高中数学平面向量课件_.ppt
合集下载
《平面向量基本定理》PPT课件
3.M 为△ABC 的重心,点 D,E,F 分别为三边 BC,AB,AC 的中点,则M→A+M→B
+M→C等于( )
A.6M→E
B.-6M→F
C.0
D.6M→D
解析:M→A+M→B+M→C=M→A+2M→D=M→A+A→M=0.
答案:C
必修第一册·人教数学B版
返回导航 上页 下页
4.如图,M、N 是△ABC 的一边 BC 上的两个三等分点,若A→B =a,A→C=b,则M→N=________.
必修第一册·人教数学B版
返回导航 上页 下页
探究三 平面向量基本定理与数量积的综合应用
[例 3] 在平行四边形 ABCD 中,点 M,N 分别在边 BC,CD 上,且满足 BC=3MC,
DC=4NC,若 AB=4,AD=3,则△AMN 的形状是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰三角形
[典例 1] 如图,已知△OCB 中,A 是 CB 的中点,D 是将O→B分 成 2∶1 的一个内分点,DC 和 OA 交于点 E,设O→A=a,O→B= b. (1)用 a 和 b 表示向量O→C,D→C; (2)若O→E=λO→A,求实数 λ 的值.
必修第一册·人教数学B版
[解析] (1)由题意知,A 是 BC 的中点, 且O→D=23O→B,由平行四边形法则, 得O→B+O→C=2O→A, 所以O→C=2O→A-O→B=2a-b, D→C=O→C-O→D=(2a-b)-23b=2a-53b.
[答案] (1)B (2)λ≠12
必修第一册·人教数学B版
返回导航 上页 下页
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作 基底,反之,则可作基底. (2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底表示出 来.设向量 a 与 b 是平面内两个不共线的向量,若 x1a+y1b=x2a+y2b,则yx11==yx22., 提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.
第六章第二节平面向量的基本定理及坐标表示课件共49张PPT
设正方形的边长为
1
,
则
→ AM
= 1,12
,
→ BN
=
-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,
6.1 平面向量的概念 课件(共21张PPT)
规定: 0 和任意向量平行.
(2)相等向量—长度相等且方向相同的向量,记作 a=b .
(3)共线向量—就是平行向量.
二、探究本质 得出新知
问题12:平行向量所在直线是否一定平行?共线向量所在直线 是否一定共线?
提示:不一定
总结:向量可以自由平移.
三、举例应用 掌握定义
例1.一辆汽车从点出发向西行驶了100千米到达B点,然后又 改变方向向西偏北 50 走了200千米到达C点,最后又改变方向, 向东行驶了100千米到达点D. (1)作出向量 AB, BC,CD ; (2)求 AD .
其中正确的有( A )
A.2个
B.3个
C.4个
D.5个
解:①正确;
②由 a = b 得 a 与 b的模相等,但不确定方向,故②错误;
③错误; ④所有单位向量的模都相等,都为1,但方向不确定,故④不 正确;⑤正确.故选A.
四、学生练习 加深理解
3.如图,D, E, F 分别是 ABC 的边 AB, BC,CA的中点,在以 A, B,C, D, E, F 为起点和终点的向量中.
(1)找出与向量 EF 相等的向量; (2)找出与向量 DF 共线的向量.
四、学生练习 加深理解
解:(1)因为 E, F分别为 BC,CA 的中点,所以 EF//BA ,
且
EF
1 2
BA
.又因为
D
是BA
的中点,所以
EF
BD
DA,所以
与 EF 向量相等的向量为BD, DA .
(2)因为 D, F 分别为 BA, AC 的中点,
第六章 平面向量及其应用
6.1 平面向量的概念
一、创设情境 引入新课
问题1:道路标识牌上的箭头和数字指的是什么? 问题2:老鼠由点A向东北方向逃窜,猫快速由点B向正东
(2)相等向量—长度相等且方向相同的向量,记作 a=b .
(3)共线向量—就是平行向量.
二、探究本质 得出新知
问题12:平行向量所在直线是否一定平行?共线向量所在直线 是否一定共线?
提示:不一定
总结:向量可以自由平移.
三、举例应用 掌握定义
例1.一辆汽车从点出发向西行驶了100千米到达B点,然后又 改变方向向西偏北 50 走了200千米到达C点,最后又改变方向, 向东行驶了100千米到达点D. (1)作出向量 AB, BC,CD ; (2)求 AD .
其中正确的有( A )
A.2个
B.3个
C.4个
D.5个
解:①正确;
②由 a = b 得 a 与 b的模相等,但不确定方向,故②错误;
③错误; ④所有单位向量的模都相等,都为1,但方向不确定,故④不 正确;⑤正确.故选A.
