CEDAR Coupling, Energetics and Dynamics of Atmospheric …雪松耦合,大气热力学与动力学…-精选文档
价态越高,吸收边的能量越高 英文文献
价态越高,吸收边的能量越高英文文献However, I can help you get started with some background information and key points that you might include in your literature review. Here's a brief introduction and some potential topics to consider:Introduction:The concept of "价态越高,吸收边的能量越高" refers to the idea that the energy absorption edge of a material increases with the oxidation state or charge of its ions. This phenomenon is particularly relevant in the field of materials science, where the properties of materials are often manipulated by altering their oxidation states.Potential topics to discuss in your literature review:1. Background on the energy absorption edge: Explain what the energy absorption edge is and why it is an important parameter to consider in materials science.2. The relationship between oxidation state and energy absorption: Discuss the theoretical basis for the relationship between the oxidation state of a material and its energy absorption edge.3. Experimental methods: Describe the various experimental techniques that have been used to study the relationship between oxidation state and energy absorption in different materials.4. Applications: Explore the practical applications of the relationship between oxidation state and energy absorption, such as in the development of catalysts, battery materials, and photovoltaic devices.5. Case studies: Provide examples of specific materials or systems where the relationship between oxidation state and energy absorption has been studied and applied.6. Future directions: Discuss potential areas for further research and development in this field, including new materials, experimental techniques, and theoretical models.Remember to cite any sources you use in your literature review, and to keep in mind the word limit of 2000 words. Good luck with your assignment!。
Fluorescence Resonance Energy Transfer (FRET)荧光共振能量转移(FRET)
(H3C)2N
• chemical attachment of synthetic dyes
O
N+(CH3)2
OCH3 O
R
Absorption / Emission (a.u.)
580
fluorescence
a typical synthetic chromophore: tetramethylrhodamine
Absorption Emission
400 450 500 550 600 650 700 wavelength (nm)
• extinction coefficient: ~100,000 Molar-1 cm-1 • fluorescence quantum yield: ~50% • triplet quantum yield <1% • available in reactive forms (to attach to amines,
fluorophore *Donor-Acceptor의 Energy transfer는 거리에 의해 효율이 결정 (~10nm)
Spectral properties of involved chromophore
FRET
Calculation
Efficiency of Energy Transfer = E = kT/(kT + kf + k’) kT = rate of transfer of excitation energy kf = rate of fluorescence k’ = sum of the rates of all other deexcitation
fluorescence experiments 4. Some applications & examples
用密度函数理论和杜比宁方程研究活性炭纤维多段充填机理
密度函数理论和杜比宁方程可以用来研究活性炭纤维在多段充填过程中的吸附行为。
密度函数理论是一种分子统计力学理论,它建立在分子统计学和热力学的基础上,用来研究一种系统中分子的分布。
杜比宁方程是一种描述分子吸附行为的方程,它可以用来计算吸附层的厚度、吸附速率和吸附能量等参数。
在研究活性炭纤维多段充填过程中,可以使用密度函数理论和杜比宁方程来研究纤维表面的分子结构和吸附行为。
通过分析密度函数和杜比宁方程的解,可以得出纤维表面的分子结构以及纤维吸附的分子的种类、数量和能量。
这些信息有助于更好地理解活性炭纤维的多段充填机理。
在研究活性炭纤维的多段充填机理时,还可以使用其他理论和方法来帮助我们更好地了解这一过程。
例如,可以使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术来观察纤维表面的形貌和结构。
可以使用X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)等技术来确定纤维表面的化学成分和结构。
还可以使用氮气吸附(BET)和旋转氧吸附(BJH)等技术来测量纤维表面的比表面积和孔结构。
通过综合运用密度函数理论、杜比宁方程和其他理论和方法,可以更全面地了解活性炭纤维的多段充填机理,从而更好地控制和优化多段充填的过程。
在研究活性炭纤维多段充填机理时,还可以使用温度敏感性测试方法来研究充填过程中纤维表面的动力学性质。
例如,可以使用动态氧吸附(DAC)或旋转杆氧吸附(ROTA)等技术来测量温度对纤维表面吸附性能的影响。
通过对比不同温度下纤维表面的吸附性能,可以更好地了解充填过程中纤维表面的动力学性质。
此外,还可以使用分子动力学模拟方法来研究纤维表面的吸附行为。
例如,可以使用拉曼光谱或红外光谱等技术来测量纤维表面的分子吸附构型。
然后,使用分子动力学模拟方法来模拟不同分子吸附构型下的纤维表面的动力学性质,帮助我们更好地了解活性炭纤维的多段充填机理。
不对称催化动态动力学拆分
不对称催化动态动力学拆分英文回答:Asymmetric catalysis dynamic kinetic resolution (ACDKR) is a powerful tool for the preparation of enantiomerically enriched compounds. In ACDKR, a racemic mixture of a substrate is reacted with a chiral catalyst and a resolving agent. The catalyst selectively activates one enantiomer of the substrate, leading to its preferential reaction withthe resolving agent. This results in the formation of one enantiomer of the product in excess, while the other enantiomer of the substrate is recovered unreacted.The development of ACDKR methods has been driven by the need for efficient and selective routes to chiral compounds. Chiral compounds are important in a wide range of applications, including pharmaceuticals, agrochemicals, and fragrances. ACDKR offers several advantages overtraditional methods for the preparation of chiral compounds.First, ACDKR is a highly efficient process. The use of a chiral catalyst allows for the selective activation of one enantiomer of the substrate, leading to high enantiomeric excesses of the product.Second, ACDKR is a versatile process. A wide range of substrates can be resolved using ACDKR, including ketones, aldehydes, imines, and epoxides.Third, ACDKR is a green process. The use of a catalytic amount of chiral catalyst and a non-toxic resolving agent makes ACDKR an environmentally friendly process.ACDKR has been used to prepare a wide range of chiral compounds, including pharmaceuticals, agrochemicals, and fragrances. Some of the most important applications of ACDKR include:The preparation of chiral intermediates for the synthesis of pharmaceuticals.The preparation of chiral agrochemicals.The preparation of chiral fragrances.ACDKR is a powerful tool for the preparation of enantiomerically enriched compounds. The development of new ACDKR methods is an active area of research, and this technology is expected to continue to play an importantrole in the synthesis of chiral compounds.中文回答:不对称催化动态动力学拆分(ACDKR)是一种制备对映体富集化合物的有力工具。
CDN-UTP8 ED3耦合和去耦合网络说明书
LARGEST RANGE OF IMPULSE TESTERS UP TO 100KV/100KA Technical SpecificationE-CDN-UTP8 Ed3.docRevised: 29. August 20131 CDN Network Type CDN-UTP8 ED3(Unshielded Twisted Pairs)1 CDN Network Type CDN-UTP8 ED3 11.1 Introduction 1 2 General 22.1 Application range2 3Function of the Network 3 3.1 De-coupling part 3 3.2 Coupling part 4 3.3 Mechanical dimensions, climatic conditions4 4Accessories and use with EMC PARTNER generators 5 4.1 Accessories to CDN-UTP8 ED3 5 4.2 CDN-UTP8 ED3 network can be used with following EMC-PARTNER generators 5 4.3 Other EMC-PARTNER coupling, de-coupling networks61.1 IntroductionThe CDN-UTP8 ED3 is a sophisticated coupling and de-coupling network for superimposing surge impulses on balanced communication lines in accordance with IEC61000-4-5 ED3 Figure: 9,unshielded unsymmetrical interconnection lines; Figure 10 unshielded symmetrical interconnection lines, ITU-K20, K21 and FCC part 68. Figure A.4It is designed for 1.2/50us and 10/700us pulses up to 6.6kVProvided by:(800)404-ATECAdvanced Test Equipment Corp .® Rentals • Sales • Calibration • Service2 General2.1 Application rangeThe CDN-UTP8 ED3 is specially designed to fulfil the requirements of modern high speedcommunication lines. For the following communication ports the CDN-UTP8 ED3 is recommended:Application Typical data Remarks CDN-UTP8 ED3 Gigabit Ethernet 10Mbits/s, 100Mbits/s, 1Gbit/s 8 wires, 4 pairs IEEE 802.RJ45 connectorscoupling and decoupling with GDTNeeded PN 105839 ADAPTER BOX RJ45Ethernet : 10Base-T 100ohm, 4wire 10Mbit/s and 100Mbit/s IEEE 802.3RJ45 connectorscoupling and decoupling with GDTNeeded PN 105839 ADAPTER BOX RJ45USB 90ohm, 2-wire + 2-wire supply 5V, 200mA1.5Mbit/s, 12Mbit/s, 480Mbit/s USB = Universal Serial BusRJ45 connectors coupling and decoupling with GDTNeeded PN 105839 ADAPTER BOX RJ45CDN-UTP ED3 and CDN-UTP8 ED3 Analogue subscriber lines (a/b-line) 600ohm, 2-wire 24V..60V, 20..100mA,100Hz..3.4kHz ( 50Hz..16kHz)Including modems up to 56kBit/s ISDN 100ohm, 4-wire0.75V ( supply 40V )25kHz..80kHz(120kHz) 192Kbit/sIntegrated Services Digital Network (ISDN) S0-Bus (CCITT 1.430) ADSL resp. xDSL 100ohm, 4-wire, 1 V25kHz..1104kHzup to 8MBit/sADSL = Asymmetric Digital Subscriber Line. Different protocols for 2- and 4-wire at different data-rates Interbus4-wire + 1wire ground5V, 800mA up to 500kBit/sRS-485 Profibus 2-wire up to 500kBit/s RS-485EN50170ASI 2-wire 2V, 100mAASI = Actor Sensor InterfaceCan-Bus 2-wire RS-485 RS-432 2-wire 20k, 115kbits/sIEC61000-4-5: 2013, Electromagnetic compatibility (EMC) - Part 4 Testing and measurement techniques – Section 2: SURGE immunity testsITU-T K.20 Resistibility of telecommunication switching equipment to overvoltages and overcurrents ITU-T K.21 Resistibility of subscriber’s terminals to overvoltages and overcurrents ITU-T K.22 Overvoltage resistibility of equipment connected to an ISDN T/S busITU-T K.44 Resistibility tests for telecommunication equipment exposed to overvoltages and overcurrents - Basic Recommendation3 Function of the NetworkThe third edition or IEC61000-4-5 cancels and replaces the second edition published in 2005, and constitutes a technical revision.This edition includes the following significant technical additions with respect to the previous edition:a) New Annex E on mathematical modelling of surge waveforms;b) New Annex F on measurement uncertainty;c) New Annex G on method of calibration of impulse measuring systems;d) New Annex H on coupling/Decoupling surges to lines rated above 200 A.Moreover while surge test for ports connected to outside telecommunication lines was addressed in sub- clause 6.2 of Edition 2, in this Edition 3 the normative Annex A is fully dedicated to this topic. In particular it gives the specifications of the 10/700 µs combined wave generator.3.1 De-coupling partCurrent compensated inductor :Common mode inductance 20mHStray inductance 12uHDC-Resistance 3.5ohm each lineMaximum unbalance < 0.003ohm line to lineLine capacitance 2nF line to lineStray capacitance 150pF line to groundSignal line characteristicsNumber of lines up to 8 (one up to 4 pairs balanced)Maximum signal current per line 1A ac or dc Sum of all lines max. 2A Signal voltage range 0V .. 