万有引力定律练习题

合集下载

高考物理-万有引力定律-专题练习(一)(含答案与解析)

高考物理-万有引力定律-专题练习(一)(含答案与解析)

高考物理专题练习(一)万有引力定律1.(多选)中俄联合火星探测器,2009年10月出发,经过3.5亿公里的漫长飞行,在2010年8月29日抵达了火星。

双方确定对火星及其卫星“火卫一”进行探测。

火卫一在火星赤道正上方运行,与火星中心的距离为9 450 km ,绕火星1周需7 h39 min 。

若其运行轨道可看作圆形轨道,万有引力常量为1122G 6.6710Nm /kg -=⨯,则由以上信息能确定的物理量是( )A .火卫一的质量B .火星的质量C .火卫一的绕行速度D .火卫一的向心加速度2.(多选)经长期观测人们在宇宙中已经发现了“双星系统”。

“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。

如图,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做匀速圆周运动。

现测得两颗星之间的距离为L ,质量之比为12:3:2=m m ,则可知( )A .1m 、2m 做圆周运动的角速度之比为2:3B .1m 、2m 做圆周运动的线速度之比为3:2C .1m 做圆周运动的半径为2L /5D .1m 、2m 做圆周运动的向心力大小相等3.2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

10月19日凌晨,神舟十一号飞船与天宫二号自动交会对接成功,对接时的轨道高度是393公里,比神舟十号与天宫一号对接时的轨道高了50公里,这与未来空间站的轨道高度基本相同,为我国载人航天发展战略的第三步——建造空间站做好了准备。

下列说法正确的是( )A .在近圆形轨道上运行时天宫一号的周期比天宫二号的长B .在近圆形轨道上运行时天宫一号的加速度比天宫二号的小C .天宫二号由椭圆形轨道进入近圆形轨道需要减速D .交会对接前神舟十一号的运行轨道要低于天宫二号的运行轨道4.【2017·天津市五区县高三上学期期末考试】2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

万有引力定律的应用练习题含答案及解析

万有引力定律的应用练习题含答案及解析

万有引力定律的应用练习题含答案及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m的物体P置于弹簧上端,用力压到弹簧形变量为3x0处后由静止释放,从释放点上升的最大高度为4.5x0,上升过程中物体P的加速度a与弹簧的压缩量x间的关系如图中实线所示。

若在另一星球N上把完全相同的弹簧竖直固定在水平桌面上,将物体Q在弹簧上端点由静止释放,物体Q的加速度a与弹簧的压缩量x间的关系如图中虚线所示。

两星球可视为质量分布均匀的球体,星球N半径为地球半径的3倍。

忽略两星球的自转,图中两条图线与横、纵坐标轴交点坐标为已知量。

求:(1)地球表面和星球N 表面重力加速度之比; (2)地球和星球N 的质量比;(3)在星球N 上,物体Q 向下运动过程中的最大速度。

【答案】(1)2:1(2)2:9(3)0032v a x = 【解析】 【详解】(1)由图象可知,地球表面处的重力加速度为 g 1=a 0 星球N 表面处的重力加速度为 g 2=00.5a 则地球表面和星球N 表面重力加速度之比为2∶1 (2)在星球表面,有2GMmmg R = 其中,M 表示星球的质量,g 表示星球表面的重力加速度,R 表示星球的半径。

则M =2gR G因此,地球和星球N 的质量比为2∶9(3)设物体Q 的质量为m 2,弹簧的劲度系数为k 物体的加速度为0时,对物体P :mg 1=k·x 0对物体Q :m 2g 2=k ·3x 0联立解得:m 2=6m在地球上,物体P 运动的初始位置处,弹簧的弹性势能设为E p ,整个上升过程中,弹簧和物体P 组成的系统机械能守恒。

万有引力习题及答案

万有引力习题及答案

【典型例题】例1、海王星的公转周期约为5.19×109s,地球的公转周期为3.16×107s,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。

例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是()A、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。

B、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。

C、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。

D、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。

例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:()A.1-4天之间 B.4-8天之间 C.8-16天之间 D.16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:()A.1/2B.C.D.3、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是()A.以地球为中心来研究天体的运动有很多无法解决的问题B.以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C.地球是围绕太阳转的 D.太阳总是从东面升起从西面落下5、考察太阳M的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:()A、r1>r2B、r1<r2C、r1=r2D、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 / T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k 值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2= 9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍例2. 4.61年例3. ABC 例4. 略。

高中物理万有引力定律的应用题20套(带答案)

高中物理万有引力定律的应用题20套(带答案)

高中物理万有引力定律的应用题20套(带答案)一、高中物理精讲专题测试万有引力定律的应用1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h .已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力,求:(1)艾奥表面的重力加速度大小g 和艾奥的质量M ; (2)距艾奥表面高度为2R 处的重力加速度大小g '; (3)艾奥的第一宇宙速度v .【答案】(1)2202R v M hG =;(2)2018v g h'=;(3)v v =【解析】 【分析】 【详解】(1)岩块做竖直上抛运动有2002v gh -=-,解得22v g h=忽略艾奥的自转有2GMm mg R =,解得222R v M hG= (2)距艾奥表面高度为2R 处有2(2)GMm m g R R '''=+,解得20'18v g h=(3)某卫星在艾奥表面绕其做圆周运动时2v mg m R=,解得v v =【点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222224Mm v G m m r m r ma r r Tπω====在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算3.某宇航员驾驶宇宙飞船到达某未知星球表面,他将一个物体以010m/s v =的速度从10m h =的高度水平抛出,测得落到星球表面A 时速度与水平地面的夹角为60θ=︒。

万有引力定律的练习题

万有引力定律的练习题

四、万有引力定律的练习题一、选择题1、关于地球同步通讯卫星,下列说法中正确的是[]A.它一定在赤道上空运行B.各国发射的这种卫星轨道半径都一样C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度介于第一和第二宇宙速度之间2、设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是[]3、人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是[]A.R不变,使线速度变为 v/2B.v不变,使轨道半径变为2RD.无法实现4、两颗靠得较近天体叫双星,它们以两者重心联线上的某点为圆心做匀速圆周运动,因而不至于因引力作用而吸引在一起,以下关于双星的说法中正确的是[]A.它们做圆周运动的角速度与其质量成反比B.它们做圆周运动的线速度与其质量成反比C.它们所受向心力与其质量成反比D.它们做圆周运动的半径与其质量成反比5、由于地球的自转,地球表面上各点均做匀速圆周运动,所以[]A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心6、以下说法中正确的是[]A.质量为m的物体在地球上任何地方其重力都一样B.把质量为m的物体从地面移到高空中,其重力变小C.同一物体在赤道上的重力比在两极处重力大D.同一物体在任何地方质量都是相同的7、假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[]A.p/q2B.pq2C.p/qD.pq8、假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则[]A.根据公式v=ωr,可知卫星的线速度将增大到原来的2倍9.如图为某行星绕太阳运动的轨道,下列关于太阳位置的描述正确的是 ( )A .太阳的位置在O 点B .太阳的位置一定在C .太阳的位置一定在C 1、C 2两点中的一点D .太阳的位置可以在C 1、O 、C 2任意一点 10. 地球绕太阳的运行轨道是椭圆形,因而地球与太阳之间的距离岁季节变化。

万有引力练习题精选

万有引力练习题精选

万有引力练习题精选一、选择题1. 下列哪个物体会受到万有引力的作用?A. 火焰B. 电视机C. 月亮D. 咖啡杯2. 以下哪个因素对万有引力的大小有影响?A. 物体的电荷B. 物体的颜色C. 物体的形状D. 物体的质量3. 如果两个物体的质量都增加一倍,它们之间的万有引力会如何变化?A. 减小一倍B. 保持不变C. 增加一倍D. 不确定4. 对于两个质量相同的物体,它们之间的万有引力与它们之间的距离之间的关系是?A. 距离增加,引力减小B. 距离增加,引力增大C. 距离减小,引力增大D. 距离减小,引力减小5. 假设一个物体在地球上受到了100N的万有引力,将此物体带到月球上,它受到的万有引力会如何变化?A. 减小B. 增加C. 保持不变D. 不确定二、填空题1. 万有引力的公式为\[F = G \cdot \frac{{m_1 \cdotm_2}}{{r^2}}\]。