四、学生练习 加深理解
3.如图,D, E, F 分别是 ABC 的边 AB, BC,CA的中点,在以 A, B,C, D, E, F 为起点和终点的向量中.
(1)找出与向量 EF 相等的向量; (2)找出与向量 DF 共线的向量.
四、学生练习 加深理解
解:(1)因为 E, F分别为 BC,CA 的中点,所以 EF//BA ,
且
EF
1 2
BA
.又因为
D
是BA
的中点,所以
EF
BD
DA,所以
与 EF 向量相等的向量为BD, DA .
(2)因为 D, F 分别为 BA, AC 的中点,
第六章 平面向量及其应用
6.1 平面向量的概念
一、创设情境 引入新课
问题1:道路标识牌上的箭头和数字指的是什么? 问题2:老鼠由点A向东北方向逃窜,猫快速由点B向正东
高中数学必修四《平面向量的基本定理》PPT
栏目 导引
第二章 平面向量
想一想 1.判断两个向量能否作为基底的关键是什么? 提示:判断两个向量能否作为基底的关键是看它们是否共 线,若共线,则不能作为基底,否则可以作为基底.
栏目 导引
第二章 平面向量
2.两向量的夹角与垂直
(1)夹角:已知两个__非__零__向__量___a 和 b,作O→A=a,O→B =b,则∠__A_O__B__=θ 叫做向量 a 与 b 的夹角.
【答案】 30° 60°
栏目 导引
第二章 平面向量
【名师点评】 两向量夹角的实质和求解 (1)明确两向量夹角的定义,实质是从同一起点出发的两 个非零向量构成的不大于平角的角,结合平面几何知识 加以解决. (2)求两个向量的夹角关键是利用平移的方法使两个向量 起点重合,作出两个向量的夹角,按照“一作二证三 算”的步骤求出.
栏目 导引
第二章 平面向量
跟踪训练
2.如图所示,已知等边三角形 ABC. (1)求向量A→B与向量B→C的夹角; (2)若 E 为 BC 的中点,求向量A→E与E→C的夹角.
栏目 导引
第二章 平面向量
解:(1)∵△ABC 为正三角形, ∴∠ABC=60°.延长 AB 至点 D,使|A→B|=|B→D|, ∴A→B=B→D, ∴∠DBC 为向量A→B与B→C的夹角,且∠DBC=120°. (2)∵E 为 BC 的中点,∴AE⊥BC, ∴A→E与E→C的夹角为 90°.
已知向量 a 与 b 的夹角为 60°,则向量-3a 和-12b 的夹 角为________.
答案:60°
栏目 导引
第二章 平面向量
典题例证技法归纳
题型探究
题型一 对基底概念的理解 例1 设e1,e2是不共线的两个向量,给出下列四组向量:
第二章 平面向量
想一想 1.判断两个向量能否作为基底的关键是什么? 提示:判断两个向量能否作为基底的关键是看它们是否共 线,若共线,则不能作为基底,否则可以作为基底.
栏目 导引
第二章 平面向量
2.两向量的夹角与垂直
(1)夹角:已知两个__非__零__向__量___a 和 b,作O→A=a,O→B =b,则∠__A_O__B__=θ 叫做向量 a 与 b 的夹角.
【答案】 30° 60°
栏目 导引
第二章 平面向量
【名师点评】 两向量夹角的实质和求解 (1)明确两向量夹角的定义,实质是从同一起点出发的两 个非零向量构成的不大于平角的角,结合平面几何知识 加以解决. (2)求两个向量的夹角关键是利用平移的方法使两个向量 起点重合,作出两个向量的夹角,按照“一作二证三 算”的步骤求出.
栏目 导引
第二章 平面向量
跟踪训练
2.如图所示,已知等边三角形 ABC. (1)求向量A→B与向量B→C的夹角; (2)若 E 为 BC 的中点,求向量A→E与E→C的夹角.
栏目 导引
第二章 平面向量
解:(1)∵△ABC 为正三角形, ∴∠ABC=60°.延长 AB 至点 D,使|A→B|=|B→D|, ∴A→B=B→D, ∴∠DBC 为向量A→B与B→C的夹角,且∠DBC=120°. (2)∵E 为 BC 的中点,∴AE⊥BC, ∴A→E与E→C的夹角为 90°.
已知向量 a 与 b 的夹角为 60°,则向量-3a 和-12b 的夹 角为________.
答案:60°
栏目 导引
第二章 平面向量
典题例证技法归纳
题型探究
题型一 对基底概念的理解 例1 设e1,e2是不共线的两个向量,给出下列四组向量:
平面向量基本定理-完整版课件
中不能作为基底的是
()
A.{e1,e2}
B.{e1+e2,3e1+3e2}
C.{e1,5e2}
D.{e1,e1+e2}
[名师点津]
1.平面向量基本定理包括两个方面的内容:一是存在性,即 存在实数λ1,λ2,使a =λ1e1+λ2e2;二是唯一性,即对任意 向量a ,存在唯一实数对λ1,λ2,使a =λ1e1+λ2e2.
