函数的性质测试题
河北专版学业水平测试专题三函数的概念与性质(含答案解析)
河北专版学业水平测试专题三函数的概念与性质学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知函数()21,23,2x x f x x ⎧+<⎪=≥,则()()4f f 的值为()A .1-B .0C .1D .22.下列幂函数在区间()0,∞+内单调递减的是()A .y x=B .2y x =C .3y x =D .1y x -=3.下列函数中,值域是(0,)+∞的是()A .21(0)y x x =+>B .2y x =C .y =D .2y x=4.下列函数中,与函数y x =相同的是()A .2xy x=B .2y =C .lg10x y =D .2log 2xy =5.已知函数()y f x =是奇函数,当0x <时,()2()f x x ax a R =+∈且()26f =,则=a ()A .1B .5C .-1D .-56.某家庭利用十一长假外出自驾游,为保证行车顺利,每次加油都把油箱加满,如表记录了该家庭用车相邻两次加油时的情况.加油时间加油量/升加油时的累计里程/千米2020年10月1日12320002020年10月6日4832600(注:“累计里程”指汽车从出厂开始累计行驶的路程.)在这段时间内,该车每100千米平均耗油量为()A .6升B .8升C .10升D .12升7.已知[0,2]x ∈)8.下列函数中,在区间()0,1上是增函数的是()A .21y x =-+B .y =C .1yx=D .3y x=-9.函数1y x =+的图象是A .B .C .D .10.已知函数22,0()1,0x x x f x lnx x ⎧+-=⎨-+>⎩ ,若f (a )0=,则a 的值为()A .2-B .1C .1,eD .2-,e11.已知幂函数()y f x =的图象过点(8,,则()9f 的值为()A .2B .3C .4D .912.下列函数中为偶函数,且在()0,∞+上单调递增的是A .()lg 2y x =B .2y x =-C .2xy =D .y =13.给定函数2()f x x =,()2g x x =+,对于x ∀∈R ,用()M x 表示(),()f x g x 中较大者,记为()max{(),()}M x f x g x =,则()M x 的最小值为()A .1-B .1C .2D .414.函数x y x x=+的图象为()A .B .C.D .15.若函数()()()21xf x x x a =-+是奇函数,则实数=a ()A .12B .12-C .1D .1-16.设函数f (x )满足f 1-1x x ⎛⎫⎪+⎝⎭=1+x ,则f (x )的表达式为()A .21x +B .221x +C .2211x x -+D .11x x-+17.已知函数()f x 是定义在区间[1,2]a a --上的偶函数,且在区间[0,2]a 上单调递增,则不等式(1)()f x f a -<的解集为()A .[1,3]-B .(0,2)C .(0,1)(2,3]⋃D .[1,0)(1,2)-⋃18.已知函数22,2()(1),2x f x x x x ⎧⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有三个不同的实根,则数k的取值范围是()A .(0,1)B .(1,2)C .(0,2)D .(1,3)19.幂函数()()222af x a a x =--在()0,∞+上单调递增,则()()11x ag x b b +=+>过定点()A .()1,1B .()1,2C .()3,1-D .()3,2-20.若函数()y f x =的定义域是[0,4],则函数()g x =)A .(1,8)B .(1,2)C .(1,8]D .(1,2]21.下列四组函数,表示同一函数的是()A .f (x,g (x )=xB .f (x )=x ,g (x )=2x xC .f (x,g (x )=2x xD .f (x )=|x +1|,g (x )=1,11,1x x x x +≥-⎧⎨--<-⎩22.已知()f x 函数是定义在()()3,00,3- 上的奇函数,当03x <<时,()f x 的图象如图所示,则不等式()0f x x -⋅>的解集是().A .(1,0)(1,3)-B .(3,1)(1,3)--C .(1,0)(0,1)- D .(3,1)(0,1)--⋃23.已知函数()2f x ax =-[0,2]上单调递减,则a 的取值范围是()A .(0,1]B .(0,1)C .(0,2]D .[2,)+∞24.函数1(,0]()3(21)(1),(0,)xx f x a x a x ⎧⎛⎫∈-∞⎪ ⎪=⎨⎝⎭⎪-+-∈+∞⎩,在(),-∞+∞上是减函数,则a 的取值范围是()A .10,2⎛⎫⎪⎝⎭B .10,2⎡⎫⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .1,2⎛⎫+∞ ⎪⎝⎭25.已知函数f (2x -3)的定义域是[-1,4],则函数f (1-2x )的定义域()A .[2,1]-B .[1,2]C .[2,3]-D .[1,3]-26.已知奇函数()f x 在区间[)0,∞+上是单调递增的,则满足1(21)()3f x f -<的x 的取值范围是()A .2(,)3-∞B .12[)33,C .12()23,D .2[,)3+∞二、填空题27.已知幂函数()y f x =的图象过点22,则()f x =___________.28.设2,0(),0x x f x x x ⎧≤⎪=>,则((2))f f -=__________.29.函数22y ax x -+的定义域为[]2,1-,则实数a 的值为______.30.函数2()1f x x =-的定义域为[2,5),则其值域为__.31.已知函数53()7cf x ax bx x=+++, 3(5)f -=,则 ()3f =___________.32.已知)1fx x x =+()f x =________.33.设()f x 为偶函数,且在(0,)+∞上是增函数,则f (1),(2)f -,(3)f -的大小关系是__.34.函数(),01log ,016c ax b x f x x x +<⎧⎪=⎨⎛⎫+≥ ⎪⎪⎝⎭⎩的图象如图所示,则abc =______.35.已知函数()f x 满足()1221,0f x f x x x ⎛⎫-=-≠ ⎪⎝⎭,则()f x 的解析式为________36.若函数(),142,12x a x f x a x x ⎧≥⎪=⎨⎛⎫-+< ⎪⎪⎝⎭⎩满足对任意的实数12x x ≠都有()()12120f x f x x x ->-成立,则实数a 的取值范围是___________.37.若关于x 的不等式x 2-4x -m≥0对任意x ∈(0,1]恒成立,则m 的最大值为______.38.如果函数y =23,0(),0x x f x x ->⎧⎨<⎩是奇函数,则()f x =________.39.已知()2y f x x =+是奇函数,且()13f =,若()()2g x f x =+,则()1g -=________.40.函数()f x 是定义在R 上的奇函数,满足(2)()f x f x +=-,当[0x ∈,1)时,2()f x x =,则23()2f =_______.41.发展农村电商是“乡村振兴计划”的重要组成,某农村电商结合自己出售的商品,要购买3000个高为2分米,体积为18立方分米的长方体纸质包装盒.经过市场调研.此类包装盒按面积计价,每平方分米的的价格y (单位:元)与订购数量x (单位:个)之间有如下关系:0.011,100020000.01,200040000.009,4000x y x x ≤<⎧⎪=≤<⎨⎪≥⎩(说明:商家规定每个纸盒计费面积为六个面的面积之和),则该电商购入3000个包装盒至少需要____元.三、解答题42.已知函数2()f x x bx c =++的图像过点(1,3)-,且关于直线1x =对称.(1)求()f x 的解析式;(2)若3m <,求函数()f x 在区间[],3m 上的值域.43.已知函数f (x )=211x x -+.(1)证明:函数f (x )在区间(0,+∞)上是增函数;(2)求函数f (x )在区间[1,17]上的最大值和最小值.44.已知函数()f x 是定义在R 上的奇函数,()g x 是定义在R 上的偶函数,且对任意实数x 有()()x f x g x e +=成立.(1)求()f x 和()g x 的解折式;(2)证明:22[()][()](2)f x g x g x +=.45.已知二次函数()f x 的最小值为1,且()()023f f ==.(1)求()f x 的解析式;(2)若()f x 在区间[3, 1]a a +上不单调,求实数a 的取值范围;(3)当[1,1]x ∈-时,()f x 的图象恒在2y x m =+的图象的上方,试求实数m 的取值范围.46.已知幂函数()af x x =的图象经过点(.(1)求幂函数()f x 的解析式;(2)试求满足()()13f a f a +>-的实数a 的取值范围.47.已知二次函数()f x 满足()()12f x f x x +-=且()01f =.(1)求()f x 的解析式;(2)若方程()f x ax =,[]2,3x ∈时有唯一一个零点,且不是重根,求a 的取值范围;(3)当[]1,1x ∈-时,不等式()2f x x m >+恒成立,求实数m 的范围.48.已知函数()21x bf x x +=-是定义域()1,1-上的奇函数.(1)确定()f x 的解析式;(2)用定义证明:()f x 在区间()1,1-上是减函数;(3)解不等式()()10f t f t -+<.参考答案:1.D【分析】带入数据直接计算得到答案.【详解】()21,23,2x x f x x ⎧+<⎪=≥,()431f ==-,()()()41112f f f =-=+=.故选:D 2.D【解析】由幂函数的知识可直接选出答案.【详解】y x =、2y x =、3y x =在区间()0,∞+内单调递增,1y x -=在区间()0,∞+内单调递减故选:D 3.C【分析】利用反比例函数,复合函数,一次函数,二次函数的单调性即可求得各个函数的值域,可得答案.【详解】解:A 、函数21y x =+在(0,)+∞上是增函数,∴函数的值域为(1,)+∞,故错;B 、函数20y x =,函数的值域为[)0,∞+,故错;C 、函数y =(,1)(1,)-∞-+∞ 00>,故函数的值域为(0,)+∞D 、函数2y x=的值域为{|0}y y ≠,故错;故选:C .【点睛】本题考查,二次函数,一次函数的值域,考查学生发现问题解决问题的能力,属于基础题.4.C【分析】根据函数的定义判断.注意对数函数的性质.【详解】解:由题意,函数y x =的定义域为R .对于A :2x y x=定义域为{}0x x ≠他们的定义域不相同,∴不是同一函数;对于B :2y =定义域为{}0x x ≥他们的定义域不相同,∴不是同一函数;对于C :lg10y x ==,定义域为R ,他们的定义域相同,对应关系也相同,∴是同一函数;对于D :2log 2x y =定义域为{}0x x >,他们的定义域不相同,∴不是同一函数;故选:C .5.B【解析】利用奇函数的性质()()22f f -=-即可得到答案.【详解】因为函数()y f x =是奇函数,所以()()24226f a f -=-=-=-,解得5a =.故选:B 6.B【分析】根据表格数据求出行驶里程与耗油量,即可解得.【详解】由表格中的信息可知,2020年10月1日油箱加满了油,此时的累计里程为32000千米,到2020年10月6日,油箱加满油需要48升,说明这段时间的耗油量为48升,累计里程为32600千米,说明这段时间汽车行驶了3260032000600-=千米,则在这段时间内,该车每100千米平均耗油量为4886=(升).故选:B .7.C.1x =时有最大值为1故选:C【点睛】本题考查了函数的最值问题,也可以利用均值不等式得到答案.8.B【分析】根据基本函数的单调性即可判断.【详解】对A ,21y x =-+在()0,1上单调递减,不符合题意;对于B ,y =[0),+∞上单调递增,所以在区间()0,1上单调递增,符合题意;对于C ,1y x=在()0+∞,上单调递减,所以在区间()0,1上单调递减,不符合题意;对于D ,3y x =-在()0,1上单调递减,不符合题意.故选:B 9.A【分析】去掉绝对值,根据一次函数的单调性即可作出判断.【详解】1,111,1x x y x x x +≥-⎧=+=⎨--<-⎩,1y x =+在()1,-+∞上单调递增,在(),1-∞-上单调递减,故选:A【点睛】本题考查分段函数的图象与性质,属于基础题.10.D【分析】根据题意,分0a ≤与0a >两种情况讨论()f a 的解析式,求出a 的值,综合即可得答案.【详解】根据题意,22,0()1,0x x x f x lnx x ⎧+-≤=⎨-+>⎩,若()0f a =,分2种情况讨论:当0a ≤时,()220f a a a =+-=,解可得2a =-或1(舍去),当0a >时,()1ln 0f a a =-+=,解可得a e =,综合可得:2a =-或e ;故选:D.【点睛】本题主要考查分段函数的求值,注意分段函数分段讨论,属于基础题.11.B【分析】设幂函数为()af x x =,代入点计算得到12a =,计算得到答案.【详解】设幂函数为()a f x x =,图象过点(8,,故()88af ==12a =,()12f x x =,()93f ==.故选:B 12.D【解析】分析各选项中函数单调性以及在区间()0,∞+上的单调性,可得出合适的选项.【详解】对于A 选项,函数()lg 2y x =定义域为()0,∞+,该函数为非奇非偶函数,且在区间()0,∞+上为增函数;对于B 选项,函数2y x =-为偶函数,且在区间()0,∞+上为减函数;对于C 选项,函数2x y =为非奇非偶函数,且在区间()0,∞+上为增函数;对于D 选项,函数y x =为偶函数,且在区间()0,∞+上为增函数.故选:D.【点睛】本题考查函数奇偶性与单调性的判断,熟悉几种常见的基本初等函数的基本性质是判断的关键,考查推理能力,属于基础题.13.B【解析】利用函数值的大小关系得到22,12(),21x x M x x x x +-≤≤⎧=⎨><-⎩或,画出函数图像得到答案.【详解】{}22,12()max (),(),21x x M x f x g x x x x +-≤≤⎧==⎨><-⎩或,画出函数图像,如图所示:则min ()(1)1M x M =-=故选:B【点睛】本题考查了函数的最值,根据题意得到分段函数画出函数图像是解题的关键.14.D【分析】化简函数解析式,即可得出合适的选项.【详解】因为1,01,0x x xy x x x -<⎧=+=⎨+>⎩,故函数x y x x =+的图象如D 选项中的图象.故选:D.15.A【分析】根据函数的定义域和奇函数的性质得到12a -=-,解得答案并验证即可.【详解】()()()21xf x x x a =-+为奇函数,定义域满足()()210x x a -+≠,故12x ≠且x a ¹-,故12a -=-,12a =,当12a =时,()()21122122x xf x x x x ==⎛⎫--+ ⎪⎝⎭,函数定义域为1111,,,2222⎛⎫⎛⎫⎛⎫-∞--+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()()2122xf x f x x -==--,函数为奇函数.故选:A 16.A 【分析】令11xx-+=t ,利用换元法即可容易求得函数解析式.【详解】令11x x -+=t ,则x =11t t -+,代入f 1-1x x ⎛⎫⎪+⎝⎭=1+x ,得f (t )=1+11t t -+=21t+,即f (x )=21x+.故选:A.【点睛】本题考查利用换元法求函数解析式,属基础题.17.B【解析】根据偶函数的定义域关于原点对称可得1a =,根据(1)(|1|)f x f x -=-以及函数()f x 的单调性可解得结果.【详解】因为函数()f x 是定义在区间[1,2]a a --上的偶函数,所以120a a --+=,解得1a =,(1)()f x f a -<可化为(1)(1)f x f -<,因为()f x 在区间[0,2]a 上单调递增,所以11x -<,解得02x <<.故选:B【点睛】关键点点睛:根据(1)(|1|)f x f x -=-以及函数()f x 的单调性解不等式是解题关键.18.A【分析】作出()f x 的图象,数形结合,即可容易求得参数的范围.【详解】作出函数()f x 的图象如图:根据图象可知,1()0,k ∈.故选:A .【点睛】本题考查通过数形结合由方程根的个数求参数范围,属基础题.19.D【解析】利用已知条件得到2221a a --=求出a 的值,再利用指数型函数过定点问题求解即可.【详解】由题意得:22211a a a --=⇒=-或3a =,又函数()f x 在()0,∞+上单调递增,则3a =,则()()311x g x bb +=+>,当303x x +=⇒=-时,()32g -=,则()()11x ag x bb +=+>过定点()3,2-.20.D【解析】根据抽象函数定义域以及分母不为零、偶次根式被开方数非负列不等式,解得结果.【详解】因为函数()y f x =的定义域是[0,4],所以0240212101x x x x x ≤≤≤≤⎧⎧∴∴<≤⎨⎨->>⎩⎩.故选:D【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.21.D【分析】分别判断每组函数的定义域和对应关系是否一致即可.【详解】对A ,()f x x ==,对应关系不一致,故A 错误;对B ,()f x 的定义域为R ,()g x 的定义域为{}0x x ≠,定义域不同,故B 错误;对C ,()f x 和()g x 的对应关系不一致,故C 错误;对D ,()f x 和()g x 的定义域都为R ,且()1,111,1x x f x x x x +≥-⎧=+=⎨--<-⎩,对应关系一致,故D 正确.故选:D.22.C【解析】不等式等价于()0f x x ⋅<,由奇函数的图象特点,再分0x >和0x <两种情况解不等式.【详解】()f x 是奇函数,()()f x f x ∴-=-,由图可知,当()0,1x ∈时,()0f x <,则当()1,0x ∈-时,()0f x >,当()1,3x ∈时,()0f x >,则当()3,1x ∈--时,()0f x <,()()00f x x f x x -⋅>⇔-⋅>,即()0f x x ⋅<,当()00x f x >⎧⎨<⎩或()00x f x <⎧⎨>⎩,()()0,11,0x ∴∈- .23.A【解析】根据函数()f x =[0,2]上单调递减,则由2t ax =-在[0,2]上单调递减,且0t ≥恒成立求解.【详解】因为函数()f x =[0,2]上单调递减,所以0220a a >⎧⎨-≥⎩,解得01a <≤,所以a 的取值范围是(0,1],故选:A 24.B【解析】依题意,当0x >时,(21)))((1a x x a f =-+-为减函数,再比较分段点处函数值大小,即可得答案.【详解】依题意()f x 在R 上为减函数,所以02101(13a a -<⎧⎪⎨≥-⎪⎩,解得102a ≤<,故选:B.25.C【解析】根据抽象函数定义域的求法,利用代换法求解即可.【详解】因为函数f (2x -3)的定义域是[-1,4],所以14x -≤≤,所以5235x -≤-≤,令5125x -≤-≤,解得23x -≤≤,所以函数f (1-2x )的定义域为[2,3]-,故选:C 26.A【解析】首先由已知证明函数在区间(),0∞-的单调性,再利用函数的单调性解抽象不等式.【详解】令120x x <<,则120x x ->->,奇函数()f x 在区间[)0,∞+单调递增,()()()1200f x f x f ∴->->=,即()()120f x f x ->->,()()120f x f x ∴<<,()f x \在区间(),-∞+∞是单调递增函数,()1213f x f ⎛⎫-< ⎪⎝⎭,1213x ∴-<,即23x <,所以满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 的取值范围是2,3⎛⎫-∞ ⎪⎝⎭.故选:A【点睛】方法点睛:一般利用函数奇偶性和单调性,解抽象不等式包含以下几点:1.若函数是奇函数,首先确定函数在给定区间的单调性,然后将不等式转化为()()12f x f x <的形式,最后运用函数的单调性去掉“f ”,转化为一般不等式求解;2.若函数是偶函数,利用偶函数的性质()()()f x f x f x -==,将不等式()()12f x f x <转化为()()12f x f x <,再利用函数在[)0,∞+的单调性,去掉“f ”,转化为一般不等式求解.27.12x -【分析】根据条件,设幂函数为()(y f x x αα==为常数),再根据幂函数过点)2即可求解.【详解】设幂函数为()(y f x x αα==为常数),因为幂函数过点,所以2α=,则12α=-,所以12()f x x -=,故答案为:12x -.28.12【分析】先求21(2)24f --==,再代入求解即可.【详解】根据分段函数先求21(2)24f --==,所以11((2))(42f f f -===,故答案为:12.29.1-【分析】函数定义域满足220ax x -+≥,根据解集结合根与系数的关系解得答案.【详解】y =的定义域满足:220ax x -+≥,解集为[]2,1-,故a<0且121221aa⎧=-+⎪⎪⎨⎪=-⨯⎪⎩,解得1a =-.故答案为:1-30.1,22⎛⎤⎥⎝⎦【分析】根据x 的范围即可求出114x ≤-<,从而可求出 11x -的范围,进而得出21x -的范围,即求出()f x 的值域.【详解】∵25x ≤<,∴114x ≤-<,∴11411 x ≤-<,∴12221x <≤-,∴()f x 的值域为1,22⎛⎤ ⎥⎝⎦,故答案为:1,22⎛⎤⎥⎝⎦.【点睛】本题主要考查函数定义域、值域的概念及求法,以及不等式的性质,属于基础题.31.9;【解析】得出()()14f x f x +-=即可【详解】因为53()7c f x ax bx x--=--+所以()()14f x f x +-=(3)(3)7714f f +-=+=,所以(3)1459f =-=.故答案为:9【点睛】若()f x 是奇函数,则()()g x f x a =+的图象关于()0,a 对称,满足()()2g x g x a -+=.32.21x -,()1x ≥【分析】先利用换元法求得函数的解析式2()1f x x =-,注意定义域.【详解】令1t ,则1t ≥,且2(1)x t =-,可得22()(1)2(1)1f t t t t =-+-=-,所以2()1f x x =-(1x ≥).故答案为:21x -,()1x ≥.【点睛】本题主要考查了函数的解析式的求解及应用,其中解答中合理利用换元法求得函数的解析式是解答的关键,属于基础题目.33.f (1)<f (﹣2)<f (﹣3);【分析】根据题意,由偶函数的性质可得()22f f -=(),()33f f -=(),结合函数的单调性即可得结果.