300Vdc No switching contactsinside CDN-UTP8 ED3 Signal transmissionMaximum pulse voltage 6400V 1.2/50us or 10/700us Saturation No relevant saturation up to 6kV10/700usV x T > 1VsFrequency responseInsertion loss < 1dB at 1MHzNear end crosstalk (NEXT) > 40dB at 1MHzTransmission line impedance 100ohmBandwidth (50 ohm source/load) >5MHz - 3dBBandwidth (100 ohm source/load) >10MHz - 3dBBandwidth (600 ohm source/load) >300kHz - 3dBProtection of auxiliary equipment :Selectable1 ) 90V gas arrestor (GTD)PN 104409 ADAPTER BOX 90VG V signal < 90VV residual peak < 300VV clamping = 0VInsertion capacitance < 2pFV signal = maximumusable wanted signalvoltage2 ) adapter for other clamp elements PN 104412 EMPTY BOX Empty boxesFor customer designincluded3.2 Coupling partCoupling resistors :SelectableUnsymmetric lines4 x 40 Ohm IEC 1,2/50µs up to 4 wires Up to 6.6kV Symmetric lines (pairs)2 x 80 ohm IEC 1.2/50us on 2-wires up to 6.6kV 4 x 160 ohm IEC 1.2/50us on 4-wires up to 6.6kV 8 x 320 ohm IEC 1.2/50us on 8-wires up to 6.6kV IEC/ITU 10/700 µs8 x 25 ohm ITU-K20 up to 6.6kV Coupling elements :Selectable1 ) direct2 ) 90V gas arrestor (GTD)PN 104409 ADAPTER BOX 90VG V signal maximum < 90VV surge minimum > 1000V Insertion capacitance < 2pF3 ) 05µF capacitorPN 106526 ADAPTER BOX C05 V signal maximum < 300V V surge minimum > 250V4 adapter for other clamp elements PN 104412 EMPTY BOX Empty boxesFor customer designincludedCoupling elements : IEC/EN61000-4-5 ED3 recommends a gas discharge tube (GTD) of 90V for unsymmetric and symmetric operated lines. The 0.5µF isspecified in some product standard specified.3.3 Mechanical dimensions, climatic conditionsMIG type Dimensions [mm] Weight [kg] Versionswidth x depth x heightCDN-UTP8 ED3 450 x 600 x 370 77 19" Rack 8 UHEnvironment conditionsTemperature range °C 0 to 35 °CHumidity rh % 25 to 80%Pressure kPa 86 to 1064 Accessories and use with EMC PARTNER generators 4.1 Accessories to CDN-UTP8 ED34.2 CDN-UTP8 ED3 network can be used with following EMC-PARTNERgeneratorsMIG0603IN2 1.2/50µs and 10/700µs up to 6kVMIG0603IN3 1.2/50µs and 10/700µs up to 6kVTRA3000 1.2/50µs up to 4kV1.2/50µs and 10/700µs up to 6kVIMU3000 Versions with S6-T6circuits4.3 Other EMC-PARTNER coupling, de-coupling networksCDN-UTP Ed3 1.2/50us and 10/700us up to 6kV for 2 pairs (4 lines)CDN-KIT1000 Ed3 1.2/50 µs surge coupling-decoupling network for unbalanceddata lines in accordance with IEC 61000-4-5.。
耐极端环境碳基复合材料主动热疏导设计与长寿命防护机理
耐极端环境碳基复合材料主动热疏导设计与长寿命防护机理The design of actively thermally conductive carbon-based composites for extreme environments and their mechanismsfor long-term protection.Carbon-based composites have received significant attention due to their unique properties, such as high thermal conductivity, lightweight nature, and excellent mechanical strength. These materials are particularly suitable for applications in extreme environments where conventional materials may not suffice. The design of carbon-based composites with active thermal conductivity is crucial for dissipating heat efficiently and ensuring the long-term durability of these materials.One approach to achieving active thermal conductivity in carbon-based composites is through the incorporation of highly thermally conductive fillers, such as graphene or carbon nanotubes. These fillers can form efficient heat transfer pathways within the composite structure, enhancingthe overall thermal conductivity. Additionally, the alignment of these fillers along preferred directions can further enhance thermal transport properties.To ensure the long-term protection and durability of carbon-based composites in extreme environments, various mechanisms need to be considered. One crucial mechanism is the prevention of oxidation or degradation of carbonaceous materials at elevated temperatures. This can be achieved through the application of protective coatings that act as barriers against oxygen diffusion. Furthermore, the addition of antioxidants or sacrificial layers can provide additional protection against oxidative degradation.Another important factor to consider is resistance against mechanical loading and impact in extreme environments. Carbon-based composites often possess exceptional mechanical properties; however, they may still experience damage from heavy loads, intense vibrations, or harsh impacts. To mitigate this issue, reinforcement strategies such as fiber weaving or intercalation can be employed to enhance mechanical strength and toughness.In addition to protecting against oxidative degradation and mechanical damage, it is essential to address challenges related to thermal expansion mismatch between different components within a composite structure. Extreme temperature variations can induce significant stress on the material interfaces leading to delamination or cracking. To overcome this challenge, designing composite architectures with tailored interfacial properties or introducing compliant interlayers can effectively mitigate thermal expansion mismatch.In conclusion, the design of actively thermally conductive carbon-based composites for extreme environments requires considerations of multiple factors. These include incorporating highly thermally conductive fillers, preventing oxidation and degradation, enhancing mechanical strength, and addressing thermal expansion mismatch. By understanding and implementing these mechanisms, we can develop carbon-based composites that can withstand harsh conditions while maintaining excellent thermal conductivity and long-term durability.译文:耐极端环境碳基复合材料主动热疏导设计与长寿命防护机理碳基复合材料因其高热导率、超轻性和优异的力学强度等独特性质受到广泛关注。
液晶弹性体
3. Actuators based on LCEs
3.1. Actuators based on thermally actuated LCEs
Fig 3. Micrometer-sized nematic LCE actuators consisting of a pillar array. (a) Experimental setup used to prepare the responsive pillars. (b) Top view (under an optical microscope) of the pillar pattern obtained by the imprint in the nematic liquid crystal elastomer. (Inset) Zoom on the structure (pillar diameter=20mm)[1]. [1 ]Buguin A, Li M H, Silberzan P, et al. Journal of the American Chemical Society, 2006, 128(4): 1088-1089.
4. Summary
1.Introduction
Smart materials:
There is a group of materials capable of responding to external stimuli with mechanical deformation.
Fig 1. The diferent kinds of actuator materials both in natural and synthetic systems
3. Actuators based on LCEs
耦合光热发电储热-有机朗肯循环的先进绝热压缩空气储能系统热力学分析
第 12 卷第 12 期2023 年 12 月Vol.12 No.12Dec. 2023储能科学与技术Energy Storage Science and Technology耦合光热发电储热-有机朗肯循环的先进绝热压缩空气储能系统热力学分析尹航1,王强1,朱佳华2,廖志荣2,张子楠1,徐二树2,徐超2(1中国广核新能源控股有限公司,北京100160;2华北电力大学能源动力与机械工程学院,北京102206)摘要:先进绝热压缩空气储能是一种储能规模大、对环境无污染的储能方式。
为了提高储能系统效率,本工作提出了一种耦合光热发电储热-有机朗肯循环的先进绝热压缩空气储能系统(AA-CAES+CSP+ORC)。
该系统中光热发电储热用来解决先进绝热压缩空气储能系统压缩热有限的问题,而有机朗肯循环发电系统中的中低温余热发电来进一步提升储能效率。
本工作首先在Aspen Plus软件上搭建了该耦合系统的热力学仿真模型,随后本工作研究并对比两种聚光太阳能储热介质对系统性能的影响,研究结果表明,导热油和太阳盐相比,使用太阳盐为聚光太阳能储热介质的系统性能更好,储能效率达到了115.9%,往返效率达到了68.2%,㶲效率达到了76.8%,储电折合转化系数达到了92.8%,储能密度达到了5.53 kWh/m3。
此外,本研究还发现低环境温度、高空气汽轮机入口温度及高空气汽轮机入口压力有利于系统储能性能的提高。
关键词:先进绝热压缩空气储能;聚光太阳能辅热;有机朗肯循环;热力学模型;㶲分析doi: 10.19799/ki.2095-4239.2023.0548中图分类号:TK 02 文献标志码:A 文章编号:2095-4239(2023)12-3749-12 Thermodynamic analysis of an advanced adiabatic compressed-air energy storage system coupled with molten salt heat and storage-organic Rankine cycleYIN Hang1, WANG Qiang1, ZHU Jiahua2, LIAO Zhirong2, ZHANG Zinan1, XU Ershu2, XU Chao2(1CGN New Energy Holding Co., Ltd., Beijing 100160, China; 2School of Energy Power and Mechanical Engineering,North China Electric Power University, Beijing 102206, China)Abstract:Advanced adiabatic compressed-air energy storage is a method for storing energy at a large scale and with no environmental pollution. To improve its efficiency, an advanced adiabatic compressed-air energy storage system (AA-CAES+CSP+ORC) coupled with the thermal storage-organic Rankine cycle for photothermal power generation is proposed in this report. In this system, the storage of heat from photothermal power generation is used to solve the problem of limited compression heat in the AA-CAES+CSP+ORC, while the medium- and low-temperature waste heat generation in the organic Rankine cycle power收稿日期:2023-08-18;修改稿日期:2023-09-18。
美国西北大大小写发现新型碳基复合材料
面纳米尺度 的精 细调控 ,同 时引入金
纳米粒子进 行 电化 学信 号放大 ,从而
产 生 的光信号输 出 能够 在产 品使用 的 寿 命期 限和工作温 度 范 围内维持稳 定
完整的色彩管理解决方案的公司 。 司 公 希望通 过将 传感器 和控制 器整合 在一 起, 将色彩管理 的优势扩展 到了更 多在
ห้องสมุดไป่ตู้
更小 的消 费电子产 品中使用 彩色 L D C 屏幕的领域 。”
读者服务卡编号 0 6 2口
可满足各种便携 式显示设备的 L D背 C
光需求 。 AD D. 2 J J 3是一款 为 R BL D背 8 G E 光系 统 的闭环 光学 反馈装 置而设 计的 整合 了R GB光传感器 的 C S混合信 MO
( DS , C ) 这一生物传感 器具有高灵敏度
和 高特异性 ,研 究水 平达 到国际先进 水 平,在生物 医学领 域显示 出广泛 的 应用前 景, 美 国化学会会 志》《AC 》 《 (J S )
号芯片 。 这款器件 同样拥有 多种增益控
制选择 , 采用一个可 以 自动选择最佳增
美 国西 北大 大小 写发现 新 型 碳 基复合材料
安华 高科 中国及 香港地 区总经 理 李艇先生表 示, 安华高科是 目前业 内唯
一 一
发生方式来提 高识别精确度 。
读者服 务卡编号 0 4 2口
家可为 L D背光提供整合 了R C GB
安华高科 为 L D背光推 出首 C 款整合 R B光传感器的色彩 G 控制器
高分子专业英语翻译[最新]
高分子专业英语翻译[最新]第五课乳液聚合大部分的乳液聚合都是由自由基引发的并且表现出其他自由基体系的很多特点,最主要的反应机理的不同源自小体积元中自由基增长的场所不同。
乳液聚合不仅允许在高反应速率下获得较高分子量,这在本体聚合中是无法实现或效率低下的,,同时还有其他重要的实用优点。
水吸收了大部分聚合热且有利于反应控制,产物在低粘度体系中获得,容易处理,可直接使用或是在凝聚,水洗,干燥之后很快转化成固体聚合物。
在共聚中,尽管共聚原理适用于乳液体系,单体在水相中溶解能力的不同也可能导致其与本体聚合行为不同,从而有重要的实际意义。
乳液聚合的变化很大,从包含单一单体,乳化剂,水和单一引发剂的简单体系到这些包含有2,3个单体,一次或分批添加,,混合乳化剂和助稳定剂以及包括链转移剂的复合引发体系。
单体和水相的比例允许变化范围很大,但是在技术做法上通常限制在30/70到60/40。
单体和水相比更高时则达到了直接聚合允许的极限,只有通过分批添加单体方法来排除聚合产生的大量的热。
更复杂的是随着胶体数的增加粘度也大大增加,尤其是当水溶性的单体和聚合物易容时,反应结束胶乳浓度降低。
这一阶段常常伴随着通过聚集作用或是在热力学不稳定时凝结作用而使胶粒尺寸增大。
第十课高分子的构型和构象本课中我们将使用根据经典有机化学术语而来的构型和构象这两个词。
构型异构是由于分子中存在一个或多个不对称中心,以最简单的C原子为例,每一碳原子的绝对构型为R型和S型,当存在双键时会有顺式和反式几何异构。
以合成聚合物为例,构型异构的典型问题和R.S型不对称碳原子在主链上的排布有关。
这些不对称碳原子要么来自不对称单体,如环氧丙烷,要么来自对称单体,如乙烯单体,,这些物质的聚合,在每个单体单元中形成至少一个不对称碳原子。
大分子中的构型异构源于侧链上存在不对称的碳原子,例如不对称乙烯单体的聚合,也是可能的,现今已经被广泛研究。
和经典有机化学术语一致,构象,旋转体,旋转异构体,构象异构体,指的是由于分子单键的内旋转而形成的空间排布的不同。
布朗大学开发出可选择性地将CO2转化为CO的纳米金催化剂
d u s t r i a l a p p l i c a t i o n s .