[问题探究] 1.如图所示,OM∥AB,点P在由射线
OM、线段OB及AB的延长线围成的阴影 区域内(不含边界)运动,且―O→P =-12―O→A +m―O→B ,求实数m的取值范围.
[迁移应用] 如图所示,在边长为 2 的正六边形 ABCDEF 中,动圆 Q 的半径为 1,圆心在线段 CD(含 端点)上运动,P 是圆 Q 上及其内部的动点, 设向量―A→P =m―A→B +n―A→F (m,n∈R ),则
提示:都能. 2.基底是否是固定不变的?
提示:不是.
[做一做]
1.判断正误(正确的打“√”,错误的打“×”)
(1)平面内不共线的任意两个向量都可作为一组基底.( )
(2)基底中的向量可以是零向量.
()
(3)平面内的基底一旦确定,该平面内的向量关于基底的线
性分解形式也是唯一确定的.
()
2.设e1,e2是同一平面内的两个不共线向量,则以下各组向量
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否 共线.若共线,则不能作基底,反之,则可作基底; (2)一个平面的基底一旦确定,那么平面上任意一个向量都 可以由这组基底唯一线性表示出来.设向量a与b是平面内两个
不共线的向量,若x1a +y1b =x2a +y2b ,则x1=x2且y1=y2. [提醒] 一个平面的基底不是唯一的,同一个向量用不同
高一数学平面向量 PPT课件 图文
解: ka+b=k(1, 2)+(-3, 2)= (k-3,2k+2)
a-3b=(1, 2)-3(-3, 2)= (10, -4)
(ka+b)∥(a-3b)
-4(k-3)-10(2k+2)=0
K=- 1
3
∵
ka+b=
10 3
,
4 3
=-
1 3
(a-3b)
∴它们反向
例2
思考:
此题还有没有其它解法?
分析 要证A、B、D三点共线,可证 AB=λBD关键是找到λ
解: ∵BD=BC+CD= 2a + 8b+ 3(a b)=a+5b
∴AB=2 BD
AB∥ BD
且AB与BD有公共点B
∴ A、B、D 三点共线
例3
知识结构
平面向量小 复习
知识要点 例题解析 巩固练习
课外作业
练习5 已知a=(1,0),b=(1,1),c =(-1,0) 求λ和μ,使 c =λa +μb.
新课标人教版课件系列
《高中数学》
必修4
2.6《平面向量-复习》
平面向量复习
知识结构 要点复习 例题解析
巩固练习
制作:曾毅 审校:王伟
知识结构
平面向量 复习
知识要点 例题解析 巩固练习
课外作业
表示 向量的三种表示
平
三角形法则
面
向量加法与减法
向
平行四边形法则
量
向量平行的充要条件
运算 实数与向量的积
知识Байду номын сангаас点 例题解析 巩固练习
课外作业
a-3b=(1, 2)-3(-3, 2)= (10, -4)
(ka+b)∥(a-3b)
-4(k-3)-10(2k+2)=0
K=- 1
3
∵
ka+b=
10 3
,
4 3
=-
1 3
(a-3b)
∴它们反向
例2
思考:
此题还有没有其它解法?
分析 要证A、B、D三点共线,可证 AB=λBD关键是找到λ
解: ∵BD=BC+CD= 2a + 8b+ 3(a b)=a+5b
∴AB=2 BD
AB∥ BD
且AB与BD有公共点B
∴ A、B、D 三点共线
例3
知识结构
平面向量小 复习
知识要点 例题解析 巩固练习
课外作业
练习5 已知a=(1,0),b=(1,1),c =(-1,0) 求λ和μ,使 c =λa +μb.
新课标人教版课件系列
《高中数学》
必修4
2.6《平面向量-复习》
平面向量复习
知识结构 要点复习 例题解析
巩固练习
制作:曾毅 审校:王伟
知识结构
平面向量 复习
知识要点 例题解析 巩固练习
课外作业
表示 向量的三种表示
平
三角形法则
面
向量加法与减法
向
平行四边形法则
量
向量平行的充要条件
运算 实数与向量的积
知识Байду номын сангаас点 例题解析 巩固练习
课外作业
第二节 平面向量基本定理及坐标运算 课件(共102张PPT)
( B)
A.-6
B.6
C.9
D.12
2.[必修4·P101·A组T7改编]已知点A(0,1),B(3,2),向量
→ AC
=(-4,-3),则向
量B→C=( A )
A.(-7,-4)
B.(7,4)
C.(-1,4)
D.(1,4)
3.[必修4·P96·例2改编]若向量a=(2,1),b=(-1,2),c= 0,52 ,则c可用向量
1.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),( 2 ,0),(0,-2),O
为坐标原点,动点P满足|C→P|=1,则|O→A+O→B+O→P|的最小值是( A )
A. 3-1
B. 11-1
C. 3+1
D. 11+1
2.已知M(3,-2),N(-5,-1),且M→P=12M→N,则P点的坐标为( B )
A.(-8,1)
B.-1,-32
C.1,32
D.(8,-1)
[解析]
设P(x,y),则
→ MP
=(x-3,y+2),而
1 2
→ MN
=
1 2
(-8,1)=
-4,12
,所以
x-3=-4, y+2=12,
x=-1, 解得y=-32,
所以P-1,-32.
