分数拆分(裂项法)

合集下载

分数裂项法总结.

分数裂项法总结.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 2233445566778
1 1 8 若干个分数连加,如果每个分数的分母,
7 8
练习:
都是两个相邻自然数相乘,且分子是1时, 就可以利用裂差公式,把每个分数拆成两 个分数单位的差,消去中间留下两边.
n 2n 1
练习1
Sn
1 1 4
1 47
1 7 10

1
(3n 2)(3n 1)
解:
1 1 11 1 11 1
11
1
Sn

(1 ) ( ) ( 3 4 34 7 37
) 10
(

)
3 3n 2 3n 1
1 (1 1 ) n 3 3n 1 3n 1
n n 1



1 1 1 1 1 1 2 23 3 4 45 56
111111 34 45 56 67 78 89
11 1 1 1 1 1 2 6 12 20 30 42 56
1 + 1 + 1 +L +
1
1 2 23 3 4
就可以利用裂项法公式: n
1 (n
1)

1 n

1 n 1
把每个分数拆成两个分数单位的差,消 23
L
L

(n
1 1)

n

1 n(n
1)

1
n
1 1

n
n 1
分数裂项的减法形式举例如下:
通分与拆分互逆:
Q 11 3 2 1 2 3 23 23 6
11 2 5 7 35

六年级+分数裂项

六年级+分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:分数裂项计算教学目标知识点拨(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

分数裂项课件

分数裂项课件
分数裂项ppt课件
CONTENTS
目录
• 分数裂项简介 • 分数裂项的技巧 • 分数裂项的实例解析 • 分数裂项的练习题及解析 • 分数裂项的总结与展望
CHAPTER
01
分数裂项简介
分数裂项的定义
01
分数裂项是一种数学技巧,用于 将一个分数拆分成两个或多个分 数的和或差,以便于计算或简化 表达式的形式。
绩。
分数裂项在数学竞赛和高考中具 有广泛应用,是数学学习的重要
内容之一。
分数裂项的未来发展方向
随着数学教育的不断发展和改革,分数裂项技巧的教学方法和手段也需要不断更新 和完善。
未来可以探索更多分数裂项在实际问题中的应用,例如在物理、化学等其他学科中 的应用。
可以通过开展跨学科的研究,将分数裂项与其他数学技巧和方法进行结合,以更好 地解决各种复杂的数学问题。
解析:这道题是分数裂项的基础题, 通过将两个分数相乘,得到一个新的
分数。
答案:$frac{1}{4}$
题目:计算 $frac{3}{4} times frac{4}{3}$
解析:这道题同样是分数裂项的基础 题,通过将两个分数相乘,得到一个 新的分数。
答案:$1$
进阶练习题
题目
计算 $frac{1}{2} times frac{3}{5} + frac{2}{3} times frac{4}{7}$
分数裂项在日常生活中的应用
分数裂项不仅仅在数学题目中有应用,在日常生活中也有广泛的应用。
例如,在购物时经常会遇到折扣和优惠券的问题,这时可以通过分数裂项来计算 最优的购买方案。例如,对于折扣$frac{3}{10}$,可以将其拆分为$frac{1}{3} + frac{2}{10}$,分别代表直接折扣和满额折扣,从而帮助消费者更好地理解优惠 方案。

六年级分数裂项

六年级分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b形式的,这里我们把较小分数裂项计算教学目标知识点拨的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即: 1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

《分数裂项法总结》课件

《分数裂项法总结》课件
开发更高效的算法和工具
随着计算机技术的发展,可以开发更高效的算法和工具来支持分数裂 项法的应用,提高计算效率和精度。
拓展分数裂项法的应用领域
除了数学和物理领域,分数裂项法还可以拓展应用到其他领域,如金 融、经济、生物等,为解决实际问题提供更多有效的工具。
加强教学方法的改进
针对分数裂项法的教学,可以进一步改进教学方法,提高教学效果, 帮助学生更好地掌握这一重要的数学技能。
感谢您的观看
THANKS
02
整数裂项法是将整数拆 分成易于计算的形式, 如将2n拆分成n+n。
03
差商裂项法是将分数的 分子和分母分别拆分成 两个部分,然后进行化 简。
04
分母有理化是将分数的 分母化为有理数的形式 ,以便进行计算。
03 分数裂项法的实例解析
分数裂项法在数学题目中的应用实例
分数裂项法在数学题目中有着广泛的应 用,可以帮助我们简化复杂的分数计算 。例如,我们可以将一个分数拆分成两 个或多个分数的和或差,从而简化计算
提高解题效率。
03
分数裂项法的优点和局限性
分数裂项法的优点在于能够简化复杂问题,提高计算效率和准确性。然
而,该方法也存在一定的局限性,如对于某些特殊形式的分数,可能无
法找到合适的拆分方式。
对分数裂项法的展望和未来发展方向
继续深入研究分数裂项法
未来可以进一步深入研究分数裂项法的理论和应用,探索更多适用于 该方法的数学模型和实际应用场景。
分数裂项法的练习题
练习题1
将分数1/6进行裂项,使其变为两 个分数之和。
练习题2
将分数2/7进行裂项,使其变为三 个分数之和。
练习题3
将分数3/8进行裂项,使其变为四个 分数之和。

小六数学第13讲:分数裂项与分拆

小六数学第13讲:分数裂项与分拆

第十三讲分数裂项与分拆1. “裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

①对于分母可以写作两个因数乘积的分数,即形式的,这里我们把较小的数写在前面,即,那么有②对于分母上为3个或4个自然数乘积形式的分数,我们有:③对于分子不是1的情况我们有:2. 裂差型裂项的三大关键特征:①分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

②分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”③分母上几个因数间的差是一个定值。

3.复杂整数裂项型运算复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。

其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。

整数裂项口诀:等差数列数,依次取几个。

所有积之和,裂项来求作。

后延减前伸,差数除以N。

N取什么值,两数相乘积。

公差要乘以,因个加上一。

需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。

对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。

此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。

4. “裂和”型运算常见的裂和型运算主要有以下两种形式:①②裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

六年级分数巧算裂项拆分

六年级分数巧算裂项拆分

五六年级分数巧算裂项拆分(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--思维训练分类为:浓度问题、分数比大小问题、行程问题、分数巧算、逻辑推理、工程问题、牛顿问题、数字的巧算问题。

分数裂项求和方法总结(一) 用裂项法求1(1)n n +型分数求和分析:因为 111n n -+=11(1)(1)(1)n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111(1)1n n n n =-++ 【例1】 求111 (101111125960)+++⨯⨯⨯的和。

111111()()......()101111125960111060112=-+-++-=-= (二) 用裂项法求1()n n k +型分数求和:分析:1()n n k +型。

(n,k 均为自然数)因为 11111()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++所以1111()()n n k k n n k =-++ 【例2】 计算11111577991111131315++++⨯⨯⨯⨯⨯ 111111*********()()()()()25727929112111321315=-+-+-+-+- 11111111111[()()()()()]2577991111131315=-+-+-+-+- 111[]2515115=-= (三) 用裂项法求()k n n k +型分数求和:分析:()k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=()k n n k + 所以()k n n k +=11n n k -+ 【例3】 求2222 (1335579799)++++⨯⨯⨯⨯的和1111111(1)()()......()33557979911999899=-+-+-++-=-= (四) 用裂项法求2()(2)k n n k n k ++型分数求和: 分析:2()(2)k n n k n k ++ (n,k 均为自然数)211()(2)()()(2)k n n k n k n n k n k n k =-+++++【例4】 计算:4444 (135357939597959799)++++⨯⨯⨯⨯⨯⨯⨯⨯ 11111111()()......()()1335355793959597959797991113979932009603=-+-++-+-⨯⨯⨯⨯⨯⨯⨯⨯=-⨯⨯= (五) 用裂项法求1()(2)(3)n n k n k n k +++型分数求和分析:1()(2)(3)n n k n k n k +++(n,k 均为自然数) 1111()()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-++++++++ 【例5】 计算:111......1234234517181920+++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1111111[()()......()]3123234234345171819181920111[]3123181920113920520=-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=--⨯⨯⨯⨯=(六) 用裂项法求3()(2)(3)k n n k n k n k +++型分数求和: 分析:3()(2)(3)k n n k n k n k +++(n,k 均为自然数) 311()(2)(3)()(2)()(2)(3)k n n k n k n k n n k n k n k n k n k =-++++++++ 【例6】 计算:333 (1234234517181920)+++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 111111()()......()1232342343451718191819201112318192011396840=-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=--⨯⨯⨯⨯= 【例7】计算:71+83+367+5629+6337+7241+7753+8429+883 【分析与解】解答此题时,我们应将分数分成两类来看,一类是把5629、6337、7241、7753这四个分数,可以拆成是两个分数的和。