Ke y Wo r ds :i on i c l i q ui d;s yn t he s i s ;m u l t i — s t a ge c ou nt e r c u r r e nt e x t r a c t i o n;t he s t r i n g c l a s s e x pe r i me n t : d e s ul f u r i z a t i o n
℃ P
~
V( I L ): V( H2 O2 ): V( g a s o l i n e ) 一1: 1: 1 O ,6 O。 C a n d r e v o l u t i o n s p e e d o f 6 0 0 r / ai r n .Af t e r t h e 4 s t a — g e s c o u n t e r c u r r e n t e x t r a c t i o n , t h e s u l f u r c o n t e n t o f t h e f e e d g a s o l i n e d e c r e a s e s t o 1 0 g g / g wi t h t h e s u l —
t i o n u s i n g h y d r o g e n p e r o x i d e( 3 0 % )a s t h e o x i d a n t . Th e d e s u l f u r i z a t i o n c o n d i t i o n s we r e c h e c k e d a n d
一
o p t i mi z e d b y c h a n g i n g t h e r a t i o o f I L s / o i l , e x t r a c t i o n t i me , t e mp e r a t u r e , a n d r a t e .T h e o r e t i c a l s t a g e s o f
第五章动态热力分析
(四)动态力学频率谱 在一定温度下,聚合物动态力学性能随频率的变化称为
动态力学频率谱,即DMA频率谱。用于研究材料力学性能 与速率的依赖性。
图5-13 典型非晶态聚合物的DMA频率谱
28
二、动态热力分析仪器
表5-1 动态力学试验方法
振动模式 自由振动 强迫共振
强迫非共振
声波传播
形变模式
扭转 固定-自由弯曲 自由-自由弯曲
16
聚合物材料是典型的粘弹性材料,这种粘弹性表现 在聚合物的一切力学行为上。
聚合物的力学性质随时间的变化统称为力学松弛。 根据聚合物材料受到外部作用的情况不同,可以观 察到不同类型的力学松弛现象,最基本的有蠕变、应力 松弛、滞后和力学损耗(内耗)等。
17
(二)内耗 聚合物在交变应力作用下,应变落后于应力变化的现象 称为滞后现象。 滞后现象的发生是由于链段在运动时要受到内摩擦力的 作用,滞后相位角δ越大,说明链段运动越困难,越是跟不 上外力的变化。 应变的变化落后于应力的变化,发生滞后现象,则每一 循环变化中就要消耗功,称为力学损耗,也称内耗。 聚合物内耗的大小与试样本身的结构有关,还与温度、 频率、时间、应力(或应变)及环境因素(如湿度、介质等 )有关。
负荷作用下,试样弯曲形状达到规定值时的温度。 国标规定,升温速度为12℃/6min,弯曲应力为
18.5kg/cm2或4.6kg/cm2,弯曲变形量为0.21mm。
13
(四)拉伸法 采用拉伸探头,将纤维或薄膜试样装在专用夹具上,
然后放在内外套管之间,外套管固定在主机架上,内套管 上端施加负荷,测定试样在程序控温下的温度-形变曲线。
热机械分析仪有两种类型,即浮筒式和天平式。 负荷的施加方式有压缩、弯曲、针入、拉伸等,常用 的是压缩力。
[转载]coupling分为两种:运动耦合和分布耦合
[转载]coupling分为两种:运动耦合和分布耦合原⽂地址:coupling分为两种:运动耦合和分布耦合作者:CAECFD创新⼯场coupling分为两种:运动耦合和分布耦合;是对接触问题的⼀种简化⽅式,⼀般来讲,分布耦合处的刚度⼩于运动耦合处的刚度;【1】运动耦合:即在此区域的各节点与参考点之间建⽴⼀种运动上的约束关系。
【2】分布耦合:在此区域的各节点与参考点之间建⽴⼀种约束关系,但是对此区域上各节点的运动进⾏了加权处理,使在此区域上受到的合⼒和合⼒距与施加在参考点上的⼒和⼒矩相等效。
换⾔之,分布耦合允许⾯上的各部分之间发⽣相对变形,⽐运动耦合中的⾯更柔软。
31.3.2 Coupling constraintsProducts: Abaqus/Standard Abaqus/Explicit Abaqus/CAEReferences“Surfaces: overview,” Section 2.3.1*COUPLING*KINEMATIC*DISTRIBUTING“Defining coupling constraints,” Section 15.15.4 of the Abaqus/CAE User's ManualOverviewThe surface-based coupling constraint:couples the motion of a collection of nodes on a surface to the motion of a reference node;is of type kinematic when the group of nodes is coupled to the rigid body motion defined by the reference node;is of type distributing when the group of nodes can be constrained to the rigid body motion defined by a reference node in an average sense by allowing control over the transmission of forces through weight factors specified at the coupling nodes;automatically selects the coupling nodes located on a surface lying within a region of influence;can be used with two- or three-dimensional stress/displacement elements; andcan be used in geometrically linear and nonlinear analysis.Surface-based coupling definitionsThe surface-based coupling constraint in Abaqus provides coupling between a reference node and a group of nodes referred to as the “coupling nodes.” This option provides the same functionality as the kinematic coupling constraint and the distributing coupling elements (DCOUP2D, DCOUP3D) in Abaqus/Standard with a surface-based user interface. The coupling nodes are selected automatically by specifying a surface and an optional influence region. The procedure used to define the coupling nodes is discussed below.For a distributing coupling constraint, the distributing weight factors are calculated automatically if the surface is an element-based surface. In such a case the weight factors are based on the tributary area at each coupling node, except for a surfacealong a shell edge, where the weight factors are based on the tributary edge length. Furthermore, the distributing weight factors can be modified using one of several weighting methods, which allow the forces transferred to the coupling nodes to vary inversely with the radial distance from the reference node.Typical applicationsThe coupling constraint is useful when a group of coupling nodes is constrained to the rigid body motion of a single node. The coupling constraint can be employed effectively in the following applications:To apply loads or boundary conditions to a model. Figure 31.3.2–1 illustrates the use of a kinematic coupling constraint to prescribe a twisting motion to a model without constraining the radial motion.Figure 31.3.2–1 Kinematic coupling constraint.Figure 31.3.2–2 illustrates a distributing coupling constraint used to prescribe a displacement and rotation condition ona boundary where relative motion between the nodes on the boundary is required. In this example a twist is prescribedat the end of the structure that is expected to warp and/or deform within the end surface.Figure 31.3.2–2 Distributing coupling constraint.To distribute loads on a model, where the load distribution can be described with a moment-of-inertia expression.Examples of such cases include the classic bolt-pattern and weld-pattern distribution expressions.To apply dimensionality transitions between continuum and structural elements. For example, a distributing coupling allows flexible coupling between structural and solid elements.To model end conditions. For example, modeling a rigid end plate or modeling plane sections of a solid to remain planar can be done easily with a kinematic coupling definition.To simplify modeling of complex constraints. In a kinematic coupling definition the degrees of freedom that participate in the constraint may be selected individually in a local coordinate system.To model interactions with other constraints, such as connector elements. For example, a hinged part may be modeled more realistically by two distributing coupling definitions, whose reference nodes are connected by a hinge connector element. The load transfer then occurs between two “clouds” of nodes, rather than between two single nodes.“Substructure analysis of a one-piston engine model,” Section 4.1.10 of the Abaqus Example Problems Manual,illustrates this use of connector elements in conjunction with coupling constraints to model a one-piston engine. Defining the coupling constraintDefining a coupling constraint requires the specification of the reference node (also called the constraint control point), the coupling nodes, and the constraint type. The coupling constraint associates the reference node with the coupling nodes. A name must be assigned to the constraint and may be used in postprocessing with Abaqus/CAE. A node number or node set name may be specified for the reference node. If a node set is specified, the node set must contain exactly one node. The reference node for a kinematic coupling constraint has both translational and rotational degrees of freedom. The surface on which the coupling nodes are located can be node-based; element-based; or, in Abaqus/Explicit, a combination of both surface types. You can specify an optional radius of influence that limits the coupling nodes to a specific region on the surface. Details on how coupling nodes are defined by specifying an influence region are discussed below.The constraint type can be either kinematic or distributing, as discussed below.Input File Usage:Use the following options:*COUPLING, CONSTRAINT NAME=name, REF NODE=n,SURFACE=surface*KINEMATIC or*DISTRIBUTINGAbaqus/CAE Usage:Interaction module: Create Constraint: Coupling: Coupling type: Kinematic or Distributing Specifying a region of influenceBy default, coupling nodes belonging to the entire surface are selected for the coupling definition. You can limit the coupling nodes to lie within a spherical region centered about the reference node by defining a radius of influence.The procedure by which coupling nodes are selected for the constraint definition depends on the surface type: For a node-based surface, all the nodes defined by the surface definition that fall within the influence region areselected for the coupling definitions.For an element-based surface, the surface facets that are either fully or partially inscribed by the influence region are determined. All nodes belonging to these facets, whether or not these nodes fall within the influence region, areselected for the coupling nodes. When the influence radius is less than the distance to the closest coupling node, Abaqus selects all nodes belonging to the closest facet. If the projection of the reference node on the surface falls on an edge or a vertex of multiple facets, all nodes belonging to these facets adjoining the edge or vertex are included in the coupling definition.A distributing coupling constraint must include at least two coupling nodes. If fewer than two coupling nodes are found,Abaqus issues an error message during input file preprocessing.Input File Usage:*COUPLING, CONSTRAINT NAME=name, REF NODE=n,SURFACE=surface, INFLUENCE RADIUS=rAbaqus/CAE Usage:Interaction module: Create Constraint: Coupling: Influence radius: SpecifyKinematic coupling constraintsKinematic coupling constrains the motion of the coupling nodes to the rigid body motion of the reference node. The constraint can be applied to user-specified degrees of freedom at the coupling nodes with respect to the global or a local coordinate system.Kinematic constraints are imposed by eliminating degrees of freedom at the coupling nodes. In Abaqus/Standard once any combination of displacement degrees of freedom at a coupling node is constrained, additional displacement constraints—such as MPCs, boundary conditions, or other kinematic coupling definitions—cannot be applied to any coupling node involved in a kinematic coupling constraint. The same limitation applies for rotational degrees of freedom. This restriction does not apply in Abaqus/Explicit. See “Kinematic constraints: overview,” Section 31.1.1, for more information.Input FileUsage:Use both of the following