3.已知正△ABC的边长为2
3
,平面ABC内的动点P,M满足|
知识点二 平面向量的坐标表示 在直角坐标系内,分别取与__x_轴__、__y_轴__正__方__向__相__同____的两个单位向量i,j作为基 底,对任一向量a,有唯一一对实数x,y,使得:a=xi+yj,__(_x_,__y_) _叫做向量a的 直角坐标,记作a=(x,y),显然i=__(1_,_0_)___,j=__(_0_,1_)_____,0=__(_0_,0_)___.
人教A版数学必修四第二章2.3《平面向量的坐标表示与运算》(共20张PPT)
解:设c→=x→a+→yb,即 (4,2)=x(1,1)+y(-1,1) =(x,x)+(-y,y)
X-y=4
解得
X+y=2
X=3
y=-1
=(x-y,x+y) c→=3→a-→b,故选B
随堂演练:
1、下列说法正确的有( B )个 (1)向量的坐标即此向量终点的坐标。 (2)位置不同的向量其坐标可能相同。 (3)一个向量的坐标等于它的始点坐标减去它的终点坐标。 (4)相等的向量坐标一定相同。 A2、:已1 知M→NB=(:-21,2)C:,3则-3M→ND等:于4 ( C ) A3、、已(知-3a→,=3()1B,、3)(,-6→,b=3()-C2、,(1)3,,-则6)→b-Da→、等(于-(4,C-1)) A、(-3,2)B、(3,-2)C、(-3,-2)D、(-2,-3) 4、已知A→B=(5,7),λAB→=(10,14)则实数λ=___2_
探索研究
设得问出: 向已 量知a r向b r量,a ra r b r(,x1, λa→y的1)坐,标b r 表(示x2, 吗?y2),你能
r rrr rr 解 : a b ( x 1 i r y 1 j ) r( x 2 i y 2 j )
(x1 x2)i(y1y2)j
即 a b (x 1 x 2 ,y 1 y 2 ) 同理可得
a b (x 1 x 2 ,y 1 y 2)
结论:两个向量和与差的坐标分别等 于这两个向量相应坐标的和与差.
(2)实数与向量的积的坐标表示
r
已 知 R , 向 量 a (x , y ), 那 么
a r _ _ ( _ x _ r i _ _ _ y _ u j r _ ) _ _ _ _ x _ r i _ _ _ _ y _ r _ j
《平面向量的概念》平面向量及其应用 PPT教学课件
必修第二册·人教数学A版
返回导航 上页 下页
知识梳理
名称 大小 方向
零向量 0
任意的
单位向量 1 规定了方向
必修第二册·人教数学A版
返回导航 上页 下页
知识点五 向量的关系 预习教材,思考问题 (1)向量由其模和方向所确定.对于两个向量 a,b,就其模等与不等,方向同与不同 而言,有哪几种可能情形?
必修第二册·人教数学A版
返回导航 上页 下页
探究三 相等向量与共线向量 [例 3] 如图,四边形 ABCD 为边长为 3 的正方形,把各边三等分后,共有 16 个交 点,从中选取两个交点作为向量,则与A→C平行且长度为 2 2的向量个数有________ 个.
必修第二册·人教数学A版
返回导航 上页 下页
[解析] 如图所示,满足与A→C平行且长度为 2 2的向量有A→F,F→A, E→C,C→E,G→H,H→G,→IJ,→JI共 8 个.
[答案] 8
必修第二册·人教数学A版
返回导航 上页 下页
相等向量与共线向量的探求方法 (1)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是 同向共线. (2)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向 与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终 点的向量. 提醒:与向量平行相关的问题中,不要忽视零向量.
[自主检测] )
B.拉力 D.压强
解析:拉力既有大小又有方向,是向量,其余均是数量.
