【精品】2017年湖南省岳阳六中九年级上学期数学期中试卷及解析

合集下载

2017年岳阳市中考数学试卷及答案解析

2017年岳阳市中考数学试卷及答案解析

2017年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.6的相反数是()A.﹣6 B.C.6 D.±6【分析】根据相反数的定义求解即可.【解答】解:6的相反数是﹣6,故选A.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.2.下列运算正确的是()A.5=﹣x5C.x3x2=x6D.3x2+2x3=5x5【分析】根据幂的乘方,同底数幂的乘法以及合并同类项计算法则进行解答.【解答】解:A、原式=x6,故本选项错误;B、原式=﹣x5,故本选项正确;C、原式=x5,故本选项错误;D、3x2与2x3不是同类项,不能合并,故本选项错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.3.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010B.3.9×109C.0.39×1011D.39×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:39000000000=3.9×1010.故选:A.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.下列四个立体图形中,主视图、左视图、俯视图都相同的是()A. B.C.D.【分析】分别分析圆锥、圆柱、球体、三棱柱的主视图、左视图、俯视图,从而得出结论.【解答】解:∵球的主视图、左视图、俯视图都是圆,∴主视图、左视图、俯视图都相同的是B,故选B.【点评】本题考查三视图,熟练掌握常见几何体的三视图,是解决问题的关键.5.从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.【分析】根据有理数的定义可找出在,0,π,3.14,6这5个数中只有0、3.14和6为有理数,再根据概率公式即可求出抽到有理数的概率.【解答】解:∵在,0,π,3.14,6这5个数中只有0、3.14和6为有理数,∴从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是.故选C.【点评】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.6.解分式方程﹣=1,可知方程的解为()A.x=1 B.x=3 C.x= D.无解【分析】直接利用分式方程的解法,首先去分母,进而解方程得出答案.【解答】解:去分母得:2﹣2x=x﹣1,解得:x=1,检验:当x=1时,x﹣1=0,故此方程无解.故选:D.【点评】此题主要考查了解分式方程,正确掌握解题步骤是解题关键.7.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+…+22017的末位数字是()A.0 B.2 C.4 D.6【分析】根据题目中的式子可以知道,末尾数字出现的2、4、8、6的顺序出现,从而可以求得21+22+23+24+…+22017的末位数字.本题得以解决.【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,…,∴2017÷4=506…1,∵(2+4+8+6)×506+2=10122,∴21+22+23+24+…+22017的末位数字是2,故选B.【点评】本题考查尾数特征,解答本题的关键是发现题目中的尾数的变化规律,求出相应的式子的末位数字.8.已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.二、填空题(本大题共8小题,每小题4分,共32分)9.函数y=中自变量x的取值范围是x≠7.【分析】根据分母不为零,即可解决问题.【解答】解:函数y=中自变量x的范围是x≠7.故答案为x≠7【点评】本题考查函数自变量的取值范围,知道分母不能为零是解题的关键.10.因式分解:x2﹣6x+9=(x﹣3)2.【分析】直接运用完全平方公式进行因式分解即可.【解答】解:x2﹣6x+9=(x﹣3)2.【点评】本题考查了公式法分解因式,熟记完全平方公式的结构特点是解题的关键.11.在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是92,众数是95.【分析】环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数.【解答】解:这组数据从小到大排列为:83,85,90,92,95,95,96.则中位数是:92;众数是95.故答案是:92,95.【点评】本题考查了众数、中位数的定义,注意中位数是大小处于中间未知的数,首先把数从小到大排列.12.如图,点P是∠NOM的边OM上一点,PD⊥ON于点D,∠OPD=30°,PQ∥ON,则∠MPQ的度数是60°.【分析】根据直角三角形的内角和,求得∠O,再根据平行线的性质,即可得到∠MPQ.【解答】解:∵PD⊥ON于点D,∠OPD=30°,∴Rt△OPD中,∠O=60°,又∵PQ∥ON,∴∠MPQ=∠O=60°,故答案为:60°.【点评】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,同位角相等.13.不等式组的解集是x<﹣3.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤3,解不等式②得:x<﹣3,∴不等式组的解集为x<﹣3,故答案为:x<﹣3.【点评】本题考查了解一元一次不等式和解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.14.在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为2.【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论.【解答】解:∵关于x的方程x2﹣4x+b=0有两个相等的实数根,∴△=16﹣4b=0,∴AC=b=4,∵BC=2,AB=2,∴BC2+AB2=AC2,∴△ABC是直角三角形,AC是斜边,∴AC边上的中线长=AC=2;故答案为:2.【点评】本题考查了根的判别式,勾股定理的逆定理,直角三角形斜边上的中线性质;证明△ABC是直角三角形是解决问题的关键.15.我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值,设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,π≈==3,那么当n=12时,π≈= 3.10.(结果精确到0.01,参考数据:sin15°=cos75°≈0.259)【分析】圆的内接正十二边形被半径分成顶角为30°的十二个等腰三角形,作辅助线构造直角三角形,根据中心角的度数以及半径的大小,求得L=6.207r,d=2r,进而得到π≈=≈3.10.【解答】解:如图,圆的内接正十二边形被半径分成如图所示的十二个等腰三角形,其顶角为30°,即∠O=30°,∠ABO=∠A=75°,作BC⊥AO于点C,则∠ABC=15°,∵AO=BO=r,∴BC=r,OC=r,∴AC=(1﹣)r,∵Rt△ABC中,cosA=,即0.259=,∴AB≈0.517r,∴L=12×0.517r=6.207r,又∵d=2r,∴π≈=≈3.10,故答案为:3.10【点评】本题主要考查了正多边形和圆以及解直角三角形的运用,把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.16.如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,下列结论正确的是②③④.(写出所有正确结论的序号)①若∠PAB=30°,则弧的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在弧上的位置如何变化,CPCQ为定值.【分析】①根据∠POB=60°,OB=6,即可求得弧的长;②根据切线的性质以及垂径定理,即可得到=,据此可得AP平分∠CAB;③根据BP=BO=PO=6,可得△BOP是等边三角形,据此即可得出PD=6;④判定△ACP∽△QCA,即可得到=,即CPCQ=CA2,据此可得CPCQ为定值.【解答】解:如图,连接OP,∵AO=OP,∠PAB=30°,∴∠POB=60°,∵AB=12,∴OB=6,∴弧的长为=2π,故①错误;∵PD是⊙O的切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴=,∴∠PAC=∠PAB,∴AP平分∠CAB,故②正确;若PB=BD,则∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴PD=OP=6,故③正确;∵AC=BC,∴∠BAC=∠ABC,又∵∠ABC=∠APC,∴∠APC=BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CPCQ=CA2(定值),故④正确;故答案为:②③④.【点评】本题主要考查了相似三角形的判定与性质,垂径定理,切线的性质以及弧长公式的综合应用,解决问题的关键是作辅助线,构造三角形,解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的弧.三、解答题(本大题共8小题,共64分)17.计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣1.【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【解答】解:原式=2×+3﹣+1﹣2=2.【点评】本题考查的是实数的混合运算,掌握特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质是解题的关键.18.求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD.求证:四边形ABCD是菱形.【分析】由命题的题设和结论可填出答案,由平行四边形的性质可证得AC为线段BD的垂直平分线,可求得AB=AD,可得四边形ABCD是菱形.【解答】已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD,求证:四边形ABCD是菱形.证明:∵四边形ABCD为平行四边形,∴BO=DO,∵AC⊥BD,∴AC垂直平分BD,∴AB=AD,∴四边形ABCD为菱形.故答案为:AC⊥BD;四边形ABCD是菱形.【点评】本题主要考查菱形的判定及平行四边形的性质,利用平行四边形的性质证得AB=AD是解题的关键.19.(8分)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.【分析】(1)把A(1,2)代入双曲线以及直线y=x+b,分别可得k,b的值;(2)先根据直线解析式得到BO=CO=1,再根据△BCP的面积等于2,即可得到P的坐标.【解答】解:(1)把A(1,2)代入双曲线y=,可得k=2,∴双曲线的解析式为y=;把A(1,2)代入直线y=x+b,可得b=1,∴直线的解析式为y=x+1;(2)设P点的坐标为(x,0),在y=x+1中,令y=0,则x=﹣1;令x=0,则y=1,∴B(﹣1,0),C(0,1),即BO=1=CO,∵△BCP的面积等于2,∴BP×CO=2,即|x﹣(﹣1)|×1=2,解得x=3或﹣5,∴P点的坐标为(3,0)或(﹣5,0).【点评】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点的坐标同时满足两个函数解析式.20.(8分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?【分析】设这批书共有3x本,根据每包书的数目相等.即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这批书共有3x本,根据题意得:=,解得:x=500,∴3x=1500.答:这批书共有500本.【点评】本题考查了一元一次方程的应用,根据每包书的数目相等.列出关于x 的一元一次方程是解题的关键.21.(8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a=25,b=0.10;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?【分析】(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b 的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【解答】解:(1)根据题意得:2÷0.04=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=0.10;故答案为:25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.【点评】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.22.(8分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果保留根号)【分析】(1)在Rt△CDE中,根据∠CDE=30°,DE=80cm,求出支架CD的长是多少即可.(2)首先在Rt△OAC中,根据∠BAC=30°,AC=165cm,求出OC的长是多少,进而求出OD的长是多少;然后求出OA的长是多少,即可求出真空热水管AB 的长是多少.【解答】解:(1)在Rt△CDE中,∠CDE=30°,DE=80cm,∴CD=80×cos30°=80×=40(cm).(2)在Rt△OAC中,∠BAC=30°,AC=165cm,∴OC=AC×tan30°=165×=55(cm),∴OD=OC﹣CD=55﹣40=15(cm),∴AB=AO﹣OB=AO﹣OD=55×2﹣15=95(cm).【点评】此题主要考查了解直角三角形的应用,要熟练掌握,注意将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).23.问题背景:已知∠EDF的顶点D在△ABC的边AB所在直线上(不与A,B重合),DE交AC所在直线于点M,DF交BC所在直线于点N,记△ADM的面积为S1,△BND的面积为S2.(1)初步尝试:如图①,当△ABC是等边三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2时,则S1S2=12;(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将∠EDF 绕点D旋转至如图②所示位置,求S1S2的值;(3)延伸拓展:当△ABC是等腰三角形时,设∠B=∠A=∠EDF=α.(Ⅰ)如图③,当点D在线段AB上运动时,设AD=a,BD=b,求S1S2的表达式(结果用a,b和α的三角函数表示).(Ⅱ)如图④,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出S1S2的表达式,不必写出解答过程.【分析】(1)首先证明△ADM,△BDN都是等边三角形,可得S1=22=,S2=(4)2=4,由此即可解决问题;(2)如图2中,设AM=x,BN=y.首先证明△AMD∽△BDN,可得=,推出=,推出xy=8,由S1=ADAMsin60°=x,S2=DBsin60°=y,可得S1S2=x y=xy=12;(3)Ⅰ如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,由S1=ADAMsinα=axsi nα,S2=DBBNsinα=bysinα,可得S1S2=(ab)2sin2α.(Ⅱ)结论不变,证明方法类似;【解答】解:(1)如图1中,∵△ABC是等边三角形,∴A B=CB=AC=6,∠A=∠B=60°,∵DE∥BC,∠EDF=60°,∴∠BND=∠EDF=60°,∴∠BDN=∠ADM=60°,∴△ADM,△BDN都是等边三角形,∴S1=22=,S2=(4)2=4,∴S1S2=12,故答案为12.(2)如图2中,设AM=x,BN=y.∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB,∵∠A=∠B,∴△AMD∽△BDN,∴=,∴=,∴xy=8,∵S1=ADAMsin60°=x,S2=DBsin60°=y,∴S1S2=x y=xy=12.(3)Ⅰ如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=ADAMsinα=axsinα,S2=DBBNsinα=bysinα,∴S1S2=(ab)2sin2α.Ⅱ如图4中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=ADAMsinα=axsinα,S2=DBBNsinα=bysinα,∴S1S2=(ab)2sin2α.【点评】本题考查几何变换综合题、等边三角形的性质、等腰三角形的性质、相似三角形的判定和性质、三角形的面积公式.锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.24.(10分)如图,抛物线y=x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣x﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).(1)求抛物线的解析式;(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN的最大值.(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.【分析】(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c解方程组即可得到结论;(2)设P(m,m2﹣m﹣2),得到N(m,﹣m﹣),M(﹣m2+2m+2,m2﹣m﹣2),根据二次函数的性质即可得到结论;(3)求得E(0,﹣),得到CE=,设P(m,m2﹣m﹣2),①以CE为边,根据CE=PF,列方程得到m=1,m=0(舍去),②以CE为对角线,连接PF交CE于G,CG=GE,PG=FG,得到G(0,﹣),设P(m,m2﹣m﹣2),则F(﹣m,m﹣),列方程得到此方程无实数根,于是得到结论.【解答】解:(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c得,,∴∴抛物线的解析式为:y=x2﹣x﹣2;(2)设P(m,m2﹣m﹣2),∵PM∥x轴,PN∥y轴,M,N在直线AD上,∴N(m,﹣m﹣),M(﹣m2+2m+2,m2﹣m﹣2),∴PM+PN=﹣m2+2m+2﹣m﹣m﹣﹣m2+m+2=﹣m2+m+=﹣(m﹣)2+,∴当m=时,PM+PN的最大值是;(3)能,理由:∵y=﹣x﹣交y轴于点E,∴E(0,﹣),∴CE=,设P(m,m2﹣m﹣2),∵以E,C,P,F为顶点的四边形能否构成平行四边形,①以CE为边,∴CE∥PF,CE=PF,∴F(m,﹣m﹣),∴﹣m﹣﹣m2+m+2=,∴m=1,m=0(舍去),②以CE为对角线,连接PF交CE于G,∴CG=GE,PG=FG,∴G(0,﹣),设P(m,m2﹣m﹣2),则F(﹣m,m﹣),∴×(m2﹣m﹣2+m﹣)=﹣,∵△<0,∴此方程无实数根,综上所述,当m=1时,以E,C,P,F为顶点的四边形能否构成平行四边形.【点评】本题考查了待定系数法求函数的解析式,平行四边形的性质,二次函数的性质,正确的理解题意是解题的关键.。

