中考复习频数分布直方图专题

合集下载

频数(率)分布直方图(详细解析+考点分析+名师点评)-1.doc

频数(率)分布直方图(详细解析+考点分析+名师点评)-1.doc

频数(率)分布直方图(详细解析+考点分析+名师点评)-1.doc答案与评分标准一、选择题(共20小题)1、夷昌中学开展“阳光体育活动”,九年级一班全体同学在2011年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是()A、50B、25C、15D、102、为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A、0.1B、0.2C、0.3D、0.4考点:频数(率)分布直方图。

分析:频率=,从直方图可知在5.5~6.5组别的频数是8,总数是40可求出解.解答:解:∵在5.5~6.5组别的频数是8,总数是40,∴=0.2.故选B.点评:本题考查频数分布直方图,从直方图上找出该组的频数,根据频率=,可求出解.3、某学校为了了解九年级体能情况,随机选取20名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A、0.1B、0.17C、0.33D、0.4考点:频数(率)分布直方图。

专题:应用题;图表型。

分析:首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总次数(30)即可得到仰卧起坐次数在25~30之间的频率.解答:解:∵从频数率分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,而仰卧起坐总次数为:3+10+12+5=30,∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.4.故选D.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4、学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A、0.1B、0.15C、0.25D、0.3考点:频数(率)分布直方图。

频数分布表与直方图

频数分布表与直方图

THANKS
感谢观看
均匀分布
数据在各个区间内的频数或频 率大致相等,表示数据分布较 为均匀。
双峰分布
数据呈现两个明显的峰值,表 示数据可能存在两个不同的集
中区域。
03
频数分布表与直方图关系
数据呈现方式比较
频数分布表
通过表格形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率。
直方图
通过图形形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率, 各矩形面积总和表示所有数据点的数 量。
可以是水平的。
数据表示Βιβλιοθήκη 02直方图用矩形的面积表示频数或频率,而条形图的条形长度直
接表示数据值。
数据间隔
03
直方图的矩形通常是连续的,没有间隔,而条形图的条形之间
通常有间隔。
常见直方图形状解读
钟型分布
数据呈现中间高、两边低的形 状,类似于钟的轮廓,表示数
据分布较为集中。
偏态分布
数据分布偏向一侧,可能是左 偏或右偏,表示数据在某个方 向上存在较多的极端值。
调整柱子形状
可以选择不同的柱子形状,如矩形、圆形等,以更好地展示数据 分布。
调整柱子颜色
可以通过调整柱子颜色来区分不同的数据组,使得直方图更加直 观易懂。
添加图例
为不同的数据组添加图例,以便读者更好地理解直方图。
添加标题、坐标轴标签等元素
添加标题
为直方图添加标题,简要说明数据的来源和含义。
添加坐标轴标签
05
直方图制作步骤及注意事 项
根据频数分布表绘制直方图
确定组数
根据数据的分布规律,选择合适的组数,通常组数选择在5-15之 间。
确定组距
根据数据的范围和组数,计算合适的组距,使得数据能够均匀地分 布在各个组中。

初中数学九年级《频率分布直方图》

初中数学九年级《频率分布直方图》

二、排除法:
排除法根据题设和有关知识,排除明显不正确选项,那么剩下
惟一的选项,自然就是正确的选项,如果不能立即得到正确的选 项,至少可以缩小选择范围,提高解题的准确率。排除法是解选 择题的间接与二次函数y=ax2+bx+c,它们在同 一坐标系内的大致图象是( )
)。
4、逻辑排除法 例5、顺次连接平行四边形各边中点所得的四边形一定是( ) A、正方形 B、矩形 C、菱形 D、平行四边形
三、数形结合法
由已知条件作出相应的图形,再由图形的直观性得出正确 的结论。
例6.直线y=-x-2 和y=x+3 的交点在第( )象限。
A. 一
B. 二
C. 三
y
D. 四
Y=x+3
每一小组的频数与数据总数的比值
频率
第一小组的频率
第二小组的频率
1 60
≈ 0.017
3 60
≈ 0.050
在模拟考试中,有学生大题做得 好,却在选择题上失误丢分,主 要原因有二:
1、复习不够全面,存在知识死角,或者部分
知识点不够清楚导致随便应付;
2、解题没有注意训练解题技巧 ,导致耽误宝
贵的时间。
A
128 27
C 12
B 10 D 27
直接变形法
选项变形
练习3 、当a=-1时,代数式(a+1)2+a(a-3) 的值是( )
A -4
B4
C -2
D2
直接代入法
已知代入
练习4、
不等式组
x
2x 3 1 8 2x
的最小整数解是 ( )
A -1 B 0
C2 D3
直接代入法

