2014-2015学年度山东省滕州市实验中学高三第一学期期中考试数学试题

合集下载

【恒心】2015届山东省滕州市高三上学期期中考试数学(文科)试题及参考答案【高清扫描版】

【恒心】2015届山东省滕州市高三上学期期中考试数学(文科)试题及参考答案【高清扫描版】

二〇一五届高三定时训练数学文科试题参考答案及评分标准 2014.11一、选择题(每小题5分,共50分)二、填空题(每小题5分,共25分) 11.e312.1-=x y 13.4 14.83π 15.75 三、解答题(共75分)(注意:答案仅提供一种解法,学生的其他正确解法应依据本评分标准,酌情赋分.) 16.解:(1)在△ABC 中,由正弦定理得sin sin sin cos 0A B B A +=,………………………2分 即sin (sin cos )0B A A +=,又角B 为三角形内角,sin 0B ≠所以sin cos 0A A +=)04A π+=, …………………………………4分又因为(0,)A π∈,所以34A π=. …………………………………6分 (2)在△ABC 中,由余弦定理得:2222cos a b c bc A =+-⋅,则2512(c c =+-⋅……………………………8分即240c -=,解得c =-或c =10分又1sin 2S bc A =,所以111222S =⨯=. ………………………………12分 17.解:设函数()m x m x x x g --⎪⎭⎫ ⎝⎛+=-+=412122,所以()x g 在[1,2]上是增函数,其最小值为()m g -=21,由20x x m +->在[1,2]x ∈上恒成立,因此只要20m ->即可,所以2m <. ………………………………3分又因为2y x =在[0,)+∞上是增函数,1y x =-在(,0)-∞上也是增函数,且10-<,所以()f x 在R 上是增函数,由2()(2)f m f m >+可得22m m >+,解得2m >或1m <-. ……………………………………6分 若p q ∨为真,p q ∧为假,所以p 与q 一真一假 …………………………………7分 若p 真q 假,应有2,12,m m <⎧⎨-≤≤⎩所以12m -≤<; …………………………………9分若p 假q 真,应有2,21,m m m ≥⎧⎨><-⎩或所以2m >; ………………………………11分因此m 的范围是1m ≥-且2m ≠. ……………………………………12分18.解:(1)由已知得=)(x f a ⋅b x x x x cos sin 32sin cos 22+-==cos 222sin(2)6x x x π+=+, ……………………………………3分)(x f 的最小正周期ππ==22T . ……………………………………4分 令226222πππππ+≤+≤-k x k ,Z ∈k ,可得63ππππ+≤≤-k x k (Z ∈k ),则)(x f 的单调递增区间为]6,3[ππππ+-k k (Z ∈k ).………………………6分(2)由1310)(=x f 得5sin(2)613x π+=, ……………………………………7分 由,46x ππ⎡⎤∈-⎢⎥⎣⎦,可得]2,3[62πππ-∈+x ,所以1312)62(sin 1)62cos(2=+-=+ππx x , ………………………………9分 sin 2sin(2)sin(2)cos cos(2)sin 666666x x x x ππππππ=+-=+-+=51211213213226⨯-⨯=. ……………………………………12分19.解:(1)当800<<x ,*N ∈x 时,2504031250)(50)(2-+-=--=x x x C x x L ,……………………………………2分 当80≥x ,*N ∈x 时,)100001200250)(50)(xx x C x x L +-=--=(,……………………………………4分 所以⎪⎪⎩⎪⎪⎨⎧∈≥+-∈<<-+-=.,80 )10000(1200,,800 2504031)(**2N N x x x x x x x x x L ,, ………………………6分(2)当800<<x ,*N ∈x 时,9506031)(2+--=)(x x L此时,当60=x 时,)(x L 取得最大值950)60(=L ,………………………………8分当80≥x ,*N ∈x 时,由,20010000≥+xx 当且仅当100=x 时取等号; 此时1000)(≤x L ,即当100=x 时,)(x L 取得最大值1000)100(=L ,………10分 因为,9501000>所以年产量为100千件时,最大利润是1000万元. ………………………………12分 20. 解:(1)设等差数列{}n a 的公差为,d则()n d a n d d n n na S n ⎪⎭⎫ ⎝⎛-+=-+=2221121,又,q pn n S n ++=2 所以0,2,121==-=q p da d ,可得0,1,21=-==q a p d ,又532,,a a a 成等比数列,所以5223a a a =,即()()()8241121++=+a a a ,解得01=a ,所以1-=p .………………………6分(2)由(1)知22-=n a n ,又,log log 22n n b n a =+则142-⋅=⋅=n a n n n b n,………………………………8分所以12021443424-⋅++⨯+⨯+=+++=n n n n b b b T 则n n n T 443424432⋅++⨯+⨯+= , 两式相减可得()31431444443121--=⋅-++++=--n nn n n n T ,所以()[]141391+-=n n n T . ………………………………13分 21.解:(1) 当1-=a 时,()x x x f ln +-=,定义域为()∞+,0, ()xxx x f -=+-='111, ………………………………1分 令()0>'x f ,得10<<x ;令()0<'x f ,得1>x . ………………………………2分 所以)(x f 在()1,0上是增函数,在()∞+,1上是减函数. ………………………………3分 (2) 由已知得()(]e x x a x f ,0,1∈+=',1x ∈1,e ⎡⎫+∞⎪⎢⎣⎭,……………………………4分 ① 若1a e≥-,则(),0≥'x f 从而)(x f 在(]e ,0上为增函数,此时,)(x f 的最大值为(),01≥+=ae e f 不合题意.………………………………6分 ② 若1a e <-,由(),0>'x f 得10x a <<-,由0)(<'x f 得1x e a-<<, 从而)(x f 在10,a ⎛⎫-⎪⎝⎭上为增函数,在1,e a ⎛⎫- ⎪⎝⎭上为减函数, 此时,)(x f 的最大值为)1ln(1)1(aaf -+-=-,……………………………………8分 令3)1ln(1-=-+-a ,得2)1ln(-=-a ,21-=-e a,2e a -=, 又2e -<1e-,所以2a e =-. ………………………………………………9分 (3) 由(1)知当1-=a 时,)(x f 的最大值为()11-=f ,所以1|)(|≥x f , ………………………10分令21ln )(+=x x x g ,2ln 1)('x xx g -=, …………………………………………11分 令()0>'x g ,得e x <<0,()x g 在()e ,0单调递增;令()0>'x g ,得e x >,()x g 在()+∞,e 单调递减. …………………………… 12分 ()x g 的最大值为1211)(<+=e e g ,即()1<x g . ………………………………13分 因此()()x g xf > ,即21ln |)(|+>x x x f , 从而方程21ln |)(|+=x x x f 没有实数解. ……………………………………14分。

山东省枣庄市滕州二中高三数学上学期期中试卷 理(含解析)

山东省枣庄市滕州二中高三数学上学期期中试卷 理(含解析)

山东省枣庄市滕州二中2015届高三上学期期中数学试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.在答题卷上的相应题目的答题区域作答.1.集合 A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为( )A.3 B.11 C.8 D.12考点:集合的表示法.专题:集合.分析:根据题意和z=xy,x∈A且y∈B,利用列举法求出集合C,再求出集合C中的元素个数.解答:解:由题意得,A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},当x=1时,z=1或2或3;当x=2时,z=2或4或6;当x=3时,z=3或6或9;当x=4时,z=4或8或12;当x=5时,z=5或10或15;所以C={1,2,3,4,6,8,9,12,5,10,15}中的元素个数为11,故选:B.点评:本题考查集合元素的三要素中的互异性,注意集合中元素的性质,属于基础题.2.直线的倾斜角α=( )A.30°B.60°C.120°D.150°考点:直线的倾斜角.专题:直线与圆.分析:由直线方程可得直线的斜率,再由斜率和倾斜角的关系可得所求.解答:解:可得直线的斜率为k==,由斜率和倾斜角的关系可得tanα=,又∵0°≤α≤180°∴α=30°故选A点评:本题考查直线的倾斜角,由直线的方程求出直线的斜率是解决问题的关键,属基础题.3.直线x=t(t>0)与函数f(x)=x2+1,g(x)=lnx的图象分别交于A、B两点,当|AB|最小时,t值是( )A.1 B.C.D.考点:导数在最大值、最小值问题中的应用;两点间距离公式的应用.专题:压轴题.分析:将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.解答:解:设函数y=f(x)﹣g(x)=x2﹣lnx+1,求导数得y′=2x﹣=当0<x<时,y′<0,函数在(0,)上为单调减函数,当x>时,y′>0,函数在(,+∞)上为单调增函数所以当x=时,所设函数的最小值为+ln2,所求t的值为.故选B.点评:可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.4.已知,则f(log23)=( )A.B.C.D.考点:分段函数的解析式求法及其图象的作法;函数的值;对数的运算性质.专题:计算题.分析:本题考查分段函数求值,以及对数的运算性质与指数的运算性质,需先判断log23的取值范围,然后代入相应的解析式求值解答:解:由题意的,,∵2=log24>log23>log22=1,∴f(log23)=f(1+log23)=f(2+log23)=f(3+log23)=()3+log23=故选B.点评:本题对对数积的运算性质连续运用,并且在解题过程中须注意自变量取值范围的判断,是分段函数与对数运算性质、指数运算性质综合考查的一道好题.5.若方程lnx+x﹣5=0在区间(a,b)(a,b∈Z,且b﹣a=1)上有一实根,则a的值为( ) A.5 B.4 C.3 D.2考点:二分法的定义.专题:计算题;函数的性质及应用.分析:令f(x)=lnx+x﹣5,则函数f(x)在(0,+∞)上是增函数,由题意可得f(a)=lna+a ﹣5<0,且f(a+1)=ln(a+1)+a+1﹣5>0,结合所给的选项,可得结论.解答:解:令f(x)=lnx+x﹣5,则函数f(x)在(0,+∞)上是增函数.再由f(a)f(a+1)<0可得 f(a)=lna+a﹣5<0,且f(a+1)=ln(a+1)+a+1﹣5>0.经检验,a=3满足条件,故选:C.点评:本题考查函数零点的定义以及函数零点判定定理的应用,属于基础题.6.函数y=Asin(ωx+φ)+B(A>0,φ>0,|φ|<,x∈R)的部分图象如图所示,则函数的表达式为( )A.B.C. D.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:通过函数的表达式的形式结合图象,求出B,A,求出函数的周期,得到ω,函数经过(2,3)以及φ的范围求出φ的值,得到选项.解答:解:由题意可知A=2,B=1,T==6,ω==,因为函数经过(2,3)所以3=2sin(×2+φ)+1,|φ|<,φ=﹣,所以函数的表达式为;故选A.点评:本题考查三角函数的解析式的求法,函数图象的应用,注意周期的求法以及φ的求法是本题的关键,考查计算能力.7.用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2…(2n﹣1)(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是( )A.2k+1 B.2k+3 C.2(2k+1)D.2(2k+3)考点:数学归纳法.专题:证明题;点列、递归数列与数学归纳法.分析:分别求出n=k时左边的式子,n=k+1时左边的式子,用n=k+1时左边的式子,除以n=k 时左边的式子,即得所求.解答:解:当n=k时,左边等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),当n=k+1时,左边等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故从“k”到“k+1”的证明,左边需增添的代数式是=2(2k+1),故选:C.点评:本题考查用数学归纳法证明等式,用n=k+1时,左边的式子除以n=k时,左边的式子,即得所求.8.若正数x,y满足x+y=1,且≥4对任意x,y∈(0,1)恒成立,则a的取值范围是( )A.(0,4] B. D.∴③满足条件,∴③正确.④h(x)=g(x)﹣f(x)=x﹣lnx,(x>0),h′(x)=1﹣,令h′(x)>0,可得x>1,令h′(x)<0,可得0<x<1,∴x=1时,函数取得极小值,且为最小值,最小值为h(1)=1﹣0=1,∴g(x)﹣f(x)≥1,∴当x0=1时,使|f(x0)﹣g(x0)|≤1的x0唯一,∴④满足条件.故选:C.点评:本题主要考查对新定义的理解与运用,考查函数最值的判断,综合性较强,难度较大,考查学生分析问题的能力.二、填空题:本大题分必做题和选做题.(一)必做题:共4小题,每小题4分,满分16分.11.函数y=2x3﹣3x2﹣12x+5在上的最小值是﹣15.考点:利用导数求闭区间上函数的最值.专题:计算题;导数的综合应用.分析:先求导y′=6x2﹣6x﹣12=6(x﹣2)(x+1),从而判断函数的单调性,再求最小值即可.解答:解:y′=6x2﹣6x﹣12=6(x﹣2)(x+1),则y=2x3﹣3x2﹣12x++5在上单调递减,在上单调递增,∴y min=2×8﹣3×4﹣12×2+5=﹣15.故答案为:﹣15.点评:本题考查了导数的应用,属于基础题.12.(文)若实数x,y满足则s=x+y的最大值为9.考点:简单线性规划的应用.专题:计算题.分析:本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数s=x+y的最大值.解答:解:满足约束条件的可行域,如图中阴影所示,由图易得:当x=4,y=5时,s=x+y=4+5=9为最大值.故答案为:9.点评:在解决线性规划的问题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.13.在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=88.考点:等差数列的前n项和.专题:计算题;等差数列与等比数列.分析:由等差数列的性质知S11=(a1+a11)=,由此能够求出结果.解答:解:等差数列{a n}中,∵a4+a8=16,∴S11=(a1+a11)===88.故答案为:88.点评:本题考查等差数列的通项公式和前n项和公式的灵活运用,是基础题,解题时要认真审题,仔细解答.14.已知函数f(x)=e x﹣x2的导函数为f′(x),y=f(x)与y=f′(x)在同一直角坐标系下的部分图象如图所示,若方程f′(x)﹣f(a)=0在x∈(﹣∞,a]上有两解,则实数a 的取值范围是在(ln2,+∞)单调递增,要使满足题意,则由(1),(3)可知a≥2设h(a)=2﹣2ln2﹣e a+a2,h′(a)=﹣e a+2a<0在a≥2恒成立,所以h(a)=2﹣2ln2﹣e a+a2在(二)选做题:本题设有三个选考题,请考生任选2题作答,并在答题卡的相应位置填写答案,如果多做,则按所做的前两题计分,满分5分.(选修4-2:矩阵与变换)15.设矩阵A=,B=()(t为参数),则(AB)﹣1=.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:AB=,设=,可得=,解出即可.解答:解:AB=,设=,∴=,解得a=6,b=﹣2,c=3,d=﹣1,∴(AB)﹣1=.故答案为:.点评:本题考查了矩阵的运算、逆矩阵的求法,考查了计算能力,属于基础题.(选修4-4:极坐标与参数方程)16.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知直线l的极坐标方程为θ=(ρ∈R),曲线C的参数方程为(θ为参数).若直线l与曲线C交于A,B两点,则|AB|=.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:先将直线l的极坐标方程化为普通方程,再将曲线C的参数方程化为普通方程,再利用两曲线的方程解答:解:∵直线l的极坐标方程为θ=(ρ∈R),∴直线l的普通方程为:y=x.∵曲线C的参数方程为(θ为参数),∴曲线C的普通方程为:(x﹣1)2+y2=4.∵直线l与曲线C交于A,B两点,∴圆心(1,0)到直线l:x﹣y=0的距离为:,∴|AB|=2=2=.故答案为:.点评:本题考查了极坐标方程、参数方程转化为普通方程,还考查了求圆中的弦长,本题难度不大,属于基础题.(选修4-5:不等式选讲)17.函数y=的最大值等于2.考点:基本不等式.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:由于y≥0,考虑平方法,化简整理,再由二次函数的值域,即可得到最大值.解答:解:由于y≥0,则y2=x﹣1+5﹣x+2=4+2=4+2当x=3时,y2取最大值4+2×2=8,即有y的最大值为2.故答案为:点评:本题考查函数的最值,考查可化为二次函数的最值的方法,注意运用平方法,属于中档题.三、解答题:本大题共6小题,共76分.解答应写出必要文字说明、证明过程或演算步骤.18.函数f(x)=lg(x2﹣2x﹣3)的定义域为集合A,函数g(x)=2x﹣a(x≤2)的值域为集合B.(1)求集合A,B;(2)若集合A,B满足A∪B=A,求实数a的取值范围.考点:对数函数的定义域;并集及其运算;函数的定义域及其求法;函数的值域.专题:函数的性质及应用.分析:(Ⅰ)解一元二次不等式求得A,再由x≤2,指数函数的单调性求得函数g(x)的值域B.(Ⅱ)由A∪B=A可得B⊆A,从而得到4﹣a<﹣1或﹣a≥3,由此求得实数a的取值范围.解答:解:(Ⅰ)A={x|x2﹣2x﹣3}={x|(x﹣3)(x+1)>0}={x|x<﹣1,或 x>3},再由x≤2,可得 0<2x≤22=4,∴函数g(x)=2x﹣a≤4﹣a,求g(x)=2x﹣a>0﹣a=﹣a.故B=(﹣a,4﹣a].(Ⅱ)∵A∪B=A;∴B⊆A,∴4﹣a<﹣1或﹣a≥3,解得 a>5或a≤﹣3,∴实数a的取值范围为{a|a>5,或a≤﹣3}.点评:本题主要考查一元二次不等式的解法,指数函数的单调性的应用,求函数的值域,两个集合间的包含关系,属于基础题.19.在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.考点:三角形中的几何计算;二倍角的正弦.专题:计算题.分析:(1)利用同角三角函数关系及三角形内角的范围可求;(2)利用正弦定理可知b=2a,再利用余弦定理,从而求出a、b的值,进而可求面积.解答:解:(1)由题意,,∴(2)由sinB=2sinA可知b=2a,又22=a2+b2﹣2abcosC,∴a=1,b=2,∴点评:此题考查学生灵活运用三角形的面积公式,灵活运用正弦、余弦定理求值,是一道基础题题.20.数列{a n}的前n项和为S n=2n+1﹣2,数列{b n}是首项为a1,公差为d(d≠0)的等差数列,且b1,b3,b9成等比数列.(Ⅰ)求数列{a n}与{b n}的通项公式;(Ⅱ)若c n=(n∈N*),求数列{c n}的前n项和T n.考点:数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)利用公式,能求出数列{a n}的通项公式;利用等差数列的通项公式和等比数列的性质能求出数列{b n}的通项公式.(Ⅱ)由c n=,利用裂项求和法能求出数列{c n}的前n项和.解答:解:(Ⅰ)因为S n=2n+1﹣2,所以,当n=1时,a1=S1=21+1﹣2=2=21,当n≥2时,a n=S n﹣S n﹣1=2n+1﹣2n=2n,又a1=S1=21+1﹣2=2=21,也满足上式,所以数列{a n}的通项公式为.b1=a1=2,设公差为d,则由b1,b3,b9成等比数列,得(2+2d)2=2×(2+8d),解得d=0(舍去)或d=2,所以数列{b n}的通项公式为b n=2n.(Ⅱ)c n=数列{c n}的前n项和:T n==1﹣=1﹣=.点评:本题考查数列的通项公式的求法,考查数列前n项和的求法,是中档题,解题时要注意裂项求和法的合理运用.21.已知向量;令,(1)求f(x)解析式及单调递增区间;(2)若,求函数f(x)的最大值和最小值;(3)若f(x)=,求的值.考点:平面向量的综合题;三角函数中的恒等变换应用;复合三角函数的单调性;三角函数的最值.专题:综合题.分析:(1)由向量,知==++2,由此能求出f(x)解析式及单调递增区间.(2)由f(x)=2+2cos(x+),,知,由此能求出f(x)=2+2cos(x+)的最大值和最小值.(3)由f(x)=,知,由此能够求出的值.解答:解:(1)∵向量,∴==++2=2+2cos(x+),增区间是:﹣π+2kπ,k∈Z,∴,k∈Z,∴f(x)解析式为f(x)=2+2cos(x+),单调递增区间是,k∈Z.(2)∵f(x)=2+2cos(x+),,∴,∴当时,f(x)=2+2cos(x+)有最大值2+;当时,f(x)=2+2cos(x+)有最小值2﹣.(3)∵f(x)=,∴,所以.点评:本题考查平面向量的综合应用,综合性强,难度大,是2015届高考的重点.解题时要认真审题,仔细解答,注意三角函数恒等式的灵活运用,合理地进行等价转化.22.如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数y=﹣x2+2(0≤x≤)的图象,且点M到边OA距离为.(1)当t=时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值是多少?考点:基本不等式;利用导数研究曲线上某点切线方程.专题:不等式的解法及应用;直线与圆.分析:(Ⅰ)求当t=时,直路l所在的直线方程,即求抛物线y=﹣x2+2(0≤x≤)在x=时的切线方程,利用求函数的导函数得到切线的斜率,运用点斜式写切线方程;(Ⅱ)求出x=t时的抛物线y=﹣x2+2(0≤x≤)的切线方程,进一步求出切线截正方形在直线右上方的长度,利用三角形面积公式写出面积,得到的面积是关于t的函数,利用导数分析面积函数在(0<t<)上的极大值,也就是最大值.解答:解:(I)∵y=﹣x2+2,∴y′=﹣2x,∴过点M(t,﹣t2+2)的切线的斜率为﹣2t,所以,过点M的切线方程为y﹣(﹣t2+2)=﹣2t(x﹣t),即y=﹣2tx+t2+2,当t=时,切线l的方程为y=﹣x+,即当t=时,直路l所在的直线方程为12x+9y﹣22=0;(Ⅱ)由(I)知,切线l的方程为y=﹣2tx+t2+2,令y=2,得x=,故切线l与线段AB交点为F(),令y=0,得x=,故切线l与线段OC交点为().地块OABC在切线l右上部分为三角形FBG,如图,则地块OABC在直路l不含泳池那侧的面积为S=(2﹣)×2=4﹣t﹣=4﹣(t+)≤2.当且仅当t=1时,取等号.∴当t=100米时,地块OABC在直路l不含游泳池那侧的面积最大,最大值为20000平方米.点评:本题考查了函数模型的选择与应用,考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,在实际问题中,函数在定义域内仅含一个极值,该极值往往就是最值.属中档题型.23.已知函数f(x)=aln(x+1)﹣ax﹣x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.专题:导数的综合应用.分析:(I)由,f′(1)=0,知,由此能求出a.(Ⅱ)由,令f′(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞),讨论两个根及﹣1的大小关系,即可判定函数的单调性;(Ⅲ)当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,由此能够证明ln(n+1)<2+.解答:解:(1)因为,令f'(1)=0,即,解得a=﹣4,经检验:此时,x∈(0,1),f'(x)>0,f(x)递增;x∈(1,+∞),f'(x)<0,f(x)递减,∴f(x)在x=1处取极大值.满足题意.(2),令f'(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞)①当,即a≥0时,若x∈(﹣1,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;②当,即﹣2<a<0时,若x∈(﹣1,,则f'(x)<0,f(x)递减;若,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;③当,即a=﹣2时,f'(x)≤0,f(x)在(﹣1,+∞)内递减,④当,即a<﹣2时,若x∈(﹣1,0),则f'(x)<0,f(x)递减;若x∈(0,,则f'(x)>0,f(x)递增;若,+∞),则f'(x)<0,f(x)递减;(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,∵,∴,i=1,2,3,…,n,∴,∴.点评:本题考查函数极值的意义及利用导数研究函数的单调性,证明:对任意的正整数n.解题时要认真审题,注意导数的合理运用,恰当地利用裂项求和法进行解题.。