湘教版九年级数学上册期中测试卷(及参考答案)

湘教版九年级数学上册期中测试卷(及参考答案)

湘教版九年级数学上册期中测试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是( )A .2B .12C .12-D .-22.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<4.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 5.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.要反映台州市某一周每天的最高气温的变化趋势,宜采用( )A .条形统计图B .扇形统计图C .折线统计图D .频数分布统计图7.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为 ( )A.180 B.182 C.184 D.1869.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.610.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:22﹣|1﹣8|+(﹣12)﹣3=_____.2.因式分解:34a a-=____________.3.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是__________.5.如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为__________(结果保留根号和π).6.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.3.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.4.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.5.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、B6、C7、D8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-72、(2)(2)a a a +-3、增大.4、425、﹣3π6、3三、解答题(本大题共6小题,共72分)1、3x =2、(1)k ≤58;(2)k=﹣1.3、(1)反比例函数的表达式为8y x-=;(2)ABO ∆的面积为15.4、(1)略(2)菱形5、(1)28. (2)平均数是1.52. 众数为1.8. 中位数为1.5. (3)200只.6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。

湘教版九年级(上)期中数学试卷(含解析)

湘教版九年级(上)期中数学试卷(含解析)

九年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。

)1.下列多边形一定相似的是()A.两个矩形B.两个五边形C.两个正方形D.两个等腰三角形2.若x是a,b的比例中项,则下列式子错误的是()A.x2=ab B.C.D.ab=3.已知,则下列等式中不成立的是()A.B.C.D.4.对抛物线:y=x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向下C.顶点坐标是(1,﹣2)D.与y轴的交点是(0,3)5.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个6.根据有关测定,当外界气温处于人体正常体温的黄金比值时,人体感到最舒适(人体正常体温约为37℃),这个气温大约为()A.23℃B.28℃C.30℃D.37℃7.在下列抛物线中,开口最小的是()A.y=﹣x2B.y=﹣x2C.y=x2D.y=x28.若方程ax2+bx+c=0(a>0)的两个根是﹣3和1,则对于二次函数y=ax2+bx+c,当y>0时,x的取值范围是()A.﹣3<x<1B.x<﹣3或x>1C.x>﹣3D.x<19.已知点A(x1,4),B(x2,8)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0B.x1<0<x2C.x2<x1<0D.x2<0<x110.已知抛物线y=x2+2x﹣k﹣2与x轴没有交点,则函数y=的图象大致是()A.B.C.D.11.把抛物线y=﹣2x2+4的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣2)2+7B.y=﹣2(x﹣2)2+1C.y=﹣2(x+2)2+7D.y=﹣2(x+2)2+112.抛物线y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①b2<4ac;②abc<0:③4a+b=0;④a+b+c>0⑤当y=2时,x只能等于0.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分,请将答案填在指定的空格内)13.已知函数y=(2﹣k)x2+kx+1是二次函数,则k满足.14.已知:x:y=2:5,那么(x+y):y=.15.反比例函数,当x>0时,y随x增大而减小,k的取值范围.16.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(a,0),则a2﹣a+2020=.17.一名男生参加抛实心球测试,已知球的高度y(m)与水平距离x(m)之间的关系是,则这名男生抛实心球的成绩是m.18.过反比例函数y=(k≠0)图象上一点A,分别作x轴和y轴的垂线段,垂足分别为B、C,如果△ABC的面积是6,则k的值为.三、解答题(本大题共8小题,共66分,解答题应写出文字说明、证明过程或演算步骤)19.(6分)已知a:b:c=3:2:1,且2a﹣3b+c=10,求a+2b﹣3c的值.20.(6分)如图,在△ABC中,DE∥BC,AB=15,AE:EC=3:2,求DB的长.21.(6分)已知抛物线的对称轴是直线x=1,函数的最小值是﹣1,且图象经过点(3,1),求此抛物线的函数关系式.22.(8分)已知y与x+1成反比例,且当x=1时,y=2,求当x=0时,y的值.23.(8分)已知:在△ABC中,CD为∠C的平分线.求证:.24.(10分)已知反比例函数y1=与一次函数y2=k2x的图象如图所示.(1)求点B的坐标;(2)请直接写出y1>y2时,x的取值范围.25.(10分)某水果商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查显示,若每箱以50元的价格销售,平均每天可销售90箱,价格每提高1元,则平均每天少销售3箱.(1)求平均每天销售利润w(元)与销售价x(元箱)之间的函数关系式,并直接写出自变量x的取值范围.(2)当每箱的售价为多少元时,可以获得最大利润?最大是多少元?26.(12分)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交F点A(4,0).(1)求抛物线的解析式;(2)若点P为抛物线上任意一点,是否存在点P使得△AOP的面积为4?若存在,求出点P的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。