【详解】根据题意,若()f x 为偶函数,则()22f f -=(),()33f f -=(),又由函数()f x 在(0,)+∞上是增函数,则()()()123f f f <<,则有()()()123f f f <-<-,故答案为:()()()123f f f <-<-.【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是掌握函数奇偶性与单调性的定义,属于基础题.34.1【解析】因为函数过点(0,2),(1,0)-,分别求出直线方程与对数函数方程,从而求得,,a b c ,相乘即可.【详解】因为函数过点(0,2),(1,0)-,则直线方程为112x y+=-即22y x =+,所以2a b ==,因为函数过点(0,2),所以1log 0216c ⎛⎫+= ⎪⎝⎭,解得14c =,所以1abc =.故答案为:1【点睛】本题考查分段函数图像与解析式的求法,属于基础题.35.()24133f x x x=--+【分析】由已知可得f (1x )-2f (x )21x =-,联立两式消去f (1x),解方程组可得.【详解】∵()1221,f x f x x ⎛⎫-=- ⎪⎝⎭∴f (1x )-2f (x )21x=-,联立两式消去f (1x),可得f (x )=24133x x --+故答案为f (x )=24133x x--+【点睛】本题考查函数解析式的求解,考查整体换元,属于基础题.36.[)4,8【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立,则函数()f x 在R 上单调递增,进而可得答案.【详解】 对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立,∴函数,1()(4)2,12x a x f x ax x ⎧⎪=⎨-+<⎪⎩ 在R 上单调递增,∴1402422a a a a ⎧⎪>⎪⎪->⎨⎪⎪-+⎪⎩ ,解得:[4a ∈,8),故答案为:[)4,8.37.-3【分析】由题意可得m ≤x 2﹣4x 对一切x ∈(0,1]恒成立,再根据f (x )=x 2﹣4x 在(0,1]上为减函数,求得f (x )的最小值,可得m 的最大值.【详解】解:由已知可关于x 的不等式x 2﹣4x ﹣m ≥0对任意x ∈(0,1]恒成立,可得m ≤x 2﹣4x 对一切x ∈(0,1]恒成立,又f (x )=x 2﹣4x 在(0,1]上为减函数,∴f (x )min =f (1)=﹣3,∴m ≤﹣3,即m 的最大值为﹣3,故答案为-3.【点睛】本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,函数的恒成立问题,属于中档题.38.23x +.【分析】利用原函数为奇函数求出当0x <时的解析式,然后写出()f x 的表达式.【详解】设0x <,则0x ->,所以()2323x x ⋅--=--.又原函数为奇函数,所以()()2323f x x x =---=+,故答案为:23x +.【点睛】本题考查利用函数的奇偶性求函数的解析式,属于基础题.39.–3.【分析】由已知可知,22()()f x x f x x -+=--,然后结合f (1)3=,可求(1)f -,然后代入即可求解(1)g -.【详解】()2y f x x =+ 是奇函数,()()22f x x f x x ∴-+=--,()()22x f x f x -+=-∴,()13f = ,()15f ∴-=-,()()2g x f x =+,则()()1123g f -=-+=-.故答案为:–3【点睛】本题主要考查了利用函数的奇偶性求解函数值,解题的关键是奇函数定义的灵活应用,属于容易题.40.14-【分析】根据题意,分析可得(4)(2)()f x f x f x +=-+=,则函数()f x 是周期为4的周期函数,由此可得231()()22f f =-,结合函数的解析式计算可得答案.【详解】根据题意,函数()f x 是定义在R 上的奇函数,满足(2)()f x f x +=-,则(2)()()f x f x f x +=-=-,则有(4)(2)()f x f x f x +=-+=,则函数()f x 是周期为4的周期函数,则23111((12)()()2222f f f f =-+=-=-,又由当[0x ∈,1)时,2()f x x =,则2111(()224f ==,则2311(()224f f =-=-,故答案为:14-.41.1260【解析】设长方体长为a ,则宽为9a ,则表面积为36418a a ++,利用均值不等式得到表面积最小值,代入数据计算得到答案.【详解】设长方体长为a ,则宽为9a ,则表面积为364181842a a++≥+=当364a a=即3a =时等号成立费用为:0.013000421260⨯⨯=故答案为:1260【点睛】本题考查了均值不等式的应用,意在考查学生的计算能力和应用能力.42.(1)()22f x x x =-;(2)当13m ≤<时,值域为22,3m m ⎡⎤-⎣⎦;当11m -≤<时,值域为[]1,3-;当1m <-时,值域为21,2m m ⎡⎤--⎣⎦.【解析】(1)根据对称轴可得2b =-,再根据图象过(1,3)-可求c 的值,从而得到()f x 的解析式.(2)就13m ≤<、11m -≤<、1m <-分类讨论后可得函数相应的值域.【详解】(1)2()f x x bx c =++图象的对称轴为2bx =-,所以12b -=即2b =-.又图象过(1,3)-,故()123c --+=,故0c =,所以()22f x x x =-.(2)当13m ≤<时,()f x 在[],3m 上为增函数,而()22f m m m =-,()3963f =-=,故()f x 的值域为22,3m m ⎡⎤-⎣⎦.当11m -≤<时,()f x 在[],1m 上为减函数,在[]1,3为增函数,故()()min 11f x f ==-,131m -≤-,故()()max 33f x f ==,故()f x 的值域为[]1,3-.当1m <-时,()f x 在[],1m 上为减函数,在[]1,3为增函数,故()()min 11f x f ==-,131m ->-,故()2max 2f x m m =-,故()f x 的值域为21,2m m ⎡⎤--⎣⎦.综上,当13m ≤<时,值域为22,3m m ⎡⎤-⎣⎦;当11m -≤<时,值域为[]1,3-;当1m <-时,值域为21,2m m ⎡⎤--⎣⎦.【点睛】本题考查二次函数解析式的求法以及二次函数在动区间上的值域,后者需根据区间的端点与对称轴的位置关系来分类讨论,本题属于中档题.43.(1)证明见解析;(2)最小值为12,最大值为116.【分析】(1)根据函数单调性定义进行证明;(2)根据函数单调性求最值.【详解】(1)证明:f (x )=211x x -+=2-31x +;设x 1,x 2为(0,+∞)上任意两数,且x 1>x 2则f (x 1)-f (x 2)=231x +-131x +=()()()1212311x x x x -++,∵x 1>x 2>0,∴x 1-x 2>0,x 1+1>0,x 2+1>0,∴()()()1212311x x x x -++>0,∴f (x 1)>f (x 2),∴f (x )在区间(0,+∞)上是增函数.(2)∵f (x )在(0,+∞)上是增函数,∴f (x )在区间[1,17]上的最小值为f (1)=12,最大值为f (17)=116.【点睛】本题考查单调性定义、利用单调性求最值,考查基本分析论证与求解能力,属基础题.44.(1)()2x x e e f x --=,()2x x e e g x -+=,(2)证明见解析【分析】(1)首先函数的奇偶性得到方程组()()()()xx f x g x e f x g x e -⎧+=⎨-+=⎩,解方程组即可.(2)分别化简22[()][()]f x g x +和右边(2)g x ,得到左边=右边,即证22[()][()](2)f x g x g x +=.【详解】(1)已知()()x f x g x e +=,因为函数()f x 是定义在R 上的奇函数,()g x 是定义在R 上的偶函数,所以()()--+-=x f x g x e ,即()()x f x g x e --+=.得到()()()()x x f x g x e f x g x e -⎧+=⎨-+=⎩,解得()2x xe e g x -+=,()2x x e ef x --=.(2)22222222[()][()]44222x x x x x xe e e e e ef xg x ---+-=++++=+,22(2)2x x e e g x -+=,左边=右边,即证22[()][()](2)f x g x g x +=.【点睛】本题第一问考查函数的奇偶性,第二问考查指数式的运算,属于简单题.45.(1)2()243f x x x =-+;(2)10,3⎛⎫ ⎪⎝⎭;(3)(,1)-∞-.【分析】(1)根据题意设出二次函数的顶点式,根据(0)3f =得2a =,可得解;(2)由311a a <<+可解得结果;(3)转化为22630x x m -+->在区间[1,1]-上恒成立,根据二次函数求出最小值可得解.【详解】(1)(0)(2)f f = ,故二次函数()f x 的图象关于直线1x =对称,又由()f x 的最小值为1,故可设2()(1)1f x a x =-+,由(0)3f =,得2a =,故2()243f x x x =-+.(2)要使函数不单调,则有311a a <<+,解得103a <<.(3)由题意,2()2432f x x x x m =-+>+在区间[1,1]-上恒成立,即22630x x m -+->在区间[1,1]-上恒成立,设2()263g x x x m =-+-,则只要()g x 的最小值min ()g x 大于0即可,而min ()(1)1g x g m ==--,则10m -->,得1m <-,即(,1)m ∈-∞-.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≥;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≥;46.(1)())0f x x =≥;(2)(]1,3.【分析】(1)把点的坐标代入函数解析式求出a 的值,即可写出()f x 的解析式;(2)根据()f x 在定义域上的单调性,把不等式(1)(3)f a f a +>-化为关于a 的不等式组,求出解集即可.【详解】(1)幂函数()a f x x =的图象经过点(,2a ∴,解得12a =,∴幂函数())120x x f x ==≥;(2)由(1)知()f x 在定义域[)0,∞+上单调递增,则不等式()()13f a f a +>-可化为103013a a a a +≥⎧⎪-≥⎨⎪+>-⎩解得13a <£,∴实数a 的取值范围是(]1,3.【点睛】本题考查了幂函数的定义与应用问题,属于容易题.47.(1)()21f x x x =-+(2)37,23⎡⎤⎢⎥⎣⎦(3)(),1-∞-【分析】(1)设()2f x ax bx c =++,()01f =,得到1c =,代入函数计算得到11a b =⎧⎨=-⎩,得到解析式.(2)令()()h x f x ax =-,只需()()230h h ⋅≤,解不等式并验证得到答案.(3)设()231g x x x m =-+-,确定函数的单调性,计算最值得到答案.【详解】(1)设()2f x ax bx c =++,则由()01f =,1c =.()()12f x f x x +-=,即22ax a b x ++=,220a a b =⎧⎨+=⎩,即11a b =⎧⎨=-⎩,()f x 的解析式为()21f x x x =-+.(2)令()()()211h x f x ax x a x =-=-++,则()232h a =-,()373h a =-,由()0h x =在[]2,3上有唯一零点且不是重根,只需()()230h h ⋅≤,()()32730a a --≤,解得3723a ≤≤,经检验32a =时,方程()0h x =在[]2,3上有唯一解2x =;73a =时,方程()0h x =在[]2,3上有唯一解3x =,故实数a 的取值范围为37,23⎡⎤⎢⎥⎣⎦.(3)212x x x m -+>+在[]1,1-上恒成立,即2310x x m -+->在[]1,1-上恒成立.设()231g x x x m =-+-,其图象的对称轴为直线32x =,所以()g x 在[]1,1-上单调递减.故只需()10g >,即213110m -⨯+->,解得1m <-,(),1m ∈-∞-48.(1)()21x f x x =-;(2)证明见解析;(3)1,12⎛⎫ ⎪⎝⎭.【解析】(1)利用奇函数的定义()()f x f x -=-,经过化简计算可求得实数b ,进而可得出函数()y f x =的解析式;(2)任取1x 、()21,1x ∈-,且12x x <,作差()()12f x f x -,化简变形后判断()()12f x f x -的符号,即可证得结论;(3)利用奇函数的性质将所求不等式变形为()()1f t f t -<-,再利用函数()y f x =的定义域和单调性可得出关于t 的不等式组,即可解得实数t 的取值范围.【详解】(1)由于函数()21x b f x x +=-是定义域()1,1-上的奇函数,则()()f x f x -=-,即()2211x bx b x x -++=-+-+,化简得0b =,因此,()21x f x x =-;(2)任取1x 、()21,1x ∈-,且12x x <,即1211x x -<<<,则()()()()()()()()()()()()2212212112121222221211221211111111111x x x x x x x x x x f x f x x x x x x x x x ----+-=-==---+-+--,1211x x -<<< ,210x x ∴->,1210x x +>,110x -<,110x +>,210x -<,210x +>.()()120f x f x ∴->,()()12f x f x ∴>,因此,函数()y f x =在区间()1,1-上是减函数;(3)由(2)可知,函数()y f x =是定义域为()1,1-的减函数,且为奇函数,由()()10f t f t -+<得()()()1f t f t f t -<-=-,所以111111t t t t ->-⎧⎪-<-<⎨⎪-<<⎩,解得112t <<.因此,不等式()()10f t f t -+<的解集为1,12⎛⎫ ⎪⎝⎭.【点睛】本题考查利用函数的奇偶性求参数、利用定义法证明函数的单调性以及函数不等式的求解,考查推理能力与运算求解能力,属于中等题.。
高中函数测试题及答案
高中函数测试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=2时的值为:A. 5B. 7C. 9D. 112. 函数y = |x|的图像是:A. 一条直线B. 一个V形C. 一个倒V形D. 一个S形3. 若f(x) = x^2 + 1,求f(-1)的值:A. 0B. 1C. 2D. 34. 函数y = 1/x的图像在第一象限和第三象限是:A. 正比例函数B. 反比例函数C. 一次函数D. 二次函数5. 函数y = log2(x)的定义域是:A. x > 0B. x < 0C. x ≥ 0D. x ≤ 06. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π7. 若f(x) = x^3 - 3x^2 + 2x,求f'(x)的值:A. 3x^2 - 6x + 2B. x^2 - 2x + 1C. 3x^2 - 6xD. x^2 - 2x8. 函数y = cos(x)的图像在x = π/2时的值为:A. 1B. 0C. -1D. 不确定9. 若f(x) = 2^x,求f'(x)的值:A. 2^xB. ln(2) * 2^xC. 1D. 2^(x-1)10. 函数y = x^3的图像是:A. 关于原点对称B. 关于y轴对称C. 关于x轴对称D. 都不是答案:1. B2. B3. C4. B5. A6. B7. A8. B9. B10. A二、填空题(每题4分,共20分)11. 若函数f(x) = x^3 - 6x^2 + 9x + 2,求f(3)的值。
答案:-112. 若函数g(x) = √x,求g(16)的值。
答案:413. 若函数h(x) = 2^x,求h(-1)的值。
答案:1/214. 函数y = 3x - 5的斜率是:答案:315. 若函数k(x) = log10(x) + 1,求k(100)的值。
2020-2021学年高中数学必修第一册第三章《函数的概念与性质》测试卷及答案解析
17.已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(Ⅰ)当a=﹣1时,求函数f(x)的最大值和最小值;
(Ⅱ)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.
18.已知幂函数f(x)=(m﹣1)2 在(0,+∞)上单调递增,函数g(x)=2x﹣k.
(Ⅰ)求m的值;
5.函数f(x) ,x∈[3,+∞)的值域是( )
A. B. C. D.
6.若函数y 的定义域为R,则实数a的取值范围是( )
A.(0, ]B.(0, )C.[0, ]D.[0, )
7.已知函数f(2x﹣1)=4x+3(x∈R),若f(a)=15,则实数a的值为( )
A.2B.3C.4D.5
8.幂函数的图象经过点 ,若0<a<b<1,则下列各式正确的是( )
2020-2021学年高中数学必修第一册第三章《函数的概念与性质》测试卷
参考答案与试题解析
一.选择题(共8小题)
1.函数 的定义域为( )
A.(﹣1,2]B.[2,+∞)
C.(﹣∞,﹣1)∪[1,+∞)D.(﹣∞,﹣1)∪[2,+∞)
【解答】解:函数 ,
令 0,得x﹣2≥0,
解得x≥2,
所以f(x)的定义域为[2,+∞).
(2)求证:函数f(x)在区间(﹣1,x0]上单调递减.
21.已知函数f(x) ,求:
(1)f(1),f(﹣3)的值;
(2)求f(a+1)的值.
22.已知函数f(x)在定义域R内为偶函数,并且x≥0时解析式为f(x)=2x2﹣4x+7.求:
(1)x<0时的解析式;
人教版A版(2019)高中数学必修第一册:第三章 函数的概念与性质 综合测试(附答案与解析)
第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数20()(31)f x x =+-的定义域是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .1,13⎛⎫⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,133⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数1(2),()(3)(2),x f x f x x =+⎪⎩≥<则(1)(9)f f +等于( )A .2-B .7-C .27D .73.函数111y x -=+-的图像是下列图像中的( )ABCD4.若函数y ax =与by x=-在(0,)+∞上都是减函数,则2()f x ax bx =+在(0,)+∞上是( ) A .增函数B .减函数C .先增后减D .先减后增5.函数2()(2)1f x ax a x =+++是偶函数,则函数的单调递增区间为( ) A .[0,)+∞B .(,0]-∞C .(,)-∞+∞D .[1,)+∞6.函数2()(1)1f x mx m x =+-+在区间(,1]-∞上为减函数,则m 的取值范围是( )A .10,3⎛⎤ ⎥⎝⎦B .10,3⎡⎫⎪⎢⎣⎭C .10,3⎡⎤⎢⎥⎣⎦D .10,3⎛⎫ ⎪⎝⎭7.定义在R 上的偶函数()f x ,对任意()1212,[0,)x x x x ∈+∞≠,有()()21210f x f x x x --<,则( )A .(3)(2)(1)f f f -<<B .(1)(2)(3)f f f -<<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f -<<8.若函数,1,()(23)1,1ax f x x a x x ⎧⎪=⎨⎪-+⎩>≤是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤ ⎥⎝⎦D .2,3⎛⎫+∞ ⎪⎝⎭9.设函数()f x 满足对任意的,m n (,m n 为正数)都有()()()f m n f m f n +=⋅且(1)2f =,则(2)(3)(2020)(1)(2)(2019)f f f f f f +++等于( )A .2 020B .2 019C .4 038D .4 04010.在函数([1,1])y x x =∈-的图像上有一点(,)P t t ,此函数图象与x 轴、直线1x =-及x t =围成图形的面积为S (如图的阴影部分所示),则S 与t 的函数关系的图象可表示为( )ABCD11.设奇函数()f x 在(0,)+∞上是增函数,且(2)0f =,则不等式()()0f x f x x --<的解集为( )A .(2,0)(2,)-+∞B .(2,0)(0,2)-C .(,2)(2,)-∞-+∞D .(,2)(0,2)-∞-12.已知定义在R 上的函数()f x ,若函数(1)y f x =+为偶函数,且()f x 对任意()1212,[1,)x x x x ∈+∞≠都有()()21210f x f x x x -->,若(1)(2)f a f a -≥,则实数a 的取值范围是( )A .[1,1]-B .(,1]-∞-C .[1,)+∞D .(,1][1,)-∞-+∞二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.设函数0()1,02x x f x x =⎨⎛⎫⎪ ⎪⎝⎭⎩≥<则((4))f f -=________.14.若函数2(1)2()1a x a f x x a -+-=+-为奇函数,则实数a =________. 15.设函数2()24f x x x =-+在区间[,]m n 上的值域是[6,2]-,则m n +的取值范围是________.16.已知函数29,3,()6,3,x f x x x x ⎧⎪=⎨-+⎪⎩≥<则不等式()22(34)f x x f x --<的解集是________. 三、解答题(本大题共6小题,共70分.解答时写出必要的文字说明,证明过程或演算步骤)17.[10分]已知函数22(),[1,)x x af x x x++=∈+∞. (1)当12a =时,求函数()f x 的最小值; (2)若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围; (3)讨论函数的单调性.(只写出结论即可)18.[12分]设函数2()23,f x x x a x =--+∈R .(1)小鹏同学认为,无论a 取何值,()f x 都不可能是奇函数,你同意他的观点吗?请说明你的理由. (2)若()f x 是偶函数,求a 的值.(3)在(2)的情况下,画出()y f x =的图象并指出其单调递增区间。
3.2函数的基本性质同步测试-高一数学人教A版(2019)必修第一册
17.已知函数 是定义在 上的奇函数,且当 时, .
(1)求函数 的解析式;
(2)写出函数 的增区间(不需要证明)
18.已知函数 , .
