形拼成的矩形面积为_________.16.能够成为直角三角形三条边长的三个正整数,称为勾股数,•试写出两种勾股数_______.17.有一长、宽、高分别为5c m、4c m、3c m的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计),要求木条不能露出木箱,请你算一算,•能放入的细木条的最大长度是_________c m.18.已知Rt△ABC中,∠C=90°,若a+b=14,c=10,则Rt△ABC的面积是_______.二、选择题19.在△ABC中,∠A=90°,则下列各式中不成立的是( )A.BC2=AB2+AC2; B.AB2=AC2+BC2; C.AB2=BC2-AC2; D.AC2=BC2-AB2 20.三角形三边之比分别为①1:2:3,②3:4:5;③1.5:2:2.5,④4:5:6,其中可以构成直角三角形的有( )A.1个B.2个C.3个D.4个21.若线段a、b、c能构成直角三角形,则它们的比为( )A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:722.一直角三角形的斜边长比一条直角边大2,另一条直角边长为6,则斜边长为(• ) A.4 B.8 C.10 D.1223.若直角三角形两角边的比为5:12,则斜边与较小直角边的比为( )A.13:12 B.169:25 C.13:5 D.12:524.下面四组数中是勾股数的有( )(1)1.5,2.5,2,2(3)12,16,20 (4)0.5,1.2,1.3A.1组B.2组C.3组D.4组25.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,•小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为(• ) A.0.7米B.0.8米C.0.9米D.1.0米B CA D图18-326.如图18-4,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A .0B .1C .2D .327.一电线杆AB 的高为10米,当太阳光线与地面的夹角为60°时,其影长AC 约为(3≈1.732,结果保留三个有效数字)( )A .5.00米B .8.66米C .17.3米D .5.77米28.如图18-5,一架25分米的梯子,斜立在一竖直的墙上,•这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑( ) A .9分米 B .15分米 C .5分米 D .8分米29.如图18-6,△ABC 中,CD ⊥AB 于D ,若AD=2BD ,AC=6,BC=3,则BD 的长为( )A .3B .12C .1D .4 30.如图18-7,长方形ABCD 中,AB=4,BC=3,将其沿直线MN 折叠,使点C与点A 重合,•则CN 的长为( )A .72 B .258C .278D .154 31.若一直角三角形两边的长为12和5,则第三边的长为( ) A .13 B .13或119 C .13或15 D .1532.下列各组线段中,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .4,6,733.如果一个直角三角形的两条直角边分别为n 2-1、2n(n>1),那么它的斜边长是( ) A .2n B .n+1 C .n 2-1 D .n 2+134.以下列各组数为边的三角形中,是直角三角形的有( )(1)3,4,5;(2)3,4,5;(3)32,42,52;(4)0.03,0.04,0.05.A .1个B .2个C .3个D .4个35.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A .12米 B .13米 C .14米 D .15米36.放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,•若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A .600米B .800米C .1000米D .不能确定37.如图18-8所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,B CA 图18-4 图18-5 BC AD 图18-6 图18-7L 4=10米四种备用拉线材料中,拉线AC 最好选用( ) A .L 1 B .L 2 C .L 3 D .L 438.在△ABC 中,∠C=90°,周长为60,斜边与一直角边比是13:5,•则这个三角形三边长分别是( )A .5,4,3B .13,12,5C .10,8,6D .26,24,1039.如图18-9所示,AB=BC=CD=DE=1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE=( )A .1B .2C .3D .240.如图18-10所示,有一块直角三角形纸片,两直角边分别为:AC=6c m ,BC=8c m ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A .2c m B .3c m C .4c m D .5c m 三、解答题41.如图18-11,△ABC 中,AB =13,BC =14,AC =15,求BC 边上的高AD .BC AD 42.如图18-12,在一次夏令营活动中,•小明从营地A 点出发,沿北偏东60°方向走了5003米到达B 点,然后再沿北偏西30•°方向走了500米到达目的地C 点,求A 、C 两点间的距离.5mBCADBCAEDBCAED图18-8 图18-9 图18-10图18-11图18-1243.如图18-13,求图中字母所代表的正方形面积.44.如图18-14,所示,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,•求该四边形的面积.B CA D45.如图18-15所示,某人到一个荒岛上去探宝,在A处登陆后,往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北方走到5km处往东一拐,仅1km•就找到了宝藏,问:登陆点(A处)到宝藏埋藏点(B处)的直线距离是多少?15328BA46.如图18-16,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.图18-13图18-14图18-15图18-1647.已知,如图18-17所示,折叠长方形的一边AD,使点D落在BC边的点F•处,•如果AB=8c m,BC=10c m,求EC的长.48.某校把一块形状为直角三角形的废地开辟为生物园,如图18-18所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,•已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?50.阅读材料并解答问题:我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、•阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:方法1:若m为奇数(m≥3),则a=m,b=12(m2-1)和c=12(m2+1)是勾股数.方法2:若任取两个正整数m和n(m>n),则a=m2-n2,b=2mn,c=m2+n2是勾股数.(1)在以上两种方法中任选一种,证明以a,b,c为边长的△ABC是直角三角形;(2)请根据方法1勾m 3 5 11 …股12(m2-1)4 12 60 …弦12(m2+1)5 13 61 …图18-17图18-18(3)某园林管理处要在一块绿地上植树,使之构成如图18-19所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树______棵.51.清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,•西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,•设其面积为S ,则第一步:6S=m ;第二步=k ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长; (2)你能证明“积求勾股法”的正确性吗?请写出证明过程.图18-1952.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A的正南方向220km的B处有一台风中心.