岳阳市中考数学试卷及答案解析

岳阳市中考数学试卷及答案解析

2017年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.6的相反数是()A.﹣6 B. C.6D.±6【分析】根据相反数的定义求解即可.【解答】解:6的相反数是﹣6,故选A.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.2.下列运算正确的是()55326235=5xD.x.x3x=x+2xA.=﹣x C【分析】根据幂的乘方,同底数幂的乘法以及合并同类项计算法则进行解答.6,故本选项错误;、原式=x【解答】解:A5,故本选项正确;x、原式=﹣B5,故本选项错误;=xC、原式23不是同类项,不能合并,故本选项错误;2x与D、3x故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.3.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为000吨油当量,将000用科学记数法表示为()1091191039..×10× D.×A10B .×10 Cn,其中1≤|a|<×【分析】用科学记数法表示较大的数时,一般形式为a1010,n为整数,据此判断即可.10.×000=10解:【解答】故选:A.n,其中a×10【点评】此题主要考查了用科学记数法表示较大的数,一般形式为1≤|a|<10,确定a与n的值是解题的关键.4.下列四个立体图形中,主视图、左视图、俯视图都相同的是()A. B. C. D.【分析】分别分析圆锥、圆柱、球体、三棱柱的主视图、左视图、俯视图,从而得出结论.【解答】解:∵球的主视图、左视图、俯视图都是圆,∴主视图、左视图、俯视图都相同的是B,故选B.【点评】本题考查三视图,熟练掌握常见几何体的三视图,是解决问题的关键.5.从,0,π,,6这5个数中随机抽取一个数,抽到有理数的概率是()A. B. C. D.【分析】根据有理数的定义可找出在,0,π,,6这5个数中只有0、和6为有理数,再根据概率公式即可求出抽到有理数的概率.【解答】解:∵在,0,π,,6这5个数中只有0、和6为有理数,∴从,0,π,,6这5个数中随机抽取一个数,抽到有理数的概率是.故选C.【点评】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.6.解分式方程﹣=1,可知方程的解为()A.x=1 B.x=3 C.x= D.无解【分析】直接利用分式方程的解法,首先去分母,进而解方程得出答案.【解答】解:去分母得:2﹣2x=x﹣1,解得:x=1,检验:当x=1时,x﹣1=0,故此方程无解.故选:D.【点评】此题主要考查了解分式方程,正确掌握解题步骤是解题关键.123456=64,…,根据这个规律,,=16,2=4,22=8,2.观察下列等式:72=32=2,212342017的末位数字是()则2++2…+2+2+2A.0B.2C.4D.6【分析】根据题目中的式子可以知道,末尾数字出现的2、4、8、6的顺序出现,12342017的末位数字.本题得以解决.…+2从而可以求得2+2+2++2123456=642,…,=32=8,2,【解答】解:∵2=16=2,2,=4,22∴2017÷4=506…1,∵(2+4+8+6)×506+2=10122,12342017的末位数字是2…+2+2+2,∴2++2故选B.【点评】本题考查尾数特征,解答本题的关键是发现题目中的尾数的变化规律,求出相应的式子的末位数字.8.已知点A在函数y=﹣(x>0)的图象上,点B在直线y=kx+1+k(k为常数,21且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y,y图象上的21一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对 C.只有2对 D.有2对或3对【分析】根据“友好点”的定义知,函数y图象上点A(a,﹣)关于原点的对12﹣(k+1)a+1=0 ,﹣)一定位于直线y上,即方程ka有解,整理方(称点Ba2程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y=kx+1+k上,2则=﹣ak+1+k,2﹣(k+1)整理,得:kaa+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.二、填空题(本大题共8小题,每小题4分,共32分)9.函数y=中自变量x的取值范围是 x≠7 .【分析】根据分母不为零,即可解决问题.【解答】解:函数y=中自变量x的范围是x≠7.故答案为x≠7【点评】本题考查函数自变量的取值范围,知道分母不能为零是解题的关键.22.﹣3)﹣6x+9= (x.因式分解:10x【分析】直接运用完全平方公式进行因式分解即可.22.3)(﹣6x+9=x【解答】解:x﹣【点评】本题考查了公式法分解因式,熟记完全平方公式的结构特点是解题的关键.11.在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是 92 ,众数是 95 .【分析】环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数.【解答】解:这组数据从小到大排列为:83,85,90,92,95,95,96.则中位数是:92;众数是95.故答案是:92,95.【点评】本题考查了众数、中位数的定义,注意中位数是大小处于中间未知的数,首先把数从小到大排列.12.如图,点P是∠NOM的边OM上一点,PD⊥ON于点D,∠OPD=30°,PQ∥ON,则∠MPQ的度数是 60°.【分析】根据直角三角形的内角和,求得∠O,再根据平行线的性质,即可得到∠MPQ.【解答】解:∵PD⊥ON于点D,∠OPD=30°,∴Rt△OPD中,∠O=60°,又∵PQ∥ON,∴∠MPQ=∠O=60°,故答案为:60°.【点评】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,同位角相等.13.不等式组的解集是 x<﹣3 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤3,解不等式②得:x<﹣3,∴不等式组的解集为x<﹣3,故答案为:x<﹣3.【点评】本题考查了解一元一次不等式和解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.2﹣4x+b=0x有两个相等的xAB=2,AC=b,且关于的方程14.在△ABC中BC=2,实数根,则AC边上的中线长为 2 .【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论.2﹣4x+b=0x有两个相等的实数根,【解答】解:∵关于x的方程∴△=16﹣4b=0,∴AC=b=4,∵BC=2,AB=2,222,BC=AC+AB∴∴△ABC是直角三角形,AC是斜边,∴AC边上的中线长=AC=2;故答案为:2.【点评】本题考查了根的判别式,勾股定理的逆定理,直角三角形斜边上的中线性质;证明△ABC是直角三角形是解决问题的关键.15.我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值,设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,π≈==3,那么当n=12时,π≈= .(结果精确到,参考数据:sin15°=cos75°≈)【分析】圆的内接正十二边形被半径分成顶角为30°的十二个等腰三角形,作辅助线构造直角三角形,根据中心角的度数以及半径的大小,求得L=,d=2r,进而得到π≈=≈.【解答】解:如图,圆的内接正十二边形被半径分成如图所示的十二个等腰三角形,其顶角为30°,即∠O=30°,∠ABO=∠A=75°,作BC⊥AO于点C,则∠ABC=15°,∵AO=BO=r,∴BC=r,OC=r,∴AC=(1﹣)r,∵Rt△ABC中,cosA=,即=,∴AB≈,∴L=12×=,又∵d=2r,∴π≈=≈,故答案为:【点评】本题主要考查了正多边形和圆以及解直角三角形的运用,把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.16.如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,下列结论正确的是②③④.(写出所有正确结论的序号)①若∠PAB=30°,则弧的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在弧上的位置如何变化,CPCQ为定值.【分析】①根据∠POB=60°,OB=6,即可求得弧的长;②根据切线的性质以及垂径定理,即可得到=,据此可得AP平分∠CAB;③根据BP=BO=PO=6,可得△BOP 是等边三角形,据此即可得出PD=6;④判定△ACP∽△QCA,即可得到=,即2,据此可得CPCQ为定值.CPCQ=CA【解答】解:如图,连接OP,∵AO=OP,∠PAB=30°,∴∠POB=60°,∵AB=12,∴OB=6,∴弧的长为=2π,故①错误;∵PD是⊙O的切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴=,∴∠PAC=∠PAB,∴AP平分∠CAB,故②正确;若PB=BD,则∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴PD=OP=6,故③正确;∵AC=BC,∴∠BAC=∠ABC,又∵∠ABC=∠APC,∴∠APC=BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,2(定值),故④正确;CPCQ=CA∴=,即故答案为:②③④.【点评】本题主要考查了相似三角形的判定与性质,垂径定理,切线的性质以及弧长公式的综合应用,解决问题的关键是作辅助线,构造三角形,解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的弧.三、解答题(本大题共8小题,共64分)0﹣1.2)﹣()(π﹣﹣.计算:2sin60°17+|3|+【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【解答】解:原式=2×+3﹣+1﹣2=2.【点评】本题考查的是实数的混合运算,掌握特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质是解题的关键.18.求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在?ABCD中,对角线AC,BD交于点O, AC⊥BD .求证:四边形ABCD是菱形.【分析】由命题的题设和结论可填出答案,由平行四边形的性质可证得AC为线段BD的垂直平分线,可求得AB=AD,可得四边形ABCD是菱形.【解答】已知:如图,在?ABCD中,对角线AC,BD交于点O,AC⊥BD,求证:四边形ABCD是菱形.证明:∵四边形ABCD为平行四边形,∴BO=DO,∵AC⊥BD,∴AC垂直平分BD,∴AB=AD,∴四边形ABCD为菱形.故答案为:AC⊥BD;四边形ABCD是菱形.【点评】本题主要考查菱形的判定及平行四边形的性质,利用平行四边形的性质证得AB=AD是解题的关键.19.(8分)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.【分析】(1)把A(1,2)代入双曲线以及直线y=x+b,分别可得k,b的值;(2)先根据直线解析式得到BO=CO=1,再根据△BCP的面积等于2,即可得到P 的坐标.【解答】解:(1)把A(1,2)代入双曲线y=,可得k=2,∴双曲线的解析式为y=;把A(1,2)代入直线y=x+b,可得b=1,∴直线的解析式为y=x+1;(2)设P点的坐标为(x,0),在y=x+1中,令y=0,则x=﹣1;令x=0,则y=1,∴B(﹣1,0),C(0,1),即BO=1=CO,∵△BCP的面积等于2,∴BP×CO=2,即|x﹣(﹣1)|×1=2,解得x=3或﹣5,∴P点的坐标为(3,0)或(﹣5,0).【点评】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点的坐标同时满足两个函数解析式.20.(8分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本【分析】设这批书共有3x本,根据每包书的数目相等.即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这批书共有3x本,根据题意得: =,解得:x=500,∴3x=1500.答:这批书共有500本.【点评】本题考查了一元一次方程的应用,根据每包书的数目相等.列出关于x 的一元一次方程是解题的关键.21.(8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时频数(人数)频率间(单位:小时)2≤20<t3≤42<t15≤64<ta8t6<≤b5t>8请根据图表信息回答下列问题:(1)频数分布表中的a= 25 ,b= ;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人【分析】(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b 的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【解答】解:(1)根据题意得:2÷=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=;故答案为:25;;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×=200(人),则该校2000名学生中评为“阅读之星”的有200人.【点评】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.22.(8分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果保留根号)【分析】(1)在Rt△CDE中,根据∠CDE=30°,DE=80cm,求出支架CD的长是多少即可. xk b1. c om标课新(2)首先在Rt△OAC中,根据∠BAC=30°,AC=165cm,求出OC的长是多少,进而求出OD的长是多少;然后求出OA的长是多少,即可求出真空热水管AB的长是多少.【解答】解:(1)在Rt△CDE中,∠CDE=30°,DE=80cm,∴CD=80×cos30°=80×=40(cm).(2)在Rt△OAC中,∠BAC=30°,AC=165cm,∴OC=AC×tan30°=165×=55(cm),∴OD=OC﹣CD=55﹣40=15(cm),∴AB=AO﹣OB=AO﹣OD=55×2﹣15=95(cm).【点评】此题主要考查了解直角三角形的应用,要熟练掌握,注意将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).23.问题背景:已知∠EDF的顶点D在△ABC的边AB所在直线上(不与A,B重合),DE交AC所在直线于点M,DF交BC所在直线于点N,记△ADM的面积为S,1△BND的面积为S.2(1)初步尝试:如图①,当△ABC是等边三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2时,则SS= 12 ;21(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将∠EDF绕点D旋转至如图②所示位置,求SS的值;21(3)延伸拓展:当△ABC是等腰三角形时,设∠B=∠A=∠EDF=α.(Ⅰ)如图③,当点D在线段AB上运动时,设AD=a,BD=b,求SS的表达式(结21果用a,b和α的三角函数表示).(Ⅱ)如图④,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出SS21的表达式,不必写出解答过程.22=4)4,,S=,ADM△BDN都是等边三角形,可得S=2(=【分析】(1)首先证明△21由此即可解决问题;(2)如图2中,设AM=x,BN=y.首先证明△AMD∽△BDN,可得=,推出=,推出xy=8,由S=ADAMsin60°=x,S=DBsin60°=y,可得SS=xy=xy=12;2211(3)Ⅰ如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,由22α.sin(S=ab)SS=ADAMsinα=axsinα,=DBBNsinα=bysinα,可得S2211(Ⅱ)结论不变,证明方法类似;【解答】解:(1)如图1中,∵△ABC是等边三角形,∴AB=CB=AC=6,∠A=∠B=60°,∵DE∥BC,∠EDF=60°,∴∠BND=∠EDF=60°,∴∠BDN=∠ADM=60°,∴△ADM,△BDN都是等边三角形,22=4)(=,=2∴S=S4,21.∴SS=12,21故答案为12.(2)如图2中,设AM=x,BN=y.∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB,∵∠A=∠B,∴△AMD∽△BDN,∴=,∴=,∴xy=8,∵S=ADAMsin60°=x,S=DBsin60°=y,21∴SS=xy=xy=12.21(3)Ⅰ如图3中,设AM=x,BN=y,w w w .x k b o m同法可证△AMD∽△BDN,可得xy=ab,∵S=ADAMsinα=axsinα,S=DBBNsinα=bysinα,2122α.sin=(ab)∴SS21Ⅱ如图4中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S=ADAMsinα=axsinα,S=DBBNsinα=bysinα,2122α.sinabS∴S=()21【点评】本题考查几何变换综合题、等边三角形的性质、等腰三角形的性质、相似三角形的判定和性质、三角形的面积公式.锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.2+bx+c经过点B(3,0),C((24.10分)如图,抛物线y=x0,﹣2),直线l:y=﹣x﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).(1)求抛物线的解析式;(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN的最大值.(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形若能,求出点F的坐标;若不能,请说明理由.2+bx+cy=x解方程组即可得到结0,﹣2)代入B(3,0),C(1【分析】()把论;222﹣m﹣ m2﹣),M(﹣m),+2m+2,P(m, m2﹣m﹣),得到N(m,﹣ m(2)设根据二次函数的性质即可得到结论;2﹣m﹣2),①以(m, mCE为边,根据P(3)求得E(0,﹣),得到CE=,设CE=PF,列方程得到m=1,m=0(舍去),②以CE为对角线,连接PF交CE于G,2﹣m﹣2),则F(﹣m,(G0,﹣),设P(m, m m﹣),CG=GE,PG=FG,得到列方程得到此方程无实数根,于是得到结论.2+bx+cy=x得,,0,﹣2)代入C)把B(3,0),(1【解答】解:(∴2﹣x﹣∴抛物线的解析式为:y=x2;2﹣m﹣ m2),(2)设P(m,∵PM∥x轴,PN∥y轴,M,N在直线AD上,22﹣m﹣, m2),mN(,﹣ m﹣),M(﹣m+2m+2∴2222+,m﹣+m+2=m﹣)+m+=﹣﹣﹣∴PM+PN=m﹣+2m+2m﹣mm﹣(∴当m=时,PM+PN的最大值是;(3)能,理由:∵y=﹣x﹣交y轴于点E,∴E(0,﹣),∴CE=,2﹣m﹣ mm,2),设P(∵以E,C,P,F为顶点的四边形能否构成平行四边形,①以CE为边,∴CE∥PF,CE=PF,∴F(m,﹣ m﹣),2+m+2=,m﹣﹣m∴﹣∴m=1,m=0(舍去),②以CE为对角线,连接PF交CE于G,∴CG=GE,PG=FG,∴G(0,﹣),2﹣m﹣2),则F m(﹣m, m﹣),,设P(m2﹣m﹣2+m∴×(m﹣)=﹣,∵△<0,∴此方程无实数根,综上所述,当m=1时,以E,C,P,F为顶点的四边形能否构成平行四边形.【点评】本题考查了待定系数法求函数的解析式,平行四边形的性质,二次函数的性质,正确的理解题意是解题的关键.。

【湘教版】九年级数学上期中试卷(带答案)(1)

【湘教版】九年级数学上期中试卷(带答案)(1)