options to define a kinematic coupling constraint:*COUPLING*KINEMATICfirst dof, last dofFor example, the following coupling constraint is used to constrain degrees of freedom 1, 2, and 6 on surfacesurfA to reference node 1000:*COUPLING, CONSTRAINT NAME=C1, REF NODE=1000, SURFACE=surfA*KINEMATIC1, 26,Abaqus/CAE Usage:Interaction module: Create Constraint: Coupling: Coupling type: Kinematic: toggle on the degrees of freedomTranslational degrees of freedomTranslational degrees of freedom are constrained by eliminating the specified degrees of freedom at the coupling nodes. When all translational degrees of freedom are specified, the coupling nodes follow the rigid body motion of the reference node.Rotational degrees of freedomRotational degrees of freedom are constrained by eliminating the specified degrees of freedom at the coupling nodes. All combinations of selected rotational degrees of freedom result in rotational behavior identical to existing MPC types:Selection of three rotational degrees of freedom along with three displacement degrees of freedom is equivalent to MPC type BEAM.Selection of two rotational degrees of freedom is equivalent to MPC type REVOLUTE in Abaqus/Standard.Selection of one rotational degree of freedom is equivalent to MPC type UNIVERSAL in Abaqus/Standard.In Abaqus/Standard internal nodes are created by the kinematic coupling to enforce the constraints that are equivalent to MPC types REVOLUTE and UNIVERSAL. These nodes have the same degrees of freedom as the additional nodes used in these MPC types and are included in the residual check for nonlinear analysis.Specifying a local coordinate systemThe kinematic coupling constraint can be specified with respect to a local coordinate system instead of the global coordinate system (see “Orientations,” Section 2.2.5). Figure 31.3.2–1 illustrates the use of a local coordinate system to constrain all but the radial translation degrees of freedom of the coupling nodes to the reference node. In this example a local cylindrical coordinate system is defined that has its axis coincident with the structure's axis. The coupling node constraints are then specified in this local coordinate system.Input File*COUPLING, ORIENTATION=localUsage:For example, the following input is used to specify the kinematic coupling constraint shown in Figure31.3.2–1:*ORIENTATION, SYSTEM=CYLINDRICAL, NAME=COUPLEAXIS0.0, -1.0, 0.0, 0.0, 1.0, 0.0*COUPLING, REF NODE=500, SURFACE=Endcap,ORIENTATION=COUPLEAXIS*KINEMATIC2, 3Abaqus/CAE Usage:Interaction module: Create Constraint: Coupling: Edit: select local coordinate systemConstraint direction and finite rotationIn geometrically nonlinear analysis steps the coordinate system in which the constrained degrees of freedom are specified will rotate with the reference node regardless of whether the constrained degrees of freedom are specified in the global coordinate system or in a local coordinate system.Distributing coupling constraintsDistributing coupling constrains the motion of the coupling nodes to the translation and rotation of the reference node. This constraint is enforced in an average sense in a way that enables control of the transmission of loads through weight factors at the coupling nodes. Forces and moments at the reference node are distributed either as a coupling node-force distribution only (default) or as a coupling node-force and moment distribution. The constraint distributes loads such that the resultants of the forces (and moments) at the coupling nodes are equivalent to the forces and moments at the reference node. For cases of more than a few coupling nodes, the distribution of forces/moments is not determined by equilibrium alone, and distributing weight factors are used to define the force distribution.The moment constraint between the rotation degrees of freedom at the reference node and the average rotation of the cloud nodes can be released in one direction in a two-dimensional analysis and one, two, or three directions in a three-dimensional analysis. In a three-dimensional analysis you can specify the moment constraint directions in the global coordinate system or in a local coordinate system. All available translational degrees of freedom at the reference node are always coupled to the average translation of the coupling nodes.In a three-dimensional Abaqus/Standard analysis if all three moment constraints are released by specifying only degrees of freedom 1 through 3, only translation degrees of freedom will be activated on the reference node. If only one or two rotation degrees of freedom have been released, all three rotation degrees of freedom are activated at the reference node. In this case you must ensure that proper constraints have been placed on the unconstrained rotation degrees of freedom to avoid numerical singularities. Most often this is accomplished by using boundary conditions or by attaching the reference node to an element such as a beam or shell that will provide rotational stiffness to the unconstrained rotation degrees of freedom.In Abaqus/Explicit releasing one or more of the moment constraints may lead to significant computational performance degradation. This is also the case when other constraints intersect the cloud of coupling nodes. In these cases, thedegradation in performance is particularly noticeable when a large number of such distributed couplings are present in the model or when the size of the constrained “cloud” is large. For that matter, when the modeling conditions mentioned above are encountered, the size of the coupling nodes cloud is limited to 1000. To alleviate the released moment constraint issue,the following modeling technique can be used (also available in Abaqus/Standard): constrain all moments in the distributed coupling and use an appropriate connector element at the reference node (such as REVOLUTE, HINGE, CARDAN or BUSHING) to model released moments at the coupling's reference node. This technique has also the advantage of being able to specify finite compliance such as elasticity, plasticity or damage in the “released” rotational component.Input FileUsage:*DISTRIBUTINGfirst dof , last dof If no degrees of freedom are specified, all available degrees of freedom are coupled. If you specify one or morerotation degrees of freedom but not all available translation degrees of freedom, Abaqus issues a warning message and adds all available translation degrees of freedom to the constraint.For example, the following coupling constraint is used to constrain degrees of freedom 1–5 on the reference node1000 to the average translation and rotation of surface surfA :*COUPLING , CONSTRAINT NAME=C1, REF NODE=1000, SURFACE=surfA *DISTRIBUTING1, 5In this example the moment constraint between the reference node and the coupling nodes will be released in the 6-direction but will be enforced in the 4- and 5-directions. This provides a “revolute-like” rotation connection between the reference node and the coupling nodes (see “General multi-point constraints,” Section 31.2.2).Abaqus/CAE Usage:Interaction module: Create Constraint : Coupling : Coupling type : Distributing : toggle on the rotational degrees of freedom (Abaqus/CAE automatically constrains the translational degrees of freedom)Node-based surfaceUser-defined weight factors are used for node-based surfaces. The cross-sectional areas specified in the surface definition are used as the weight factors (see “Node-based surface definition,” Section 2.3.3).Element-based surfaceFor element-based surfaces the weight factors are calculated by Abaqus. The default weight distribution is based on the tributary surface area at each coupling node, except for a surface along a shell edge where the weight distribution is based on the tributary edge length. The procedure used to calculate the default weight factors is designed to ensure that if a radius of influence is prescribed, the default weight distribution varies smoothly with the influence radius.Calculating the default distributing weight factors The procedure to calculate the distributing weight factors depends on whether or not an influence radius is specified.If no influence radius is specified, the entire surface is used in the coupling definition. In this case all nodes located on the surface are included in the coupling definition and the distributing weight factor at each coupling node is equal to the tributary surface area.If an influence radius is specified, the default distributing weight factors at the coupling nodes are calculated as follows:1. A “participation factor” is calculated for each surface facet. The participation factor is defined below.2. The tributary nodal area (or tributary edge length along a shell edge) at each facet node is computed and ismultiplied by the facet participation factor.3. The coupling node distributing weight factor is computed as the sum of the corresponding facet nodal areas(calculated above) for all joining facets.Calculating the facet participation factorThe participation factor defines the proportion of the facet's area that contributes to the distributing weight factors when an influence radius is specified. The participation factor varies between zero and one.To define the participation factor, the distance of the facet node closest to the reference node, , and the distance of the facet node farthest from the reference node, , are calculated.If , where is the influence radius, all facet nodes lie within the influence region; and a participation factor of one is used.If , none of the facet nodes lie within the influence region; and the participation factor is set to zero.If , the facet is partially inscribed in the influence region; and the facet is assigned a participation factor equal to .If all coupling nodes fall outside the influence radius (i.e., for all facets), Abaqus selects all nodes belonging to the closest facets (as outlined under “Specifying a region of influence”) and uses a participation factor equal to one.Weighting methodsYou can modify the default weight distribution defined above. Various weighting methods are provided that monotonically decrease with radial distance from the reference node. For each case the default weight distribution that is based on the tributary surface area (or tributary edge length along a shell edge) is scaled by the weight factor . If the weighting method is not specified, a uniform weighting method is used in which all weight factors are equal to 1.0.Linearly decreasing weight distributionA linearly decreasing weighting schemewhere is the weight factor at coupling node i, is the coupling node radial distance from the reference node, and is the distance to the furthest coupling node.Input File Usage:*DISTRIBUTING, WEIGHTING METHOD=LINEARAbaqus/CAE Usage:Interaction module: Create Constraint: Coupling: Coupling type: Distributing: Weighting method: LinearQuadratic polynomial weight distributionA quadratic polynomial weight distribution defined byInput File Usage:*DISTRIBUTING, WEIGHTING METHOD=QUADRATICAbaqus/CAE Usage:Interaction module: Create Constraint: Coupling: Coupling type: Distributing: Weighting method: QuadraticMonotonically decreasing weight distributionA monotonically decreasing weight distribution according to the cubic polynomial Input File Usage:*DISTRIBUTING, WEIGHTING METHOD=CUBICAbaqus/CAE Usage:Interaction module: Create Constraint: Coupling: Coupling type: Distributing: Weighting method: CubicSpecifying a local coordinate systemThe distributing coupling constraint can be specified with respect to a local coordinate system instead of the global coordinate system (see “Orientations,” Section 2.2.5). Figure 31.3.2–2 illustrates the use of a local coordinate system to release the moment constraints between the reference node and the coupling nodes in the local 4- and 6-directions, providing a “universal-like” rotation connection. In this example a local rectangular coordinate system is defined that has its local y-axis coincident with the global z-axis. The moment constraint is specified in this local coordinate system.Input FileUsage:*COUPLING, ORIENTATION=localFor example, the following input is used to specify the distributing coupling constraint shown in Figure31.3.2–2:*ORIENTATION, SYSTEM=RECTANGULAR, NAME=COUPLEAXIS0.0, 1.0, 0.0, 0.0, 0.0, 1.0*COUPLING, REF NODE=500, SURFACE=Endcap,ORIENTATION=COUPLEAXIS*DISTRIBUTING1, 35, 5Abaqus/CAE Usage:Interaction module: Create Constraint: Coupling: Edit: select local coordinate systemDefining the surface coupling methodThere are two methods available to couple the motion of the reference node to the average motion of the coupling nodes: the continuum coupling method and the structural coupling method. The continuum coupling method is used by default. Continuum coupling methodThe default continuum coupling method couples the translation and rotation of the reference node to the average translation of the coupling nodes. The constraint distributes the forces and moments at the reference node as a coupling nodes force distribution only. No moments are distributed at the coupling nodes. The force distribution is equivalent to the classic bolt pattern force distribution when the weight factors are interpreted as bolt cross-section areas. The constraint enforces a rigid beam connection between the attachment point and a point located at the weighted center of position of the coupling nodes. For further details, see “Distributing coupling elements,” Section 3.9.8 of the Abaqus Theory Manual.Input File Usage:*DISTRIBUTING , COUPLING=CONTINUUMAbaqus/CAE Usage:Coupling the motion of the reference node to the average motion of the coupling nodes is not supported in Abaqus/CAE.Structural coupling methodThe structural coupling method couples the translation and rotation of the reference node to the translation and the rotation motion of the coupling nodes. The method is particularly suited for bending-like applications of shells when the coupling constraint spans small patches of nodes and the reference node is chosen to be on or very close to the constrained surface. The constraint distributes forces and moments at the reference node as a coupling node-force and moment distribution. For this coupling method to be active, all rotation degrees of freedom at all coupling nodes must be active (as would be the case when the constraint is applied to a shell surface) and the constraints must be specified in all degrees of freedom (default). In addition, for the constraint to be meaningful, the local (or global) z-axis used in the constraint should be such that it is parallel to the average normal direction of the constrained surface.With respect to translations, the constraint enforces a rigid beam connection between the reference node and a moving point that remains at all times in the vicinity of the constrained surface. The location of this moving point is determined by the approximate current curvature of the surface, the current location of the weighted center of position of the coupling nodes (see “Distributing coupling elements,” Section 3.9.8 of the Abaqus Theory Manual), and the z-axis used in the constraint. This choice avoids unrealistic contact interactions if multiple pairs of distributed coupling constraints are used to fasten shell surfaces (see “Breakable bonds,” Section 33.1.9, for more details).With respect to rotations, the constraint is different along different local directions. Along the z-axis (twist direction), the constraint is identical to the one enforced via the continuum coupling method (see “Distributing coupling elements,” Section 3.9.8 of the Abaqus Theory Manual). By contrast, the rotational constraint in the plane perpendicular to the z-axis relates the in-plane reference node rotations to the in-plane rotations of the coupling nodes in the immediate vicinity of the reference node. This choice provides a more realistic (compliant) response when the constrained surface is small and deforms primarily in a bending mode.Input File Usage:*DISTRIBUTING, COUPLING=STRUCTURALAbaqus/CAE Usage:Coupling the motion of the reference node to the average motion of the coupling nodes is not supported in Abaqus/CAE.Moment release and finite rotationIn geometrically nonlinear analysis steps the coordinate system of the degrees of freedom that define the moment release rotates with the reference node regardless of whether the global coordinate system or a local coordinate system is used. Colinear coupling node arrangementsThe distributing coupling constraint transmits moments at the reference node as a force distribution among the coupling nodes, even if these nodes have rotational degrees of freedom. Thus, when the coupling node arrangement is colinear, the constraint is not capable of transmitting all components of a moment at the reference node. Specifically, the moment component that is parallel to the colinear coupling node arrangement will not be transmitted. When this case arises, a warning message is issued that identifies the axis about which the element will not transmit a moment.LimitationsA distributing coupling constraint cannot be used with axisymmetric elements with asymmetric deformation. Thiselement type is not compatible with the distributing coupling constraint.A distributing coupling definition with a large number of coupling nodes produces a large wavefront inAbaqus/Standard. This may result in significant memory usage and a long solution time to solve the finite element equilibrium equations.A distributing coupling constraint cannot involve more than 46,000 degrees of freedom in Abaqus/Standard, whichimplies an upper limit of 23,000 nodes per constraint for two-dimensional and axisymmetric cases and an upper limit of 15,333 nodes per constraint for three-dimensional cases.。
C+9_重芳烃催化加氢脱烷基技术研究进展
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 3 期C +9重芳烃催化加氢脱烷基技术研究进展张鹏飞,严张艳,任亮,张奎,梁家林,赵广乐,张璠玢,胡志海(中石化石油化工科学研究院有限公司,北京 100083)摘要:随着我国芳烃联合装置、乙烯裂解装置的扩能或新建,国内C +9重芳烃产量也大幅增加;利用催化加氢脱烷基技术将C +9重芳烃转化为BTX 等轻质芳烃,对炼化企业具有良好的经济效益。
本文以C +9重芳烃生产BTX 为出发点,阐述了催化加氢脱烷基反应体系中的碳正离子机理和自由基机理,概述了国内外催化加氢脱烷基反应工艺和催化剂的研究进展,并分析了各工艺、催化剂的优缺点,最后对反应机理、工艺及催化剂的发展方向进行了展望。
增产BTX 的同时联产三甲苯、四甲苯等高附加值单体芳烃是未来催化加氢脱烷基工艺的发展方向。
新型催化剂的研发方向则应结合具体的生产目标和反应机理,定向制备出高活性、高选择性、高稳定性的催化加氢脱烷基催化剂。
关键词:C +9重芳烃;催化加氢脱烷基;反应机理;工艺;催化剂中图分类号:TQ241.1;TE624.4+5 文献标志码:A 文章编号:1000-6613(2024)03-1266-09Research progress in the catalytic hydrodealkylation of C +9 heavyaromaticsZHANG Pengfei ,YAN Zhangyan ,REN Liang ,ZHAGN Kui ,LIANG Jialin ,ZHAO Guangle ,ZHANG Fanbin ,HU Zhihai(Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China)Abstract: The capacity expansion or new construction of aromatic complex and ethylene cracking plantin China led to a drastic increase in the yield of C +9 heavy aromatics. The conversion of C +9 heavy aromatics to BTX by catalytic hydrodealkylation technology would be conducive to improving economic benefits for refinery. Based on the production of BTX from C +9 heavy aromatics, firstly, the mechanism of carbenium-ion and free radical in the reaction system of catalytic hydrodealkylation was emphasized. Secondly, the progress of the research on the hydrodealkylation process and catalysts in the domestic and foreign was summarized. Thirdly, the advantages and disadvantages of those process and catalysts was analyzed. Finally, the development direction of reaction mechanism, process and catalyst were forecasted. The future development direction of catalytic hydrodealkylation was to increase the production of BTX and simultaneously produce high value-added monomers such as tritoluene and tetratoluene. The research and development of novel catalysts should be combined with specific production objectives and reaction mechanisms, and the catalytic hydrodealkylation catalysts with high reaction activity, high selectivity and high stability should be prepared directionally.Keywords: C +9 aromatics; catalytic hydrodealkylation; reaction mechanism; process; catalyst综述与专论DOI :10.16085/j.issn.1000-6613.2023-0410收稿日期:2023-03-17;修改稿日期:2023-10-23。