六年级分数 裂项法

六年级分数 裂项法

分数计算(裂项法)知识要点和基本方法分数计算是小学数学的重要内容,也是数学竞赛的重要内容之一。

分数计算同整数计算一样既有知识要求又有能力要求。

法则、定律、性质是进行计算的依据,要使计算快速、准确,关键是掌握运算技巧。

对算式认真观察,剖析算是的特点及个数之间的关系,巧妙、灵活的运用运算定律,合理改变运算顺序,使计算简便易行,这对启迪思维,培养综合分析、推理能力和灵活的运算能力,都有很大的帮助。

公式:(1)平方差公式:)()(22b a b a b a -⨯+=-(2)等差数列求和公式:()n a a a a a a a n n n +=++⋅⋅⋅⋅⋅⋅+++-1132121(3)分数的拆分公式:①)1(1+n n =n 1-11+n②)(1d n n +=d 1×(n 1-dn +1)计算:211⨯+321⨯+431⨯+ (100991)计算:110×11 +111×12 +……+159×60计算:12 +16 +112 +120 +130 +142计算:110×11 +111×12 +……+119×20计算12×3 +13×4 +……+16×7 +17×8计算:1+12 +16 +112 +120计算:16 +112 +120 +130 +142 +156 +172 计算:31+151+351+631+991+1431 计算:11111144771*********++++⨯⨯⨯⨯⨯计算:22222315356399++++计算:1111118244880120168+++++计算:11+21+22+21+31+32+33+32+31+……+1001+1002+……+100100+10099+……+1001 计算:1+211++3211+++43211++++……+20053211+⋅⋅⋅⋅⋅⋅⋅+++例14.计算:2×(1-220051)×(1-220041)×(1-220031)×……×(1-221)计算:20042003200312005⨯计算:(751×911×116)÷(113×76×95)计算:989+9899+98999+……+43421K K 99989999个计算:(1+21)×(1+41)×(1+61)×(1+81)×(1-31)×(1-51)×(1-71)×(1-91)计算:200421-131+200221-331+200021-531+……+421-200131+221-200331 计算:(971+97971+9797971+979797971)÷(861+86861+8686861+868686861)计算:⎪⎭⎫⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211= . 计算:222345567566345567+⨯⨯+= .计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= .计算:4513612812111511016131+++++++= .计算:()()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= .计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++⎪⎭⎫⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211=能力训练:1、分数化成最简分数:1812= 2718= 204= 6513= 328= 82=2、小数化成最简分数:= = = = = =3、计算:5132÷132+7143÷143+9154÷154156 +172 +190 +111018 +124 +148 +180 +1120212005⨯+322005⨯+432005⨯+ (200520042005)212+772+1652+……+16772+2021221+65+1211+2019+……+1101091+216 +3112 +4120 +5130 +6142 +7156 +8172 +919021+43+87+1615+3231+6463+128127+256255+5125115431⨯⨯+6541⨯⨯+7651⨯⨯+8761⨯⨯+9871⨯⨯+10981⨯⨯。

分数裂项法总结

分数裂项法总结

裂项法的注意事项
在使用裂项法时,需要注意以下几点:首先,要确保拆分 的分数是正确的,即拆分后的分数之差或商等于原分数; 其次,要注意运算的优先级,确保计算的准确性;最后, 要注意简化计算过程,尽可能减少计算的复杂度。
此外,对于一些特殊的分数,如分母为平方数或立方数的 分数,可以使用特定的裂项法进行计算,以简化计算过程 。
分数裂项法之立方差法
立方差法的概念
立方差法是一种将分数拆分成易于计算的形式的方法。通过将一个分数拆分成两个或多个分数的立方差,可以简化计 算过程。
立方差法的应用
立方差法在数学和工程等领域中都有广泛的应用。例如,在解决几何问题时,立方差法可以帮助我们更好地理解和计 算立体图形的体积。
立方差法技巧
在使用立方差法时,需要注意选择合适的拆分方式,以使计算过程更加简便。同时,还需要注意保持拆 分后的分数与原分数相等,以避免出现计算错误。
平方差法是一种将分数拆分成易于计算的形式的方法。通过将一个分数拆分成两个或多个 分数的平方差,可以简化计算过程。
平方差法的应用
平方差法在数学和物理等领域中都有广泛的应用。例如,在解决代数问题时,平方差法可 以帮助我们更好地理解和计算表达式的值。
平方差法的技巧
在使用平方差法时,需要注意选择合适的拆分方式,以使计算过程更加简便。同时,还需 要注意保持拆分后的分数与原分数相等,以避免出现计算错误。
分数裂项法在日常生活中的应用
在日常生活中,我们也会遇到许多涉及到分 数的问题,如时间、金钱等。通过运用分数 裂项法,我们可以更好地理解和处理这些问 题。
例如,在时间管理中,可以将一天的时间拆 分成小时、分钟等部分,以便更好地安排工 作和休息时间;在理财中,可以将一笔钱拆 分成不同的用途和投资方式,以便更好地实

(word完整版)分数裂项

(word完整版)分数裂项

分数裂项
分数裂项知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了.
分数裂项是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

六年级分数-裂项法

六年级分数-裂项法

1。

2分数计算(裂项法)知识要点和基本方法分数计算是小学数学的重要内容,也是数学竞赛的重要内容之一。

分数计算同整数计算一样既有知识要求又有能力要求。

法则、定律、性质是进行计算的依据,要使计算快速、准确,关键是掌握运算技巧.对算式认真观察,剖析算是的特点及个数之间的关系,巧妙、灵活的运用运算定律,合理改变运算顺序,使计算简便易行,这对启迪思维,培养综合分析、推理能力和灵活的运算能力,都有很大的帮助. 公式:(1)平方差公式:)()(22b a b a b a -⨯+=-(2)等差数列求和公式:()n a a a a a a a n n n +=++⋅⋅⋅⋅⋅⋅+++-1132121(3)分数的拆分公式:①)1(1+n n =n 1-11+n②)(1d n n +=d1×(n 1-d n +1)例1. 计算:211⨯+321⨯+431⨯+……+100991⨯例2. 计算:110×11 +错误!+……+错误!例3. 计算:错误!+错误!+错误!错误!+错误!+错误!+错误!例4. 计算:错误!+错误!+……+错误!例5. 计算错误!+错误!+……+错误!+错误!例6. 计算:1+错误!+错误!+错误!错误!+错误!例7. 计算:16+错误!+错误!+错误!+错误!+错误!+错误!例8. 计算:31+151+351+631+991+1431例9. 计算:11111144771*********++++⨯⨯⨯⨯⨯例10. 计算:22222315356399++++ 例11. 计算:1111118244880120168+++++例12. 计算:11+21+22+21+31+32+33+32+31+……+1001+1002+……+100100+10099+……+1001例13. 计算:1+211++3211+++43211++++……+20053211+⋅⋅⋅⋅⋅⋅⋅+++例14.计算:2×(1-220051)×(1-220041)×(1-220031)×……×(1-221)例1. 计算:20042003200312005例2. 计算:(751×911×116)÷(113×76×95)例3. 计算:989+9899+98999+……+99989999个例4. 计算:(1+21)×(1+41)×(1+61)×(1+81)×(1-31)×(1-51)×(1-71)×(1-91)例5. 计算:200421-131+200221-331+200021-531+……+421-200131+221-200331例6. 计算:(971+97971+9797971+979797971)÷(861+86861+8686861+868686861)例7. 计算:⎪⎭⎫⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211= 。