其中,\(F\)代表引力大小,\(G\)代表__万有引力常量__,\(m_1\)和\(m_2\)分别表示两个物体的__质量__,\(r\)代表两个物体之间的__距离__。

2. \(F\)的单位是__牛顿__,\(G\)的单位是__牛顿·米\(^2\)/千克\(^2\)__,质量的单位是__千克__,距离的单位是__米__。

三、简答题1. 简要解释万有引力的概念和原理。

2. 解释为什么地球上的物体会朝向地心下落。

四、应用题1. 一个质量为10千克的物体与一个质量为20千克的物体相距10米,计算它们之间的万有引力大小。

2. 如果一个物体在地球上的质量是50千克,在月球上的质量是8.33千克,计算它在地球上受到的万有引力和在月球上受到的万有引力大小。

3. 如果两个质量相同的物体之间的万有引力是500N,它们之间的距离是2米,计算万有引力常量\(G\)的大小。

参考答案一、选择题1. C2. D3. C4. C5. C二、填空题1. 万有引力常量,质量,距离2. 牛顿,牛顿·米\(^2\)/千克\(^2\),千克,米三、简答题1. 万有引力是一种质量间相互作用的力,是指两个物体之间的引力作用。

万有引力练习题及答案详解

万有引力练习题及答案详解

万有引力练习题及答案详解单 元 自 评1.人造地球卫星环绕地球做匀速圆周运动时,以下叙述正确的是( bc ) A. 卫星的速度一定大于或等于第一宇宙速度 B.在卫星中用弹簧秤称一个物体,读数为零C.在卫星中,一个天平的两个盘上,分别放上质量不等的两个物体,天平不偏转D.在卫星中一切物体的质量都为零2.两颗靠得较近的天体组成双星,它们以两者连线上某点为圆心,做匀速圆周运动,因而不会由于相互的引力作用而被吸到一起,下面说法正确的是( )A.它们做圆周运动的角速度之比,与它们的质量之比成反比B.它们做圆周运动的线速度之比,与它们的质量之比成反比C.它们做圆周运动的向心力之比,与它们的质量之比成正比D.它们做圆周运动的半径之比,与它们的质量之比成反比3.苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是( ) A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的 B.由于地球对苹果有引力,而苹果对地球无引力造成的C.苹果与地球间的引力是大小相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都不对4.两颗人造地球卫星,质量之比m 1:m 2=1:2,轨道半径之比R 1:R 2=3:1,下面有关数据之比正确的是( )A.周期之比T 1:T 2=3:1B.线速度之比v 1:v 2=3:1C.向心力之比为F 1:F 2=1:9D.向心加速度之比a 1:a 2=1:95.已知甲、乙两行星的半径之比为a ,它们各自的第一宇宙速度之比为b ,则下列结论不正确的是( )A.甲、乙两行星的质量之比为b 2a:1B.甲、乙两行星表面的重力加速度之比为b 2:a C.甲、乙两行星各自的卫星的最小周期之比为a:b D.甲、乙两行星各自的卫星的最大角速度之比为b:a6.地球同步卫星距地面高度为h ,地球表面的重力加速度为g ,地球半径为R,地球自转的角速度为ω,那么下列表达式表示同步卫星绕地球转动的线速度的是( )A.ω)(h R v +=B.)/(h R Rg v +=C.)/(h R g R v +=D.32ωg R v =7.某一行星有一质量为m 的卫星,以半径r ,周期T 做匀速圆周运动,求: (1)行星的质量; (2)卫星的加速度;(3)若测得行星的半径恰好是卫星运行半径的1/10,则行星表面的重力加速度是多少?8.两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π= 解得2a RT gπ= b 卫星2224·4(4)bGMm m R R T π= 解得16b RT gπ= (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a GMv R=b 卫星b 卫星22(4)4Mm v G m R R= 解得v 4b GM R=所以 2abV V = (3)最远的条件22a bT T πππ-= 解得87R t gπ=3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。

高中物理万有引力定律的应用题20套(带答案)及解析

高中物理万有引力定律的应用题20套(带答案)及解析

高中物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.土星是太阳系最大的行星,也是一个气态巨行星。

图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。

土星视为球体,已知土星质量为M,半径为R,万有引力常量为.G求:()1土星表面的重力加速度g;()2朱诺号的运行速度v;()3朱诺号的运行周期T 。

【答案】()()()()21?2?3?2GM GM R h R h R R h GM π+++ 【解析】【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。

【详解】(1)土星表面的重力等于万有引力:2Mm Gmg R = 可得2GM g R = (2)由万有引力提供向心力:22()Mm mv G R h R h=++ 可得:GM v R h=+ (3)由万有引力提供向心力:()222()()GMm m R h R h Tπ=++ 可得:()2R h T R h GMπ+=+3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有w 1=w 2 ① (1分)r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分) G ④ (3分) 联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】203t gR r ω=-或者202t gR r ω=- 【解析】【分析】【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有 22Mm G mr rω= 航天飞机在地面上,有2mM GR mg = 联立解得22gR rω= 若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以202t gR r ω=- 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以202t gR r ω=-. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.5.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】 (1)由万有引力等于向心力可知22Mm v G m R R= 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t = 解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.6.为了探测月球的详细情况,我国发射了一颗绕月球表面飞行的科学实验卫星.假设卫星绕月球做圆 周运动,月球绕地球也做圆周运动.已知卫星绕月球运行的周期为 T0,地球表面重力加速度为 g ,地球半径为 R0,月心到地心间的距离为 r0,引力常量为 G ,求: (1)月球的平均密度;(2)月球绕地球运行的周期.【答案】(1)203GT π(2) T = 【解析】【详解】(1)月球的半径为R ,月球质量为M ,卫星质量为m 由于在月球表面飞行,万有引力提供向心力:22204mM G m R R T π= 得23204R M GT π= 且月球的体积V =43πR 3 根据密度的定义式 M V ρ=得232023043 43R GT GT R ππρπ== (2)地球质量为M 0,月球质量为M ,月球绕地球运转周期为T 由万有引力提供向心力2202004 r GM M M r Tπ= 根据黄金代换GM 0=gR 02得T =7.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。

万有引力练习题

万有引力练习题

万有引力练习题在物理学中,万有引力是一种描述物体之间相互吸引力的力。

它是由英国科学家艾萨克·牛顿于1687年提出的,并成为牛顿力学的基础之一。

在日常生活中,我们经常会遇到与万有引力相关的问题。

本文将为您提供一些关于万有引力的练习题,帮助您巩固对这个概念的理解。

练习题1:两个质量分别为m1和m2的物体位于距离为r的距离上。

它们之间的万有引力为F。

根据牛顿万有引力定律,我们知道引力与物体质量和距离的平方成正比,即F =G * (m1 * m2) / r^2其中,G是万有引力常数。

请回答以下问题:a) 如果m1的质量增加一倍,m2的质量保持不变,引力会如何变化?b) 如果m1和m2的质量都增加一倍,引力会如何变化?c) 如果r的距离增加一倍,引力会如何变化?练习题2:地球围绕太阳公转是由于万有引力的作用。