答案:B
必修第二册·人教数学A版
返回导航 上页 下页
2.下列说法正确的是( ) A.数量可以比较大小,向量也可以比较大小 B.向量的模可以比较大小 C.模为 1 的向量都是相等向量 D.由于零向量的方向不确定,因此零向量不能与任意向量平行
6.3.1平面向量基本定理课件-高一下学期数学人教A版必修第二册
巩固新知
ⅹ
ⅹ
ⅹ
ⅹ
√
平面向量基本定理
(存在性)
(唯一性)
平面向量相等的充要条件
巩固新知
【练习】(1)(多选)设{,}是平面内所有向量的一个基底,则下列四组向量中,能作为基底的是( ) A.+和- B.3-4和6-8 C+2和2+ D.和+(2)已知向量{,}是一个基底,实数x,y满足 (3x-4y)+(2x-3y)=6+3,则x-y=_____.
典型例题
解题反思:将不共线的向量作为基底表示其他向量的一种方法:是运用向量的线性运算法则对所求向量不断转化,直至能用基底表示为止
例1.已知 ,C为线段AO上距离A较近的一个三等分点,D为线段CB上距C较近的一个三等分点,则用 表示 的表达式为( )
C
D
B
典型例题
2.向量的数量积是否为零,是判断相应的两条线段(或直线)是否垂直的重要方法之一.
A
解题反思:1.直径所对的圆周角为直角
练习2
已知正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE.
巩固新知
【练习】课本P27 练习3
典型例题
P、A、B三点共线
C
练习3:
拓展训练
例4.
解题反思:将不共线的向量作为基底表示其他向量的方法:1.运用向量的线性运算法则对所求向量不断转化,直至能用基底表示为止2.通过列向量方程或方程组,利用基底表示向量的唯一性求解。
A
拓展训练
探究新知
平面向量基本定理
(存在性)
(唯一性)
说明:若共线,则当与共线时可用表示,且表示方法不唯一;
当不共线时不可用表示
判断正误:如果是平面α内两个不共线的向量 1.一个平面内只有一对不共线的向量可作为表示该平面内所有 向量的基底 ( ) 2.一个平面内任意两个向量都可作为两个基底( ) 3.基底向量可以是零向量( ) 4.使一确定向量的实数对(无数多个( ) 5.若λ+μ=,则λ =μ=0( )
ⅹ
ⅹ
ⅹ
ⅹ
√
平面向量基本定理
(存在性)
(唯一性)
平面向量相等的充要条件
巩固新知
【练习】(1)(多选)设{,}是平面内所有向量的一个基底,则下列四组向量中,能作为基底的是( ) A.+和- B.3-4和6-8 C+2和2+ D.和+(2)已知向量{,}是一个基底,实数x,y满足 (3x-4y)+(2x-3y)=6+3,则x-y=_____.
典型例题
解题反思:将不共线的向量作为基底表示其他向量的一种方法:是运用向量的线性运算法则对所求向量不断转化,直至能用基底表示为止
例1.已知 ,C为线段AO上距离A较近的一个三等分点,D为线段CB上距C较近的一个三等分点,则用 表示 的表达式为( )
C
D
B
典型例题
2.向量的数量积是否为零,是判断相应的两条线段(或直线)是否垂直的重要方法之一.
A
解题反思:1.直径所对的圆周角为直角
练习2
已知正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE.
巩固新知
【练习】课本P27 练习3
典型例题
P、A、B三点共线
C
练习3:
拓展训练
例4.
解题反思:将不共线的向量作为基底表示其他向量的方法:1.运用向量的线性运算法则对所求向量不断转化,直至能用基底表示为止2.通过列向量方程或方程组,利用基底表示向量的唯一性求解。
A
拓展训练
探究新知
平面向量基本定理
(存在性)
(唯一性)
说明:若共线,则当与共线时可用表示,且表示方法不唯一;
当不共线时不可用表示
判断正误:如果是平面α内两个不共线的向量 1.一个平面内只有一对不共线的向量可作为表示该平面内所有 向量的基底 ( ) 2.一个平面内任意两个向量都可作为两个基底( ) 3.基底向量可以是零向量( ) 4.使一确定向量的实数对(无数多个( ) 5.若λ+μ=,则λ =μ=0( )
《平面向量的应用》课件
详细描述
向量的模表示向量的长度,可以通过坐标表示计算得出。具体计算公式为$sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,其中$(x_1, y_1)$和$(x_2, y_2)$分别是向量的起点和终点的坐标。
向量加法和数乘可以通过坐标表示进行计算,遵循平行四边形法则和数乘的分配律。
详细描述
总结词
向量的大小或模定义为向量起点到终点的距离。
总结词
向量的模是表示向量大小的数值,可以通过勾股定理计算得到。向量的模具有几何意义,表示向量起点到终点的距离。
详细描述
向量小。
总结词
向量的加法是将两个有向线段首尾相接,形成一个新的有向线段。数乘则是将一个向量放大或缩小,保持方向不变。通过向量的加法和数乘,可以组合多个向量,形成复杂的向量关系。