中考数学复习专项知识总结—数据的收集、整理、描述与分析(中考必备)

中考数学复习专项知识总结—数据的收集、整理、描述与分析(中考必备)

中考数学复习专项知识总结—数据的收集、整理、描述与分析(中考必备)1、全面调查与抽样调查全面调查:考察全体对象的调查叫做全面调查。

抽样调查:只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫做抽样调查。

2、总体、个体及样本总体是要考察的全体对象。

其中每一个考察对象叫做个体。

当总体中个体数目较多时,一般从总体中抽取一部分个体,这部分个体叫做总体的样本。

样本中个体的数目叫做样本容量。

3、常见统计图表直方图、扇形图、条形图、折线图。

4、平均数 平均数:)(121n x x x nx +++=加权平均数:nnn k k k k x k x k x x ++++++=212211(1x 、2x …n x 的权分别是1k 、2k …n k )5、众数与中位数众数:一组数据中出现次数最多的数据称为这组数据的众数。

中位数:将一组数据按由小到大(或由大到小)的顺序排列。

如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数。

6、方差方差:])()()[(1222212x x x x x x ns n -++-+-=方差越大,数据的波动越大;方差越小,数据的波动越小。

1、经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据。

2、体会抽样的必要性,通过实例了解简单随机抽样。

3、会制作扇形统计图,能用统计图直观、有效地描述数据。

4、理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述。

5、体会刻画数据离散程度的意义,会计算简单数据的方差。

6、通过实例,了解频数和频数分布的意义,能画频数直方图,能利用频数直方图解释数据中蕴涵的信息。

7、体会样本与总体的关系,知道可以通过样本平均数、样本方差推断总体平均数、总体方差。

8、能解释统计结果,根据结果作出简单的判断和预测,并能进行交流。

高考数学复习点拨 频率分布直方图典型例题析

高考数学复习点拨 频率分布直方图典型例题析

频率分布直方图典型例题析频率分布直方图是表达和分析数据的重要工具,还可以直观、准确地理解相应的有用的信息,所以成为新高考的重点,我们必须总结其重要题型及有关计算。

一、基本概念类例1、关于频率 分布直方图的下列说法中,正确的是( )(A )、直方图的高表示某数的频率;(B )、直方图的高表示该组上的个体在样本中出现的频率;(C )、直方图的高表示该组上的个体与组距的比值;(D )、直方图的高表示该组上的个体在样本中出现的频率与组距的比值;解析:在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,其面积表示数据的取值落在相应区间上的频率,因此每一个小矩形的高表示该组上的个体在样本中出现的频率与组距的比值,所以选(D )。

二、识图计算类例2、为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是 ( )(A)20 (B)30(C)40 (D )50解:本题主要考查频率分布直方图和总体分布的估计等知识,同时考查图形的识别能力。

由频率直方图可知组距为2,故学生中体重在[56.5,64.5)的频率为:(0.03+0.05+0.05+0.07)×2=0.4,所以100名学生中体重在[56.5,64.5)的学生人数有: 0. 4×100=40人。

故选择C 点评:在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数。

例3:某校高一某班共有64名学生,下图是该班某次数学考试成绩的频率分布直方图,根据该图可知,成绩在110120间的同学大约有( )A 、 10B 、11C 、13D 、16解析:通过直方图可知:成绩在110120的频率是:2.023.015.01.005.01=----,所以成绩在110120之间的同学大约有:64×0.2=12.813≈人。

数学知识点总结之频数分布直方图

数学知识点总结之频数分布直方图

1.频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。

2.频数分布表: 运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数某各组的频率=相应组的频数。

画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来。

3.频数分布直方图:(1)当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

(2)绘制的频数分布直方图的一般步骤:①计算最大值与最小值的差(极差),确定统计量的范围;②决定组数和组距,数据越多,分的组数也应当越多;③确定分点;④列频数分布表;⑤画频数分布直方图。

初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为某轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。

通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做某轴或横轴,铅直的数轴叫做Y轴或纵轴,某轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