假设地球质量为5.97 ×10^24千克,太阳质量为1.99 × 10^30千克,地球与太阳之间的平均距离为1.496 × 10^11米。

a) 计算地球围绕太阳公转所受的引力大小。

b) 如果地球的质量增加了一倍,公转所受引力会如何变化?c) 如果地球距离太阳的距离增加了两倍,公转所受引力会如何变化?练习题3:假设有两个质量分别为m和M(其中m < M)的物体,它们的距离为d。

a) 当m的质量远小于M的质量时,哪个物体受到的引力更大?为什么?b) 当物体m的质量与物体M的质量相等时,它们之间的引力大小是多少?c) 当物体m的质量接近于物体M的质量时,引力大小会如何变化?练习题4:一个人在地球的表面上站立,地球的半径为6,371千米,质量为5.97 × 10^24千克。

假设这个人的质量为75千克。

a) 计算这个人所受到的引力大小。

b) 如果这个人站在地球半径的两倍远处,他所受的引力会如何变化?这些练习题旨在帮助您巩固对万有引力的理解,并练习在不同情境下应用万有引力定律进行计算。

(完整版)万有引力练习题及答案

(完整版)万有引力练习题及答案

万有引力练习题及答案一.选择题 1.关于万有引力的说法,正确的是。

A.万有引力只是宇宙中各天体之间的作用力 B.万有引力是宇宙中具有质量的物体间普遍存在的相互作用力 C.地球上的物体以及地球附近的物体除受到地球对它们的万有引力外还受到重力作用 D.太阳对地球的万有引力大于地球对太阳的万有引力. 关于万有引力定律,下列说法中正确的是 A.万有引力定律是牛顿在总结前人研究成果的基础上发现的 B.万有引力定律适宜于质点间的相互作用 C.公式中的G是一个比例常数,是有单位的,单位是N·m2/kg2 D.任何两个质量分布均匀的球体之间的相互作用可以用该公式来计算,r是两球球心之间的距离 3.假设行星绕恒星的运动轨道是圆,则其运行周期T的平方与其运行轨道半径R的三次方之比为常数,那么该常数的大小 A.只与行星的质量有关B.只与恒星的质量有关 C.与行星及恒星的质量都有关D.与恒星的质量及行星的速率有关 4.设地球是半径为R的均匀球体,质量为M,若把质量为m的物体放在地球的中心,则物体受到的地球的万有引力大小为。

A.零 B.无穷大 C.GMm R D.无法确定 Gm1m2 ,下列说法中正确的是. r2 公式中G为引力常量,它是由实验测得的,而不是人为规定的当r趋于零时,万有引力趋于无限大 两物体受到的引力总是大小相等的,而与m1、m2是否相等无关两物体受到的引力总是大小相等、方向相反,是一对平衡力 6.地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为 A. 1︰B.1︰C.1︰3D.︰1 11 7.火星的质量和半径分别约为地球的10和,地球表面的重力加速度为g,则火星表面的重力 5.对于万有引力定律的表达式F? 加速度约为 A.0.gC.2.g B.0.g D.g 8.一名宇航员来到一个星球上,如果星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受到的万有引力大小是他在地球上所受万有引力的。

万有引力习题及答案

万有引力习题及答案

【典型例题】例1、海王星的公转周期约为5.19×109s ,地球的公转周期为3.16×107s ,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg ,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。

例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是( )A 、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。

B 、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。

C 、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。

D 、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。

例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:( )A .1-4天之间B .4-8天之间C .8-16天之间D .16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:( )A.1/2B. 22C. 3221D.23213、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是( )A .以地球为中心来研究天体的运动有很多无法解决的问题B .以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C .地球是围绕太阳转的D .太阳总是从东面升起从西面落下5、考察太阳M 的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:( )A 、r1>r2B 、r1<r2C 、r1=r2D 、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R 之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 /T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:39C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为kTR23,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2=9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍 例2. 4.61年 例3. ABC 例4. 略。