其中心最大风力为12级,每离台风中心20km,风力就会减弱一级,该台风中心现在正以15km/h的速度沿北偏东30°方向往C移动,且台风中心风力不变,•如图18-20,若城市所受风力达到或超过4级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由;(2)若会受台风影响,那么台风影响该城市的持续时间有多长?•该城市受到台风影响的最大风力为几级?图18-20参考解析一、填空题1.(1)12;(2)8 24 4.8(点拨:两直角边的积=斜边×斜边上的高);(3)132.8(点拨:此三角形为直角三角形.)3.5(点拨:分4为斜边长和直角边长解.)4(点拨:设直角边长为x,有x2+x2=22,x.)5.30c m2(点拨:此三角形为直角三角形,且两直角边长分别为5c m,12c m.)6.295(点拨:设DE=x,则DE=BE=x,AE=AB-BE=10-x;在Rt△ADE中,DE2=AD2+AE2,所以x2=(10-x)2+16,即x=295.)7.A A不是直角三角形,B、C、D是直角三角形(点拨:先观察得出A•不是直角三角形,对于其他三角形,设每一个小正方形边长为1,利用勾股定理求出各三角形的边长,再验证.)8.30 (点拨:根据题意画出方位图,运用勾股定理解.)9.12米10.A(点拨:设BD为x,则36-(2x)2=9-x2,x=3.)11.48(点拨:设底边长为2x,则腰长为16-x,有(16-x)2=82+x2,x=6,∴S=12×2x×8=48.)12.6 8 (点拨:设a=3x,b=4x,则c=5x,有5x=10,x=2.∴a=6,b=8.)13.3 12 (点拨:作底边上高.)14.30 (点拨:另一直角边为12c m.)15.108 (点拨:因为92+122=152,所以此三角形是直角三角形,拼成的矩形的两条边是直角三角形的两直角边.)16.如3,4,5;6,8,10;12,5,13等.17.(点拨:.)18.24(点拨:由a+b=14,得a2+2ab+b2=196,而a2+b2=c2=100,有ab=48,∴S=ab=24.) 二、选择题19.B点拨:BC是斜边,在应用勾股定理时,应分清斜边和直角边.20.B点拨:②③可构成直角三角形;①不能构成三角形;④不能构成直角三角形.21.C22.C点拨:设斜边长为x,有x2=(x-2)2+62,x=10.23.C点拨:设两直角边为5x,12x x.24.A25.A点拨.26.C点拨:AB=AC5,BC==.≈5.77.27.D点拨:BC=2AC,有AC2+102=4AC2,AC28.D点拨:平滑前梯高为分米,平滑后高为24-4=20(分米),梯底距墙,即平滑15-7=8 (分米).29.A点拨:设BD为x,则36-(2x)2=9-x2,x=3.30.B31.B点拨:12可能是斜边长,也可能是直角边的长.32.C33.D点拨:c===n2+1.34.B点拨:(1)、(4)构成直角三角形.35.A36.C点拨:画出图形,东南方向与西南方向成直角.37.B点拨:在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,•x 2.8868,∴2x=5.7736.38.D点拨:设斜边为13x,则一直角边长为5x,另一直角边为x,•∴13x+•5x+12x=60,x=2,∴三角形分别为10、24、26.39.D点拨:AE=240.B点拨:AB=10,∠AED=90°,CD=DE,AE=AC=6,∴BE=4,设CD=x,则BD=8-x.•在Rt△BED中,BE2+DE2=BD2,即42+x2=(8-x)2,x=3.三、解答题41.解:设BD=x,则CD=14-x,在Rt△ABD中,AD2+x2=132,在Rt△ADC中,AD2=152-(14-x)2,所以有132-x2=152-(14-x)2,解得x=5,在Rt△ABD中,AD= .42.解:过点B作NM垂直于正东方向,垂足为M,则∠ABM=60°.因为∠NBC=30°,所以∠ABC=90°.在Rt△ABC中,AC==1000(米).43.A =81;B =64;C =100.44.解:在Rt △ABC 中,AB =4,BC =3,则有AC =22ABBC +=5, ∴S △ABC =12AB ·BC =12×4×3=6. 在△ACD 中,AC =5,AD =13,CD =12.∵AC 2+CD 2=52+122=169,AD 2=132=169,∴AC 2+CD 2=AD 2,∴△ACD •为直角三角形,∴S △ACD =12AC ·CD =12×5×12=30, ∴S 四边形ABCD = S △ABC + S △ACD =6+30=36.45.解:过点B 作BC ⊥AC ,垂足为C .观察答图18-1可知AC =8-3+1=6,BC =2+5=7,•在Rt•△ACB 中,AB 22226785AC BC +=+=.答:85km .点拨:所求距离实际上就是AB 的长.解此类题目的关键是构造直角三角形,利用勾股定理直接求解.46.解:设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,•有(3m)2+(4m)2=(5m)2,所以以3m 、4m 、5m 为边长的三角形是直角三角形.47.连结AE ,则△ADE ≌△AFE ,所以AF =AD =10,DE =EF .设CE =x ,则EF =DE =8-x ,BF 22AF AB -,CF =4.在Rt △CEF 中,EF 2=CE 2+CF 2,即(8-x )2=x 2+16,故x =348.当CD 为斜边上的高时,CD 最短,从而水渠造价最价∵CD ·AB =AC ·BC ∴CD =AC BC AB =48米 ∴AD 22228048AC CD -=-米所以,D 点在距A 点64米的地方,水渠的造价最低,其最低造价为480元.49.如图,△ABC 中,BC =a ,AC =b ,AB =c ,若∠C =90°,如图18-2(1),•根据勾股定理,则a 2+b 2=c 2,若△ABC 不是直角三角形,如图(2)和图(3),请你类比勾股定理,•试猜想a 2+b 2与c 2的关系,并证明你的结论.答图18-149.解:若△ABC 是锐角三角形,则有a 2+b 2>c 2;若△ABC 是钝角三角形,∠C 为钝角,则有a 2+b 2<c 2.证明:①当△ABC 是锐角三角形时,如图18-3,过点A 作AD ⊥CB ,垂足为D ,设CD 为x ,则有DB =a -x ,根据勾股定理,得b 2-x 2=c 2-(a -x )2.即b 2-x 2=c 2-a 2+2ax -x 2,∴a 2+b 2=c 2+2ax .∵a >0,x >0,∴2ax >0,∴a 2+b 2>c 2.c bB C AD cb a BC AD ②当△ABC 是钝角三角形时,如图18-4,过点B 作BD ⊥AC ,交AC 的延长线于点D ,设CD •为x ,•则BD 2=a 2-x 2.根据勾股定理,得(b +x )2+a 2-x 2=c 2.即b 2+2bx +x 2+a 2-x 2=c 2.∴a 2+b 2+2bx =c 2.∵b >0,x >0,∴2bx >0,∴a 2+b 2<c 2.50.(1)方法1c -a =12(m 2+1)-m=12(m 2-2m+1)=12(m-1)2>0,c -b =1>0, 所以c >a ,c >b .而a 2+b 2=m 2+[12(m 2-1)] 2=(14m 4-2m 2+1)+m 2 =14(m 4+2m 2+1)=[12(m 2+1)] 2=c 2, 所以以a 、b 、c 为边的三角形是直角三角形.同理可证方法2.(2)方法1中自上而下:7、24、25;9、40、41.方法2中自上而下:5、2、21、20、29;5、1、24、10、26.(3)120.51.(1)解:当S=150时,m 1502566S ==, 答图18-2答图18-3 答图18-4所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k ,•而三角形为直角三角形且3k 、4k 为直角边.其面积S=12(3k)·(4k)=6k 2, 所以k 2=6S ,k=6S (取正值), 即将面积除以6,然后开方,即可得到倍数.52.解:(1)如图,过点A 作AD ⊥BC 于D ,则AD 是该城市离台风中心最短的距离,在Rt △ABD 中,∠B =30°,AB =220千米,∴AD =110千米,故城市A 受到此次台风影响.(2)在BC 上取E 、F 两点,使AE =AF =160,当台风中心从E 处移到F 处时,•该城市都会受到台风的影响.在Rt △ADE 中,DE =22160110 ≈116.19千米,∴EF ≈232.38(千米),•故这次台风影响该城市的连续时间约为232.3815≈15.49(小时). 当台风中心位于D 处时,A •市所受这次台风的风力最大,其最大风力为12-11020=6.5级. 点拨:该城市是否会受到此次台风的影响,取决于该城市距台风中心的最近距离,若大于160km ,则不受台风影响.风力达到或超过4级称受台风影响,•故该城市从开始受台风影响到结束受台风影响之间的距离除以其速度即为影响的时间,•在离台风中心最近处风力最大.答图18-5。