中考数学专项复习(频数分布直方图(2))练习 试题

中考数学专项复习(频数分布直方图(2))练习 试题

币仍仅州斤爪反市希望学校频数分布直方图〔02〕一、填空题1.八年级〔1〕班全体学生参加了举办的平安知识竞赛,如图是该班学生竞赛成绩的频数分布直方图〔总分值为100分,成绩均为整数〕,假设将成绩不低于90分的评为优秀,那么该班这次成绩到达优秀的人数占全班人数的百分比是.二、解答题2.小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息答复以下问题:〔1〕求m的值;〔2〕从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.3.为了进一步了解某校九年级学生的身体素质,体育老师从该年级各班中随机抽取50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出如图表.表:组别次数x 频数频率第1组80≤x<100 4 0.08第2组100≤x<120 6 0.12第3组120≤x<140 18 0.36第4组140≤x<160 a b第5组160≤x<180 10 0.2合计﹣﹣50 1〔1〕求表中a和b的值:a= ;b= .〔2〕请将频数分布直方图补充完整:〔3〕假设在1分钟内跳绳次数大于等于120次认定为合格,那么从全年级任意抽测一位同学为合格的概率是多少?〔4〕今年该校九年级有320名学生,请你估算九年级跳绳工程不合格的学生约有多少人?4.某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量〔单位:吨〕,并将调查数据进行如下整理:4.0 4.0 7.0频数分布表分组划记频数2.0<x≤正正11<x≤5.0 195.0<x≤<x≤8.08.0<x≤合计2 50〔1〕把上面频数分布表和频数分布直方图补充完整;〔2〕从直方图中你能得到什么信息?〔写出两条即可〕;〔3〕为了鼓励节约用水,要确定一个用水量的HY,超出这个HY的局部按倍价格收费,假设要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?5.某班在一次班会课上,就“遇见路人摔倒后如何处理〞的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图.组别 A B C D处理方式迅速离开马上救助视情况而定只看热闹人数m 30 n 5请根据表图所提供的信息答复以下问题:〔1〕统计表中的m= ,n= ;〔2〕补全频数分布直方图;〔3〕假设该校有2000名学生,请据此估计该校学生采取“马上救助〞方式的学生有多少人?分组频数频率50.5~60.5 4 0.0860.5~70.5 14 0.2870.5~80.5 1680.5~90.590.5~100.5 10 0.20合计 1.00〔1〕填写频率分布表中的空格,并补全频率分布直方图;〔2〕假设成绩在70分以上〔不含70分〕为心理健康状况良好,同时,假设心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否那么就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.7.为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩〔即60秒跳绳的个数〕从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答以下问题.〔1〕跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出初三年级学生关于60秒跳绳成绩的一个什么结论?〔2〕假设用各组数据的组中值〔各小组的两个端点的数的平均数〕代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩〔结果保存整数〕;〔3〕假设从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在同一组的概率.组别分数段频数频率一50.5~60.5 16 0.08二60.5~70.5 30 0.15三70.5~80.5 50 0.25四80.5~90.5 m 0.40五90.5~100.5 24 n〔1〕本次抽样调查的样本容量为,此样本中成绩的中位数落在第组内,表中m= ,n= ;〔2〕补全频数分布直方图;〔3〕假设成绩超过80分为优秀,那么该校八年级学生中汉字听写能力优秀的约有多少人?9.为创立“国家园林城〞,某校举行了以“爱我〞为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答以下问题:〔1〕请补全频数分布直方图;〔2〕假设依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,那么从成绩80≤x<90的选手中应抽多少人?〔3〕比赛共设一、二、三等奖,假设只有25%的参赛同学能拿到一等奖,那么一等奖的分数线是多少?10.关于体育选考工程统计图工程频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1〔1〕求出表中a,b,c的值,并将条形统计图补充完整.表中a= ,b= ,c= .〔2〕如果有3万人参加体育选考,会有多少人选择篮球?11.如图是某数学兴趣小组参加“奥数〞后所得成绩绘制成的频数,频率分布表和频数分布直方图.请你根据图表提供的信息,解答以下问题〔成绩取整数,总分值为100分〕分组 0﹣1 1﹣3 3﹣5 5﹣7 7﹣100 合计频数 1 5 6 30 b 50 频率 0.02 a 0.12 0.60 0.16 1 〔1〕频数、频率分布表中a= ,b= .〔2〕补全频数分布直方图.〔3〕假设在80分以上的小组成员中选3人参加下一轮竞赛,小明本次竞赛的成绩为90分,他被选中的概率是多少?〔4〕从该图中你还能获得哪些数学信息?