2014-2015年山东省枣庄市滕州一中高三(上)期末数学试卷(理科)及参考答案

2014-2015年山东省枣庄市滕州一中高三(上)期末数学试卷(理科)及参考答案

2014-2015学年山东省枣庄市滕州一中高三(上)期末数学试卷(理科)一.选择题(每题5分,共10题)1.(5分)设A、B是两个非空集合,定义A×B={x|x∈A∪B且x∉A∩B},已知A={x|y=},B={y|y=2x,x>0},则A×B=()A.[0,1]∪(2,+∞)B.[0,1)∪(2,+∞)C.[0,1]D.[0,2]2.(5分)已知a是实数,是纯虚数,则a=()A.1B.﹣1C.D.﹣3.(5分)在△ABC中角A、B、C的对边分别是a、b、c,若(2b﹣c)cosA=acosC,则∠A为()A.B.C.D.4.(5分)如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在100个小伙子中,如果某人不亚于其他99人,就称他为棒小伙子,那么,100个小伙子中的棒小伙子最多可能有()A.1个B.2个C.50个D.100个5.(5分)小赵和小王约定在早上7:00至7:30之间到某公交站搭乘公交车去上学.已知在这段时间内,共有3班公交车到达该站,到站的时间分别为7:10,7:20,7:30,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为()A.B.C.D.6.(5分)若函数y=f(x)图象上的任意一点P的坐标(x,y)满足条件|x|≥|y|,则称函数f(x)具有性质S,那么下列函数中具有性质S的是()A.f(x)=e x﹣1B.f(x)=ln(x+1)C.f(x)=sinx D.f(x)=tanx7.(5分)已知下列命题:①设m为直线,α,β为平面,且m⊥β,则“m∥α”是“α⊥β”的充要条件;②的展开式中含x3的项的系数为60;③设随机变量ξ~N(0,1),若P(ξ≥2)=p,则P(﹣2<ξ<0)=﹣p;④若不等式|x+3|+|x﹣2|≥2m+1恒成立,则m的取值范围是(﹣∞,2);⑤已知奇函数f(x)满足f(x+π)=﹣f(x),且0<x<时f(x)=x,则函数g(x)=f(x)﹣sinx在[﹣2π,2π]上有5个零点.其中所有真命题的序号是()A.③④B.③C.④⑤D.②④8.(5分)在边长为1的正方形ABCD中,M为BC中点,点E在线段AB上运动,则的取值范围是()A.[,2]B.[0,]C.[,]D.[0,1] 9.(5分)已知抛物线y2=4x的焦点F,A,B是抛物线上横坐标不相等的两点,若AB的垂直平分线与x轴的交点是(4,0),则|AB|是最大值为()A.2B.4C.6D.1010.(5分)函数f(x)=(1+x﹣+﹣+…﹣+)cos2x在区间[﹣3,3]上的零点的个数为()A.3B.4C.5D.6二.填空题11.(5分)某程序的框图如图所示,执行该程序,若输入的p为l6,则输出的n 的值为.12.(5分)某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种.13.(5分)已知圆C:(x﹣3)2+(y+5)2=25和两点A(2,2),B(﹣1,﹣2),若点P在圆C上且S=,则满足条件的P点有个.△ABP14.(5分)在△ABC中,E为AC上一点,且=4,P为BE上一点,且满足=m+n(m>0,n>0),则取最小值时,向量=(m,n)的模为.15.(5分)已知函数f(x)=2ae x(a>0,e为自然对数的底数)的图象与直线x=0的交点为M,函数g(x)=ln(a>0)的图象与直线y=0的交点为N,|MN|恰好是点M到函数g(x)=ln(a>0)图象上的最小值,则实数a的值是.三、解答题16.(12分)已知f(x)=sin(2x+)+cos(2x﹣)+sin2x(1)求函数f(x)的最小正周期和函数在[0,π]上的单调减区间;(2)若△ABC中,f()=,a=2,b=,求角C.17.(12分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,且AC,BD交于点O,E是PB上任意一点.(1)求证:AC⊥DE(2)已知二面角A﹣PB﹣D的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.18.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.19.(12分)已知点P1(a1,b1),P(a2,b2),…P n(a n,b n)(n∈N*)在函数y=log x的图象上.(1)若数列{b n}是等差数列,求证:数列{a n}是等比数列;(2)若数列{a n}的前n项和S n=1﹣2﹣n,过点P n,P n+1的直线与两坐标轴所围图形的面积为c n,求最小的实数t,使得对任意的n∈N*,c n≤t恒成立.20.(13分)设函数f(x)=x2﹣xlnx+2,(Ⅰ)求f(x)的单调区间;(Ⅱ)若存在区间,使f(x)在[a,b]上的值域是[k(a+2),k(b+2)],求k的取值范围.21.(14分)已知椭圆C:的右焦点为F(1,0),且点(﹣1,)在椭圆C上.(1)求椭圆C的标准方程;(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.2014-2015学年山东省枣庄市滕州一中高三(上)期末数学试卷(理科)参考答案与试题解析一.选择题(每题5分,共10题)1.(5分)设A、B是两个非空集合,定义A×B={x|x∈A∪B且x∉A∩B},已知A={x|y=},B={y|y=2x,x>0},则A×B=()A.[0,1]∪(2,+∞)B.[0,1)∪(2,+∞)C.[0,1]D.[0,2]【解答】解:∵集合A、B是非空集合,定义A×B={x|x∈A∪B且x∉A∩B},A={x|y=}={x|0≤x≤2}B={y|y=2x,x>0}={y|y>1}∴A∪B=[0,+∞),A∩B=(1,2]因此A×B=[0,1]∪(2,+∞).故选:A.2.(5分)已知a是实数,是纯虚数,则a=()A.1B.﹣1C.D.﹣【解答】解:由是纯虚数,则且,故a=1故选:A.3.(5分)在△ABC中角A、B、C的对边分别是a、b、c,若(2b﹣c)cosA=acosC,则∠A为()A.B.C.D.【解答】解:利用正弦定理化简已知等式得:(2sinB﹣sinC)cosA=sinAcosC,整理得:2sinBcosA=sinAcosC+cosAsinC=sin(A+C)=sinB,∵sinB≠0,∴cosA=,∵A为三角形的内角,∴∠A=.故选:C.4.(5分)如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在100个小伙子中,如果某人不亚于其他99人,就称他为棒小伙子,那么,100个小伙子中的棒小伙子最多可能有()A.1个B.2个C.50个D.100个【解答】解:先退到两个小伙子的情形,如果甲的身高数>乙的身高数,且乙的体重数>甲的体重数,可知棒小伙子最多有2人.再考虑三个小伙子的情形,如果甲的身高数>乙的身高数>丙的身高数,且丙的体重数>乙的体重数>甲的体重数,可知棒小伙子最多有3人.这时就会体会出小伙子中的豆芽菜与胖墩现象.由此可以设想,当有100个小伙子时,设每个小伙子为A i,(i=1,2,…,100),其身高数为x i,体重数为y i,当y100>y99>…>y i>y i﹣1>…>y1且x1>x2>…>x i>x i+1>…>x100时,由身高看,A i不亚于A i+1,A i+2,…,A100;由体重看,A i不亚于A i﹣1,A i﹣2,…,A1所以,A i不亚于其他99人(i=1,2,…,100)所以,A i为棒小伙子(i=1,2, (100)因此,100个小伙子中的棒小伙子最多可能有100个.故选:D.5.(5分)小赵和小王约定在早上7:00至7:30之间到某公交站搭乘公交车去上学.已知在这段时间内,共有3班公交车到达该站,到站的时间分别为7:10,7:20,7:30,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为()A.B.C.D.【解答】解:如图,设甲到达汽车站的时刻为x,乙到达汽车站的时刻为y,则7≤x≤7,7≤y≤7,甲、乙两人到达汽车站的时刻(x,y)所对应的区域在平面直角坐标系中画出(如图所示)是大正方形.将3班车到站的时刻在图形中画出,则甲、乙两人要想乘同一班车,必须满足{(x,y)|,或或},即(x,y)必须落在图形中的3个带阴影的小正方形内,如图所以由几何概型的计算公式得P=;故选:A.6.(5分)若函数y=f(x)图象上的任意一点P的坐标(x,y)满足条件|x|≥|y|,则称函数f(x)具有性质S,那么下列函数中具有性质S的是()A.f(x)=e x﹣1B.f(x)=ln(x+1)C.f(x)=sinx D.f(x)=tanx【解答】解:要使函数具有性质S,则对应的函数图象都在区域|x|≥|y|内,分别作出函数的对应的图象,由图象可知满足条件的只有函数f(x)=sinx,故选:C.7.(5分)已知下列命题:①设m为直线,α,β为平面,且m⊥β,则“m∥α”是“α⊥β”的充要条件;②的展开式中含x3的项的系数为60;③设随机变量ξ~N(0,1),若P(ξ≥2)=p,则P(﹣2<ξ<0)=﹣p;④若不等式|x+3|+|x﹣2|≥2m+1恒成立,则m的取值范围是(﹣∞,2);⑤已知奇函数f(x)满足f(x+π)=﹣f(x),且0<x<时f(x)=x,则函数g(x)=f(x)﹣sinx在[﹣2π,2π]上有5个零点.其中所有真命题的序号是()A.③④B.③C.④⑤D.②④【解答】解:①设m为直线,α,β为平面,且m⊥β,则“m∥α”是“α⊥β”的充分不必要条件,因此不正确;==,令15﹣4r=3,②的展开式中通项公式T r+1解得r=3.含x3的项的系数为=10,因此不正确;③设随机变量ξ~N(0,1),若P(ξ≥2)=p,则P(﹣2<ξ<0)==﹣p,因此正确;④∵不等式|x+3|+|x﹣2|≥|﹣3﹣2|=5,∴5≥2m+1恒成立,解得m≤2,则m的取值范围是(﹣∞,2],因此不正确;⑤∵奇函数f(x)满足f(x+π)=﹣f(x),∴f(x+2π)=f(x),f(﹣x+π)=﹣f(﹣x)=f(x),∴函数f(x)的周期T=2π.f(﹣x+π)=f(x),即函数f(x)关于直线x=对称.∵函数f(x)是奇函数,且0<x<时f(x)=x,∴,f(x)=x.分别画出函数y=f(x),y=sinx的图象.若=1,则函数g(x)=f(x)﹣sinx在[﹣2π,2π]上有9个零点,因此不正确.其中所有真命题的序号是③.故选:B.8.(5分)在边长为1的正方形ABCD中,M为BC中点,点E在线段AB上运动,则的取值范围是()A.[,2]B.[0,]C.[,]D.[0,1]【解答】解:(如图)以AB、AD分别为x、y轴建立坐标系,进而可得C(1,1),M(1,),设E(x,0)(0≤x≤1)∴=(1﹣x,1),=(1﹣x,)∴=(1﹣x)(1﹣x)+1×=x2﹣2x+∵0≤x≤1,∴当x=1时,有最小值为;当x=0时,有最大值为,由此可得的取值范围是[,]故选:C.9.(5分)已知抛物线y2=4x的焦点F,A,B是抛物线上横坐标不相等的两点,若AB的垂直平分线与x轴的交点是(4,0),则|AB|是最大值为()A.2B.4C.6D.10【解答】解:∵抛物线y2=4x的焦点F(1,0),设A(x1,y1)B(x2,y2),∵线段AB的垂直平分线恰过点M(4,0),∴|MA|2=|MB|2,即+=+,又=4x1,=4x2,代入并展开得:16+﹣8x1+4x1=﹣8x2+16+4x2,即﹣=4x1﹣4x2,又x1≠x2,x1+x2=4,∴AB≤AF+BF=(x1+)+(x2+)=4+2=6(当A,B,F三点共线时取等号).即|AB|是最大值为6.故选:C.10.(5分)函数f(x)=(1+x﹣+﹣+…﹣+)cos2x在区间[﹣3,3]上的零点的个数为()A.3B.4C.5D.6【解答】解:设g(x)=1+x﹣+﹣+…﹣+,则g′(x)=1﹣x+x2﹣x3+…+x2012=,在区间[﹣3,3]上,>0,故函数g(x)在[﹣3,3]上是增函数,由于g(﹣3)式子中右边x的指数为偶次项前为负,奇数项前为正,结果必负,即g(﹣3)<0,且g(3)=1+3+(﹣)+(﹣)+…+(﹣)>0,故在[﹣3,3]上函数g(x)有且只有一个零点.又y=cos2x在区间[﹣3,3]上有四个零点,且与上述零点不重复,∴函数f(x)=(1+x﹣+﹣+…﹣+)cos2x在区间[﹣3,3]上的零点的个数为1+4=5.故选:C.二.填空题11.(5分)某程序的框图如图所示,执行该程序,若输入的p为l6,则输出的n 的值为4.【解答】解:模拟执行程序框图,可得p=16,n=1,S=0满足条件S<p,S=3,n=2满足条件S<p,S=9,n=3满足条件S<p,S=18,n=4不满足条件S<p,退出循环,输出S的值为18,n的值为4.故答案为:4.12.(5分)某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有75种.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31•C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.13.(5分)已知圆C:(x﹣3)2+(y+5)2=25和两点A(2,2),B(﹣1,﹣2),=,则满足条件的P点有2个.若点P在圆C上且S△ABP【解答】解:∵A(2,2),B(﹣1,﹣2),∴|AB|==5,圆C:(x﹣3)2+(y+5)2=25的半径r=5,圆心C(3,﹣5),=,∵点P在圆C上且S△ABP∴点P到AB的距离就应该是1.直线AB的方程为:=,整理,得4x﹣3y﹣2=0,圆心C(3,﹣5)到直线AB的距离d==5,∴直线AB与圆C相切,∴满足条件的P点有2个.故答案为:2.14.(5分)在△ABC中,E为AC上一点,且=4,P为BE上一点,且满足=m+n(m>0,n>0),则取最小值时,向量=(m,n)的模为.【解答】解:∵=4,∴=m+n=m+4n又∵P为BE上一点,∴不妨设=λ(0<λ<1)∴=+=+λ=+λ(﹣)=(1﹣λ)+λ∴m+4n=(1﹣λ)+λ∵,不共线∴m+4n=1﹣λ+λ=1∴+=(+)×1=(+)×(m+4n)=5+4+≥5+2=9(m>0,n>0)当且仅当=即m=2n时等号成立又∵m+4n=1∴m=,n=∴||==故答案为15.(5分)已知函数f(x)=2ae x(a>0,e为自然对数的底数)的图象与直线x=0的交点为M,函数g(x)=ln(a>0)的图象与直线y=0的交点为N,|MN|恰好是点M到函数g(x)=ln(a>0)图象上的最小值,则实数a的值是2.【解答】解:由题意,f(0)=2a•e0=2a;故M(0,2a);g(x)=ln=0解得,x=a;故N(a,0);由g′(x)=•=;k MN==﹣2,g′(a)=;则由|MN|恰好是点M到函数g(x)=ln(a>0)图象上的最小值知,k MN×g′(a)=﹣1,即﹣2×=﹣1;解得,a=2.故答案为:2.三、解答题16.(12分)已知f(x)=sin(2x+)+cos(2x﹣)+sin2x(1)求函数f(x)的最小正周期和函数在[0,π]上的单调减区间;(2)若△ABC中,f()=,a=2,b=,求角C.【解答】解:(1)f(x)=sin(2x+)+cos(2x﹣)+sin2x=sin2x+cos2x+cos2x+sin2x+sin2x=sin2x+cos2x=sin(2x+)…3分所以f(x)的最小正周期为π…4分由2kπ≤2x+≤2kπ+可得kπ≤x≤kπ+,又0≤x≤π,所以可得:所以f(x)的递减区间为:[,]…6分(2)由(1)知f()=sin(A+)=,所以sin(A+)=1,因为0<A <π,所以A=…8分又∵a=2,b=,所以由正弦定理可得:,所以sinB=,即B=或B=,所以C=或C=…12分17.(12分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,且AC,BD交于点O,E是PB上任意一点.(1)求证:AC⊥DE(2)已知二面角A﹣PB﹣D的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.【解答】(1)证明:因为DP⊥平面ABCD,所以DP⊥AC,因为四边形ABCD为菱形,所以BD⊥AC,又BD∩PD=D,∴AC⊥平面PBD,因为DE⊂平面PBD,∴AC⊥DE.(2)解:连接OE,在△PBD中,EO∥PD,所以EO⊥平面ABCD,分别以OA,OB,OE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,设PD=t,则A(1,0,0),B(0,,0),C(﹣1,0,0),E(0,0,),P(0,﹣,t),设平面PAB的一个法向量为=(x,y,z),则,令y=1,得=(,1,),平面PBD的法向量=(1,0,0),因为二面角A﹣PB﹣D的余弦值为,所以|cos<,>|==,所以t=2或t=﹣2(舍)P(0,﹣,2),E(0,0,1),=(,1,1),=(﹣1,0,﹣)∴sinθ=||=,∴EC与平面PAB所成角θ的正弦值为.18.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【解答】解:(1)X可能取值有﹣200,10,20,100.则P(X=﹣200)=,P(X=10)==P(X=20)==,P(X=100)==,故分布列为:由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣.由(1)知,每盘游戏获得的分数为X的数学期望是E(X)=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.19.(12分)已知点P1(a1,b1),P(a2,b2),…P n(a n,b n)(n∈N*)在函数y=log x的图象上.(1)若数列{b n}是等差数列,求证:数列{a n}是等比数列;(2)若数列{a n}的前n项和S n=1﹣2﹣n,过点P n,P n+1的直线与两坐标轴所围图形的面积为c n,求最小的实数t,使得对任意的n∈N*,c n≤t恒成立.【解答】(1)证明:设等差数列{b n}的公差为d,则P n(a n,b n)(n∈N*)在函数y=log x的图象上.,∴an=.∴==对n∈N*恒成立,得到数列{a n}是等比数列.(2)解:由S n=1﹣2﹣n,可得=.n≥2时,a n=S n﹣S n﹣1=1﹣2﹣n﹣(1﹣2﹣(n﹣1))=.==n,∴P n,P n+1.过点P n,P n+1的直线方程为:=,化为:y=n﹣2(2n x﹣1).可得:A n,B n(0,n+2).=.由c n﹣c n+1==>0.∴数列{c n}单调递减,使得对任意的n∈N*,c n≤t恒成立,则t≥c1=.∴t的最小值为.20.(13分)设函数f(x)=x2﹣xlnx+2,(Ⅰ)求f(x)的单调区间;(Ⅱ)若存在区间,使f(x)在[a,b]上的值域是[k(a+2),k(b+2)],求k的取值范围.【解答】解:(Ⅰ)令g(x)=f′(x)=2x﹣lnx+1(x>0),则g′(x)=2﹣=,(x>0)令g′(x)=0,得x=,当0<x<时,g′(x)<0,g(x)为减函数;当x≥时,g′(x)≥0,g(x)为增函数;所以g(x)在(0,)单调递减,在[,+∞)单调递增,则g(x)的最小值为g()=ln2>0,所以f′(x)=g(x)≥g()>0,所以f(x)的单调递增区间是(0,+∞).(Ⅱ)由(Ⅰ)得f(x)在区间[a,b]⊆[,+∞)递增,∵f(x)在[a,b]上的值域是[k(a+2),k(b+2)],所以f(a)=k(a+2),f(b)=k(b+2),≤a<b,则f(x)=k(x+2)在[,+∞)上至少有两个不同的正根,k=,令F(x)==,求导得,F′(x)=(x≥),令G(x)=x2+3x﹣2lnx﹣4(x≥)则G′(x)=2x+3﹣=所以G(x)在[,+∞)递增,G()<0,G(1)=0,当x∈[,1]时,G(x)<0,∴F′(x)<0,当x∈[1,+∞]时,G(x)>0,∴F′(x)>0,所以F(x)在[,1)上递减,在(1,+∞)上递增,∴F(1)<k≤F(),∴k∈(1,];21.(14分)已知椭圆C:的右焦点为F(1,0),且点(﹣1,)在椭圆C上.(1)求椭圆C的标准方程;(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.【解答】解:(1)由题意,c=1∵点(﹣1,)在椭圆C上,∴根据椭圆的定义可得:2a=,∴a=∴b2=a2﹣c2=1,∴椭圆C的标准方程为;(2)假设x轴上存在点Q(m,0),使得恒成立当直线l的斜率为0时,A(,0),B(﹣,0),则=﹣,∴,∴m=①当直线l的斜率不存在时,,,则•=﹣,∴∴m=或m=②由①②可得m=.下面证明m=时,恒成立当直线l的斜率为0时,结论成立;当直线l的斜率不为0时,设直线l的方程为x=ty+1,A(x1,y1),B(x2,y2)直线方程代入椭圆方程,整理可得(t2+2)y2+2ty﹣1=0,∴y1+y2=﹣,y1y2=﹣∴=(x1﹣,y1)•(x2﹣,y2)=(ty1﹣)(ty2﹣)+y1y2=(t2+1)y1y2﹣t(y1+y2)+=+=﹣综上,x轴上存在点Q (,0),使得恒成立.第21页(共21页)。