万有引力定律单元测试题及解析

万有引力定律单元测试题及解析

万有引力定律单元测试题一、选择题(每小题7分,共70分)1.(2010·上海高考)月球绕地球做匀速圆周运动的向心加速度大小为a.设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则( )A.g1=a B.g2=aC.g1+g2=a D.g2-g1=a2.图4-3-5(2012·广东高考)如图4-3-5所示,飞船从轨道1变轨至轨道2.若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的( )A.动能大B.向心加速度大C.运行周期长D.角速度小3.(2010·北京高考)一物体静置在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量为G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为( )A.⎝ ⎛⎭⎪⎫4π3Gρ12B.⎝ ⎛⎭⎪⎫34πGρ12 C.⎝ ⎛⎭⎪⎫πGρ12 D.⎝ ⎛⎭⎪⎫3πGρ12 4.(2012·山东高考)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R 1、R 2,线速度大小分别为v 1、v 2.则v1v2等于( ) A. R31R 32 B. R2R1 C.R22R 21 D.R2R15.(2012·北京高考)关于环绕地球运动的卫星,下列说法正确的是( )A .分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B .沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C .在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合6.(2011·重庆高考)某行星和地球绕太阳公转的轨道均可视为圆.每过N年,该行星会运行到日地连线的延长线上,如图4-3-6所示,该行星与地球的公转半径之比为( )图4-3-6A.⎝⎛⎭⎪⎫N+1N23 B.⎝⎛⎭⎪⎫NN-123C.⎝⎛⎭⎪⎫N+1N32 D.⎝⎛⎭⎪⎫NN-132图4-3-77.(2010·临川质检)我国发射“神舟”号飞船时,先将飞船发送到一个椭圆轨道上如图4-3-7,其近地点M距地面200 km,远地点N距地面340 km.进入该轨道正常运行时,通过M、N点时的速率分别是v1、v2.当某次飞船通过N点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340km的圆形轨道,开始绕地球做匀速圆周运动.这时飞船的速率约为v3.比较飞船在M、N、P三点正常运行时(不包括点火加速阶段)的速率大小和加速度大小,下列结论正确的是( )A.v1>v3>v2,a1>a3>a2B.v1>v2>v3,a1>a2=a3C.v1>v2=v3,a1>a2>a3D.v1>v3>v2,a1>a2=a38.(2012·桂林模拟)我国于2011年9月29日和11月1日相继成功发射了“天宫一号”目标飞行器和“神舟八号”宇宙飞船,并成功实现了对接,标志着我国向建立空间实验站迈出了重要一步,我国还将陆续发射“神舟九号”、“神舟十号”飞船,并与“天宫一号”实现对接,下列说法正确的是( )A.飞船和“天宫一号”必须在相同的轨道运行,通过加速完成与“天宫一号”的对接B.飞船必须改在较高的轨道上运行,通过加速完成与“天宫一号”的对接C.飞船必须改在较高的轨道上运行,通过减速完成与“天宫一号”的对接D.飞船必须改在较低的轨道上运行,通过加速完成与“天宫一号”的对接【答案】D9.“嫦娥二号”卫星在中国首颗月球探测卫星“嫦娥一号”备份星基础上进行技术改进和适应性改造,于北京时间2010年10月1日19∶26成功星箭分离.如图4-3-8,若“嫦娥二号”在地球表面发射时重力为G,达到月球表面附近绕月飞行时重力为G2,已知地球表面的重力加速度为g,地球半径R1,月球半径R2,则( )图4-3-8A.“嫦娥二号”在距地面高度等于2倍地球半径R1的轨道上A点运行时,其速度为v=G1R1 3B.“嫦娥二号”在距地面高度等于2倍地球半径R1的轨道上A点运行时,其速度为v=gR1 3C.“嫦娥二号”达到月球表面附近绕月飞行时周期为T=2πG1R1G2gD.“嫦娥二号”达到月球表面附近绕月飞行时周期为T=2πG2R1G1g图4-3-910.2008年12月1日的傍晚,在西南方低空出现了一种有趣的天象,天空中两颗明亮的行星——金星和木星以及一弯月牙聚在了一起.人们形象的称其为“双星拱月”,如图4-3-9所示这一现象的形成原因是:金星、木星都是围绕太阳运动,与木星相比,金星距离太阳较近,围绕太阳运动的速度较大,到12月1日傍晚,金星追赶木星达到两星相距最近的程度,而此时西侧的月牙也会过来凑热闹,形成“双星拱月”的天象美景.若把金星、木星绕太阳的运动当作匀速圆周运动,并用T1、T2分别表示金星、木星绕太阳运动的周期,金星、木星再次运动到相距最近的时间是( )A.T2-T1B.T2+T1C.T1T2T2-T1 D.T1T2T2+T1二、非选择题(11题14分,12题16分,共30分)11.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)12.(2011·浙江五校联考)2007年4月24日,瑞士天体物理学家斯蒂芬妮·尤德里(右)和日内瓦大学天文学家米歇尔·迈耶(左)拿着一张绘制图片,如图4-3-10图片上显示的是在红矮星581(图片右上角)周围的行星系统.这一代号“581c”的行星正围绕一颗比太阳小、温度比太阳低的红矮星运行,现测得“581c”行星的质量为M2、半径为R2,已知地球的质量为M1、半径为R1,且已知地球表面的重力加速度为g,则:图4-3-10(1)求该行星表面的重力加速度;(2)若宇宙飞船在地面附近沿近地圆轨道做匀速圆周运动的周期为T,求宇宙飞船在距离“581c”行星表面为h的轨道上绕该行星做匀速圆周运动的线速度v.万有引力定律单元测试题解析一、选择题(每小题7分,共70分)1.(2010·上海高考)月球绕地球做匀速圆周运动的向心加速度大小为a.设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则( )A.g1=a B.g2=aC.g1+g2=a D.g2-g1=a【解析】月球因受地球引力的作用而绕地球做匀速圆周运动.由牛顿第二定律可知地球对月球引力产生的加速度g2就是向心加速度a,故B选项正确.【答案】 B2.图4-3-5(2012·广东高考)如图4-3-5所示,飞船从轨道1变轨至轨道2.若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的( )A.动能大B.向心加速度大C.运行周期长D.角速度小【解析】飞船绕中心天体做匀速圆周运动,万有引力提供向心力,即F 引=F 向,所以GMm r2=ma 向=mv2r =4π2mr T2=mrω2,即a 向=GM r2,E k =12m v 2=GMm 2r ,T =4π2r3GM ,ω=GM r3(或用公式T =2πω求解).因为r 1<r 2所以E k1>E k2,a 向1>a 向2,T 1<T 2,ω1>ω2,选项C 、D 正确.【答案】 CD3.(2010·北京高考)一物体静置在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量为G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为( )A.⎝ ⎛⎭⎪⎫4π3Gρ12B.⎝ ⎛⎭⎪⎫34πGρ12 C.⎝ ⎛⎭⎪⎫πGρ12 D.⎝ ⎛⎭⎪⎫3πGρ12 【解析】 物体对天体表面压力恰好为零,说明天体对物体的万有引力提供向心力:G Mm R2=m 4π2T2R ,解得T =2πR3GM ① 又密度ρ=M 43πR3=3M 4πR3②①②两式联立得T =3πGρ.D 选项正确. 【答案】 D4.(2012·山东高考)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R 1、R 2,线速度大小分别为v 1、v 2.则v1v2等于( ) A. R31R 32 B. R2R1 C.R22R 21 D.R2R1【解析】 “天宫一号”运行时所需的向心力由万有引力提供,根据G Mm R2=mv2R 得线速度v =GM R ,所以v1v2=R2R1,故选项B 正确,选项A 、C 、D 错误.【答案】 B5.(2012·北京高考)关于环绕地球运动的卫星,下列说法正确的是( )A .分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B .沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C .在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D .沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合【解析】 根据开普勒第三定律,a3T2=恒量,当圆轨道的半径R与椭圆轨道的半长轴a 相等时,两卫星的周期相等,故选项A 错误;卫星沿椭圆轨道运行且从近地点向远地点运行时,万有引力做负功,根据动能定理,知动能减小,速率减小;从远地点向近地点移动时动能增加,速率增大,且两者具有对称性,故选项B 正确;所有同步卫星的运行周期相等,根据G Mm r2=m (2πT )2r 知,同步卫星轨道的半径r 一定,故选项C 错误;根据卫星做圆周运动的向心力由万有引力提供,可知卫星运行的轨道平面过某一地点,轨道平面必过地心,但轨道不一定重合,故北京上空的两颗卫星的轨道可以不重合,选项D 错误.【答案】 B6.(2011·重庆高考)某行星和地球绕太阳公转的轨道均可视为圆.每过N 年,该行星会运行到日地连线的延长线上,如图4-3-6所示,该行星与地球的公转半径之比为( )图4-3-6A.⎝⎛⎭⎪⎫N+1N23 B.⎝⎛⎭⎪⎫NN-123C.⎝⎛⎭⎪⎫N+1N32 D.⎝⎛⎭⎪⎫NN-132【解析】根据ω=θt可知,ω地=2Nπt,ω星=2(N-1)πt,再由GMmr2=mω2r可得,r星r地=⎝⎛⎭⎪⎫ω地ω星23=⎝⎛⎭⎪⎫NN-123,答案为B选项.【答案】 B图4-3-77.(2010·临川质检)我国发射“神舟”号飞船时,先将飞船发送到一个椭圆轨道上如图4-3-7,其近地点M距地面200 km,远地点N距地面340 km.进入该轨道正常运行时,通过M、N点时的速率分别是v1、v2.当某次飞船通过N点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340km的圆形轨道,开始绕地球做匀速圆周运动.这时飞船的速率约为v3.比较飞船在M、N、P三点正常运行时(不包括点火加速阶段)的速率大小和加速度大小,下列结论正确的是( )A.v1>v3>v2,a1>a3>a2B.v1>v2>v3,a1>a2=a3C.v1>v2=v3,a1>a2>a3D.v1>v3>v2,a1>a2=a3【解析】飞船在太空中的加速度为a=GMmR2·m=GMR2,由此知a1>a2=a3,由M到N,飞船做离心运动,该过程重力做负功,则v1>v2,由N点进入圆轨道时飞船需加速,否则会沿椭圆轨道做向心运动,故v3>v2,比较两个轨道上的线速度由v2=GMR知v3<v1,则v1>v3>v2.故D正确.【答案】D8.(2012·桂林模拟)我国于2011年9月29日和11月1日相继成功发射了“天宫一号”目标飞行器和“神舟八号”宇宙飞船,并成功实现了对接,标志着我国向建立空间实验站迈出了重要一步,我国还将陆续发射“神舟九号”、“神舟十号”飞船,并与“天宫一号”实现对接,下列说法正确的是( )A.飞船和“天宫一号”必须在相同的轨道运行,通过加速完成与“天宫一号”的对接B.飞船必须改在较高的轨道上运行,通过加速完成与“天宫一号”的对接C.飞船必须改在较高的轨道上运行,通过减速完成与“天宫一号”的对接D.飞船必须改在较低的轨道上运行,通过加速完成与“天宫一号”的对接【解析】初态时,飞船和“天宫一号”在同一轨道上运行,故其线速度大小相等,若不改变轨道是不可能追上“天宫一号”的,A错;若先加速到高轨道后减速到原轨道,由v=GMr可知,飞船在高轨道上运行的线速度要比“天宫一号”的小.且运行路程长,故B、C均错;若先减速到低轨道后加速到原轨道,由v=GMr可知,飞船在低轨道上运行的路程短,且线速度要比“天宫一号”的大,所以可以追上,D正确.【答案】D9.“嫦娥二号”卫星在中国首颗月球探测卫星“嫦娥一号”备份星基础上进行技术改进和适应性改造,于北京时间2010年10月1日19∶26成功星箭分离.如图4-3-8,若“嫦娥二号”在地球表面发射时重力为G,达到月球表面附近绕月飞行时重力为G2,已知地球表面的重力加速度为g,地球半径R1,月球半径R2,则( )图4-3-8A.“嫦娥二号”在距地面高度等于2倍地球半径R1的轨道上A点运行时,其速度为v=G1R1 3B.“嫦娥二号”在距地面高度等于2倍地球半径R1的轨道上A点运行时,其速度为v = gR13C .“嫦娥二号”达到月球表面附近绕月飞行时周期为T =2πG1R1G2gD .“嫦娥二号”达到月球表面附近绕月飞行时周期为T =2πG2R1G1g【解析】 “嫦娥二号”在距地面高度等于2倍地球半径R 1的轨道上A 点运行时,其轨道半径r =3R 1,由万有引力等于向心力知G Mm (3R1)2=m v23R1 又GM =gR 21联立解得v = gR13,故选项B 对A 错.“嫦娥二号”到达月球表面附近绕月飞行时轨道半径r =R 2,重力等于向心力则G 2=mR 2(2πT )2G 1=mg联立解得T =2πG1R1G2g故选项C 正确D 错误.【答案】 BC图4-3-910.2008年12月1日的傍晚,在西南方低空出现了一种有趣的天象,天空中两颗明亮的行星——金星和木星以及一弯月牙聚在了一起.人们形象的称其为“双星拱月”,如图4-3-9所示这一现象的形成原因是:金星、木星都是围绕太阳运动,与木星相比,金星距离太阳较近,围绕太阳运动的速度较大,到12月1日傍晚,金星追赶木星达到两星相距最近的程度,而此时西侧的月牙也会过来凑热闹,形成“双星拱月”的天象美景.若把金星、木星绕太阳的运动当作匀速圆周运动,并用T1、T2分别表示金星、木星绕太阳运动的周期,金星、木星再次运动到相距最近的时间是( )A.T2-T1B.T2+T1C.T1T2T2-T1 D.T1T2T2+T1【解析】因为两星的角速度之差Δω=2πT1-2πT2=2π(T2-T1T1T2),所以Δt=2πΔω=T1T2T2-T1,故C正确.【答案】 C二、非选择题(11题14分,12题16分,共30分)11.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )【解析】 设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别是ω1、ω2.根据题意有ω1=ω2①r 1+r 2=r ②根据万有引力定律和牛顿运动定律,有G m1m2r2=m 1ω21r 1③G m1m2r2=m 2ω2r 2④联立以上各式解得r 1=m2r m1+m2⑤ 根据角速度与周期的关系知ω1=ω2=2πT ⑥联立③⑤⑥式解得m 1+m 2=4π2r3T2G ⑦【答案】 4π2r3T2G12.(2011·浙江五校联考)2007年4月24日,瑞士天体物理学家斯蒂芬妮·尤德里(右)和日内瓦大学天文学家米歇尔·迈耶(左)拿着一张绘制图片,如图4-3-10图片上显示的是在红矮星581(图片右上角)周围的行星系统.这一代号“581c”的行星正围绕一颗比太阳小、温度比太阳低的红矮星运行,现测得“581c”行星的质量为M 2、半径为R 2,已知地球的质量为M 1、半径为R 1,且已知地球表面的重力加速度为g ,则:图4-3-10(1)求该行星表面的重力加速度;(2)若宇宙飞船在地面附近沿近地圆轨道做匀速圆周运动的周期为T ,求宇宙飞船在距离“581c”行星表面为h 的轨道上绕该行星做匀速圆周运动的线速度v .【解析】 (1)物体在星球表面所受万有引力近似等于物体的重力,即GM2m2R22=m 2g 2GM1m1R21=m 1g 解得星球表面重力加速度g 2=M2R21M 1R 2g (2)飞船在地面附近绕地球运行的周期为T ,根据万有引力定律和牛顿第二定律,有GM1m R21=m ⎝ ⎛⎭⎪⎫2πT 2R 1 飞船在距离“581c ”行星表面为h 的轨道上绕该行星做匀速圆周运动,根据万有引力定律和牛顿第二定律,有GM2m (R2+h )2=m v2(R2+h )解得v =2πR1T M2R1M1(R2+h )【答案】 (1)M2R21M 1R 2g (2)2πR1TM2R1M1(R2+h )。