简便运算——拆分、裂项、拆项

简便运算——拆分、裂项、拆项

分数的巧算——裂项前面我们介绍了运用定律和性质以及数字的特点进行巧算和简算的一些方法,下面再向同学们介绍怎样用拆分法(也叫裂项法、拆项法)进行分数的简便运算。

运用拆分法解题主要是使拆开后的一些分数互相抵消,达到简化运算的目的。

一般地,形如)1(1+⨯a a 可以拆成111+-a a ;形如)n (1+⨯a a 的分数可以拆成)11(1n a a n +-⨯形如b a b a ⨯+的分数可以拆成b 11+a ;等等。

同学们可以结合例题思考其中的规律。

王牌例题①形如)1(1+⨯a a 可以拆成111+-a a 100991431321211计算:⨯++⨯+⨯+⨯ 【思路导航】因为这个算式中的每个加数都可以分裂成两个数的差,如211211-=⨯,3121321-=⨯,4131431-=⨯,……,其中的部分分数可以相互抵消,这样计算就简便多了,1001991()4131()3121()211(-++-+-+-= 原式100199141313121211-++-+-+-= 1009910011=-=举一反三①403917616515411⨯++⨯+⨯+⨯ 、15141141311312112111111012⨯+⨯+⨯+⨯+⨯、42130120112161213+++++、72156********+++-、王牌例题②形如)n (1+⨯a a 的分数可以拆成)11(1n a a n +-⨯50481861641421计算:⨯++⨯+⨯+⨯ 【思路导航】因为4121422-=⨯,6141642-=⨯,8161862-=⨯,……,所以,将算式中的每一项先扩大2倍后,再分裂成两个数的差,求算式的和,最后把求得的和再乘21即可。

所以2150482862642422(⨯⨯++⨯+⨯+⨯= 原式21)501481()8161()6141()4121(⨯⎥⎦⎤⎢⎣⎡-++-+-+-= 21)50121(⨯-=215024⨯=256=举一反三②999719717515311⨯++⨯+⨯+⨯ 、10097110717414112⨯++⨯+⨯+⨯ 、3733113919515113⨯++⨯+⨯+⨯ 、20811301701281414++++、王牌例题③形如b a b a ⨯+的分数可以拆成b 11+a ;56154213301120912731计算:1-+-+-【思路导航】因为311311+=,41314343127+=⨯+=,51415454209+=⨯+=,615165653011+=⨯+=,716176764213+=⨯+=,817187875615+=⨯+=……所以)8171()7161()6151(5141()4131(311+-+++-+++-+=原式81717161615151414131311--++--++--+=87811=-=举一反三③301120912765211 1-+-+、561542133011209411 2+-+-、6599815499814399813299812119983⨯+⨯+⨯+⨯+⨯、6301162091276 4⨯-⨯+⨯、王牌例题④641321161814121计算:+++++【思路导航】解法一:这道题如果先通分再相加,就比较复杂;如果给原式先“借”来一个641,最后再“还”一个641,就可以通过口算得出结果。

分数裂项法总结.知识讲解

分数裂项法总结.知识讲解
一、两个相邻数裂项方法:
若干个分数连加,如果每个分数的 分母,都是两个相邻自然数相乘, 且分子是1时,就可以利用裂项法 式,把每个分数拆成两个分数单位
的差,消去中间留下两边.
一、两个相邻数裂项:
一.分母是两个相邻数裂项:若干个分数连加,如果每个分数的分母,
都是两个相邻自然数相乘,且分子是1时,
解:
1 1 11 1 11 1
11
1
Sn
(1 ) ( ) ( 3 4 34 7 37
) 10
(
)
3 3n 2 3n 1
1 (1 1 ) n 3 3n 1 3n 1
判断:
判断:
判断:
1111111 2 6 12 20 30 42 56
1+ 1+ 1+ L+ 1 1 2 2 33 4 2 0 1 0 2 0 1 1
总结:
1 1 1 1
1 2 23
(n 1) n n (n 1)
1 1 n 1
n n 1
一 .分 母 是 两 个 相 邻 数 裂 项 法 总 结 :
就可以利用裂项法公式: n
1 (n
1)
1 n
1 n 1
把每个分数拆成两个分数单位的差,消去中间留下两边即:
总结:
1 1 2
1 23
L
L
(n
1 1)
n
1 n(n
1)
1
1 n 1
n n 1
分数裂项的减法形式举例如下:
通分与拆分互逆:
Q 11 3 2 1 2 3 23 23 6
1= 3 2 =1 1 6 23 23 2 3
把每个分数拆成两个分数单位的差,
消 去 中 间 留 下 两 边 .即 :