山东省滕州市实验中学2015届高三12月月考数学(理)试题(附答案)

山东省滕州市实验中学2015届高三12月月考数学(理)试题(附答案)

2014年山东省滕州市实验中学高三12月考数学理试题第I 卷(选择题,共50分)一、选择题:本大题10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{11}A x x =-<<,2{log 0}B x x =≤,则AB =( )A .{}11<<-x xB .{}10<<x xC .{}11≤<-x xD .{}1≤x x 2.下列函数中,以为π最小正周期,且在 [0, 4π]上为减函数的是A .f (x )=sin2xcos2xB .f (x )=2 sin 2x ―1C .f (x )= cos 4x ―sin 4xD .f (x )=tan (4―x2) 33.设n S 是等3. 差数列{}n a 的前n 项和,若8310S S =+,则11S = A .12B .18C .22D .444.命题“p q ∨为真”是命题“p q ∧为真”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设曲线()ln 1axy e x =-+在点()0,1处的切线方程为210x y -+=,则a =A .0B .1C .2D .36.设0,1a b >>,若3121a b a b +=+-,则的最小值为A .B .8C .D .4+7.函数()()sin ln 2xf x x =+的图象可能是A .B .C .D .8.将函数()()sin 222f x x ππθθ⎛⎫=+-<< ⎪⎝⎭的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若()(),f x g x的图象都经过点0,2P ⎛⎝⎭,则ϕ的值可以是 A .53πB .56π C .2π D .6π 9.双曲线221x y m-=的离心率2e =,则以双曲线的两条渐近线与抛物线2y mx =的交点为顶点的三角形的面积为AB.C.D.10.已知e 是自然对数的底数,函数()2xf x e x =+-的零点为a ,函数()ln 2g x x x =+-的零点为b ,则下列不等式成立的是A .()()()1f f a f b <<B .()()()1f a f b f <<C .()()()1f a f f b <<D .()()()1f b f f a <<第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在横线上. 11.函数()()2log 123f x x x =-+--的定义域为__________.12.若变量,x y 满足约束条件4,2y xx y z x y y k ≤⎧⎪+≤=+⎨⎪≥⎩且的最小值为6-,则k =_________.13.已知正方体1111ABCD A BC D -中,点E 是棱11A B 的中点,则直线AE 与平面11BDD B 所成角的正弦值是_________.14.已知圆O 过椭圆22162x y +=的两焦点且关于直线10x y -+=对称,则圆O 的方程为_______.15.如果对定义在R 上的函数()f x ,对任意两个不相等的实数12,x x ,都有()()()()11221221x f x x f x x f x x f x⋅+⋅>⋅+⋅,则称函数()f x 为“H 函数”. 给出下列函数:①2y x =;②1xy e =+;③2sin y x x =-;④()ln ,01,0x x f x x ⎧≠⎪=⎨=⎪⎩.以上函数是“H 函数”的所有序号为__________(把所有正确命题的序号都填上). 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知△ABC 中的三个内角A ,B ,C 所对的边分别为,,a b c ,且满足()()()sin sin sin ,cos 3.3b a B A bc C C a -+=-== (I )求sin B ; (II )求△ABC 的面积. 17.(本小题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形, AB//CD,∠ABC=60°,AB=2CB=2.在梯形ACEF 中,EF//AC ,且2AC EF EC =⊥,平面ABCD .(I )求证:BC AF ⊥;(II )若二面角D AF C --为45°,求CE 的长. 18.(本小题满分12分)设等差数列{}n a 的前n 项和为248,40n S a S ==,且.数列{}n b 的前n 项和为n T ,且*230n n T b n N -+=∈,.(I )求数列{}{},n n a b 的通项公式;(II )设n n n a n c b n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前n 项和n P .19.(本小题满分12分)某市近郊有一块大约500500m m ⨯的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S 平方米.(I )分别用x 表示y 和S 的函数关系式,并给出定义域; (II )怎样设计能使S 取得最大值,并求出最大值. 20.(本小题满分13分)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,右焦点2F 到直线1:340l x y +=的距离为35. (I )求椭圆C 的方程;(II )过椭圆右焦点2F 斜率为()0k k ≠的直线l 与椭圆C 相交于E 、F 两点,A 为椭圆的右顶点,直线AE ,AF 分别交直线3x =于点M ,N ,线段MN 的中点为P ,记直线2PF 的斜率为k ',求证:k k '⋅为定值. 21.(本小题满分12分)设函数()()12ln 2f x a x ax x=-++. (I )当0a =时,求()f x 的极值;(II )设()()[)11g x f x x=-+∞,在,上单调递增,求a 的取值范围;(III )当0a ≠时,求()f x 的单调区间.参考答案一、选择题(每小题5分,共50分) 1-10CCCBD DABCC 二、填空题(每小题5分,共25分) 11.(,0)(3,)-∞+∞ 12.2- 1314.22(1)5x y +-= 15.②③ 三、解答题:16.(本小题满分12分)解:(Ⅰ)由正弦定理可得()()()b a b a b c c -+=-, ……………2分即222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==,……………4分 又0A π<<, 所以3A π=;因为cos 3C =,所以sin 3C =. …………………6分 所以sin sin()sin cos cos sin B A C A C A C =+=+12==……………………8分 (Ⅱ)在ABC ∆中,由正弦定理sin sin a cA C=,=c = ……………………10分 所以ABC ∆的面积113sin 32262S ac B ==⨯⨯=.………12分 17.(本小题满分12分)(Ⅰ)证明:在ABC ∆中,2222cos603AC AB BC AB BC =+-⋅=,所以222AB AC BC =+,由勾股定理知90ACB ∠=所以 BC AC ⊥. ……2分又因为 EC ⊥平面ABCD ,BC ⊂平面ABCD ,所以 BC EC ⊥.………4分 又因为ACEC C = 所以 BC ⊥平面ACEF ,又AF ⊂平面ACEF所以 BC AF ⊥. ………………………6分 (Ⅱ)因为EC ⊥平面ABCD ,又由(Ⅰ)知BC AC ⊥,以C 为原点,建立如图所示的空间直角坐标系 C xyz -.设=CE h ,则()0,0,0C,)A,(,0,)2F h ,1,0)2D -,1(,0)2AD =--,()AF h =-.……8分 设平面DAF 的法向量为1(,,)x y z =n ,则110,0.AD AF ⎧⋅=⎪⎨⋅=⎪⎩n n所以10,20.x y x hz ⎧-=⎪⎪⎨⎪+=⎪⎩,令x =133)2h=-,n . …………………9分又平面AFC 的法向量2(0,1,0)=n ……………………………10分所以1212cos 452⋅==⋅nn n n , 解得h = .……………………11分所以CE ……………………………………12分 18.( 12分)解:(Ⅰ)由题意,1184640a d a d +=⎧⎨+=⎩,得14,44n a a n d =⎧∴=⎨=⎩. …3分230n n T b -+=,113n b ∴==当时,,112230n n n b --≥-+=当时,T ,两式相减,得12,(2)n n b b n -=≥数列{}n b 为等比数列,132n n b -∴=⋅. …………6分(Ⅱ)14 32n n nn c n -⎧=⎨⋅⎩为奇数为偶数. 当n 为偶数时,13124()()n n n P a a a b b b -=+++++++212(444)6(14)222214nn n n n ++-⋅-=+=+--. ……………9分当n 为奇数时,132241()()n n n n P a a a a b b b --=++++++++1221(44)6(14)2221214n n n n n n -++⋅-=+=++-- . …………11分12222,221n n nn n P n n n +⎧+-∴=⎨++-⎩为偶数,为奇数. ………12分19.(12分)解:(Ⅰ)由已知3000xy =,3000y x∴=,其定义域是(6,500). (4)(6)(210),S x a x a x a =-+-=-又26y a =+,3000661500322y x a x--∴===-, 150015000(210)(3)3030(6)S x x x x=--=-+,其定义域是(6,500).……………6分 (Ⅱ)150003030(6)3030303023002430S x x =-+=-=-⨯=, 当且仅当150006x x=,即50(6,500)x =∈时,上述不等式等号成立, 此时,50x =,60y =,max 2430S =.答:设计50x m =,60y m = 时,运动场地面积最大,最大值为2430平方米.……12分20.(本小题满分13分)解:(Ⅰ)由题意得21==a c e35=,………2分 所以1c =,2=a ,所求椭圆方程为13422=+y x . …………………… 4分 (Ⅱ)设过点()21,0F 的直线l 方程为:)1(-=x k y ,设点),(11y x E ,点),(22y x F , …………………………………5分将直线l 方程)1(-=x k y 代入椭圆134:22=+y x C ,整理得:01248)34(2222=-+-+k x k x k ………………………………… 6分 因为点P 在椭圆内,所以直线l 和椭圆都相交,0∆>恒成立,且3482221+=+k k x x 341242221+-=⋅k k x x …………………………7分 直线AE 的方程为:)2(211--=x x y y ,直线AF 的方程为:)2(222--=x x y y 令3=x ,得点11(3,)2y M x -,22(3,)2y N x -,所以点P 的坐标12121(3,())222yy x x +--, ……………………9分直线2PF 的斜率为)22(41130)22(21'22112211-+-=---+-=x y x yx y x y k4)(24)(32414)(2)(241212121212121211212++-++-⋅=++-+-+=x x x x k x x k x kx x x x x y y y x x y ,……… 11分将34124,34822212221+-=+=+k k x x k k x x 代入上式得:222222224128234134343'412844244343k k k k k k k k k k kk k -⋅-⋅+++=⋅=---+++, 所以'k k ⋅为定值43-. (13)21.(本小题满分14分)解:(Ⅰ)函数)(x f 的定义域为).,0(+∞ ……………1分 当0=a 时,x x x f 1ln 2)(+=,∴.1212)(22x x x x x f -=-=' ………………2分 由0)(='x f 得.1=x )(),(x f x f '随x 变化如下表: 故,2ln 22)2()(-==f x f 极小值,没有极大值. …………………………4分(Ⅱ)由题意,ax x a x g 2ln )2()(+-=,在),1[+∞上单调递增,02222)(≥+-=+-='xa ax a x a x g 在),1[+∞上恒成立, 设022)(≥-+=a ax x h 在),1[+∞上恒成立, ………………………………5分 当0=a 时,02≥恒成立,符合题意. ………………………………………6分 当0>a 时,)(x h 在),1[+∞上单调递增,)(x h 的最小值为022)1(≥-+=a a h , 得2-≥a ,所以0>a , ………………………………………8分 当0<a 时,)(x h 在),1[+∞上单调递减,不合题意,所以0≥a (也可以用分离变量的方法)……………………………10分(Ⅲ)由题意,221)2(2)(x x a ax x f --+=',令0)(='x f 得a x 11-=,.212=x 10分 若0>a ,由0)(≤'x f 得]21,0(∈x ;由0)(≥'x f 得).,21[+∞∈x …………11分 若0<a ,①当2-<a 时,211<-a ,]1,0(a x -∈或),21[+∞∈x 时,0)(≤'x f ;]21,1[a x -∈时,0)(≥'x f ;②当2-=a 时,0)(≤'x f ;③当02<<-a 时,]21,0(,211∈>-x a 或),1[+∞-∈a x ,0)(≤'x f ;]1,21[ax -∈,.0)(≥'x f …………………………13分综上,当0>a 时,函数的单调递减区间为]21,0(,单调递增区间为),21[+∞;当2-<a 时,函数的单调递减区间为),21[],1,0(+∞-a ,单调递增区间为]21,1[a -;当2-=a 时,函数的单调递减区间为),0(+∞; 当02<<-a 时,函数的单调递减区间为),,1[],21,0(+∞-a 单调递增区间为]1,21[a-. …………………………14分。