第18章 勾股定理单元检测(含答案)

第18章 勾股定理单元检测(含答案)

第18章勾股定理单元检测姓名:__________班级:__________考号:__________一、选择题(本大题共12小题)1.由线段a,b,c组成的三角形是直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=3,b=4,c=5 D.a=4,b=5,c=6 2.在Rt△ABC中,∠C=90°,AB=10,AC=8,那么BC的长是()A.4 B.5 C.6 D.83.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.104.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对5.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里6.在直角坐标系中,点P(2,﹣3)到原点的距离是()A.B.C.D.27.若一个直角三角形的面积为6cm2,斜边长为5cm,则该直角三角形的周长是()A.7cm B.10cm C.cm D.12cm8.如图,以三角形三边为直径向外作三个半圆,若较小的两个半圆面积之和等于较大的半圆面积,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形9.如图,若∠ABC=∠ACD=90°,AB=4,BC=3,CD=12,则AD=()A.5 B.13 C.17 D.1810.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为()A.2B.2C.2+2 D.2+211.如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2B.b2+a2C.(b+a)2D.a2+2ab12.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.261cm C.61cm D.234cm二、填空题(本大题共8小题)13.直角三角形两条直角边的长分别为5、12,则斜边长为,斜边上的高为.14.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.15.一个长方体同一顶点的三条棱长分别是3、4、12,则这个长方体内能容下的最长的木棒为 .16.如图,AB =AD ,∠BAD =90°,AC ⊥BC 于点C ,DE ⊥AC 于点E ,且AB =10,BC =6,则CE = .17.一艘轮船以16km /h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km /h的速度向东南方向航行,它们离开港口1小时后相距 km . 18.等腰三角形一腰长为5,一边上的高为3,则底边长为__________.19.如图,在每个小正方形的边长为1的网格中,A ,E 为格点,B ,F 为小正方形边的中点,C 为AE ,BF 的延长线的交点. (Ⅰ)AE 的长等于 ;(Ⅱ)若点P 在线段AC 上,点Q 在线段BC 上,且满足AP =PQ =QB ,请在如图所示的网格中,用无刻度的直尺,画出线段PQ ,并简要说明点P ,Q 的位置是如何找到的(不要求证明) .20.如图,在△ABC 中,AB =AC =2,点P 在BC 上:①若点P 为BC 的中点,且m =AP 2+BP •PC ,则m 的值为 ;ABC DE②若BC边上有2015个不同的点P1,P2,…,P2015,且相应的有m1=AP12+BP1•P1C,m2=AP22+BP2•P2C,…,m2015=AP20152+BP2015•P2015C,则m1+m2+…+m2015的值为.三、解答题(本大题共8小题)21.图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是2的直角三角形;在图2中画出一条长度等于的线段.22.如图,两艘海舰在海上进行为时2小时的军事演习,一海舰以160海里/时的速度从港口A出发,向北偏东60°方向航行到达B,另一海舰以120海里/时的速度同时从港口A出发,向南偏东30°方向航行到达C,则此时两艘海舰相距多少海里?23.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.24.已知:如图,在△ABC,BC=2,S=3,∠ABC=135°,求AC、AB的长.△ABC25.某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。