刚柔结合出奇“材”
来 源 : 技 部 科 纳 米 技 术 医 用 敷 料 可 抗 感 染
荧 光 强 度 的 变 化 来 测 量 纳 米 粒 子 是 否 被 加 热 到
先将纳 米粒 子 固定 在细胞 膜上 .然后 利用 高周 波磁
场 对其加 热 , 而刺 激细胞 。 于这种 方法 可 以 比较 从 鉴 大 范围均匀 地刺 激细胞 ,科 学家认 为该 方法 今后 可
以在 人 体 内应 用 。 研 究人 员 目前 已证 明该 方 法 可
以打开 钙离 子通道 , 活通过 细胞培 养 的神经 细胞 . 激
据美 国《 日科 学 》 每 网站 近 日报 道 , 究 人员 目 研
前正 在使用 纳米技 术发 展 医用敷料 ,这 种敷 料可 以
来源《 科技 日报》 刚 柔结合 出奇 “ 材” 美 国佛 罗里 达州立 大学 综 合 纳米 研究 所 (N I I S)
诊断及 治疗 感染 的伤 口。英 国 巴斯 大学 的科 学家 们
3  ̄。这种 荧光 探针 可 以说 是 一个纳 米温度 计 。 4C 这项研 究具 有广 泛 的应 用价 值 , 比如 在癌 症治 疗 中 ,科学 家可 针对 选定 的蛋 白质或 特定组 织进 行 远 程操作 , 而开 发 新型癌 症治疗 方 法 。 从 此外 在糖 尿 病治疗 方 面 .电可 以远程 刺激胰 腺 细胞释 放胰 岛 素 。该方 法还 可应 用 于某些 因刺激 不 足导致 的神 经 系 统疾病 。
葡萄球 菌 ) 新抗 生素抗 药性 的演 化风 险。 ” 对
基于气动声学故障诊断技术的风机叶片开裂模型仿真与检测方法研究
现代电子技术Modern Electronics TechniqueMar. 2024Vol. 47 No. 62024年3月15日第47卷第6期0 引 言对清洁可再生能源的需求不断增长以及风力发电机设计技术的进步,导致越来越多的公司投资研发大型风力发电机[1]。
例如,美国GE 公司生产的大型风电机组叶轮半径为107 m 。
虽然叶轮半径的增大、塔筒高度的提升有利于风机捕获更多的风能,但随之而来的就是载荷增加、运维困难等,因此发展一种有效的对叶片健DOI :10.16652/j.issn.1004‐373x.2024.06.017引用格式:黄振,薛宇.基于气动声学故障诊断技术的风机叶片开裂模型仿真与检测方法研究[J].现代电子技术,2024,47(6):102‐108.基于气动声学故障诊断技术的风机叶片开裂模型仿真与检测方法研究黄 振1, 薛 宇2(1.深海技术科学太湖实验室连云港中心, 江苏 连云港 222000; 2.中国海洋大学 工程学院, 山东 青岛 266000)摘 要: 随着新能源技术的不断发展,风力发电逐渐成为目前主要的可再生能源发电方式。
大型风机的发展对于风力发电行业而言至关重要,但其也存在诸多的运维问题。
为了解决风力发电机叶片受载荷不均匀,容易造成尾缘开裂,以及运维困难的问题,通过数值模拟与半经验声学模型结合的方法研究风机叶片开裂状态下气动噪声的变化,并提出采用IEEE 2400国际标准进行声学故障检测的理论框架。
通过对不同的实验结果以及NREL 的半经验模型软件仿真结果分析,得出:所提出的非接触式检测模型可以有效地识别到风机叶片的开裂故障;同时该方法有较强的推广性,可以用于其他的风机叶片故障分析与监测。
该模型不仅可以检测风机的叶片开裂故障,还可以用于分析风机运行时的气动声学特征,对于完善风机叶片无损检测、非接触式具有十分重要的意义。
关键词: 气动噪声; 风力发电; 叶片裂纹检测; 故障诊断; LES 模型; 半经验模型; 噪声监测中图分类号: TN876‐34; TM315 文献标识码: A 文章编号: 1004‐373X (2024)06‐0102‐07Research on wind turbine trailing edge cracking modeling simulation and measurementbased on aeroacoustics fault diagnosis technologyHUANG Zhen 1, XUE Yu 2(1. Taihu Laboratory of Deepsea Technological Science Lianyungang Center, Lianyungang 222000, China;2. College of Engineering, Ocean University of China, Qingdao 266000, China)Abstract : With the continuous development of new energy technologies, wind power has increasingly become the main renewable energy power generation method. The development of large‐scale wind turbines is a trend in the wind power industry, and at the same time it has brought many operation and maintenance problems. In order to solve the problems of uneven load on wind turbine blades, easy occurrence of trailing edge cracking, and difficulties in operation and maintenance, a combination of numerical simulation and semi empirical acoustic models is used to study the changes in aerodynamic noise of wind turbine blades under cracking conditions. A theoretical framework for acoustic fault detection using IEEE 2400 international standard is proposed. By means of the analysis of different experimental results and the simulation results of NREL′s semi empirical model software, it is concluded that the proposed non‐contact detection model can effectively identify the cracking fault of fan blades. At the same time, this method has strong generalizability and can be used for fault analysis and monitoring of other fan blades. This model can not only detect the cracking failure of the fan blades, but also can be used to analyze the aero ‐acoustic characteristics of the fan during operation, which is of great significance for perfecting the non ‐destructive and non ‐contact detection of fan blades.Keywords : aerodynamic noise; wind power generation; blade crack detection; fault diagnosis; LES model; semi empiricalmodel; noise monitoring收稿日期:2023‐10‐07 修回日期:2023‐11‐13102第6期康状态监测的方法变得更加重要[2]。
光热 碳基材料
光热碳基材料下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!光热碳基材料是当今材料科学领域备受关注的研究方向之一。
凝聚态物理专业词汇1
1. scale [skel]n. 规模;比例;鳞;刻度;天平;数值范围;vi. 衡量;攀登;剥落;生水垢;vt. 测量;攀登;刮鳞;依比例决定;n. (Scale)人名;(意)斯卡莱2. exploit [ɪk'splɔɪt]vt. 开发,开拓;剥削;开采;n. 勋绩;功绩3. otherwise ['ʌðɚwaɪz]adv. 否则;另外;在其他方面;adj. 另外的;其他方面的4. undesirable [,ʌndɪ'zaɪərəbl]adj. 不良的;不受欢迎的;不合需要的;n. 不良分子;不受欢迎的人5. polarization state偏振状态6. destroying [dɪ'strɔɪ]vt. 破坏;消灭;毁坏7. destructive [dɪ'strʌktɪv]adj. 破坏的;毁灭性的;有害的,消极的8. densities ['dɛnsətɪz]n. 密度(density的复数)9. simplifiedadj. 简化了的;vt. 简化(simplify的过去式);精简10. architecture ['ɑrkə'tɛktʃɚ]n. 建筑学;建筑风格;建筑式样11. densitiey12. density ['dɛnsəti]n. 密度13. inspire [ɪn'spaɪɚ]vt. 激发;鼓舞;启示;产生;使生灵感14. quantum ['kwɑntəm]n. 量子论;额;美国昆腾公司(世界领先的硬盘生产商)15. nanoscalen. 纳米级16. giant ['dʒaɪənt]n. 巨人;伟人;[动] 巨大的动物adj. 巨大的;巨人般的17. Giant Electroresistance巨电阻效应18. magnetoelectric [mæɡ'niːtəʊɪ'lektrɪk]adj. 磁电的magnetoelectric: 电磁的19. originating [ə'ridʒineitiŋ]v. 发源;引起;创始(originate的ing 形式)n. 起源;始发;发信adj. 起源的;始发的originating: 发信| 始发| 发端20. interlayer ['intəleiə]n. 夹层,隔层interlayer: 夹层| 层间| 间层21. coupling ['kʌplɪŋ]n. [电] 耦合;结合,联结v. 连接(couple的ing形式)Coupling: 联轴器| 耦合| 联接器22. ExtemalExtemal: 面舌肌束颤| 外部23. exchange coupling交换耦合exchange coupling: 交换耦合24. junctionsn. 连接;[电] 接头(junction的复数);交叉点junctions: 接头25. calculate ['kælkjʊleɪt]vt. 计算;预测;认为;打算vi. 计算;以为;作打算26. review [rɪ'vjuː]n. 回顾;复习;评论;检讨;检阅vt. 回顾;检查;复审vi. 回顾;复习功课;写评论凝聚态物理专业词汇27. 势垒[shìlěi][物] barrier;[物] potential barrier;barrier potential;voltage barrier28. barrier ['bærɪɚ]n. 障碍物,屏障;界线;vt. 把…关入栅栏;n. (Barrier)人名;(法)巴里耶29. collapses [kə'læpsɪz]vt. 使倒塌;使瓦解vi. 倒塌;崩溃;价格下跌n. 倒塌;失败;体力不支30. finite ['faɪnaɪt]adj. 有限的;限定的n. 有限之物31. owing ['əʊɪŋ]adj. 未付的;欠着的v. 欠;把…归功于(owe的ing形式)32. owe to归功于;由于33. investigate [ɪn'vestɪgeɪt]v. 调查;研究34. theoretically [,θiə'rɛtɪkli]adv. 理论地;理论上35. calculation [kælkjʊ'leɪʃ(ə)n]n. 计算;估计;计算的结果;深思熟虑36. experimentally [ɪk,spɛrə'mɛntli]adv. 实验上;用实验方法;实验式地37. determination [dɪ,tɜːmɪ'neɪʃ(ə)n]n. 决心;果断38. measurement ['meʒəm(ə)nt]n. 测量;[计量] 度量;尺寸;量度制39. decrease [dɪ'kriːs]n. 减少,减小;减少量vi. 减少,减小vt. 减少,减小40. nanometre ['nenə,mitɚ]n. 纳米;毫微米(长度单位)41. conduction [kən'dʌkʃ(ə)n]n. [生理] 传导42. indication [ɪndɪ'keɪʃ(ə)n]n. 指示,指出;迹象;象征43. infer [ɪn'fɜː]vt. 推断;推论vi. 推断;作出推论44. diffraction [dɪ'frækʃn]n. (光,声等的)衍射,绕射45. existence [ɪg'zɪst(ə)ns; eg-]n. 存在,实在;生存,生活;存在物,实在物46. photoemission ['fəʊtəʊɪ,mɪʃ(ə)n]n. [电子] 光电发射;光电效应47. photoemission diffraction48. beside [bɪ'saɪd]prep. 在旁边;与…相比;和…无关49. nanometer ['nænə,mitɚ]n. [计量] 毫微米(即十亿分之一米)50. critically ['krɪtɪklɪ]adv. 精密地;危急地;批评性地;用钻研眼光地51. Curie temperature[电磁] 居里温度;居里点52. dramatically [drə'mætɪkəlɪ]adv. 戏剧地;引人注目地53. epitaxial [,ɛpɪ'tæksiəl]adj. [电子] 外延的;取向附生的54. factor ['fæktə]n. 因素;要素;[物] 因数;代理人vi. 做代理商vt. 把…作为因素计入;代理经营;把…分解成n. (Factor)人名;(英)法克特55. substrate ['sʌbstreɪt]n. 基质;基片;底层(等于substratum);酶作用物56. elastic [ɪ'læstɪk]adj. 有弹性的;灵活的;易伸缩的n. 松紧带;橡皮圈57. principle ['prɪnsɪp(ə)l]n. 原理,原则;主义,道义;本质,本义;根源,源泉58. restrict [rɪ'strɪkt]vt. 限制;约束;限定59. impose [ɪm'pəʊz]vi. 利用;欺骗;施加影响vt. 强加;征税;以…欺骗60. compressive [kəm'presɪv]adj. 压缩的;有压缩力的61. atomicallyadv. 利用原子能地62. surface ['sɜːfɪs]n. 表面;表层;外观adj. 表面的,肤浅的vi. 浮出水面vt. 使浮出水面;使成平面n. (Surface)人名;(英)瑟菲斯63. interface ['ɪntɚ'fes]n. 界面;接口;接触面64. terrace ['terəs]n. 平台;梯田;阳台vt. 使成梯田,使成阶地;使有平台屋顶vi. 成阶地;成梯田;筑成坛adj. (女服)叠层式的n. (Terrace)人名;(英)特勒斯65. parameter [pə'ræmɪtə]n. 参数;系数;参量66. sample ['sɑːmp(ə)l]vt. 取样;尝试;抽样检查n. 样品;样本;例子adj. 试样的,样品的;作为例子的n. (Sample)人名;(英)桑普尔67. pseudo-cubicadj. 赝立方的68. tetragonal [tɪ'træg(ə)n(ə)l]adj. [数] 四角形的69. relaxed [rɪ'lækst]adj. 松懈的,放松的;悠闲的,自在的;不严格的,不拘束的v. relax的过去式和过去分词70. progressively [prə'ɡrɛsɪvli]adv. 渐进地;日益增多地71. phase [feɪz]vt. 使定相;逐步执行vi. 逐步前进n. 相;阶段;[天] 位相Phase: 相位| 阶段| 相72. demonstrates示范论证Demonstrates: 演示| 说明| 论证73. hystereticadj. 滞后的hysteretic: 滞后的| 滞后的磁滞的| 磁滞的74. estimate ['estɪmeɪt]vi. 估计,估价n. 估计,估价;判断,看法vt. 估计,估量;判断,评价75. coefficient [,kəʊɪ'fɪʃ(ə)nt]n. [数] 系数;率;协同因素adj. 合作的;共同作用的Coefficient: 系数| 协同因素| 率76. samplesn. [图情] 样品;采样;例子(sample 的复数形式)n. (Samples)人名;(英)桑普尔斯Samples: 采样| 样本| 样品77. homogeneous [,hɒmə(ʊ)'dʒiːnɪəs; -'dʒen-]adj. 均匀的;[数] 齐次的;同种的homogeneous: 同类的| 均质| 单一性的78. exponentially [,ekspəu'nenʃəli]adv. 以指数方式exponentially: 以指数方式| 指数地| 按指数律地79. propose [prə'pəʊz]vt. 建议;打算,计划;求婚vi. 建议;求婚;打算80. electron [ɪ'lektrɒn]n. 电子81. transmit [trænz'mɪt; trɑːnz-; -ns-]vt. 传输;传播;发射;传达;遗传vi. 传输;发射信号82. direction [dəˈrekʃn]n. 方向;指导;趋势;用法说明83. mechanism ['mek(ə)nɪz(ə)m]n. 机制;原理,途径;进程;机械装置;技巧84. thus [ðʌs]adv. 因此;从而;这样;如此conj. 因此n. 乳香85. provide [prə'vaɪd]vt. 提供;规定;准备;装备vi. 规定;抚养;作准备86. efficient [ɪ'fɪʃ(ə)nt]adj. 有效率的;有能力的;生效的87. contrast ['kɒntrɑːst]vi. 对比;形成对照vt. 使对比;使与…对照n. 对比;差别;对照物88. conventional [kən'venʃ(ə)n(ə)l]adj. 符合习俗的,传统的;常见的;惯例的89. ambiguously [æm'bɪgjʊəsli]adv. 含糊不清地90. attribute [ə'trɪbjuːt]n. 属性;特质vt. 归属;把…归于91. locally ['ləʊkəlɪ]adv. 局部地;在本地92. perform [pə'fɔːm]vt. 执行;完成;演奏vi. 执行,机器运转;表演93. probe [prəʊb]n. 探针;调查vi. 调查;探测vt. 探查;用探针探测n. (Probe)人名;(法)普罗布94. display [dɪ'spleɪ]n. 显示;炫耀vt. 显示;表现;陈列vi. [动] 作炫耀行为adj. 展览的;陈列用的95. moderate ['mɒd(ə)rət]adj. 稳健的,温和的;适度的,中等的;有节制的vi. 变缓和,变弱vt. 节制;减轻96. change [tʃeɪn(d)ʒ]vt. 改变;交换n. 变化;找回的零钱vi. 改变;兑换97. visible [ˈvɪzəbl]adj. 明显的;看得见的;现有的;可得到的n. 可见物;进出口贸易中的有形项目98. profile ['prəʊfaɪl]n. 侧面;轮廓;外形;剖面;简况vt. 描…的轮廓;扼要描述vi. 给出轮廓99. appreciate [ə'priːʃɪeɪt; -sɪ-]vt. 欣赏;感激;领会;鉴别vi. 增值;涨价100. reminiscent [remɪ'nɪs(ə)nt]adj. 怀旧的,回忆往事的;耽于回想的n. 回忆录作者;回忆者101. electrostatic [ɪ,lektrə(ʊ)'stætɪk] adj. 静电的;静电学的102. asymmetric [,esɪ'mɛtrɪk]adj. 不对称的;非对称的103. remarkably [rɪ'mɑkəblɪ]adv. 显著地;非常地;引人注目地104. tunnel resistance隧道阻力105. square [skwɛr]adj. 平方的;正方形的;直角的;正直的;vt. 使成方形;与…一致;vi. 一致;成方形;n. 平方;广场;正方形;adv. 成直角地106. sophisticated [sə'fɪstɪketɪd]adj. 复杂的;精致的;久经世故的;富有经验的;v. 使变得世故;使迷惑;篡改(sophisticate的过去分词形式)107. complex ['kɒmpleks]adj. 复杂的;合成的n. 复合体;综合设施108. electronic band structure电子能带结构109. electrode [ɪ'lɛktrod]n. [电] 电极;电焊条110. type [taɪp]n. 类型,品种;模范;样式;vt. 打字;测定(血等)类型;vi. 打字;n. (Type)人名;(英)泰普111. heterostructure [,hetərəʊ'strʌktʃə]n. [电子] 异质结构112. first-principle第一性原理113. access ['ækses]vt. 使用;存取;接近n. 进入;使用权;通路114. scheme [skiːm]n. 计划;组合;体制;诡计vi. 搞阴谋;拟订计划vt. 计划;策划n. (Scheme)人名;(瑞典)谢默115. scalability [,skeilə'biliti]n. 