山东省滕州市第一中学2015届高三上学期期中考试数学(理)试题及答案

山东省滕州市第一中学2015届高三上学期期中考试数学(理)试题及答案

山东省滕州市第一中学第一学期2015届高三期中考数学(理)试题第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.在答题卷上的相应题目的答题区域作答.1. 设集合M={a+1},N={x ∈R|2x ≤4},若M ∪N=N ,则实数a 的取值范围为( ) A .[-1,3], B .[-3,1], C .[-3,3], D .(-∞,-3]∪[3,+∞) 2. 已知命题p :x ∈A ∪B ,则非p 是( )A .x 不属于A∩B,B .x 不属于A 或x 不属于BC .x 不属于A 且x 不属于B,D .x ∈A∩B3. 已知t >0,若02x 2dx 8t-=⎰(),则t=( )A .1,B .-2,C .-2或4,D .44.已知()()1,41,42x f x x f x x ⎧+<⎪=⎨⎛⎫≥⎪ ⎪⎝⎭⎩,则()2log 3f =( )A .124B .112C .14D .125.若方程ln 50x x +-=在区间(a ,)b (,a b Z ∈,且1)b a -=上有一实根,则a 的值为( )A .5B .4C .3D .26.函数),2||.0,0()sin(R x A B x A y ∈<>>++=πϕωϕω的部分图象如图所示,则函数表达式为( )A .1)63sin(2+-=ππx y B .1)36sin(2+-=ππx yC .1)63sin(2++=ππx yD .1)66sin(2++=ππx y7.用数学归纳法证明“)12(212)()2)(1(-⋅⋅⋅⋅=+++n n n n n n” )(*∈N n 时,从“k n =到1+=k n ”时,左边应添乘的式子是( )A .12+kB .)12(2+kC .112++k k D .2 8.若正数x ,y 满足1x y +=,且14ax y+≥对任意x ,(0,1)y ∈恒成立,则a 的取值范围是( )A .(0,4]B .[4,)+∞C .(0,1]D .[1,)+∞9.已知定义在R 上的函数()f x 满足:对任意R x ∈,都有(1)(1)f x f x +=-成立,且(1)()0x f x '-<,设1(0),(),(3)2a fb fc f ===,则c b a ,,三者的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .c b a <<10.对于函数()f x 与()g x 和区间D ,如果存在0x D ∈,使00|()()|1f x g x -≤,则称0x 是函数()f x 与()g x 在区间D 上的“友好点”.现给出4组函数: ①2()f x x =,()23g x x =-;②()f x =()2g x x =+;③()xf x e -=,1()g x x=-; ④()ln f x x =,1()2g x x =-; 其中在区间(0,)+∞上存在“友好点”的有( )A .①②B .②③C .①④D .③④第Ⅱ卷 (非选择题 共100分)二、填空题:本大题分必做题和选做题.(一)必做题:共4小题,每小题4分,满分16分.11.函数5123223+--=x x x y 在[]3,0上的最小值分别是 .12.若实数x ,y 满足220,4,5.x y x y +-≥⎧⎪≤⎨⎪≤⎩则z x y =+的最大值为 .13.在等差数列}{n a 中,已知4816a a +=,则该数列前11项和11S = . 14.已知函数2()x f x e x =-的导函数为/()f x ,()y f x =与/()y f x =在同一直角坐标系下的部分图象如图所示,若方程/()()0f x f a -=在(,]x a ∈-∞上有两解,则实数a 的取值范围是 .(二)选做题:本题设有三个选考题,请考生任选2题作答,并在答题卡的相应位置填写答案,如果多做,则按所做的前两题计分,满分8分. 15.(1)(选修4-2:矩阵与变换)设矩阵A =1031⎛⎫ ⎪-⎝⎭,B =1201-⎛⎫ ⎪⎝⎭,则1()AB -= .(2)(选修4-4:极坐标与参数方程)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知直线l 的极坐标方程为)(4R ∈=ρπθ,曲线C 的参数方程为⎩⎨⎧=+=θθsin 2cos 21y x (θ为参数).若直线l 与曲线C 交于B A ,两点,则AB = .(3)(选修4-5:不等式选讲)函数x x y -+-=51的最大值等于 .三、解答题:本大题共6小题,共76分.解答应写出必要文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数2()lg(23)f x x x =--的定义域为集合A ,函数()2(2)xg x a x =-≤的值域为集合B (1)求集合A ,B ;(2)若()R B C A =∅ ,求实数a 的取值范围.17.(本小题满分12分)在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c ,则462s i n =C ; (1)求C sin ;(2)若2=c ,A B sin 2sin =,求ABC ∆的面积.18.(本小题满分12分)数列{}n a 的前n 项和为122n n S +=-,数列{}n b 是首项为1a ,公差为(0)d d ≠的等差数列,且1b ,3b ,9b 成等比数列.(1)求数列{}n a 与{}n b 的通项公式;(2)若*2())(1)n nc n N n b =∈+,求数列{}n c 的前n 项和n T .19.(本小题满分12分)已知向量33(cos ,sin ),(cos(),sin())444343x x x x a b ππ==+-+ ;令2()(),f x a b =+(1)求()f x 解析式及单调递增区间; (2)若5[,]66x ππ∈-,求函数()f x 的最大值和最小值;(3)若()f x =52,求sin()6x π-的值.20.(本小题满分12分)如图,某小区有一边长为2(单位:百米)的正方形地块OABC , 其中OAE 是一个游泳池,计划在地块OABC 内修一条与池边AE 相切的直路l (宽度不计),切点为M ,并把该地块分为两部分.现以点O 为坐标原点,以线段OC 所在直线为x 轴,建立平面直角坐标系,若池边AE 满足函数22(0y x x =-+≤的图象,且点M 到边OA 距离为24()33t t ≤≤.(1)当23t =时,求直路l 所在的直线方程;(2)当t 为何值时,地块OABC 在直路l 不含泳池那侧的面积取到最大,最大值是多少?21.(本小题满分14分)已知函数2()ln(1)f x a x ax x =+--. (1)若1x =为函数()f x 的极值点,求a 的值; (2)讨论()f x 在定义域上的单调性;(3)证明:对任意正整数n ,222134232)1ln(nn n +++++<+ .数学(理)试题参考答案一、选择题:(共10小题,每小题5分,满分50分) BCBAC ABDCD二、填空题:(共5小题,每小题4分,满分24分) 11.15-; 12.9; 13.88; 14.2≥a 15.(1)7231-⎛⎫⎪-⎝⎭(2(3)14.(解法一)设/2()()()2()x a g x f x f a e x e a =-=---令/()2x g x e =->0,则ln2x >,所以()g x 在(,ln 2)-∞单调递增,在(ln 2,)+∞单调递减要使满足题意,则2220(1)()0(ln 2)022ln 20(2)ln 2ln 2(3)a a a e a e a g a g e a a a ⎧--+≥---≥⎧⎪⎪<⇒--+<--⎨⎨⎪⎪<<---------⎩⎩由(1),(3)可知2a ≥ 设2()22ln2ah a ea =--+,/()20a h a e a =-+<在2a ≥恒成立所以2()22ln2ah a e a =--+在[2,)+∞上单调递减,所以2()(2)62ln20h a h e ≤=--<所以(2)对任意的a R ∈都成立 综上所述2a ≥. (解法二)/()()0f x f a -=在(,]x a ∈-∞上有两解⇔函数/12()()y f x y f a ==与有两交点/1(),(,]y f x x a =∈-∞---表示右端点位置变化的函数2()y f a =--------表示与x 轴平行的一组直线,它的高低与()f a 的值有关所以a 一定在/1(),(,]y f x x a =∈-∞的极值点右侧,同时2()()y f a g a =≥三、解答题:本大题共6小题,共76分.解答应写出必要文字说明、证明过程或演算步骤. 16.(本题满分12分) 解:(1)集合A :2230x x -->, 解得:{|1A x x =<-或3}x >集合B :()g x 图象单调递增,()4a g x a -<≤-,则{|4}B y a y a =-<≤- .8分(2){|13}R C A x x =-≤≤,由()R B C A =∅ ,结合数轴,41a -<-或3a -≥, 解得3a ≤-或5a >. 13分 17.(本题满分12分)解:由已知:(1)462sin=C ,41)46(212sin21cos 22=⨯-=-=∴C C 又π<<C 0 ,415)41(1cos 1sin 22=-=-=∴C C . ..….5分 (2)A B sin 2sin = ,∴由正弦定理得a b 2=,由余弦定理,得C ab b a c cos 2222-+=,得1=a ,从而2=b .4154152121sin 21=⨯⨯⨯==∆C ab S ABC ..….13分 18.(本题满分13分)解:(1)当2n ≥,时11222n n n n n n a S S +-=-=-=又21112222a S ==-==,也满足上式,所以数列{}n a 的通项公式为2nn a =112b a ==,设公差为d ,则由1b ,2b ,9b 成等比数列,得 2(22)2(28)d d +=⨯+ 解得0d =(舍去)或2d =所以数列{}n b 的通项公式为2n b n = ..….7分 (2)解:21(1)(1)n n c n b n n ==++ 数列{}n c 的前n 项和1111122334(1)n T n n =++++⨯⨯⨯⨯+11111111223111nn n n n =-+-++-=-=+++ .. (13)19.解:22233()()212[cos cos()sin sin()]144344322cos()3x x x x f x a b a a b b x πππ=+=+⋅+=++-++=++…2分 当223k x k ππππ-≤+≤,2k ∈,即:422,33k k k Z πππππ-≤≤-∈时, ()f x 单调递增,()f x ∴增区间为:⎥⎦⎤⎢⎣⎡--32,342ππππk k ,k Z ∈ …5分 (Ⅱ)由5[,],66x ππ∈-得7[,]366x πππ+∈,1cos()3x π-≤+≤当6x π=-时()max 2f x =当23x π=时,()min 0f x = …9分(3)51()22cos()cos()3234f x x x ππ=++=∴+=,所以1sin()sin()cos()6634x x x πππ-=--=-+=-。

【数学】2014-2015年山东省枣庄市滕州二中高三(上)期中数学试卷与答案(文科)

【数学】2014-2015年山东省枣庄市滕州二中高三(上)期中数学试卷与答案(文科)

2014-2015学年山东省枣庄市滕州二中高三(上)期中数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填写在答题卷上的相应题目的答题区域内.1.(5分)已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是()A.﹣3∈A B.3∉B C.A∩B=B D.A∪B=B2.(5分)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2) D.(2,+∞)3.(5分)下列函数在定义域内为奇函数的是()A.y=x+B.y=xsinx C.y=|x|﹣1 D.y=cosx4.(5分)某学校高一、高二、高三年级的学生人数分别为900、900、1200人,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高三年级抽取的学生人数为()A.15 B.20 C.25 D.305.(5分)若a=3,b=log cos60°,c=log 2tan30°,则()A.a>b>c B.b>c>a C.c>b>a D.b>a>c6.(5分)已知l,m,n是三条不同的直线,α,β是两个不同的平面,下列命题为真命题的是()A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l⊥α,α∥β,m⊂β,则l⊥m C.若l∥m,m⊂α,则l∥αD.若l⊥α,α⊥β,m⊂β,则l∥m7.(5分)将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是()A.(,0)B.(﹣,0) C.(﹣,0) D.(,0)8.(5分)已知函数f(x)=若f(a)≥1,则实数a的取值范围为()A.[0,1]B.[1,+∞)C.[0,3]D.[0,+∞)9.(5分)如图,在边长为2的菱形ABCD中,∠ABC=60°,对角线相交于点O,P是线段BD的一个三等分点,则•等于()A.1 B.2 C.3 D.410.(5分)已知函数f(x)=xsinx的图象是下列两个图象中的一个,请你选择后再根据图象作出下面的判断:若x1,x2∈(﹣,),且f(x1)>f(x2),则()A.x1>x2B.x1+x2>0 C.x1<x2D.x12>x22二、填空题:本大题共6小题,每小题4分,共24分.在答题卷上的相应题目的答题区域内作答.11.(4分)命题:“∀x∈R,x2+2x+1≥0.”的否定是.12.(4分)等差数列{a n}中,a3+a8=6,则=.13.(4分)已知角α的终边上一点的坐标为,则角α的最小正值为.14.(4分)已知a>0,b>0,且a+2b=1,则的最小值为.15.(4分)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.16.(4分)记S k=1k+2k+3k+…+n k,当k=1,2,3,…时,观察下列等式:S1=n,S2=n,S3=,S4=n,S5=An6+,…可以推测,A﹣B=.三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{a n}是各项均为正数的等差数列,a1=1,且a2,a3+1,a6成等比数列.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和S n.18.(12分)已知向量=(cosx+sinx,2cosx),=(cosx﹣sinx,sinx),函数f(x)=•(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间上的最大值和最小值.19.(12分)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.20.(12分)如图,某海滨城市位于海岸A处,在城市A的南偏西20°方向有一个海面观测站B,现测得与B处相距31海里的C处,有一艘豪华游轮正沿北偏西40°方向,以40海里/小时的速度向城市A直线航行,30分钟后到达D处,此时测得B、D间的距离为21海里.(1)求sin∠BDC的值;(2)试问这艘游轮再向前航行多少分钟即可到达城市A?21.(14分)如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF∥AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.(Ⅰ)求证:NC∥平面MFD;(Ⅱ)若EC=3,求证:ND⊥FC;(Ⅲ)求四面体NFEC体积的最大值.22.(14分)已知a∈R,函数.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)讨论f(x)的单调性;(3)是否存在a的值,使得方程f(x)=2有两个不等的实数根?若存在,求出a的取值范围;若不存在,说明理由.2014-2015学年山东省枣庄市滕州二中高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填写在答题卷上的相应题目的答题区域内.1.(5分)已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是()A.﹣3∈A B.3∉B C.A∩B=B D.A∪B=B【解答】解:∵|x|≥0,∴|x|﹣1≥﹣1;∴A={y|y≥﹣1},又B={x|x≥2}∴A∩B={x|x≥2}=B.故选:C.2.(5分)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2) D.(2,+∞)【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:K OA=,数形结合可得<k<1,故选:B.3.(5分)下列函数在定义域内为奇函数的是()A.y=x+B.y=xsinx C.y=|x|﹣1 D.y=cosx【解答】解:A.函数f(x)的定义域为{x|x≠0},则f(﹣x)=﹣x﹣=﹣(x+)=﹣f(x),则函数是奇函数.B.f(﹣x)=﹣xsin(﹣x)=xsinx=f(x)为偶函数,C.f(﹣x)=|﹣x|﹣1=|x|﹣1=f(x)为偶函数,D.f(﹣x)=cos(﹣x)=cosx=f(x),为偶函数.故选:A.4.(5分)某学校高一、高二、高三年级的学生人数分别为900、900、1200人,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高三年级抽取的学生人数为()A.15 B.20 C.25 D.30【解答】解:三个年级的学生人数比例为3:3:4,按分层抽样方法,在高三年级应该抽取人数为人,故选:B.5.(5分)若a=3,b=log cos60°,c=log 2tan30°,则()A.a>b>c B.b>c>a C.c>b>a D.b>a>c【解答】解:∵a=3>30=1,0=<b=log cos60°<=1,c=log2tan30°<log21=0,∴a>b>c.故选:A.6.(5分)已知l,m,n是三条不同的直线,α,β是两个不同的平面,下列命题为真命题的是()A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l⊥α,α∥β,m⊂β,则l⊥m C.若l∥m,m⊂α,则l∥αD.若l⊥α,α⊥β,m⊂β,则l∥m【解答】解:若l⊥m,l⊥n,m⊂α,n⊂α,则当m与n相交时,l⊥α,故A错误;若l⊥α,α∥β,m⊂β,则l⊥β,所以l⊥m,故B正确;若l∥m,m⊂α,则l∥α或l⊂α,故C错误;若l⊥α,α⊥β,m⊂β,则l与m相交、平行或异面,故D错误.故选:B.7.(5分)将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是()A.(,0)B.(﹣,0) C.(﹣,0) D.(,0)【解答】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin[2(x﹣)]=sin(2x﹣);考察选项不难发现:当x=时,sin(2×﹣)=0;∴(,0)就是函数的一个对称中心坐标.故选:A.8.(5分)已知函数f(x)=若f(a)≥1,则实数a的取值范围为()A.[0,1]B.[1,+∞)C.[0,3]D.[0,+∞)【解答】解:若a≤1,则由f(a)≥1,得f(a)=2a≥1,解得0≤a≤1,若a>1,则由f(a)≥1,得f(a)=a2﹣4a+5≥1,即a2﹣4a+4=(a﹣2)2≥0,解得a>1,综上a≥0,故选:D.9.(5分)如图,在边长为2的菱形ABCD中,∠ABC=60°,对角线相交于点O,P是线段BD的一个三等分点,则•等于()A.1 B.2 C.3 D.4【解答】解:如图所示,在边长为2的菱形ABCD中,∠ABC=60°,对角线相交于点O,P是线段BD的一个三等分点,∴A(0,1),C(0,﹣1),P.则•=•(0,﹣2)=2.故选:B.10.(5分)已知函数f(x)=xsinx的图象是下列两个图象中的一个,请你选择后再根据图象作出下面的判断:若x1,x2∈(﹣,),且f(x1)>f(x2),则()A.x1>x2B.x1+x2>0 C.x1<x2D.x12>x22【解答】解:因为y=x和y=sinx都是奇函数,所以函数f(x)=xsinx为偶函数,图象关于y轴对称,所以图象为第二个.且当x∈(0,)时,函数f(x)=x•sinx是增函数,当x∈(﹣,0)时,函数f(x)=x•sinx是减函数.若x1,x2∈(0,),f(x1)>f(x2),则有x1>x2,故C不正确;若x1,x2∈(﹣,0),f(x1)>f(x2),此时x1<x2,所以此时A,B都不正确,排除A,B.因为x12,x22∈(0,),f(x1)>f(x2),所以x12>x22,成立.故选:D.二、填空题:本大题共6小题,每小题4分,共24分.在答题卷上的相应题目的答题区域内作答.11.(4分)命题:“∀x∈R,x2+2x+1≥0.”的否定是.【解答】解:因为全称命题的否定是特称命题,所以命题:“∀x∈R,x2+2x+1≥0.”的否定是:.故答案为:(写成∃x∈R,x2+2x+1<0也给分)12.(4分)等差数列{a n}中,a3+a8=6,则=30.【解答】解:由等差数列{a n},a3+a8=6,∴a1+a10=a2+a9=a3+a8=…,∴==a1+a2+…+a10=5(a3+a8)=5×6=30.故答案为30.13.(4分)已知角α的终边上一点的坐标为,则角α的最小正值为.【解答】解:由题意,点在第四象限∵==∴角α的最小正值为故答案为:14.(4分)已知a>0,b>0,且a+2b=1,则的最小值为.【解答】解:∵a>0,b>0,且a+2b=1,∴=(a+2b)=3+=,当且仅当a=b时取等号.∴的最小值为.故答案为:.15.(4分)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为2.【解答】解:由主视图知CD⊥平面ABC,设AC中点为E,则BE⊥AC,且AE=CE=1;由主视图知CD=2,由左视图知BE=1,在Rt△BCE中,BC=,在Rt△BCD中,BD=,在Rt△ACD中,AD=2.则三棱锥中最长棱的长为2.故答案为:2.16.(4分)记S k=1k+2k+3k+…+n k,当k=1,2,3,…时,观察下列等式:S1=n,S2=n,S3=,S4=n,S 5=An6+,…可以推测,A﹣B=.【解答】解:根据所给的已知等式得到:各等式右边各项的系数和为1;最高次项的系数为该项次数的倒数;所以A=,解得B=,所以A﹣B=,故答案为:三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{a n}是各项均为正数的等差数列,a1=1,且a2,a3+1,a6成等比数列.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和S n.【解答】解:(1)设等差数列{a n}的公差为d,∵a2,a3+1,a6成等比数列.∴,即(2d+2)2=(1+d)(1+5d),解得d=3或d=﹣1.由已知数列{a n}各项均为正数,∴d=3,故a n=1+3(n﹣1)=3n﹣2.(2)∵,∴.∴S n=1﹣=.18.(12分)已知向量=(cosx+sinx,2cosx),=(cosx﹣sinx,sinx),函数f(x)=•(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间上的最大值和最小值.【解答】解:(I)∵=,∴函数f(x)的最小正周期为.(II)令,∵,∴,即,∴sint在上是增函数,在上是减函数,∴当,即,时,.当或,即x=0或时,.19.(12分)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.【解答】(Ⅰ)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,∵CD⊥BD,AB∩BD=B,∴CD⊥平面ABD;(Ⅱ)解:∵AB⊥平面BCD,BD⊂平面BCD,∴AB⊥BD.∵AB=BD=1,=,∴S△ABD∵M为AD中点,=S△ABD=,∴S△ABM∵CD⊥平面ABD,=V C﹣ABM=S△ABM•CD=.∴V A﹣MBC20.(12分)如图,某海滨城市位于海岸A处,在城市A的南偏西20°方向有一个海面观测站B,现测得与B处相距31海里的C处,有一艘豪华游轮正沿北偏西40°方向,以40海里/小时的速度向城市A直线航行,30分钟后到达D处,此时测得B、D间的距离为21海里.(1)求sin∠BDC的值;(2)试问这艘游轮再向前航行多少分钟即可到达城市A?【解答】解:(1)由已知可得CD=40×=20,△BDC中,根据余弦定理求得cos∠BDC==﹣,∴sin∠BDC==.(2)由已知可得∠BAD=20°+40°=60°,∴sin∠ABD=sin(∠BDC﹣60°)=×﹣(﹣)×=.△ABD中,由正弦定理可得.又BD=21,∴AD==15,∴t==22.5分钟.即这艘游轮再向前航行22.5分钟即可到达城市A.21.(14分)如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF∥AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.(Ⅰ)求证:NC∥平面MFD;(Ⅱ)若EC=3,求证:ND⊥FC;(Ⅲ)求四面体NFEC体积的最大值.【解答】(Ⅰ)证明:因为四边形MNEF,EFDC都是矩形,所以MN∥EF∥CD,MN=EF=CD.所以四边形MNCD是平行四边形,…(2分)所以NC∥MD,…(3分)因为NC⊄平面MFD,所以NC∥平面MFD.…(4分)(Ⅱ)证明:连接ED,设ED∩FC=O.因为平面MNEF⊥平面ECDF,且NE⊥EF,所以NE⊥平面ECDF,…(5分)因为FC⊂平面ECDF,所以FC⊥NE.…(6分)又EC=CD,所以四边形ECDF为正方形,所以FC⊥ED.…(7分)所以FC⊥平面NED,…(8分)因为ND⊂平面NED,所以ND⊥FC.…(9分)(Ⅲ)解:设NE=x,则EC=4﹣x,其中0<x<4.由(Ⅰ)得NE⊥平面FEC,所以四面体NFEC的体积为.…(11分)所以.…(13分)当且仅当x=4﹣x,即x=2时,四面体NFEC的体积最大.…(14分)22.(14分)已知a∈R,函数.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)讨论f(x)的单调性;(3)是否存在a的值,使得方程f(x)=2有两个不等的实数根?若存在,求出a的取值范围;若不存在,说明理由.【解答】解:(1)当a=1时,∴k=f′(1)=0所以曲线y=f(x)在点(1,f(1))处的切线的斜率为0;(2)①当a ≤0时,f′(x )<0,f (x )在(0,+∞)上单调递减; ②当..∴(3)存在a ∈(0,e 3),使得方程f (x )=2有两个不等的实数根. 理由如下:由(1)可知当a ≤0时,f′(x )<0,f (x )在(0,+∞)上单调递减,方程f (x )=2不可能有两个不等的实数根; 由(2)得,,使得方程f (x )=2有两个不等的实数根,等价于函数f (x )的极小值,即,解得0<a <e 3所以a 的取值范围是(0,e 3)赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kx y1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2b f a-xxx第21页(共21页)则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-0xx<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-0x。