【考点训练】第18章勾股定理18.2勾股定理的逆定理:勾股定理的应用-1

【考点训练】第18章勾股定理18.2勾股定理的逆定理:勾股定理的应用-1

百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?(公尺?( )A . 100 B . 180 C . 220 D . 260 2.(2013•安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行(颗树的树梢,问小鸟至少飞行( )A .8米 B . 10米C . 12米D . 14米3.(2011• 【考点训练】勾股定理的应用-1一、选择题(共5小题)1.(2011•台湾)已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙金华)如图,西安路与南京路平行,并且与八一街金华)如图,西安路与南京路平行,并且与八一街垂直垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的八一街的交叉口,准备去书店,按图中的街道行走,最近的路程路程约为(约为( ) A .600m B .500m C . 400m D . 300m 4.(2013•济南)如图,小亮将升旗的济南)如图,小亮将升旗的绳子绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,发现此时绳子末端距离地面2m ,则旗杆的高度为(,则旗杆的高度为(滑轮滑轮上方的部分忽略不计)为(上方的部分忽略不计)为( )A .12m B . 13m C . 16m D . 17m 5.(2013•鄂州)如图,已知鄂州)如图,已知直线直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A.6B.8C.10 D.12 _________米.米._________.(参考数据:=1.41,=1.73(参考数据:≈1.73,≈1.41,≈2.24)10.(2013•鄂州)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中其中矩形矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一四点在同一直线直线上)问:上)问:(1)楼高多少米?)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.A . 100 B . 180 C . 220 D . 260 考点: 勾股定理的应用.专题: .点评: 本题考查了勾股定理的应用,解答关键是根据题意画出图形,运用数形结合的思想,可直观解答.本题考查了勾股定理的应用,解答关键是根据题意画出图形,运用数形结合的思想,可直观解答.A .8米 B . 10米 C . 12米 D . 14米数形结合.分析: 根据题意,画出图形,先设AE 的长是x 公尺,如图可得,BC=160公尺,AB=340公尺,利用勾股定理,可解答.可解答.解答: 解:设阿虎向西直走了x 公尺,如图,公尺,如图,由题意可得,AB=340,AC=x+80,BC=160,利用勾股定理得,(x+80)2+1602=3402,整理得,x 2+160x ﹣83600=0,x 1=220,x 2=﹣380(舍去),∴阿虎向西直走了220公尺.公尺.故选C考点: 勾股定理的应用.专题: 应用题.应用题. 分析: 根据“两点之间两点之间线段线段最短”可知:小鸟沿着两棵树的树梢进行小鸟沿着两棵树的树梢进行直线直线飞行,飞行,所行的所行的所行的路程路程最短,运用勾股定理可将两点之间的距离求出.两点之间的距离求出.解答: 解:如图,设大树高为AB=10m ,小树高为CD=4m ,过C 点作CE ⊥AB 于E ,则EBDC 是矩形,连接AC ,∴EB=4m ,EC=8m ,AE=AB ﹣EB=10﹣4=6m ,在Rt △AEC 中,AC==10m ,故选B .A . 600m B . 500m C . 400m D . 300m 点评: 本题考查正确运用本题考查正确运用勾股定理勾股定理.善于观察题目的信息是解题以及学好数学的关键..善于观察题目的信息是解题以及学好数学的关键.3.(2011•金华)如图,西安路与南京路平行,并且与八一街金华)如图,西安路与南京路平行,并且与八一街垂直垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的八一街的交叉口,准备去书店,按图中的街道行走,最近的路程路程约为(约为( )考点: 勾股定理的应用;勾股定理的应用;全等三角形全等三角形的判定与性质.专题: 计算题;压轴题.;压轴题.分析: 由于BC ∥AD ,那么有∠DAE=∠ACB ,由题意可知∠ABC=∠DEA=90°,BA=ED ,利用AAS 可证△ABC ≌△DEA ,于是AE=BC=300,再利用勾股定理可求AC ,即可求CE ,根据图可知从B 到E 的走法有两种,分别计算比较即可.有两种,分别计算比较即可.解答: 解:如右图所示,解:如右图所示,∵BC ∥AD ,∴∠DAE=∠ACB ,又∵BC ⊥AB ,DE ⊥AC ,∴∠ABC=∠DEA=90°,又∵AB=DE=400m ,∴△ABC ≌△DEA ,∴EA=BC=300m ,在Rt △ABC 中,AC==500m ,∴CE=AC ﹣AE=200,从B 到E 有两种走法:①BA+AE=700m ;②BC+CE=500m ,∴最近的路程是500m .故选B .点评: 本题考查了本题考查了平行线的性质平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.有两种走法.A . 12m B . 13m C . 16m D . 17m x ,可得AC=AD=x ,AB=(x ﹣2)m ,BC=8m ,在Rt △ABC 中利用勾股定理可求出x.4.(2013•济南)如图,小亮将升旗的济南)如图,小亮将升旗的绳子绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,发现此时绳子末端距离地面2m ,则旗杆的高度为(,则旗杆的高度为(滑轮滑轮上方的部分忽略不计)为(上方的部分忽略不计)为( )考点: 勾股定理的应用.专题: 应用题.应用题.分析: 根据题意画出示意图,设旗杆高度为解答: 解:设旗杆高度为x ,则AC=AD=x ,AB=(x ﹣2)m ,BC=8m ,在Rt △ABC 中,AB 2+BC 2=AC 2,即(x ﹣2)2+82=x 2,解得:x=17,即旗杆的高度为17米.米.故选D .点评: 本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线垂线.5.(2013•鄂州)如图,已知鄂州)如图,已知直线直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A .6 B . 8 C . 10 D . 12 考点: 勾股定理的应用;勾股定理的应用;线段线段的性质:两点之间线段最短;平行线之间的距离.专题: 压轴题.压轴题.N 作NM ⊥直线a ,连接AM , ∵A 到直线a 的距离为2,a 与b 之间的距离为4,∴AA ′分析: MN 表示表示直线直线a 与直线b 之间的距离,是定值,只要满足AM+NB 的值最小即可,作点A 关于直线a 的对称点A ′,连接A ′B 交直线b 与点N ,过点N 作NM ⊥直线a ,连接AM ,则可判断四边形AA ′NM 是平行四边形,得出AM=A ′N ,由两点之间,由两点之间线段线段最短,可得此时AM+NB 的值最小.过点B 作BE ⊥AA ′,交AA ′于点E ,在Rt △ABE 中求出BE ,在Rt △A ′BE 中求出A ′B 即可得出AM+NB .解答: 解:作点A 关于直线a 的对称点A ′,连接A ′B 交直线b 与点N ,过点=MN=4,∴四边形AA ′NM 是平行四边形,是平行四边形,∴AM+NB=A ′N+NB=A ′B ,过点B 作BE ⊥AA ′,交AA ′于点E ,易得AE=2+4+3=9,AB=2,A ′E=2+3=5,在Rt △AEB 中,BE==, 在Rt △A ′EB 中,A ′B==8.故选B .点评: 本题考查了本题考查了勾股定理勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M 、点N 的位置,难度较大,注意掌握两点之间线段最短.注意掌握两点之间线段最短.的高度为的高度为 10 考点: 勾股定理的应用.分析: 如图,根据已知条件知AB+1﹣BC=11米,再由,∠BAC=30°,得到BC=AB ,接着就可以求出旗杆BC的高度.的高度.解答: 解:如图,依题意得AB+1﹣BC=11米,米,而在Rt △ABC 中,∠BAC=30°,∴BC=AB ,∴BC=10米.米.故填空答案:10.a ,b 的两个小正方形,使得a 2+b 2=52.①a ,b 的值可以是的值可以是 3,4 (提示:答案不惟一)(写出一组即可);专题: 压轴题;开放型.压轴题;开放型.点评: 此题比较简单,直接利用直角三角形中30°的角所对的边等于的角所对的边等于斜边斜边的一半就可以求出结果.的一半就可以求出结果.7.(2009•天津)如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为②请你设计一种具有一般性的②请你设计一种具有一般性的裁剪裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性:般性:图中的点E 可以是以BC 为直径的为直径的半圆半圆上的任意一点(点B ,C 除外).BE ,CE 的长分别为两个小正方形的边长的长分别为两个小正方形的边长 .考点: 勾股定理的应用.分析: ①使得a 2+b 2=52.由直角三角形勾股定理的很容易.由直角三角形勾股定理的很容易联想联想到a 、b 的值是3、4;②要求设计一般性的剪裁,则先分割出来一个边长为4的正方形,再把剩下的部分分为两个边长为1的正方形和两个长为3宽为1的矩形,四个四边形拼成一个边长为3的正方形.的正方形.解答: 解:①要使得a 2+b 2=52.考虑到直角三角形的特殊情况,a ,b 的取值可以使3,4一组(答案不唯一);②裁剪线及拼接方法如图所示:②裁剪线及拼接方法如图所示:按照上图所示剪裁,先剪一个边长是4的正方形;剩下的剪三个边长为1的正方形和两个长为3宽为1的矩形,然后将这些拼接成边长为3的正方形即可.的正方形即可.点评: 本题考查了学生的空间想象能力和发散思维能力.解决本题的关键是紧紧抓住a 2+b 2=52这个已知条件及剪拼过程拼过程面积面积不变的这个线索.不变的这个线索.8.(2009•河池)某小区有一块河池)某小区有一块等腰三角形等腰三角形的草地,它的一边长为20m ,面积为160m 2,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为 20+4或40+16或40+8 m .考点: 勾股定理的应用;等腰三角形的性质.专题: 压轴题;分类讨论.压轴题;分类讨论.分析: 分20m 是底边和腰两种情况讨论;当是腰时又可以分为钝角三角形和是底边和腰两种情况讨论;当是腰时又可以分为钝角三角形和锐角锐角三角形两种情况,再次分情况讨;①当高在三角形的外部时,论.论.解答: 解:(1)当20是等腰三角形的底边时,的底边时,根据根据面积面积求得底边上的高AD 是16,再根据等腰三角形的三线合一,知:底边上的高也是底边上的再根据等腰三角形的三线合一,知:底边上的高也是底边上的中线中线,即底边的一半BD=10,根据根据勾股定理勾股定理即可求得其腰长AB===2,此时三角形的,此时三角形的周长周长是20+4;(2)当20是腰时,由于高可以在三角形的内部,也可在三角形的外部,又应分两种情况.是腰时,由于高可以在三角形的内部,也可在三角形的外部,又应分两种情况.根据面积求得腰上的高是16在R T △ADC 中,AD==12,从而可得BD=32,进一步根据勾股定理求得其底边是BC===16,此时三角形的周长是40+16; ②当高在三角形的内部时,②当高在三角形的内部时,根据勾股定理求得AD==12,BD=AB ﹣AD=8, 在R T △CDB 中,BC=是=8,此时三角形的周长是40+8;故本题答案为:20+4或40+16或40+8.点评: 此题的难点在于情况较多,注意每一种情况运用勾股定理进行计算.此题的难点在于情况较多,注意每一种情况运用勾股定理进行计算.(参考数据:=1.41,=1.73°,∠EBD=15°,在Rt考点: 勾股定理的应用.分析: 过点D 作DE ⊥AB 于点E ,证明△BCD ≌△BED ,在Rt △ADE 中求出DE ,继而得出CD ,计算出AC 的长度后,在Rt △ABC 中求出BC ,继而可判断是否超速.,继而可判断是否超速.解答: 解:过点D 作DE ⊥AB 于点E ,∵∠CDB=75°,∴∠CBD=15△CBD 和Rt △EBD 中,中,∵,∴△CBD ≌△EBD ,∴CD=DE ,在Rt △ADE 中,∠A=60°,AD=40米,米,则DE=ADsin60°=20米,米,故AC=AD+CD=AD+DE=(40+20)米,)米,在Rt △ABC 中,BC=ACtan ∠A=(40+60)米,)米,则速度==4+6≈12.92米/秒,秒,∵12.92米/秒=46.512千米/小时,小时,∴该车没有超速.∴该车没有超速.点评: 本题考查了本题考查了解直角三角形解直角三角形的应用,解答本题的关键是构造直角三角形,解答本题的关键是构造直角三角形,求出求出BC 的长度,需要多次解直角三角形,有一定难度.角形,有一定难度.10.(2013•鄂州)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A 、B 两点,测量数据如图,其中其中矩形矩形CDEF 表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A 、C 、D 、B 四点在同一四点在同一直线直线上)问:上)问:(1)楼高多少米?)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)考点:勾股定理的应用.应用题.专题:应用题.分析:(1)设楼高为x,则CF=DE=x,在Rt△ACF和Rt△DEB中分别用x表示AC、BD的值,然后根据AC+CD+BD=150,求出x的值即可;的值即可;(2)根据(1)求出的楼高x,然后求出20层楼的高度,比较x和20层楼高的大小即可判断谁的观点正确.米,解答:解:(1)设楼高为x米,则CF=DE=x米,∵∠A=30°,∠B=45°,∠ACF=∠BDE=90°,米,∴AC=x米,BD=x米,∴x+x=150﹣10,解得x==70(﹣1)(米),)米.∴楼高70(﹣1)米.米,(2)x=70(﹣1)≈70(1.73﹣1)=70×0.73=51.1米<3×20米,层.∴我支持小华的观点,这楼不到20层.思想求解,难度一般.方程思想求解,难度一般.点评:本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,利用本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,利用方程。