(1)用单调性的定义证明函数 在区间 上是单调递增;
(2)求关于 的不等式 的解集.
19.已知函数 是定义域为 上的函数,并且在 上是增函数,求满足 的实数 的取值范围.
12.已知函数 ,则下列x的范围满足不等式 的是()
A. B. C. D.
三、填空题
13.函数 为定义在 上的增函数,且 ,则实数 的取值范围是________________.
14.已知函数 ,若 ,则 ________.
15.偶函数 对任意 都有 ,则 ______.
16.若函数 是定义域为 的奇函数,则实数 ________.
5.A
【解析】因为函数 是偶函数,
所以 ,即 ①,
因为函数 是奇函数,
所以 ,即 ②,
由①②可得: ,故选:A.
6.C
【解析】根据题意,若 是定义在 上的奇函数,则 ,
又由 ,则有 ,
则 ,故选:C.
7.A
【解析】∵ 为奇函数,∴ ,得 .故选:A.
8.A
【解析】偶函数 在区间 上单调递增,则 在区间 上单调递减,
5.若函数 的定义域为R,且函数 是偶函数,函数 是奇函数,则 ()
A. B. C.1D.3
6.若 是定义在 上的奇函数,且 ,则 的值为()
A.1B.2C.0D.
7.若函数 为奇函数,则 =()
A. B. C. D.1
8.已知偶函数 在区间 上单调递增,则满足 的 的取值范围()
A. B. C. D.
20.已知函数f(x)=x+ ,且f(1)=2.
第三章 函数的概念与性质同步单元必刷卷(基础卷)(考试版)
第三章 函数的概念与性质同步单元必刷卷(基础卷)一、单项选择题:本题共8小题,每小题满分5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分.1.(2019·南通市海门实验学校高一月考)下列每组函数是同一函数的是( ) A .0()1,()f x g x x ==B .24(),()22x f x g x x x -==+-C .2()|3|,()(3)f x x g x x =-=-D .()(1)(3),()13f x x x g x x x =--=--2.(2019·长沙市南雅中学高一月考)函数()224f x x x =--+的值域是( )A .[]22-,B .[]1,2C .[]0,2D .2,2⎡⎤-⎣⎦3.(2021·蚌埠田家炳中学高二月考(文))如果函数2()(1)3f x x a x =+-+在区间[]1,4上是单调函数,那么实数a 的取值范围是( ) A .9a ≥或3a ≤ B .7a ≥或3a ≤ C .9a >或3a <D .39a ≤≤4.(2021·河南高三开学考试(文))已知()21f x ax bx =++是定义在[]1,2a a -上的偶函数,那么()y f x =的最大值是( ) A .1B .13C .43D .31275.(2021·湖北高三开学考试)已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()()22101x x f x g x a a a a -+=-+>≠,,则()1f =( )A .1-B .0C .1D .26.(2021·乾安县第七中学高二月考(文))已知二次函数()f x 满足()212f x x x +=-+,若()3f x x m >+在区间[]1,3-上恒成立,则实数m 的范围是( ) A .m <-5 B .m >-5C .m <11D .m >117.(2021·贵州贵阳·高三开学考试(文))已知函数()f x 在(),-∞+∞上单调递减,且为奇函数,若12f ,则满足()222f x -≤-≤的x 的取值范围是( )A .[]22-,B .[]1,1-C .[]1,3D .[]0,48.(2021·全国高一课前预习)新冠肺炎疫情防控中,核酸检测是新冠肺炎确诊的有效快捷手段.某医院在成为新冠肺炎核酸检测定点医院并开展检测工作的第n 天,每个检测对象从接受检测到检测报告生成平均耗时()t n (单位:小时)大致服从的关系为()000,,t n N n t n t n N N ⎧<⎪⎪=⎨⎪≥⎪⎩(0t 、0N 为常数).已知第16天检测过程平均耗时为16小时,第64天和第67天检测过程平均耗时均为8小时,那么可得到第49天检测过程平均耗时大致为( ) A .16小时 B .11小时 C .9小时 D .8小时二、多项选择题:本题共4小题,每小题满分5分,共20分. 在每小题给出的四个选项中,有多项符合题目要求。
第三章函数的概念与性质【新教材】人教A版(2019)高中数学必修【试题版】
第三章函数的概念与性质单元测试题1.函数f (x )=x -1x -2的定义域为( )A .(1,+∞)B .[1,+∞)C .[1,2)D .[1,2)∪(2,+∞)2.函数y =x 2+1的值域是( ) A .[0,+∞) B .[1,+∞) C .(0,+∞)D .(1,+∞) 3.已知f ⎝ ⎛⎭⎪⎫x 2-1=2x +3,则f (6)的值为( )A .15B .7C .31D .17 4.若函数f (x )=ax 2+bx +1是定义在[-1-a ,2a ]上的偶函数,则该函数的最大值为( ) A .5 B .4 C .3D .25.已知函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2-x -3,x >1,则f ⎝ ⎛⎭⎪⎫1f (3)的值为( )A.1516 B .-2716 C.89D .186.已知函数y =f (2x )+2x 是偶函数,且f (2)=1,则f (-2)=( ) A .5B .4C .3D .27.已知函数f (x )的定义域为(0,+∞),且在(0,+∞)上单调递增,则不等式f (x )>f (2x -3)的解集是( ) A .(-∞,3) B .(3,+∞) C .(0,3)D.⎝ ⎛⎭⎪⎫32 ,3 8.甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是( )A .40万元B .60万元C .120万元D .140万元9.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是( )A.这个函数仅有一个单调增区间B.这个函数有两个单调减区间C.这个函数在其定义域内有最大值是7 D.这个函数在其定义域内有最小值是-7 10.函数f(x)=x2-2ax+a+2在[0,a]上的最大值为3,最小值为2,则a的值为() A.0 B.1或2C.1 D.211.定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有f(x2)−f(x1)x2−x1<0,则()A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)12. 函数f(x)是定义在R上的奇函数,下列命题:①f(0)=0;②若f(x)在[0,+∞)上有最小值-1,则f(x)在(-∞,0]上有最大值1;③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x.其中正确命题的个数是()A.1 B.2C.3 D.413. 已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=________. 14.设函数f (x )=x 2+(a +1)x +ax为奇函数,则实数a =________.15.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≤-2,x +1,-2<x <4,3x ,x ≥4,若f (a )<-3,则a 的取值范围是________.16.设奇函数f (x )在(0,+∞)上为增函数且f (1)=0,则不等式f x -f-xx<0的解集为.17.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,3-2a x -1,x ≤1是R 上的单调递增函数,则实数a 的取值范围为 .18.具有性质f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1中满足“倒负”变换的函数是________(填序号).19. 已知函数f (x )=2x -a x ,且f ⎝ ⎛⎭⎪⎫12=3.(1)求实数a 的值;(2)判断函数f (x )在(1,+∞)上的单调性,并用定义证明.20.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,2],4x,x ∈(2,4].(1)在图中画出函数f (x )的大致图象; (2)写出函数f (x )的最大值和单调递减区间.21.已知f (x )是R 上的奇函数,且当x >0时,f (x )=x 2-x -1.(1)求f (x )的解析式;(2)作出函数f (x )的图象(不用列表),并指出它的单调递增区间.22.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.23.已知函数f(x)是定义在R上的奇函数,当x≤0时,f(x)=2xx-1.求:(1)f(x)的解析式;(2)f(x)在[2,6]上的最大值和最小值.24.已知f(x)是定义在R上的奇函数,且f(x)=x+mx2+nx+1.(1)求m,n的值;(2)用定义证明f(x)在(-1,1)上为增函数;(3)若f(x)≤a3对x∈⎣⎢⎡⎦⎥⎤-13,13恒成立,求a的取值范围.。
人教高中数学 第三章 函数概念与性质 单元测试(含答案)
人教高中数学函数概念与性质一、单选题1.下列函数中,在其定义域内既是增函数又是奇函数的是( )A.y=x2B.y=―log2x C.y=3x D.y=x3+x 2.若幂函数f(x)=xα的图象经过点(3,3),则α的值为( )A.2B.-2C.12D.―123.若f[g(x)]=6x+3且g(x)=2x+1,则f(x)的解析式为( )A.3B.3x C.3(2x+1)D.6x+14.已知函数y=f(x+2)的定义域为(0,2),则函数y=f(log2x)的定义域为( )A.(﹣∞,1)B.(1,4)C.(4,16)D.(14,1)5.下列各组函数中,表示同一函数的是( )A.f(x)=x和g(x)=(x)2B.f(x)=|x|和g(x)=3x3C.f(x)=x|x|和g(x)={x2(x>0)―x2(x<0)D.f(x)=x2―1x―1和g(x)=x+1,(x≠1)6.已知函数f(x)={2x+1,x≤0|ln x|,x>0,则方程f[f(x)]=3的实数根的个数是( )A.2B.3C.4D.57.连续函数f(x)是定义在(―1,1)上的偶函数,当x≠0时,x f′(x)>0.若f(a+1)―f(2a)>0,则a的取值范围是( )A.(―13,1)B.(―12,0)C.(―12,1)D.(―13,0)8.已知函数f(x)是定义在R上的偶函数,且在(―∞,0)上单调递减,若a=f(log215),b=f( log24.1),c=f(20.8),则a,b,c的大小关系是( )A.a<b<c B.b<a<c C.c<a<b D.c<b<a二、多选题9.下列函数中既是奇函数又在定义域上是单调函数的有( )A.y=1x2B.y=―x3C.y=x|x|D.y=x+1x10.给出定义:若m―12<x≤m+12(m∈Z),则称m为离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x―{x}|的四个结论,其中正确的是( )A.函数y=f(x)的定义域为R,值域为[0,12]B.函数y=f(x)的图象关于直线x=k2(k∈Z)对称C.函数y=f(x)是偶函数D.函数y=f(x)在[―12,12]上单调递增11.设函数f(x)=ln|x+2|―ln|x―2|,则( )A.f(x)的定义域为(―∞,―2)∪(2,+∞)B.f(x)的值域为RC.f(x)在(―∞,―2)单调递增D.f(x)在(2,+∞)单调递减12.定义:若对于定义域内任意x,总存在正常数a,使得f(x+a)>f(x)恒成立,则称函数f(x)为“a距”增函数,以下判断正确的有( )A.函数f(x)=3x(x∈R)是“a距”增函数B.函数f(x)=2x―x(x>0)是“1距”增函数C.若函数f(x)=x3―14x+4(x∈R)是“a距”增函数,则a的取值范围是(0,1)D.若函数f(x)=2x2+k|x|(x∈(―1,+∞))是“2距”增函数,则k的取值范围是(―2,+∞)三、填空题13.幂函数f(x)图象过(2,4),则幂函数f(x)= .14.已知函数f(x)= 2x―3x+1的图象关于点P中心对称,则点P的坐标是 .15.设函数g(x)满足g(x+2)=2x+3,则g(x)的解析式为 .16.设函数f(x)= {1,x≥0―1,x<0,g(x)= x2e2f(x﹣1),则函数g(x)的递增区间是 .四、解答题17.已知f(x)为二次函数,且f(x)的两个零点为1和3,g(x)为幂函数,且y=f(x)和y=g(x)都经过点(4,2).(1)求函数y=g(f(x))的定义域;(2)当x∈[1,16]时,求函数y=f(g(x))的值域.18.已知函数f(x)=x2+ax+bx(a,b∈R).(1)若函数f(x)为奇函数,求实数a的值;(2)当a=2,b=1时,求函数f(x)在区间(0,+∞)上的最小值.19.已知f(x)=x|x﹣a|+2x﹣3,其中a∈R(1)当a=4,2≤x≤5时,求函数f (x )的最大值和最小值,并写出相应的x 的值.(2)若f (x )在R 上恒为增函数,求实数a 的取值范围.20.已知二次函数f (x )=ax 2+bx+1,(a >0), F (x )={f (x ),x >0―f (x ),x <0 若f (﹣1)=0且对任意实数x 均有f (x )≥0成立(1)求F (x )的表达式;(2)当x ∈[﹣2,2]时,g (x )=f (x )﹣kx 是单调函数,求k 的取值范围. 21.某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第x 个月的利润 f (x )={1(1≤x ≤20,x ∈N ∗)110x (21≤x ≤60,x ∈N ∗) (单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第x 个月的当月利润率 g (x )=第x 个月的利润第x 个月前的资金总和 ,例如: g (3)=f (3)81+f (1)+f (2) . (1)求g (10);(2)求第x 个月的当月利润率g (x );(3)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率. 22.已知定义域为 R 的函数 f (x )=ℎ(x )+n ―2ℎ(x )―2是奇函数, ℎ(x ) 为指数函数且 ℎ(x ) 的图象过点 (2,4) .(1)求 f (x ) 的表达式;(2)若对任意的 t ∈[―1,1] .不等式 f (t 2―2a )+f (at ―1)≥0 恒成立,求实数 a 的取值范围; (3)若方程 f (|x 2+3x |)+f (―a |x ―1|)=0 恰有2个互异的实数根,求实数 a 的取值集合.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】C5.【答案】D6.【答案】D7.【答案】D8.【答案】D9.【答案】B,C10.【答案】A,B,C11.【答案】B,D12.【答案】A,B,D13.【答案】x 214.【答案】(﹣1,2)15.【答案】g (x )=2x ―116.【答案】(﹣∞,0],[1,2]17.【答案】(1)解:设 f (x )=a (x ―1)(x ―3) ,( a ≠0 ) 又 y =f (x ) 过点 (4,2) ,∴2=a (4―1)(4―3) ,∴a =23 ,∴f (x )=23(x ―1)(x ―3) ,设 g (x )=x α ,由 y =g (x ) 都经过点 (4,2) 知, 2=4α ,∴α=12 ,∴g (x )=x ,y =g (f (x ))=23(x ―1)(x ―3) ,∴23(x ―1)(x ―3)≥0 ,∴x ≥3 或 x ≤1 ,∴函数的定义域为 (―∞,1]∪[3,+∞) .(2)令 t =g (x )=x ,∵x ∈[1,16] ,∴t ∈[1,4] ,所以 y =f (g (x ))=23(t 2―4t +3)=23[(t ―2)2―1] ,当 t =2 时, y min =―23 ; t =4 时, y max =2 ,所以函数的值域为[―23,2].18.【答案】(1)解:函数f(x)=x2+ax+bx的定义域为{x|x≠0},若函数f(x)为奇函数,则f(―x)=―f(x)成立,即(―x)2+a(―x)+b―x=―x2+ax+bx,即2ax=0恒成立,因为x≠0,所以a=0;(2)解:当a=2,b=1时,函数f(x)=x2+2x+1x =x+1x+2,因为x>0,所以f(x)=x+1x +2≥2x⋅1x+2=4,当且仅当x=1x,即x=1时等号成立,则函数f(x)取得最小值为4.19.【答案】(1)解:∵f(x)=x|x﹣a|+2x﹣3,∴当a=4时,f(x)=x|x―4|+2x―3={―x2+6x―3,2≤x≤4x2+2x―3,4<x≤5;作图如下:由图知,当x=5时,f(x)max=f(5)=52﹣2×5﹣3=12;当x=2或4时,f(x)min=f(2)=f(4)=﹣22+6×2﹣3=5,(2)解:f(x)={―x2+(a+2)x―3,x≤ax2+(2―a)x―3,x>a,∵f(x)在R上恒为增函数,∴{a+22≥aa―22≤a,解得﹣2≤a≤2.∴实数a的取值范围是[﹣2,2].20.【答案】(1)解:∵f(x)=ax2+bx+1(a>0),f(﹣1)=0且对任意实数x均有f(x)≥0成立;∴x=﹣b2a=﹣1,且a﹣b+1=0;即{b=2aa―b+1=0,解得{a=1b=2;∴f(x)=x2+2x+1,∴F(x)= {x2+2x+1(x>0)―x2―2x―1(x<0)(2)解:∵f(x)=x2+2x+1,∴g(x)=f(x)﹣kx=x2+(2﹣k)x+1,∵g(x)在[﹣2,2]上是单调函数,∴x= ―(2―k)2应满足:―(2―k)2≥2,或―(2―k)2≤﹣2,即k≥6,或k≤﹣2;∴k的取值范围是{k|k≤﹣2,或k≥6}21.【答案】(1)解:由题意得:f(1)=f(2)=f(3)=…═f(9)=f(10)=1g(x)=f(10)81+f(1)+⋯f(9)= 181+1+⋯+1= 190(2)解:当1≤x≤20时,f(1)=f(2)═f(x﹣1)=f(x)=1∴g(x)=f(x)81+f(1)+⋯f(x―1)= 181+1+⋯+1= 181+(x―1)=1x+80.当21≤x≤60时,g(x)=f(x)81+f(1)+⋯+f(20)+f(21)+⋯+f(x―1)=110x81+f(1)+⋯f(x―1)=110x81+20+2110+⋯+x―110=110x101+12(2110+x―110)(x―21)=110x101+(x―21)(x+20)20=2xx2―x+1600∴当第x个月的当月利润率g(x)={1x+80(1≤x≤20,x∈N∗)2xx2―x+1600(21≤x≤60,x∈N∗)(3)解:当1≤x≤20时,g(x)=1x+80是减函数,此时g(x)的最大值为g(1)=181当21≤x≤60时,g(x)=2xx2―x+1600=2x+1600x―1≤221600―1=279当且仅当x=1600x时,即x=40时,g(x)max=279,又∵279>181,∴当x=40时,g(x)max=279所以,该企业经销此产品期间,第40个月的当月利润率最大,最大值为279 22.【答案】(1)由题意,设ℎ(x)=a x,因为ℎ(x)过点(2,4),可得a2=4,解得a=2,即ℎ(x)=2x,所以f(x)=2x+n―2x+1―2,又因为f(x)为奇函数,可得f(0)=0,即f(0)=20+n―2―2=0,解答n=―1,经检验,符合f(x)=―f(―x),所以f(x)=―2x+12x+1+2.(2)由函数f(x)=―2x+12x+1+2=―12+12x+1,可得f(x)在R上单调递减,又因为f(x)为奇函数,因为f(t2―2a)+f(at―1)≥0,即f(t2―2a)≥f(1―at),所以t2―2a≤1―at,即t2+at―1―2a≤0,又因为对任意的t∈[―1,1],不等式f(t2―2a)+f(at―1)≥0恒成立,令g(t)=t2+at―1―2a,即g(t)≤0对任意的t∈[―1,1]恒成立,可得{g(―1)≤0g(1)≤0,即{(―1)2+a×(―1)―1―2a≤012+a―1―2a≤0,解得a≥2,所以实数a的取值范围为[0,+∞).(3)由于f(x)为奇函数,所以由f(|x2+3x|)+f(―a|x―1|)=0,可得f(|x2+3x|)=f(a|x―1|),又因为f(x)在R上递减,即|x2+3x|=a|x―1|,显然x≠1,所以a=|x2+3xx―1|,令t=x―1,则a=|t+4t+5|,又由当t>0时,t+4t +5≥2t⋅4t+5=9,当且仅当t=4t时,即t=2时等号成立;当t<0时,t+4t +5=―[(―t)+4―t]+5≤―2(―t)⋅4(―t)+5=1,当且仅当―t=―4t时,即t=―2时等号成立,方程有2个互异实数根,画出y=|t+4t+5|的图象,如图所示,由图可得,实数a的取值集合为{a|1<a<9或a=0}。
上饶市必修第一册第三单元《函数概念与性质》测试题(有答案解析)