一、选择题1.连续掷两次骰子,出现点数之和等于4的概率为( )A .136 B .118 C .112D .19 2.从1,2,3--三个数中,随机抽取两个数相乘,积是正数的概率是( ) A .13 B .23 C .16 D .13.下列说法正确的是( )A .“清明时节雨纷纷”是必然事件B .要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查C .做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55D .射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好4.一个袋子里装有一双红色、一双绿色手套,两双手套除颜色外,其他完全相同,随机地从袋中摸出两只,恰好是一双的概率( )A .12B .13C .14D .165.一元二次方程x 2=2x 的根是( ).A .0B .2C .0和2D .0和﹣26.用配方法解一元二次方程2830x x +-=,下列变形中正确的是( ) A .()2419x -= B .()2419x +=C .()2861x +=D .()2867x -= 7.关于x 的一元二次方程()221620k x x k k -+++-=有一个根是0,则k 的值是( )A .0B .1C .-2D .1或-2 8.定义运算:21a b ab ab =--☆.例如:23434341=⨯-⨯-☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根 9.下列说法中正确的是( )A .对角线互相垂直的四边形是菱形B .有一个角是直角的平行四边形是正方形C .有两个角相等的四边形是平行四边形D .平移和旋转都不改变图形的形状和大小10.如图,在正方形ABCD 中,E F 、分别在CD AD 、边上,且CE DF =,连接BE CF 、相交于G 点.则下列结论:①BE CF =;②BCG DFGE S S ∆=四边形;③2CG BG GE =⋅;④当E 为CD 中点时,连接DG ,则45FGD ∠=︒;正确结论的个数是( )A .1B .2C .3D .411.如图,在正方形ABCD 的边AB 上取一点E ,连接CE ,将BCE 沿CE 翻折,点B 恰好与对角线AC 上的点F 重合,连接DF ,若1BE =,则CDF 的面积是( )A .3214+B .628+C .324+D .32212.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相垂直D .两组对角分别相等二、填空题13.如图,一枚飞镖游戏板由大小相等的小正方形格子构成向游戏板随机投掷一枚飞镖,击中黑色区域的概率是__________.14.在单词“BANANA ”中随机选择一个字母,选到字母“N ”的概率是____.15.已知a ,b 是方程230x x --=的两个实数根,则2+1a b +的值为__________. 16.方程2640x x -+=的两个实根分别为1x ,2x ,那么1212x x x x --的值为______. 17.若关于x 的一元二次方程x 2﹣2kx +k 2﹣k +1=0有两个不相等的实数根,则实数k 的取值范围是_____.18.已知,在△ABC 中,∠BAC =45°,AB =1,AC 8AC 为一边作等腰直角△ACD,使∠CAD=90°,连接BD,则线段BD的长度为________.19.如图,两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是________.20.如图,在菱形ABCD中,AB=18cm,∠A=60°,点E以2cm/s的速度沿AB边由A向B 匀速运动,同时点F以4cm/s的速度沿CB边由C向B运动,F到达点B时两点同时停止运动.当点E运动_______秒时,△DEF为等边三角形.三、解答题21.我国在2020年11月1日启动第七次人口普查.为了调查学生对人口普查知识的了解程度,湖州市某学校数学兴趣小组通过网上调查的方式在本校学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查结果,绘制了如图的统计图,结合统计图,回答下列问题.(1)本次抽样调查的人数是______人;(2)若该校有学生2000人,请根据调查结果估计这些学生中“比较了解”人口普查知识的人数约为多少?(3)根据调查结果,学校准备开展关于人口普查知识竞赛,某班要从“非常了解”的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:在一个不透明的袋中装有2个红球和2个白球,它们除了颜色外无其它差别,从中随机摸出两个球,若摸出的两个球颜色相同,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.22.在一个不透明的布袋里装有大小、质量完全相同的四个小球,标号分别为﹣1、0、1、2,先从布袋中随机摸出一个小球,记下标号数字;再从布袋中剩下的三个小球里随机摸出一个小球,记下标号数字.(1)第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为 ;(2)用列表或树状图的方法(只选一种即可),求两次摸出的小球标号数字之和是正数的概率.23.解下列方程:2(1)3(1)x x x -=-24.如果关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”,例如,一元二次方程x 2+x =0的两个根是x 1=0,x 2=﹣1,则方程x 2+x =0是“邻根方程”;(1)通过计算,判断下列方程是否是“邻根方程”.①x 2﹣x ﹣12=0;②x 2﹣9x +20=0;(2)已知关于x 的方程x 2+(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求m 的值. 25.如图,四边形OABC 是一张放在平面直角坐标系中的正方形纸片,点O 与坐标原点重合,点A 在x 轴上,点C 在y 轴上,5OC =,点E 在边BC 上,点N 的坐标为(3,0),过点N 且平行于y 轴的直线MN 与EB 交于点M .现将纸片折叠,使顶点C 落在MN 上,并与MN 上的点G 重合,折痕为OE .(1)求点G 的坐标,并求直线OG 的解析式;(2)若直线:l y mx n =+平行于直线OG ,且与长方形ABMN 有公共点,请直接写出n 的取值范围.(3)设点P 为x 轴上的点,是否存在这样的点P ,使得以,,P O G 为顶点的三角形为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.26.如图,在Rt∆ABC 中,∠ACB =90°,AC 的垂直平分线交AB 于点E ,连接CE ,BF//CE 交DE 的延长线于点F .(1)求证:四边形BCEF 是平行四边形;(2)当∠A 满足什么条件时,四边形BCEF 是菱形?回答并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】列举出所有情况,看点数之和等于4的情况数占总情况数的多少即可.【详解】解:如图所示:1234561112131415161212223242526231323334353634142434445464515253545556561626364656664的情况为13,22,31共3种,于是P(点数之和等于4)=31= 3612.故选:C.【点睛】本题考查概率的求法与运用,由于两次实验出现的情况较多,用列表法较好.用到的知识点为:概率=所求情况数与总情况数之比.2.A解析:A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积是正数的情况,再利用概率公式即可求得答案.【详解】解:画树状图如下:共有6种情况,积是正数的有2种情况,所以,P(积是正数)=21 63 ,故选:A.【点睛】考查了列表法与树状图法,本题用到的知识点为:概率=所求情况数与总情况数之比.3.C解析:C【分析】根据随机事件的概念、抽样调查的特点、方差的意义及概率公式分别判断可得.【详解】解:A、“清明时节雨纷纷”是随机事件,此选项错误;B、要了解路边行人边步行边低头看手机的情况,采取对在路边行走的学生随机发放问卷的方式进行调查不具代表性,此选项错误;C、做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55,正确;D、射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较稳定,此选项错误;4.B解析:B【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.【详解】列表得:(红,绿)(红,绿)(绿,绿)-(红,绿)(红,绿)-(绿,绿)(红,红)-(绿,红)(绿,红)∴恰好是一双的概率41123=. 故选B .【点睛】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比. 5.C解析:C【分析】根据一元二次方程的性质,先提公因式,通过计算即可得到答案.【详解】移项得,x 2-2x =0,提公因式得,x (x-2)=0,解得,x 1=0,x 2=2,故选:C .【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.6.B解析:B【分析】方程移项后,利用完全平方公式变形即可得到结果.【详解】解:方程x 2+8x-3=0,移项得:x 2+8x=3,配方得:x 2+8x+16=16+3,即(x+4)2=19.故选:B .【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 7.C解析:C【分析】把x=0代入方程,得到220k k +-=,解得k 值后,验证二次项系数不为零,判断即可.【详解】∵x 的一元二次方程()221620k x x k k -+++-=有一个根是0, ∴220k k +-=,且k-1≠0,解得k= -2或k=1,且k≠1,∴k= -2,故选C.【点睛】本题考查了已知一元二次方程的一个根探解字母系数问题,熟练运用根的定义,一元二次方程的定义是解题的关键.8.A解析:A【分析】根据新定义运算法则以及利用△>0可判断方程根的情况.【详解】解:由题意可知:1☆x=x2-x-1=0,∴△=1-4×1×(-1)=5>0,∴有两个不相等的实数根故选:A.【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.9.D解析:D【分析】根据平行四边形,菱形,正方形的判定,依据平移旋转的性质一一判断即可.【详解】解:A、对角线互相垂直的四边形是菱形,错误.应该是对角线互相垂直平分的四边形是菱形,本选项不符合题意.B、有一个角是直角的平行四边形是正方形,错误.应该是有一个角是直角且邻边相等的平行四边形是正方形,本选项不符合题意.C、有两个角相等的四边形是平行四边形,错误,可能是等腰梯形.本选项不符合题意.D、平移和旋转都不改变图形的形状和大小,正确,故选:D.【点睛】本题考查平行四边形的判定,菱形的判定,正方形的判定,平移变换,旋转变换的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.D解析:D【分析】证明△BCE≌△CDF可判断①;利用△BCE≌△CDF可得S△BCE=S△CDF,从而可判断②;证明△BCG∽△CEG得CG GEBG CG,可判断③;过D作DM⊥FG于M,证明MD=MG即可判断④,从而可得结论.【详解】解:∵四边形ABCD 是正方形∴BC=CD ,∠BCE=∠CDF又CE=DF∴△BCE ≌△CDF∴BE CF =,故①正确;②∵△BCE ≌△CDF∴S △BCE =S △CDF ,∴S △BCE -S △CGE =S △CDF -S △CG ,∴BCG DFGE S S ∆=四边形;③∵△BCE ≌△CDF∴∠CBE=∠FCD∵∠BCG+90GCE ∠=︒,∴∠90BCG CBG +∠=︒∴∠90BGC =︒又∵∠BGC=∠CGE=90°,∠GBC=∠GCE∴△BCG ∽△CEG ∴CG GE BG CG=, ∴2CG BG GE =⋅,故③正确;④过D 作DM ⊥FG 于M ,如图所示,设DF=a ,则AD=2a∵CE=DF ∴225BE BC CE a =+=利用面积法可得1122BC CE BE CG = ∴255CG a = 同理可得,255DM a = ∴225FM DF DM =-=∴MG=CF-FM-CG=255a ∴MD=MG∵∠DMG=90° ∴45FGD ∠=︒,故④正确∴正确的结论有4个,故选:D .【点睛】 此题主要考查了运用正方形的有关性质进行讲明和求解,熟练掌握正方形的性质是解答此题的关键.11.A解析:A【分析】由折叠可得1EF BE ==,90CFE ABC ∠=∠=︒,且 45FAE ∠=︒,可得1AF =, 2AE =,即可求对角线BD 的长,则可求 CDF 的面积.【详解】如图连结BD 交AC 于点O ,∵ABCD 为正方形, ∴90ABC ∠=︒,AB=BC ,AC BD ⊥, DO BO =,45BAC ∠=︒,∵BCE 沿CE 翻折, ∴1BE EF ==,BC CF =, 90EFC ∠=︒, ∵45BAC ∠=︒,90EFC ∠=︒, ∴45EAF AEF ∠=∠=︒, ∴1AF EF ==,∴2AE =∴21AB BC CF ===,∴222BD AB ==∴222OD +=,∴12CDF SCF DO =⨯⨯,∴)(1241444CDF S ++===+.故选:A .【点睛】本题考查翻折变换、正方形的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是熟练应用所学知识解决问题.12.B解析:B【分析】矩形的对角线互相平分且相等,菱形的对角线互相平分,互相垂直,并且每一条对角线平分一组对角,据此解答.【详解】A 、是菱形的性质,是矩形的性质,故本选项不符合题意;B 、是矩形的性质,不是菱形的性质,故本选项符合题意;C 、是菱形的性质,不是矩形的性质,故本选项不符合题意;D 、矩形、菱形的对角都相等,故本选项不符合题意;故选:B .