第18章《勾股定理》基础测试题(一).doc

第18章《勾股定理》基础测试题(一).doc

第18章《勾股定理》基础测试题(-)班级: ____________ 姓名: ____________ 得分:一、选择题(共6小题,每小题4分,满分24分)1、下列各组数为勾股数的是() A 、6, 12, 13 B 、 3, 4, 7 C 、 15, 17, 8 D 、8, 15, 16 2、 要登上某建筑物,靠墙有一架梯子,底端离建筑物5///,顶端离地面12///,则梯子的长度为( ) A 、12/?7 B 、\3ni C 、14m D 、15m3、直角三角形的两条直角边长分别为&加和&加,则连接这两条直角边中点线段的长为( )A 、3cmB 、4cmC 、5cmD 、12cm4、 一艘小船早晨8: 00出发,以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时 的速度向南航行,上午10: 00两小船相距( )海里.A 、15B 、12C 、13D 、20 5、一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( )二. 填空题(共6小题,每小题4分,满分24分) B 、8 C 、106、在△ABC 中, Z4CB 二90。

,AC=\2, BC=5, AM=AC, BN 二BC 、 则MN 的长为( 4、2 B 、2.6A 、4 笫6ACB第11题7.已知在Rt/\ABC中,ZC=90°. ____ (1)若。

=3, b=4,则;(2)若°=6,尸10,则b= ____________ .8、已知甲乙在同一地点出发,甲往东走了4千米,乙往南走了3千米,这时甲、乙两人相距千米.9、如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路=他们仅仅少走了__________ 步路(假设2步为1米),却踩伤了花草.10.某养殖厂有一个长2米.宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取米.11、如图,隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向成直角的BC方向上任取一点C,若测得CA=50m, CB=40m,那么A、B两点间的距离是__________________ m •12、如果直角三角形的斜边与一条直角边的长分别是13c税和5c/77,那么这个直角三角形的面积是2cm .三、解答题(共4小题,满分52分)塑料薄膜,试求需要多少平方米塑料薄膜?13、如图,要修建一个育苗棚,棚高肛1.8加,棚宽a=2.4 m,棚的长为12加,现要在棚顶上覆盖a14、如图,铁路上A、B两点相距25如?,C、D为两村庄,DA丄AB于A, CB丄AB于B,己知DA=\5km f CB二\0血,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在多少千米处?15、在△ABC 中,ZC=90°, AC=2A cm. BC=2.S cm.(1)求这个三角形的斜边AB的长和斜边上的高CD的长;(2〉求斜边被分成的两部分4D和BD的长.16、在两千多年前我国古算术上记载有“勾三股四弦五”,你知道它的意思吗?它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.(1〉请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC的两条直角边的长分别为AC=7, BC=4,请你研究参考答案与评分标准一、选择题(共6小题,每小题4分,满分24分)1、下列各组数为勾股数的是()A、6, 12, 13B、 3, 4, 7C、15, 17, 8D、 8, 15, 16考点:勾股定理的逆定理;勾股数。

勾股定理单元测试卷(含答案)

勾股定理单元测试卷(含答案)

诚信教育学校第18章勾股定理测试题一、选择题(每题3分,共30分)1. 下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,62.在一个直角三角形中,若斜边长是13,一条直角边长为12,则这个直角三角形的面积是( ) A .30 B .40 C .50 D .603.如图1,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移( ) A .0.6米 B .0.7米 C .0.8米 D .0.9米(1)4.直角三角形有一条直角边的长是11,另外两边的长都是自然数,那么它的周长是( ) A .132 B .121 C .120 D .以上答案都不对 5.直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( ) A2d Bd C.2d D.d6. 直角三角形的三边是,,a b a a b -+,并且,a b 都是正整数,则三角形其中一边的长可能是( ) A .61 B .71 C .81 D .917、已知一个直角三角形的两条边长分别为34和,则第三条边长为( )A .5B .25 CD58、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m .同时梯子的顶端B 下降至B ′,那么BB ′( ).A .小于1mB .大于1mC .等于1mD .小于或等于1m9、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm 二、填空题(每题3分,共24分)1、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____.2、 如图2,以三角形ABC ∆的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为_____.3、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).4、如图3,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行_____米.(3) (4) (5)5、如图4,已知ABC ∆中,90ACB ∠=︒,以ABC ∆的各边为边在ABC ∆外作三个正方形,123,,S S S 分别表示这三个正方形的面积,1281,225S S ==,则3_____.S =6、如图5,已知,Rt ABC ∆中,90ACB ∠=︒,从直角三角形两个锐角顶点所引的中线的长5,AD BE ==AB 之长为______.7、如图6,在长方形ABCD 中,5DC cm =,在DC 上存在一点E ,沿直线AE 把AED ∆折叠,使点D 恰好落在BC 边上,设此点为F ,若ABF ∆的面积为230cm ,那么折叠AED ∆的面积为_____.(6) (7) (8)8、如图7,已知:ABC ∆中,2BC =, 这边上的中线长1AD =,1AB AC +=AB AC ⋅为_____.9、一个三角形的三条边长分别为221,2,1m m m -+,则三角形中最大的角是_____.10、在ABC ∆中,=905C AB ︒∠=,则222AB AC BC ++=_____.11、如图,一个三级台阶,它的每一级的长、宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是 .12、如图中阴影部分是一个正方形,如果正方形的面积为64厘米2,则x 的长为 厘米。