〔填写一条即可〕12.我某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图〔如图〕.〔1〕请你求出该班的总人数,并补全频数分布直方图;〔2〕该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.13.为了提高学生书写汉字的能力,增强保护汉字的意识,我举办了首届“汉字听写大赛〞,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,假设每正确听写出一个汉字得1分,根据测试成绩绘制出局部频数分布表和局部频数分布直方图如图表:组别成绩x分频数〔人数〕第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成以下各题:〔1〕求表中a的值;〔2〕请把频数分布直方图补充完整;〔3〕假设测试成绩不低于40分为优秀,那么本次测试的优秀率是多少?〔4〕第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.14.为了了解“通话时长〞〔“通话时长〞指每次通话时间〕的分布情况,小强收集了他家1000个“通话时长〞数据,这些数据均不超过18〔分钟〕.他从中随机抽取了假设干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.0<x≤3 3<x≤6 6<x≤9 9<x≤12 12<x≤15 15<x≤18 “通话时长〞〔x分钟〕次数36 a 8 12 8 12根据表、图提供的信息,解答下面的问题:〔1〕a= ,样本容量是;〔2〕求样本中“通话时长〞不超过9分钟的频率:;〔3〕请估计小强家这1000次通话中“通话时长〞超过15分钟的次数.15.某公司为了解员工对“六五〞普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计〔成绩均为整数,总分值100分〕,并依据统计数据绘制了如下尚不完整的统计表.解答以下问题:组别分数段/分频数/人数频率1 50.5~60.52 a2 60.5~70.5 6 0.153 70.5~80.5 b c4 80.5~90.5 12 0.305 90.5~100.56 0.15合计40 1.00〔1〕表中a= ,b= ,c= ;〔2〕请补全频数分布直方图;〔3〕该公司共有员工3000人,假设考查成绩80分以上〔不含80分〕为优秀,试估计该公司员工“六五〞普法知识知晓程度到达优秀的人数.16.九年级〔1〕班开展了为期一周的“敬老爱亲〞社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间〔单位:小时〕分成5组:≤x<1 B.1≤x<1.5 C.≤x<2 D.2≤x<≤x<3;并制成两幅不完整的统计图〔如图〕:请根据图中提供的信息,解答以下问题:〔1〕这次活动生做家务时间的中位数所在的组是;〔2〕补全频数分布直方图;〔3〕该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.17.第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生〔也请你一起〕结合统计图完成以下问题:〔1〕全班学生是多少人?〔2〕成绩不少于90分为优秀,那么全班成绩的优秀率是多少?〔3〕假设不少于100分可以得到A+等级,那么小明得到A+的概率是多少?18.某校八年级一班进行为期5天的图案设计比赛,作品上交时限为周一至周五,班委会将参赛逐天进行统计,并绘制成如下列图的频数直方图.从左到右各矩形的高度比为2:3:4:6:5.且周三组的频数是8.〔1〕本次比赛共收到件作品.〔2〕假设将各组所占百分比绘制成扇形统计图,那么第五组对应的扇形的圆心角是度.〔3〕本次活动共评出1个一等奖和2个二等奖,假设将这三件作品进行编号并制作成反面完全相同的卡片,并随机抽出两张,请你求出抽到的作品恰好一个一等奖,一个二等奖的概率.19.黔东南州某校为了解七年级学生课外学习情况,随机抽取了局部学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如下列图的男生频数分布直方图:学习时间t〔分钟〕人数占女生人数百分比0≤t<30 4 20%30≤t<60 m 15%60≤t<90 5 25%90≤t<120 6 n120≤t<150 2 10%根据图表解答以下问题:〔1〕在女生的频数分布表中,m= ,n= .〔2〕此次调查共抽取了多少名学生?〔3〕此次抽样中,学习时间的中位数在哪个时间段?〔4〕从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?20.某对本校初生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过小时,该校数学课外兴趣小组对本校初生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图〔如图〕的一局部.时间〔小时〕频数〔人数〕频率0≤t<0.5 4 0.10.5≤t<1 a 0.31≤t<10 0.25≤t<2 8 b2≤t< 6 0.15合计 1〔1〕在图表中,a= ,b= ;〔2〕补全频数分布直方图;〔3〕请估计该校1400名初生中,约有多少学生在小时以内完成了家庭作业.21.某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.次数70≤x<90 90≤x<110 110≤x<130 130≤x<150 150≤x<170人数8 23 16 2 1根据所给信息,答复以下问题:〔1〕本次调查的样本容量是;〔2〕本次调查中每分钟跳绳次数到达110次以上〔含110次〕的共有的共有人;〔3〕根据上表的数据补全直方图;〔4〕如果跳绳次数到达130次以上的3人中有2名女生和一名男生,从这3人中抽取2名学生进行经验交流,求恰好抽中一男一女的概率〔要求用列表法或树状图写出分析过程〕.22.