可扩展性;可伸缩性;可量测性116. dot [dɒt]n. 点,圆点;嫁妆vi. 打上点vt. 加小点于n. (Dot)人名;(中)多(广东话·威妥玛);(英)多特(女子教名Dorothea 和Dorothy 的昵称);(越)突117. previously ['priviəsli]adv. 以前;预先;仓促地118. device [dɪ'vaɪs]n. 装置;策略;图案119. robust [rə(ʊ)'bʌst]adj. 强健的;健康的;粗野的;粗鲁的120. retain [rɪ'teɪn]vt. 保持;雇;记住121. preservation [prezə'veɪʃ(ə)n]n. 保存,保留122. corresponding [,kɒrɪ'spɒndɪŋ] adj. 相当的,相应的;一致的;通信的v. 类似(correspond的ing形式);相配123. storage ['stɔːrɪdʒ]n. 存储;仓库;贮藏所124. protocol ['prəʊtəkɒl]n. 协议;草案;礼仪vt. 拟定vi. 拟定125. oxygen pressure氧压;氧气压力126. subsequent ['sʌbsɪkwənt]adj. 后来的,随后的127. high-resolution ['hai,rezə'lu:ʃən] n. 高分辨率128. transmission [træns'mɪʃən]n. 传动装置,[机] 变速器;传递;传送;播送129. flow [flo]vi. 流动,涌流;川流不息;飘扬;vt. 淹没,溢过;n. 流动;流量;涨潮,泛滥;n. (Flow)人名;(英)弗洛130. morphology [mɔr'fɑlədʒi]n. 形态学,形态论;[语] 词法,[语] 词态学131. poling [pol]n. 立杆;支撑;架线路;还原;v. 跳;用杆支撑(pole的ing形式);n. (Poling)人名;(英)波林132. spontaneous [spɒn'teɪnɪəs]adj. 自发的;自然的;无意识的133. correspond [kɒrɪ'spɒnd]vi. 符合,一致;相应;通信134. ratio ['reɪʃɪəʊ]n. 比率,比例135. counterbalance ['kaʊntə,bæl(ə)ns] n. 平衡力;自动抵销vt. 使平衡;抵消136. detrimental [,detrɪ'ment(ə)l]adj. 不利的;有害的n. 有害的人(或物);不受欢迎的求婚者137. phase contrast相衬138. homogenous [hə'mɒdʒɪnəs]adj. [生物] 同质的;同类的139. distribution [dɪstrɪ'bjuːʃ(ə)n] n. 分布;分配140. PropertiePropertie: 属性141. concurrent [kən'kʌr(ə)nt]adj. 并发的;一致的;同时发生的n. [数] 共点;同时发生的事件142. occurred [ə'kɝ]v. 发生(occur的过去分词)143. subjective [səb'dʒektɪv]adj. 主观的;个人的;自觉的144. feature ['fiːtʃə]n. 特色,特征;容貌;特写或专题节目vi. 起重要作用vt. 特写;以…为特色;由…主演145. ministry ['mɪnɪstrɪ]n. (政府的)部门146. The Ministry of Education教育部147. academic [ækə'demɪk]adj. 学术的;理论的;学院的n. 大学生,大学教师;学者148. spiritual civilization精神文明spiritual civilization: 精神文明| 精神文明建设| 精力文明149. Advanced UnitAdvanced Unit: 先进单位150. essence ['es(ə)ns]n. 本质,实质;精华;香精n. (Essence)人名;(英)埃森丝151. activity [æk'tɪvɪtɪ]n. 活动;行动;活跃152. colorful ['kʌlɚfəl]adj. 华美的;有趣的;富有色彩的153. organize ['ɔrɡənaɪz]vt. 组织;使有系统化;给予生机;组织成立工会等vi. 组织起来;成立组织154. improved [ɪm'prʊvd]adj. 改良的;改进过的v. 改进;增加(improve的过去式和过去分词);变得更好155. honor ['ɒnə(r)]n. 荣誉;信用;头衔vt. 尊敬(等于honour);给…以荣誉156. specified ['spesifaid]adj. 规定的;详细说明的v. 指定;详细说明(specify的过去分词)157. reliable [rɪ'laɪəb(ə)l]adj. 可靠的;可信赖的n. 可靠的人158. probably ['prɒbəblɪ]adv. 大概;或许;很可能159. vector ['vektə]n. 矢量;带菌者;航线vt. 用无线电导航160. evanescent [iːvə'nes(ə)nt; ev-]adj. 容易消散的;逐渐消失的;会凋零的161. solely ['solli]adv. 单独地,唯一地162. predominant [prɪ'dɑmənənt]adj. 主要的;卓越的;支配的;有力的;有影响的163. recreational [,rɛkri'eʃənəl]adj. 娱乐的,消遣的;休养的164. identifies [aɪ'dentɪfaɪz]vt. [计] 识别,认明;视为相同,鉴定;v. [计] 识别,确定(identify的单三形式)165. reason ['riːz(ə)n]n. 理由;理性;动机vi. 推论;劝说vt. 说服;推论;辩论n. (Reason)人名;(英)里森166. season ['siːz(ə)n]n. 时期;季节;赛季vt. 给…调味;使适应vi. 变得成熟;变干燥167. raise [reɪz]vt. 提高;筹集;养育;升起vi. 上升n. 高地;上升;加薪n. (Raise)人名;(英)雷兹168. underdevelopment ['ʌndɚdɪ'vɛləpmənt]n. 不发达;[摄] 显影不足169. basis ['beɪsɪs]n. 基础;底部;主要成分;基本原则或原理170. constantly ['kɒnst(ə)ntlɪ]adv. 不断地;时常地171. wave [weɪv]vi. 波动;起伏;挥手示意;摇动;呈波形vt. 卷(烫)发;向…挥手示意;使成波浪形n. 波动;波浪;高潮;挥手示意;卷曲172. opaque [ə(ʊ)'peɪk]adj. 不透明的;不传热的;迟钝的n. 不透明物vt. 使不透明;使不反光173. modulation [,mɒdjʊ'leɪʃən]n. [电子] 调制;调整174. multiferroic多铁性175. material [mə'tɪrɪəl]adj. 重要的;物质的,实质性的;肉体的;n. 材料,原料;物资;布料176. cuprate ['kju:preit]n. [无化] 铜酸盐177. colossal [kə'lɑsl]adj. 巨大的;异常的,非常的178. magnetoresistance [mæg,niːtəʊrɪ'zɪst(ə)ns]n. [电磁] 磁阻;[物] 磁致电阻179. manganite ['mæŋɡə,naɪt]n. [矿物] 水锰矿;亚锰酸盐180. doping-driven181. driven ['drɪvn]adj. 被动的,受到驱策的;有紧迫感的;(人)发愤图强的;v. 驾驶,开车(drive的过去分词)182. dope [dop]n. 笨蛋;麻醉药物;涂料;vt. 上涂料;服药;vi. 吸毒;吸毒成瘾;(俚)酷毙了183. energetically [,ɛnɚ'dʒɛtikli]adv. 积极地;精力充沛地184. present ['prɛznt]vt. 提出;介绍;呈现;赠送;vi. 举枪瞄准;adj. 现在的;出席的;n. 现在;礼物;瞄准185. tantalize ['tæntəlaɪz]vt. 逗弄;使干着急vi. 逗弄人;令人干着急186. evolution [,iːvə'luːʃ(ə)n; 'ev-] n. 演变;进化论;进展187. insulator ['ɪnsəletɚ]n. [物] 绝缘体;从事绝缘工作的工人188. inverted [ɪn'vɝt]adj. 倒转的,反向的;v. 颠倒(invert的过去分词);使…反向189. defect [‘dɪfɛkt]n. 缺点,缺陷;不足之处;vi. 变节;叛变190. 晶体缺陷[晶体] crystal defect;crystal imperfection191. concentration ['kɑnsn'treʃən]n. 浓度;集中;浓缩;专心;集合192. electric [ɪ'lɛktrɪk]adj. 电的;电动的;发电的;导电的;令人震惊的;n. 电;电气车辆;带电体193. mechanisms ['mekənɪzəmz]n. 机制;[机] 机构(mechanism的复数);机械;[机] 机构学194. magnetoelectrics磁电耦合195. degree of freedom[物] 自由度196. typical ['tɪpɪkl]adj. 典型的;特有的;象征性的197. perspective [pɚ'spɛktɪv]n. 观点;远景;透视图;adj. 透视的198. embedded [ɪm'bɛd]adj. 嵌入式的;植入的;内含的;v. 嵌入(embed的过去式和过去分词形式)199. field-effect transistor场效晶体管200. perturbation [,pɝtɚ'beʃən]n. [数][天] 摄动;不安;扰乱201. electrostrain effect电气应变效应202. transition [træn'zɪʃən]n. 过渡;转变;[分子生物] 转换;变调203. electronic [ɪlek'trɒnɪk; el-]adj. 电子的电子地204. consequence ['kɒnsɪkw(ə)ns]n. 结果;重要性;推论205. heteroepitaxyn. [电子] 异质外延;异质磊晶206. lower ['loɚ]vt. 减弱,减少;放下,降下;贬低;vi. 降低;减弱;跌落;adj. 下游的;下级的;下等的;n. (Lower)人名;(英、意)洛厄207. symmetry ['sɪmətri]n. 对称(性);整齐,匀称208. monoclinic [,mɑnə'klɪnɪk]adj. [晶体] 单斜的;[晶体] 单斜晶体的209. regarding [rɪ'ɡɑrdɪŋ]prep. 关于,至于210. domain wall[物] 畴壁211. divalent [daɪ'velənt]adj. 化合物二价的;染色体二价的212. diagram ['daɪəgræm]n. 图表;图解vt. 用图解法表示213. essential [ɪ'senʃ(ə)l]adj. 基本的;必要的;本质的;精华的n. 本质;要素;要点;必需品214. pseudo-tetragonal215. hysteresis [,hɪstə'risɪs]n. hysteresis216. thermal ['θɝml]adj. 热的;热量的;保热的;n. 上升的热气流217. extrapolation [ɪk,stræpə'leʃən] n. [数] 外推法;推断218. sensitive ['sɛnsətɪv]adj. 敏感的;[仪] 灵敏的;感光的;易受伤害的219. primarily [praɪ'mɛrəli]adv. 首先;主要地,根本上220. attributedv. 归于(attribute的过去式,过去分词);属性化221. expect [ɪk'spɛkt]vt. 期望;指望;认为;预料;vi. 期待;预期222. indicate ['ɪndɪkeɪt]vt. 表明;指出;预示;象征223. long-range order长程序224. exhibit [ɪg'zɪbɪt; eg-]vt. 展览;显示;提出(证据等)n. 展览品;证据;展示会vi. 展出;开展览会225. detected [dɪ'tɛkt]adj. 检测到的v. 发现(detect的过去分词);检测到;侦测到226. anomalous [ə'nɒm(ə)ləs]adj. 异常的;不规则的;不恰当的227. intermediate [,ɪntə'miːdɪət]vi. 起媒介作用adj. 中间的,中级的n. [化学] 中间物;媒介228. volume ['vɒljuːm]n. 量;体积;卷;音量;大量;册adj. 大量的vi. 成团卷起vt. 把…收集成卷229. dashed [dæʃt]n. 虚线v. 猛冲(dash的过去分词);猛掷230. located ['loketɪd]adj. 处于,位于;坐落的231. reciprocal space[数][物] 倒易空间;倒晶格空间232. confirm [kən'fɜːm]vt. 确认;确定;证实;批准;使巩固233. representative [reprɪ'zentətɪv]adj. 典型的,有代表性的;代议制的n. 代表;典型;众议员234. superlattice [suːpə'lætɪs; sjuː-] n. [物] 超点阵;超结晶格子235. Bragg [bræg]n. 布拉格(姓氏)236. structural ['strʌktʃ(ə)r(ə)l]adj. 结构的;建筑的237. vacancy ['veɪk(ə)nsɪ]n. 空缺;空位;空白;空虚238. correlation [,kɒrə'leɪʃ(ə)n; -rɪ-] n. [数] 相关,关联;相互关系239. mainly ['meɪnlɪ]adv. 主要地,大体上240. accompanying [ə'kʌmpənɪɪŋ]adj. 陪伴的;附随的v. 伴随(accompany的ing形式)241. characterization [,kærəktəraɪ'zeʃən] n. 描述;特性描述242. composition [kɒmpə'zɪʃ(ə)n]n. 作文,作曲,作品;[材] 构成;合成物;成分243. boundary ['baʊnd(ə)rɪ]n. 边界;范围;分界线244. susceptible [sə'septɪb(ə)l]adj. 易受影响的;易感动的;容许…的n. 易得病的人245. whereas [weər'æz]conj. 然而;鉴于;反之246. region ['riːdʒ(ə)n]n. 地区;范围;部位247. pole [pəʊl]n. 杆;极点;电极vt. 用竿支撑n. (Pole)人名;(英)波尔;(俄)波列;(塞)波莱248. local current局部电流249. timescale时间量程时标250. enhanced [ɪn'hænst]adj. 加强的;增大的;v. 提高;加强(enhance的过去分词)251. directed [dɪ'rektɪd]adj. 定向的;经指导的;被控制的;v. 指导;管理(direct的过去式和过去分词)252. properties ['prɔpɚtɪz]n. 性能;道具,内容(property的复数形式)253. property ['prɑpɚti]n. 性质,性能;财产;所有权254. significantly [sɪg'nɪfɪkəntli]adv. 意味深长地;值得注目地255. assume [ə'sum]vt. 承担;假定;采取;呈现;vi. 装腔作势;多管闲事256. circular ['sɝkjəlɚ]adj. 循环的;圆形的;间接的;n. 通知,传单257. diameter [daɪ'æmɪtɚ]n. 直径258. area ['ɛrɪə]n. 区域,地区;面积;范围;n. (Area)人名;(西)阿雷亚259. diffusivity [,difju:sivəti]n. 扩散率;[物] 扩散性260. ionic [aɪ'ɑnɪk]adj. 爱奥尼亚的;爱奥尼亚式的;爱奥尼亚人的;爱奥尼亚韵律的;adj. 【化学】离子的;n. 爱奥尼亚语261. potentially [pə'tɛnʃəli]adv. 可能地,潜在地262. respectively [rɪ'spɛktɪvli]adv. 分别地;各自地,独自地263. pure [pjʊr]adj. 纯的;纯粹的;纯洁的;清白的;纯理论的;n. (Pure)人名;(俄)普雷264. exclude [ɪk'skluːd; ek-]vt. 排除;排斥;拒绝接纳;逐出265. contamination [kən,tæmɪ'neɪʃən] n. 污染,玷污;污染物266. ultrahigh [,ʌltrə'hai]adj. 超高的;特高的267. vacuum ['vækjʊəm]n. 真空;空间;真空吸尘器adj. 真空的;利用真空的;产生真空的vt. 用真空吸尘器清扫268. fabricate ['fæbrɪkeɪt]vt. 制造;伪造;装配269. acquire [ə'kwaɪr]vt. 获得;取得;学到;捕获270. aforementioned [ə,fɔr'mɛnʃənd] adj. 上述的;前面提及的271. distribute [dɪ'strɪbjut]vt. 分配;散布;分开;把…分类272. opposite ['ɑpəzət]adj. 相反的;对面的;对立的;n. 对立面;反义词;prep. 在…的对面;adv. 在对面273. due toadv. 由于;应归于274. schottky ['ʃɑtkɪ]n. 肖特基(半导体器件)275. schottky barrier[电子] 萧特基势垒276. abruptly [ə'brʌptli]adv. 突然地;唐突地277. threshold voltage[电子] 阈值电压;[电子] 阈电压278. despite [dɪ'spaɪt]prep. 尽管,不管;n. 轻视;憎恨;侮辱279. ohmic ['omɪk]adj. [电] 欧姆的;以欧姆测定的280. fermi ['fɛrmi]n. 费尔米281. passes ['pa:siz]v. 经过;传递(pass的三单形式);超过;及格;n. 关口;执照;通路(pass的复数)282. specific energy[电] 比能283. mobility edge迁移率边284. moment ['momənt]n. 重要,契机;瞬间;重要时刻;指定时刻;n. (Moment)人名;(英)莫门特285. critical concentration[核] 临界浓度286. permittivity [,pɝmɪ'tɪvəti]n. [电] 介电常数,[电] 电容率287. initial [ɪ'nɪʃəl]adj. 最初的;字首的;vt. 用姓名的首字母签名;n. 词首大写字母288. paraelectric顺电性的289. existsn. 存在量词(exist的复数);v. 存在;出现;活着(exist的三单形式)290. route [rut]vt. 按某路线发送;n. 路线;航线;通道291. effectively [ɪ'fɛktɪvli]adv. 有效地,生效地;有力地;实际上292. sweep [swip]vt. 扫除;猛拉;掸去;vi. 扫,打扫;席卷;扫视;袭击;n. 打扫,扫除;范围;全胜293. laser ['lezɚ]n. 激光;n. (Laser)人名;(德)拉泽294. nanoscope IV扫描探针显微镜295. multi ['mʌlti]pref. 多296. simultaneously [saɪməl'tenɪəsli] adv. 同时地297. hydrostatic [,haɪdrə(ʊ)'stætɪk] adj. 流体静力学的;静水力学的298. diode ['daɪəʊd]n. [电子] 二极管299. photovoltaic [,fəʊtəʊvɒl'teɪɪk]adj. [电子] 光电伏打的,光电的300. client ['klaɪənt]n. [经] 客户;顾客;委托人301. permission [pə'mɪʃ(ə)n]n. 允许,许可302. obtain [əb'teɪn]vi. 获得;流行vt. 获得303. unidirectional [,juːnɪdɪ'rekʃ(ə)n(ə)l; ,juːnɪdaɪ-]adj. 单向的;单向性的304. modern ['mɒd(ə)n]adj. 现代的,近代的;时髦的n. 现代人;有思想的人305. modern electronicsModern Electronics: 现代电子学| 地区306. occur [ə'kɜː]vi. 发生;出现;存在307. optical ['ɒptɪk(ə)l]adj. 光学的;眼睛的,视觉的308. associated [ə'soʃɪetɪd]adj. 关联的;联合的v. 联系(associate的过去式和过去分词)309. monodomain单失畴310. nonlinear [nɑn'lɪniɚ]adj. 非线性的311. flip [flɪp]vt. 掷;轻击;vi. 用指轻弹;蹦跳;adj. 无礼的;轻率的;n. 弹;筋斗312. substantial [səb'stænʃl]adj. 大量的;实质的;内容充实的;n. 本质;重要材料313. visible-light可见光314. gap [ɡæp]n. 间隙;缺口;空白;vi. 裂开;vt. 使成缺口315. edge [ɛdʒ]n. 边缘;优势;刀刃;锋利;vt. 使锐利;将…开刃;给…加上边;vi. 缓缓移动;侧着移动;n. (Edge)人名;(英)埃奇316. characterize ['kærəktəraiz]vt. 描绘…的特性;具有…的特征vi. 塑造人物317. desire [dɪ'zaɪə]n. 欲望;要求,心愿;性欲vt. 想要;要求;希望得到…vi. 渴望n. (Desire)人名;(刚(布)、英)德西雷318. passionate ['pæʃ(ə)nət]adj. 热情的;热烈的,激昂的;易怒的319. conclude [kən'kluːd]vt. 推断;决定,作结论;结束vi. 推断;断定;决定320. long-term [,lɒŋ'tɜ:m]adj. 长期的从长远来看321. conscience ['kɒnʃ(ə)ns]n. 道德心,良心n. (Conscience)人名;(法)孔西延斯322. jealous ['dʒeləs]adj. 妒忌的;猜疑的;唯恐失去的;戒备的323. untimely [ʌn'taɪmlɪ]adj. 