人教版八年级数学下册第十八章勾股定理测试【精品4套】

人教版八年级数学下册第十八章勾股定理测试【精品4套】

勾股定理测试卷(1)一、选择题(每题2分,共30分)1.观察下列几组数据:(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组A .1 B. 2 C. 3 D. 4 2.下列说法中, 不正确的是 ( )A . 三边长度之比为5:12:13的三角形是直角三角形 B. 三个角的度数之比为1:3:4的三角形是直角三角形 C. 三个角的度数之比为3:4:5的三角形是直角三角形 D. 三边长度之比为3:4:5的三角形是直角三角形3.如图,在水塔O 的东北方向32m 处有一抽水站A ,在水塔的东南方向24m 处有一建筑工地.B ,在AB 间建一条直水管,则水管的长为( ) A .40cm B .45cm C .50cm D .56cm西南北东4.如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30ο夹角,这棵大树在折断前的高度为( )A .10米B .15米C .25米D .30米5.ABC ∆中,90B ο∠=,两直角边7,24AB BC ==,三角形内有一点P 到各边的距离相等,30°则这个距离是( )A .1B .3C .4D .56.已知一直角三角形的木板,三边的平方和为21800cm ,则斜边长为( ). A .80cm B .30cm C .90cm D .120cm.7.若三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( ) A .12 cm B. 10 cm C. 8 cm D. 6 cm 8.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5 B .25 C .7 D .5或79.如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( ) A .12米 B. 13米 C. 14米 D. 15米10.在直角三角形中,斜边与较小直角边的和.差分别为8,2,则较长直角边长为( ) A .5 B .4 C .3 D .211.ABC ∆的三条边长分别是a b c ,,,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 12.如图,正方形网格中的ABC ∆,若小方格边长为1,则ABC ∆是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .以上答案都不对CBA13.如图,小方格都是面积为1的矩形,则图中四边形的面积是 ( ) A .25 B. 12.5 C. 9 D. 8.514.一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( )A.20cm;B.10cm;C.14cm;D.无法确定.B15.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A.2m; B. 2.5m; C. 2.25m; D. 3m.二、填空题(每空3分,共30分)16.已知,如图中字母B.M分别代表的正方形的面积分别为__________.___________。

沪科版八年级下册数学第18章 勾股定理含答案(精炼题)

沪科版八年级下册数学第18章 勾股定理含答案(精炼题)

沪科版八年级下册数学第18章勾股定理含答案一、单选题(共15题,共计45分)1、如图所示,在数轴上点A所表示的数为a,则a的值为()A.-1-B.1-C.-D.-1+2、如图,将矩形纸片沿直线折叠,使点C落在边的中点处,点B落在点处,其中,则的长为()A. B.4 C.4.5 D.53、已知:如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则菱形ABCD的周长是()A.20B.16C.12D.104、如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多少米?()A.4B.8C.9D.75、如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE 交AD于点F,连结BD交CE于点G,连结BE.下列结论:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S=BD·CE;⑤BC2+DE2=BE2四边形BCDE+CD2.其中正确的结论有()A.1个B.2个C.3个D.4个6、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是().A.7B.9C.10D.117、下面各组数中不能构成直角三角形三边长的一组数是()A.3、4、5B.6、8、10C.5、12、13D.11、12、158、如图,有两棵树,一棵高5米,另一棵高2米,两树相距5米,一只小鸟从一棵树飞到另一棵树的树梢,至少飞了( )米。

A. 米B.5 米C.4米D. 米9、由线段a,b,c组成的三角形不是直角三角形的是()A.a=3,b=4,c=5B.a=12,b=13,c=5C.a=15,b=8,c=17 D.a=13,b=14,c=1510、下列说法中正确的是()A.已知a,b,c是三角形的三边,则a 2+b 2=c 2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a 2+b 2=c 2D.在Rt△ABC中,∠B=90°,所以a 2+b 2=c 211、如图,数轴上的点表示的数是-1,点表示的数是1,于点,且,以点为圆心,为半径画弧交数轴于点,则点表示的数为()A. B. C.2.8 D.与AB切于点M,设12、.如图,半圆D的直径AB=4,与半圆O内切的动圆O1⊙O的半径为y,AM=x,则y关于x的函数关系式是( ) 1A.y=- x 2+xB.y=-x 2+xC.y=- x 2-xD.y= x 2-x13、如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F.连接BF,CF.若∠EDC=135°,CF= ,则AE2+BE2的值为()A.8B.12C.16D.2014、将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1B.2C.D.15、如图,在矩形片中,边,,将矩形片沿折叠,使点A与点C重合,折叠后得到的图形是图中阴影部分.给出下列结论:①四边形是菱形;② 的长是1.5;③ 的长为;④图中阴影部分的面积为5.5,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、三角形两边长分别是8和6,第三边长是一元二次方程的一个实数根,则该三角形的面积是________.17、如图,扇形AOB的圆心角为直角,边长为1的正方形OCDE的顶点C,E,D 分别在OA,OB,上,过点A作AF⊥ED,交ED的延长线于点F,则图中阴影部分的面积等于________.18、如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA8的长度为________.19、已知两条线段的长为3cm和4cm,当第三条线段的长为________时,这三条线段能组成一个直角三角形。

2022—2023年学年度(沪科版)八年级数学下册章节练习18章勾股定理单元检测一(基础卷)

2022—2023年学年度(沪科版)八年级数学下册章节练习18章勾股定理单元检测一(基础卷)