2014-2015年山东省枣庄市滕州三中高三上学期期末数学试卷(理科)和答案

2014-2015年山东省枣庄市滕州三中高三上学期期末数学试卷(理科)和答案

标方程为 ρsinθ﹣ρcosθ=﹣1.则曲线 C1 与曲线 C2 的交点个数为
一、几何证明选讲选做题 15. 如图, 已知 AB 是⊙O 的直径, TA 是⊙O 的切线, 过 A 作弦 AC∥BT, 若 AC=4,
AT=2
,则 AB=

第 3 页(共 26 页)
三、解答题:本大题共 6 小题,满分 80 分.解答须写出文字说明、证明过程和 演算步骤. 16. (12 分)已知函数 f(x)=sin(2x+φ) (0<φ<π)的图象经过点 (1)求 φ 的值; (2)在△ABC 中,∠A、∠B、∠C 所对的边分别为 a、b、c,若 a2+b2﹣c2=ab, 且 .求 sinB. .
(3)若 P(1,3) ,点 Q 为直线 y=2x 上的动点,则 d(P,Q)的最小值为 . 其中为真命题的是( ) C. (1 ) (3) D. (2) (3)
A. (1 ) (2) (3) B. (1) (2)
二、填空题:本大题共 5 小题,考生作答 6 小题,每小题 5 分,满分 25 分.本 大题分为必做题和选做题两部分. (一)必做题:第 9、10、11、12、13 题为 必做题,每道试题考生都必须作答. 9. (5 分)函数 y= 的定义域为 .
2014-2015 学年山东省枣庄市滕州三中高三(上)期末数学试卷 (理科)
一、选择题:本大题共 8 个小题;每小题 5 分,共 40 分.在每小题给出的四个 选项中,有且只有一项是符合题目要求的. 1. (5 分)已知集合 A={0,1,2,3},B={x|x=a+b,a,b∈A,a≠b},则( A.A∩B=A C.∁(A∪B)A={1} B.A∪B=B D.∁(A∪B)A={4,5} ) )

山东省滕州市实验中学高三数学上学期期末考试试题 文

山东省滕州市实验中学高三数学上学期期末考试试题 文

2014-2015学年度山东省滕州市实验中学高三第一学期期末考试数学(文)试题一、选择题(12×5=60分)1.若向量BA =(1,2),CA =(4,5),则BC =( )A .(5,7),B .(-3,-3),C .(3,3),D .(-5,-7)2.集合{}(,)1A x y y ax ==+,{}(,)3B x y y x ==+,且{}(2,5)A B =I ,则( )A .3a =B .2a =C .3a =-D .2a =-3.已知各项均为正数的等比数列}{n a 中,13213,,22a a a 成等差数列,则=++1081311a a a a A .27B .3C .1-或3D .1或274..函数)220)(sin(2)(πϕπωϕω<<->+=,x x f 的部分图象如图所示,则ϕω,的值分别是A .32π-, B .62π-, C .321π-, D .621π, 5.下列有关命题的说法正确的是( ) A .命题“若1,12==x x 则”的否命题为:“若1,12≠=x x 则”.B .“1-=x ”是“0652=--x x ”的必要不充分条件.C .命题“01,2<-+∈∃x x R x 使得”的否定是:“01,2>-+∈∀x x R x 均有”.D .命题“若y x y x sin sin ,==则”的逆否命题为真命题.6.已知x>0,y>0,且112=+yx ,若x +2y>m 2+2m 恒成立,则实数m 的取值范围是( ).A .(-∞,-2]∪[4,+∞)B .(-∞,-4]∪[2,+∞)C.(-2,4)D.(-4,2)7.已知实数,x y满足10240yy xy x≥⎧⎪-+≤⎨⎪-+≥⎩,若z y ax=-取得最大值时的唯一最优解是(3,2),则实数a的取值范围为()A.a<1 B.a<2 C.a>1 D.0<a<18.已知函数f(x)=|ln x|,若1c >a>b>1,则f(a),f(b),f(c)比较大小关系正确的是().A.f(c)>f(b)>f(a)B.f(b)>f(c)>f(a)C.f(c)>f(a)>f(b)D.f(b)>f(a)>f(c)9.已知A,B,C,D是函数sin()(0,0)2y xπωω=+Φ><Φ<一个周期内的图象上的四个点,如图所示,(,0),6Aπ-B为y轴上的点,C为图像上的最低点,E为该函数图像的一个对称中心,B与D关于点E对称,CDuuu r在x轴上的投影为12π,则,ωΦ的值为()A.2,3πω=Φ=B.2,6πω=Φ=C.1,23πω=Φ=D.1,26πω=Φ=10.定义式子运算为12142334a aa a a aa a=-将函数sin3()cos1xf xx=的图像向左平移(0)n n>个单位,所得图像对应的函数为偶函数,则n的最小值为()A.6πB.3πC.56πD.23π11.当(1,2)x∈时,不等式xxxalog212+<+恒成立,则实数a的取值范围为()A.)1,0(B.(]1,2C.)2,1(D.[),2+∞12.已知定义在R 上的函数)(x f 满足(1)1f =,且对于任意的x ,21)(<'x f 恒成立,则不等式22lg 1(lg )22x f x <+的解集为( ) A .1(0,)10B .(10,)+∞C .1(,10)10D .1(0,)(10,)10+∞U 二、填空题(5×4=20分)13.已知向量(1,2)a =r ,向量(,2)b x =-r,且()a a b ⊥-r r r ,则实数x 等于________14.在正项等比数列{}n a 中,6lg lg lg 963=++a a a ,则111a a 的值是_______ 15.如图,AB 是半圆O 的直径,C 、D 是弧AB 的三等分点,M ,N 是线段AB 的三等分点.若OA =6,则MD →·NC →的值是________.16.对任意实数a ,b 定义运算“⊗”:,1,, 1.b a b a b a a b -≥⎧⊗=⎨-<⎩设2()(1)(4)f x x x =-⊗+,若函数()y f x k =+恰有三个零点,则实数k 的取值范围是______________. 三、解答题17.(12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC •=u u u r u u u r ,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.18.(12分)设命题上是减函数在区间),1(2)(:+∞-=mx x f P ;命题:q 21,x x 是方程022=--ax x 的两个实根,且不等式352-+m m ≥||21x x -对任意的实数]1,1[-∈a 恒成立,若⌝p ∧q 为真,试求实数m 的取值范围.19.(12分)已知等差数列{}n a 的前n 项和为n S ,且25a =,999S =.(1)求n a 及n S ;(2)若数列241n a ⎧⎫⎨⎬-⎩⎭的前n 项和n T ,试证明不等式112n T ≤<成立. 20.(12分)已知函数32()f x ax bx cx d =+++为奇函数,且在1x =-处取得极大值2. (1)求()f x 的解析式;(2)若2()(2)(1)xf x m x x e ++≤-对于任意的[0,)x ∈+∞恒成立,求实数m 的取值范围.21.(12分)已知函数()ln f x x x =,2()3g x x ax =-+-. (1)求函数()f x 在[,2](0)t t t +>上的最小值;(2)若存在01[,](x e e e∈是自然对数的底数, 2.71828)e =L ,使不等式002()()f x g x ≥成立,求实数a 的取值范围.22.(10分)选修4-5:不等式选讲 已知()|2|f x x =-.(1)解不等式()30xf x +>;(2)对于任意的(3,3)x ∈-,不等式()f x m x <-恒成立,求m 的取值范围.2014-2015学年度山东省滕州市实验中学高三第一学期期末考试 数学(文)试题参考答案 1—12:ABAAD DACAC BD 13.914.1000015.2616.[)1,2-17.(1)由12cos 2,cos ,63BA BC c a B B ac ⋅=⋅===u u u r u u u r 得又所以由余弦定理,得B ac b c a cos 2222+=+又3=b ,所以1322922=⨯+=+c a解⎩⎨⎧=+=13622c a ac ,得3,2==c a 或2,3==c a因c a >,所以2,3==c a(2)在ABC ∆,322)31(1cos 1sin 22=-=-=B B由正弦定理,得92432232sin sin =⋅-=B b c C因c b a >=,所以C 为锐角,因此97)924(1sin 1cos 22=-=-=C C于是27239243229731sin sin cos cos )cos(=⋅+⋅=+=-C B C B C B 18.(本题满分12分) 解:对命题:0,P x m -≠又(1,)x ∈+∞故1m ≤对命题12:||q x x -==[1,1]a ∈-3≤∴253316m m m m +-≥⇒≥≤-或若p q ⌝∧为真,则p 假q 真 ∴1116m m m m >⎧⇒>⎨≥≤-⎩或19.解:(1)设等差数列{}n a 的首项为1a ,公差为d . ∵25a =,999S =,∴119(28)5,992a d a d ++== …………2分解得2,31==d a ………………4分∴12+=n a n ,n n S n 22+=,n N +∈. ………………6分(2)设241n n b a =-,n N +∈; ∵12+=n a n , ∴ )1(412+=-n n a n∴41114(1)(1)1n b n n n n n n ===-+++ ………………9分123n nT b b b b ∴=+++⋅⋅⋅+=11111(1)()()2231n n -+-++-+L =1111n -<+…………11分又111021(2)(1)n n n n T T n n n n ++-=-=>++++Q ,1111=2n n n T T T T +-∴>>>>L综上所述:不等式112n T ≤<成立. …………12分 20.(1)32()f x ax bx cx d =+++Q 为奇函数 0b d ∴== 2'()3f x ax c ∴=+()f x Q 在1x =-处取得极大值2 (1)301(1)23f a c a f a c c '-=+==⎧⎧∴⇒⎨⎨-=--==-⎩⎩从而()f x 解析式为3()3f x x x =- ……………………………………5分 (2)()()22(1)x f x m x x e ++≤-Q323(2)(1)x x x m x x e ∴-++≤-从而()()23213x m x x e x x +≤--+当0x =时,m R ∈当0x >时,()22311x x m xe x x m x e x ∴+≤--+⇒≤--+设()1x h x e x =-- '()10x h x e =->()h x ∴在()0,+∞递增,()()00h x h >= ()()111x g x x e x ∴=--+>从而1m ≤ ∴实数m 的取值范围为(,1]-∞……………………12分21.(1)'()ln 1f x x =+ …… 1分 ()f x ∴在1(0,)e 为减函数,在1(,)e +∞为增函数①当1t e <时,()f x 在1[,)t e 为减函数,在1[,2]t e+为增函数,min 11()()f x f e e ∴==- …… 4分②当1t e≥时,()f x 在[,2]t t +为增函数,min ()()ln f x f t t t ∴== … 6分(2)由题意可知,22ln 30x x x ax +-+≥在1[,]e e上有解,即22ln 332ln x x x a x x x x ++≤=++在1[,]e e上有解令3()2ln h x x x x=++,即max ()a h x ≤ …… 9分22222323(3)(1)'()1x x x x h x x x x x+-+-=+-==Q ()h x ∴在(0,1)为减函数,在(1,)+∞为增函数,则在1(,1)e 为减函数,在(1,)e 为增函数113()23,()2h e h e e e e e∴=-++=++max 3()()2a h x h e e e∴≤==++ …… 12分22.解:(1)原不等式等价于032>+-x x⎩⎨⎧>+-⋅≤-⇔03)2(02x x x 或⎩⎨⎧>+->-03)2(02x x x 解得21≤<-x 或2>x∴不等式解为),1(+∞- (5分) (2)m x x f x m x f <+⇔-<)()([]m x x <+-2 )33(<<-x设x x x g +-=2)(则⎪⎩⎪⎨⎧<<-≤<≤<--=32222020322)(x x x x xx g在(]0,3-上)(x g 的单调递减,且8)(2<≤x g 在)3,2(上)(x g 单调递增且4)(2<≤x g ∴在)3,3(-上 8)(2<≤x g故8≥m 时 不等式x m x f -<)(在)3,3(-上恒成立 (10分)。

山东省滕州市第五中学2015届高三上学期期中考试数学(文)试题 Word版含答案

山东省滕州市第五中学2015届高三上学期期中考试数学(文)试题 Word版含答案
数学(文)试题参考答案
1~10DBBB A D B A B D
11. 12. 13. 14. 15.②④
16.(本小题满分12分)
解: 为真: ,……………………3分
为真: ……………………6分
因为 或 为真, 且 为假, p,q一真一假
当p真q假时, ……………………8分
当p假q真时, ……………………11分
A. B.
C. D.
7.已知 ,则向量 与 的夹角为
A. B. C. D.
8.若 ,且 ,则
A. B. C. D.
9.已知函数 的导函数图象如下图所示,若 为锐角三角形,则一定成立的是
A. B.
C. D.
10.对任意实数a,b定义运算“ ”: 设 ,若函数 恰有三个零点,则实数k的取值范围是
A. B. C. D.
19.(本小题满分12分)
如图,某广场要划定一矩形区域ABCD,并在该区域内开辟出三块形状大小相同的小矩形绿化区,这三块绿化区四周和绿化区之间均设有1米宽的走道,已知三块绿化区的总面积为200平方米,求该矩形区域ABCD占地面积的最小值。
20.(本小题满分13分)
已知数列 , 满足条件: , .
(I)求证数列 是等比数列,并求数列 的通项公式;
解 (I)因为f(x)=sin+sinx
=cosx+sinx=2
=2sin,………………………4分
所以f(x)的最小正周期为2π.………………………5分
(II)∵将f(x)的图象向右平移个单位,得到函数g(x)的图象,
∴g(x)=f=2sin[+]
=2sin.………………………7分
∵x∈[0,π],∴x+∈,………………………8分

山东省滕州市实验中学2015届高三上学期12月质检数学(理)试题 Word版含答案

山东省滕州市实验中学2015届高三上学期12月质检数学(理)试题 Word版含答案

山东省滕州市实验中学2015届高三上学期12月质检考数学(理)试题第I 卷(选择题,共50分)一、选择题:本大题10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{11}A x x =-<<,2{log 0}B x x =≤,则AB =( )A .{}11<<-x xB .{}10<<x xC .{}11≤<-x xD .{}1≤x x 2.下列函数中,以为π最小正周期,且在 [0, 4π]上为减函数的是 A .f (x )=sin2xcos2x B .f (x )=2 sin 2x ―1C .f (x )= cos 4x ―sin 4xD .f (x )=tan (4―x2) 33.设n S 是等3. 差数列{}n a 的前n 项和,若8310S S =+,则11S =A .12B .18C .22D .444.命题“p q ∨为真”是命题“p q ∧为真”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设曲线()ln 1axy e x =-+在点()0,1处的切线方程为210x y -+=,则a =A .0B .1C .2D .36.设0,1a b >>,若3121a b a b +=+-,则的最小值为A .B .8C .D .4+7.函数()()sin ln 2xf x x =+的图象可能是A .B .C .D .8.将函数()()sin 222f x x ππθθ⎛⎫=+-<< ⎪⎝⎭的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若()(),f x g x的图象都经过点0,2P ⎛ ⎝⎭,则ϕ的值可以是A .53πB .56π C .2π D .6π 9.双曲线221x y m-=的离心率2e =,则以双曲线的两条渐近线与抛物线2y mx =的交点为顶点的三角形的面积为AB.C.D.10.已知e 是自然对数的底数,函数()2xf x e x =+-的零点为a ,函数()ln 2g x x x =+-的零点为b ,则下列不等式成立的是A .()()()1f f a f b <<B .()()()1f a f b f <<C .()()()1f a f f b <<D .()()()1f b f f a <<第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在横线上. 11.函数()()2log 123f x x x =-+--的定义域为__________.12.若变量,x y 满足约束条件4,2y xx y z x y y k ≤⎧⎪+≤=+⎨⎪≥⎩且的最小值为6-,则k =_________.13.已知正方体1111ABCD A BC D -中,点E 是棱11A B 的中点,则直线AE 与平面11BDD B 所成角的正弦值是_________.14.已知圆O 过椭圆22162x y +=的两焦点且关于直线10x y -+=对称,则圆O 的方程为_______.15.如果对定义在R 上的函数()f x ,对任意两个不相等的实数12,x x ,都有()()()()11221221x f x x f x x f x x f x⋅+⋅>⋅+⋅,则称函数()f x 为“H 函数”.给出下列函数:①2y x =;②1x y e =+;③2sin y x x =-;④()ln ,01,0x x f x x ⎧≠⎪=⎨=⎪⎩.以上函数是“H 函数”的所有序号为__________(把所有正确命题的序号都填上). 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知△ABC 中的三个内角A ,B ,C 所对的边分别为,,a b c ,且满足()()()sin sin sin ,cos 3.b a B A b c C C a -+=-== (I )求sin B ; (II )求△ABC 的面积. 17.(本小题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB//CD,∠ABC=60°,AB=2CB=2.在梯形ACEF 中,EF//AC ,且2AC EF EC =⊥,平面ABCD .(I )求证:BC AF ⊥;(II )若二面角D AF C --为45°,求CE 的长. 18.(本小题满分12分)设等差数列{}n a 的前n 项和为248,40n S a S ==,且.数列{}n b 的前n 项和为n T ,且*230n n T b n N -+=∈,.(I )求数列{}{},n n a b 的通项公式;(II )设n n n a n c b n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前n 项和n P .19.(本小题满分12分)某市近郊有一块大约500500m m ⨯的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S 平方米.(I )分别用x 表示y 和S 的函数关系式,并给出定义域; (II )怎样设计能使S 取得最大值,并求出最大值. 20.(本小题满分13分)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,右焦点2F 到直线1:340l x y +=的距离为35. (I )求椭圆C 的方程;(II )过椭圆右焦点2F 斜率为()0k k ≠的直线l 与椭圆C 相交于E 、F 两点,A 为椭圆的右顶点,直线AE ,AF 分别交直线3x =于点M ,N ,线段MN 的中点为P ,记直线2PF 的斜率为k ',求证:k k '⋅为定值. 21.(本小题满分12分)设函数()()12ln 2f x a x ax x=-++. (I )当0a =时,求()f x 的极值;(II )设()()[)11g x f x x=-+∞,在,上单调递增,求a 的取值范围; (III )当0a ≠时,求()f x 的单调区间.参考答案一、选择题(每小题5分,共50分) 1-10CCCBD DABCC 二、填空题(每小题5分,共25分) 11.(,0)(3,)-∞+∞ 12.2- 13.14.22(1)5x y +-= 15.②③三、解答题:16.(本小题满分12分)解:(Ⅰ)由正弦定理可得()()()b a b a b c c -+=-, ……………2分即222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==,……………4分 又0A π<<, 所以3A π=;因为cos C =,所以sin C =. …………………6分 所以sin sin()sin cos cos sin B A C A C A C =+=+1323236=+⨯=. ……………………8分 (Ⅱ)在ABC ∆中,由正弦定理sin sin a cA C=,=c = ……………………10分 所以ABC ∆的面积11sin 322S ac B ==⨯⨯=.………12分 17.(本小题满分12分)(Ⅰ)证明:在ABC ∆中,2222cos603AC AB BC AB BC =+-⋅=,所以222AB AC BC =+,由勾股定理知90ACB ∠=所以 BC AC ⊥. ……2分又因为 EC ⊥平面ABCD ,BC ⊂平面ABCD ,所以 BC EC ⊥.………4分 又因为ACEC C = 所以 BC ⊥平面ACEF ,又AF ⊂平面ACEF所以 BC AF ⊥. ………………………6分 (Ⅱ)因为EC ⊥平面ABCD ,又由(Ⅰ)知BC AC ⊥,以C 为原点,建立如图所示的空间直角坐标系 C xyz -.设=CE h ,则()0,0,0C,)A,)F h ,1(,0)22D -,1(,0)2AD =--,()AF h =-.……8分 设平面DAF 的法向量为1(,,)x y z =n ,则110,0.AD AF ⎧⋅=⎪⎨⋅=⎪⎩n n所以10,220.2x y x hz ⎧--=⎪⎪⎨⎪-+=⎪⎩,令x =133)2h=-,n . …………………9分又平面AFC 的法向量2(0,1,0)=n ……………………………10分所以1212cos 45⋅==⋅nn n n , 解得h = .……………………11分所以CE ……………………………………12分 18.( 12分)解:(Ⅰ)由题意,1184640a d a d +=⎧⎨+=⎩,得14,44n a a n d =⎧∴=⎨=⎩. …3分230n n T b -+=,113n b ∴==当时,,112230n n n b --≥-+=当时,T ,两式相减,得12,(2)n n b b n -=≥数列{}n b 为等比数列,132n n b -∴=⋅. …………6分 (Ⅱ)14 32n n nn c n -⎧=⎨⋅⎩为奇数为偶数. 当n 为偶数时,13124()()n n n P a a a b b b -=+++++++212(444)6(14)222214nn n n n ++-⋅-=+=+--. ……………9分当n 为奇数时,132241()()n n n n P a a a a b b b --=++++++++1221(44)6(14)2221214n n n n n n -++⋅-=+=++-- . …………11分12222,221n n nn n P n n n +⎧+-∴=⎨++-⎩为偶数,为奇数. ………12分19.(12分)解:(Ⅰ)由已知3000xy =,3000y x∴=,其定义域是(6,500). (4)(6)(210),S x a x a x a =-+-=-又26y a =+,3000661500322y x a x--∴===-, 150015000(210)(3)3030(6)S x x x x=--=-+,其定义域是(6,500).……………6分 (Ⅱ)150003030(6)3030303023002430S x x =-+=-=-⨯=, 当且仅当150006x x=,即50(6,500)x =∈时,上述不等式等号成立, 此时,50x =,60y =,max 2430S =.答:设计50x m =,60y m = 时,运动场地面积最大,最大值为2430平方米.……12分20.(本小题满分13分)解:(Ⅰ)由题意得21==a c e35=,………2分 所以1c =,2=a ,所求椭圆方程为13422=+y x . …………………… 4分(Ⅱ)设过点()21,0F 的直线l 方程为:)1(-=x k y ,设点),(11y x E ,点),(22y x F , …………………………………5分将直线l 方程)1(-=x k y 代入椭圆134:22=+y x C , 整理得:01248)34(2222=-+-+k x k x k ………………………………… 6分 因为点P 在椭圆内,所以直线l 和椭圆都相交,0∆>恒成立,且3482221+=+k k x x 341242221+-=⋅k k x x …………………………7分 直线AE 的方程为:)2(211--=x x y y ,直线AF 的方程为:)2(222--=x x y y 令3=x ,得点11(3,)2y M x -,22(3,)2y N x -,所以点P 的坐标12121(3,())222yy x x +--, ……………………9分直线2PF 的斜率为)22(41130)22(21'22112211-+-=---+-=x y x yx y x y k4)(24)(32414)(2)(241212121212121211212++-++-⋅=++-+-+=x x x x k x x k x kx x x x x y y y x x y ,……… 11分将34124,34822212221+-=+=+k k x x k k x x 代入上式得:222222224128234134343'412844244343k k k k k k k k k k kk k -⋅-⋅+++=⋅=---+++, 所以'k k ⋅为定值43-. (13)21.(本小题满分14分)解:(Ⅰ)函数)(x f 的定义域为).,0(+∞ ……………1分 当0=a 时,x x x f 1ln 2)(+=,∴.1212)(22x x x x x f -=-=' ………………2分 由0)(='x f 得.21=x )(),(x f x f '随x 变化如下表:故,2ln 22)2()(-==f x f 极小值,没有极大值. …………………………4分 (Ⅱ)由题意,ax x a x g 2ln )2()(+-=,在),1[+∞上单调递增,02222)(≥+-=+-='xa ax a x a x g 在),1[+∞上恒成立, 设022)(≥-+=a ax x h 在),1[+∞上恒成立, ………………………………5分 当0=a 时,02≥恒成立,符合题意. ………………………………………6分 当0>a 时,)(x h 在),1[+∞上单调递增,)(x h 的最小值为022)1(≥-+=a a h , 得2-≥a ,所以0>a , ………………………………………8分 当0<a 时,)(x h 在),1[+∞上单调递减,不合题意,所以0≥a (也可以用分离变量的方法)……………………………10分(Ⅲ)由题意,221)2(2)(x x a ax x f --+=',令0)(='x f 得a x 11-=,.212=x 10分 若0>a ,由0)(≤'x f 得]21,0(∈x ;由0)(≥'x f 得).,21[+∞∈x …………11分 若0<a ,①当2-<a 时,211<-a ,]1,0(a x -∈或),21[+∞∈x 时,0)(≤'x f ;]21,1[a x -∈时,0)(≥'x f ;②当2-=a 时,0)(≤'x f ;③当02<<-a 时,]21,0(,211∈>-x a 或),1[+∞-∈a x ,0)(≤'x f ;]1,21[ax -∈,.0)(≥'x f …………………………13分综上,当0>a 时,函数的单调递减区间为]21,0(,单调递增区间为),21[+∞;当2-<a 时,函数的单调递减区间为),21[],1,0(+∞-a ,单调递增区间为]21,1[a -;当2-=a 时,函数的单调递减区间为),0(+∞;当02<<-a 时,函数的单调递减区间为),,1[],21,0(+∞-a 单调递增区间为]1,21[a-. …………………………14分。