小学奥数专题-分数裂项

小学奥数专题-分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程.很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了.本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高.分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差.遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的.(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算.(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值.二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:知识点拨教学目标分数裂项计算(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a+=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的.【例 1】 111111223344556++++=⨯⨯⨯⨯⨯ . 【考点】分数裂项 【难度】2星 【题型】计算【关键词】美国长岛,小学数学竞赛【解析】 原式111111115122356166⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 提醒学生注意要乘以(分母差)分之一,如改为:111113355779+++⨯⨯⨯⨯,计算过程就要变为: 111111113355779192⎛⎫+++=-⨯ ⎪⨯⨯⨯⨯⎝⎭. 【答案】56【巩固】 111 (101111125960)+++⨯⨯⨯ 【考点】分数裂项 【难度】2星 【题型】计算【解析】 原式111111111()()......()101111125960106012=-+-++-=-= 【答案】112【巩固】 2222109985443++++=⨯⨯⨯⨯ 【考点】分数裂项 【难度】2星 【题型】计算 【解析】 原式111111112910894534⎛⎫=⨯-+-++-+- ⎪⎝⎭112310⎛⎫=⨯- ⎪⎝⎭715= 【答案】715【例 2】 111111212312100++++++++++ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 本题为典型的“隐藏在等差数列求和公式背后的分数裂差型裂项”问题.此类问题需要从最简单的项开始入手,通过公式的运算寻找规律.从第一项开始,对分母进行等差数列求和运算公式的代入有112(11)11122==+⨯⨯,112(12)212232==+⨯+⨯,……, 原式22221200992(1)1122334100101101101101=++++=⨯-==⨯⨯⨯⨯ 【答案】991101【例 3】 111113355799101++++=⨯⨯⨯⨯ 例题精讲【考点】分数裂项【难度】2星【题型】计算【解析】111111111150(1 13355799101233599101101 ++++=⨯-+-++-=⨯⨯⨯⨯…)【答案】50 101【巩固】计算:1111251335572325⎛⎫⨯++++=⎪⨯⨯⨯⨯⎝⎭【考点】分数裂项【难度】2星【题型】计算【关键词】迎春杯,初赛,六年级【解析】原式11111125123352325⎛⎫=⨯⨯-+-++-⎪⎝⎭11251225⎛⎫=⨯⨯-⎪⎝⎭2524225=⨯12=【答案】12【巩固】251251251251251 4881212162000200420042008 +++++⨯⨯⨯⨯⨯【考点】分数裂项【难度】2星【题型】计算【关键词】台湾,小学数学竞赛,初赛【解析】原式2511111116122334500501501502⎛⎫=⨯+++++⎪⨯⨯⨯⨯⨯⎝⎭251111111111622334501502⎛⎫=⨯-+-+-++-⎪⎝⎭2515015012115165023232=⨯==【答案】21 1532【巩固】计算:3245671 255771111161622222929 ++++++=⨯⨯⨯⨯⨯⨯【考点】分数裂项【难度】3星【题型】计算【解析】原式1111111111111 255771111161622222929=-+-+-+-+-+-+12=【答案】1 2【例 4】计算:11111111()128 8244880120168224288+++++++⨯=【考点】分数裂项【难度】2星【题型】计算【关键词】101中学【解析】原式1111128 2446681618=++++⨯⨯⨯⨯⨯()1111111128 224461618=⨯-+-++-⨯()1164218=-⨯()4289=【答案】4 289【巩固】11111111 612203042567290+++++++=_______【考点】分数裂项【难度】2星【题型】计算【关键词】走美杯,初赛,六年级 【解析】 根据裂项性质进行拆分为:11111111612203042567290+++++++ 1111111123344556677889910112==2105=+++++++⨯⨯⨯⨯⨯⨯⨯⨯- 【答案】25 【巩固】 11111113610152128++++++= 【考点】分数裂项 【难度】6星 【题型】计算【关键词】走美杯,6年级,决赛【解析】 原式111111212312341234567=+++++++++++++++++ 2221233478=++++⨯⨯⨯ 111111122233478⎛⎫=+-+-++- ⎪⎝⎭ 1218⎛⎫=⨯- ⎪⎝⎭74= 【答案】74【巩固】 计算:1111111112612203042567290--------= 【考点】分数裂项 【难度】3星 【题型】计算【关键词】走美杯,6年级,决赛【解析】 原式111111111()223344556677889910=-+++++++⨯⨯⨯⨯⨯⨯⨯⨯ 1111111()22334910=--+-++- 111()2210=-- 110=【答案】110【巩固】 11111104088154238++++= . 【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式11111255881111141417=++++⨯⨯⨯⨯⨯ 111111111113255881111141417⎛⎫=⨯-+-+-+-+- ⎪⎝⎭1115321734⎛⎫=⨯-= ⎪⎝⎭【答案】534【例 5】 计算:1111135357579200120032005++++⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【关键词】华杯赛,总决赛,二试 【解析】 原式11111114133535572001200320032005⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎣⎦ 11110040034132003200512048045⎛⎫=⨯-= ⎪⨯⨯⎝⎭ 【答案】100400312048045【例 6】 7 4.50.161111181315356313 3.75 3.23⨯+⎛⎫⨯+++= ⎪⎝⎭-⨯ 【考点】分数裂项 【难度】3星 【题型】计算【关键词】仁华学校【解析】 原式79161111118290113355779133 1.2540.83-⨯+⎛⎫=⨯+++ ⎪⨯⨯⨯⨯⎝⎭-⨯⨯⨯ 71111111461123357913123+⎛⎫=⨯⨯-+-+⋅⋅⋅+- ⎪⎝⎭- 4631824429=⨯⨯⨯23=36【答案】2336【例 7】 计算:11111123420261220420+++++ 【考点】分数裂项 【难度】3星 【题型】计算【关键词】小数报,初赛【解析】 原式()1111112320261220420⎛⎫=++++++++++ ⎪⎝⎭ 11111210122334452021=++++++⨯⨯⨯⨯⨯ 11111112101223342021=+-+-+-++- 12021012102121=+-= 【答案】2021021【巩固】 计算:11111200820092010201120121854108180270++++= . 【考点】分数裂项 【难度】2星 【题型】计算【关键词】学而思杯,6年级,1试 【解析】 原式1111120082009201020112012366991212151518=+++++++++⨯⨯⨯⨯⨯ 1111111201059122356⎛⎫=⨯+⨯-+-++- ⎪⎝⎭ 51005054= 【答案】51005054【巩固】 计算:1122426153577++++= ____. 【考点】分数裂项 【难度】2星 【题型】计算【关键词】学而思杯,6年级【答案】11【巩固】 计算:1111111315356399143195++++++ 【考点】分数裂项 【难度】3星 【题型】计算 【解析】 分析这个算式各项的分母,可以发现它们可以表示为:232113=-=⨯,2154135=-=⨯,……,21951411315=-=⨯, 所以原式11111111335577991111131315=++++++⨯⨯⨯⨯⨯⨯⨯ 11111111121323521315⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1112115⎛⎫=⨯- ⎪⎝⎭715= 【答案】715【巩固】 计算:15111929970198992612203097029900+++++++= . 【考点】分数裂项 【难度】3星 【题型】计算【关键词】四中 【解析】 原式1111111126129900⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11199122399100⎛⎫=-+++ ⎪⨯⨯⨯⎝⎭ 1111199122399100⎛⎫=--+-++- ⎪⎝⎭1991100⎛⎫=-- ⎪⎝⎭198100= 【答案】198100【例 8】 111123234789+++⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 首先分析出()()()()()()()()11111111211211n n n n n n n n n n n n ⎡⎤+--==-⎢⎥-⨯⨯+-⨯⨯+-⨯⨯+⎢⎥⎣⎦原式11111111121223233467787889⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 1112128935144⎛⎫=⨯- ⎪⨯⨯⎝⎭= 【答案】35144【巩固】 计算:1111232349899100+++⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式11111111()21223233434989999100=⨯-+-++⋅⋅⋅+-⨯⨯⨯⨯⨯⨯⨯ 111149494949()212991002990019800=⨯-=⨯=⨯⨯ 【答案】494919800【巩固】 计算:1111135246357202224++++⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式=1135⨯⨯+1357⨯⨯+…+1192123⨯⨯+1246⨯⨯+…+1202224⨯⨯ =14(113⨯-12123⨯)+14(124⨯-12224⨯) =40483+652112=28160340032+10465340032=38625340032【答案】38625340032【巩固】 4444 (135357939597959799)++++⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算 【解析】 11111111()()......()()133535579395959795979799=-+-++-+-⨯⨯⨯⨯⨯⨯⨯⨯ 11139799=-⨯⨯32009603=【答案】3200 9603【巩固】9998971 12323434599100101 ++++⨯⨯⨯⨯⨯⨯⨯⨯【考点】分数裂项【难度】3星【题型】计算【解析】99123⨯⨯=1001123-⨯⨯=100123⨯⨯-123⨯=100123⨯⨯-123⨯98234⨯⨯=1002234-⨯⨯=100234⨯⨯-2234⨯⨯=100234⨯⨯-134⨯97345⨯⨯=1003345-⨯⨯=100345⨯⨯-3345⨯⨯=100345⨯⨯-145⨯……199100101⨯⨯=1009999100101-⨯⨯=10099100101⨯⨯-9999100101⨯⨯=10099100101⨯⨯-1100101⨯原式100100100100111...(...) 123234345991001012334100101 =++++-+++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯1111151100()()2422101002101101=⨯⨯---=【答案】51 24 101【例 9】11111 123423453456678978910 +++⋅⋅⋅++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯【考点】分数裂项【难度】3星【题型】计算【解析】原式1111111 31232342343457898910⎛⎫=⨯-+-++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭11131238910⎛⎫=⨯-⎪⨯⨯⨯⨯⎝⎭1192160=【答案】119 2160【巩固】333...... 1234234517181920 +++⨯⨯⨯⨯⨯⨯⨯⨯⨯【考点】分数裂项【难度】3星【题型】计算【解析】原式11111113[(...)] 3123234234345171819181920 =⨯⨯-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯1131920111391231819201819206840⨯⨯-=-==⨯⨯⨯⨯⨯⨯【答案】1139 6840【例 10】计算:57191232348910+++=⨯⨯⨯⨯⨯⨯.【考点】分数裂项【难度】3星【题型】计算【解析】如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第n个数恰好为n的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.原式32343161232348910+++=+++⨯⨯⨯⨯⨯⨯1111283212323489101232348910⎛⎫⎛⎫=⨯++++⨯+++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭111111111132212232334899102334910⎛⎫⎛⎫=⨯⨯-+-++-+⨯+++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭ 31111111122129102334910⎛⎫⎛⎫=⨯-+⨯-+-++- ⎪ ⎪⨯⨯⎝⎭⎝⎭ 3111122290210⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭7114605=-- 2315= 也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为23n +,所以()()()()()()2323121212n n n n n n n n n +=+⨯+⨯++⨯+⨯+⨯+,再将每一项的()()212n n +⨯+与()()312n n n ⨯+⨯+分别加在一起进行裂项.后面的过程与前面的方法相同. 【答案】2315【巩固】 计算:5717191155234345891091011⨯++++⨯⨯⨯⨯⨯⨯⨯⨯() 【考点】分数裂项 【难度】3星 【题型】计算【关键词】迎春杯,初赛,五年级【解析】 本题的重点在于计算括号内的算式:571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯.这个算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式.观察可知523=+,734=+,……即每一项的分子都等于分母中前两个乘数的和,所以 571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯ 233491023434591011+++=+++⨯⨯⨯⨯⨯⨯ 111111342445351011911=++++++⨯⨯⨯⨯⨯⨯ 111111344510112435911⎛⎫⎛⎫=+++++++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭ 11111111111111111344510112243546810911⎛⎫⎛⎫=-+-++-+⨯-+-+-++-+- ⎪ ⎪⎝⎭⎝⎭ 11111113112210311⎛⎫⎛⎫=-+⨯-+- ⎪ ⎪⎝⎭⎝⎭8128332533⎛⎫=+⨯+ ⎪⎝⎭3155= 所以原式31115565155=⨯=. (法二)上面的方法是最直观的转化方法,但不是唯一的转化方法.由于分子成等差数列,而等差数列的通项公式为a nd +,其中d 为公差.如果能把分子变成这样的形式,再将a 与nd 分开,每一项都变成两个分数,接下来就可以裂项了.571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯ 122132182192234345891091011+⨯+⨯+⨯+⨯=++++⨯⨯⨯⨯⨯⨯⨯⨯ 122132182192234234345345891089109101191011⨯⨯⨯⨯=++++++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1111222223434589109101134459101011⎛⎫⎛⎫=+++++++++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭11111111111112223343445910101134451011⎛⎫⎛⎫=⨯-+-++-+⨯-+-++- ⎪ ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭1111122231011311⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⨯⨯⎝⎭⎝⎭ 11223413112220311422055=-+-=-=, 所以原式31115565155=⨯=. (法三)本题不对分子进行转化也是可以进行计算的:571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯ 51171117111911223342344528991029101011⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯-+⨯- ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭ 5175197119171191223223422452291021011⎛⎫⎛⎫⎛⎫=⨯+-⨯+-⨯++-⨯-⨯ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭ 51111191223344591021011=⨯++++-⨯⨯⨯⨯⨯⨯ 51119311231022055=+--= 所以原式31115565155=⨯=. (法四)对于这类变化较多的式子,最基本的方法就是通项归纳.