【点睛】此题考查矩形的性质,菱形的性质,熟记各自的性质特征是解题的关键.二、填空题13.【分析】直接利用黑色区域的面积除以游戏板的面积即可;【详解】设每个小正方形格子的长度都是1∴黑色区域的面积=6游戏板的面积=16所以击中黑色区域的概率为故答案为:【点睛】本题考查了几何概率:求概率时 解析:38【分析】直接利用黑色区域的面积除以游戏板的面积即可;【详解】设每个小正方形格子的长度都是1,∴ 黑色区域的面积=6,游戏板的面积=16, 所以击中黑色区域的概率为63=168, 故答案为:38. 【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率,计算方法是长度比、面积比、体积比等.14.【分析】由单词BANANA 中有2个N 直接利用概率公式求解即可求得答案【详解】一共有BANANA 六种结果其中是N 的有2种所以P 选到字母N 故答案为:【点睛】本题考查概率的计算方法列举出所有可能出现的结果 解析:13. 【分析】 由单词"BANANA"中有2个N,直接利用概率公式求解即可求得答案.【详解】一共有B 、A 、N 、A 、N 、A 六种结果,其中是“N”的有2种,所以P 选到字母“N”2163==. 故答案为:13. 【点睛】本题考查概率的计算方法,列举出所有可能出现的结果是正确解答的前提. 15.5【分析】先根据根与系数的关系写出两根的和与积代入所求代数式计算即可【详解】解:∵是方程的两个实数根∴∴∴;故答案为:5【点睛】本题考查了一元二次方程的根与系数的关系掌握根与系数的关系是解决本题的关 解析:5【分析】先根据根与系数的关系,写出两根的和与积,代入所求代数式计算即可.【详解】解:∵a ,b 是方程230x x --=的两个实数根,∴230a a --=,111a b -+=-=, ∴23a a =+,∴2131()4145a b a b a b ++=+++=++=+=;故答案为:5.【点睛】本题考查了一元二次方程的根与系数的关系.掌握根与系数的关系是解决本题的关键.一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=b a -,x 1•x 2=c a. 16.【分析】根据根与系数的关系求出x1+x2和的值然后代入计算即可【详解】∵方程的两个实根分别为∴x1+x2==∴=-(x1+x2)=-2故答案为:-2【点睛】本题考查了一元二次方程ax2+bx+c=0解析:2-【分析】根据根与系数的关系求出x 1+x 2和12x x ⋅的值,然后代入计算即可.【详解】∵方程2640x x -+=的两个实根分别为1x ,2x ,∴x 1+x 2=661--=,12x x ⋅=441=, ∴1212x x x x --=12x x ⋅-(x 1+x 2)=-2.故答案为:-2【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1+x 2=b a -,12x x ⋅=c a. 17.k >1【分析】根据方程有两个不相等的实数根可得△=(2k )2﹣4(k2﹣k+1)>0求出k 的取值范围【详解】解:∵原方程有两个不相等的实数根∴△=b2﹣4ac =(2k )2﹣4(k2﹣k+1)=4k ﹣解析:k >1【分析】根据方程有两个不相等的实数根可得△=(2k )2﹣4(k 2﹣k +1)>0,求出k 的取值范围.【详解】解:∵原方程有两个不相等的实数根,∴△=b 2﹣4ac =(2k )2﹣4(k 2﹣k +1)=4k ﹣4>0,解得k >1;故答案为:k >1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.18.或【分析】AC 作为直角边有两种情况需要分情况讨论画出图后进行计算【详解】解:情况一:延长AB 交CD 于E ∠BAC =45°∠CAD =90°所以AE 是等腰直角△ACD 的高线中线所以CE=DE 因为∠BAC =【分析】AC 作为直角边,有两种情况,需要分情况讨论,画出图后进行计算.【详解】解:情况一:延长AB 交CD 于E∠BAC =45°,∠CAD =90°所以AE 是等腰直角△ACD 的高线,中线所以,AE CD ⊥,CE=DE 因为8AC =,AE CD ⊥,∠BAC =45°所以△ACE 也是等腰直角三角形,根据勾股定理,AE=CE=2所以BE=AE-AB=2-1=1又因为DE=CE=2,AE CD ⊥所以,BD=22145BE DE +=+=情况二:延长直线AB ,分别过C 、D 作垂线,交直线AB 于F 、E .与情况一类似,可以证出CF=AF=2,BF=AF-AB=2-1=1所以,BE=EF-BF ;因为∠BAC =45°,CF AB ⊥所以,∠ACF =180°-∠BAC-∠F=45°因为△ACD 是等腰直角三角形,∠CAD =90°所以∠ACD =45°所以 ,∠FCD =∠ACD+∠ACF=45°+45°=90°又因为,DE AB CF AB ⊥⊥所以四边形DEFC 是矩形所以DE=CF=2,EF=DC ;因为在等腰直角△ACD 中,∠CAD =90°,8AC =所以,根据勾股定理,CD=4所以,BE=EF-BF=DC-BF=4-1=3 因此,22223213BD DE BE =+=+=故答案为5或13.【点睛】这道题考察的是等腰直角三角形的性质,勾股定理,矩形的判定和性质.熟练掌握这些知识点,画出辅助线,是解题的关键.19.【分析】由两个长宽分别为的矩形如图叠放在一起可证得阴影部分是菱形然后设则利用勾股定理可得方程:则可求得的长继而求得答案【详解】解:如图:根据题意得:四边形是平行四边形两个矩形等高即四边形是菱形设则在 解析:2877cm . 【分析】由两个长宽分别为7cm 、3cm 的矩形如图叠放在一起,可证得阴影部分是菱形,然后设BF xcm =,则 DFxcm ,7()AF AD DF x cm ,利用勾股定理可得方程: 2223(7)x x ,则可求得BE 的长,继而求得答案.【详解】解:如图:根据题意得://AD BC ,//BF DE ,∴四边形ABCD 是平行四边形,两个矩形等高,即DH AB =,BEDF S BE AB BF DH ,BE BF ∴=,∴四边形BEDF 是菱形,BF DF ∴=,设BF xcm =,则DFxcm ,7()AF AD DF x cm , 在Rt ABF ∆中,222AB AF BF +=,2223(7)x x , 解得:297x, 297BE cm ,2 877BEDFS BE AB cm菱形.故答案为:2877cm.【点睛】本题考查了菱形的判定与性质以及勾股定理等知识.掌握方程思想的应用是解此题的关键.20.3s【分析】连接BD易证△ADE≌△BDF即可推出AE=BF列出方程即可解决问题【详解】连接BD如图:∵四边形ABCD是菱形∠A=60°∴AD=CD=BC =AB=18△ADB△BDC都是等边三角形∴解析:3s【分析】连接BD.易证△ADE≌△BDF,即可推出AE=BF,列出方程即可解决问题.【详解】连接BD.如图:∵四边形ABCD是菱形,∠A=60°,∴AD=CD=BC=AB=18,△ADB,△BDC都是等边三角形,∴AD=BD,∠ADB=∠DBF=60°,∵△DEF是等边三角形,∴∠EDF=60°,∴∠ADB=∠EDF,∴∠ADE=∠BDF,在△ADE和△BDF中,60A DBFAD BDADE BDF∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△BDF(ASA),∴AE=BF,∴2t=18−4t,∴t=3,故答案为:3s.【点睛】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定与性质、一元一次方程等知识,解题的关键是利用全等三角形解决问题,属于中考常考题型.三、解答题21.(1)400;(2)300人;(3)不公平,理由见解析【分析】(1)把条形统计图给出的数据相加即可得出答案;(2)用总人数乘以“比较了解”所占的百分比即可;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的两个球颜色相同与不同的情况,再利用概率公式求得其概率,比较概率的大小,即可知这个游戏规则是否公平.【详解】解:(1)本次抽样调查的人数是:20+60+180+140=400(人),故答案为:400;(2)这些学生中“比较了解”人口普查知识的人数有:2000×60400=300(人); (3)画树状图得:∵共有12种等可能的结果,两个球颜色相同的有4种情况,两个球颜色不同的有8种情况,∴P (颜色相同)=41123=,P (颜色不同)=82123=, ∴游戏规则不公平.【点睛】 此题考查了列表法或树状图法求概率以及条形统计图.注意概率相等,则公平,否则不公平.22.(1)0或13;(2)图表见解析,23 【分析】(1)分两种情况分别解答即可;(2)画树状图,共有12个等可能的结果,两次摸出的小球标号数字之和是正数的有8个,再由概率公式求解即可.【详解】解:(1)若先从布袋中随机摸出一个小球是1,则第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为0; 若先从布袋中随机摸出一个小球不是1,则第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为13;综上所述,第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为0或13, 故答案为:0或13; (2)画树状图如图:共有12个等可能的结果,两次摸出的小球标号数字之和是正数的有8个,∴两次摸出的小球标号数字之和是正数的概率为82=123 . 【点睛】本题考查了用列表法或树状图法求概率,同时也要注意概率=所求情况数与总情况数之比; 23.1231,2x x ==【分析】 移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:()()2131x x x -=-,移项得()()21310x x x ---=,因式分解得()()2310x x --=,解得1231,2x x ==. 【点睛】本题考查了因式分解法解一元二次方程,正确理解因式分解法的基本思想是化成一元一次方程.24.(1)②是“邻根方程”,(2) m =0或﹣2【分析】(1)解方程求得方程的根即可判断;(2)解方程得x =﹣m 或x =1,根据题意﹣m =1+1或﹣m =1﹣1,解得m =0或﹣2.【详解】解:(1)①分解因式得:(x ﹣4)(x +3)=0,解得:x =4或x =﹣3,∵4≠﹣3+1,∴x 2﹣x ﹣12=0不是“邻根方程”;②分解因式得:(x ﹣4)(x ﹣5)=0,解得:x =4或x =5,∵5=4+1,∴x 2﹣9x +20=0是“邻根方程”;(2)分解因式得:(x +m )(x ﹣1)=0,解得:x =﹣m 或x =1,∵方程程x 2+(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程,∴﹣m =1+1或﹣m =1﹣1,∴m =0或﹣2.【点睛】本题考查了解一元二次方程﹣﹣因式分解法,“邻根方程”的定义,熟练掌握因式分解法是解题的关键.25.(1)G 的坐标为(3,4),直线OG 的解析式为43y x =;(2)2013n -;(3)P 的坐标为(5,0)或(50)-,或(6,0)或25,06⎛⎫ ⎪⎝⎭【分析】 (1)由图形折叠的不变性可得OG 的长度,从而可求NG 的长度,可得G 的坐标;利用待定系数法代入G 的坐标,可得直线OG 的解析式(2)结合图形,分别求出直线过点M 、A 时n 的值,可得n 的取值范围(3)依据等腰三角形性质的定义,将两腰相等的情况分为三类,分别求解即可【详解】解:(1)由折叠的性质可知,5OG OC ==,由勾股定理得,4GN ==,∴点G 的坐标为(3,4)设直线OG 的解析式为y kx =将(3,4)G 代入y kx =,得43k =∴直线OG 的解析式为43y x =. (2)∵直线:l y mx n =+平行于直线OG ,34m ∴=,即直线l 的解析式为43y x n =+, 当直线l 经过点(3,5)M 时,4533n =⨯+, 解得,1n =当直线l 经过点(5,0)A 时,4053n =⨯+解得,203n =-, ∴直线l 与长方形ABMN 有公共点时,2013n -(3)①当5OP OG ==时, 若点P 在原点左侧,点P 的坐标为(5,0)-,若点P 在原点右侧,点P 的坐标为(5,0),②当GP GO =时,GN OP ⊥,3NP NO ∴==,6OP ∴=∴点P 的坐标为(6,0),③当PO PG =时,可得3PN OP ON OP =-=-,在Rt GPN 中,222PG GN PN =+,即222(3)4OP OP =-+, 解得,256OP =∴,点P 的坐标为25,06⎛⎫ ⎪⎝⎭, 综上所述,以P O G ,,为顶点的三角形为等腰三角形时, 点P 的坐标为(5)0,或(50)-,或(6)0,或2506⎛⎫ ⎪⎝⎭,. 【点睛】本题利用图形折叠的不变性,考查了一次函数解析式的求法及一次函数图像的平移,同时考查了等要三角形的定义及勾股定理的应用,熟练掌握考查内容并利用数形结合的思想是解决问题的关键26.(1)证明见解析;(2)30A ∠=︒,证明见解析【分析】(1)先根据垂直平分线和直角证得DF//BC ,再结合BF//CE ,根据两组对边分别平行的四边形是平行四边形即可证明;(2)根据有一组临边相等的平行四边形是菱形,所以需添加的条件能证明有一组临边相等据此作答.【详解】解:(1)证明:∵DF 垂直平分AC ,90ACB ∠=︒,∴DF//BC ,又∵BF//CE ,∴四边形BCEF 是平行四边形;(2)当30A ∠=︒时,四边形BCEF 是菱形,理由是:∵DF 垂直平分AC ,90ACB ∠=︒,30A ∠=︒,∴EA=EC ,1903060∠=︒-︒=︒,∴230A ∠=∠=︒,即3903060∠=︒-︒=︒,∴∆BCE 是等边三角形,∴BC=EC ,由(1)得四边形BCEF 是平行四边形,∴四边形BCEF 是菱形.【点睛】本题考查菱形的判定定理,平行四边形的判定定理,垂直平分线的性质,等腰三角形的性质.熟练掌握判定定理,并能结合题意选择合适的定理证明是解题关键.。