山东省滕州市2015届高三上学期期中考试数学理试卷 word版

山东省滕州市2015届高三上学期期中考试数学理试卷 word版

山东省滕州市2015届高三上学期期中考试数学理试卷第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知全集为R ,集合21{|()1},{|2}2A xB x x =≤=≥,则()R AC B =( )A .[]0,2B .[)0,2C .()1,2D .[)1,2 2、设向量(1,1),(3,1)a x b x =-=+,则//a b 是2x =的( ) A .充分不必要条件 B .充分必要条件 C .必要不充分条件 D .既不充分也不必要条件3、命题22:,0p x R x ax a ∀∈++≥;命题:,sin cos 2q x R x x ∈+=,则下列命题中为真命题的是( )A .p q ∧B .p q ∨C .()p q ⌝∨D .()()p q ⌝∧⌝ 4、一直1sin 23α=,则cos()4πα-=( ) A .13 B .16 C .23 D .895、函数sin ,[,]y x x x ππ=+∈-的大致图象是( )6、已知a 是函数()122log xf x x =-的零点,若00x a <<,则0()f x 的值满足( )A .0()0f x =B .0()0f x >C .0()0f x <D .正负不定 7、等差数列{}n a 的前n 项和为n S ,且1510S π=,则tan n a 的值是( )A ...8、由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln 3+ B .2ln 3- C .4ln 3+ D .4ln 3-9、已知()f x 为R 上的可导函数,且对任意的x R ∈,均有()()f x f x '>,则有( ) A .20142015(2014)(0),(2015)(0)e f f f e f -<> B .20142015(2014)(0),(2015)(0)e f f f e f -<< C .20142015(2014)(0),(2015)(0)e f f f e f ->> D .20142015(2014)(0),(2015)(0)e f f f e f -><10、已知[)x 表示大于x 的最小整数,例如[)[)34, 1.31=-=-,定义()[)f x x x =-,则下列命题中正确的是( ) ①[)[)x y x y +≤+;②函数()[)f x x x =-的值域是(]0,1;③()f x 为R 上的奇函数,且()f x 为周期函数; ④若()1,2015x ∈,则方程[)12x x -=有2014个根。

山东省滕州市第五中学2015届高三上学期期中考试数学(理)试题 Word版含答案

山东省滕州市第五中学2015届高三上学期期中考试数学(理)试题 Word版含答案

2014-2015学年度山东省滕州市第五中学第一学期高三期中考试数学(理)试题第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一个符合题目要求的选项.)1.已知集合{}{}1,2,3,4,5,6,1,2,4U M ==,则U M =ðA .UB .{}1,3,5C .{}2,4,6D .{}3,5,62.定义运算a b ad bc c d =-,若函数()123x f x x x -=-+在(,)m -∞上单调递减,则实数m 的取值范围是A .(2,)-+∞B .[2,)-+∞C .(,2)-∞-D .(,2]-∞-3.已知向量m 、n 满足||2=m ,||3=n ,||-=m n ||+=m n ( )A B .3C D4.下列函数中,在其定义域内既是奇函数又是增函数的是( )A .xe y = B .21x y = C .3y x = D .sin y x = 5.设等比数列{}n a 中,前n 项和为n S ,已知7863==S S ,,则=++987a a a ( ) A .81 B .81- C .857D .855 6.若不等式2230x x a -+-<成立的一个充分条件是40<<x ,则实数a 的取值范围应为( )A .11≥aB .11>aC .9>aD .9≥a7.将函数x y 2sin =的图像向右平移4π个单位,再向上平移1个单位,所得函数图像对应的解析式为( )A .1)42sin(+-=πx yB .x y 2cos 2=C .x y 2sin 2=D .x y 2cos -=8.设函数()sin cos f x x x x =+的图像在点(,())t f t 处切线的斜率为k ,则函数()t g k =的部分图像为( )9.已知变量y x ,满足约束条件2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,,,若目标函数ax y z +=仅在点()3,5处取得最小值, 则实数a 的取值范围为( ) A .()+∞,1B .⎪⎭⎫ ⎝⎛+∞,73 C .()+∞,0D .()1,-∞-10.已知函数()x f 对定义域R 内的任意x 都有()()x f x f -=4,且当2≠x 时其导函数()x f '满足()(),2x f x f x '>'若42<<a ,则( ) A .2(2)(3)(log )a f f f a << B .2(3)(log )(2)a f f a f <<C .2(log )(3)(2)a f a f f <<D .2(log )(2)(3)a f a f f <<第Ⅱ卷 (非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分.不要求写出解题步骤,只要求将题目的答案写在答题卷的相应位置上.)11.由曲线23y x =-和直线2y x =所围成的封闭图形的面积为 .12.若函数1,0()1(),03x x xf x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 则不等式1|()|3f x ≥的解集为____________13.若等边ABC ∆的边长为1,平面内一点M 满足1132CM CB CA =+,则MA MB ⋅= . 14.已知nn a )31(=,把数列{}n a 的各项排列成如下的三角形状,记),n m A (表示第m 行的第n 个数,则)(12,10A = .15.关于函数()cos2cos f x x x x =-,下列命题: ①存在1x ,2x ,当12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增;③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称;④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合; 其中正确的命题序号为 .三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分12分)在△ABC 中,272cos 2sin42=-+C B A,且7,5==+c b a , (Ⅰ)求角C 的大小; (Ⅱ)求△ABC 的面积. 17.(本小题满分12分)某城市旅游资源丰富,经调查,在过去的一个月内(以30天计),第t 天的旅游人数()t f (万人)近似地满足()tt f 14+=,而人均消费()t g (元)近似地满足()25125--=t t g . (Ⅰ)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N +)的函数关系式; (Ⅱ)求该城市旅游日收益的最小值. 18.(本小题满分12分)设数列{}n a 为等差数列,且9,553==a a ;数列{}n b 的前n 项和为n S ,且2=+n n b S 。

山东省枣庄市滕州实验中学高三数学上学期12月月考试卷理(含解析)

山东省枣庄市滕州实验中学高三数学上学期12月月考试卷理(含解析)