平面向量的应用实例
03
速度和加速度
在匀速圆周运动和平抛运动等物理问题中,可以利用平面向量表示速度和加速度,进而分析运动规律。
力的合成与分解
通过向量加法、数乘和向量的数量积、向量的向量积等运算,可以方便地表示出力的合成与分解过程,进而分析物体的运动状态。
力的矩
矩是一个向量,可以利用平面向量表示力矩,进而分析转动效果。
总结词:平面向量在解决几何问题中具有广泛的应用,如向量的加法、减法、数乘等运算可以用于解决长度、角度、平行、垂直等问题。
总结词:平面向量在解决代数问题中具有广泛的应用,如向量的模长、向量的数量积、向量的向量积等运算可以用于解决方程组、不等式等问题。
总结词
通过平面直角坐标系,可以将向量表示为有序实数对。
详细描述
在平面直角坐标系中,任意一个向量可以由其起点和终点的坐标确定,并表示为有序实数对。例如,向量$overset{longrightarrow}{AB}$可以表示为$(x_2 - x_1, y_2 - y_1)$。
向量的模表示向量的长度,可以通过坐标表示计算得出。具体计算公式为$sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,其中$(x_1, y_1)$和$(x_2, y_2)$分别是向量的起点和终点的坐标。
向量加法和数乘可以通过坐标表示进行计算,遵循平行四边形法则和数乘的分配律。
详细描述
总结词
向量的大小或模定义为向量起点到终点的距离。
总结词
向量的模是表示向量大小的数值,可以通过勾股定理计算得到。向量的模具有几何意义,表示向量起点到终点的距离。
详细描述
向量小。
总结词
向量的加法是将两个有向线段首尾相接,形成一个新的有向线段。数乘则是将一个向量放大或缩小,保持方向不变。通过向量的加法和数乘,可以组合多个向量,形成复杂的向量关系。
平面向量的应用实例
03
速度和加速度
在匀速圆周运动和平抛运动等物理问题中,可以利用平面向量表示速度和加速度,进而分析运动规律。
力的合成与分解
通过向量加法、数乘和向量的数量积、向量的向量积等运算,可以方便地表示出力的合成与分解过程,进而分析物体的运动状态。
力的矩
矩是一个向量,可以利用平面向量表示力矩,进而分析转动效果。
总结词:平面向量在解决几何问题中具有广泛的应用,如向量的加法、减法、数乘等运算可以用于解决长度、角度、平行、垂直等问题。
总结词:平面向量在解决代数问题中具有广泛的应用,如向量的模长、向量的数量积、向量的向量积等运算可以用于解决方程组、不等式等问题。
总结词
通过平面直角坐标系,可以将向量表示为有序实数对。
详细描述
在平面直角坐标系中,任意一个向量可以由其起点和终点的坐标确定,并表示为有序实数对。例如,向量$overset{longrightarrow}{AB}$可以表示为$(x_2 - x_1, y_2 - y_1)$。
6.1平面向量的概念课件共45张PPT
即时训练1-1:判断下列命题是否正确,若不正确,请简述理由.
(2)单位向量都相等;
解:(2)不正确,单位向量的模均相等且为1,但方向并不确定.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.
→
→
(3)四边形 ABCD 是平行四边形当且仅当=;
(4)一个向量方向不确定当且仅当模为 0;
有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.
→
→
(1)向量与是共线向量,则 A,B,C,D 四点必在同一直线上;
解:(1)不正确,共线向量即平行向量,只要求方向相同或相反即可,并不
→
→
要求两个向量,在同一直线上.
(3)两个特殊向量:
①零向量与非零向量:
长度为0的向量叫做零向量.印刷时用加粗的阿拉伯数字零表示,即0;书写
→
时,可写为.长度不为 0 的向量称为非零向量.
②单位向量:长度等于1个单位长度的向量,叫做单位向量.
2.向量间的关系
(1)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,向量
图所示的向量中,
→
→
(1)分别找出与, 相等的向量;
→
→
→
→
解:(1)=,=.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
图所示的向量中,
→
(2)找出与共线的向量;
→
→
→
→
解:(2)与共线的向量有,,.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
高一数学平面向量的概念及线性运算PPT优秀课件
a+b=λLeabharlann a-b),即(λ-1)a=(1+λ)b,
∴ λ-1=0 1+λ=0
,λ 无解,故假设不成立,即 a+b 与 a-b 不平行,故选 D.
错源二:向量有关概念理解不当
【例2】 如图,由一个正方体的12条棱构成的向量组成了一个集合M,则集合M的元 素个数为________.