万有引力定律练习题(含答案)

万有引力定律练习题(含答案)

万有引力定律练习题(含答案) 第七章万有引力与宇宙航行第2节万有引力定律1.下列现象中,不属于由万有引力引起的是……答案:C解析:A选项是由星球之间的万有引力作用而聚集不散,B选项是由地球的引力提供向心力,使月球绕地球做圆周运动,D选项是由地球的引力作用,使树上的果子最终落向地面。

只有C选项是电子受到原子核的吸引力而绕核旋转不离去,不是万有引力。

2.均匀小球A、B的质量分别为m、5m,球心相距为R,引力常量为G,则A球受到B球的万有引力大小是……答案:A解析:根据万有引力定律可得:F=G×m×5m/(2R)²,化简得F=G×m²/(2R²),即A球受到B球的万有引力大小为G×m²/(2R²)。

3.两个质点的距离为r时,它们间的万有引力为2F,现要使它们间的万有引力变为F,将距离变为……答案:B解析:根据万有引力定律,距离为r时,它们间的万有引力为2F,则2F=G×m×m/r²,将万有引力变为F,则F=G×m×m/r'²,联立可得:r' = 2r,即将距离变为原来的二分之一。

4.假设地球是一半径为R,质量分布均匀的球体。

已知质量分布均匀的球壳对壳内物体引力为零,地球表面处引力加速度为g。

则关于地球引力加速度a随地球球心到某点距离r的变化图像正确的是……答案:B解析:当距离大于地球半径时,根据万有引力提供重力可得加速度g'=GM/r²,范围内的球壳随距离增大,加速度变小。