山东省枣庄市滕州实验中学 2015届高三上学期12月月考数学试卷(理科)一、选择题:本大题10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|﹣1<x<1},B={x|log2x≤0},则A∪B=( )A.{x|﹣1<x<1} B.{x|0<x<1} C.{x|﹣1<x≤1}D.{x|﹣∞<x≤1}考点:并集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的并集即可.解答:解:由B中的不等式变形得:log2x≤0=log21,即0<x≤1,∴B={x|0<x≤1},∵A={x|﹣1<x<1},∴A∪B={x|﹣1<x≤1}.故选:C.点评:此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.下列函数中,以为π最小正周期,且在上为减函数的是( )A.f(x)=sin2xcos2x B.f(x)=2sin2x﹣1C.f(x)=cos4x﹣sin4x D.f(x)=tan (﹣)考点:函数y=Asin(ωx+φ)的图象变换.专题:常规题型;三角函数的图像与性质.分析:先把函数解析式化成标准形式,然后求周期,研究函数在上的单调性,选出答案.解答:解:选项A,f(x)=sin2xcos2x=sin4x,所以周期为;选项B,f(x)=2sin2x﹣1=﹣cos2x,在上为增函数;选项C,f(x)=cos4x﹣sin4x=cos2x,周期为π,在上为减函数,满足题意;选项D,函数的周期为2π.故选C.点评:本题考查了三角函数的周期性及单调性,解题关建是选择恰当的公式把函数解析式化成标准形式.3.若S n是等差数列{a n}的前n项和,且S6=S5+2,则S11的值为( )A.12 B.18 C.22 D.44考点:等差数列的前n项和.分析:由等差数列前n项和公式知,条件须转化为项的形式.解答:解:∵s6=s5+2∴a6=2而故选C点评:本题主要考查等差数列的性质和前n项和公式.4.已知命题p、q,则“命题p或q为真”是“命题p且q为真”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:常规题型.分析:由判断充要条件的方法,我们可知:若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;而根据已知条件可得:“p∨q为真命题”⇒“p∧q为真命题”为假命题,“p∧q为真命题”⇒“p∨q为真命题”是真命题.故得“p∨q为真命题”是“p∧q为真命题”的必要不充分条件.解答:解:由于“p∨q为真命题”,则p、q中至少有一个为真命题,又由“p∧q为真命题”,则p、q都为真命题,所以“p∨q为真命题”⇒“p∧q为真命题”为假命题,“p∧q为真命题”⇒“p∨q为真命题”是真命题.再根据充要条件的判断方法,可知“p∨q为真命题”是“p∧q为真命题”的必要不充分条件.故答案为B.点评:本题考查充分、必要与充要条件的判断,属于基础题,要掌握判断充要条件的方法.5.设曲线y=e ax﹣ln(x+1)在点(0,1)处的切线方程为2x﹣y+1=0,则a=( )A.0 B.1 C.2 D.3考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:根据导数的几何意义求出函数f(x)在x=0处的导数,从而求出切线的斜率,再根据曲线y=e ax﹣ln(x+1)在点(0,1)处的切线方程为2x﹣y+1=0,建立等式关系,解之即可.解答:解:∵y=e ax﹣ln(x+1),∴y′=ae ax﹣∴x=0时,切线的斜率为a﹣1∵曲线y=e ax﹣ln(x+1)在点(0,1)处的切线方程为2x﹣y+1=0,∴a﹣1=2,即a=3.故选:D.点评:本题主要考查了利用导数研究曲线上某点切线方程,考查学生的计算能力,属于基础题.6.设a>0,b>1,若a+b=2,则的最小值为( )A.B.8 C.D.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式的性质即可得出.解答:解:∵设a>0,b>1,a+b=2,∴=(a+b﹣1)=4+=4+2,当且仅当a=(b ﹣1)=时取等号,∴的最小值为4+2.故选:D.点评:本题考查了基本不等式的性质,属于基础题.7.函数的图象可能是( )A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:由函数的解析式,可求出函数的定义域,可排除B,D答案;分析x∈(﹣2,﹣1)时,函数值的符号,进而可以确定函数图象的位置后可可排除C答案.解答:解:若使函数的解析式有意义则,即即函数的定义域为(﹣2,﹣1)∪(﹣1,+∞)可排除B,D答案当x∈(﹣2,﹣1)时,sinx<0,ln(x+2)<0则>0可排除C答案故选A点评:本题考查的知识点是函数的图象,熟练掌握函数定义域的求法及函数值符号的判定是解答的关键.8.将函数f(x)=sin(2x+θ)()的图象向右平移φ(φ>1)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(),则φ的值可以是( )A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换;y=Asin(ωx+φ)中参数的物理意义.专题:计算题;三角函数的图像与性质.分析:求出平移后的函数解析式,利用两个函数都经过P(0,),解出θ,然后求出φ即可.解答:解:函数向右平移φ个单位,得到g (x)=sin(2x+θ﹣2φ),因为两个函数都经过P(0,),所以,,所以g(x)=sin(2x+﹣2φ),sin(﹣2φ)=,φ>1,所以﹣2φ=2kπ+,φ=﹣kπ,与选项不符舍去,﹣2φ=2kπ+,k∈Z,当k=﹣1时,φ=.故选B.点评:本题考查函数图象的平移,函数值的求法,考查分析问题解决问题的能力与计算能力.9.双曲线的离心率e=2,则以双曲线的两条渐近线与抛物线y2=mx的交点为顶点的三角形的面积为( )A.B.C.D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据双曲线的离心率e=2,求出m的值,可得双曲线的两条渐近线方程,抛物线方程,联立求出交点坐标,即可求出三角形的面积.解答:解:∵双曲线的离心率e=2,∴,∴m=3,∴双曲线的两条渐近线方程为y=±x,抛物线方程为y2=3x,联立可得交点坐标为(9,±3),∴所求三角形的面积为=27.故选:C.点评:本题考查双曲线的性质,考查双曲线与抛物线的位置关系,考查学生的计算能力,属于基础题.10.已知e是自然对数的底数,函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,则下列不等式中成立的是( )A.f(a)<f(1)<f(b)B.f(a)<f(b)<f(1)C.f(1)<f(a)<f(b)D.f(b)<f(1)<f(a)考点:对数函数图象与性质的综合应用.专题:函数的性质及应用.分析:根据函数的零点的判定定理,可得0<a<1<b<2,再由函数f(x)=e x+x﹣2在(0,+∞)上是增函数,可得结论.解答:解:∵函数f(x)=e x+x﹣2的零点为a,f(0)=﹣1<0,f(1)=e﹣1>0,∴0<a <1.∵函数g(x)=lnx+x﹣2的零点为b,g(1)=﹣1<0,g(2)=ln2>0,∴1<b<2.综上可得,0<a<1<b<2.再由函数f(x)=e x+x﹣2在(0,+∞)上是增函数,可得 f(a)<f(1)<f(b),故选A.点评:本题主要考查函数的零点的判定定理,函数的单调性的应用,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在横线上.11.函数f(x)=log2(|x﹣1|+|x﹣2|﹣3)的定义域为(﹣∞,0)∪(3,+∞).考点:绝对值不等式的解法.专题:计算题;函数的性质及应用.分析:令g(x)=|x﹣1|+|x﹣2|﹣3,g(x)>0⇒|x﹣1|+|x﹣2|>3,通过对x的取值范围的分类讨论,去掉绝对值符号再解即可.解答:解:令g(x)=|x﹣1|+|x﹣2|﹣3,则g(x)>0,∴|x﹣1|+|x﹣2|>3;当x<1时,1﹣x+2﹣x>3,解得:x<0,又x<1,∴x<0;当1≤x≤2时,有x﹣1+2﹣x>3,即1>3,∴x∈∅;当x>2时,有x﹣1+x﹣2>3,解得:x>3,又x>2,∴x>3;综上所述,函数f(x)=log2(|x﹣1|+|x﹣2|﹣3)的定义域为(﹣∞,0)∪(3,+∞).故答案为:(﹣∞,0)∪(3,+∞).点评:本题考查绝对值不等式的解法,考查对数函数的性质,考查分类讨论思想与运算求解能力,属于中档题.12.若变量x,y满足约束条件,且z=2x+y的最小值为﹣6,则k=﹣2.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定k的值即可.解答:解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最小,此时z最小.目标函数为2x+y=﹣6,由,解得,即A(﹣2,﹣2),∵点A也在直线y=k上,∴k=﹣2,故答案为:﹣2.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.13.已知在正方体ABCD﹣A1B1C1D1中,点E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正切值是.考点:直线与平面所成的角.专题:空间角.分析:首先利用转化法,求出线面所夹的角,进一步利用解三角形知识求出结果.解答:解:已知在正方体ABCD﹣A1B1C1D1中,点E是棱A1B1的中点,连接AC交BD于O,做AB的中点F,连接B1F,取BO的中点G,连接FG,GB1所以:B1F∥AE,FG⊥BD,所以:AE与平面BDD1B1所成角为:∠FB1G设正方体的棱长为1,进一步求得:FG=,则:tan∠FB1G==故答案为:点评:本题考查的知识要点:线面的夹角问题,解三角形知识的应用,属于基础题型.14.已知圆O过椭圆的两焦点且关于直线x﹣y+1=0对称,则圆O的方程为x2+(y﹣1)2=5.考点:椭圆的简单性质;圆的标准方程.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:求出椭圆的两焦点,圆心O(a,a+1),利用圆O过椭圆的两焦点且关于直线x﹣y+1=0对称,求出圆心与半径,即可求出圆O的方程.解答:解:椭圆的两焦点为(2,0),(﹣2,0).由题意设圆心O(a,a+1),则∵圆O过椭圆的两焦点且关于直线x﹣y+1=0对称,∴a=0,∴圆心为(0,1),半径为,∴圆O的方程为x2+(y﹣1)2=5.故答案为:x2+(y﹣1)2=5.点评:本题考查椭圆的性质,考查圆的方程,考查小时分析解决问题的能力,属于中档题.15.如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数①y=x2;②y=e x+1;③y=2x﹣sinx;④.以上函数是“H函数”的所有序号为②③.考点:函数单调性的性质.专题:函数的性质及应用.分析:不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1﹣x2)>0,即满足条件的函数为单调递增函数,判断函数的单调性即可得到结论.解答:解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f (x1)恒成立,∴不等式等价为(x1﹣x2)>0恒成立,即函数f(x)是定义在R上的增函数.①函数y=x2在定义域上不单调.不满足条件.②y=e x+1为增函数,满足条件.③y=2x﹣sinx,y′=2﹣cosx>0,函数单调递增,满足条件.④f(x)=.当x>0时,函数单调递增,当x<0时,函数单调递减,不满足条件.综上满足“H函数”的函数为②③,故答案为:②③.点评:本题主要考查函数单调性的应用,将条件转化为函数的单调性的形式是解决本题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足(b﹣a)(sinB+sinA)=(b﹣c)sinC,cosC=,a=3.(Ⅰ)求sinB;(Ⅱ)求△ABC的面积.考点:正弦定理;余弦定理.专题:三角函数的求值.分析:(Ⅰ)利用正弦定理化简已知等式得到关系式,再利用余弦定理表示出cosA,将得出的关系式代入求出cosA的值,确定出A的度数,由cosC的值求出sinC的值,将sinB变形为sin(A+C),利用两角和与差的正弦函数公式化简,把各自的值代入计算即可求出值;(Ⅱ)由a,sinA,sinC的值,利用正弦定理求出c的值,利用三角形面积公式即可求出三角形ABC的面积.解答:解:(Ⅰ)由正弦定理化简已知等式得:(b﹣a)(b+a)=c(b﹣c),即b2+c2﹣a2=bc,∴cosA==,∵A为三角形的内角,∴A=,∵cosC=,∴sinC==,∴sin B=sin(A+C)=sinAcosC+cosAsinC=×+×=;(Ⅱ)在△ABC中,由正弦定理=,得:=,即c=2,则S△ABC=acsinB=×3×2×=.点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.17.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2CB=2.在梯形ACEF中,EF∥AC,且AC=2EF,EC⊥平面ABCD.(Ⅰ)求证:BC⊥AF;(Ⅱ)若二面角D﹣AF﹣C为45°,求CE的长.考点:用空间向量求平面间的夹角;与二面角有关的立体几何综合题.专题:综合题;空间位置关系与距离;空间角.分析:(Ⅰ)证明BC⊥AC,BC⊥EC,AC∩EC=C,可得BC⊥平面ACEF,从而BC⊥AF;(Ⅱ)建立空间直角坐标系,求出平面DAF的法向量,平面AFC的法向量,根据二面角D﹣AF ﹣C为45°,利用向量的夹角公式,即可求CE的长.解答:(Ⅰ)证明:在△ABC中,AC2=AB2+BC2﹣2AB•BCcos60°=3所以AB2=AC2+BC2,由勾股定理知∠ACB=90°所以BC⊥AC.…又因为EC⊥平面ABCD,BC⊂平面ABCD所以BC⊥EC.…又因为AC∩EC=C,所以BC⊥平面ACEF,又AF⊂平面ACEF所以BC⊥AF.…(Ⅱ)解:因为EC⊥平面ABCD,又由(Ⅰ)知BC⊥AC,以C为原点,建立如图所示的空间直角坐标系 C﹣xyz.设CE=h,则C(0,0,0),,,,所以,.…设平面DAF的法向量为=(x,y,z),则令.所以=(,﹣3,).…又平面AFC的法向量=(0,1,0)…所以cos45°==,解得.…所以CE的长为.…点评:本题考查线面垂直的判定与性质,考查面面角,考查向量知识的运用,正确求出平面的法向量是关键.18.设等差数列{a n}的前n项和为S n,且a2=8,S4=40.数列{b n}的前n项和为T n,且T n﹣2b n+3=0,n∈N*.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前n项和P n.考点:数列的求和;等差数列的性质.专题:计算题;等差数列与等比数列.分析:(Ⅰ)运用等差数列的通项公式与求和公式,根据条件列方程,求出首项和公差,得到通项a n,运用n=1时,b1=T1,n>1时,b n=T n﹣T n﹣1,求出b n;(Ⅱ)写出c n,然后运用分组求和,一组为等差数列,一组为等比数列,分别应用求和公式化简即可.解答:解:(Ⅰ)设等差数列{a n}的公差为d,由题意,得,解得,∴a n=4n,∵T n﹣2b n+3=0,∴当n=1时,b1=3,当n≥2时,T n﹣1﹣2b n﹣1+3=0,两式相减,得b n=2b n﹣1,(n≥2)则数列{b n}为等比数列,∴;(Ⅱ).当n为偶数时,P n=(a1+a3+…+a n﹣1)+(b2+b4+…+b n)=.当n为奇数时,(法一)n﹣1为偶数,P n=P n﹣1+c n=2(n﹣1)+1+(n﹣1)2﹣2+4n=2n+n2+2n﹣1,(法二)P n=(a1+a3+…+a n﹣2+a n)+(b2+b4+…+b n﹣1)=.∴.点评:本题主要考查等差数列和等比数列的通项与求和公式的运用,考查方程的思想在数列中的运用,同时考查数列的通项与前n项和的关系式,考查数列的求和方法:分组求和,是一道综合题.19.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.考点:函数模型的选择与应用.专题:应用题;压轴题.分析:(1)总面积为xy=3000,且2a+6=y,则y=,(其中6<x<500),从而运动场占地面积为S=(x﹣4)a+(x﹣6)a,代入整理即得;(2)由(1)知,占地面积S=3030﹣6x﹣=3030﹣(6x+),由基本不等式可得函数的最大值,以及对应的x的值.解答:解:(1)由已知xy=3000,∴,其定义域是(6,500).S=(x﹣4)a+(x﹣6)a=(2x﹣10)a,∵2a+6=y,∴,∴,其定义域是(6,500).(2),当且仅当,即x=50∈(6,500)时,上述不等式等号成立,此时,x=50,y=60,S max=2430.答:设计x=50m,y=60m时,运动场地面积最大,最大值为2430平方米.点评:本题以实际问题为载体,考查函数模型的构建,考查应用基本不等式求函数最值,构建函数关系式是关键,属于中档题.20.已知椭圆C:的离心率为,右焦点F2到直线l1:3x+4y=0的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l与椭圆C相交于E、F两点,A为椭圆的右顶点,直线AE,AF分别交直线x=3于点M,N,线段MN的中点为P,记直线PF2的斜率为k′,求证:k•k′为定值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由椭圆的离心率等于,结合右焦点F2到直线l1:3x+4y=0的距离为联立方程组求解a,c的值,进一步求得b的值,则椭圆C的方程可求;(Ⅱ)设过点F2(1,0)的直线l方程为:y=k(x﹣1),和椭圆方程联立后利用根与系数关系求得E,F两点的横坐标的和与积,写出AE和AF的方程,取x=3求得点M和点P的坐标,由两点求斜率公式求得直线PF2的斜率为k′,代入k•k′整理为定值.解答:(Ⅰ)解:由题意得,,∴c=1,a=2,∴所求椭圆方程为;(Ⅱ)设过点F2(1,0)的直线l方程为:y=k(x﹣1),再设点E(x1,y1),点F(x2,y2),将直线l方程y=k(x﹣1)代入椭圆,整理得:(4k2+3)x2﹣8k2x+4k2﹣12=0.∵点P在椭圆内,∴直线l和椭圆都相交,△>0恒成立,且,直线AE的方程为:,直线AF的方程为:.令x=3,得点,,∴点P的坐标,直线PF2的斜率为=,将代入上式,得:∴k•k'为定值.点评:本题考查椭圆方程的求法,考查直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系求解,这是处理这类问题的最为常用的方法,但圆锥曲线的特点是计算量比较大,要求考生具备较强的运算推理的能力,是2015届高考试卷中的压轴题.21.设函数.(1)当a=0时,求f(x)的极值;(2)设,在令f'(x)=0得x1=﹣,x2=,…若a>0,由f'(x)≤0得x∈(0,];由f'(x)≥0得x∈若a<0,①当a<﹣2时,0<﹣<,x∈(0,﹣]或x∈,f'(x)≥0,②当a=﹣2时,f'(x)≤0;③当﹣2<a<0时,﹣>,x∈(0,]或x∈,f'(x)≥0.综上,当a>0时,函数的单调递减区间为(0,],单调递增区间为,;当a=﹣2时,函数的单调递减区间为(0,+∞);当﹣2<a<0时,函数的单调递减区间为(0,],.…点评:本题考查利用导数研究函数的极值,考查利用导数研究函数的单调性,突出考查转化与分类讨论的数学思想,考查综合分析与运算能力,属于难题.。

山东省滕州市实验中学2014年高一上学期期中考试数学试题及答案

山东省滕州市实验中学2014年高一上学期期中考试数学试题及答案
C. [ , ) 3
4 D. ( , )
3
12.若函数 f (x) x2 | x a | b 在区间 ( ,0] 上为减函数,则实数 a 的取值范围是
A. a 0
B. a 0
C. a 1
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)
D. a 1
13.已知函数 f ( x) 是定义域为 R 的奇函数,且 f ( 1) 2 ,则 f ( 0) f (1)
C. 9 x2 4x 5. 那么当
1
D.
9 4 x 1时, f ( x) 的
最大值为
A.- 5
B.1
6.化简
x 3 x2
的结果是
x6x
C.- 1
D. 5
A. x
B. x
C. x 2
D. 1
7.函数 f (x) x3 3x 5的零点所在的区间为
A. (1,2)
B. ( 2,0)
C. (0,1)
D. ( 2,1)
则只要 g (x) min>0 即可,
∵x∈[ - 1,1],∴g( x) min=g (1)=- 1-m ,
∴- 1- m>0,即 m <-1 .
故实数 m 的取值范围是 {m | m<- 1}.
h( 2014 )
1 h( )
2
1 h( )
3
1 h( )
4
h( 1 ) 。 2014
21.( 12 分)已知 f (x) 是定义在(- 4,4)上的奇函数,且它在定义域内单调递减,若 a 满足:
f (1 a) f ( 2a 3) 0 ,求实数 a 的取值范围. 22.( 12 分)已知二次函数 f ( x) 的最小值为 1,且 f ( 0)= f( 2)= 3. ( 1)求 f (x) 的解析式; ( 2)若 f (x) 在区间 [ 2a, a 1 ]上不单调,求实数 a 的取值范围; ( 3)在区间 [- 1,1]上, y f ( x) 的图象恒在 y 2x 2m 1 的图象上方,试确定实数 m 的

山东省枣庄市滕州实验中学高三数学上学期12月月考试卷 理(含解析)

山东省枣庄市滕州实验中学高三数学上学期12月月考试卷 理(含解析)