一、选择题1.已知m R ∈,若函数()||x m f x e +=对任意x ∈R 满足()()20212120f x f x -=-,则不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是( ) A .[)1,,e e⎛⎤-∞⋃+∞ ⎥⎝⎦B .1,e e ⎡⎤⎢⎥⎣⎦C .[)10,,e e⎛⎤+∞ ⎥⎝⎦D .[),e +∞2.已知()2xf x x =+,[](),M a b a b =<,(){}4,N yy f x x M ==∈∣,则使得MN 的实数对(),a b 有( )A .0个B .1个C .2个D .3个3.已知函数()xxf x e e -=-,则不等式()()2210f x f x +--<成立的一个充分不必要条件为( ) A .()2,1- B .()0,1 C .1,12⎛⎫-⎪⎝⎭D .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭4.已知函数()()2265m m m f x x-=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( )A .恒大于0B .恒小于0C .等于0D .无法判断5.已知定义在R 上的函数()f x ,满足()()()3f m n f m f n +=+-,且0x >时,()3f x <,则下列说法不正确的是( )A .()()6f x f x +-=B .()y f x =在R 上单调递减C .若()10f =,()()22190f x x f x ++--->的解集()1,0-D .若()69f =-,则123164f ⎛⎫= ⎪⎝⎭6.已知32()2f x x ax ax =++,对任意两个不等实数12,[1,)x x ∈+∞,都有()()2112120x f x x f x x x ->-,则a 的取值范围( )A .2a ≥-B .2a ≤-C .4a ≥-D .4a ≤-7.已知函数()f x 的定义域为,(4)R f x +是偶函数,(6)3f =,()f x 在(,4]-∞上单调递减,则不等式(24)3f x -<的解集为( ) A .(4,6)B .(,4)(6,)-∞⋃+∞C .(,3)(5,)-∞⋃+∞D .(3,5)8.已知函数()2sin tan 1cos a x b xf x x x +=++,若()10100f =,则()10f -=( )A .100-B .98C .102-D .1029.已知函数()22x f x =-,则函数()y f x =的图象可能是( )A .B .C .D .10.设函数1,()0,x D x x ⎧=⎨⎩为有理数为无理数,则下列结论正确的是( )A .()D x 的值域为[0,1]B .()D x 是偶函数C .()(3.14)D D π>D .()D x 是单调函数11.函数24()|3|3x f x x -=+-是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数12.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C .(3-∞D .)3,+∞13.设函数()f x 的定义域为D ,如果对任意的x D ∈,存在y D ∈,使得()()f x f y =-成立,则称函数()f x 为“呆呆函数”,下列为“呆呆函数”的是( ) A .2sin cos cos y x x x =+ B .2x y = C .ln x y x e =+D .22y x x =-14.已知定义在R 上的函数()f x 满足:(1)(2)()f x f x -=;(2)(2)(2)f x f x +=-;(3)12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->.则(2019),(2020),(2021)f f f 的大小关系是( )A .(2021)(2020)(2019)f f f >>B .(2019)(2020)(2021)f f f >>C .(2020)(2021)(2019)f f f >>D .(2020)(2019)(2021)f f f >>15.已知()f x 是定义在R 上的偶函数,且满足下列两个条件:①对任意的1x ,[]24,8x ∈,且12x x ≠,都有()()12120f x f x x x ->-;②x ∀∈R ,都有()()8f x f x +=.若()7a f =-,()11b f =,()2020c f =,则a ,b ,c 的大小关系正确的是( ) A .a b c <<B .b a c <<C .b c a <<D .c b a <<二、填空题16.已知函数()f x 是定义在R 上的奇函数,当x ≥0时,()()1f x x x =+.则函数的解析式为__________17.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________. 18.函数24xy x =+的严格增区间是_____________. 19.对于正整数k ,设函数[][]()k f x kx k x =-,其中[]a 表示不超过a 的最大整数,设24()()()g x f x f x =+,则()g x 的值域为_________.20.已知定义域为()0,∞+的函数()y f x =满足:对任意()0,x ∈+∞,恒有()()2 2 f x f x =成立;当(]1,2x ∈时,()2f x x =-,给出如下结论:①对任意m ∈Z ,都有()20mf =;②函数()y f x =的值域为[)0,+∞; ③存在n ∈Z ,使得()219nf +=;④“函数()y f x =在区间(),a b 上是严格减函数”的充要条件是“存在k ∈Z ,使得()1(,)2,2k k a b +⊆”.其中所有正确结论的序号是__________ 21.已知函数()()1502f x x x x =+->,则()f x 的递减区间是____. 22.记号{}max ,m n 表示m ,n 中取较大的数,如{}max 1,22=.已知函数()f x 是定义域为R 的奇函数,且当0x >时,()222max ,4x f x x x a a ⎧⎫=-+-⎨⎬⎩⎭.若0x <时,()f x 的最大值为1,则实数a 的值是_________.23.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.24.函数()22f x x x =-,[]2,2x ∈-的最大值为________.25.如果方程24x +y |y |=1所对应的曲线与函数y =f (x )的图象完全重合,那么对于函数y =f (x )有如下结论:①函数f (x )在R 上单调递减;②y =f (x )的图象上的点到坐标原点距离的最小值为1; ③函数f (x )的值域为(﹣∞,2];④函数F (x )=f (x )+x 有且只有一个零点. 其中正确结论的序号是_____.26.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先判断函数为偶函数,根据奇偶性求得0m =,将原不等式化为ln x e e ≥,等价于ln 1x ≥,进而可得答案.【详解】设2021x t -=,()()()()20212120f x f x f t f t -=-⇒=-, 所以()||x m f x e+=是偶函数,则||||x m x m e e +-+=恒成立,即()()2240x m x m x m x m mx +=-+⇔+=-+⇔=对任意x ∈R 恒成立, 所以0m =⇒()||x f x e =,因为11lnln ln x x x-==-, 所以()1ln ln2f x f e x ⎛⎫+≥ ⎪⎝⎭即为()()ln ln 2f x f x e +-≥, ()()ln 2ln 2ln xf x e f x e ee ≥⇒≥⇒≥,因为xy e =为增函数,所以可得ln 1x ≥,则ln 1x ≥或ln 1x ≤-, 解得x e ≥或10x e<≤,即不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是[)10,,e e ⎛⎤+∞ ⎥⎝⎦,故选:C. 【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由()()+0f x f x -= 恒成立求解,(2)偶函数由()()0f x f x --= 恒成立求解;二是利用特殊值:奇函数一般由()00f = 求解,偶函数一般由()()110f f --=求解,用特殊法求解参数后,一定要注意验证奇偶性.2.D解析:D 【分析】 先判断函数()2xf x x =+是奇函数,且在R 上单调递增;根据题中条件,得到()()44f a a f b b a b ⎧=⎪=⎨⎪<⎩,求解,即可得出结果. 【详解】 因为()2xf x x =+的定义域为R ,显然定义域关于原点对称, 又()()22x xf x f x x x --==-=--++, 所以()f x 是奇函数, 当0x ≥时,()21222x x f x x x x ===-+++显然单调递增;所以当0x <时,()2xf x x =-+也单调递增; 又()00f =,所以函数()2xf x x =+是连续函数; 因此()2xf x x =+在R上单调递增; 当[],x M a b ∈=时,()()()44,4y f x f a f b =∈⎡⎤⎣⎦,因为(){}4,N yy f x x M ==∈∣,所以为使M N ,必有()()44f a af b b a b ⎧=⎪=⎨⎪<⎩,即4242aa ab b b a b⎧=⎪+⎪⎪=⎨+⎪⎪<⎪⎩,解得22a b =-⎧⎨=⎩或20a b =-⎧⎨=⎩或02a b =⎧⎨=⎩, 即使得M N 的实数对(),a b 有()2,2-,()2,0-,()0,2,共3对.故选:D. 【点睛】 关键点点睛:求解本题的关键在于先根据函数解析式,判断函数()f x 是奇函数,且在R 上单调递增,得出[],x M a b ∈=时,()4y f x =的值域,列出方程,即可求解.3.B解析:B 【分析】根据解析式可判断出()f x 是定义在R 的增函数且是奇函数,不等式可化为()()221f x f x <+,即得221x x <+,解出即可判断.【详解】可得()f x 的定义域为R ,x y e =和x y e -=-都是增函数,()f x ∴是定义在R 的增函数,()()x x f x e e f x --=-=-,()f x ∴是奇函数,则不等式()()2210f xf x +--<化为()()()2211f x f x f x <---=+,221x x ∴<+,解得112x -<<,则不等式成立的充分不必要条件应是1,12⎛⎫- ⎪⎝⎭的真子集, 只有B 选项满足. 故选:B. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,解题的关键是判断出()f x 是增函数且是奇函数,从而将不等式化为()()221f xf x <+求解.4.A解析:A 【分析】利用幂函数的定义求出m ,利用函数的单调性和奇偶性即可求解. 【详解】∵函数()()2265m m m f x x-=--是幂函数,∴25=1m m --,解得:m = -2或m =3. ∵对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,∴函数()f x 为增函数, ∴260m ->, ∴m =3(m = -2舍去) ∴()3=f x x 为增函数.对任意a ,b R ∈,且0a b +>, 则- a b >,∴()()()f a f b f b >-=- ∴()()0f a f b +>. 故选:A 【点睛】(1)由幂函数的定义求参数的值要严格按照解析式,x 前的系数为1; (2)函数的单调性和奇偶性是函数常用性质,通常一起应用.5.D解析:D 【分析】构造函数()()3g x f x =-,验证函数()g x 的奇偶性可判断A 选项的正误;判断函数()g x 的单调性可判断B 选项的正误;利用函数()g x 的单调性解不等式()()22190f x x f x ++--->,可判断C 选项的正误;计算出()24g =-,求出116g ⎛⎫⎪⎝⎭的值,可求得116f ⎛⎫⎪⎝⎭的值,可判断D 选项的正误. 【详解】构造函数()()3g x f x =-,由()()()3f m n f m f n +=+-可得()()()g m n g m g n +=+. 对于A 选项,取0m n ==,可得()()020g g =,()00∴=g ,取n m =-,则()()()00g g m g m =+-=,()()g m g m ∴-=-,则函数()g x 为奇函数,所以,()()()()60g x g x f x f x +-=+--=,可得()()6f x f x +-=,A 选项正确;对于B 选项,由已知条件可知,当0x >时,()()30g x f x =-<.任取1x 、2x R ∈且12x x >,所以,()()()()()1212120g x x g x g x g x g x -=+-=-<,()()12g x g x ∴<,所以,函数()()3g x f x =-为R 上的减函数,所以,函数()f x 为R 上的减函数,B 选项正确; 对于C 选项,()10f =,可得()()1133g f =-=-,由()()22190f x x f x ++--->,可得()()22130g x x g x ++--->,即()()()21311g xx g g +->=-=-,211x x ∴+-<-,可得20x x +<,解得10x -<<.C 选项正确; 对于D 选项,()()()()()663124232g f g g g =-=-=+=,()24g ∴=-,()()112214324216g g g g ⎛⎫⎛⎫=====- ⎪ ⎪⎝⎭⎝⎭,111316168fg ⎛⎫⎛⎫∴-==- ⎪ ⎪⎝⎭⎝⎭, 因此,123168f ⎛⎫= ⎪⎝⎭,D 选项错误. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.6.C解析:C 【分析】首先变形条件,得到函数()()f xg x x=在[)1,+∞单调递增,利用二次函数的单调性,求a 的取值范围.【详解】[)12,1,x x ∈+∞,不等式两边同时除以12x x ()()()()12211212121200f x f x x f x x f x x x x x x x --∴>⇔>--,即函数()()f x g x x=在[)1,+∞单调递增,()22g x x ax a =++, 函数的对称轴是4a x =-,则14a-≤,解得:4a ≥-.故选:C 【点睛】关键点点睛:本题的关键是原式等价为()()121212f x f x x x x x ->-,从而通过构造函数,确定函数的单调性,转化为二次函数的单调性解决问题.7.D解析:D 【分析】由题知函数()f x 的图象关于直线4x =对称,则有()f x 在[4,)+∞上单调递增,且有(6)(2)3f f ==,再利用单调性解不等式即可得结果.【详解】因为(4)f x +是偶函数,所以函数()f x 的图象关于直线4x =对称,则(6)(2)3f f ==. 因为()f x 在(,4]-∞上单调递减,所以()f x 在[4,)+∞上单调递增, 故(24)3f x -<等价于224x <-6<,解得35x <<. 故选:D 【点睛】关键点睛:本题的关键是能得出函数()f x 的图象关于直线4x =对称,进而判断出函数的单调性来,要求学生能够熟悉掌握函数性质的综合应用.8.D解析:D 【分析】令()()21g x f x x =--,根据奇偶性定义可判断出()g x 为奇函数,从而可求得()()10101g g -=-=,进而求得结果.【详解】令()()2sin tan 1cos a x b xg x f x x x+=--=()()()()()sin tan sin tan cos cos a x b x a x b xg x g x x x-+---∴-===--()g x ∴为奇函数又()()210101011g f =--=- ()()10101g g ∴-=-=即()()2101011f ----= ()10102f ∴-=本题正确选项:D 【点睛】本题考查利用函数的奇偶性求解函数值的问题,关键是能够通过构造函数的方式得到奇函数,利用奇函数的定义可求得对应位置的函数值.9.B解析:B 【分析】先将函数化成分段函数的形式,再根据函数在不同范围上的性质可得正确的选项. 【详解】()22,12222,1x x xx f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B . 【点睛】本题考查函数图象的识别,此类问题一般根据函数的奇偶性、单调性、函数在特殊点处的函数的符号等来判别,本题属于基础题.10.B解析:B 【分析】计算函数值域为{}0,1A 错误,根据偶函数定义知B 正确,()0D π=,(3.14)1D =,C 错误,()()011D D ==,故D 错误,得到答案. 【详解】根据题意:()D x 的值域为{}0,1,A 错误; 当x 为有理数时,x -为有理数,()()D x D x =-,当x 为无理数时,x -为无理数,()()D x D x =-,故函数为偶函数,B 正确; ()0D π=,(3.14)1D =,C 错误;()()011D D ==,故D 错误.故选:B. 【点睛】本题考查了分段函数的值域,奇偶性和单调性,意在考查学生对于函数性质的综合应用.11.A解析:A 【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可. 【详解】解:因为()|3|3f x x =+-所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x =,[)(]2,00,2x ∈-,又()()f x f x -===-所以函数为奇函数; 故选:A 【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;12.C解析:C 【分析】先解()3f t ≤,再由t 的范围求x 的范围. 【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤, 0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C 【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.13.C解析:C 【分析】根据“呆呆函数”的定义可知:函数()f x 的值域关于原点对称,由此逐项判断. 【详解】根据定义可知:()f x 为“呆呆函数”⇔()f x 的值域关于原点对称, A .2111sin cos cos sin 2cos 2222y x x x x x =+=++111sin 224222y x π⎡-⎛⎫=++∈⎢ ⎪⎝⎭⎣⎦,此时值域不关于原点对称,故不符合; B .()20,xy =∈∞+,值域不关于原点对称,故不符合;C .ln x y x e =+,当0x →时,y →-∞,当x →+∞时,+y →∞, 所以()ln ,xy x e =+∈-∞+∞,值域关于原点对称,故符合;D .()[)222111,y x x x =-=--∈-+∞,值域不关于原点对称,故不符合, 故选:C. 【点睛】本题考查新定义函数,涉及到函数值域的分析,主要考查学生的分析理解能力,难度一般.14.B解析:B 【分析】根据已知可得函数()f x 的图象关于直线1x =对称,周期为4,且在[]1,3上为增函数,得出()()20193f f =,()()()202002f f f ==,()()20211f f =,根据单调性即可比较(2019),(2020),(2021)f f f 的大小. 【详解】解:∵函数()f x 满足:(2)()f x f x -=,故函数的图象关于直线1x =对称;(2)(2)f x f x +=-,则()()4f x f x +=,故函数的周期为4;12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->,故函数在[]1,3上为增函数;故()()20193f f =,()()()202002f f f ==,()()20211f f =, 而()()()321f f f >>,所以(2019)(2020)(2021)f f f >>. 故选:B. 【点睛】本题考查函数的基本性质的应用,考查函数的对称性、周期性和利用函数的单调性比较大小,考查化简能力和转化思想.15.D解析:D 【分析】根据函数奇偶性和单调性之间的关系,即可得到结论. 【详解】解:由①对任意的1x ,[]24,8x ∈,且12x x ≠,都有()()12120f x f x x x ->-可得()f x 在[]4,8上单调递增,根据偶函数的对称性可知,()f x 在[]8,4--上单调递减,且函数周期为8,()7a f =-,()()()1135b f f f ===-,()()()202044c f f f ===-,故a b c >>. 故选:D. 【点睛】本题考查函数的单调性和奇偶性周期性的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.二、填空题16.【分析】设得到化简即得解【详解】设所以因为函数是定义在R 上的奇函数所以所以所以函数的解析式为故答案为:【点睛】方法点睛:求奇偶函数在对称区间的解析式一般利用代入法求解析式解析:(1)0()=(1)0x x x f x x x x +≥⎧⎨-<⎩【分析】设0,x <得到()2f x x x -=-+,化简即得解.【详解】设0,0x x <∴->,所以()()21f x x x x x -=--=-+,因为函数()f x 是定义在R 上的奇函数, 所以()2f x x x -=-+,所以()2(1)f x x x x x =-+=-.所以函数的解析式为(1)0()=(1)0x x x f x x x x +≥⎧⎨-<⎩.故答案为:(1)0()=(1)0x x x f x x x x +≥⎧⎨-<⎩【点睛】方法点睛:求奇偶函数在对称区间的解析式,一般利用代入法求解析式.17.【分析】由题意把函数在上恒成立转化为对上恒成立列不等式解得a 的范围【详解】恒成立即恒成立所以时显然不成立当时得所以故答案为:【点睛】(1)求参数的范围是常见题型之一处理的方法有两种:①不分离参数直接解析:4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R 上恒成立,列不等式解得a 的范围. 【详解】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭.故答案为:4,3⎛⎫+∞ ⎪⎝⎭【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式.18.【分析】根据的解析式可得为奇函数当时不妨令x>0设根据对勾函数的性质可求得的单调减区间可得的单调增区间综合分析即可得答案【详解】因为定义域为R 所以即在R 上为奇函数根据奇函数的性质可得在y 轴两侧单调性解析:[]22-,【分析】根据()f x 的解析式,可得()f x 为奇函数,当0x ≠时,21()44x f x x x x==++,不妨令x >0,设4()g x x x=+,根据对勾函数的性质,可求得()g x 的单调减区间,可得()f x 的单调增区间,综合分析,即可得答案. 【详解】因为2()4xy f x x ==+,定义域为R , 所以22()()()44x xf x f x x x ---===--++,即()f x 在R 上为奇函数, 根据奇函数的性质可得,()f x 在y 轴两侧单调性相同, 当x =0时,()0y f x ==,当0x ≠时,21()44x f x x x x==++,不妨令x >0,设4()g x x x=+, 根据对勾函数的性质可得,当02x <≤上单调递减,证明如下: 在(0,2]上任取12,x x ,且12x x <, 则12121212124444()()()f x f x x x x x x x x x -=+-+=-+-=1212124()x x x x x x ⎛⎫-- ⎪⎝⎭, 因为1202x x <<≤,所以1212120,40,0x x x x x x -<-<>,所以121212124()()()0x x f x f x x x x x ⎛⎫--=->⎪⎝⎭,即12()()f x f x >, 所以4()g x x x=+在(0,2]上为减函数, 所以21()44x f x x x x==++在(0,2]上为增函数,当0x +→时,()0f x →,0x -→,()0f x →,又(0)0f =,所以2()4xf x x =+在[0,2]为增函数 根据奇函数的性质,可得21()44x f x x x x==++在[2,0)-也为增函数,所以()f x 在 []22-,上为严格增函数, 故答案为:[]22-,【点睛】解题的关键是熟练掌握函数的奇偶性、单调性,并灵活应用,结合对勾函数的性质求解,考查分析理解,计算证明的能力,属中档题.19.【分析】先由题中条件得到讨论四种情况再判断的周期性即可得出结果【详解】由题意当时此时;当时此时;当时此时;当时此时;又所以是以为周期的函数因此的值域为故答案为:【点睛】关键点点睛:求解本题的关键在于 解析:{}0,1,3,4【分析】先由题中条件,得到[][][]()246g x x x x =+-,讨论10,4x ⎡⎫∈⎪⎢⎣⎭,11,42x ⎡⎫∈⎪⎢⎣⎭,13,24x ⎡⎫∈⎪⎢⎣⎭,3,14x ⎡⎫∈⎪⎢⎣⎭四种情况,再判断()g x 的周期性,即可得出结果. 【详解】由题意,[][][][][][][]()2244246g x x x x x x x x =-+-=+-, 当10,4x ⎡⎫∈⎪⎢⎣⎭时,120,2x ⎡⎫∈⎪⎢⎣⎭,[)40,1x ∈,此时()0000g x =+-=; 当11,42x ⎡⎫∈⎪⎢⎣⎭时,12,12x ⎡⎫∈⎪⎢⎣⎭,[)41,2x ∈,此时()0101g x =+-=; 当13,24x ⎡⎫∈⎪⎢⎣⎭时,321,2x ⎡⎫∈⎪⎢⎣⎭,[)42,3x ∈,此时()1203g x =+-=; 当3,14x ⎡⎫∈⎪⎢⎣⎭时,32,12x ⎡⎫∈⎪⎢⎣⎭,[)43,4x ∈,此时()1304g x =+-=; 又[][][][][][](1)224461224466g x x x x x x x +=+++-+=+++--[][][]246()x x x g x =+-=,所以()g x 是以1为周期的函数,因此()g x 的值域为{}0,1,3,4. 