当距离小于地球半径时,此时距离地心对物体没有引力,那么对其产生引力的就是半径为R的中心球体的引力,因此加速度与距离成正比,选项B正确。

之间的引力与它们的距离成反比,与它们的质量成正比D.万有引力只存在于地球和其他星球之间,不存在于地球和其他物体之间答案】A、C解析】A。

高中物理万有引力练习题及答案解析

高中物理万有引力练习题及答案解析

高中物理万有引力练习题及答案解析一.解答题(共14小题)1.(2015春•锦州校级期中)(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即=k,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M太.(2)一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?【分析】(1)行星绕太阳的运动按圆周运动处理时,此时轨道是圆,就没有半长轴了,此时=k应改为,再由万有引力作为向心力列出方程可以求得常量k 的表达式;(2)球体表面物体随球体自转做匀速圆周运动,球体有最小密度能维持该球体的稳定,不致因自转而瓦解的条件是表面的物体受到的球体的万有引力恰好提供向心力,物体的向心力用周期表示等于万有引力,再结合球体的体积公式、密度公式即可求出球体的最小密度.【解答】解:(1)因行星绕太阳作匀速圆周运动,于是轨道的半长轴a即为轨道半径r.根据万有引力定律和牛顿第二定律有G=m r于是有=即k=所以太阳系中该常量k的表达式是.(2)设位于赤道处的小块物质质量为m,物体受到的球体的万有引力恰好提供向心力,这时球体不瓦解且有最小密度,由万有引力定律结合牛顿第二定律得:GM=mω2R又因ρ=由以上两式得ρ=.所以球的最小密度是.答:(1)太阳系中该常量k的表达式是.(2)若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是.2.(2017春•德惠市校级月考)月球环绕地球运动的轨道半径为地球半径的60倍,运行周期约为27天,应用开普勒定律计算:在赤道平面内离地多高时,人造地球卫星随地球一起转动,就像停留在天空中不动一样?(R地=6400km)【分析】月球和同步卫星都绕地球做匀速圆周运动,根据开普勒第三定律列式求解即可.【解答】解:月球环绕地球运动的轨道半径为地球半径的60倍,运行周期约为27天;同步卫星的周期为1天;根据开普勒第三定律,有:解得:R月=R同==9R同由于R月=60R地,故R同=,故:h=R地==36267km.答:在赤道平面内离地36267km高时,人造地球卫星随地球一起转动,就像停留在天空中不动一样.3.(2015春•东方校级期中)地球公转运行的轨道半径R1=1.49×1011m,若把地球公转周期称为1年,那么土星运行的轨道半径R2=1.43×1012m,其周期多长?【分析】根据万有引力提供圆周运动的向心力,列式求圆周运动的周期与半径的关系然后求比值即可.【解答】解:根据万有引力提供圆周运动的向心力有:G=mr()2得卫星运动的周期:T=所以有:因此周期T2==29.7年;答:土星运行的轨道周期为29.7年.4.(2015春•浮山县校级期中)卡文迪许把他自己的实验说成是“称地球的重量”(严格地说应是“测量地球的质量”).如果已知引力常量G、地球半径R和地球表面重力加速度g,计算地球的质量M和地球的平均密度各是多少?【分析】根据地在地球表面万有引力等于重力公式先计算出地球质量,再根据密度等于质量除以体积求解.【解答】解:根据地在地球表面万有引力等于重力有:=mg解得:M=所以ρ==.答:地球的质量M和地球的平均密度各是,.5.(2017春•孝感期末)火星(如图所示)是太阳系中与地球最为类似的行星,人类对火星生命的研究在今年因“火星表面存在流动的液态水”的发现而取得了重要进展.若火星可视为均匀球体,火星表面的重力加速度为g火星半径为R,火星自转周期为T,万有引力常量为G.求:(1)火星的平均密度ρ.(2)火星的同步卫星距火星表面的高度h.【分析】(1)根据万有引力等于重力求出火星的质量,结合火星的体积求出火星的密度.(2)根据万有引力提供向心力求出火星同步卫星的轨道半径,从而得出距离火星表面的高度.【解答】解:(1)在火星表面,对质量为m的物体有①又M=②联立①②两式解得ρ=.(2)同步卫星的周期等于火星的自转周期T万有引力提供向心力,有③联立解得h=.答:(1)火星的平均密度ρ为.(2)火星的同步卫星距火星表面的高度h为.6.(2017春•蓟县期中)已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期T1,地球的自转周期T2,地球表面的重力加速度g.某同学根据以上条件,提出一种估算地球质量M 的方法:同步卫星绕地球作圆周运动,由G==m()2h得M=(1)请判断上面的结果是否正确,并说明理由.如不正确,请给出正确的解法和结果.(2)请根据已知条件再提出两种估算地球质量的方法并解得结果.【分析】(1)根据万有引力提供向心力,列式求解,地球半径较大,不能忽略;(2)对月球或地球应用万有引力提供向心力,也可根据在地球表面重力等于向心力求解.【解答】解:(1)上面结果是错误的,地球的半径R在计算过程中不能忽略,正确解法和结果:得(2)方法一:月球绕地球做圆周运动,由得;方法二:在地面重力近似等于万有引力,由得.答:(1)上面结果是错误的,地球的半径R在计算过程中不能忽略,正确解法和结果如上所述.(2)请根据已知条件再提出两种估算地球质量的方法如上所述.7.(2017春•新余期末)我国志愿者王跃曾与俄罗斯志愿者一起进行“火星﹣500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的,质量是地球质量的.已知地球表面的重力加速度是g,地球的半径为R,忽略火星以及地球自转的影响,求:(1)火星表面的重力加速度g′的大小;(2)王跃登陆火星后,经测量发现火星上一昼夜的时间为t,如果要发射一颗火星的同步卫星,它正常运行时距离火星表面将有多远?【分析】(1)求一个物理量之比,我们应该把这个物理量先表示出来,在进行之比,根据万有引力等于重力,得出重力加速度的关系,根据万有引力等于重力求出火星表面的重力加速度g′的大小;(2)火星的同步卫星作匀速圆周运动的向心力由火星的万有引力提供,且运行周期与火星自转周期相同,据此求解即可.【解答】解:(1)在地球表面,万有引力与重力相等,=m0g对火星=m0g′测得火星的半径是地球半径的,质量是地球质量的,联立解得g′=g(2)火星的同步卫星作匀速圆周运动的向心力由火星的万有引力提供,且运行周期与火星自转周期相同.设卫星离火星表面的高度为h,则=m0()2(R′+h)GM′=g′R′2解出同步卫星离火星表面高度h=﹣R答:(1)火星表面的重力加速度g′的大小为g;(2)它正常运行时距离火星表面的距离为﹣R.8.(2017春•邹平县校级期中)地球的两颗人造卫星质量之比m1:m2=1:2,圆周轨道半径之比r1:r2=1:2.求:(1)线速度之比;(2)角速度之比;(3)运行周期之比;(4)向心力之比.【分析】(1)根据万有引力充当向心力,产生的效果公式可得出线速度和轨道半径的关系,可得结果;(2)根据圆周运动规律可得线速度和角速度以及半径的关系,直接利用上一小题的结论,简化过程;(3)根据圆周运动规律可得运行周期和角速度之间的关系,直接利用上一小题的结论,简化过程;(4)根据万有引力充当向心力可得向心力和质量以及半径的关系.【解答】解:设地球的质量为M,两颗人造卫星的线速度分别为V1、V2,角速度分别为ω1、ω2,运行周期分别为T1、T2,向心力分别为F1、F2;(1)根据万有引力和圆周运动规律得∴=故二者线速度之比为.(2)根据圆周运动规律v=ωr 得∴故二者角速度之比为.(3)根据圆周运动规律∴故二者运行周期之比为.(4)根据万有引力充当向心力公式∴故二者向心力之比为2:1.9.(2017春•郑州期中)我国月球探测计划“嫦娥工程”已经启动,科学家对月球的探索会越来越深入.(1)若已知地球半径为R,地球表面的重力加速度为g,月球绕地球运动的周期为T,月球绕地球的运动近似看做匀速圆周运动,试求出月球绕地球运动的轨道半径;(2)若宇航员随登月飞船登陆月球后,在月球表面高度为h的某处以速度v0水平抛出一个小球,小球飞出的水平距离为x.已知月球半径为R月,引力常量为G,试求出月球的质量M月.【分析】(1)在地球表面重力与万有引力相等,月球绕地球圆周运动的向心力由万有引力提供,据此计算月球圆周运动的半径;(2)根据平抛运动规律求得月球表面的重力加速度,再根据月球表面的重力与万有引力相等计算出月球的质量M.【解答】解:(1)设地球质量为M,月球质量为M月,根据万有引力定律及向心力公式得:…①在地球表面重力与万有引力大小相等有:…②由①②两式可解得:月球的半径为:(2)设月球表面处的重力加速度为g月,小球飞行时间为t,根据题意水平方向上有:x=v0t…④竖直方向上有:…⑤又在月球表面重力万有引力相等故有:…⑥由④⑤⑥可解得:答:(1)月球绕地球运动的轨道半径为;(2)月球的质量M月为.10.(2017春•信阳期中)如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的第一宇宙速度v;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T.【分析】(1)根据平抛运动规律列出水平方向和竖直方向的位移等式,结合几何关系求出重力加速度.(2)忽略地球自转的影响,根据万有引力等于重力列出等式.根据密度公式求解.(3)该星球的近地卫星的向心力由万有引力提供,该星球表面物体所受重力等于万有引力,联立方程即可求出该星球的第一宇宙速度υ【解答】解:(1)设该星球表现的重力加速度为g,根据平抛运动规律:水平方向:x=v0t竖直方向:平抛位移与水平方向的夹角的正切值得;(2)在星球表面有:,所以该星球的密度:;(3)由,可得v=,又GM=gR2,所以;(4)绕星球表面运行的卫星具有最小的周期,即:故答案为:(1);(2)该星球的密度;(3)该星球的第一宇宙速度;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期11.(2015春•长春校级期中)某行星绕太阳沿椭圆轨道运行,它的近日点A到太阳距离为r,远日点B到太阳的距离为R.若行星经过近日点时的速度为v A,求该行星经过远日点时的速度v B的大小.【分析】由开普勒第二定律行星绕太阳沿椭圆轨道运动时,它和太阳的连线在相等的时间内扫过的面积相等,在近日点与远日点各取一极短时间,利用扫过的面积相等.得等式:=,进行求解.【解答】解:根据开普勒第二定律,行星绕太阳沿椭圆轨道运动时,它和太阳的连线在相等的时间内扫过的面积相等.如图所示,分别以近日点A和远日点B为中心,取一个很短的时间△t,在该时间内扫过的面积如图中的两个曲边三角形所示.由于时间极短,可把这段时间内的运动看成匀速率运动,从而有=所以,该行星经过远日点时的速度大小为答:行星经过远日点时的速度v B的大小为:.12.(2017•四模拟)“测某星球表面的重力加速度和该星球的第一宇宙速度”的实验如图甲所示,宇航员做了如下实验:(1)在半径R=5000km的某星球表面,竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2kg的小球,从轨道AB上高H处的某点静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H 的大小,F随H 的变化关系如图乙所示,圆轨道的半径为0.2 m,星球表面的重力加速度为 5 m/s2.(2)第一宇宙速度与贴着星球表面做匀速圆周运动的速度相等,该星球的第一宇宙速度大小为5000 m/s.【分析】(1)小球从A到C运动的过程中,只有重力做功,机械能守恒,根据机械能守恒定律和牛顿第二定律分别列式,然后结合F﹣H图线求出圆轨道的半径和星球表面的重力加速度.(2)第一宇宙速度与贴着星球表面做匀速圆周运动的速度相等,根据万有引力等于重力求出该星球的第一宇宙速度.【解答】解:(1)小球过C点时满足又根据联立解得,由题目可知:时;时,可解得,r=0.2m(2)据可得故答案为:(1)0.2 5 (2)500013.(2017春•武邑县校级期中)某行星的质量是地球的6倍,半径是地球的1.5倍,地球的第一宇宙速度约为8m/s,地球表面处的重力加速度为10m/s2,此行星的第一宇宙速度约为32 m/s,此行星表面处的重力加速度为m/s2.【分析】本题采用比例法求解.根据万有引力等于重力,得到此行星表面处的重力加速度与地球表面处的重力加速度的比值,再求得行星表面处的重力加速度.再由v=求出行星的第一宇宙速度与地球的第一宇宙速度的比值,从而求得行星的第一宇宙速度.【解答】解:在星球表面上,根据万有引力等于向心力,有:G=mg,得:g=所以行星表面处的重力加速度与地球表面处的重力加速度之比为:==×=则行星表面处的重力加速度为:g行=g地=m/s2.由mg=m得:v=可得,行星的第一宇宙速度与地球的第一宇宙速度之比为:== =4,则得此行星的第一宇宙速度为:v行=4v地=32km/s故答案为:32,.14.(2016春•龙岩期末)已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响.(1)试推导第一宇宙速度v1的表达式(要有详细的推导过程,只写结果不得分);(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行周期T.【分析】(1)在地球表面重力和万有引力相等,万有引力提供卫星圆周运动的向心力;(2)万有引力提供卫星的向心力,和万有引力等于重力求解即可.【解答】解:(1)在地球表面有重力等于万有引力:可得:GM=gR2所以,近地卫星的向心力由万有引力提供有:所以有:=(2)距地面高度为h的卫星,轨道半径为r=R+h,根据万有引力提供向心力有:所以卫星的周期为T==答:(1)试推导第一宇宙速度v1的表达式为:;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,卫星的运行周期T为.THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