为了了解某地初中三年级学生参加消防知识竞赛成绩〔均为整数〕,从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数分布直方图,请结合图形解答以下问题:〔1〕指出这个问题中的总体;〔2〕求竞赛成绩在8﹣8这一小组的频率;〔3〕如果竞赛成绩在90分以上〔含90分〕的同学可以获得奖励,请估计该地初三年级约有多少人获得奖励.23.某老师对本班所有学生的数学考试成绩〔成绩为整数,总分值为100分〕作了统计分析,绘制成如下频数、频率分布表和频数分布直方图,请你根据图表提供的信息,解答以下问题:分组4~5 5~6 6~7 7~8 8~100.5频数 2 a 20 16 8频率0.04 0.08 0.40 0.32 b 〔1〕求a,b的值;〔2〕补全频数分布直方图;〔3〕老师准备从成绩不低于80分的学生中选1人介绍学习经验,那么被选中的学生其成绩不低于90分的概率是多少?24.在开展“美丽泉城,创卫我同行〞活动中,某校建议七年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,随机调查了局部同学的劳动时间,并用得到的数据绘制不完整的统计图表,如下列图:劳动时间〔时〕频数〔人数〕频率0.5 12 0.121 30 0.3x 0.42 18 y合计m 1〔1〕统计表中的m= ,x= ,y= .〔2〕被调查同学劳动时间的中位数是时;〔3〕请将频数分布直方图补充完整;〔4〕求所有被调查同学的平均劳动时间.25.为增强环境保护意识,争创“文明卫生城〞,某企业对职工进行了一次“生产和居住环境满意度〞的调查,按年龄分组,得到下面的各组人数统计表:各组人数统计表组号年龄分组频数〔人〕频率第一组20≤x<25 50 0.05第二组25≤x<30 a 0.35第三组30≤x<35 300 0.3第四组35≤x<40 200 b第五组40≤x≤45 100 0.1〔1〕求本次调查的样本容量及表中的a、b的值;〔2〕调查结果得到对生产和居住环境满意的人数的频率分布直方图如下列图.规定:本次调查满意人数超过调查人数的一半,那么称调查结果为满意.如果第一组满意人数为36,请问此次调查结果是否满意;并指出第五组满意人数的百分比;〔3〕从第二组和第四组对生产和居住环境满意的职工中分别抽取3人和2人作义务宣传员,在这5人中随机抽取2人介绍经验,求第二组和第四组恰好各有1人被抽中介绍经验的概率.26.为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水平安〞为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如下列图.〔1〕试估计该小区5月份用水量不高于12t的户数占小区总户数的百分比;〔2〕把图中每组用水量的值用该组的中间值〔如0~6的中间值为3〕来替代,估计该小区5月份的用水量.27.为了估计鱼塘中成品鱼〔个体质量在0.5kg及以上,下同〕的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如表:质量/kg 0.5 0.6 0.7 1.0 1.6数量/条 1 8 15 18 5 1 2然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.〔1〕请根据表中数据补全如图的直方图〔各组中数据包括左端点不包括右端点〕.〔2〕根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?〔3〕根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?〔4〕请你用适当的方法估计鱼塘中成品鱼的总质量〔精确到1kg〕.28.某花店方案下个月每天购进80只玫瑰花进行销售,假设下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x〔0<x≤80〕表示下个月内每天售出的只数,y〔单位:元〕表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内场销售量的频率分布直方图〔每个组距包含左边的数,但不包含右边的数〕如下列图:〔1〕求y关于x的函数关系式;〔2〕根据频率分布直方图,计算下个月内销售利润少于320元的天数;〔3〕根据历史资料,在70≤x<80这个组内的销售情况如下表:销售量/只70 72 74 75 77 79天数 1 2 3 4 3 2计算该组内平均每天销售玫瑰花的只数.29.某校举行“汉字听写〞比赛,每位学生听写汉字39个.比赛结束后随机抽查局部学生的听写结果,以下是根据抽查结果绘制的图1统计图的一局部.组别听写正确的个数x 组中值A 0≤x<8 4B 8≤x<16 12C 16≤x<24 20D 24≤x<32 28E 32≤x<40 36根据以上信息解决以下问题:〔1〕本次共随机抽查了名学生,并补全图2条形统计图;〔2〕假设把每组听写正确的个数用这组数据的组中值代替,刚被抽查学生听写正确的个数的平均数是多少?〔3〕该校共有3000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所本次比赛听写不合格的学生人数.30.九〔1〕班同学为了解2021年某小区家庭月均用水情况,随机调查了该小区局部家庭,并将调查数据进行如下整理.请解答以下问题:月均用水量x〔t〕频数〔户〕频率0<x≤5 6 0.125<x≤10 0.2410<x≤15 16 0.3215<x≤20 10 0.2020<x≤25 425<x≤30 2 0.04〔1〕把上面的频数分布表和频数分布直方图补充完整;〔2〕求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;〔3〕假设该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?。