故答案为:{}0,1,3,4 【点睛】 关键点点睛:求解本题的关键在于根据一个单位区间内,x 的不同取值,确定[]x ,[]2x ,[]4x 的不同取值情况,结合函数的周期性,即可求解.20.①②④【分析】根据函数递推关系计算判断①求出时函数的值域然后由递推关系确定函数在上的值域判断②④解方程判断③【详解】①由题意又∴依此类推可得是负整数时设∴时①正确;②又当时时∴时的值域是又时依此类推解析:①②④ 【分析】根据函数递推关系计算(2)mf ,判断①.求出(1,2]x ∈时,函数的值域,然后由递推关系确定函数在(0,)+∞上的值域,判断②④.解方程()219nf +=判断③. 【详解】①由题意(2)220f =-=,又()()2 2 f x f x =,∴2(2)2(2)f f =,322(2)2(2)2(2)f f f ==,依此类推可得1(2)2(2)0m m f f -==,*m N ∈,1(1)(2)02f f ==,m 是负整数时,设,*m k k N =-∈,11111111(2)()()()(1)0222222k k k k kf f f f f ---======,∴m Z ∈时,(2)0m f =,①正确;②(1,2]x ∈,()2[0,1)f x x =-∈,又(2)2()f x f x =,当(2,4]x ∈时,()2()[0,2)2xf x f =∈,1(2,2]n n x +∈时,()2()[0,2)2n n n xf x f =∈,∴1x >时,()f x 的值域是[0,1)[0,2)[0,2)[0,)n =+∞,又1(,1]2x ∈时,11()(2)[0,)22f x f x =∈,依此类推01x <<时,都有()0f x ≥, 综上()f x 在(0,)+∞上的值域是[0,)+∞.②正确;③当0n ≤且n Z ∈时,(21)2(21)121n n n f +=-+=-<,不可能等于9, 当*n N ∈时,()11121212(1)221219222n n n n n n n n f f f ⎡⎤⎛⎫⎡⎤+=+=+=⨯--=-= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,210n =,与n Z ∈矛盾.③错误;④根据函数上面的推导知()f x 在1(2,2]n n +上单调递减,1(2)0n f +=,n Z ∈,因此函数()y f x =在区间(),a b 上是严格减函数的充要条件是存在k ∈Z ,使得()1(,)2,2k k a b +⊆,④正确.故答案为:①②④. 【点睛】关键点点睛:本题考查分段函数的定义,考查函数的单调性与值域,分段函数值的计算.关键在求函数的值域.我们在1x >时,通过函数性质(2)2()f x f x =得出()f x 在1(2,2]n n +的值域是[0,2)n ,然后由这无数的集合求并集得出1x >时函数值的取值范围.21.【分析】将绝对值函数化为分段函数形式判断单调性【详解】由题意当时函数单调递减;当时函数在上单调递增在上单调递减;当时函数单调递增;综上所述函数的单调递减区间为故答案为:解析:()10,1,22⎛⎫⎪⎝⎭,【分析】将绝对值函数化为分段函数形式,判断单调性. 【详解】由题意()151,02215151,222215,22x x x f x x x x x x x x x ⎧+-<<⎪⎪⎪=+-=--+<≤⎨⎪⎪++≥⎪⎩,当102x <<时,函数15()2f x x x =+-单调递减;当122x ≤<时,函数15()2f x x x =--+,在1(,1)2上单调递增,在(1,2)上单调递减; 当2x ≥时,函数15()2f x x x =+-单调递增; 综上所述,函数()152f x x x =+-的单调递减区间为()10,1,22⎛⎫ ⎪⎝⎭,, 故答案为:()10,1,22⎛⎫⎪⎝⎭,. 22.【分析】首先将时函数写成分段函数的形式并求函数的最小值根据奇函数的性质可知时的最小值是建立方程求【详解】当时解得:此时令解得此时所以时函数又因为此时是定义在上的奇函数所以图象关于原点对称时函数的最小解析:±【分析】首先将0x >时,函数()f x 写成分段函数的形式,并求函数的最小值,根据奇函数的性质可知0x >时的最小值是1-,建立方程求a 【详解】当0x >时,22240x x x a a -+-+≥,解得:202x a <≤,此时()22x f x x a =-+,令22240x x x a a-+-+<,解得22x a >,此时()24f x x a =-, 所以0x >时,函数()222224,2,02x a x a f x x x x a a⎧-≥⎪=⎨-<≤⎪⎩,又因为此时()f x 是定义在R 上的奇函数,所以图象关于原点对称,0x ∴>时,函数的最小值是-1, 当22x a ≥时,函数单调递增,()222min 242f x a a a =-=-,当202x a <≤时,()222222124x a a f x x x a a ⎛⎫=-=--+ ⎪⎝⎭,函数的()()22min 22f x f aa==-,所以0x >时,函数的最小值是22a -,即221a -=-,解得:2a =±.故答案为:【点睛】思路点睛:本题主要考查分段函数与函数性质的综合应用,首先根据新定义,正确写出函数()f x 的表达式,这是本题最关键的一点,然后就转化为分段函数求最值问题.23.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注解析:1(,)4-+∞【解析】 由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞.【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.24.8【分析】首先画出的图象根据图象即可求出函数的最大值【详解】函数的图象如图所示:由图可知故答案为:【点睛】本题主要考查利用函数的图象求最值熟练画出函数图象为解题的关键属于中档题解析:8 【分析】首先画出()f x 的图象,根据图象即可求出函数的最大值. 【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+. 故答案为:8 【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题.25.②④【分析】根据题意画出方程对应的函数图象根据图像判断函数单调性值域最值以及函数零点个数的判断数形结合即可选择【详解】当y≥0时方程y|y|=1化为(y≥0)当y <0时方程y|y|=1化为(y <0)解析:②④ 【分析】根据题意,画出方程对应的函数图象,根据图像判断函数单调性、值域、最值以及函数零点个数的判断,数形结合即可选择. 【详解】当y ≥0时,方程24x +y |y |=1化为2214x y +=(y ≥0),当y <0时,方程24x +y |y |=1化为2214x y -=(y <0).作出函数f (x )的图象如图:由图可知,函数f (x )在R 上不是单调函数,故①错误; y =f (x )的图象上的点到坐标原点距离的最小值为1,故②正确; 函数f (x )的值域为(﹣∞,1],故③错误;双曲线2214xy-=的渐近线方程为y12=±,故函数y=f(x)与y=﹣x的图象只有1个交点,即函数F(x)=f(x)+x有且只有一个零点,故④正确.故答案为:②④.【点睛】本题考查函数单调性、值域以及零点个数的判断,涉及椭圆和双曲线的轨迹绘制,以及数形结合的数学思想,属综合中档题.26.(-22)【详解】∵函数f(x)是定义在R上的偶函数且在(-∞0)上是增函数又f(2)=0∴f(x)在(0+∞)上是增函数且f(-2)=f(2)=0∴当-2<x<2时f(x)<0即f(x)<0的解为解析:(-2,2)【详解】∵函数f(x)是定义在R上的偶函数,且在(-∞,0)上是增函数,又f(2)=0,∴f(x)在(0,+∞)上是增函数,且f(-2)=f(2)=0,∴当-2<x<2时,f(x)<0,即f(x)<0的解为(-2,2),即不等式的解集为(-2,2),故填(-2,2).。
人教A版必修第一册第三章《函数的概念与性质》章末测试Word版含解析
第三章 函数的概念与性质章末检测一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、(2022·宿州月考)函数y =1-x2x 2-3x -2 的定义域为( )A .(-∞,1]B .⎝ ⎛⎭⎪⎫-∞,-12C .(-∞,2]D .⎝ ⎛⎭⎪⎫-∞,-12 ∪⎝ ⎛⎦⎥⎤-12,12、(2022·怀宁期中)已知函数f (2x -1)=x 2-3,则f (3)=( )A .1B .2C .4D .63、在下列函数中,值域为(0,+∞)的是( )A .y =xB .y =1xC .y =1xD .y =x 2+14、已知函数f (x )=(m -1)x 2-2mx +3是偶函数,则在(-∞,0)上此函数( )A .是增函数B .不是单调函数C .是减函数D .不能确定5、(2022·浙江模拟)已知函数f (x )=ax 2+bx +c 的图象如图所示,则( )A .b <a +c ,c 2<abB .b <a +c ,c 2>abC .b >a +c ,c 2<abD .b >a +c ,c 2>ab6、已知函数f (x )=x 2+(k -2)x 在[1,+∞)上是增函数,则k 的取值范围为( )A .(-∞,0]B .[0,+∞)C .(-∞,1]D .[1,+∞)7、已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( D )A .c >a >bB .c >b >aC .a >c >bD .b >a >c8、(2022·湖北月考)已知定义在R 上的奇函数f (x )在(-∞,0]上单调递减,若f (-2)=1,则满足|f (2x )|≤1的x 的取值范围是( )A .[-1,1]B .[-2,2]C .(-∞,-1]∪[1,+∞)D .(-∞,-2]∪[2,+∞)二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9、下列各组函数是同一函数的为( )A.f (x )=x 2-2x -1,g (s )=s 2-2s -1B.f (x )=x -1,g (x )=x 2-1x +1C.f (x )=x 2,g (x )=⎩⎨⎧x ,x ≥0,-x ,x <0D.f (x )=-x 3,g (x )=x -x10、已知函数y =x α(α∈R )的图象过点(3,27),下列说法正确的是( )A .函数y =x α的图象过原点B .函数y =x α是奇函数C .函数y =x α是单调减函数D .函数y =x α的值域为R11、已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( )A .y =f (|x |)B .y =f (-x )C .y =xf (x )D .y =f (x )+x12、(2022·北京模拟)已知函数f (x )=⎩⎨⎧x +2,x ≤-1,x 2+1,-1<x <2,关于函数f (x )的结论正确的是( )A .f (x )的定义域是RB .f (x )的值域是(-∞,5)C .若f (x )=3,则x 的值为 2D .f (x )图象与y =2有两个交点三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13、已知函数f (x )=⎩⎨⎧x +1,x ≥0,4x ,x <0,若f (a )=2,则实数a =___________.14、(2022·广东模拟)已知函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2-x -1,则当x ∈(-∞,0)时,f (x )=________.15、若函数f (2x -1)定义域为[0,1],则y =f (2x +1)的定义域是________. 16、定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a ,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是________. 四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17、已知函数f (x )的解析式为f (x )=⎩⎨⎧3x +5,x ≤0,x +5,0<x ≤1,-2x +8,x >1.(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值;(2)画出这个函数的图象; (3)求f (x )的最大值.18、设f (x )是R 上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积.19、已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数,且在区间(0,+∞)上单调递增.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c 的取值范围.20、(2022·柳州模拟)已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1;②当x>0时,f(x)>-1.(1)求f(0)的值,并证明f(x)在R上是单调增函数;(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.21、“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数;当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.(1)当0<x≤20时,求函数v关于x的函数解析式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.22、已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,当a,b∈[-1,1],a+b≠0时,有f(a)+f(b)a+b>0成立.(1)判断f(x)在区间[-1,1]上的单调性,并证明;(2)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.第三章 函数的概念与性质章末检测(答案)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、(2022·宿州月考)函数y =1-x2x 2-3x -2 的定义域为( D )A .(-∞,1]B .⎝ ⎛⎭⎪⎫-∞,-12C .(-∞,2]D .⎝ ⎛⎭⎪⎫-∞,-12 ∪⎝ ⎛⎦⎥⎤-12,12、(2022·怀宁期中)已知函数f (2x -1)=x 2-3,则f (3)=( A )A .1B .2C .4D .63、在下列函数中,值域为(0,+∞)的是( B )A .y =xB .y =1xC .y =1xD .y =x 2+14、已知函数f (x )=(m -1)x 2-2mx +3是偶函数,则在(-∞,0)上此函数( )A .是增函数B .不是单调函数C .是减函数D .不能确定解析:A 因为函数f (x )=(m -1)x 2-2mx +3是偶函数,所以函数图象关于y 轴对称,即mm -1=0,解得m =0.所以f (x )=-x 2+3为开口向下的抛物线,所以在(-∞,0)上此函数单调递增.故选A .5、(2022·浙江模拟)已知函数f (x )=ax 2+bx +c 的图象如图所示,则( )A .b <a +c ,c 2<abB .b <a +c ,c 2>abC .b >a +c ,c 2<abD .b >a +c ,c 2>ab解析:D 由题图知,a >0,b >0,c <0,f (1)=a +b +c =0,f (-1)=a -b +c <0,所以c =-(a +b ),b >a +c ,所以c 2-ab =[-(a +b )]2-ab =a 2+b 2+ab >0,即c 2>ab .故选D .6、已知函数f (x )=x 2+(k -2)x 在[1,+∞)上是增函数,则k 的取值范围为( )A .(-∞,0]B .[0,+∞)C .(-∞,1]D .[1,+∞)解析:B 函数f (x )=x 2+(k -2)x 的对称轴为x =-k -22,且开口向上,因为f (x )在[1,+∞)上是增函数,所以-k -22≤1,解得k ≥0.故选B . 7、已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( D )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:由已知得f (x )在(1,+∞)上单调递减,又f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,∵e>52>2,∴f (e)<f ⎝ ⎛⎭⎪⎫52<f (2),即c <a <b .故选D .8、(2022·湖北月考)已知定义在R 上的奇函数f (x )在(-∞,0]上单调递减,若f (-2)=1,则满足|f (2x )|≤1的x 的取值范围是( )A .[-1,1]B .[-2,2]C .(-∞,-1]∪[1,+∞)D .(-∞,-2]∪[2,+∞)解析:A 根据奇函数的性质,得f (x )在R 上单调递减,且f (2)=-1.由|f (2x )|≤1,得-1≤f (2x )≤1,即f (2)≤f (2x )≤f (-2),所以2≥2x ≥-2,解得-1≤x ≤1,故选A .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9、下列各组函数是同一函数的为( AC )A.f (x )=x 2-2x -1,g (s )=s 2-2s -1B.f (x )=x -1,g (x )=x 2-1x +1C.f (x )=x 2,g (x )=⎩⎨⎧x ,x ≥0,-x ,x <0D.f (x )=-x 3,g (x )=x -x10、已知函数y =x α(α∈R )的图象过点(3,27),下列说法正确的是( )A .函数y =x α的图象过原点B .函数y =x α是奇函数C .函数y =x α是单调减函数D .函数y =x α的值域为R解析:ABD 因为函数y =x α(α∈R )的图象过点(3,27),所以27=3α,即α=3,所以f (x )=x 3,A 项,因为f (0)=0,所以函数y =x 3的图象过原点,因此本说法正确;B 项,因为f (-x )=(-x )3=-x 3=-f (x ),所以函数y =x 3是奇函数,因此本说法正确;C 项,因为y =x 3是实数集上的单调递增函数,所以本说法不正确;D 项,因为y =x 3的值域是全体实数集,所以本说法正确.故选A 、B 、D . 11、已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( )A .y =f (|x |)B .y =f (-x )C .y =xf (x )D .y =f (x )+x解析:BD 由奇函数的定义f (-x )=-f (x )验证,A 项,f (|-x |)=f (|x |),为偶函数;B 项,f [-(-x)]=f (x )=-f (-x ),为奇函数;C 项,-xf (-x )=-x ·[-f(x)]=xf (x ),为偶函数;D 项,f (-x )+(-x )=-[f(x)+x],为奇函数.可知B 、D 正确.12、(2022·北京模拟)已知函数f (x )=⎩⎨⎧x +2,x ≤-1,x 2+1,-1<x <2,关于函数f (x )的结论正确的是( )A .f (x )的定义域是RB .f (x )的值域是(-∞,5)C .若f (x )=3,则x 的值为 2D .f (x )图象与y =2有两个交点解析:BC 由函数f (x )=⎩⎨⎧x +2,x ≤-1,x 2+1,-1<x <2知,定义域为(-∞,-1]∪(-1,2),即(-∞,2),A 错误;x ≤-1时,f (x )=x +2∈(-∞,1],-1<x <2时,x 2∈(0,4),故f (x )=x 2+1∈(1,5),故值域为(-∞,5),B 正确;由分段函数的取值可知f (x )=3时x ∈(-1,2),即f (x )=x 2+1=3,解得x =2或x =-2(舍去),故C 正确;由分段函数的取值可知f (x )=2时x ∈(-1,2),即f (x )=x 2+1=2,解得x =1或x =-1(舍去),故f (x )图象与y =2有1个交点,故D 错误.故选B 、C .三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13、已知函数f (x )=⎩⎨⎧x +1,x ≥0,4x ,x <0,若f (a )=2,则实数a =___________.解析:当a ≥0时,f (a )=a +1=2,解得a =1,符合条件.当a <0时,f (a )=4a =2,解得a =12,不符合条件,所以实数a =1.14、(2022·广东模拟)已知函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2-x -1,则当x ∈(-∞,0)时,f (x )=________.解析:函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2-x -1,则当x ∈(-∞,0)时,-x ∈(0,+∞),f (-x )=(-x )2-(-x )-1=x 2+x -1,故f (x )=-f (-x )=-x 2-x +1.答案:-x 2-x +115、若函数f (2x -1)定义域为[0,1],则y =f (2x +1)的定义域为________.解析:∵y =f (2x -1)定义域为[0,1].∴-1≤2x -1≤1,要使y =f (2x +1)有意义应满足-1≤2x +1≤1,解得-1≤x ≤0,因此y =f (2x +1)定义域为[-1,0].16、定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a ,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是__(0,2)______. 四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17、已知函数f (x )的解析式为f (x )=⎩⎨⎧3x +5,x ≤0,x +5,0<x ≤1,-2x +8,x >1.(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值;(2)画出这个函数的图象; (3)求f (x )的最大值.解:(1)∵32>1,∴f ⎝ ⎛⎭⎪⎫32=-2×32+8=5.∵0<1π<1,∴f ⎝ ⎛⎭⎪⎫1π=1π+5=5π+1π.∵-1<0,∴f (-1)=-3+5=2. (2)这个函数的图象如图.在函数f (x )=3x +5的图象上截取x ≤0的部分, 在函数f (x )=x +5的图象上截取0<x ≤1的部分, 在函数f (x )=-2x +8的图象上截取x >1的部分. 图中实线组成的图形就是函数f (x )的图象. (3)由函数图象可知,当x =1时,f (x )取最大值6.18、设f (x )是R 上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积. 解:(1)由f (x +2)=-f (x )得,f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ),所以f (x )是以4为周期的周期函数,又f (x )为奇函数,所以f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数且f (x +2)=-f (x ), 得f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ).故函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.当-4≤x ≤4时,设f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4. 19、已知幂函数f (x )=x -m 2+2m +3(m ∈Z )为偶函数,且在区间(0,+∞)上单调递增.(1)求函数f (x )的解析式;(2)设函数g (x )=f (x )+2x +c ,若g (x )>2对任意的x ∈R 恒成立,求实数c 的取值范围.解:(1)∵f (x )在区间(0,+∞)上单调递增,∴-m 2+2m +3>0,即m 2-2m -3<0,解得-1<m <3.又m ∈Z ,∴m =0,1,2.当m =0或2时,f (x )=x 3,不是偶函数;当m =1时,f (x )=x 4,是偶函数.故函数f (x )的解析式为f (x )=x 4.(2)由(1)知f (x )=x 4,则g (x )=x 2+2x +c =(x +1)2+c -1.由g (x )>2对任意的x ∈R 恒成立,得g (x )min >2(x ∈R ).∵g (x )min =g (-1)=c -1,∴c -1>2,解得c >3.故实数c 的取值范围是(3,+∞).20、(2022·柳州模拟)已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1;②当x >0时,f (x )>-1.(1)求f (0)的值,并证明f (x )在R 上是单调增函数;(2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4.解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1,所以f (x 1)-f (x 2)=f (x 1-x 2)+1>0,所以f (x 1)>f (x 2),所以函数f (x )在R 上是单调增函数.(2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4,得f (x 2+2x )+f (1-x )+1>5,即f (x 2+x +1)>f (3),又函数f (x )在R 上是增函数,故x 2+x +1>3,解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.21、“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年;当4<x ≤20时,v 是x 的一次函数;当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当0<x ≤20时,求函数v 关于x 的函数解析式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.解 (1)由题意得当0<x ≤4时,v =2;当4<x ≤20时,设v =ax +b ,显然v =ax +b 在(4,20]内是减函数,由已知得⎩⎨⎧20a +b =0,4a +b =2,解得⎩⎪⎨⎪⎧a =-18,b =52,所以v =-18x +52,故函数v =⎩⎪⎨⎪⎧2,0<x ≤4,-18x +52,4<x ≤20. (2)设年生长量为f (x )千克/立方米,依题意并由(1)可得,f (x )=⎩⎪⎨⎪⎧2x ,0<x ≤4,-18x 2+52x ,4<x ≤20, 当0<x ≤4时,f (x )为增函数,故f (x )max =f (4)=4×2=8;当4<x≤20时,f(x)=-18x2+52x=-18(x2-20x)=-18(x-10)2+252,f(x)max=f(10)=12.5.所以当x=10时,f(x)的最大值为12.5.即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.22、已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,当a,b∈[-1,1],a+b≠0时,有f(a)+f(b)a+b>0成立.(1)判断f(x)在区间[-1,1]上的单调性,并证明;(2)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围. 解(1)f(x)在区间[-1,1]上单调递增.证明如下:任取x1,x2∈[-1,1],且x1<x2,则-x2∈[-1,1].∵f(x)为奇函数,∴f(x1)-f(x2)=f(x1)+f(-x2)=f(x1)+f(-x2)x1+(-x2)·(x1-x2).由已知条件得f(x1)+f(-x2)x1+(-x2)>0.又x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2).∴f(x)在区间[-1,1]上单调递增.(2)∵f(1)=1,f(x)在区间[-1,1]上单调递增,∴在区间[-1,1]上,f(x)≤1.∵f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,∴m2-2am+1≥1,即m2-2am≥0对所有的a∈[-1,1]恒成立.设g(a)=-2ma+m2.①若m=0,则g(a)=0≥0,对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须有g(-1)≥0,且g(1)≥0,∴m≤-2或m≥2.综上所述,实数m的取值范围是{m|m=0,或m≥2,或m≤-2}.。
第三章 函数的概念与性质【过关测试】(解析版)-2021-2022学年高一数学单元复习过过过
第三章函数的概念与性质过关测试(时间: 120分钟分值: 150分)一、选择题:共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ln(x+1)+x2,则不等式f(2x−1)<9+ln4的解集为()A.(0,2)B.(−∞,2)C.(−2,2)D.(−1,2)【答案】B【解析】因为f(x)是R上的奇函数,且在[0,+∞)上为增函数,所以f(x)是R上的增函数,由f(2x−1)<9+ln4,得f(2x−1)<f(3),得2x−1<3,即x<2.故选:B.2.定义在R上的函数f(x)是偶函数,且f(x)=f(2−x),若f(x)在区间[1,2]上是减函数,则函数f(x)().A.在区间[0,1]上是增函数,在区间[−2,−1]是减函数B.在区间[0,1]上是增函数,在区间[−2,−1]是增函数C.在区间[0,1]上是减函数,在区间[−2,−1]是减函数D.在区间[0,1]上是减函数,在区间[−2,−1]是增函数【答案】B【解析】∵f(x)=f(2−x),∴f(x)关于直线x=1对称,∵f(x)在区间[1,2]上是减函数,∴f(x)在区间[0,1]上是增函数,又∵f(x)是偶函数,∴f(x)=f(−x),∴f(2−x)=f(−x),∴f(x)是周期为2的函数,∴f(x)在区间[−2,−1]也是增函数.故选:B3.若函数f (x )=√x +1+1x−3的定义域是( )A .[−1,3)B .[−1,+∞)C .[−1,3)∪(3,+∞)D .(3,+∞)【答案】C 【解析】解:要使函数有意义,则需满足不等式{x +1≥0x −3≠0, 解得:x ≥−1且x ≠3,故选:C .4.已知函数y ={x 2+1,x ≤0−2x,x >0,则使函数值为5的x 的值是( )A .−2或2B .2或−52C .−2D .2或−2或−52【答案】C 【解析】若x 2+1=5, 则x 2=4, 又因为x ≤0, 所以x =−2; 若−2x =5, 则x =−52, 而x >0, 不符合题意,舍. 所以x =−2. 故选:C.5.下列各组函数中为同一函数的是( ) A .f(x)=√(x −1)2,g(x)=x −1 B .f(x)=x −1,g(t)=t −1C .f(x)=√x 2−1,g(x)=√x +1⋅√x −1D .f(x)=x ,g(x)=x 2x【答案】B 【解析】选项A, f(x)=√(x −1)2=|x −1|的定义域是R , g(x)=x −1的定义域是R , 两个函数对应关系不相同, 所以不是同一个函数, 选项A 错误;选项B, f(x)=x −1的定义域是R , g(t)=t −1的定义域是R , 两个函数对应关系也相同, 所以是同一个函数, 选项B 正确;选项C, f(x)=√x 2−1的定义域是(−∞,−1]⋃[1,+∞), g(x)=√x +1⋅√x −1的定义域是[1,+∞), 定义域不同, 不是同一个函数, 选项C 错误;选项D, f(x)=x 的定义域是R , g(x)=x 2x的定义域是{x|x ≠0}, 定义域不同, 不是同一个函数, 选项D 错误. 故选:B.6.函数y =f(x)的定义域为(0,+∞),且对于定义域内的任意x,y 都有f(xy)=f(x)+f(y),且f(2)=1,则f (√22)的值为( ).A .1B .12C .−2D .−12【答案】D 【解析】f(2)=f(√2×√2)=f(√2)+f(√2)=2f(√2)=1, ∴f(√2)=12,又f(1)=2f(1), ∴f(1)=0,∴f(1)=f (√2×√22)=f(√2)+f (√22),∴0=f(√2)+f (√22), ∴f (√22)=−12.故选:D7.若函数y =(m 2−3m +3)x m 2+2m−4为幂函数,且在(0,+∞)单调递减,则实数m 的值为( )A .0B .1或2C .1D .2【答案】C 【解析】由于函数y =(m 2−3m +3)x m2+2m−4为幂函数,所以m 2−3m +3=1,解得m =1或m =2, m =1时,y =x −1=1x ,在(0,+∞)上递减,符合题意. m =2时,y =x 4,在(0,+∞)上递增,不符合题意. 故选:C8.设函数f(x)=(x +1)(x +a )在区间(1−b,2)上为偶函数,则2a +b 的值为( ) A .-1 B .1 C .2 D .3【答案】B【解析】因为函数f(x)=(x +1)(x +a )在区间(1−b,2)上为偶函数, 所以1−b =−2,解得b =3.又f(x)=x 2+(a +1)x +a 为偶函数,所以f(−12)=f(12),即14−a+12+a =14+a+12+a ,解得:a =-1.所以2a +b =1. 故选:B二、选择题:本题共4小题,每小题5分,共20分。
必修第一册第三单元《函数概念与性质》测试卷(含答案解析)
一、选择题1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2-B .ln 2C .0D .12.已知m R ∈,若函数()||x m f x e +=对任意x ∈R 满足()()20212120f x f x -=-,则不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是( ) A .[)1,,e e⎛⎤-∞⋃+∞ ⎥⎝⎦B .1,e e ⎡⎤⎢⎥⎣⎦C .[)10,,e e⎛⎤+∞ ⎥⎝⎦D .[),e +∞3.已知定义在R 上的偶函数()f x 满足:当0x ≥时,()2x f x =,且(2)(3)f x af x +≤-对一切x ∈R 恒成立,则实数a 的取值范围为( ) A .1,32⎡⎫+∞⎪⎢⎣⎭B .1,32⎛⎤-∞ ⎥⎝⎦C .[32,)+∞D .(0,32]4.设函数()f x 是定义R 在上的偶函数,且对任意的x ∈R 恒有(1)(1)f x f x +=-,已知当[0,1]x ∈时,1()2x f x -=,若32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,()60.7c f =,则,,a b c 的大小关系是( ) A .a b c >> B .a c b >> C .b a c >>D .c b a >>5.设()f x 为定义在R 上的函数,函数()1f x +是奇函数.对于下列四个结论:①()10f =;②()()11f x f x -=-+; ③函数()f x 的图象关于原点对称; ④函数()f x 的图象关于点()1,0对称; 其中,正确结论的个数为( ) A .1B .2C .3D .46.已知函数()()2265m m m f x x-=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( )A .恒大于0B .恒小于0C .等于0D .无法判断7.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( )A .(4)(0)(4)f f f -<<B .(0)(4)(4)f f f <-<C .(0)(4)(4)f f f <<-D .(4)(0)(4)f f f <<-8.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( ) A .-6 B .6 C .-8D .89.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数的图像的特征,如函数()1sin 2f x x x =-的图像大致是( ) A . B .C .D .10.已知定义在R 上的连续奇函数()f x 的导函数为()f x ',当0x >时,()()0f x f x x'+>,则使得()()()2213310xf x x f x +-->成立的x 的取值范围是( )A .()1,+∞B .()11,1,5⎛⎫-+∞ ⎪⎝⎭ C .1,15⎛⎫⎪⎝⎭D .(),1-∞11.若01m n <<<且1mn =,则2m n +的取值范围是( ) A .[22,)+∞ B .[3,)+∞C .(22,)+∞D .(3,)+∞12.函数1()2lg f x x x=+- ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃D .(,2]-∞13.设函数()f x 的定义域为D ,如果对任意的x D ∈,存在y D ∈,使得()()f x f y =-成立,则称函数()f x 为“呆呆函数”,下列为“呆呆函数”的是( ) A .2sin cos cos y x x x =+ B .2x y = C .ln x y x e =+D .22y x x =-14.若函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,,当[],1x m m ∈+时,不等式()()2-<+f m x f x m 恒成立,则实数m 的取值范围是( )A .(),4-∞-B .(),2-∞-C .()2,2-D .(),0-∞15.关于函数1()lg 1xf x x-=+,有下列三个命题: ①对于任意(1,1)x ∈-,都有()()f x f x -=-;②()f x 在(1,1)-上是减函数;③对于任意12,(1,1)x x ∈-,都有121212()()()1x x f x f x f x x ++=+; 其中正确命题的个数是( ) A .0B .1C .2D .3二、填空题16.已知定义在R 上的奇函数()y f x =满足(1)(1)f x f x -=+,且当(0,1)x ∈时,3()24x f x =-,则12(log 25)f =________.17.已知函数()()1502f x x x x =+->,则()f x 的递减区间是____. 18.若函数()f x 在定义域D 内的某区间M 上是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”.已知函数()()24g x x a x a =+-+在(]0,2上是“弱增函数”,则实数a 的值为______.19.已知函数()y f x =是奇函数,当0x <时,2()(R)f x x ax a =+∈,(2)6f =,则a = .20.已知()f x 是定义域为R 的奇函数,满足()()3f x f x =+,若()21f =-,则()2020f =______.21.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.22.幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,则a m +=____.23.如果方程24x +y |y |=1所对应的曲线与函数y =f (x )的图象完全重合,那么对于函数y =f (x )有如下结论:①函数f (x )在R 上单调递减;②y =f (x )的图象上的点到坐标原点距离的最小值为1; ③函数f (x )的值域为(﹣∞,2]; ④函数F (x )=f (x )+x 有且只有一个零点. 其中正确结论的序号是_____.24.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___. 25.函数()f x 是定义在R 上的偶函数,且()21f =-,对任意的x ∈R 都有()()2f x f x =--,则()2020f =_________.26.已知函数()h x ,()g x (()0g x ≠)分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0h x g x h x g x ''-<,且()10h -=.若()()0h a g a <,则a 的取值范围为__________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由函数的奇偶性可得()()11f f =--,进而计算即可得解. 【详解】函数()f x 是定义在R 上的奇函数, 当0x ≤时,()(1)ln f x x -=+∴()()11ln[(1)1]ln 2f f =--=---+=-.故选:A. 【点睛】思路点睛:该题考查函数奇偶性的应用,解题思路如下: (1)根据奇函数的定义,可知(1)(1)=--f f ; (2)根据题中所给的函数解析式,求得函数值; (3)最后得出结果.2.C解析:C 【分析】先判断函数为偶函数,根据奇偶性求得0m =,将原不等式化为ln x e e ≥,等价于ln 1x ≥,进而可得答案.【详解】设2021x t -=,()()()()20212120f x f x f t f t -=-⇒=-, 所以()||x m f x e+=是偶函数,则||||x m x m e e +-+=恒成立,即()()2240x m x m x m x m mx +=-+⇔+=-+⇔=对任意x ∈R 恒成立, 所以0m =⇒()||x f x e =,因为11lnln ln x x x-==-, 所以()1ln ln2f x f e x ⎛⎫+≥ ⎪⎝⎭即为()()ln ln 2f x f x e +-≥, ()()ln 2ln 2ln xf x e f x e ee ≥⇒≥⇒≥,因为xy e =为增函数,所以可得ln 1x ≥,则ln 1x ≥或ln 1x ≤-, 解得x e ≥或10x e <≤, 即不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是[)10,,e e ⎛⎤+∞ ⎥⎝⎦,故选:C. 【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由()()+0f x f x -= 恒成立求解,(2)偶函数由()()0f x f x --= 恒成立求解;二是利用特殊值:奇函数一般由()00f = 求解,偶函数一般由()()110f f --=求解,用特殊法求解参数后,一定要注意验证奇偶性.3.C解析:C 【分析】根据题意,可得()f x 的解析式,分别求得当23x -≤≤时,3x >时,2x <-时,(2)f x +和(3)f x -的表达式,结合题意,即可求得a 的范围,综合即可得答案.【详解】由题意知:2,0()2,0x x x f x x -⎧≥=⎨<⎩当23x -≤≤时,20,30x x +≥-≥,所以2322x x a +-≤⋅,所以212x a -≥, 因为23x -≤≤,所以215max (2)232x a -≥==;当3x >时,20,30x x +>-<, 所以2(3)22x x a +--≤⋅,所以5232a ≥=; 当2x <-时,20,30x x +<-> 所以(2)322x x a -+-≤⋅,所以51232a -≥=, 综上32a ≥. 故选:C 【点睛】解题的关键是根据题意求得()f x 的解析式,分类讨论,将(2)f x +和(3)f x -进行转化,考查分类讨论的思想,属中档题.4.B解析:B 【分析】由(1)(1)f x f x +=-可得函数的周期为2,再利用周期和偶函数的性质将32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,转化使自变量在区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小 【详解】解:因为(1)(1)f x f x +=-,所以(2)()f x f x +=, 所以函数()f x 的周期为2,因为函数()f x 是定义R 在上的偶函数,所以331122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()30.5(8)(0)b f f f -===,因为62100.70.72<<<,()f x 在[0,1]上单调递增, 所以61(0)(0.7)()2f f f <<, 所以b c a <<, 故选:B 【点睛】关键点点睛:此题考查函数周期性,单调性和奇偶性的应用,解题的关键是利用函数的周期将自变量转化到区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小,属于中档题5.C解析:C【分析】令()()1g x f x =+,①:根据()00g =求解出()1f 的值并判断;②:根据()g x 为奇函数可知()()g x g x -=-,化简此式并进行判断;根据()1y f x =+与()y f x =的图象关系确定出()f x 关于点对称的情况,由此判断出③④是否正确. 【详解】令()()1g x f x =+,①因为()g x 为R 上的奇函数,所以()()0010g f =+=,所以()10f =,故正确; ②因为()g x 为R 上的奇函数,所以()()g x g x -=-,所以()()11f x f x -+=-+,即()()11f x f x -=-+,故正确;因为()1y f x =+的图象由()y f x =的图象向左平移一个单位得到的,又()1y f x =+的图象关于原点对称,所以()y f x =的图象关于点()1,0对称,故③错误④正确,所以正确的有:①②④, 故选:C. 【点睛】结论点睛:通过奇偶性判断函数对称性的常见情况:(1)若()f x a +为偶函数,则函数()y f x =的图象关于直线x a =对称; (2)若()f x a +为奇函数,则函数()y f x =的图象关于点(),0a 成中心对称.6.A解析:A 【分析】利用幂函数的定义求出m ,利用函数的单调性和奇偶性即可求解. 【详解】∵函数()()2265m m m f x x-=--是幂函数,∴25=1m m --,解得:m = -2或m =3. ∵对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,∴函数()f x 为增函数, ∴260m ->, ∴m =3(m = -2舍去) ∴()3=f x x 为增函数.对任意a ,b R ∈,且0a b +>, 则- a b >,∴()()()f a f b f b >-=-∴()()0f a f b +>. 