湖南省 九年级(上)期中数学试卷(含答案)

湖南省 九年级(上)期中数学试卷(含答案)

九年级(上)期中数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共5小题,共15.0分)1.在母亲节那天,小明打算买10朵鲜花送给妈妈,现有两种鲜花,一种1.5元/株,另一种3元/朵,但小明只有20元钱,试问单价为3元/朵的鲜花最多买()A. 2朵B. 3朵C. 4朵D. 5朵2.如图,飞机在空中B处探测到它的正下方地面上目标C,此时飞行高度BC=1200米,从飞机上看地面指挥台A的俯角α的正切值为,则飞机与指挥台之间AB的距离为()A. 1200 米B. 1600 米C. 1800 米D. 2000 米3.如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足()A. B.C. D. 以上情况均有可能4.下列计算错误的是()A. B. C. D.5.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2018-a-b的值是()A. 2018B. 2021C. 2022D. 2023二、填空题(本大题共5小题,共15.0分)6.如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB的度数为______°.7.平面直角坐标系中,点A(-1,)位于第______象限.8.在-2,-1,0,1,2五个数字中,任取一个作为a,使不等式组无解,且函数y=ax2+(a+2)x+a+1的图象与x轴只有一个交点,那么所有满足条件的a 值的和为______.9.代数式有意义,a的取值范围是______.10.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠DCE的度数为______.三、计算题(本大题共1小题,共6.0分)11.先化简,再求值:,其中a=2sin60°-3tan45°四、解答题(本大题共4小题,共32.0分)12.计算:(3-π)0+|2-2|-13.在“传统文化进校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下,请回答下列问题:(1)填空:被调查的总人数为______人;扇形统计图中,希望参加活动D所占圆心角为______度,(2)根据题中信息补全条形统计图;(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?14.如图,已知函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.(1)若AC=2OD,求a,b的值;(2)若BC∥AE,求BC的长.15.如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x是否存在实数x,使得△PFE∽△ABE?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件.答案和解析1.【答案】B【解析】解:设单价为3元/朵的鲜花买x朵,则购买1.5元/株的(10-x)株,根据题意可得:3x+1.5(10-x)≤20,解得:x≤,则单价为3元/朵的鲜花最多买3朵.故选:B.设单价为3元/朵的鲜花买x朵,则购买1.5元/株的(10-x)株,利用总钱数不超过20元,得出不等式求出答案.此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.2.【答案】D【解析】解:∵tanα=tanA=,且tanA=,∴AC===1600(米),则AB===2000(米).故选:D.由tanα=tanA=且tanA=知AC=1600米,再根据勾股定理求解可得.本题考查了解直角三角形的应用-仰角俯角问题,勾股定理.解题的关键是熟练掌握正切函数和俯角的定义.3.【答案】A【解析】证明:∵AE=AB,∴∠ABE=∠AEB,同理∠CBD=∠CDB∵∠ABC=2∠DBE,∴∠ABE+∠CBD=∠DBE,∵∠ABE=∠AEB,∠CBD=∠CDB,∴∠AEB+∠CDB=∠DBE,∴∠AED+∠CDE=180°,∴AE∥CD,∵AE=CD,∴四边形AEDC为平行四边形.∴DE=AC=AB=BC.∴△ABC是等边三角形,∴BC=CD=1,在△BCD中,∵BD<BC+CD,∴BD<2.故选:A.据∠DBE=∠ABE+∠CBD,且△BED的内角和为180°,得出∠AED+∠CDE=180°,判定AE∥CD,由AE=CD,推出四边形AEDC为平行四边形推出DE=AC.则BC=CD=DE=1,推出BD<BC+CD=2.本题主要考查等腰三角形的性质:等腰三角形的底角相等,以及等边三角形的判定定理.解题时注意,同旁内角互补,两直线平行.4.【答案】D【解析】解:A、2a+3a=5a,正确,不合题意;B、=2,正确,不合题意;C、a2•a3=a5,正确,不合题意;D、a-1=(a≠0),故此选项错误,符合题意.故选:D.直接利用合并同类项法则以及同底数幂的乘法运算法则、负指数幂的性质分别化简得出答案.此题主要考查了合并同类项以及同底数幂的乘法运算、负指数幂的性质,正确掌握相关运算法则是解题关键.5.【答案】D【解析】解:把x=1代入ax2+bx+5=0(a≠0)得a+b+5=0,所以a+b=-5,所以2018-a-b=2018-(a+b)=2018-(-5)=2023.故选:D.根据一元二次方程的解的定义,把x=1代入ax2+bx+5=0(a≠0)得a+b=-5,然后利用整体代入的方法计算2018-a-b的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.【答案】110【解析】解:作所对的圆周角∠AEB,如图,∵∠ACB+∠AEB=180°,∴∠AEB=180°-70°=110°,∵⊙O沿弦AB折叠,点C在上,点D在上,∴∠ADB=∠AEB=110°.故答案为110.作所对的圆周角∠AEB,如图,利用圆内接四边形的性质得∠AEB=180°-∠C=110°,然后根据折叠的性质可得到∠ADB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了折叠的性质.7.【答案】二【解析】解:∵点A(-1,)的横坐标-1<0,纵坐标>0,∴点A在第二象限.故答案为:二.应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.【答案】-2【解析】解:,解不等式①,得:x≥-a;解不等式②,得:x<-.∵不等式组无解,∴-a≥-,解得:a≤,∴a=-2或-1或0.∵函数y=ax2+(a+2)x+a+1的图象与x轴只有一个交点,∴a=0或,∴a=0或-2或2,∴a=-2或0.∴所有满足条件的a值的和为-2.故答案为:-2.由不等式组无解可得出a的值,由函数的图象与x轴只有一个交点即可得出a 的值,取其公共部分再相加即可得出结论.本题考查了抛物线与x轴的交点以及解一元一次不等式组,通过解一元一次不等式组及函数图象与x轴只有一个交点,求出a的值是解题的关键.9.【答案】a【解析】解:由题意可知:3a-1>≥0,∴a≥故答案为:a根据二次根式有意义的条件即可求出答案.本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.10.【答案】24°【解析】解:∵CF=EF,∴∠FCE=∠E,∵AB∥CD,∴∠BAF=∠DFE=48°,∴∠FCE=∠E=24°.故答案为:24°.直接利用等腰三角形的性质∠FCE=∠E,再利用平行线的性质得出∠BAF=∠DFE,进而得出答案.此题主要考查了平行线的性质以及等腰三角形的性质,正确把握平行线的性质是解题关键.11.【答案】解:原式=•=,当a=2×-3×1=-3时,原式=.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.此题考查了分式的化简求值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.12.【答案】解:原式=1+2-1-2=0.【解析】本题涉及零指数幂、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.13.【答案】60;72【解析】解:(1)被调查的总人数为12÷20%=60人,则B项目人数为60×15%=9人,∴D项目人数为60-(27+9+12)=12人,∴扇形统计图中,希望参加活动D所占圆心角为360°×=72°,故答案为:60、72;(2)补全条形图如下:(3)估计全校学生希望参加活动A有800×=360人.(1)用C项目人数除以C所占百分比可得总人数,总人数乘以B的百分比求得其人数,再根据各项目人数之和等于总人数求得D的人数,最后用360°乘以D人数所占比例可得;(2)根据以上所求结果即可补全条形图;(3)用总人数乘以样本中A项目人数所占比例.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.【答案】解:(1)∵点B的坐标为(2,2),∴点D的坐标为(0,2).∵AC=2OD,∴AC=4.∵函数y=(x>0)的图象经过点A、B,∴k=2×2=4,∴点A的坐标为(1,4).将A(1,4)、D(0,2)代入y=ax+b,得:,解得:.(2)过点BM⊥x轴于点M,如图所示.设点A的坐标为(m,),则点C的坐标为(m,0).∵BC∥AE,∴=,即=,解得:m=1,经检验,m=1是原方程的解,且符合题意,∴点C的坐标为(1,0),∴BC===.【解析】(1)由点B的坐标结合AC=2OD,可得出点D的坐标及点A的横坐标,结合一次函数图象上点的坐标特征可得出点A的坐标,由点A、D的坐标利用待定系数法即可求出a、b的值;(2)过点BM⊥x轴于点M,设点A的坐标为(m,),则点C的坐标为(m,0),由BC∥AE可得出关于m的分式方程,解之经检验后可得出m的值,再利用勾股定理即可求出BC的长.本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、平行线的性质以及勾股定理,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点A、D的坐标;(2)利用平行线的性质找出关于m的分式方程.15.【答案】(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠PAF=∠AEB,又∵PF⊥AE,∴∠PFA=90°=∠ABE,∴△PFA∽△ABE.(2)分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴PA=EB=3,即x=3.②若△PFE∽△ABE,则∠PEF=∠AEB,∵AD∥BC∴∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,Rt△ABE中,AB=4,BE=3,∴AE=5,∴EF=AE=,∵△PFE∽△ABE,∴,∴,∴PE=,即x=.∴满足条件的x的值为3或.(3)如图3,当⊙D与AE相切时,设切点为G,连接DG,∵AP=x,∴PD═DG=6-x,∵∠DAG=∠AEB,∠AGD=∠B=90°,∴△AGD∽△EBA,∴,∴,x=,当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,此时PD=DE=5,∴AP=x=6-5=1,∴当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,x满足的条件:x=或0≤x<1;故答案为:x=或0≤x<1.【解析】(1)根据正方形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.(3)首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围.本题是矩形和圆的综合题,考查了矩形的性质、相似三角形的判定和性质.特别注意和线段有一个公共点,不一定必须相切,也可以相交,但其中一个交点在线段外.。

湖南省岳阳市九年级上学期期中数学试卷

湖南省岳阳市九年级上学期期中数学试卷

湖南省岳阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2017九上·忻城期中) 一元二次方程的一般形式是()A .B .C .D .2. (2分)下列几种名车标志中,既是中心对称又是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个3. (2分)若x1 , x2是一元二次方程x2+ax﹣8=0的两个根,则x1•x2的值是()A . aB . ﹣aC . 8D . ﹣84. (2分)如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为()A . 116°B . 64°C . 58°D . 32°5. (2分)将抛物线y=(x﹣1)2向右平移1个单位后所得到抛物线的解析式是()A . y=(x﹣2)2B . y=x2C . y=x2+1D . y=x2﹣16. (2分)下列各组数据能作为一个等腰三角形各边长的是()A . 1,1,2B . 4,2,4C . 2,3,4D . 3,3,77. (2分)所示图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .8. (2分) (2019九下·南关月考) 方程x2-4x+4=0的根的情况是()A . 有两个相等的实数根B . 只有一个实数根C . 没有实数根D . 有两个不相等的实数根9. (2分)抛物线y=-2x2+3的顶点坐标是()A . (0,0)B . (0,3)C . (-2,3)D . (3,-2)10. (2分)(2016·广元) 某市2015年国内生产总值GDP比2014年增长10%,由于受到客观条件影响,预计2016年的GDP比2015年增长7%.若这两年GDP平均增长率为x%,则x应满足的等量关系是()A . 10%+7%=x%B . (1+10%)(1+7%)=2(1+x%)C . (10%+7%)=2x%D . (1+10%)(1+7%)=(1+x%)211. (2分)对于一次函数y=x+6,下列结论错误的是()A . 函数值随自变量增大而增大B . 函数图象与两坐标轴围成的三角形面积为18.C . 函数图象不经过第四象限D . 函数图象与x轴交点坐标是(0,﹣6)12. (2分)已知函数y=x2+2x﹣3,当x=m时,y<0,则m的值可能是A .B .C .D .13. (2分) (2016高二下·河南期中) 下列说法中不正确的是()A . 若点A在半径为r的⊙O外,则OA<rB . 相切两圆的切点在两圆的连心线上C . 三角形只有一个内切圆D . 相交两圆的连心线垂直平分其公共弦14. (2分)关于抛物线y=(x﹣2)2+1,下列说法正确的是()A . 开口向上,顶点坐标(﹣2,1)B . 开口向下,对称轴是直线x=2C . 开口向下,顶点坐标(2,1)D . 当x>2时,函数值y随x值的增大而增大二、填空题 (共5题;共5分)15. (1分) (2018七上·无锡期中) 根据图示的程序计算函数值,若输入的x的值为,则输出的结果为________16. (1分)(2020·哈尔滨模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为________。

湖南省岳阳市九年级上学期期中数学试卷

湖南省岳阳市九年级上学期期中数学试卷

湖南省岳阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·白银) 下面四个手机应用图标中,属于中心对称图形的是()A .B .C .D .【考点】2. (2分)(2019·曲靖模拟) 在平面直角坐标系中,点(1,﹣2)关于原点对称的点的坐标是()A . (1,2)B . (﹣1,2)C . (2,﹣1)D . (2,1)【考点】3. (2分) (2020九上·渠县期末) 用配方法解方程x2-4x+3=0时,原方程应变形为()A . (x+1)2=1B . (x-1)2=1C . (x+2)2=1D . (x-2)2=1【考点】4. (2分)已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 有两个实数根【考点】5. (2分)某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A . 20%B . 40%C . -220%D . 30%【考点】6. (2分)(2020·陕西模拟) 若二次函数的图象与轴交于两点,与轴的正半轴交于一点,且对称轴为直线 =1,则下列说法正确的是()A . 二次函数的图象与轴的交点位于轴的两侧B . 二次函数的图象与轴的交点位于轴的右侧C . 其中二次函数中的c>1D . 二次函数的图象与轴的一个交点位于 =2的右侧【考点】7. (2分) (2019九上·仓山月考) 要得到函数y=x2的图象只要把函数y=(x﹣3)2的图象()A . 向左平移3个单位B . 向右平移3个单位C . 向上平移3个单位D . 向下平移3个单位【考点】8. (2分) (2018九上·佳木斯期中) 关于函数y=2x2﹣4x,下列叙述中错误的是()A . 函数图象经过原点B . 函数图象的最低点是(1,﹣2)C . 函数图象与x轴的交点为(0,0),(2,0)D . 当x>0时,y随x的增大而增大【考点】9. (2分)(2018·巴中) 如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A .B . 2C . 2D . 3【考点】10. (2分) (2017八上·江门月考) 如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A . 1个B . 2个C . 3个D . 4个【考点】11. (2分) (2020九上·椒江期中) 在平面直角坐标系中,抛物线y=(x﹣5)(x+3)经平移变换后得到抛物线y=(x﹣3)(x+5),则这个变换可以是()A . 向左平移2个单位长度B . 向右平移2个单位长度C . 向左平移8个单位长度D . 向右平移8个单位长度【考点】12. (2分) (2018九上·辽宁期末) 二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①抛物线与x轴的另一个交点是(5,0);②4a+c>2b;③4a+b=0;④当x>-1时,y 的值随x值的增大而增大.其中正确的结论有()A . 1个B . 2个C . 3个D . 4个【考点】二、填空题 (共6题;共6分)13. (1分) (2018九上·杭州期中) 如图等腰三角形△ABC的底角∠C为70°,以腰AB为直径作半圆,交BC于点D,交AC于点E,则的度数为________【考点】14. (1分) (2018七下·浦东期中) ∠A、∠B、∠C是△ABC的三个内角,,其中锐角至多有________个.【考点】15. (1分) (2020九上·石城期末) 函数y=(1-m)xm2-2+2是关于x的二次函数,且抛物线的开口向上,则m 的值为________。

湖南省岳阳市九年级上学期数学期中试卷

湖南省岳阳市九年级上学期数学期中试卷

湖南省岳阳市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)cos60°的值等于()A .B . 1C .D .2. (2分)为了了解某地区12000名初中毕业生参加中考的数学成绩,从中抽取了500名考生的数学成绩进行统计分析,下列说法正确的是()。