错解:正方体共有12条棱,每条棱可以表示两个向量,一共有24个向量.答案是24. 错解分析:方向相同长度相等的向量是相等向量,故AA1―→=BB1―→=CC1―→ = DD1―→ , AB―→ = DC―→ = D1C1―→ = A1B1―→ , AD―→ = BC―→ = B1C1―→=A1D1―→.错解的原因是把相等的向量都当成不同的向量了. 正解:12条棱可以分为三组,共可组成6个不同的向量,答案是6. 答案:6
错解分析:错解一,忽视了 a≠0 这一条件.错解二,忽视了 0 与 0 的区别,AB―→+
BC―→+CA―→=0;错解三,忽视了零向量的特殊性,当 a=0 或 b=0 时,两个等号同时
成立.
正解:∵向量 a 与 b 不共线,
∴a,b,a+b 与 a-b 均不为零向量.
若 a+b 与 a-b 平行,则存在实数 λ,使
∴|AM―→|=12|AD―→|=12|BC―→|=2.故选 C.
【例2】 (2010年安徽师大附中二模)设O在△ABC的内部,且OA―→+OB―→+ 2OC―→=0,则△ABC的面积与△AOC的面积之比为( ) (A)3 (B)4 (C)5 (D)6
解析:由 OC―→=-12(OA―→+OB―→),设 D 为 AB 的中点, 则 OD―→=12(OA―→+OB―→), ∴OD―→=-OC―→,∴O 为 CD 的中点, ∴S△AOC=12S△ADC=14S△ABC,∴SS△△AAOBCC=4.故选 B.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合作探究:
观察下述三个量有什么区别?
m=20kg
(1)
F=20N
(2)
V =20km/h
(3)
(2)(3)都是有大小和方向的量
2020/7/3
2020/7/3
江苏省板浦高级中学
2020年7月3日星期五8时38分8秒
一、向量的定义 既有大小又有方向的量
向量的模
向量的长度
二、向量的表示方法
①几何表示——向量常用有向线段表示:有向线段的 长度表示向量的大小,箭头所指的方向表示向量的方 向。以A为起点、B为终点的向量记为:AB。
A
D
uuur uuur
记作:AB DC
B
C
s
相反向量的定义:我们把与ra
向量叫做a
长度相等,方向相反的
r
的相反向量. 记做:- a
r a
r rr r
r
c= -a a = -c
c
r
r
- ( - a) =?
2020/7/3
b
三:向量之间的关系
5.共线向量与平行向量的关系:
rrr a// b// c
r a
在图中所标u出uur的向量中:
(1)试找出与FuEur共线的向量; (2)确定与FE相等的向量;
uur uuur (3)OA与BC相等吗?
E O
F
D C
若不相等,则之间有什么关系?
解:(1)BuuuuCrr,OuuAuruuur
A
B
(2)BC FE
uur uuur uur uur
(3)虽然OA // BC,且|OA|=|BC|,
1、零向量 :长度为 0 的向量。记作 0
2、单位向量 :长度为 1 个单位长度的向量。 0 向量大小为0,方向
不确定的。可以是任意方向 单位向量大小为1,方向 不一定相同。
所以 0 向量只有一个, 而单位向量可以有无数个
思考:平面直角坐标系内,起点在原点的单位向量,
2020/7/3
它们的终点的轨迹是什么图形?
2020/7/3
金钱豹以5m/s的速度追赶一只以2m/s逃跑的小狗……
请问:金钱豹 能追上小狗吗?为什么?
2020/7/3
由于大陆和台湾没有直航,因此2006年春节探亲, 乘飞机要先从台北到香港,再从香港到上海,这里发 生了两次位移。
位移和距离 这两个量有 什么不同?
2020/7/3
上海
台北 香港
uuur
A
(2)共有15个向量与 AB共线
2020/7/3
合作探究:
如图:以1×1方格纸中的格点为起点和 终点的所有向量中,可得到多少种不同 的模?有多少种不同的向量?
共有2种不同的模
2020/7/3
共有8种不同的向量
若改为1×2的方格纸中的格点为起点和 终点的所有向量中,可得到多少种不同 的模?多少种不同的向量呢?
课后作业: P57 1、3
2020/7/3
2020/7/3
大小记着:│AB│
B
A
a
②也可以表示: a b c d ….