故选:A 【点睛】(1)由幂函数的定义求参数的值要严格按照解析式,x 前的系数为1; (2)函数的单调性和奇偶性是函数常用性质,通常一起应用.7.C解析:C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【详解】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.8.C解析:C 【分析】由奇函数f (x )满足f (x -4)=-f (x )可推出周期为8,对称轴为2x =,画出函数大致图象,由图象分析f (x )=m 的根的分布情况即可 【详解】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),令4x x =-得()()8f x f x -=,故()f x 周期为8,即()()()4(4)x f f x f f x x =+==---,即()()4f x f x -=,函数对称轴为2x =,画出大致图象,如图:由图可知,两个根关于6x =-对称,两个根关于2x =对称,设1234x x x x <<<, 则12346212224x x x x +=-⨯=-+=⨯=,,故12348x x x x +++=-, 故选:C【点睛】结论点睛:本题考查由函数的奇偶性,周期性,对称性求根的分布问题,常用以下结论: (1)()()()()1f x f x a f x f x a =-+=±+,,则()f x 的周期为2T a =;(2)()()2f x f a x =-,则函数的对称轴为x a =.9.A解析:A 【分析】由判断函数()f x 的奇偶性以及利用导数得出区间0,3π⎛⎫⎪⎝⎭的单调性即可判断. 【详解】()()()111sin sin sin ()222f x x x x x x x f x ⎛⎫-=---=-+=--=- ⎪⎝⎭则函数()f x 在R 上为奇函数,故排除B 、D.()1cos2f x x '=-,当0,3x π⎛⎫∈ ⎪⎝⎭时,1cos 2x >,即0fx所以函数()f x 在区间0,3π⎛⎫⎪⎝⎭上单调递减,故排除C 故选:A 【点睛】本题主要考查了函数图像的识别,属于中档题.10.C解析:C 【分析】根据0x >时()()0f x f x x'+>可得:()()0xf x f x '+>;令()()g x xf x =可得函数在()0,∞+上单调递增;利用奇偶性的定义可证得()g x 为偶函数,则()g x 在(),0-∞上单调递减;将已知不等式变为()()231g x g x >-,根据单调性可得自变量的大小关系,解不等式求得结果. 【详解】当0x >时,()()0f x f x x'+> ()()0xf x f x '∴+>令()()g x xf x =,则()g x 在()0,∞+上单调递增()f x 为奇函数 ()()()()g x xf x xf x g x ∴-=--== ()g x ∴为偶函数则()g x 在(),0-∞上单调递减()()()2213310xf x x f x ∴+-->等价于()()231g x g x >-可得:231x x >-,解得:115x << 本题正确选项:C 【点睛】本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.11.D解析:D 【分析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果. 【详解】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >,函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <; (2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形; (3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论.12.C解析:C 【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解. 【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃ 故选:C . 【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意: (1)对数要求真数大于0; (2)分式要求分母不等于0; (3)偶次根式要求被开方式大于等于0.13.C解析:C 【分析】根据“呆呆函数”的定义可知:函数()f x 的值域关于原点对称,由此逐项判断. 【详解】根据定义可知:()f x 为“呆呆函数”⇔()f x 的值域关于原点对称, A .2111sin cos cos sin 2cos 2222y x x x x x =+=++1242y x π⎛⎫=++∈ ⎪⎝⎭⎣⎦,此时值域不关于原点对称,故不符合;B .()20,xy =∈∞+,值域不关于原点对称,故不符合;C .ln x y x e =+,当0x →时,y →-∞,当x →+∞时,+y →∞, 所以()ln ,xy x e =+∈-∞+∞,值域关于原点对称,故符合;D .()[)222111,y x x x =-=--∈-+∞,值域不关于原点对称,故不符合, 故选:C. 【点睛】本题考查新定义函数,涉及到函数值域的分析,主要考查学生的分析理解能力,难度一般.14.B解析:B 【分析】先判断函数的单调性,然后解答不等式,在恒成立的条件下求出结果【详解】依题意得:函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,在x ∈R 上单调递减,因为()()2-<+f m x f x m ,所以2m x x m ->+,即2x m <,在[],1x m m ∈+上恒成立,所以2(1)m m +<,即2m <-,故选B . 【点睛】本题考查了函数的单调性的应用,结合函数的单调性求解不等式,需要掌握解题方法15.D解析:D 【分析】当(1,1)x ∈-时,函数1()1xf x lgx-=+恒有意义,代入计算()()f x f x -+可判断①;利用分析法,结合反比例函数及对数函数的单调性和复合函数“同增异减”的原则,可判断②;代入分别计算12()()f x f x +和1212()1x x f x x ++,比照后可判断③. 【详解】 解:1()1xf x lgx-=+,当(1,1)x ∈-时, 1111()()()101111x x x xf x f x lg lg lg lg x x x x+-+--+=+===-+-+,故()()f x f x -=-,即①正确; 12()(1)11x f x lglg x x -==-++,由211y x=-+在(1,1)-上是减函数,故()f x 在(1,1)-上是减函数,即②正确; 12121212121212121211111()()()11111x x x x x x x x f x f x lglg lg lg x x x x x x x x ----+--+=+==+++++++; 12121212121212121212111()1111x x x x x x x x x x f lg lg x x x x x x x x x x +-+++--==+++++++,即③正确 故三个结论中正确的命题有3个 故选:D . 【点睛】本题以命题的真假判断为载体考查了函数求值,复合函数的单调性,对数的运算性质等知识点,属于中档题.二、填空题16.【分析】由对称性奇偶性得出周期性然后再结合周期性和奇偶性进行计算【详解】因为则又函数为奇函数所以所以是周期函数周期为4又所以故答案为:【点睛】结论点睛:本题考查函数的奇偶性对称性周期性函数具有两个对 解析:1316-【分析】由对称性、奇偶性得出周期性,然后再结合周期性和奇偶性进行计算. 【详解】 因为(1)(1)f x f x -=+,则()(2)f x f x =-,又函数为奇函数,所以()()(2)(2)(4)f x f x f x f x f x =--=-+=--=+,所以()f x 是周期函数,周期为4. 又125log 254-<<-,所以111122222252525(log 25)(4log 25)(log )(log )(log )161616f f f f f =+==--=-225log 163253132416416⎛⎫=--=-+=- ⎪⎝⎭.故答案为:1316-. 【点睛】结论点睛:本题考查函数的奇偶性、对称性、周期性.函数()f x 具有两个对称性时,就具有周期性.(1)()f x 的图象关于点(,0)m 对称,又关于直线xn =对称,则()f x 是周期函数,4m n -是它的一个周期;(2)()f x 的图象关于点(,0)m 对称,又关于点(,0)n (m n ≠)对称,则()f x 是周期函数,2m n -是它的一个周期;(3)()f x 的图象关于直线x m =对称,又关于直线x n =(m n ≠)对称,则()f x 是周期函数,2m n -是它的一个周期.17.【分析】将绝对值函数化为分段函数形式判断单调性【详解】由题意当时函数单调递减;当时函数在上单调递增在上单调递减;当时函数单调递增;综上所述函数的单调递减区间为故答案为:解析:()10,1,22⎛⎫⎪⎝⎭, 【分析】将绝对值函数化为分段函数形式,判断单调性. 【详解】由题意()151,02215151,222215,22x x x f x x x x x x x x x ⎧+-<<⎪⎪⎪=+-=--+<≤⎨⎪⎪++≥⎪⎩,当102x <<时,函数15()2f x x x =+-单调递减;当122x ≤<时,函数15()2f x x x =--+,在1(,1)2上单调递增,在(1,2)上单调递减; 当2x ≥时,函数15()2f x x x =+-单调递增; 综上所述,函数()152f x x x =+-的单调递减区间为()10,1,22⎛⎫ ⎪⎝⎭,, 故答案为:()10,1,22⎛⎫⎪⎝⎭,. 18.4【分析】由在上的单调性求出a 的一个范围再令则在上是减函数分类讨论根据的单调性求参数a 的范围两范围取交集即可得解【详解】由题意可知函数在上是增函数解得令则在上是减函数①当时在上为增函数不符合题意;②解析:4 【分析】由()g x 在(]0,2上的单调性求出a 的一个范围,再令()()f x h x x=,则()h x 在(]0,2上是减函数,分类讨论根据()h x 的单调性求参数a 的范围,两范围取交集即可得解. 【详解】由题意可知函数()()24g x x a x a =+-+在(]0,2上是增函数,402a -∴≤,解得4a ≤, 令()()4f x ax a xxh x +==+-,则()h x 在(]0,2上是减函数, ①当0a ≤时,()h x 在(]0,2上为增函数,不符合题意;②当0a >时,由对勾函数的性质可知()h x在上单调递减,2≥,解得4a ≥,又4a ≤,4a ∴=.故答案为:4 【点睛】本题考查函数的单调性、一元二次函数的单调性,属于中档题.19.5【分析】先根据函数的奇偶性求出的值然后将代入小于0的解析式建立等量关系解之即可【详解】函数是奇函数而则将代入小于0的解析式得解得故答案为5解析:5 【分析】先根据函数的奇偶性求出(2)f -的值,然后将2x =-代入小于0的解析式,建立等量关系,解之即可. 【详解】∴函数()y f x =是奇函数,()()f x f x ∴-=-,而(2)6f =,则(2)(2)6f f -=-=-, 将2x =-代入小于0的解析式得(2)426f a -=-=-,解得5a =, 故答案为5.20.1【分析】首先根据题中所给的条件判断出函数的最小正周期结合奇函数的定义求得结果【详解】因为所以函数是以3为周期的周期函数且是定义域为的奇函数所以故答案为:1【点睛】该题考查的是有关函数的问题涉及到的解析:1 【分析】首先根据题中所给的条件,判断出函数的最小正周期,结合奇函数的定义,求得结果. 【详解】因为()()3f x f x =+,所以函数()f x 是以3为周期的周期函数, 且是定义域为R 的奇函数,所以(2020)(67432)(2)(2)1f f f f =⨯-=-=-=, 故答案为:1. 【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与周期性的综合应用,属于简单题目.21.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注解析:1(,)4-+∞【解析】 由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞.【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.22.3【分析】由幂函数为偶函数且在(0+∞)上是单调递减函数可得m2-2m-3<0且m2-2m-3为偶数m ∈Z 且解出即可【详解】∵幂函数为偶函数且在上是减函数∴且为偶数且解得12且只有时满足为偶数∴故答解析:3 【分析】由幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在(0,+∞)上是单调递减函数,可得m 2-2m -3<0,且m 2-2m -3为偶数,m ∈Z ,且1=1a -.解出即可. 【详解】∵幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,∴2230m m --<,且223m m --为偶数,m N ∈,且1=1a -. 解得13m -<<,0m =,1,2, 且=2a ,只有1m =时满足223=4m m ---为偶数. ∴1m =.3a m +=故答案为:3. 【点睛】本题考查幂函数的性质,根据幂函数性质求参数值,可根据幂函数性质列不等式和等式,求解即可,属于基础题.23.②④【分析】根据题意画出方程对应的函数图象根据图像判断函数单调性值域最值以及函数零点个数的判断数形结合即可选择【详解】当y≥0时方程y|y|=1化为(y≥0)当y <0时方程y|y|=1化为(y <0)解析:②④ 【分析】根据题意,画出方程对应的函数图象,根据图像判断函数单调性、值域、最值以及函数零点个数的判断,数形结合即可选择. 【详解】当y ≥0时,方程24x +y |y |=1化为2214x y +=(y ≥0),当y <0时,方程24x +y |y |=1化为2214x y -=(y <0).作出函数f (x )的图象如图:由图可知,函数f (x )在R 上不是单调函数,故①错误; y =f (x )的图象上的点到坐标原点距离的最小值为1,故②正确; 函数f (x )的值域为(﹣∞,1],故③错误;双曲线2214x y -=的渐近线方程为y 12=±,故函数y =f (x )与y =﹣x 的图象只有1个交点, 即函数F (x )=f (x )+x 有且只有一个零点,故④正确. 故答案为:②④. 【点睛】本题考查函数单调性、值域以及零点个数的判断,涉及椭圆和双曲线的轨迹绘制,以及数形结合的数学思想,属综合中档题.24.-1【解析】试题解析:-1 【解析】 试题因为2()y f x x =+是奇函数且(1)1f =,所以,则,所以.考点:函数的奇偶性.25.1【分析】根据题意由函数的奇偶性分析可得进而可得即函数是周期为4的周期函数据此可得(4)(2)即可得答案【详解】根据题意函数是定义在上的偶函数对任意的都有则即函数是周期为4的周期函数故答案为:1【点解析:1 【分析】根据题意,由函数的奇偶性分析可得()(2)f x f x =--,进而可得()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,据此可得(2020)(44504)f f f =+⨯=(4)f =-(2),即可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()(2)f x f x =--,则()(2)f x f x =--,∴()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,(2020)(44504)(4)(2)1f f f f =+⨯==-=,故答案为:1 【点睛】本题考查抽象函数的求值,涉及函数的奇偶性、周期性的性质以及应用,注意分析函数的周期.26.【分析】令根据当时可得因此函数在时单调递减又为奇函数由于可得即可求得答案【详解】①令当时函数在时单调递减;的解集为②函数()分别是定义在上的奇函数和偶函数是上的奇函数当时的解集为综上所述不等式的解集 解析:()()1,01,-⋃+∞【分析】 令()()()h x F x g x =,根据当0x <时, ()()()()0h x g x h x g x ''-<可得()0F x '<,因此函数()F x 在0x <时单调递减,又()F x 为奇函数,由于()10h -=,可得(1)(1)0F F -==,即可求得答案. 【详解】 ①令()()()h x F x g x =. 当0x <时, ()()()()0h x g x h x g x ''-<,∴()()()()2()()0h x g x h F x g x x g x '=''-< ∴函数()F x 在0x <时单调递减;()10h -=,(1)(1)0F F ∴-==∴()0F a <的解集为()1,0-②函数()h x ,()g x (()0g x ≠)分别是定义在R 上的奇函数和偶函数∴()()()()()()h x h x F x F x g x g x --==-=-- ∴()F x 是R 上的奇函数,∴当0x >时,()0F a <的解集为(1,)+∞综上所述,不等式()()0h a g a <的解集为:()()1,01,-⋃+∞. 故答案为:()()1,01,-⋃+∞. 【点睛】本题主要考查了根据函数单调性和奇偶性解不等式,解题关键是掌握根据题意构造函数的方法和由导数判断函数单调性的解题方法,考查了分析能力和计算能力,属于中档题.。
第三章 函数的概念与性质(基础提升练)【单元测试】高一数学必修第一册(解析版)
第三章函数的概念与性质(基础提升测试卷)本试卷共4页,22小题,满分150分,考试用时120分钟。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2022·湖南·长郡中学高二期中)函数11y x =++的定义域为()A .[)4,1--B .[)()4,11,---+∞C .()1,-+∞D .[)4,-+∞【答案】B 【解析】【分析】偶次开根根号下为非负,分式分母不为零,据此列出不等式组即可求解.【详解】依题意4010x x +≥⎧⎨+≠⎩,解得41x x ≥-⎧⎨≠-⎩,所以函数的定义域为[)()4,11,---+∞.故选:B .2.(2022·甘肃庆阳·高一期末)若函数()y f x =在R 上单调递增,且()()23f m f m ->-,则实数m 的取值范围是()A .(),1-∞-B .()1,-+∞C .()1,+∞D .(),1-∞【答案】C 【解析】【分析】由单调性可直接得到23m m ->-,解不等式即可求得结果.【详解】()f x 在R 上单调递增,()()23f m f m ->-,23m m ∴->-,解得:1m >,∴实数m 的取值范围为()1,+∞.故选:C.3.(2015·山东·高考真题)已知函数()f x 是奇函数,当0x >时,()22f x x =+,那么()1f -的值是()A .3-B .1-C .1D .3【答案】A 【解析】【分析】根据奇函数的性质即可求解.【详解】函数()f x 是奇函数,当0x >时,()22f x x =+,∴()()()211123f f -=-=-+=-.故选:A.4.3.(2022·陕西西安·高二期末(文))已知函数()()()F x f x g x =+,其中()f x 是x 的正比例函数,()g x 是x 的反比例函数,且119,(1)93F F ⎛⎫== ⎪⎝⎭,则(2)F =()A .3B .8C .9D .16【答案】C 【解析】【分析】根据题意设(),()m f x kx g x x ==,则()()()m F x f x g x kx x =+=+,然后由119,(1)93F F ⎛⎫== ⎪⎝⎭列方程组求4.(2022·新疆·沙湾县第一中学高一期中)已知偶函数f (x )与奇函数g (x )的定义域都是[-2,2],它们在[0,2]上的图象如图所示,则关于x 的不等式f (x )·g (x )<0成立的x 的取值范围为()A .(-2,-1)∪(0,1)B .(-1,0)∪(0,1)C .(-1,0)∪(1,2)D .(-2,-1)∪(1,2)【答案】C 【解析】【分析】根据图象,函数()()⋅f x g x 的奇偶性以及符号法则即可解出.【详解】如图所示:当01x <<时,()0f x >,()0g x >,()()0f x g x ⋅>;当12x <<时,()0f x <,()0g x >,()()0f x g x ⋅<,故当0x >时,其解集为()1,2,∵()y f x =是偶函数,()y g x =是奇函数,∴()()⋅f x g x 是奇函数,由奇函数的对称性可得:当0x <时,其解集为()1,0-,综上:不等式()()0f x g x ⋅<的解集是()()1,01,2-.故选:C.5.(2022·广西北海·高二期末(文))若函数2112f x x x x ⎛⎫+=+ ⎪⎝⎭,且()4f m =,则实数m 的值为()AB C .D .3【答案】B 【解析】【分析】令1x t x+=,配凑可得()22f t t =-,再根据()4f m =求解即可【详解】令1x t x +=(2t ≥或2t ≤-),22221122x x t x x ⎛⎫+=+-=- ⎪⎝⎭,()22f t t ∴=-,()224f m m =-=,m ∴=故选;B6.(2022.全国卷)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A 【解析】【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .7.(2021·全国·高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则()A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B 【解析】【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+,所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+,故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==,故()()110f f -=-=,其它三个选项未知.故选:B.8.(2022·河南·开封市东信学校模拟预测(文))已知()y f x =是R 上的奇函数,当0x >时,312()21xf x x x -=-++,则满足(23)0f m -≤的m 的取值范围是()A .[1,2]-B .[1,2]C .3(,1],22⎡⎤-∞-⎢⎥⎣⎦D .31,[2,)2⎡⎤+∞⎢⎥⎣⎦【答案】D 【解析】【分析】根据函数在公共的定义域函数单调性的性质及奇函数的性质,再利用函数单调性的定义即可求解.【详解】因为函数3123,1211x y x y x x -=-==-+++在(0,)+∞上均为减函数,∴312()21x f x x x -=++在(0,)+∞上为减函数.又3121(1)10211f -=-⋅+=+,且()y f x =是R 上的奇函数,∴(0)0,()f f x =在(,0)-∞上为减函数.又(1)0,(23)0f f m -=-≤,得1230m -≤-≤或231m -≥,解得312m ≤≤或2m ≥.所以实数m 的取值范围是31,[2,)2⎡⎤+∞⎢⎣⎦.故选:D.二、选择题:本题共4小题,每小题5分,共20分。
高一数学新教材人教版必修一第三章函数的概念与性质测试卷含答案
(Ⅲ)若 f (x) 在区间[2, ) 上单调递增,求实数 a 的取值范围.
19.(本小题满分 12 分)
已知函数
f
(x)
ax x2
b 1
是定义在
(1,1)
上奇函数,
且 f (1) 3 .
3 10
(Ⅰ)判断函数 f (x) 在 (1,1) 上的单调性,并用
定义证明;
(Ⅱ)若实数 t 满足 f (2t 1) f (t 1) 0 ,求实
4
5.令 t 1 x 0, 则 y 2 2t2 t 2(t 1)2 17 17
4 88
6.
y
x(x 2),(x x(x 2),(
2) x 2)
,作出图象即可.