万有引力练习题

万有引力练习题

Mm 2 mr ω R2
Mm 4 G 2 10% mR 2 R T
2
4 2 R3 M 1 (10 ) /( R ) 2 V GT 3 GT 2
天体运动问题
将天体的运动视为匀速圆周运动,万有引 力提供向心力
建立物理模型
例1:一个半径是地球3倍,质量是地球27倍 的行星,它表面的加速度是地球表面加速 度的多少倍?
例2:有一星球的密度与地球密度相同, 但它表面的重力加速度是地球的4倍, 则星球的质量是地球的多少倍?
练习1
设地球表面的重力加速度为g0,物体在距离地心 4R(R 是地球半径 )处 ,由于地球的作用产生的加速度为 g,则 g/g0为( A.1 C.1/4 )
4.一人造地球卫星距地球表面的高 度是地球半径的 15 倍,地球半径 R =6 400 km,试估算此卫星的线速度.
解:设人造地球卫星的质量为 m,地球的质量为 M,r 为 人造地球卫星绕地球做圆周运动的轨道半径,根据万有引力定 律有
v2 Mm G 2 =m r r r=15R+R=16R Mm 在地球表面有 G R2 =mg
重力的变化
例、设某种原因地球自转的加快,当角速度等于多少时, 赤道上物体的重力为零? 解:万有引力全部提供自转向心力 G
GM 6.67 1011 6 1024 3 ω 1.2 10 rad / s 3 3 R (6.4 106)
例、某行星上一昼夜的时间为T=6h,在该行星赤道处用弹 簧秤测得一物体的重力大小比在该行星两极处小10%,则该 行星的平均密度是多大?(G取6.67×10-11N· m2/kg2)
环绕天体m 轨道半径r
中心天体M
天体半径R
物理模型:环绕天体m绕中心天体M做 匀速圆周运动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万有引力定律练习题一.选择题(共8小题)1.(2018•榆林一模)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示.关于航天飞机的运动,下列说法中不正确的有()A.在轨道Ⅱ上经过A的速度小于经过B的速度B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度2.(2018•江西模拟)北斗卫星导航系统由一组轨道高低不同的人造地球卫星组成。

高轨道卫星是地球同步卫星,其轨道半径约为地球半径的6.6倍。

若某低轨道卫星的周期为12小时,则这颗低轨道卫星的轨道半径与地球半径之比约为()A.4.2 B.3.3 C.2.4 D.1.63.(2018•海南)土星与太阳的距离是火星与太阳距离的6倍多。

由此信息可知()A.土星的质量比火星的小B.土星运行的速率比火星的小C.土星运行的周期比火星的小D.土星运行的角速度大小比火星的大4.(2018•高明区校级学业考试)如果把水星和金星绕太阳的运动视为匀速圆周运动,如图所示。

从水星与金星在一条直线上开始计时,若天文学家测得在相同时间内水星转过的角度为θ1,金星转过的角度为θ2(θ1、θ2均为锐角),则由此条件可求得()A.水星和金星绕太阳运动的周期之比B.水星和金星的密度之比C.水星和金星表面的重力加速度之比D.水星和金星绕太阳运动的向心力大小之比5.(2018•瓦房店市一模)如图所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t通过的弧长为l,该弧长对应的圆心角为θ弧度,已知万有引力常量为G,则月球的质量是()A.B.C.D.6.(2018春•南岗区校级期中)如图,有关地球人造卫星轨道的正确说法有()A.a、b、c 均可能是卫星轨道B.卫星轨道只可能是aC.a、b 均可能是卫星轨道D.b 可能是同步卫星的轨道7.(2018春•武邑县校级月考)如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞船在距月球表面高度为3R的圆形轨道Ⅰ运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动。