先找每一项的通项公式:21(1)(2)n n a n n n +=++(2n =,3,……,9) 如果将分子21n +分成2n 和1,就是上面的法二;如果将分子分成n 和1n +,就是上面的法一.【答案】651【巩固】 计算:3451212452356346710111314++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算 【解析】 观察可知原式每一项的分母中如果补上分子中的数,就会是5个连续自然数的乘积,所以可以先将每一项的分子、分母都乘以分子中的数.即:原式2222345121234523456345671011121314=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 现在进行裂项的话无法全部相消,需要对分子进行分拆,考虑到每一项中分子、分母的对称性,可以用平方差公式:23154=⨯+,24264=⨯+,25374=⨯+……原式2222345121234523456345671011121314=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 154264374101441234523456345671011121314⨯+⨯+⨯+⨯+=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 111123434545611121344441234523456345671011121314⎛⎫=++++ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎛⎫+++++ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭ 11111112233434451112121311111112342345234534561011121311121314⎛⎫=⨯-+-++- ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎛⎫+-+-++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭111112231213123411121314⎛⎫⎛⎫=⨯-+- ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭111112212132411121314=-+-⨯⨯⨯⨯⨯1771811121314+=-⨯⨯⨯11821114=-⨯⨯11758308616=-=【答案】75616【例 11】 12349223234234523410+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】4星 【题型】计算【解析】 原式12349223234234523410=+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 21314110122323423410----=++++⨯⨯⨯⨯⨯⨯ 111111112223232342349234910=-+-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1362879912349103628800=-=⨯⨯⨯⨯ 【答案】36287993628800【例 12】 123456121231234123451234561234567+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】4星 【题型】计算【解析】 原式131********121231234123451234561234567-----=+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 111111121212312312341234567=+-+-+-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 11112121234567=+-⨯⨯⨯⨯⨯⨯⨯⨯ 115040=-50395040=【答案】50395040【巩固】 计算:23993!4!100!+++= .【考点】分数裂项 【难度】4星 【题型】计算 【解析】 原式为阶乘的形式,较难进行分析,但是如果将其写成连乘积的形式,题目就豁然开朗了.原式23991231234123100=+++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 314110011231234123100---=+++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 11111112123123123412399123100=-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1112123100=-⨯⨯⨯⨯⨯112100!=-【答案】112100!-【例 13】 234501(12)(12)(123)(123)(1234)(12349)(1250)++++⨯++⨯++++⨯+++++++⨯+++【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式=213⨯+336⨯+4610⨯+51015⨯+…+5012251275⨯=(11-13)+(13-16)+(16-110)+(11225-11275)=12741275【答案】12741275【巩固】2341001(12)(12)(123)(123)(1234)(1299)(12100)++++⨯++⨯++++⨯++++++⨯+++【考点】分数裂项 【难度】3星 【题型】计算【解析】 2111(12)112=-⨯++,311(12)(123)12123=-+⨯+++++,……,10011(1299)(12100)129912100=-+++⨯+++++++++,所以原式1112100=-+++15049150505050=-=【答案】50495050【巩固】 23101112(12)(123)(1239)(12310)----⨯++⨯++++++⨯++++() 【考点】分数裂项 【难度】2星 【题型】计算【解析】 原式234101()133********=-++++⨯⨯⨯⨯1111111113366104555⎛⎫=--+-+-++- ⎪⎝⎭11155⎛⎫=-- ⎪⎝⎭155=【答案】155【例 14】 22222211111131517191111131+++++=------ .【考点】分数裂项 【难度】3星 【题型】计算 【关键词】仁华学校 【解析】 这题是利用平方差公式进行裂项:22()()a b a b a b -=-⨯+,原式111111()()()()()()24466881010121214=+++++⨯⨯⨯⨯⨯⨯1111111111111()244668810101212142=-+-+-+-+-+-⨯ 1113()214214=-⨯= 【答案】314【巩固】 计算:222222111111(1)(1)(1)(1)(1)(1)23454849-⨯-⨯-⨯-⨯⨯-⨯-=【考点】分数裂项 【难度】3星 【题型】计算【解析】 2111131(1)(1)22222-=-⨯+=⨯,2111241(1)(1)33333-=-⨯+=⨯,……所以,原式1324485022334949=⨯⨯⨯⨯⨯⨯1502524949=⨯=【答案】2549【巩固】 计算:222222223571512233478++++⨯⨯⨯⨯【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式22222222222222222132438712233478----=++++⨯⨯⨯⨯2222222111111112233478=-+-+-++-2118=-6364=【答案】6364【巩固】 计算:222222222231517119931199513151711993119951++++++++++=----- .【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式2222222222111113151711993119951⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 222997244619941996⎛⎫=++++ ⎪⨯⨯⨯⎝⎭111111997244619941996⎛⎫=+-+-++- ⎪⎝⎭1199721996⎛⎫=+- ⎪⎝⎭9979971996= 【答案】9979971996【巩固】 计算:22222222222213243598100213141991++++++++=---- .【考点】分数裂项 【难度】3星 【题型】计算【解析】 2221310213+=-,2222420318+=-,22235344115+=-,……由于104233=,204288=,34421515=, 可见原式222244442222213141991=++++---- 1111298413243598100⎛⎫=⨯+⨯++++ ⎪⨯⨯⨯⨯⎝⎭111111111964123243598100⎛⎫=+⨯⨯-+-+-++- ⎪⎝⎭11119621299100⎛⎫=+⨯+-- ⎪⎝⎭199196329900=+-⨯47511984950=【答案】47511984950【巩固】 计算:22221235013355799101++++=⨯⨯⨯⨯ .【考点】分数裂项 【难度】3星 【题型】计算 【解析】 式子中每一项的分子与分母初看起来关系不大,但是如果将其中的分母根据平方差公式分别变为221-,241-,261-,……,21001-,可以发现如果分母都加上1,那么恰好都是分子的4倍,所以可以先将原式乘以4后进行计算,得出结果后除以4就得到原式的值了.原式22222222124610042141611001⎛⎫=⨯++++ ⎪----⎝⎭222211111111142141611001⎛⎫=⨯++++++++⎪----⎝⎭1111150413355799101⎛⎫=⨯+++++⎪⨯⨯⨯⨯⎝⎭111111111501423355799101⎡⎤⎛⎫=⨯+⨯-+-+-++- ⎪⎢⎥⎝⎭⎣⎦11150142101⎡⎤⎛⎫=⨯+⨯- ⎪⎢⎥⎝⎭⎣⎦150504101=⨯6312101= 【答案】6312101【例 15】 5667788991056677889910+++++-+-+⨯⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】 56677889910111111113()...()56677889910566791051010+++++-+-+=+-++++=+=⨯⨯⨯⨯⨯【答案】310【巩固】 36579111357612203042++++++【考点】分数裂项 【难度】3星 【题型】计算 【关键词】第三届,祖冲之杯,人大附中【解析】 原式=36233445566736111111 (57233445566757233467)+++++++++++=++++++++⨯⨯⨯⨯⨯=4【答案】4【巩固】计算:1325791011193457820212435++++++++=【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式13257111111213457845373857=++++++++++++111115=++++=【答案】5【巩固】 123791117253571220283042+++++++【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式12311111121133573445475667=++++++++++++11112123131113366555777444⎛⎫⎛⎫⎛⎫⎛⎫=++++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭334=【答案】334【巩固】 1111120102638272330314151119120123124+++++++++【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式11111111111111123303141317717430341431⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++++-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11111112337434=++++++127= 【答案】127【巩固】 35496377911053116122030425688⎡⎤⎛⎫-+-+--÷ ⎪⎢⎥⎝⎭⎣⎦【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式5791113153718612203042568⎡⎤⎛⎫=-+-+-⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦ 11111111782334788⎡⎤⎛⎫=+--+--⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦1111788288⎛⎫=-⨯⨯-⨯ ⎪⎝⎭211110=-=【答案】10【巩固】 计算:57911131517191612203042567290-+-+-+-+【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式23344556677889910123344556677889910++++++++=-+-+-+-+⨯⨯⨯⨯⨯⨯⨯⨯ 11111111111111111()()()()()()()()23344556677889910=-+++-+++-+++-+++11312105=-+=【答案】35【巩固】 11798175451220153012++++++【考点】分数裂项 【难度】3星 【题型】计算【解析】 原式111111112111453445355646=+++++++++++111124523456=⨯+⨯+⨯+⨯3=【答案】3【例 16】 22222222122318191920122318191920++++++⋯⋯++⨯⨯⨯⨯ 【考点】分数裂项 【难度】3星 【题型】计算【解析】原式1232341918192021919 (21736)2123431819201912020 =++++++++++=+⨯+=【答案】19 3620【巩固】11112007111 (......)(......) 120072200620062200712008120062200520061 ++++-+++⨯⨯⨯⨯⨯⨯⨯【考点】分数裂项【难度】4星【题型】计算【解析】原式=2008111200711 (...)(...) 200812007220062007120081200620061⨯+++-++⨯⨯⨯⨯⨯=2008111200711 (...)(...) 200812007220062007120081200620061⨯+++-++⨯⨯⨯⨯⨯=1200820082008120072007 (...)(...) 200812007220062007120081200620061⨯+++-++⨯⨯⨯⨯⨯=11111111111 [(...)(...)] 20081200722006200711200620061⨯++++++-++++=11111111111 [(...)(...)] 20081200722006200711200620061⨯++++++-++++=1111() 2008200720072015028⨯+=【答案】1 2015028【例 17】计算:111111 23459899515299 +++++++=⨯⨯⨯【考点】分数裂项【难度】5星【题型】计算【解析】原式11111111124983599515299⎛⎫⎛⎫⎛⎫=+++-+++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111111111224503549525498⎛⎫⎛⎫⎛⎫=+++-+++⨯+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11111111124503549262749⎛⎫⎛⎫⎛⎫=+++-++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111111111122424352526284850⎛⎫⎛⎫⎛⎫=+++-+++⨯++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11111111112424352513142450⎛⎫⎛⎫⎛⎫=+++-+++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111111111112241235111416245025⎛⎫⎛⎫⎛⎫=+++-+++⨯++++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111111111112412351178125025⎛⎫⎛⎫⎛⎫=+++-+++++++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111111224635810125025⎛⎫⎛⎫⎛⎫=++-++⨯+++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111111246354565025⎛⎫⎛⎫⎛⎫=++-+++++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11491502550=+-=【答案】49 50【例 18】计算:24612 335357357911 ++++=⨯⨯⨯⨯⨯⨯⨯【考点】分数裂项【难度】4星【题型】计算【解析】原式31517113133535735791113----=++++⨯⨯⨯⨯⨯⨯⨯⨯111111 133535791133535791113⎛⎫⎛⎫=+++-+++⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭1135791113=-⨯⨯⨯⨯⨯135134135135=【答案】135134 135135【例 19】计算:283411 1222222 1335571719135357171921⎛⎫++++-+++=⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭【考点】分数裂项【难度】5星【题型】计算【解析】341199 222224422 1353571719211335355717191921 +++=-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯892242213355717191921=++++-⨯⨯⨯⨯⨯所以原式889 122224221335171913355717191921⎛⎫=+++-++++-⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭921512133379192113399399-=-==⨯⨯【答案】379 399。