7.函数 f (x) ax 2a 1,(a 0) 在 (0, ) 上单 x
调递增,又 m2 1 0,m2 m 3 0
x3 数,则实数 a 的取值范围是
15.已知函数 f (x) x5 3x3 5x 3 ,若 f (a) f (a 2) 6 ,则实数 a 的取值范围是
16.已知 m R ,函数 f (x) x 3 m m 在[2, x 1
5] 上的最大值是 5 ,则 m 的取值范围是
三、解答题:(写出必要的文字说明,推理过程或 演算步骤) 17.(本小题满分 10 分) 设函数 f (x) ax2 (b 2)x 3 . (Ⅰ)若 f (1) 3 ,且 a 0,b 0 ,求 b 1 的最
9.已知奇函数 y f (x) 的图象关于直线 x 2 对称,
且 f (m) 3,且 f (m 4) 的值为( )
A. 3
B. 0
C. 3
D. 1
3
10.已知函数 f (x 1) 是偶函数,且 x 1 时, f (x) 单调递减,设 a f ( 1),b f (3),c f (0) ,则 a,
函数的概念与性质 章节测试卷(含答案)
第三章函数的概念与性质章节验收测评卷(综合卷)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2022·湖南·长郡中学高二期中)函数11y x ++的定义域为()A.[)4,1-- B.[)()4,11,---+∞ C.()1,-+∞ D.[)4,-+∞2.(2022·江苏·高一)设函数221,1()3,1x x f x x x x ⎧-≤=⎨+->⎩,则1(2)f f ⎛⎫⎪⎝⎭的值为()A.1516B.89C.2716-D.183.(2022·宁夏吴忠区青铜峡市教育局高一开学考试)已知幂函数()f x 的图象过点()9,3,则函数()f x 的图象是()A. B.C.D.4.(2022·江苏·高一)已知函数(3)5,1()2,1a x x f x a x x-+≤⎧⎪=⎨>⎪⎩是(-∞,+∞)上的减函数,则a 的取值范围是()A.(0,3) B.(0,3] C.(0,2) D.(0,2]5.(2022·陕西·宝鸡中学模拟预测(文))若()f x 对于任意实数x 都有()1221f x f x x ⎛⎫-=+ ⎪⎝⎭,则12f ⎛⎫= ⎪⎝⎭()A.3 B.4 C.83 D.436.(2022·云南·高一阶段练习)已知()f x 是定义在[]1,1-上的减函数,且(23)(2)f a f a -<-,则实数a 的取值范围是()A.(]1,2 B.(]1,3 C.(]1,4 D.()1,+∞7.(2022·河南洛阳·高一期末)若定义在R 上的奇函数()f x 在(),0∞-单调递减,且()20f =,则()0f x x>的解集是()A.()(),20,2-∞- B.()(),22,∞∞--⋃+ C.()()2,00,2- D.()()2,02,-+∞ 8.(2022·湖北·赤壁市车埠高级中学高一期中)已知函数()f x 是定义域为R 的奇函数,当0x 时,()(1)f x x x =+.若(3)(37)0f m f m ++->,则m 的取值范围为()A.(,0)-∞ B.(0,)+∞ C.(,1)-∞ D.(1,)+∞二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.(2022·山西·河津市第二中学高二阶段练习)()A.||x y x =与1y= B.y =与1y x =- C.y =y = D.321x x y x +=+与y x =10.(2022·广东茂名·高一期末)若函数()225y k k x =--是幂函数,则实数k 的值可能是()A.3k = B.3k =- C.2k =- D.2k =11.(2022·贵州遵义·高一期末)设函数()21,21,ax x af x x ax x a -<⎧=⎨-+≥⎩,()f x 存在最小值时,实数a的值可能是()A.2- B.1- C.0 D.112.(2022·湖北·高一阶段练习).函数()f x 对任意,R x y ∈总有()()()f x y f x f y +=+,当0x <时,()0f x <,1(1)3f =,则下列命题中正确的是()A.()f x 是偶函数B.()f x 是R 上的减函数C.()f x 在[6,6]-上的最小值为2-D.若()(3)1f x f x +-≥-,则实数x 的取值范围为[)0,∞+三、填空题:(本题共4小题,每小题5分,共20分,其中第16题第一空2分,第二空3分.)13.(2022·全国·高一专题练习)函数()()2211f x x a x =+++在区间[]12,上是单调函数,则实数a 的取值范围是______.14.(2022·全国·高一专题练习)已知函数()532f x x ax bx =-++,()517f -=,则()5f 的值是_______.15.(2022·全国·高一)函数()()21{5x f x x +=-+,,2113x x -≤<≤≤的值域是______________(用区间表示)16.(2022·广东·华南师大附中高一期末)对x ∀∈R ,不等式2430mx x m ++->恒成立,则m 的取值范围是___________;若2430mx x m ++->在()1,1-上有解,则m 的取值范围是___________.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)17.(2022·贵州黔西·高一期末)已知函数()21x mf x nx -=+是定义在[]1,1-上的奇函数,且()112f =.(1)求,m n 的值;(2)判断()f x 在[]1,1-上的单调性,并用定义证明;18.(2022·安徽·亳州二中高二期末)已知幂函数2()(33)a f x a a x =-+为偶函数,(1)求函数()f x 的解析式;(2)若函数()()()213g x f x m x =+--在[]1,3-上的最大值为2,求实数m 的值.19.(2022·全国·高一专题练习)已知函数()2,0,0213,22x x f x x x x x ⎧<⎪⎪=-≤<⎨⎪⎪-≥⎩.(1)求()0f ,()()2f f ;(2)若()1f m =-,求m 的值;(3)作出函数()f x 的图象.20.(2022·福建·三明一中高二阶段练习)已知()f x 为R 上的奇函数,当0x >时,()22f x x x =-.(1)求()2f -;(2)求()f x 的解析式;(3)画()y f x =的草图,并通过图象写出()y f x =的单调区间.21.(2022·贵州遵义·高一期末)已知函数()()af x x a R x=+∈(1)当1a =,证明函数在()0,1上单调递减;(2)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()371,12f x ⎡⎤∈⎢⎥⎣⎦,求a 的值.22.(2022·全国·高一专题练习)定义在0(,)+∞上的函数f x ()满足下面三个条件:①对任意正数 a b ,,都有f a f b f ab +=()()();②当1x >时,0f x <();③()21f =-(1)求1f ()和14f ()的值;(2)试用单调性定义证明:函数f x ()在0(,)+∞上是减函数;(3)求满足32412218f x x f x -+>()()的x 的取值集合.答案一、单选题1-8BBCDA ACD 二、多选题9.CD 10.AC 11.ABC 12.CD三、填空题13.5322∞∞⎛⎤⎡⎫--⋃-+ ⎪⎥⎢⎝⎦⎣⎭,,14.13-15.[0,4]16.()4,+∞1,2⎛⎫-+∞ ⎪⎝⎭四、解答题17.(1)()f x 是定义在[]1,1-上的奇函数,()00f m ∴=-=,解得:0m =;()11112f n ==+ ,1n ∴=;经检验:当0m =,1n =时,()21xf x x =+,则()()21x f x f x x -=-=-+,()f x ∴为奇函数;0m ∴=,1n =.(2)()f x 在[]1,1-上单调递增,证明如下:设1211x x -£<£,()()()()()()()()()()222112121221212122222221212111111111x x x x x x x x x x x x f x f x x x x x x x +-+-+-∴-=-==++++++()()()()12122221111x x x x x x --=++;121x x < ,120x x -<,2210x +>,2110x +>,()()210f x f x ∴->,()f x ∴是在[]1,1-上单调递增.18.(1)解:因为2()(33)a f x a a x =-+为幂函数,所以2331a a -+=,解得2a =或1a =因为()f x 为偶函数,所以2a =,故()f x 的解析式2()f x x =;(2)解:由(1)知()()2213g x x m x =+--,对称轴为122mx -=,开口向上,当1212m -≤即12m ≥-时,()()max 3362g x g m ==+=,即16m =-;当1212m->即12m <-时,()()max 1122g x g m =-=--=,即32m =-;综上所述:16m =-或32m =-.19.(1)解:因为()2,0,0213,22x x f x x x x x ⎧<⎪⎪=-≤<⎨⎪⎪-≥⎩所以()00f =,()122322f =⨯-=-,()()()22212f f f ∴=-==--.(2)解:当0m <时,()21f m m==-,2m ∴=-,当02<m 时,()1f m m =-=-,1m ∴=,当2m 时,()1312f m m =-=-,4m ∴=,综上所述,m 的值为2-或1或 4.(3)解:函数()f x 的图象,如图所示:20.(1)因为()f x 为R 上的奇函数,当0x >时,()22f x x x =-,所以()()220f f -=-=.(2)因为()f x 为R 上的奇函数,所以()()f x f x -=-.令x =0得:()()00f f -=-,所以()00f =.任取(),0∈-∞x ,则()0,x -∈+∞.所以()()()2222x f x x x x -=--⨯+-=.由()()f x f x -=-,所以()22x x f x =--.综上所述:()22200020f x x x x x x x x ⎧->⎪==⎨⎪--<⎩(3)作出()y f x =的图象如图所示:从图象可以看出:()f x 的增区间为(),1-∞-和()1,+∞,减区间为()1,1-.21.(1)证明:若1a =,则()1f x x x=+()12,0,1x x ∀∈,1201x x <<<()()12121212121111f x f x x x x x x x x x -=+--=-+-()()1212211212121x x x x x x x x x x x x ---=-+=当()120,1x x ∈时,1201x x <<,所以()()12121210x x x x x x -->所以,函数在()0,1上单调递减.(2)①当0a =时,()f x x =,不满足条件;②当0a <时,易知函数()f x 在定义域内单调递增,则满足:112f ⎛⎫= ⎪⎝⎭,()37312f =联立()11237312f f ⎧⎛⎫= ⎪⎪⎪⎝⎭⎨⎪=⎪⎩,即11122373312a a ⎧+=⎪⎪⎨⎪+=⎪⎩解得14136a a ⎧=⎪⎪⎨⎪=⎪⎩,不满足条件;③当0a >时,令120x x <<<()()()()121212121212x x a a af x f x x x x x x x x x --=+--=-所以()()12f x f x >,函数在(上单调递减;同理可证,函数在)+∞上单调递增,所以,函数()f x最小值应在x =当102<<时,函数()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值为12f ⎛⎫ ⎪⎝⎭,所以112f ⎛⎫= ⎪⎝⎭,解得14a =,符合条件;当3<()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值为()3f ,所以()31f =,解得6a =-,不符合条件;当132≤时,函数()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值为f ,所以1f =,解得:14a =,不符合条件;综上,14a =.22.(1)1x y ==得111f f f +()=()(),则10f ()=,而422112f f f +()=()()=--=-,且14104f f f +()()=()=,则124f (;(2)取定义域中的任意的1x ,2x ,且120x x <<,211x x ∴>,当1x >时,0f x <(),210x f x ∴<(,221111xf x f x f x f x x ∴⋅()-()=()-()2211110x xf x f f x f x x +<=()()-()=(),f x ∴()在0(,)+∞上为减函数.(3)由条件①及(1)的结果得,32412218f x x f x +> (-)(),321412184f x x f f x ∴+>(-)()(),32318f x x f x ∴>(-)(),323230180318x x x x x x ⎧->⎪∴>⎨⎪-<⎩,解得36x <<,故x 的取值集合为36(,).。
高一数学集合函数概念、函数的基本性质测试题(含答案与解析)
高一数学集合函数概念、函数的基本性质测试题一、选择题(本大题共12小题,共60.0分)1.已知集合M满足,则集合M的个数是()A. 4B. 3C. 2D. 12.设A={x|-1<x<1},B={x|x-a>0},若A⊆B,则a的取值范围是()A. (−∞,−1)B. (−∞,−1]C. [1,+∞)D. (1,+∞)3.设全集U=R,集合A={x∈N|x2<6x},B={x∈N|3<x<8},则如图阴影部分表示的集合是()A. {1,2,3,4,5}B. {1,2,3}C. {3,4}D. {4,5,6,7}4.设集合A={x|x(x+1)≤0},集合B={x|2x>1},则集合A∪B等于()A. {x|x≥0}B. {x|x≥−1}C. {x|x>0}D. {x|x>−1}5.设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=()A. (−3,0)B. (−3,−1)C. (−3,−1]D. (−3,3)6.下列各组函数表示同一函数的是()A. f(x)=x,g(x)=(√x)2B. f(x)=x2+1,g(t)=t2+1C. f(x)=1,g(x)=xxD. f(x)=x,g(x)=|x|7.给出函数f(x),g(x)如表,则f[g(x)]的值域为()x 1 2 3 4f(x) 4 3 2 1x 1 2 3 4g(x) 1 1 3 3A. {4,2}B. {1,3}C. {1,2,3,4}D. 以上情况都有可能8.已知f(2x+3)=3x+2,则f(9)的值为()A. 1B. 5C. 9D. 119.函数f(x)={x2+1,x≤12x,x>1,则f(f(3))的值为()A. 15B. 3 C. 23D. 13910.根据图表分析不恰当的一项是()A. 王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀;B. 张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大;C. 赵磊同学的数学学习成绩低于班级平均水平,但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高.D. 第一次考试均分最高,说明第一次考试试题难度低于其它次考试试题的难度. 二、多项选择题(本大题共2小题,共10.0分)11. 设函数f (x ),g (x )分别是R 上的奇函数和偶函数,则以下结论不正确的是( )A. f (x )g(x)是偶函数B. f (x )|g(x)|是奇函数C. |f (x )|g(x)是奇函数D. f (x )−g(x)偶函数 12. 已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x-x 2,则下列说法正确的是()A. f(x)的最大值为B. f(x)在(−1,0)上是增函数C. f(x)>0的解集为(−1,1)D. f(x)+2x ≥0的解集为[0,3]三、填空题(本大题共4小题,共20.0分) 13. 函数)1(21)(-++=x xx f 的定义域是______ . 14. 已知f (x )=ax 3+bx -2,若f (2015)=7,则f (-2015)的值为______ . 15. 已知函数f (x )满足)5()(+=x f x f ,当x ∈[-1,4)时,f (x )=2x +1-5, 则f (17)=______.16. (1)函数f(x)=−x 2+2x +2,x ∈[−1,2]的值域是______ .(2)函数))(1()(a x x x f ++=为偶函数,则实数a 的值为______.四、解答题(本大题共6小题,共70.0分)17. (12分)已知函数f(x)=√x +1√4−2x 的定义域为A ,g(x)=−x 2+1的值域为B.设全集U =R .(I)求A ,B ; (II)求A ∩(∁U B).18. (6+6=12分)(1)84)(2--=kx x x f 在]20,5[不具单调性,求k 取值范围(2 )化简:(2a 14b−13)(−3a −12b 23)÷(−14a −14b −23).19. (12分) 已知函数f(x)={−x +2(x >1)x 2(−1≤x ≤1)x +2(x <−1).(1)求f(f(52))的值;(2)画出函数的图象,并根据图象写出函数的值域和单调区间;20. (12分)已知函数f(x)=x +1x .(1)用定义证明f (x )在[1,+∞)上是增函数; (2)求f (x )在[1,4]上的最大值及最小值.21. (12分)已知函数f(x)=x2−2|x|.(1)写出f(x)的分段解析式,(2)画出函数f(x)的图象.22. (10分) 2018年1月8日,中共中央、国务院隆重举行国家科学技术奖励大会,在科技界引发热烈反响,自主创新正成为引领经济社会发展的强劲动力.某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值y与这种新)x−t.材料的含量x(单位:克)的关系为:当0≤x<6时,y是x的二次函数;当x≥6时,y=(13测得数据如表(部分)(I)求y关于x的函数关系式y=f(x);(II)求函数f(x)的最大值.答案和解析1.【答案】B【解析】【分析】本题考查真子集和子集的概念,属于基础题.由真子集、子集的概念即可确定集合M,从而可得结果.【解答】解:∵集合M满足,∴集合M={1,2},{1,2,3},{1,2,4},∴满足要求的集合M的个数是3.故选B.2.【答案】B【解析】解:集合B=(a,+∞),A⊆B,则只要a≤-1即可,即a的取值范围是(-∞,-1].故选B.求出集合B,由A⊆B即可找到a所满足的不等式,解出它的取值范围.考本题考查集合的关系的参数取值的问题,解题的关键是正确理解包含的含义,根据其关系转化出关于参数的不等式,求解本题可以借助数轴的直观帮助判断.3.【答案】B【解析】【分析】根据题意,图中阴影部分表示的区域为只属于A的部分,即A∩(∁R B),计算可得集合A与∁R B,对其求交集可得答案.本题考查集合的Venn表示法,关键是分析出阴影部分表示的集合.【解答】∵A={x∈N|x2<6x}={x∈N|0<x<6}={1,2,3,4,5},B={x∈N|3<x<8}={4,5,6,7}∴∁R B={x|x≠4,5,6,7|},∴A∩(∁R B)={1,2,3}.故选B.4.【答案】B【解析】解:A={x|x(x+1)≤0}=[-1,0],B={x|2x>1}=(0,+∞),∴A∪B=[-1,+∞)故选:B.先求出集合A,B的对应元素,根据集合关系和运算即可得到结论.本题主要考查集合的基本运算,利用不等式的解法求出集合A,B是解决本题的关键,比较基础.5.【答案】C【解析】【分析】根据补集的定义求得∁R B,再根据两个集合的交集的定义,求得A∩(∁R B).本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.【解答】解:∵集合A={x|x2-9<0}={x|-3<x<3},B={x|-1<x≤5},∴∁R B={x|x≤-1,或x >5},则A∩(∁R B)={x|-3<x≤-1},故选C.6.【答案】B【解析】【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是相同函数.本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.【解答】解:对于A,f(x)=x(x∈R),与g(x)==x(x≥0)的定义域不同,所以不是同一函数;对于B,f(x)=x2+1(x∈R),与g(t)=t2+1(t∈R)的定义域相同,对应关系也相同,是同一函数;对于C,f(x)=1(x∈R),与g(x)==1(x≠0)的定义域不同,所以不是同一函数;对于D,f(x)=x(x∈R),与g(x)=|x|(x∈R)的对应关系不同,所以不是同一函数.故选B.7.【答案】A【解析】【分析】本题考查函数的表示方法,关键在于理解图表中表达的函数,属于基础题.当x=1或x=2时,;当x=3或x=4时,,可得答案.【解答】解:∵当x=1或x=2时,,∴;当x=3或x=4时,,∴.故的值域为.故选A.8.【答案】D【解析】【分析】题x.解:由题意得,.故选D.9.【答案】D【解析】【分析】本题主要考查了求函数值,先求的值,再求.【解答】解:函数,则,所以.故选D.10.【答案】D【解析】【分析】本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.【解答】解:由图象可知,王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.11.【答案】ACD【解析】【分析】根据奇函数和偶函数的定义进行判断即可;【解答】解:由奇函数和偶函数的定义可知是奇函数,故不正确的是A,C,D;故选ACD.12.【答案】ACD【解析】【分析】本题考查函数的奇偶性,考查学生的计算能力,比较基础.对四个命题分别进行判断,即可得出结论.【解答】解:x≥0时,f(x)=x﹣x2=﹣(x﹣)2+,∴f(x)的最大值为,故A正确;f(x)在(﹣,0)上是增函数,故B不正确;当x≥0时,f(x)=x﹣x2,f(x)>0的解集为(0,1),函数f(x)是定义在R上的偶函数,∴f(x)>0的解集为(﹣1,1),故C正确;x≥0时,f(x)+2x=3x﹣x2≥0的解集为[0,3],x<0时,f(x)+2x=x﹣x2≥0无解,故D正确.故选:ACD.13.【答案】{x|x>-2且x≠1}【解析】解:由题意得:,解得:x>-2且x≠1,故答案为:{x|x>-2且x≠1}.根据二次根式的性质以及幂函数的性质得到关于x的不等式组,解出即可.本题考查了求函数的定义域问题,考查二次根式以及幂函数的性质,是一道基础题.14.【答案】-11【解析】解:∵f(x)=ax3+bx-2,∴f(x)+2=ax3+bx是奇函数,设g(x)=f(x)+2,则g(-x)=-g(x),即f(-x)+2=-(f(x)+2)=-2-f(x),即f(-x)=-4-f(x),f(2015)=7,f(-2015)=-4-f(2015)=-4-7=-11,故答案为:-11.根据条件构造函数g(x)=f(x)+2,判断函数的奇偶性,进行求解即可.本题主要考查函数值的计算,根据条件构造函数,判断函数的奇偶性是解决本题的关键.15.【答案】3【解析】解:根据题意,)5xff,则f(17)=f(12)=f(7)= f(2)()(+=x又由当x∈[-1,4)时,f(x)=2x+1-5,则f(2)=23-5=3,故f(17)=3;故答案为:3.根据题意,由函数的周期可得f(17)=f(2),结合函数的解析式求出f(2)的值,即可得答案.本题考查函数的周期性的应用,涉及函数值的计算,属于基础题.16.【答案】(1)[−1,3] 方法:画图!!!!(2)1-17.【答案】【答案】解:(I)由题意得:{x+1≥04−2x>0,解得−1≤x<2,所以函数g(x)的值域B ={y|y ≤1};(II)由(I)知B ={x|x ≤1},所以C U B ={x|x >1},所以A ∩(C U B)={x|1<x <2}.【解析】本题考查集合的混合运算,同时考查函数的定义域和值域的求法,考查运算能力,属于基础题.(I)运用偶次根式被开方数非负和分式分母不为0,可得集合A ;由二次函数的值域可得集合B ;(II)运用补集和交集的定义,即可得到所求集合.18. 【答案】解:(1)(40,160)19. (2)(2a 14b −13)(−3a −12b 23)÷(−14a −14b −23) = 24a14−12+14b −13+23+23 = 24b .19.【答案】解:(1)f(f(52))=f(−12)=14.(2)由图象可知,函数的值域是(−∞,1],单调增区间(−∞,−1]和[0,1],减区间[−1,0]和[1,+∞).【解析】(1)利用分段函数,直接代入求值即可.(2)根据分段函数,作出函数的图象,结合图象确定函数的值域和单调区间.20.【答案】解:(1)设1≤x 1<x 2,f (x 2)-f (x 1)=x 2+1x 2-x 1-1x 1=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1 函数的性质
一、选择题:
1.在区间(0,+∞)上不是增函数的函数是
( ) A .y =2x +1
B .y =3x 2+1
C .y =x 2
D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函 数,则f (1)等于 ( )
A .-7
B .1
C .17
D .25
3.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )
A .(3,8)
B .(-7,-2)
C .(-2,3)
D .(0,5)
4.函数f (x )=
2
1++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )
A .至少有一实根
B .至多有一实根
C .没有实根
D .必有唯一的实根 6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )
A 5
B 5-
C 6
D 6-
7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( ) A }2|{<a a B }1|{≥a a C }1|{>a a D }21|{≤≤a a
8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( )
A .f (-1)<f (9)<f (13)
B .f (13)<f (9)<f (-1)
C .f (9)<f (-1)<f (13)
D .f (13)<f (-1)<f (9)
9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )
A .]1,(],0,(-∞-∞
B .),1[],0,(+∞-∞
C .]1,(),,0[-∞+∞
D ),1[),,0[+∞+∞ 10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )
A .a ≤3
B .a ≥-3
C .a ≤5
D .a ≥3 11. 函数c x x y ++=42,则 ( )
A )2()1(-<<f c f
B )2()1(->>f c f
C )2()1(->>f f c
D )1()2(f f c <-<
12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数 则 ( )
A .(10)(13)(15)f f f <<
B .(13)(10)(15)f f f <<
C .(15)(10)(13)f f f <<
D .(15)(13)(10)f f f <<
.二、填空题:
13.函数y =(x -1)-2
的减区间是___ _.
14.函数f (x )=2x 2-mx +3,当x ∈?-2,+??时是增函数,当x ∈?-?,-2?时是减函
数,则f (1)= 。
15. 若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是
_____________.
16.函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是
__ .
三、解答题:(解答应写出文字说明,证明过程或演算步骤.)
17.证明函数f (x )=2-x x +2
在(-2,+?)上是增函数。
18.证明函数f (x )=
13+x 在[3,5]上单调递减,并求函数在[3,5]的最大值和最小值。
19. 已知函数[]1(),3,5,2
x f x x x -=∈+ ⑴ 判断函数()f x 的单调性,并证明;
⑵ 求函数()f x 的最大值和最小值.
20.已知函数()f x 是定义域在R 上的偶函数,且在区间(,0)-∞上单调递减,求满足
22(23)(45)f x x f x x ++>---的x 的集合.
必修1 函数的性质
函数的性质参考答案:
一.1~5 C D B B D 6~10 C C C C A 11~12 B B
二. 13. (1,+∞) 15 ),0(+∞ 16, ⎥⎦
⎤ ⎝⎛-∞-21, 三.17.略 18、用定义证明即可。
f (x )的最大值为:
43,最小值为:21 19.解:⑴ 设任取12,[3,5]x x ∈且12x x < 1212121212113()()()22(2)(2)
x x x x f x f x x x x x ----=-=++++ 1235x x ≤<≤ 12120,(2)(2)0x x x x ∴-<++>
12()()0f x f x ∴-< 即12()()f x f x < ()f x ∴在[3,5]上为增函数. ⑵ max 4()(5)7f x f == min 2()(3)5f x f == 20.解: ()f x 在R 上为偶函数,在(,0)-∞上单调递减
()f x ∴在(0,)+∞上为增函数 又22(45)(45)f x x f x x ---=++
2223(1)20x x x ++=++>,2245(2)10x x x ++=++>
由22
(23)(45)f x x f x x ++>++得 222345x x x x ++>++ 1x ∴<- ∴解集为{|1}x x <-.。