山东省枣庄市滕州实验中学 2015届高三上学期12月月考数学试卷(理科)一、选择题:本大题10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|﹣1<x<1},B={x|log2x≤0},则A∪B=( )A.{x|﹣1<x<1} B.{x|0<x<1} C.{x|﹣1<x≤1}D.{x|﹣∞<x≤1}考点:并集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的并集即可.解答:解:由B中的不等式变形得:log2x≤0=log21,即0<x≤1,∴B={x|0<x≤1},∵A={x|﹣1<x<1},∴A∪B={x|﹣1<x≤1}.故选:C.点评:此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.下列函数中,以为π最小正周期,且在上为减函数的是( )A.f(x)=sin2xcos2x B.f(x)=2sin2x﹣1C.f(x)=cos4x﹣sin4x D.f(x)=tan (﹣)考点:函数y=Asin(ωx+φ)的图象变换.专题:常规题型;三角函数的图像与性质.分析:先把函数解析式化成标准形式,然后求周期,研究函数在上的单调性,选出答案.解答:解:选项A,f(x)=sin2xcos2x=sin4x,所以周期为;选项B,f(x)=2sin2x﹣1=﹣cos2x,在上为增函数;选项C,f(x)=cos4x﹣sin4x=cos2x,周期为π,在上为减函数,满足题意;选项D,函数的周期为2π.故选C.点评:本题考查了三角函数的周期性及单调性,解题关建是选择恰当的公式把函数解析式化成标准形式.3.若S n是等差数列{a n}的前n项和,且S6=S5+2,则S11的值为( )A.12 B.18 C.22 D.44考点:等差数列的前n项和.分析:由等差数列前n项和公式知,条件须转化为项的形式.解答:解:∵s6=s5+2∴a6=2而故选C点评:本题主要考查等差数列的性质和前n项和公式.4.已知命题p、q,则“命题p或q为真”是“命题p且q为真”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:常规题型.分析:由判断充要条件的方法,我们可知:若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;而根据已知条件可得:“p∨q为真命题”⇒“p∧q为真命题”为假命题,“p∧q为真命题”⇒“p∨q为真命题”是真命题.故得“p∨q为真命题”是“p∧q为真命题”的必要不充分条件.解答:解:由于“p∨q为真命题”,则p、q中至少有一个为真命题,又由“p∧q为真命题”,则p、q都为真命题,所以“p∨q为真命题”⇒“p∧q为真命题”为假命题,“p∧q为真命题”⇒“p∨q为真命题”是真命题.再根据充要条件的判断方法,可知“p∨q为真命题”是“p∧q为真命题”的必要不充分条件.故答案为B.点评:本题考查充分、必要与充要条件的判断,属于基础题,要掌握判断充要条件的方法.5.设曲线y=e ax﹣ln(x+1)在点(0,1)处的切线方程为2x﹣y+1=0,则a=( )A.0 B.1 C.2 D.3考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:根据导数的几何意义求出函数f(x)在x=0处的导数,从而求出切线的斜率,再根据曲线y=e ax﹣ln(x+1)在点(0,1)处的切线方程为2x﹣y+1=0,建立等式关系,解之即可.解答:解:∵y=e ax﹣ln(x+1),∴y′=ae ax﹣∴x=0时,切线的斜率为a﹣1∵曲线y=e ax﹣ln(x+1)在点(0,1)处的切线方程为2x﹣y+1=0,∴a﹣1=2,即a=3.故选:D.点评:本题主要考查了利用导数研究曲线上某点切线方程,考查学生的计算能力,属于基础题.6.设a>0,b>1,若a+b=2,则的最小值为( )A.B.8 C.D.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式的性质即可得出.解答:解:∵设a>0,b>1,a+b=2,∴=(a+b﹣1)=4+=4+2,当且仅当a=(b ﹣1)=时取等号,∴的最小值为4+2.故选:D.点评:本题考查了基本不等式的性质,属于基础题.7.函数的图象可能是( )A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:由函数的解析式,可求出函数的定义域,可排除B,D答案;分析x∈(﹣2,﹣1)时,函数值的符号,进而可以确定函数图象的位置后可可排除C答案.解答:解:若使函数的解析式有意义则,即即函数的定义域为(﹣2,﹣1)∪(﹣1,+∞)可排除B,D答案当x∈(﹣2,﹣1)时,sinx<0,ln(x+2)<0则>0可排除C答案故选A点评:本题考查的知识点是函数的图象,熟练掌握函数定义域的求法及函数值符号的判定是解答的关键.8.将函数f(x)=sin(2x+θ)()的图象向右平移φ(φ>1)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(),则φ的值可以是( )A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换;y=Asin(ωx+φ)中参数的物理意义.专题:计算题;三角函数的图像与性质.分析:求出平移后的函数解析式,利用两个函数都经过P(0,),解出θ,然后求出φ即可.解答:解:函数向右平移φ个单位,得到g (x)=sin(2x+θ﹣2φ),因为两个函数都经过P(0,),所以,,所以g(x)=sin(2x+﹣2φ),sin(﹣2φ)=,φ>1,所以﹣2φ=2kπ+,φ=﹣kπ,与选项不符舍去,﹣2φ=2kπ+,k∈Z,当k=﹣1时,φ=.故选B.点评:本题考查函数图象的平移,函数值的求法,考查分析问题解决问题的能力与计算能力.9.双曲线的离心率e=2,则以双曲线的两条渐近线与抛物线y2=mx的交点为顶点的三角形的面积为( )A.B.C.D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据双曲线的离心率e=2,求出m的值,可得双曲线的两条渐近线方程,抛物线方程,联立求出交点坐标,即可求出三角形的面积.解答:解:∵双曲线的离心率e=2,∴,∴m=3,∴双曲线的两条渐近线方程为y=±x,抛物线方程为y2=3x,联立可得交点坐标为(9,±3),∴所求三角形的面积为=27.故选:C.点评:本题考查双曲线的性质,考查双曲线与抛物线的位置关系,考查学生的计算能力,属于基础题.10.已知e是自然对数的底数,函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,则下列不等式中成立的是( )A.f(a)<f(1)<f(b)B.f(a)<f(b)<f(1)C.f(1)<f(a)<f(b)D.f(b)<f(1)<f(a)考点:对数函数图象与性质的综合应用.专题:函数的性质及应用.分析:根据函数的零点的判定定理,可得0<a<1<b<2,再由函数f(x)=e x+x﹣2在(0,+∞)上是增函数,可得结论.解答:解:∵函数f(x)=e x+x﹣2的零点为a,f(0)=﹣1<0,f(1)=e﹣1>0,∴0<a <1.∵函数g(x)=lnx+x﹣2的零点为b,g(1)=﹣1<0,g(2)=ln2>0,∴1<b<2.综上可得,0<a<1<b<2.再由函数f(x)=e x+x﹣2在(0,+∞)上是增函数,可得 f(a)<f(1)<f(b),故选A.点评:本题主要考查函数的零点的判定定理,函数的单调性的应用,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在横线上.11.函数f(x)=log2(|x﹣1|+|x﹣2|﹣3)的定义域为(﹣∞,0)∪(3,+∞).考点:绝对值不等式的解法.专题:计算题;函数的性质及应用.分析:令g(x)=|x﹣1|+|x﹣2|﹣3,g(x)>0⇒|x﹣1|+|x﹣2|>3,通过对x的取值范围的分类讨论,去掉绝对值符号再解即可.解答:解:令g(x)=|x﹣1|+|x﹣2|﹣3,则g(x)>0,∴|x﹣1|+|x﹣2|>3;当x<1时,1﹣x+2﹣x>3,解得:x<0,又x<1,∴x<0;当1≤x≤2时,有x﹣1+2﹣x>3,即1>3,∴x∈∅;当x>2时,有x﹣1+x﹣2>3,解得:x>3,又x>2,∴x>3;综上所述,函数f(x)=log2(|x﹣1|+|x﹣2|﹣3)的定义域为(﹣∞,0)∪(3,+∞).故答案为:(﹣∞,0)∪(3,+∞).点评:本题考查绝对值不等式的解法,考查对数函数的性质,考查分类讨论思想与运算求解能力,属于中档题.12.若变量x,y满足约束条件,且z=2x+y的最小值为﹣6,则k=﹣2.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定k的值即可.解答:解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最小,此时z最小.目标函数为2x+y=﹣6,由,解得,即A(﹣2,﹣2),∵点A也在直线y=k上,∴k=﹣2,故答案为:﹣2.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.13.已知在正方体ABCD﹣A1B1C1D1中,点E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正切值是.考点:直线与平面所成的角.专题:空间角.分析:首先利用转化法,求出线面所夹的角,进一步利用解三角形知识求出结果.解答:解:已知在正方体ABCD﹣A1B1C1D1中,点E是棱A1B1的中点,连接AC交BD于O,做AB的中点F,连接B1F,取BO的中点G,连接FG,GB1所以:B1F∥AE,FG⊥BD,所以:AE与平面BDD1B1所成角为:∠FB1G设正方体的棱长为1,进一步求得:FG=,则:tan∠FB1G==故答案为:点评:本题考查的知识要点:线面的夹角问题,解三角形知识的应用,属于基础题型.14.已知圆O过椭圆的两焦点且关于直线x﹣y+1=0对称,则圆O的方程为x2+(y﹣1)2=5.考点:椭圆的简单性质;圆的标准方程.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:求出椭圆的两焦点,圆心O(a,a+1),利用圆O过椭圆的两焦点且关于直线x﹣y+1=0对称,求出圆心与半径,即可求出圆O的方程.解答:解:椭圆的两焦点为(2,0),(﹣2,0).由题意设圆心O(a,a+1),则∵圆O过椭圆的两焦点且关于直线x﹣y+1=0对称,∴a=0,∴圆心为(0,1),半径为,∴圆O的方程为x2+(y﹣1)2=5.故答案为:x2+(y﹣1)2=5.点评:本题考查椭圆的性质,考查圆的方程,考查小时分析解决问题的能力,属于中档题.15.如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数①y=x2;②y=e x+1;③y=2x﹣sinx;④.以上函数是“H函数”的所有序号为②③.考点:函数单调性的性质.专题:函数的性质及应用.分析:不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1﹣x2)>0,即满足条件的函数为单调递增函数,判断函数的单调性即可得到结论.解答:解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f (x1)恒成立,∴不等式等价为(x1﹣x2)>0恒成立,即函数f(x)是定义在R上的增函数.①函数y=x2在定义域上不单调.不满足条件.②y=e x+1为增函数,满足条件.③y=2x﹣sinx,y′=2﹣cosx>0,函数单调递增,满足条件.④f(x)=.当x>0时,函数单调递增,当x<0时,函数单调递减,不满足条件.综上满足“H函数”的函数为②③,故答案为:②③.点评:本题主要考查函数单调性的应用,将条件转化为函数的单调性的形式是解决本题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足(b﹣a)(sinB+sinA)=(b﹣c)sinC,cosC=,a=3.(Ⅰ)求sinB;(Ⅱ)求△ABC的面积.考点:正弦定理;余弦定理.专题:三角函数的求值.分析:(Ⅰ)利用正弦定理化简已知等式得到关系式,再利用余弦定理表示出cosA,将得出的关系式代入求出cosA的值,确定出A的度数,由cosC的值求出sinC的值,将sinB变形为sin(A+C),利用两角和与差的正弦函数公式化简,把各自的值代入计算即可求出值;(Ⅱ)由a,sinA,sinC的值,利用正弦定理求出c的值,利用三角形面积公式即可求出三角形ABC的面积.解答:解:(Ⅰ)由正弦定理化简已知等式得:(b﹣a)(b+a)=c(b﹣c),即b2+c2﹣a2=bc,∴cosA==,∵A为三角形的内角,∴A=,∵cosC=,∴sinC==,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=;(Ⅱ)在△ABC中,由正弦定理=,得:=,即c=2,则S△ABC=acsinB=×3×2×=.点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.17.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2CB=2.在梯形ACEF中,EF∥AC,且AC=2EF,EC⊥平面ABCD.(Ⅰ)求证:BC⊥AF;(Ⅱ)若二面角D﹣AF﹣C为45°,求CE的长.考点:用空间向量求平面间的夹角;与二面角有关的立体几何综合题.专题:综合题;空间位置关系与距离;空间角.分析:(Ⅰ)证明BC⊥AC,BC⊥EC,AC∩EC=C,可得BC⊥平面ACEF,从而BC⊥AF;(Ⅱ)建立空间直角坐标系,求出平面DAF的法向量,平面AFC的法向量,根据二面角D﹣AF ﹣C为45°,利用向量的夹角公式,即可求CE的长.解答:(Ⅰ)证明:在△ABC中,AC2=AB2+BC2﹣2AB•BCcos60°=3所以AB2=AC2+BC2,由勾股定理知∠ACB=90°所以BC⊥AC.…又因为EC⊥平面ABCD,BC⊂平面ABCD所以BC⊥EC.…又因为AC∩EC=C,所以BC⊥平面ACEF,又AF⊂平面ACEF所以BC⊥AF.…(Ⅱ)解:因为EC⊥平面ABCD,又由(Ⅰ)知BC⊥AC,以C为原点,建立如图所示的空间直角坐标系 C﹣xyz.设CE=h,则C(0,0,0),,,,所以,.…设平面DAF的法向量为=(x,y,z),则令.所以=(,﹣3,).…又平面AFC的法向量=(0,1,0)…所以cos45°==,解得.…所以CE的长为.…点评:本题考查线面垂直的判定与性质,考查面面角,考查向量知识的运用,正确求出平面的法向量是关键.18.设等差数列{a n}的前n项和为S n,且a2=8,S4=40.数列{b n}的前n项和为T n,且T n﹣2b n+3=0,n∈N*.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前n项和P n.考点:数列的求和;等差数列的性质.专题:计算题;等差数列与等比数列.分析:(Ⅰ)运用等差数列的通项公式与求和公式,根据条件列方程,求出首项和公差,得到通项a n,运用n=1时,b1=T1,n>1时,b n=T n﹣T n﹣1,求出b n;(Ⅱ)写出c n,然后运用分组求和,一组为等差数列,一组为等比数列,分别应用求和公式化简即可.解答:解:(Ⅰ)设等差数列{a n}的公差为d,由题意,得,解得,∴a n=4n,∵T n﹣2b n+3=0,∴当n=1时,b1=3,当n≥2时,T n﹣1﹣2b n﹣1+3=0,两式相减,得b n=2b n﹣1,(n≥2)则数列{b n}为等比数列,∴;(Ⅱ).当n为偶数时,P n=(a1+a3+…+a n﹣1)+(b2+b4+…+b n)=.当n为奇数时,(法一)n﹣1为偶数,P n=P n﹣1+c n=2(n﹣1)+1+(n﹣1)2﹣2+4n=2n+n2+2n﹣1,(法二)P n=(a1+a3+…+a n﹣2+a n)+(b2+b4+…+b n﹣1)=.∴.点评:本题主要考查等差数列和等比数列的通项与求和公式的运用,考查方程的思想在数列中的运用,同时考查数列的通项与前n项和的关系式,考查数列的求和方法:分组求和,是一道综合题.19.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.考点:函数模型的选择与应用.专题:应用题;压轴题.分析:(1)总面积为xy=3000,且2a+6=y,则y=,(其中6<x<500),从而运动场占地面积为S=(x﹣4)a+(x﹣6)a,代入整理即得;(2)由(1)知,占地面积S=3030﹣6x﹣=3030﹣(6x+),由基本不等式可得函数的最大值,以及对应的x的值.解答:解:(1)由已知xy=3000,∴,其定义域是(6,500).S=(x﹣4)a+(x﹣6)a=(2x﹣10)a,∵2a+6=y,∴,∴,其定义域是(6,500).(2),当且仅当,即x=50∈(6,500)时,上述不等式等号成立,此时,x=50,y=60,S max=2430.答:设计x=50m,y=60m时,运动场地面积最大,最大值为2430平方米.点评:本题以实际问题为载体,考查函数模型的构建,考查应用基本不等式求函数最值,构建函数关系式是关键,属于中档题.20.已知椭圆C:的离心率为,右焦点F2到直线l1:3x+4y=0的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l与椭圆C相交于E、F两点,A为椭圆的右顶点,直线AE,AF分别交直线x=3于点M,N,线段MN的中点为P,记直线PF2的斜率为k′,求证:k•k′为定值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由椭圆的离心率等于,结合右焦点F2到直线l1:3x+4y=0的距离为联立方程组求解a,c的值,进一步求得b的值,则椭圆C的方程可求;(Ⅱ)设过点F2(1,0)的直线l方程为:y=k(x﹣1),和椭圆方程联立后利用根与系数关系求得E,F两点的横坐标的和与积,写出AE和AF的方程,取x=3求得点M和点P的坐标,由两点求斜率公式求得直线PF2的斜率为k′,代入k•k′整理为定值.解答:(Ⅰ)解:由题意得,,∴c=1,a=2,∴所求椭圆方程为;(Ⅱ)设过点F2(1,0)的直线l方程为:y=k(x﹣1),再设点E(x1,y1),点F(x2,y2),将直线l方程y=k(x﹣1)代入椭圆,整理得:(4k2+3)x2﹣8k2x+4k2﹣12=0.∵点P在椭圆内,∴直线l和椭圆都相交,△>0恒成立,且,直线AE的方程为:,直线AF的方程为:.令x=3,得点,,∴点P的坐标,直线PF2的斜率为=,将代入上式,得:∴k•k'为定值.点评:本题考查椭圆方程的求法,考查直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系求解,这是处理这类问题的最为常用的方法,但圆锥曲线的特点是计算量比较大,要求考生具备较强的运算推理的能力,是2015届高考试卷中的压轴题.21.设函数.(1)当a=0时,求f(x)的极值;(2)设,在令f'(x)=0得x1=﹣,x2=,…若a>0,由f'(x)≤0得x∈(0,];由f'(x)≥0得x∈若a<0,①当a<﹣2时,0<﹣<,x∈(0,﹣]或x∈,f'(x)≥0,②当a=﹣2时,f'(x)≤0;③当﹣2<a<0时,﹣>,x∈(0,]或x∈,f'(x)≥0.综上,当a>0时,函数的单调递减区间为(0,],单调递增区间为,;当a=﹣2时,函数的单调递减区间为(0,+∞);当﹣2<a<0时,函数的单调递减区间为(0,],.…点评:本题考查利用导数研究函数的极值,考查利用导数研究函数的单调性,突出考查转化与分类讨论的数学思想,考查综合分析与运算能力,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年度山东省滕州市实验中学高三第一学期期中考试数学试题第Ⅰ卷(60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A={2|320x x x -+=},则满足AB={0,1,2}的集合B 的个数是 A .1B .3C .4D .62.已知b a >,则下列不等式一定成立的是A .33->-b aB .bc ac >C .cbc a <D .32+>+b a 3.已知b a,是两个非零向量,给定命题b a b a p =⋅:,命题R t q ∈∃:,使得b t a =,则p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知各项均为正数的等比数列}{n a 中,13213,,22a a a 成等差数列,则=++1081311a a a a A .27B .3C .1-或3D .1或275.函数)(x f 的定义域为]1,0(,则函数)2(lg 2xx f +的定义域为 A .]4,5[-B .)2,5[--C .]4,1[]2,5[ --D .]4,1()2,5[ --6.已知33)6cos(-=-πx ,则=-+)3cos(cos πx xA .332-B .332±C .1-D .1±7.已知x ,y 满足⎪⎩⎪⎨⎧≤++≤+≥041c by x y x x ,记目标函数2z x y =+的最小值为1,最大值为7,则,b c 的值分别为A .-1,-2B .-2,-1C .1,2D .1,-28.已知等比数列{}n a 满足n a >0,n =1,2,…,且25252(3)n n a a n -⋅=≥,则当n ≥1时,2122221log log log n a a a -++⋅⋅⋅+=A .n (2n -1)B .(n +1)2C .n 2D .(n -1)29.已知x ∈⎝⎛⎭⎫0,π2,且函数f (x )=1+2sin 2x sin 2x的最小值为b ,若函数g (x )=⎩⎨⎧-1⎝⎛⎭⎫π4<x <π28x 2-6bx +4⎝⎛⎭⎫0<x ≤π4,则不等式g (x )≤1的解集为A .⎝⎛⎭⎫π4,π2B .⎝⎛⎦⎤π4,32C .⎣⎡⎦⎤34,32D .⎣⎡⎭⎫34,π2 10.设F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,过F 1的直线与C 的左、右两支分别交于A ,B 两点.若 | AB | : | BF 2 | : | AF 2 |=3:4 : 5,则双曲线的离心率为AB C .2D11.若曲线f (x ,y )=0上两个不同点处的切线重合,则称这条切线为曲线f (x ,y )=0的“自公切线”.下列方程:①x 2-y 2=1;②y =x 2-|x |;③y =3sin x +4cos x ;④|x |+1=4-y 2对应的曲线中存在“自公切线”的有A .①②B .②③C .①④D .③④12.函数()32f x x ax bx c =+++,在定义域[]2,2x ∈-上表示的曲线过原点,且在1x =±处的切线斜率均为1-.有以下命题:①()f x 是奇函数;②若()[],f x s t 在内递减,则t s -的最大值为4;③()f x 的最大值为M ,最小值为m ,则=0M m +;④若对[]()2,2x k f x '∀∈-≤,恒成立,则k 的最大值为2.其中正确命题的个数为A .1个B .2个C .3个D .4个第Ⅱ卷(90分)二、填空题:本大题共4题,每小题5分,共20分. 13.若函数()f x 在R 上可导,()()321f x x x f '=+,则()2f x dx =⎰ .14.若0,0,x y ≥≥且21x y +=,则223x y +的最小值为 .15.抛物线C 的顶点在原点,焦点F 与双曲线16322=-y x 的右焦点重合,过点P (2,0)且斜率为1的直线与抛物线C 交于A,B 两点,则弦AB 的中点到抛物线准线的距离为_______16.对于实数a,b,定义运算""*:⎩⎨⎧>-≤-=*)()(22b a ab b b a ab a b a 设)1()12()(-*-=x x x f ,且关于x 的方程)()(R m m x f ∈=恰有三个互不相等的实数根321,,x x x ,则321x x x 的取值范围是___________三、解答题:本大题共六个大题,满分70;解答应写出文字说明,证明过程或演算步骤. 17.(本题满分10分) (1)已知1411)cos(,71cos -=+=βαα,且)2,0(,πβα∈,求βcos 的值; (2)已知α为第二象限角,且42sin =α,求1)2sin(2cos )4cos(+---παααπ的值. 18.(本题满分12分)在锐角三角形ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,2sin 0c A -=.(Ⅰ)求角C 的大小; (Ⅱ)若2,a b c =+求的最大值. 19.(本题满分12分)设数列}{n a 是等差数列,数列}{n b 的前n 项和n S 满足)1(23-=n n b S 且2512,b a b a == (Ⅰ)求数列}{n a 和}{n b 的通项公式:(Ⅱ)设,n n n c a b =⋅,设n T 为{}n c 的前n 项和,求n T . 20.(本题满分12分)设椭圆C :)0(12222>>=+b a by a x 的离心率21=e ,右焦点到直线1=+b ya x 的距离721=d ,O 为坐标原点.(1)求椭圆C 的方程;(2)过点O 作两条互相垂直的射线,与椭圆C 分别交于A,B 两点,证明:点O 到直线AB 的距离为定值,并求弦AB 长度的最小值。

21.(本题满分12分)已知函数),(3)(23R b a x bx ax x f ∈-+=,在点(1,f (1))处的切线方程为y+2=0. (1)求函数f (x )解析式;(2)若对于区间[-2,2]上的任意两个自变量21,x x 都有c x f x f ≤-)()(21,求实数c 的最小值; (3)若过点M (2,m )(m ≠2)可作曲线y=f (x )的三条切线,求实数m 的取值范围; 22.(本题满分12分)已知函数()sin f x a x x b =-+(,a b 均为正常数),设函数()f x 在3x π=处有极值.(1)若对任意的[0,]2x π∈,不等式()sin cos f x x x >+总成立,求实数b 的取值范围; (2)若函数()f x 在区间121(,)33m m ππ--上单调递增,求实数m 的取值范围. 2014-2015学年度山东省滕州市实验中学高三第一学期期中考试数学试题参考答案一、选择题:1.C 2.A 3.C 4.A 5.D 6.C 7.A 8.A 9.D 10.A 11.B 12.B 二、填空题:13.-4 14.3[,2]4 15.11 16.)0,1631(- 三、解答题:18.解:(Ⅰ)由3a -2c sin A =0及正弦定理, 得3sin A -2sin C sin A =0(sin A≠0),(1分) ∴sin C =32,(4分)∵△ABC 是锐角三角形, ∴C =π3(6分)(Ⅱ)∵c =2,C =π3,由余弦定理,a 2+b 2-2ab cos π3=4,即a 2+b 2-ab =4 (8分)∴(a +b )2=4+3ab≤4+3·⎝⎛⎭⎫a +b 22,即(a +b )2≤16,(10分)∴a +b≤4,当且仅当a =b =2取“=”(11分) 故a +b 的最大值是4.(12分)19.解:(1)21n a n =-, (3分) 3n n b =.(3分)(2)13(1)3n n T n +=+-.(12分)20.(1)13422=+y x(2)设A ),(),,(2211y x B y x ,当直线AB 的斜率不存在时,22212112,,yy y y x x =∴=-=,又1342121=+y x ,解得72127121==x ,即O 到直线AB 的距离7212=d ,当直线的斜率存在时,直线AB 的方程为y=kx+m,与椭圆13422=+y x 联立消去y 得012)2(432222=-+++m km x k x ,222122143124,438k m x x k km x x +-=+-=+∴OB OA ⊥ 02121=+∴y y x x ,0))((2121=+++∴m kx m kx x x 即0)()1(221212=++++m x x km x x k 043843124)1(2222222=++-+-+∴m km k k m k ,整理得)1(12722+=k m ∴O 到直线AB 的距离721271212==+=k m d OB OA ⊥ OB OA AB OB OA ∙≥=+∴2222当且仅当OA=OB 时取“=”有OB OA AB d ∙=∙得22AB OB OA AB d ≤∙=∙,72142=≥∴d AB 即弦AB 的长度的最小值是7214 21.(1)由已知得323)(2-+='bx ax x f ,根据题意,得⎩⎨⎧='-=0)1(2)1(f f 即⎩⎨⎧=-+-=-+032323b a b a 解得⎩⎨⎧==01b a x x x f 3)(3-=∴ (2)由(1)知x x x f 3)(3-=∴则33)(2-='x x f 令1,0)(±=='x x f 又f (-1)=2,f (1)=-2,f (-2)=-2,f (2)=2,44)()()()(min max 21≥∴=-≤-c x f x f x f x f(3)设切点为(),00y x ,则03003x x y -=33)(20-='∴x x f 切线的斜率为3320-x 则有2333003020---=-x m x x x ,即06622030=++-m x x 过点M (2,m )可作曲线y=f (x )的三条切线,方程06622030=++-m x x 有三个不同的实数解,m x x x g ++-=662)(2030有三个不同的零点,xx x g 126)(2-='令0)(='x g 解得x=0,x=2,260)2(0)0(<<-∴⎩⎨⎧<>∴m g g22.解:∵b x x a x f +-=sin )(,∴1cos )('-=x a x f ,由题意,得0)3('=πf ,解得2=a .---- 2分(1)不等式x x x f cos sin )(+>等价于six x x b -+>cos 对于一切]2,0[π∈x 恒成立. ---- 4分记x x x x g sin cos )(-+=,则)4sin(21cos sin 1)('π+-=--=x x x x g ----5分∵]2,0[π∈x ,∴]43,4[4πππ∈+x ,∴2)4sin(21≤+≤πx , ∴0)('≤x g ,从而)(x g 在]2,0[π上是减函数.∴1)0()(max ==g x g ,于是1>b . ---- 6分 (2)1cos 2)('-=x x f ,由21)('≥x f ,得,即Z k k x k ∈+≤≤+-,2323ππππ. ---- 7分 ∵函数()f x 在区间)312,31(ππ--m m 上单调递增, ∴]23,23[)312,31(ππππππk k m m ++-⊆--, 则有⎪⎪⎪⎩⎪⎪⎪⎨⎧∈-<-+≤-+-≥-Z k m m k m k m ,31231233122331ππππππππ----9分,即⎩⎨⎧>∈+≤≤0,136m Z k k m k , ∴0=k 时,10≤<m ---- 12分。

相关文档
最新文档