小升初裂项相消法

小升初裂项相消法

裂项相消法(拆分法)一:裂项相消法(拆分法):把一个分数拆成两个或两个以上分数相减或相加的形式,然后再进行计算的方法叫做裂项相消法,也叫拆分法。

二:列项相消公式(1)111(n 1)1n n n =-++ (2)()11k n n k n n k =-++ (3)1111()(n )n k n n k k=-⨯++ (4)()()()()()1111121122n n n n n n n ⎛⎫=-⨯ ⎪ ⎪+++++⎝⎭ (5)11a b a b a b+=+⨯ (6)22a b b a a b a b+=+⨯ 三:数列(1)定义:按一定的次序排列的一列数叫做数列。

(2)数列中的每一个数叫做这个数列的项。

依次叫做这个数列的第一项(首项)、第二 项、、、、、、第n 项(末项)。

(3)项数:一个数列中有几个数字,项数就是几。

四:等差数列(1)定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。

而这个常数叫做等差数列的公差。

(2)等差数列的和=(首项+末项)×项数÷2(3)等差数列的项数=(末项-首项)÷公差+1(4)等差数列的末项=首项+公差×(项数-1)例1、1111111 12233445566778 ++++++⨯⨯⨯⨯⨯⨯⨯例2、1111111 261220304256 ++++++例3、111111111 1+3+5+7+9+11+13+15+17+19 612203042567290110例4、111111 133557799111113 +++++⨯⨯⨯⨯⨯⨯例5、11111315356399++++例6、111111+3+5+7+9315356399例7、11111 ++++ 144771*********⨯⨯⨯⨯⨯例8、22222 +++++ 1335572001200320032005⨯⨯⨯⨯⨯例9、3579111315-+-+-+261220304256例10、354963779110561220304256-+-+-例11、15111997019899 +++++ 26122097029900+例12、713213143577391 +++++++ 612203042567290例13、22222++++13355779911681024⨯⨯⨯⨯⨯例14、11111123234345456567++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯(观察到分子都是1,分母是连续的三个数相乘,所以可以用公式()()()()()1111121122n n n n n n n ⎛⎫=-⨯ ⎪ ⎪+++++⎝⎭)例15、222222221223342001200212233420012002++++++++⨯⨯⨯⨯(观察此题可用公式22a b b a a b a b +=+⨯列项凑整,但不能相消。