2022—2023年学年度(沪科版)八年级数学下册章节练习18章勾股定理单元检测一(基础卷)一、选择题(本大题共10小题,每小题4分,总计40分)1.如图,AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥于点D ,PE OB ⊥于点E ,若8OD =,10OP =,则PE 的长为( )A .5B .6C .7D .82.下列各组数据中的三个数作为三角形的边长.其中能构成直角三角形的是( )AB .2,3,4C .6,7,8D .13.将一根24cm 的筷子置于底面直径为15cm ,高为8cm 的圆柱形水杯中,如图,设筷子露在杯子外面的长度为cm h ,则h 的取值范围是( )A .17hB .716hC .1516hD .8h4.若直角三角形的两直角边长分别为a ,b ,且满足()2340a b -+-=,则该直角三角形的第三边长的平方为( ) A .25B .7C .25或7D .25或165.如图,在直线m 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是3,6,9,正放置的四个正方形的面积依次是1S ,2S ,3S ,4S ,则14S S +=( )A .6B .6.5C .7D .86.如图,两个较大正方形的面积分别为 576、625,则字母 A 所代表的正方形的边长为( )A .1B .49C .16D .77.如图,ABC ∆中,=6AC ,=8BC ,10AB =.AD 为ABC ∆的角平分线,CD 的长度为( )A .2B .52C .3D .1038.在Rt ABC △中,90ABC ∠=︒,13AC =,12AB =,则图中五个小直角三角形的周长之和为( )A .25B .18C .17D .309.如图,在长方形ABCD 中,10cm AD =,6cm AB =.将C ∠沿BE 折叠,使点C 的对应点C '落在AD 上,则DE 的长度为( )A .2cmB .2.5cmC .4cm 3D .8cm 310.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=︒,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长二、填空题(本大题共4小题,每小题5分,总计20分)11.在直角三角形中,两直角边长分别为2___________. 12.如图,△ABC 中,AC =BC ,∠C =90°,AD 平分∠CAB 交BC 于D ,DE ∠AB 于点E ,且AC =6cm ,则DE +BD 等于 ___.13.如图,菱形ABCD 的边长为4,60BAD ∠=︒,点E 是AD 边上一动点(不与A ,D 重合),点F 是CD 边上一动点,4DE DF +=,BEF △面积的最小值为______14.如图,等腰ABC 的底边BC 的长为6cm ,面积是224cm ,腰AB 的垂直平分线EF 分别交AB ,AC 于点E ,F ,若D 为边BC 的中点,M 为线段EF 上一动点,则BDM 周长的最小值为______cm .三、(本大题共2小题,每小题8分,总计16分)15.如图,AD BC ∥,90D ,点P 为CD 中点,BP 平分ABC ∠.(1)求证:AP 平分DAB ∠;(2)若30BPC ∠=︒,2BC =,则AD =______.16.已知一个三角形的两边长分别是3和4,第三边是方程2650x x -+=的根. (1)求这个三角形的周长. (2)求这个三角形的面积.四、(本大题共2小题,每小题8分,总计16分)17.为响应政府的“公园城市建设”号召,某小区进行小范围绿化,要在一块如图四边形空地上种植草皮,测得90B ,4m AB =,7m BC =,15m CD =,20m AD =,如果种植草皮费用是200元/2m ,那么共需投入多少钱?18.如图,正方形网络中的每个小正方形的边长都是1,任意连接这些小正方形的顶点,可得一些线段.请在所给网格中按下列要求画出图形.(1)如图,格点上有一点A ,画一条线段10AB,并说明理由.(2)以(1)中AB 为一边,画一个边长均为无理数的直角三角形,并说明理由. 五、(本大题共2小题,每小题10分,总计20分)19.如图,沿AC 方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD =120°,BD =400米,∠D =30°.那么另一边开挖点E 离D 多远正好使A 、C 、E.732,结果精确到1米)?20.已知将边长分别为a和2b(a>b)的长方形分割成四个全等的直角三角形,如图1,再用这四个三角形拼成如图2所示的正方形,中间形成一个正方形的空洞.经测量得长方形的面积为24,正方形的边长为5.试通过你获取的信息,求a2+b2和a2﹣b2的值.六、(本大题共1小题,每小题12分,总计12分)21.请阅读《三角板中的学问》,并完成以下问题:三角板中的学问直角三角板是我们学习中常用的作图工具,我们知道一副直角三角板中,一个三角板是等腰直角三角形,另一个直角三角板有一个锐角为30︒,且30︒角所对的直角边是斜边的一半.数学小组的同学们在活动中进行了量一量、拼一拼的活动.(1)填空:如图∠,希望小组的同学们量出30︒的直角三角板最短直角边为6cm,则较长直角边约为.(2)探究一:智慧小组把一副直角三角形按如图∠所示方式叠放在一起,DE BC ∥,CE 与AB 交于点F ,求AFC ∠的度数并说明理由.(3)探究二:创新小组把一副直角三角形按如图∠所示方式叠放在一起,20CDE ∠=︒,求EFC ∠的度数并说明理由.七、(本大题共1小题,每小题12分,总计12分)22.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米/秒的速度收绳,10秒后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)八、(本大题共1小题,每小题14分,总计14分)23.如图,ABC 中,90ABC ∠=,6AB =,8BC =,10AC =,AD 平分BAC ∠,交BC 于点D .动点Q 从点B 发,按BC CA -的折线路径,以每秒1个单位长度的速度运动,设运动时间为t 秒.(1)当点Q 在AC 边上运动时,线段AQ ()0AQ >的长为______(用含t 的代数式表示): (2)当点Q 在AC 边上运动时,线段BQ 长度不可能是______(其序号即可). ∠7.2; ∠5.3; ∠4.8; ∠4.5.(3)设ADQ △的面积为S ,请用含t 的代数式表示S . (4)当ABQ 为轴对称图形时,请写出满足条件的t 的值.参考答案:1112.6cm13.14.1115.(1)证明:过点P 作PE AB ⊥于E ,AD BC ∥,90D ,18090C D ∴∠=︒-∠=︒,即PC BC ⊥,BP 平分ABC ∠,PE AB ⊥,PC BC ⊥,PC PE ∴=, ∠点P 是CD 的中点,PD PC ∴=,PE PD ∴=,又PE AB ⊥,PD AD ⊥,AP ∴平分DAB ∠;(2)解:90D ∠=︒,30BPC ∠=︒, 24PB BC ∴==,903060PBC ∠=︒-︒=︒PC ∴,∠点P 是CD 的中点,PD PC ∴== BP 平分ABC ∠,2120ABC PBC ∠∠∴==︒AD BC ∥,180********DAB ABC ∴∠=︒-∠=︒-︒=︒,由(1)知AP 平分DAB ∠, 1302DAP DAB ∴∠=∠=︒,∴在Rt ADP △中,2AP PD ==6AD ∴=故答案为:6.16.(1)解:()()510x x --=,50x -=或10x -=,15x ∴=,21x =,而134+=,∴三角形的第三边为5, ∴三角形的周长为34512++=;(2)222345+=, ∴这个三角形为直角三角形,∴ 三角形的面积为13462⨯⨯=.17.解:如图所示,连接AC .90B ∠=︒,24m AB =,7m BC =,22222247625AC AB BC ∴=+=+=,25m AC ∴=又15m CD =,20m AD =,222152025+=,即222AD DC AC +=,ACD ∴是直角三角形,1122ABCADCABCD S SSAB BC AD DC ∴=+=⋅⋅+⋅⋅四边形 2112472015234m 22=⨯⨯+⨯⨯= 所需费用为23420046800⨯=元. 答:共需投入46800元.18.(1)解:如图,则线段AB 即为所求作.根据勾股定理得:AB(2)解:如图,ABC 即为所求作(答案不唯一).AC BC =AB∠222+=,∠222AC BC AB +=,∠ABC 是直角三角形,且90BCA ∠=︒. 19.解:∠∠ABD =120°,∠D =30°,60EBD ∴∠=︒∠∠AED =120°﹣30°=90°,在Rt △BDE 中,BD =400m ,∠D =30°, ∠BE =12BD =200m ,∠DE(m ),答:另一边开挖点E 离D 346m ,正好使A ,C ,E 三点在一直线上. 20.解:根据题意得 a 2+b 2=52=25, a •2b =24,∠a 2+b 2+2ab=49, ∠a +b =7,由图2得(a -b )2=52-24=1, ∠a >b , ∠a -b=1,∠a 2﹣b 2=(a+b )(a -b )=7×1=7, ∠a 2+b 2=25,a 2﹣b 2=7.21.(1)解:经过测量知较长直角边约为10.4cm , 故答案为:10.4; (2)解:∠DE BC ∥, ∠30BCF E ∠=∠=︒,∠304575AFC BCF B ∠=∠+∠=︒+︒=︒; (3)解:∠20CDE ∠=︒,60FDE ∠=︒, ∠40FDC ∠=︒, ∠90C EFD ∠=∠=︒,∠90EFC DFC FDC DFC ∠+∠=∠+∠=︒, ∠40EFC FDC ∠=∠=︒.22.解:∠在Rt∠ABC 中,∠CAB =90°,BC =13米,AC =5米,∠AB 12(米),由题意,得CD =13-0.5×10=8(米),∠AD (米),∠BD =AB -AD =(12米,答:船向岸边移动了(12米.23.(1)解:∠90ABC ∠=,6AB =,8BC =,10AC = ∠18BC AC +=, ∠18AQ t =-, 故答案为:18t -;(2)解:过B 作BH AC ⊥于H ,如图1,∠1122ABC S AB BC BH AC ∆=⋅=⋅, ∠68 4.810AB BC BH AC ⋅⨯===, ∠ 4.8BQ BH ≥=∠当点Q 在BC 边上运动时,线段BQ 长度不可能是∠,故答案为:∠;(3)解:过D 作DE AC ⊥于E ,如图1,∠90ABC ∠=︒,AD 平分BAC ∠,∠BD DE =,∠8CD BD =-, ∠1122ADC S CD AB AC DE ∆=⋅=⋅, ∠()6810BD BD -=,∠3BD =,当03t ≤<时,1(3)6392S t t =⨯-⨯=-+. 当38t <≤时,1(3)6392S t t =⨯-⨯=-. 当818t <<时,13(18)32722S t t =⨯-⨯=-+. 综上所述()()()390339383278182t t S t t t t ⎧⎪-+≤<⎪=-<≤⎨⎪⎪+<<⎩;(4)解:当ABQ 为轴对称图形时,ABQ 是等腰三角形, ∠当点Q 在BC 边上运动时,∠90ABC ∠=︒,∠ABQ 是等腰直角三角形,∠6AB BQ ==,∠6t =;∠当点Q 在AC 边上运动时,ABQ 为轴对称图形,∠、如图2,当18AQ BQ t ==-时,ABQ 为轴对称图形,过Q 作QM AB ⊥于M ,∠AM BM =,∠90AMQ ABC ∠=∠=︒,∠QM BC ∥, ∠11852AQ CQ t AC ==-==, ∠13t =;∠、当186AQ AB t ==-=时,ABQ 为轴对称图形,∠12t =;∠、当6BQ AB ==时,ABQ 为轴对称图形,过B 作BN AC ⊥于N , ∠11922AN QN AQ t ===-, 由(2)知 4.8BN =,∠222AB BN AN -=, 即22216 4.892t ⎛⎫-=- ⎪⎝⎭,解得545t ,综上所述,当ABQ为轴对称图形时,t的值为6或13或12或545.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册第18章《勾股定理》水平测试
班级: 姓名: 座号: 成绩:
一、精心选一选:(每小题3分,共24分)
1.已知一个直角三角形的两边长分别为3和4,则第三边长是( )
A 、3
B 、4
C 、5
D 、6
2.下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( )
A 、a=1.5,b=2,c=3
B 、a=7,b=24,c=25
C 、a=6,b=8,c=10
D 、a=3,b=4,c=5
3.若线段a ,b ,c 组成直角三角形,则它们的比可以是( )
A 、2∶3∶4
B 、3∶4∶6
C 、5∶12∶13
D 、4∶6∶7 4.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( )
A.直角三角形
B.锐角三角形
C.钝角三角形
D.以上答案都不对 5.如果直角三角形的两直角边长分别为n 2
-1,2n (n >1),那么它的斜边长是( )
A 、2n
B 、n+1
C 、n 2-1
D 、n 2+1
6.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )
A 、24cm 2
B 、36cm 2
C 、48cm 2
D 、60cm 2
7.等腰三角形底边长10 cm ,腰长为13,则此三角形的面积为( )
A 、40
B 、50
C 、60
D 、70
8.△ABC 中,AB=15,AC=13。