不合时宜的;过早的adv. 不合时宜地;过早地324. norms [nɔ:ms]n. [标准] 标准,规范;基准(norm复数形式)325. fate [feɪt]n. 命运vt. 注定n. (Fate)人名;(英)费特326. syntax ['sɪntæks]n. 语法;句法;有秩序的排列327. fortunesn. 命运,机遇(fortune复数形式)v. 给…以大宗财富(fortune的第三人称单数形式)328. fortune ['fɔːtʃuːn; -tʃ(ə)n]n. 财富;命运;运气vt. 给予财富vi. 偶然发生n. (Fortune)人名;(英)福琼;(法)福蒂纳329. absence ['æbs(ə)ns]n. 没有;缺乏;缺席;不注意330. anxiety [æŋ'zaɪətɪ]n. 焦虑;渴望;挂念;令人焦虑的事331. flutter ['flʌtə]vi. 飘动;鼓翼;烦扰vt. 拍;使焦急;使飘动n. 摆动;鼓翼;烦扰332. magically ['mædʒɪkli]adv. 用魔法地;如魔法般地333. vigor ['vɪgɚ]n. [生物] 活力,精力n. (Vigor)人名;(英、法)维戈尔334. reveal [rɪ'viːl]vt. 显示;透露;揭露;泄露n. 揭露;暴露;门侧,窗侧335. softly ['sɔftli]adv. 温柔地;柔和地;柔软地;静静地336. platelikeadj. 层状的;板状的337. electron charge[物] 电子电荷electron charge: 电子电荷338. constant ['kɒnst(ə)nt]adj. 不变的;恒定的;经常的n. [数] 常数;恒量n. (Constant)人名;(德)康斯坦特339. specimen ['spesɪmɪn]n. 样品,样本;标本Specimen: 标本| 试样| 样本340. pulse [pʌls]n. [电子] 脉冲;脉搏vt. 使跳动vi. 跳动,脉跳341. whenever [wen'evə]conj. 每当;无论何时adv. 不论何时;随便什么时候342. incomplete [ɪnkəm'pliːt]adj. 不完全的;[计] 不完备的Incomplete: 不完整的| 不完全的| 不完正的343. emphasize ['emfəsaɪz]vt. 强调,着重emphasize: 强调| 着重| 详述344. zero-biaszero-bias: 零偏压345. semitransparent [,semɪtræns'peərənt]adj. 半透明的semitransparent: 半透明的346. in principle大体上,原则上in principle: 原则上| 基本上| 一般而言347. transient ['trænzɪənt]adj. 短暂的;路过的n. 瞬变现象;过往旅客;候鸟transient: 短暂的| 瞬态的| 瞬时的348. photoexcitedadj. 光激的photoexcited: 光激的349. inconsistent [ɪnkən'sɪst(ə)nt]adj. 不一致的;前后矛盾的inconsistent: 不一致的| 不相的| 相悖350. thermoelectric [,θɜːməʊɪ'lektrɪk] adj. [电] 热电的(等于thermoelectrical)351. magnitude ['mægnɪtjuːd]n. 大小;量级;[地震] 震级;重要;光度magnitude: 大小| 震级| 星等352. component [kəm'pəʊnənt]n. 成分;组件;[电子] 元件adj. 组成的,构成的Component: 组件| 成分| 组成部分353. field vector场矢量field vector: 场矢量| 场向量354. optimum ['ɒptɪməm]adj. 最适宜的n. 最佳效果;最适宜条件optimum: 最佳| 最佳状态| 最适条件355. producible [prəu'dju:səbl]adj. 可生产的;可上演的;可延长的producible: 可上演的| 可生产的| 可采出的356. undergo [ʌndə'gəʊ]vt. 经历,经受;忍受undergo: 经历| 遭受| 经受357. poledadj. 连接的v. 用杆撑;用滑雪杖加速(pole的过去分词)poled: 连接的358. supplementary [,sʌplɪ'ment(ə)rɪ] n. 补充者;增补物adj. 补充的;追加的supplementary: 补充的| 附属| 补足的359. conductance [kən'dʌkt(ə)ns]n. [电] 电导;导率;电导系数conductance: 电导| 电导量| 传导性360. relatively ['relətɪvlɪ]adv. 相当地;相对地,比较地361. cation ['kætaɪən]n. [化学] 阳离子;[化学] 正离子n. (Cation)人名;(英)凯申cation: 阳离子| 正离子| 阴向离子362. biaxial [baɪ'æksɪəl]adj. 二轴的363. enormous [ɪ'nɔːməs]adj. 庞大的,巨大的;凶暴的,极恶的enormous: 巨大的| 庞大的| 极大的364. expansion [ɪk'spænʃ(ə)n; ek-]n. 膨胀;阐述;扩张物expansion: 发展| 扩张| 扩大365. degrade [dɪ'greɪd]vt. 贬低;使……丢脸;使……降级;使……降解vi. 降级,降低;退化366. judicious [dʒʊ'dɪʃəs]adj. 明智的;头脑精明的;判断正确的judicious: 明智的| 有判断力的| 贤明的367. namely ['neɪmlɪ]adv. 也就是;即是;换句话说namely: 即| 解释引文| 那就是说368. facilitate [fə'sɪlɪteɪt]vt. 促进;帮助;使容易facilitate: 使容易| 促进| 使便利369. fabrication [fæbrɪ'keɪʃ(ə)n]n. 制造,建造;装配;伪造物fabrication: 制造| 制作| 捏造370. DRAM [dræm]abbr. 动态随机存取存储器(Dynamic Random Access Memory)371. phenomenological [fə'nɑmə'nɑlədʒi] adj. 现象的;现象学的372. dislocationsn. 变位;位移;[地质] 断错;[医] 脱臼(dislocation的复数形式)Dislocations: 脱位| 变位| 位移373. conveniently [kən'vi:njəntli]adv. 便利地;合宜地conveniently: 放任| 随便| 便利地374. substantially [səb'stænʃ(ə)lɪ]adv. 实质上;大体上;充分地Substantially: 大幅| 幅度| 大量地375. sufficient [sə'fɪʃ(ə)nt]adj. 足够的;充分的sufficient: 足够的| 充足的| 充分的376. high-pressure [,haɪ'preʃə]adj. 高压的;高气压的;强行的vt. 对…施加压力;强制high-pressure: 高气压| 高压的| 注可按用户要求配装灯伞377. high-energy ['hai'enədʒi]高能的high-energy: 高能量378. perpendicular [,pɜːp(ə)n'dɪkjʊlə] n. 垂线;垂直的位置adj. 垂直的,正交的;直立的;陡峭的Perpendicular: 垂直| 垂线| 正交379. exception [ɪk'sepʃ(ə)n; ek-]n. 例外;异议Exception: 例外| 异常| 异议380. inversion inversionInversion inversion: 反演381. coherent [kə(ʊ)'hɪər(ə)nt]adj. 连贯的,一致的;明了的;清晰的;凝聚性的;互相偶合的;粘在一起的coherent: 连贯| 相干的| 一致的382. heteroepitaxial异质外延383. highspeed [hai'spi:d]adj. 高速的;高速率384. isotopic [,aisəu'tɔpik]adj. 同位素的;同位旋的isotopic: 同位素的| 合痕的| 同位素置换385. elastic compliance弹性顺度,弹性柔量;弹性柔度386. dislocation density[电子] 位错密度;差排密度387. RHEEDabbr. 反射高能电子衍射(Reflection high-energy electron diffraction)RHEED: 反射高能电子衍射(Reflection High Energy Electron Diffraction)388. fluctuations [,flʌktju'eiʃəns]n. [物] 波动(fluctuation的复数);变动;起伏现象Fluctuations: 大起大落| 波动| 变动389. cryogenic [,kraɪə'dʒenɪk]adj. 冷冻的(副词cryogenically);低温学的;低温实验法的cryogenic: 低温学的| 低温的| 深冷390. restricted [rɪ'strɪktɪd]adj. 受限制的;保密的v. 限制(restrict的过去式和过去分词)391. reproducible [,ri:prə'dju:səbl]adj. 可再生的;可繁殖的;可复写的reproducible: 可再生的| 可复写的| 可复制的392. similar ['sɪmɪlə]adj. 相似的n. 类似物393. ferroelectromagnetFerroelectromagnet: 铁电磁体394. potential [pəˈtenʃl]n. 潜能;可能性;[电] 电势adj. 潜在的;可能的;势的potential: 潜在的| 潜力| 潜能395. prototypical [,protə'tɪpɪkl]adj. 原型的;典型的prototypical: 原型的| 典型396. antiferromagnetic [,æntɪ,ferəʊmæg'netɪk]adj. [物] 反铁磁性的397. perovskite [pə'rɔvzkait]n. [矿物] 钙钛矿398. ground staten. [物] 基态399. electro [ɪ'lektrəʊ]n. 电镀物品vt. 电镀ELECTRO: 电解电容| 电光人| 电版400. microelectronic [,maɪkrəʊɪ,lek'trɒnɪk]adj. [电子] 微电子的microelectronic: 微电子的| 美光电子| 电定位芯片401. rotate [rə(ʊ)'teɪt]vt. 使旋转;使转动;使轮流vi. 旋转;循环adj. [植] 辐状的ROTATE: 旋转| 循环| 指定的原点和方向旋转402. in contrast与此相反;比较起来403. magnetic order[物] 磁有序404. relative ['relətɪv]adj. 相对的;有关系的;成比例的n. 亲戚;相关物;[语] 关系词;亲缘植物Relative: 亲戚| 亲属| 相对的405. displacement [dɪs'pleɪsm(ə)nt] n. 取代,位移;[船] 排水量displacement: 位移| 置换贴图| 置换406. berry phase贝里相位berry phase: 贝里相位407. improper [ɪm'prɒpə]adj. 不正确的,错误的;不适当的;不合礼仪的408. dipole ['daɪpəʊl]n. [物化] 偶极;双极子Dipole: 偶极子| 偶极| 磁偶极子409. partial ['pɑːʃ(ə)l]adj. 局部的;偏爱的;不公平的partial: 部分的| 偏袒的| 局部410. tensor ['tensə; -sɔː]n. [数] 张量;[解剖] 张肌411. investment [ɪn'ves(t)m(ə)nt]n. 投资;投入;封锁412. sequence ['siːkw(ə)ns]n. [数][计] 序列;顺序;续发事件vt. 按顺序排好413. strenuous ['strenjʊəs]adj. 紧张的;费力的;奋发的;艰苦的;热烈的414. merely ['mɪəlɪ]adv. 仅仅,只不过;只是415. sanctuary ['sæŋ(k)tjʊərɪ]n. 避难所;至圣所;耶路撒冷的神殿416. pulse laser depositionPUlse Laser Deposition: 脉冲激光沉积| 脉冲激光沉积法| 技术417. demonstrate ['demənstreɪt]vt. 证明;展示;论证vi. 示威418. magnetization [,mægnətɪ'zeʃən] n. 磁化419. amplitude ['æmplɪtjuːd]n. 振幅;丰富,充足;广阔420. ferromagnetic [,ferə(ʊ)mæg'netɪk] adj. [物] 铁磁的;铁磁体421. possesses拥有掌握占据(possess的第三人称单数)422. alternative [ɔːl'tɜːnətɪv; ɒl-]adj. 供选择的;选择性的;交替的n. 二中择一;供替代的选择423. anisotropy [,ænaɪ'sɒtrəpɪ]n. [物] 各向异性424. annealing [ə'nilɪŋ]n. 热处理;低温退火;磨炼v. [机][生化] 退火;磨炼(anneal的ing 形式)425. anti ['æntɪ]adj. 反对的n. 反对者,反对论者n. (Anti)人名;(意)安蒂;(阿拉伯)安提426. optoelectronic [,ɒptəʊɪ,lek'trɒnɪk] adj. 光电子的427. detector [dɪ'tektə]n. 探测器;检测器;发现者;侦察器428. significant [sɪg'nɪfɪk(ə)nt]adj. 重大的;有效的;有意义的;值得注意的;意味深长的n. 象征;有意义的事物significant: 重要的| 有意义的| 重大的429. solar ['səʊlə]adj. 太阳的;日光的;利用太阳光的;与太阳相关的n. 日光浴室n. (Solar)人名;(法、英、意、西、塞、捷)索拉尔solar: 太阳的| 太阳能| 日光的430. solar cells太阳能电池431. investigation [ɪn,vestɪ'geɪʃ(ə)n] n. 调查;调查研究432. crucial ['kruːʃ(ə)l]adj. 重要的;决定性的;定局的;决断的433. photoluminescence [,fəʊtə,luːmə'nesns]n. [物] 光致发光;光激发光434. laser ablation激光烧蚀435. insufficient [ɪnsə'fɪʃ(ə)nt]adj. 不足的,不充足的n. 不足436. root mean squaren. 均方根437. emission [ɪ'mɪʃ(ə)n]n. (光、热等的)发射,散发;喷射;发行n. (Emission)人名;(英)埃米申438. imperfections [,ɪmpɚ'fɛkʃən]n. 不合格折贴(imperfection的复数)Imperfections: 因不完全性439. performance [pə'fɔːm(ə)ns]n. 性能;绩效;表演;执行440. indirect [ɪndɪ'rekt; ɪndaɪ-]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Coupling, Energetics and Dynamics of Atmospheric Regions
Jan J. Sojka*
On behalf of Sixto Gonzá lez and the CEDAR Science Steering Committee
A presentation at the International Heliophysical Year (IHY) Boulder, Colorado, 17 February 2019
Student Mentoring and Participation
CEDAR Science Steering Gonzá lez
M acin to sh P IC T im ag e fo rm at is n o t su p p o rted
“grass roots efforts” Organize CEDAR Annual Meeting Generate CEDAR Documents Community Generated Reports, i.e., LIDAR Report, etc. Science Results Initiatives
CEDAR - IHY Collaborations and Associations
• Create a tangible presence in CEDAR, i.e., via a working group. Needs to be a “grass roots” effort. • Create IHY campaigns by specific liaison between IHY leaders and specific CEDAR working groups who either have existing infrastructure available or who’s science objectives complement IHY’s. • Have an existing working group sponsor IHY activities such as preparations for an IHY campaign. As an example, CAWSES through Janet Kozyra’s leadership ran a “first CAWSES Campaign” workshop at CEDAR last year. • Contribute IHY status update reports for the CEDAR post.
– – – – – – – – novel instrumentation facilities associations with other organizations regional science topical science future science data assimilation and modeling student workshops
So What are CEDAR Working Groups and Workshops?
• Grass roots efforts by scientists who are interested in CEDAR science. • Kick-off workshops are held at the annual CEDAR meeting, advertised via newsletters, etc. • Community response in the form of participation leads to growth and activity. • Working groups fade away when their “time is up.” • Working groups cover all aspects of CEDAR:
Workshops from Last Year’s Santa Fe CEDAR Meeting
• Facilities
– Polar Aeronomy: Current Initiatives and Future Plans [Conveners: Josh Semeter, Craig Heinselman, Phil Erickson] {Advanced Modular Incoherent Scatter Radar (AMISR)} – Scheduling the Upper Atmospheric Facilities for World Day Coordinates Experiments [Convener: Wesley E. Swartz] – Contributions to the Climatology of the Upper Atmosphere by Optical Techniques Associated with the Upper Atmosphere Facilities [Convener: Rick Niciejewski, John Noto] – Applications for GPS in Multi-Instrument Investigations [Conveners: Anthea Coster, Patricia Doherty] – LIDAR workshop Technical Session [Convener: Jonathan Friedman] – Distributed Radio Instrumentation [Convener: Frank D. Lind]
Workshops from Last Year’s Santa Fe CEDAR Meeting
• Novel Instrumentation
– Design Tips for Optical Instrumentation in Aeronomy [Conveners: Jeff Baumgardner, Josh Semeter]
*Center for Atmospheric and Space Sciences Utah State University, Logan, UT 84322-4405
CEDAR Organization and Structure
National Science Foundation
Dr. Richard Behnke Section Head, Upper Atmosphere Research Section (GEO/ATM) Dr. Robert Kerr Program Director, Aeronomy NSF GEO/ATM Dr. Robert Robinson Program Manager, Upper Atmospheric Facilities NSF GEO/ATM Working Groupsi, Host CEDAR Workshops