则()A.飞船在轨道Ⅰ上的运行速度为B.飞船在A点处点火时,动能增加C.飞船在轨道Ⅲ绕月球运行一周所需的时间为2πD .飞船在轨道Ⅰ上运行时通过A点的加速度大于在轨道Ⅱ上运行时通过A点的加速度8.(2014春•阜南县校级月考)一颗距离地面高度等于地球半径R0的圆形轨道地球卫星,卫星轨道与赤道平面重合,已知地球表面重力加速度为g,地球自转周期为T0,该卫星做圆周运动的方向与地球自转方向相同.如图中,赤道上的人在B点位置时恰可以收到A卫星发射的微波信号.则在赤道上任一点的人能连续接收到该卫星发射的微波信号的时间为()A.B.C.D.二.多选题(共1小题)9.(2018•高明区校级学业考试)探月工程中,“嫦娥三号”探测器的发射可以简化如下:卫星由地面发射后,卫星由地面发射后,进入地月转移轨道,经过P 点时变轨进入距离月球表面100公里圆形轨道1,在轨道1上经过Q点时月球车将在M点着陆月球表面,正确的是()A.“嫦娥三号”在轨道1上的速度比月球的第一宇宙速度小B.“嫦娥三号”在地月转移轨道上经过P点的速度比在轨道1上经过P点时大C.“嫦娥三号”在轨道1上运动周期比在轨道2上小D.“嫦娥三号”在轨道1上经过Q点时的加速度小于在轨道2上经过Q点时的加速度三.填空题(共3小题)10.(2012春•江山市校级期中)飞船沿半径为R的圆周绕地球运动其周期为T,地球半径为R0,若飞船要返回地面,可在轨道上某点A处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在B点相切,求飞船由A点到B点所需要的时间为。

11.(2012春•越城区校级期中)2002年四月下旬,天空中出现了水星、金星、火星、木星、土星近乎直线排列的“五星连珠”的奇观,这种现象的概率大约是几百年一次,假设火星和木星绕太阳作匀速圆周运动,周期分别是T1和T2,而且火星离太阳较近,它们绕太阳运动的轨道基本上在同一平面内,若某一时刻火星和木星都在太阳的同一侧,三者在一条直线上排列,那么再经过的时间将第二次出现这种现象.(结果用T1、T2表示)四.计算题(共2小题)12.(2017秋•沙市区校级期末)我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L,质量分别为M1、M2,(万有引力常量为G)试计算:(1)双星的轨道半径(2)双星运动的周期。

13.(2017春•孝感期中)我国月球探测计划嫦娥工程已经启动,“嫦娥1号”探月卫星也已发射.设想嫦娥1号登月飞船贴近月球表面做匀速圆周运动,飞船发射的月球车在月球软着陆后,自动机器人在月球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t落回抛出点,已知该月球半径为R,万有引力常量为G,月球质量分布均匀.求:(1)月球表面的重力加速度(2)月球的密度(3)月球的第一宇宙速度.14.(2014•大纲卷)已知地球自转周期和半径分别为T,R.地球同步卫星A在离地面高度为h的圆轨道上运行,卫星B沿半径为r(r<h)的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B做圆周运动的周期;(2)卫星A、B连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).万有引力定律练习题参考答案与试题解析一.选择题(共8小题)1.(2018•榆林一模)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示.关于航天飞机的运动,下列说法中不正确的有()A.在轨道Ⅱ上经过A的速度小于经过B的速度B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度【分析】根据开普勒定律,或根据万有引力做功,结合动能定理比较近地点和远地点的速度大小.抓住从圆形轨道Ⅰ进入椭圆轨道Ⅱ,需减速,做近心运动,比较出轨道Ⅱ上经过A的动能与在轨道Ⅰ上经过A的动能.通过开普勒第三定律比较出运动的周期,根据万有引力的大小比较加速度的大小.【解答】解:A、根据开普勒定律,近地点的速度大于远地点的速度,故A正确。

B、由Ⅰ轨道变到Ⅱ轨道要减速,所以在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能,故B正确。

C、根据开普勒定律,=k,rⅡ<rⅠ,所以TⅡ<TⅠ,故C正确。

D、航天飞机在轨道Ⅱ上经过A与在轨道Ⅰ上经过A时所受的万有引力相等,根据牛顿第二定律知,加速度大小相等。

故D错误。

本题选错误的,故选:D。

2.(2018•江西模拟)北斗卫星导航系统由一组轨道高低不同的人造地球卫星组成。

高轨道卫星是地球同步卫星,其轨道半径约为地球半径的6.6倍。

若某低轨道卫星的周期为12小时,则这颗低轨道卫星的轨道半径与地球半径之比约为()A.4.2 B.3.3 C.2.4 D.1.6【分析】已知周期之间的关系,由开普勒第三定律即可求出。

【解答】解:设低轨道卫星轨道半径为r,地球半径为R,同步卫星的周期为24h,低轨道卫星的周期为12h;由开普勒第三定律可知:,解得:r≈4.2R,故A正确,BCD错误故选:A。

3.(2018•海南)土星与太阳的距离是火星与太阳距离的6倍多。

由此信息可知()A.土星的质量比火星的小B.土星运行的速率比火星的小C.土星运行的周期比火星的小D.土星运行的角速度大小比火星的大【分析】根据万有引力提供向心力得出周期、线速度、加速度的表达式,结合轨道半径的大小进行比较。

【解答】解:A、万有引力提供向心力,可知土星与火星的质量都被约去,无法比较两者的质量。

B、由=,得v=知轨道半径小速率大,B正确。

C、由,得,知r大,周期长,C错误。

D、由,知r大,角速度小,D错误。

故选:B。

4.(2018•高明区校级学业考试)如果把水星和金星绕太阳的运动视为匀速圆周运动,如图所示。

从水星与金星在一条直线上开始计时,若天文学家测得在相同时间内水星转过的角度为θ1,金星转过的角度为θ2(θ1、θ2均为锐角),则由此条件可求得()A.水星和金星绕太阳运动的周期之比B.水星和金星的密度之比C.水星和金星表面的重力加速度之比D.水星和金星绕太阳运动的向心力大小之比【分析】根据相同时间内转过的角度之比求出角速度之比,从而得出周期之比,根据万有引力提供向心力得出轨道半径和周期的关系,结合周期之比求出轨道半径之比。

根据万有引力提供向心力得出向心加速度之比。

【解答】解:A、相同时间内水星转过的角度为,金星转过的角度为,可知它们的角速度之比为,周期,则周期之比为,故A 正确;B、水星和金星是环绕天体,无法求出质量,也无法知道它们的半径,所以求不出密度比。

故B错误。

C、在水星表面物体的重力等于万有引力,有,得在金星表面物体的重力等于万有引力:,得由于水星和金星的质量比及半径比都未知,所以无法求出水星和金星表面的重力加速度之比,故C错误;D、根据,得,角速度之比可以得出水星和金星到太阳的距离,因为无法求出水星和金星的质量,所以无法求出水星和金星绕太阳运动的向心力大小之比,故D错误;故选:A。

5.(2018•瓦房店市一模)如图所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t通过的弧长为l,该弧长对应的圆心角为θ弧度,已知万有引力常量为G,则月球的质量是()A.B.C.D.【分析】根据线速度和角速度的定义公式求解线速度和角速度,根据线速度和角速度的关系公式v=ωr求解轨道半径,然后根据万有引力提供向心力列式求解行星的质量.【解答】解:线速度为:v=…①角速度为:ω=…②根据线速度和角速度的关系公式,有:v=ωr…③卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律,有:…④联立解得:M=故选:C。

6.(2018春•南岗区校级期中)如图所示,有关地球人造卫星轨道的正确说法有()A.a、b、c 均可能是卫星轨道B.卫星轨道只可能是aC.a、b 均可能是卫星轨道 D.b 可能是同步卫星的轨道【分析】所有人造地球卫星的轨道平面必定经过地心,由万有引力提供向心力。

地球同步卫星轨道必须与赤道平面共面。

由此分析即可。

【解答】解:ABC、人造地球卫星围绕地球做匀速圆周运动,圆心必须是地心,所以凡是人造地球卫星的轨道平面必定经过地心,所以a、b均可能是卫星轨道,c不可能是卫星轨道,故AB错误,C正确;D、地球同步卫星的轨道必定在赤道平面内,所以同步卫星轨道只可能是a,故D 错误。

相关文档
最新文档