分数裂项推导

分数裂项推导

分数裂项法则是基于分数的加法和分数的乘法运算的
基本性质推导出来的。

其基本思想是将一个分数拆分成若干个部分,然后分别进行运算,最后再将结果相加。

具体来说,分数裂项法则可以分为以下几个步骤:
将分数的分子进行裂项,即将一个分数的分子拆分成两个部分。

将分数的分母进行裂项,即将一个分数的分母拆分成两个部分。

将裂项后的分子和分母进行分别相乘,得到两个新的分数。

将两个新的分数相加,得到最终的结果。

例如,对于分数1/n(n+1),可以将其拆分成1/n-1/(n+1),然后进行裂项处理,得到新的分数1/(n*(n+1))。

这个新的分数可以通过通分和化简得到原分数1/n(n+1)。

总的来说,分数裂项法是一种分解与组合的思想在数列求和中的具体应用。

它通过将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。

六年级分数裂项

六年级分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程;很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了;本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高;分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差;遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的;1对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- 2对于分母上为3个或4个连续自然数乘积形式的分数,即:知识点拨教学目标分数裂项计算1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:裂差型裂项的三大关键特征:1分子全部相同,最简单形式为都是1的,复杂形式可为都是xx 为任意自然数的,但是只要将x 提取出来即可转化为分子都是1的运算;2分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”3分母上几个因数间的差是一个定值;二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:111a b a b a b a b a b b a+=+=+⨯⨯⨯ 22222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的;【例 1】111111223344556++++=⨯⨯⨯⨯⨯ ; 考点分数裂项 难度2星 题型计算 关键词美国长岛,小学数学竞赛【解析】 原式111111115122356166⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 提醒学生注意要乘以分母差分之一,如改为:111113355779+++⨯⨯⨯⨯,计算过程就要变为:111111113355779192⎛⎫+++=-⨯ ⎪⨯⨯⨯⨯⎝⎭. 答案56考点分数裂项 难度2星 题型计算【解析】 原式111111111()()......()101111125960106012=-+-++-=-=例题精讲答案112考点分数裂项 难度2星 题型计算【解析】 原式111111112910894534⎛⎫=⨯-+-++-+- ⎪⎝⎭112310⎛⎫=⨯- ⎪⎝⎭715= 答案715考点分数裂项 难度3星 题型计算 【解析】 本题为典型的“隐藏在等差数列求和公式背后的分数裂差型裂项”问题;此类问题需要从最简单的项开始入手,通过公式的运算寻找规律;从第一项开始,对分母进行等差数列求和运算公式的代入有112(11)11122==+⨯⨯,112(12)212232==+⨯+⨯,……, 原式22221200992(1)1122334100101101101101=++++=⨯-==⨯⨯⨯⨯ 答案991101考点分数裂项 难度2星 题型计算 答案50101【巩固】 计算:1111251335572325⎛⎫⨯++++=⎪⨯⨯⨯⨯⎝⎭考点分数裂项 难度2星 题型计算 关键词2009年,迎春杯,初赛,六年级【解析】 原式11111125123352325⎛⎫=⨯⨯-+-++-⎪⎝⎭11251225⎛⎫=⨯⨯- ⎪⎝⎭2524225=⨯12=答案12考点分数裂项 难度2星 题型计算 关键词2008年,台湾,小学数学竞赛,初赛【解析】 原式2511111116122334500501501502⎛⎫=⨯+++++ ⎪⨯⨯⨯⨯⨯⎝⎭答案211532【巩固】 计算:3245671255771111161622222929++++++=⨯⨯⨯⨯⨯⨯ 考点分数裂项 难度3星 题型计算【解析】 原式1111111111111255771111161622222929=-+-+-+-+-+-+12= 答案12【例 2】 计算:11111111()1288244880120168224288+++++++⨯=考点分数裂项 难度2星 题型计算 关键词2008年,101中学【解析】原式1111128 2446681618=++++⨯⨯⨯⨯⨯()答案4289【巩固】11111111 612203042567290+++++++=_______考点分数裂项难度2星题型计算关键词2008年,第六届,走美杯,初赛,六年级【解析】根据裂项性质进行拆分为:答案25考点分数裂项难度6星题型计算关键词2008年,第6届,走美杯,6年级,决赛【解析】原式111111212312341234567 =+++++++++++++++++答案74【巩固】计算:111111111 2612203042567290 --------=考点分数裂项难度3星题型计算关键词2006年,第4届,走美杯,6年级,决赛【解析】原式111111111 () 223344556677889910 =-+++++++⨯⨯⨯⨯⨯⨯⨯⨯答案110【巩固】11111104088154238++++= ;考点分数裂项难度3星题型计算【解析】原式11111 255881111141417 =++++⨯⨯⨯⨯⨯答案534【例 3】计算:1111 135357579200120032005 ++++⨯⨯⨯⨯⨯⨯⨯⨯考点分数裂项难度3星题型计算关键词2005年,第10届,华杯赛,总决赛,二试【解析】原式1111111 4133535572001200320032005⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎪ ⎪ ⎪⎢⎥⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎣⎦答案100400312048045考点分数裂项难度3星题型计算关键词2007年,仁华学校【解析】原式791611111 18290113355779 133 1.2540.83-⨯+⎛⎫=⨯+++⎪⨯⨯⨯⨯⎝⎭-⨯⨯⨯【例 4】 计算:11111123420261220420+++++ 考点分数裂项 难度3星 题型计算 关键词第五届,小数报,初赛【解析】 原式()1111112320261220420⎛⎫=++++++++++ ⎪⎝⎭答案2021021【巩固】 计算:11111200820092010201120121854108180270++++= ; 考点分数裂项 难度2星 题型计算【解析】 原式1111120082009201020112012366991212151518=+++++++++⨯⨯⨯⨯⨯ 答案51005054【巩固】 计算:1122426153577++++= ____; 考点分数裂项 难度2星 题型计算答案11【巩固】 计算:1111111315356399143195++++++考点分数裂项 难度3星 题型计算 【解析】 分析这个算式各项的分母,可以发现它们可以表示为:232113=-=⨯,2154135=-=⨯,……,21951411315=-=⨯,所以原式11111111335577991111131315=++++++⨯⨯⨯⨯⨯⨯⨯ 答案715【巩固】 计算:15111929970198992612203097029900+++++++= . 考点分数裂项 难度3星 题型计算 关键词2008年,四中【解析】 原式1111111126129900⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭答案198100考点分数裂项 难度3星 题型计算【解析】 首先分析出()()()()()()()()11111111211211n n n n n n n n n n n n ⎡⎤+--==-⎢⎥-⨯⨯+-⨯⨯+-⨯⨯+⎢⎥⎣⎦原式11111111121223233467787889⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦【巩固】 计算:1111232349899100+++⨯⨯⨯⨯⨯⨯考点分数裂项 难度3星 题型计算【解析】 原式11111111()21223233434989999100=⨯-+-++⋅⋅⋅+-⨯⨯⨯⨯⨯⨯⨯答案494919800【巩固】 计算:1111135246357202224++++⨯⨯⨯⨯⨯⨯⨯⨯ 考点分数裂项 难度3星 题型计算【解析】 原式=1135⨯⨯+1357⨯⨯+…+1192123⨯⨯+1246⨯⨯+…+1202224⨯⨯ =14113⨯-12123⨯+14124⨯-12224⨯ =40483+652112=28160340032+10465340032=38625340032答案38625340032 考点分数裂项 难度3星 题型计算 答案32009603考点分数裂项 难度3星 题型计算【解析】 99123⨯⨯=1001123-⨯⨯=100123⨯⨯-123⨯=100123⨯⨯-123⨯98234⨯⨯=1002234-⨯⨯=100234⨯⨯-2234⨯⨯=100234⨯⨯-134⨯97345⨯⨯=1003345-⨯⨯=100345⨯⨯-3345⨯⨯=100345⨯⨯-145⨯……199100101⨯⨯=1009999100101-⨯⨯=10099100101⨯⨯-9999100101⨯⨯=10099100101⨯⨯-1100101⨯原式100100100100111...(...)123234345991001012334100101=++++-+++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯答案5124101考点分数裂项 难度3星 题型计算【解析】 原式111111131232342343457898910⎛⎫=⨯-+-++-⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭答案1192160考点分数裂项 难度3星 题型计算【解析】 原式11111113[(...)]3123234234345171819181920=⨯⨯-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯答案11396840【例 5】 计算:57191232348910+++=⨯⨯⨯⨯⨯⨯ .考点分数裂项 难度3星 题型计算 【解析】 如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列该数列的第n 个数恰好为n 的2倍,原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.原式32343161232348910+++=+++⨯⨯⨯⨯⨯⨯也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为23n +,所以()()()()()()2323121212n n n n n n n n n +=+⨯+⨯++⨯+⨯+⨯+,再将每一项的()()212n n +⨯+与()()312n n n ⨯+⨯+分别加在一起进行裂项.后面的过程与前面的方法相同.答案2315【巩固】 计算:5717191155234345891091011⨯++++⨯⨯⨯⨯⨯⨯⨯⨯()考点分数裂项 难度3星 题型计算 关键词2009年,迎春杯,初赛,五年级 【解析】 本题的重点在于计算括号内的算式:571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯.这个算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式.观察可知523=+,734=+,……即每一项的分子都等于分母中前两个乘数的和,所以所以原式31115565155=⨯=. 