高AD=12。

则△ABC 的周长是 ( )
A
B
C
A. 42
B. 32
C. 42或32
D. 37或33 二、细心填一填:(每小题4分,共24分)
9.在Rt △ABC 中,∠C=90°,a ∶b=3∶4,c=10则S R t△ABC =________。

10.有一圆柱形油罐底面周长为12米,高AB 是5米,要以点A 环绕油罐建梯子,正好到A 点的正上方B 点,梯子最短需 米。

11.直角三角形两直角边长分别为5和12,则它斜边上的高为_______。

12.你听说过亡羊补牢的故事吗?如图,为了防止羊的再次丢次,小明爸爸要在高0.9m ,宽1.2m 的栅栏门的相对角顶点间加一个加固木板,这条木板需_ __m 长.
13.有一个长为12 cm ,宽为4 cm ,高为3 cm 的长方体形铁盒,在其内部要放一根笔直的铁丝,则铁丝最长达可到 cm 。

14. 如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行_____米. 三、用心做一做:(共52分) 15.(8分)在数轴上画出8 的点.
16.(10分)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。

17.(10分)阅读下列解题过程:已知a、b、c为△ABC的三边,且满足2a2c-2b2c=4a-4b,试判断△ABC的形状。

解:∵2a2c-2b2c=4a-4b
①∴2c(2a-2b)=(2a+2b)(2a-2b)
②∴2c=2a+2b
③∴△ABC为直角三角形。

问:
(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号;(2)错误的原因是;(3)本题正确的结论是。

18.(12分)如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=900,试求∠A的度数。

B C
19.(12分)国庆60周年阅兵式上,向世界展示了一种新型导弹“红-九地空导弹”.它是我国自行研制的远程防空导弹,集美俄技术于一身,以拦截飞机为主,同时具有很强的拦截短程弹道导弹的能力.10枚“红-九地空导弹”(每枚底面的直径均为0.4m)以如图方式堆放,为了防雨,需要搭建防雨棚,这个防雨棚的最低高度应为多少米(精确到0.01m)
参考答案
1、D
2、A
3、C
4、A
5、D
6、A
7、C
8、C
9、24 10、13 11、13
60
12、1.5米 13、13 14、10
15、答案略。

16设旗杆的高度是x米,由已知可知绳子的长度是(x+1)米,根据勾股定理可得:
x2+52=(x+1)2
解得:x=12
所以,旗杆的高度为12米。

17、(1) ③
(2) 2a-2b可以为0
(3)△ABC为等腰三角形或直角三角形。

18、连接AC,在Rt△ABC中,AB=AC=2
∴∠BAC=450,AC2=AB2+BC2=22+22=8
在△DAC中,AD=1,DC=3
∴ AD2+AC2=8+12=9=32=CD2
∴∠DAC=900
∴∠DAB=∠BAC+∠DAC
=450+900
=1350
19、1.04米A
B
C
D。

相关文档
最新文档