2020/7/3大小记源自┃a┃说明1:我们现在研究的向量,与起点无关,用有向线段表 示向量时,起点可以取任意位置。所以数学中的向 量也叫 自由向量
如图:他们都表示
a
a
同一个向量。
1、温度有零上和零下之分,温度是向量吗?为
什么? 不是,温度只有大小,没有方向。
(2)与向量DF的模一定相等的向 B
量有_5_个,分别是___F_D_,E__B_,B_E__,E_A_,_A_E__;
D
C
(3)与向量DE相等的向量有__2个,
CF, FA 分别是___________。
BACK
2020/7/3
如图,D、E、F分别是△ABC各边上的中点,四边形BCMF是 平行四边形,请分别写出:
向量及向量符号的由来
• 向量最初被应用于物理学,被称为矢 量.很多物理量,如力、速度、位移、电场 强度、磁场强度等都是向量。
• 大约公元前350年,古希腊著名学者 亚里士多德就知道了力可以表示为向量.向 量一词来自力学、解析几何中的有向线段。
• 最先使用有向线段表示向量的是英国大 科学家牛顿。
2020/7/3
正确的有:(4)
练习:
1.设O为正△ABC的中心,则向量AO,BO,CO是 (B )
A.相等向量
B.模相等的向量
C.共线向量 C
D.共起点的向量
A2020/7/3
O
B
练习:
1. 命题:“│a│=│b│”成立,则“ a = b ”一定成
立
×
2020/7/3
BACK
练习:
1.已知a、b为不共线的非零向量,且 存在向量 c,使 c ∥ a, c ∥ b, 则 c =__0__
2、向量 AB 和 BA 同一个向量吗?为什么?
2020/7/3
不是,方向不同
说明2: 有向线段与向量的区别:
有向线段:有固定起点、大小、方向
向量:可选任意点作为向量的起点、有大小、有
方向。
B
D
B
D
A
C
A
C
有向线段AB、CD是不 向量 AB、CD 是同一个向量。 同的。
2020/7/3
说明3:两个特殊向量
但是它们方向相反,故这两个向量不相等.
uuur uuur
2020/7/3
OA BC
例2:在图中的4×5方格纸中有一个向量 AB,
分别以图中的格点为起点和终点作向量,
(1)其中与 AB 相等的向量有多少个?
(2)与 AB 长度相等的共线向量有多少个?
( A B除外)
B
uuur
(1)共有7个向量与AB相等
,
br ,cr为
共
线 向量
r a r b r c
rr r bc a
任意一组平行向量都可以平移到同一直线上
2020/7/3
平行向量就是共线向量
两向量的共线与平面几何里两线段的共线是否一样?
为什么?
说明:在平行向量、共线向量、相等向量的 概念中应注意零向量的特殊性
例1:已知O为正六边形ABCDEF的中心,
不一定
2020/7/3
BACK
练习
1、与零向量相等的向量一定是什么向量?
零向量
2、与任意向量都平行的向量是什么向量?
零向量
2020/7/3
BACK
练习 1、若两个向量在同一直线上,则这两个
向量是什么向量?
共线向量 或者说平行向量
2、共不线一向定量一定在一条直线上吗?
2020/7/3
BACK
练习: 在质量、重力、速度、加速度、身 高、面积、体积这些量中,哪些是 数量?哪些是向量?
2020/7/3
BACK
练习:
1.与非零向量 a 平行的向量中,
不相等的单位向量有___2__个.
2020/7/3
BACK
练习:如图,EF是△ABC的中位线,AD是BC 边上的中
线,在以A、B、C、D、E、F为端点的有向线
A
段表示的向量中请分别写出
(1)与向量CD共线的向量有__7_个, E
F
分别是__D_C_,D_B_,_B_D_,F_E_,E_F_, _C_B_, B__C____;
数量有:质量、身高、面积、体积
向量有:重力、速度、加速度
2020/7/3
BACK
在下列结论中,哪些是正确的? (1)如果两个向量相等,那么它们的起点和终
点分别重合; (2)模相等的两个平行向量是相等的向量; (3)如果两个向量是单位向量,那么它们相等; (4)两个相等向量的模相等。
2020/7/3
(1)与ED相等的向量;
A
(2)与ED共线的向量;
(3)与FE相等的向量; (4)与FE共线的向量。 F
E
M
(1) 3个
(2) 9个 (3) 3个 (4) 11个
2020/7/3
B
D
C
BACK
课堂小结
向量
向量的表示
向量的大小 (模)
零向量
2020/7/3
单位向量
向量的方向
平行向量 (共线向量)
课堂小结
共有4种不同的模
2020/7/3
共有14种不同的向量
欢迎来到:
过关竞技场
★题:
1
2
3
4
5
6
★★题:
7
8
9
10
★★★题:
2020/7/3
11
12
练习:
1、单位向量是否一定相等?
不一定
2、单位向量的大小是否一定相等?
一定
2020/7/3
BACK
练习:
1、平行向量是否一定方向相同?
不一定
2、不相等的向量一定不平行吗?
三:向量之间的关系
3.平行向量的定义:
➢方向相同或相反的非零向量叫做平行向量
➢我r 们规定零向量与任一向量平行
ra b
r e
rrr
r 记做:a// b// c
c
ur f
r ur 那么e与 f 之间是什么关系?
两向量的平行与平面几何里两线段的平行有什么区别?
2020/7/3
三:向量之间的关系
4.相等向量的定义: 长度相等且方向相同的向量