法二上面的方法是最直观的转化方法,但不是唯一的转化方法.由于分子成等差数列,而等差数列的通项公式为a nd +,其中d 为公差.如果能把分子变成这样的形式,再将a 与nd 分开,每一项都变成两个分数,接下来就可以裂项了.11223413112220311422055=-+-=-=, 所以原式31115565155=⨯=.法三本题不对分子进行转化也是可以进行计算的:所以原式31115565155=⨯=. 法四对于这类变化较多的式子,最基本的方法就是通项归纳.先找每一项的通项公式:21(1)(2)n n a n n n +=++2n =,3,……,9如果将分子21n +分成2n 和1,就是上面的法二;如果将分子分成n 和1n +,就是上面的法一. 答案651【巩固】 计算:3451212452356346710111314++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯考点分数裂项 难度3星 题型计算 【解析】 观察可知原式每一项的分母中如果补上分子中的数,就会是5个连续自然数的乘积,所以可以先将每一项的分子、分母都乘以分子中的数.即:原式2222345121234523456345671011121314=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 现在进行裂项的话无法全部相消,需要对分子进行分拆,考虑到每一项中分子、分母的对称性,可以用平方差公式:23154=⨯+,24264=⨯+,25374=⨯+……原式2222345121234523456345671011121314=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 答案75616考点分数裂项 难度4星 题型计算【解析】 原式12349223234234523410=+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯答案36287993628800考点分数裂项 难度4星 题型计算【解析】 原式131********121231234123451234561234567-----=+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 答案50395040【巩固】 计算:23993!4!100!+++= . 考点分数裂项 难度4星 题型计算 【解析】 原式为阶乘的形式,较难进行分析,但是如果将其写成连乘积的形式,题目就豁然开朗了.原式23991231234123100=+++⨯⨯⨯⨯⨯⨯⨯⨯⨯答案112100!-考点分数裂项 难度3星 题型计算【解析】 原式=213⨯+336⨯+4610⨯+51015⨯+…+5012251275⨯=11-13+13-16+16-110+11225-11275=12741275 答案12741275考点分数裂项 难度3星 题型计算【解析】 2111(12)112=-⨯++,311(12)(123)12123=-+⨯+++++,……, 10011(1299)(12100)129912100=-+++⨯+++++++++,所以 原式1112100=-+++答案50495050考点分数裂项 难度2星 题型计算【解析】 原式234101()133********=-++++⨯⨯⨯⨯答案155【例 6】 22222211111131517191111131+++++=------ .考点分数裂项 难度3星 题型计算 关键词仁华学校 【解析】 这题是利用平方差公式进行裂项:22()()a b a b a b -=-⨯+,原式111111()()()()()()24466881010121214=+++++⨯⨯⨯⨯⨯⨯ 答案314【巩固】 计算:222222111111(1)(1)(1)(1)(1)(1)23454849-⨯-⨯-⨯-⨯⨯-⨯-= 考点分数裂项 难度3星 题型计算【解析】 2111131(1)(1)22222-=-⨯+=⨯,2111241(1)(1)33333-=-⨯+=⨯,……所以,原式1324485022334949=⨯⨯⨯⨯⨯⨯1502524949=⨯=答案2549【巩固】 计算:222222223571512233478++++⨯⨯⨯⨯考点分数裂项 难度3星 题型计算【解析】 原式22222222222222222132438712233478----=++++⨯⨯⨯⨯答案6364【巩固】 计算:222222222231517119931199513151711993119951++++++++++=----- .考点分数裂项 难度3星 题型计算【解析】 原式2222222222111113151711993119951⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 答案9979971996【巩固】 计算:22222222222213243598100213141991++++++++=---- .考点分数裂项 难度3星 题型计算【解析】 2221310213+=-,2222420318+=-,22235344115+=-,……由于104233=,204288=,34421515=,可见原式222244442222213141991=++++----答案47511984950【巩固】 计算:22221235013355799101++++=⨯⨯⨯⨯ .考点分数裂项 难度3星 题型计算【解析】 式子中每一项的分子与分母初看起来关系不大,但是如果将其中的分母根据平方差公式分别变为221-,241-,261-,……,21001-,可以发现如果分母都加上1,那么恰好都是分子的4倍,所以可以先将原式乘以4后进行计算,得出结果后除以4就得到原式的值了.原式22222222124610042141611001⎛⎫=⨯++++ ⎪----⎝⎭答案6312101考点分数裂项 难度3星 题型计算答案310考点分数裂项 难度3星 题型计算 关键词第三届,祖冲之杯,人大附中【解析】 原式=36233445566736111111 (57233445566757233467)+++++++++++=++++++++⨯⨯⨯⨯⨯=4答案4巩固计算:1325791011193457820212435++++++++=考点分数裂项 难度3星 题型计算【解析】 原式13257111111213457845373857=++++++++++++111115=++++=答案5考点分数裂项 难度3星 题型计算【解析】 原式12311111121133573445475667=++++++++++++答案334考点分数裂项 难度3星 题型计算【解析】 原式11111111111111123303141317717430341431⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++++-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭答案127考点分数裂项 难度3星 题型计算【解析】 原式5791113153718612203042568⎡⎤⎛⎫=-+-+-⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦答案10【巩固】 计算:57911131517191612203042567290-+-+-+-+考点分数裂项 难度3星 题型计算【解析】 原式23344556677889910123344556677889910++++++++=-+-+-+-+⨯⨯⨯⨯⨯⨯⨯⨯ 答案35考点分数裂项 难度3星 题型计算【解析】 原式111111112111453445355646=+++++++++++答案3考点分数裂项 难度3星 题型计算【解析】 原式1232341918192021919 (217362123431819201912020)=++++++++++=+⨯+= 答案193620考点分数裂项 难度4星 题型计算【解析】 原式=2008111200711(...)(...)200812007220062007120081200620061⨯+++-++⨯⨯⨯⨯⨯ =2008111200711(...)(...)200812007220062007120081200620061⨯+++-++⨯⨯⨯⨯⨯ =1200820082008120072007(...)(...)200812007220062007120081200620061⨯+++-++⨯⨯⨯⨯⨯ =11111111111[(...)(...)]20081200722006200711200620061⨯++++++-++++ =11111111111[(...)(...)]20081200722006200711200620061⨯++++++-++++ =1111()2008200720072015028⨯+=答案12015028【例 7】 计算:11111123459899515299+++++++=⨯⨯⨯ 考点分数裂项 难度5星 题型计算【解析】 原式11111111124983599515299⎛⎫⎛⎫⎛⎫=+++-+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【解析】 111111111224503549525498⎛⎫⎛⎫⎛⎫=+++-+++⨯+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【解析】 11111111124503549262749⎛⎫⎛⎫⎛⎫=+++-++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【解析】 111111111122424352526284850⎛⎫⎛⎫⎛⎫=+++-+++⨯++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【解析】 11111111112424352513142450⎛⎫⎛⎫⎛⎫=+++-+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【解析】 111111111112241235111416245025⎛⎫⎛⎫⎛⎫=+++-+++⨯++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【解析】 111111111112412351178125025⎛⎫⎛⎫⎛⎫=+++-+++++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【解析】 1111111111224635810125025⎛⎫⎛⎫⎛⎫=++-++⨯+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【解析】 1111111111246354565025⎛⎫⎛⎫⎛⎫=++-+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11491502550=+-= 答案4950【例 8】 计算:24612335357357911++++=⨯⨯⨯⨯⨯⨯⨯考点分数裂项 难度4星 题型计算【解析】 原式31517113133535735791113----=++++⨯⨯⨯⨯⨯⨯⨯⨯ 【解析】 111111133535791133535791113⎛⎫⎛⎫=+++-+++⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭【解析】 1135791113=-⨯⨯⨯⨯⨯ 135134135135=答案135134135135【例 9】 计算:28341112222221335571719135357171921⎛⎫++++-+++= ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭考点分数裂项 难度5星 题型计算【解析】 3411992222244221353571719211335355717191921+++=-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【解析】 892242213355717191921=++++-⨯⨯⨯⨯⨯ 【解析】 所以原式889122224221335171913355717191921⎛⎫=+++-++++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭921512133379192113399399-=-==⨯⨯ 答案379399。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档