A . 个体是指每个考生B . 12000名考生是总体C . 500名考生的成绩是总体的一个样本D . 样本容量为500名考生3. (2分)平面直角坐标系中,已知点O(0,0)、A(0,2)、B(1,0),点P是反比例函数y=-图象上的一个动点,过点P作PQ⊥x轴,垂足为点Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有()A . 1个B . 2个C . 3个D . 4个4. (2分)某篮球队队员年龄结构直方图如下图所示,根据图中信息,可知该队队员年龄的中位数为()A . 18岁B . 21岁C . 23岁D . 19.5岁5. (2分) (2020九上·正定期中) 已知线段a=4,b=16,线段c是线段a , b的比例中项,那么线段c的长为()A . 10B . 8C . -8D . ±86. (2分) (2019八下·长兴期中) 为了筹备班级元旦联欢晚会,班长打算先对全班同学爱吃什么水果进行民意调查,再决定买哪种水果。

下面的调查数据中,他最应该关注的是()A . 众数B . 中位数C . 平均数D . 加权平均数7. (2分)(2017·洪山模拟) 若关于的x方程x2+3x+a=0有一个根为﹣1,则a的值为()A . ﹣4B . ﹣2C . 2D . 48. (2分) (2020九下·吉林月考) 为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4569户数3421则关于这10户家庭的约用水量,下列说法错误的是()A . 中位数是5吨B . 极差是3吨C . 平均数是5.3吨D . 众数是5吨9. (2分) (2019九上·兰州期末) 已知a,b,c为常数,点P(a,c)在第二象限,则关于x的方程的根的情况()A . 有两个相等的实数根B . 有两个不相等的实数根C . 没有实数根D . 无法判断10. (2分)如图,已知直线a∥b∥c ,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F , AC=4,CE=6,BD=3,则BF=().A . 7B . 7.5C . 8D . 8.511. (2分)设x1 , x2是方程x2+5x﹣3=0的两个根,则x1+x2的值是()A . 5B . ﹣5C . 3D . ﹣312. (2分)(2020·杭州模拟) 如图,在矩形ABCD中,AB=4,以AB为直径在矩形内作半圆,DF切该半圆于点E,点F在边BC上.设BF=x,y=tan∠CDF,则()A . x2+4xy=4B . x²-4xy=4C . xy=4D . xy+x²=413. (2分)如图,下列图中小正方形的边长为1,阴影三角形的顶点均在格点上,与△ABC相似的是()A .B .C .D .14. (2分) (2018九上·杭州月考) 在一个不透明的布袋中装有红色,白色玻璃球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在左右,则口袋中红色球可能有()A . 4个B . 6个C . 34个D . 36个15. (2分)(2020·九江模拟) 将铁丝围成的△ABC铁框平行地面(水平)放置,并在灯泡的垂直照射下,在地面上的影子是△A′B′C′,那么△ABC与△A′B′C′之间是属于()A . 对称变换B . 平移变换C . 位似变换D . 旋转变换16. (2分)(2017·黄石) 如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD 必定满足()A . BD<2B . BD=2C . BD>2D . 以上情况均有可能二、填空题 (共3题;共3分)17. (1分) (2019九上·九龙坡期末) 已知m是方程x2﹣3x﹣2=0的根,则代数式1+6m﹣2m2的值为________.18. (1分)(2018·北海模拟) 如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达C点,乙船正好到达甲船正西方向的B点,则乙船的路程________(结果保留根号)19. (1分)(2019·海州模拟) 如图,在正方形ABCD中,E是对角线BD上一点,DE=4BE,连接CE,过点E 作EF⊥CE交AB的延长线于点F,若AF=8,则正方形ABCD的边长为________.三、解答题 (共7题;共36分)20. (5分) (2016九上·金东期末) 如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证: = .21. (2分) (2020七上·瑶海期末) 地球运动是同学们非常喜欢的日常体育运动,为了更合理地配置体育运动器材和场地,某校针对“你最喜欢的球类运动”进行了一次随机抽样调查(每名被调查者分别选一项球类运动),并把调查结果绘制成如图的两个统计图表(不完整).某校学生最喜爱的球类运动统计表最喜爱的球类运动人数足球27篮球乒乓球24羽毛球24排球某校学生最喜爱的球类运动统计图请根据所给信息,解答下列问题:(1)本次被抽样调查的学生共有多少人?(2)求扇形统计图中最喜爱篮球部分的圆心角度数;(3)若该校共有学生960人,请根据抽样结果估计学生中最喜爱乒乓球的人数.22. (5分)(2017·深圳模拟) 某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D 的仰角为60度,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45度,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(保留根号)23. (10分)(2016·雅安) 我们规定:若 =(a,b), =(c,d),则 =ac+bd.如 =(1,2), =(3,5),则=1×3+2×5=13.(1)已知 =(2,4), =(2,﹣3),求;(2)已知 =(x﹣a,1), =(x﹣a,x+1),求y= ,问y= 的函数图象与一次函数y=x﹣1的图象是否相交,请说明理由.24. (10分) (2018八上·黑龙江期中) 如图1,等边三角形ABC中,点D为AC中点,延长BC至E,使CE=CD;连接ED并延长交AB于点F.(1)求证:BF=3AF;(2)如图2,连接BD,过点F作FH⊥BC,垂足为H,交BD于点G,过点G作BE的平行线,分别交AB、AC、FE于点M、P、N;在不添加任何辅助线的情况下,请直接写出图2中与线段BM相等的所有线段.25. (2分) (2019八下·句容期中) 在矩形ABCD中,E为射线BC上一点,DF⊥AE于F,连接DE.(1)如图1,若E在线段BC上,且CE=EF,求证:AD=AE;(2)若AB=6,AD=10,在点E的运动过程中,连接BF.①当△ABF是以AB为底的等腰三角形时,求BE的长;②当BF∥DE时,若S△ADF=m,S△DCE=n,探究m﹣n的值并简要说明理由.26. (2分) (2018九上·惠山期中) 小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.(1)求返回时A、B两地间的路程;(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?参考答案一、单选题 (共16题;共32分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:二、填空题 (共3题;共3分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:三、解答题 (共7题;共36分)答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、。

湖南省岳阳市九年级上学期数学期中考试试卷

湖南省岳阳市九年级上学期数学期中考试试卷

湖南省岳阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共9分)1. (1分) (2019九上·龙岗期中) 方程的解是()A . ,B .C .D . ,【考点】2. (1分) (2019九上·孝义期中) 一元二次方程配方后化为()A .B .C .D .【考点】3. (1分) (2018八上·南山期中) 直线经过点(m,n),且,则b的值是()A . -4B . 4C . -8D . 8【考点】4. (1分) (2019九上·安庆期中) 如图,已知、分别是的、边上的点,,且四边形 =1:8,那么等于()A .B .C .D .【考点】5. (1分) (2019八下·余姚期末) 菱形具有而一般矩形不具有的性质是()A . 对边相等B . 对角线相等C . 对角线互相平分D . 对角线互相垂直【考点】6. (1分)我们已经学习了相似三角形,也知道,如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长、对角线等所有元素都对应成比例,就可以称它们为相似图形.现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形,是相似图形的有()A . ①③B . ①②C . ①④D . ②③【考点】7. (1分) (2017九上·点军期中) 制造一种产品,原来每件的成本是100元,由于连续两次降低成本,•现在的成本是81元,则平均每次降低成本的百分率为().A . 2 0%B . 15%C . 10%D . 5%【考点】8. (1分) (2019九上·鼓楼期中) 如图,在△ABC中,AB=12,AC=9,DE∥BC交AB于点D,交AC于点E,若AD=8,则AE的长为()A . 4B . 5C . 6D . 7【考点】9. (1分) (2018九下·鄞州月考) 在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为()A . 3B . 5C . 3或5D . 3或6【考点】二、填空题 (共5题;共5分)10. (1分) (2015八下·临沂期中) 已知x= ﹣1.求x2+2x+1的值为________.【考点】11. (1分)(2020·金牛模拟) 在一个不透明的盒子里装有3个分别写有数字﹣2,0,1的小球,它们除了数字不同以外其余完全相同,先从盒子里随机抽取1个小球,再从剩下的小球中抽取1个,将这两个小球上的数字依次记为a,b,则满足关于x的方程x2+ax+b=0有实数根的概率为________.【考点】12. (1分) (2018八下·肇源期末) 高6cm的旗杆在水平面上的影长为8cm,此时测得一建筑物的影长为28cm,则该建筑物的高为________.【考点】13. (1分) (2020九上·鄞州期末) 一枚质地均匀的骰子,六个面分别标有数字1,2,3,4,5,6,抛掷一次,恰好出现“正面朝上的数字是5”的概率是________。

湖南省岳阳市九年级上学期数学期中考试试卷

湖南省岳阳市九年级上学期数学期中考试试卷

湖南省岳阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列图形中不是轴对称图形的是()A .B .C .D .2. (2分)已知a是方程x2﹣5x﹣1=0的一个实数根,则代数式a2+ =()A . 27B . 23C . 25D . 283. (2分)(2017·玉田模拟) 如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A . 3B .C .D . 44. (2分)抛物线y=(x+2)2-3对称轴是()A . x=-3B . x=3C . x=2D . x=-25. (2分)已知弧CD是⊙O的一条弧,点A是弧CD的中点,连接AC,CD.则()A . CD=2ACB . CD>2ACC . CD<2ACD . 不能确定.6. (2分)(2019·苏州模拟) 如图,点A,B分别在x轴和y轴上,点A的坐标为(-2,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O的路径运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=2 ,那么当P点运动一周时,点Q运动的总路程是()A . 4B . 6C . 6D . 87. (2分)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A .B .C .D .8. (2分) (2017九上·金华开学考) 如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB'C',若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是()A . πB . 2πC . πD . 4π9. (2分)如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O 上的一点,若∠DAB=25°,则∠OCD的度数是()A . 45°B . 60°C . 65°D . 70°10. (2分) (2016九上·海门期末) 如图,四边形ABCD为正方形,边长为4,点F在AB边上,E为射线AD 上一点,正方形ABCD沿直线EF折叠,点A落在G处,已知点G恰好在以AB为直径的圆上,则CG的最小值等于()A . 0B . 2C . 4﹣2D . 2 ﹣2二、填空题 (共6题;共6分)11. (1分)如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b >2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是 ________.(只要求填写正确命题的序号)12. (1分) (2017八下·鹤壁期中) 点(4,﹣3)关于原点对称的点的坐标是________.13. (1分) (2019八上·湘桥期末) 如图,在△ABC中,∠ABC=60°,AB=AC ,AD⊥BC ,垂足为D ,点E在线段AD上,∠BEC=90°,则∠ACE等于________.14. (1分)心理学家发现:学生对概念的接受能力y与提出概念的时间x(分)之间的关系式为y=﹣0.1x2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟.15. (1分)如图,点E、F分别为正方形ABCD中AB、BC边的中点,连接AF、DE相交于点G,连接CG,则tan∠CGD=________16. (1分) (2017九上·凉州期末) 抛物线y=2x2﹣6x+10的顶点坐标是________.三、解答题 (共8题;共75分)17. (10分) (2015九上·重庆期末) 定义新运算:对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4.(1)填空:Max{﹣2,﹣4}=________;(2)按照这个规定,解方程.18. (10分) (2018九上·宁城期末) 每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,(1)写出A、B、C的坐标.(2)以原点O为中心,将△ABC围绕原点O逆时针旋转180°得到△A1B1C1,画出△A1B1C1.(3)求(2)中C到C1经过的路径以及OB扫过的面积.19. (10分) (2016九上·宜春期中) 如图,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是点________,旋转的最小角度是________度(2) AC与EF的位置关系如何,并说明理由.20. (10分)(2017·泰兴模拟) 如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的最高点到路面的距离为6米.(1)按如图所示建立平面直角坐标系,求表示该抛物线的函数表达式;(2)一辆货运卡车高为4m,宽为2m,如果该隧道内设双向车道,那么这辆货车能否安全通过?21. (5分) (2016九上·龙湾期中) 如图,在⊙O中,弦AB,CD相交于点P,且PB=PD.求证:AB=CD.22. (15分)(2019·营口模拟) 某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?23. (10分)如图,已知经过点D(2,﹣)的抛物线y=(x+1)(x﹣3)(m为常数,且m>0)与x轴交于点A、B(点A位于B的左侧),与y轴交于点C.(1)填空:m的值为________,点A的坐标为________;(2)根据下列描述,用尺规完成作图(保留作图痕迹,不写作法):连接AD,在x轴上方作射线AE,使∠BAE=∠BAD,过点D作x轴的垂线交射线AE于点E;(3)动点M、N分别在射线AB、AE上,求ME+MN的最小值;24. (5分) (2018八上·四平期末) 通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例.原题:如图①,点分别在正方形的边上,,连接,则,试说明理由.(1)思路梳理因为,所以把绕点逆时针旋转90°至,可使与重合.因为,所以,点共线.根据________,易证 ________,得 .请证明.(2)类比引申如图②,四边形中,,,点分别在边上, .若都不是直角,则当与满足等量关系时,仍然成立,请证明.(3)联想拓展如图③,在中,,点均在边上,且 .猜想应满足的等量关系,并写出证明过程.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共75分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。

湖南省岳阳市九年级上学期数学期中考试试卷

湖南省岳阳市九年级上学期数学期中考试试卷

湖南省岳阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共14题;共14分)1. (1分)(2017·黄石模拟) 下列图标,既可以看作是中心对称图形又可以看作是轴对称图形的是()A .B .C .D .2. (1分)下面是某同学在一次数学测验中,解答的填空题,其中答对的是()A . 若x2=5 ,则x=B . 若x2=,则x=C . x2+x-m=0的一根为-1,则m=0D . 以上都不对3. (1分)下列运动形式属于旋转的是()A . 钟表上钟摆的摆动B . 投篮过程中球的运动C . “神十”火箭升空的运动D . 传动带上物体位置的变化4. (1分) (2018八下·镇海期末) 用配方法解一元二次方程x2-8x+3=0,此方程可化为()A . (x-4)2=13B . (x+4)2=13C . (x-4)2=19D . (x+4)2=195. (1分) (2016九上·黔西南期中) 下列方程中,是一元二次方程的是()A . x2+2x+y=1B . x2+ ﹣1=0C . x2=0D . (x+1)(x+3)=x2﹣16. (1分) (2017九上·鸡西期末) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:① b2-4ac>0 ② a>0 ③ b>0 ④ c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A . 2个B . 3个C . 4个D . 5个7. (1分)点A(3,﹣1)关于原点的对称点A′的坐标是()A . (﹣3,﹣1)B . (3,1)C . (﹣3,1)D . (﹣1,3)8. (1分)(2020·平阳模拟) 已知关于的一元二次方程有两个不相等的实数根,则k的值可以是()A . -2B . 1C . 2D . 39. (1分) (2018九上·椒江月考) 将抛物线y=2x²向右平移4个单位,再向上平移3个单位,得到的图象的表达式为()A . y=2(x-4)²+3B . y=2(x+4)²+3C . y=2(x-4)²-3D . y=2(x+4)²-310. (1分) (2017九上·潮阳月考) 用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程是().A .B .C .D .11. (1分) (2019八下·杭州期末) 如图,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CE,CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AEA . 只有①②B . 只有①②③C . 只有③④D . ①②③④12. (1分)二次函数y=x2-2x+3顶点坐标是()A . (-1,-2)B . (1,2)C . (-1,2)D . (0,2)13. (1分) (2019九上·柳江月考) 下列对抛物线y=-2(x-1)2+3性质的描写中,正确的是()A . 开口向上B . 对称轴是直线x=1C . 顶点坐标是(-1,3)D . 函数y有最小值14. (1分) (2019九上·西城期中) 如图,抛物线的对称轴为直线.下列结论中,正确的是()A . a<0B . 当x<时,y随x的增大而增大C .D . 当时,y的最小值是二、填空题 (共4题;共4分)15. (1分) (2018九上·西峡期中) 若关于x的一元二次方程ax2+2x﹣1=0无解,则a的最大整数值是________.16. (1分)如图是一个中心对称图形,A为对称中心,若∠C=90°,BC=4,A C=3,则BB'的长为________.17. (1分)(2017·昌平模拟) 已知二次函数y=x2+(2m﹣1)x,当x<0时,y随x的增大而减小,则m的取值范围是________.18. (1分)(2019·广西模拟) 如图,Rt△ABC 的斜边AB=16,Rt△ABC绕点0顺时针旋转后得到Rt△A’B’C’,则Rt△A’B’C’的斜边A’B’上的中线C’D的长度为________三、解答题 (共5题;共8分)19. (2分) (2020八下·房山期末) 解方程:x2+3x﹣1=0.20. (1分)巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.21. (1分) (2017八下·萧山期中) 解方程:我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选两个,并选择你认为适当的方法解这个方程① ②③ ④22. (2分) (2018九下·厦门开学考) 如图,中,,,是边上一点,将绕点逆时针旋转,点P旋转后的对应点为.(1)画出旋转后的三角形;(2)连接,若,求的度数;23. (2分) (2017九上·云阳期中) 我县某公司参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量(单位:个)与销售单价(单位:元/个)之间的关系式为.(1)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润(单位:元)与销售单价(单位:元/个)之间的函数关系式;【答案】解:由题意得:w=(x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,∴w与x的函数关系式为w=﹣30x2+780x ﹣3600(2)在(1)问的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.【答案】解:由题意得:6(﹣30x+600)≤900,解得:x≥15,在w=﹣30x2+780x﹣3600中,对称轴为:x=﹣=13.∵a=﹣30,∴当x>13时,w随x的增大而减小,∴x=15时,w最大为:(15﹣6)(﹣30×15+600)=1350,∴销售单价定为每个15元时,利润最大为1350元【解析】【分析】【题型】综合题【考查类型】常考题【试题级别】九年级【试题地区】重庆【试题来源】重庆市云阳县第一初级中学2018届九年级上学期数学期中考试试卷a(1)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润(单位:元)与销售单价(单位:元/个)之间的函数关系式;(2)在(1)问的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.参考答案一、单选题 (共14题;共14分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:二、填空题 (共4题;共4分)答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共5题;共8分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。

岳阳XX中学2016-2017学年九年级上期中数学试卷含答案解析

岳阳XX中学2016-2017学年九年级上期中数学试卷含答案解析
3.已知函数 y= 的图象过点(1,﹣2 ),则该函数的图象必在( ) A.第二、三象限 B.第二、四象限 C.第一、三象限 D.第三、四象限
第 5 页(共 19 页)
2016-2017 学年湖南省岳阳 X中X学九年级(上)期中数学试卷
一、选择题(下列各题的备选答案中,只有一个是正确的.每小题 3 分,共 24 分) 1.将一元二次方程 2x2=1﹣3x 化成一般形式后,一次项系数和常数项分别为 () A.﹣3x;1 B.3x;﹣1 C.3;﹣1 D.2;﹣1 2.一元二次方程 x2 ﹣81=0 的解是( ) A.x1 =2x =9 B.1 x2=x =﹣91 C.x 2=﹣9 ,x1 =9 D.2 x =﹣1 ,x =2 3.已知函数 y= 的图象过点(1,﹣2 ),则该函数的图象必在( ) A.第二、三象限 B.第二、四象限 C.第一、三象限 D.第三、四象限 4.如图,已知 DE 是△ABC 的中位线,则△ADE 的面积:四边形 DBCE 的面积 是( )
7.如图,DE∥D. =
第 1 页(共 19 页)
定:如果购买树苗不超过 60 棵,每棵售价 120 元;如果购买树苗超过 60 棵, 每增加 1 棵,所出售的这批树苗每棵售价均降低 0.5 元,但每棵树苗最低售价 不得少于 100 元,该校最终向园林公司支付树苗款 8800 元,请问该校共购买了 多少棵树苗? 23.如图,一次函数 y=ax+b 的图象与反比例函数 y= 的图象交于第一象限 C, D 两点,坐标轴交于 A、B 两点,连结 OC,OD(O 是坐标原点). (1)利用图中条件,求反比例函数的解析式和 m 的值; (2)双曲线上是否存在一点 P,使得△POC 和△POD 的面积相等?若存在,给 出证明并求出点 P 的坐标;若不存在,说明理由.

岳阳市九年级上学期期中数学试卷

岳阳市九年级上学期期中数学试卷

岳阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·邯郸模拟) 下列表示我国古代窗棂样式结构的图案中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (2分)(2016·福州) 下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A . a>0B . a=0C . c>0D . c=03. (2分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A . ﹣2<a<2B .C .D .4. (2分)若y=(3+m)x 是开口向下的抛物线,则m的值()A . 3B . ﹣3C .D . ﹣5. (2分)对于y=2(x-3)2+2的图象下列叙述正确的是()A . 顶点坐标为(-3,2)B . 当x≥3时,y随x增大而增大C . 对称轴为y=3D . 当x≥3时,y随x增大而减小6. (2分)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A . △ABEB . △ACFC . △ABDD . △ADE7. (2分)把抛物线的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为,则().A . 12B . 9C .D . 108. (2分)如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是()A . 75°B . 95°C . 105°D . 115°9. (2分)(2016·广元) 如图,AC是⊙O的直径,∠BAC=10°,P是的中点,则∠PAB的大小是()A . 35°B . 40°C . 60°D . 70°10. (2分)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=-1,且过点(-3,0),说法:① abc<0;②2a-b=0;③ 4a-2b+c<0;④ 若(-5,y1)、( ,y2)是抛物线上两点,则y1>y2 ,其中说法正确的有()个A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分) (2017九上·海淀月考) 关于的一元二次方程的一个根是,则实数的值是________.12. (1分) (2019九上·海淀期中) 在平面直角坐标系中,点绕原点旋转180°后所得到的点的坐标为________.13. (1分)(2020·平遥模拟) 如图,四边形ABCD内接于,若四边形ABCO是平行四边形,则的大小为________.14. (1分) (2018九上·三门期中) 如图,△ABD,△AEC 都是等边三角形中,∠BAC=90°,将△ABE 绕点 A 顺时针旋转________可以到△ADC 处.15. (1分)(2017·启东模拟) 已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的两个根的和为________.16. (1分) (2019九上·许昌期末) 如图是一个直径为10cm的圆柱形输油管的横截面,若油面宽AB=8cm,则油面的深度为________.三、解答题 (共9题;共85分)17. (5分)如果方程与方程有一个公共根是3,求的值,并分别求出两个方程的另一个根.18. (5分) (2016九上·南昌期中) 已知二次函数当x=1时,y有最大值为5,且它的图象经过点(2,3),求这个函数的关系式.19. (5分) (2017八下·宁波期中) 水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.(Ⅰ)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?(Ⅱ)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?(Ⅲ)现需按毛利润的10%交纳各种税费,人工费每日按销售量每千克支出0.9元,水电房租费每日102元,若剩下的每天总纯利润要达到5100元,则每千克涨价应为多少?20. (15分)(2018·金华模拟) 如图,抛物线分别交x轴于点A,B(点A在点B的左侧),交y轴于点C,D为线段AB上一点,连接CD,作点B关于CD的对称点B′,连接AB′,B′D(1)求点A,B的坐标.(2)当点B′落坐标轴上时,求点D的坐标.(3)在点D的运动过程中,△AB′D的内角能否等于45°,若能,求此时点B′的坐标;若不能,请说明理由.21. (10分)如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D(2)证明四边形ABCD是平行四边形22. (5分)如图,AB,CD是⊙O的直径,点E在AB延长线上,FE⊥AB,BE=EF=2,FE的延长线交CD延长线于点G,DG=GE=3,连接FD.(1)求⊙O的半径;(2)求证:DF是⊙O的切线.23. (15分)某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2 ,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.24. (15分)(2019·乐山) 已知关于的一元二次方程 .(1)求证:无论为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为、,满足,求的值;(3)若△ 的斜边为5,另外两条边的长恰好是方程的两个根、,求的内切圆半径.25. (10分)如图,在平面直角坐标系中,直线y= x﹣与抛物线y=﹣ x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣8.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E,设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共85分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017学年湖南省岳阳六中九年级(上)期中数学试卷
一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)
1.(3分)将一元二次方程2x2=1﹣3x化成一般形式后,一次项系数和常数项分别为()A.﹣3x;1 B.3x;﹣1 C.3;﹣1 D.2;﹣1
2.(3分)一元二次方程x2﹣81=0的解是()
A.x1=x2=9 B.x1=x2=﹣9 C.x1=﹣9,x2=9 D.x1=﹣1,x2=2
3.(3分)已知函数y=的图象过点(1,﹣2),则该函数的图象必在()
A.第二、三象限B.第二、四象限C.第一、三象限D.第三、四象限
4.(3分)如图,已知DE是△ABC的中位线,则△ADE的面积:四边形DBCE的面积是()
A.1:2 B.1:3 C.1:4 D.1:8
5.(3分)一元二次方程x2+x+2=0的根的情况是()
A.两个相等的实数根B.两个不相等的实数根
C.无实数根D.无法确定
6.(3分)下列四组线段中,不构成比例线段的一组是()
A.2cm,3cm,4cm,6cm B.1cm,cm,,cm
C.1cm,2cm,3cm,6cm D.1cm,2cm,3cm,5cm
7.(3分)如图,DE∥BC,在下列比例式中,不能成立的是()
A.=B.=C.=D.=
8.(3分)如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()。

相关文档
最新文档