《频数分布直方图》练习

《频数分布直方图》练习

《频数分布直方图》练习【知识盘点】1.用来表示__________________•的基本统计图叫做频数分布直方图,•简称___________.2.在对样本数据进行分组统计时,若第一组的组别为67.5~72.5,则这一组的组中值是_________.3.已知一个样本的样本容量为50,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第二组的频数是__________.4.当数据个数为奇数时,可用频数分布直方图中的某一组的______•作为中位数的估计值;当数据个数为偶数时,可用频数分布直方图中某两组的_______作为中位数的估计值.【基础过关】5.在绘制频数分布直方图时,各个小长方形的高等于相应各组的()A.频数B.组距C.组中值D.频率6.某个样本的频数分布直方图中一共有4组,从左至右的组中值依次为5,8,•11,14,频数依次为5,4,6,5,则频率为0.2的一组为()A.6.5~9.5 B.9.5~12.5 C.8~11 D.5~87.八(1)班若干名学生每分跳绳次数的频数分布直方图如图1所示,由直方图可知,这若干名学生平均每分钟跳绳的次数(结果精确到个位)约为()A.87 B.100 C.104 D.112(1) (2)8.某篮球队队员年龄结构直方图如图2所示,根据图中信息,可知该队队员年龄的中位数为()A.18岁B.21岁C.23岁D.19.5岁【应用拓展】9.要了解某地区八年级学生的身高情况,从中随机抽取150名学生的身高作为一个样本,身高均在141~175cm之间(取整数厘米),整理后分成7组,绘制出频数分布直方图(不完整),根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的样本中,学生身高的中位数在哪个小组?(3)该地区共有3000名八年级学生,估计其中身高不低于161cm的人数.【综合提高】10.某年级组织学生参加夏令营,分为甲、乙、丙三组进行活动.•下面两幅统计图反映了学生报名参加夏令营的情况.请你根据图中的信息回答下列问题:报名人数分布直方图报名人数扇形统计图(1)求该年级报名参加本次活动的总人数;(2)求该年级报名参加乙组的人数,并补全频数分布直方图;(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,那么,应从甲组抽调多少名学生到丙组?答案:1.频数分布,直方图2.70 3.20 4.组中值,交界值5.A 6.A 7.C 8.B •9.(1)第三组的频数为27,图略(2)中位数落在155.5~160.5内(3)960人10.(1)50人(2)10人,图略(3)设抽调x名,则25+x=3(15-x),解得x=5,即5名感谢您的阅读,祝您生活愉快。

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_频数(率)分布直方图

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_频数(率)分布直方图

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_频数(率)分布直方图频数(率)分布直方图专训单选题:1、(2016北京.中考真卷) 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150﹣180之间;④该市居民家庭年用水量的平均数不超过180.A . ①③B . ①④C . ②③D . ②④2、(2017西城.中考模拟) 某大型文体活动需招募一批学生作为志愿者参与服务,已知报名的男生有420人,女生有400人,他们身高均在150≤x<175之间,为了解这些学生身高的具体分别情况,从中随机抽取若干学生进行抽样调查,抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:组别身高(cm)A 150≤x<155B 155≤x<160C 160≤x<165D 165≤x<170E 170≤x<175根据图表提供的信息,有下列几种说法①估计报名者中男生身高的众数在D组;②估计报名者中女生身高的中位数在B组;③抽取的样本中,抽取女生的样本容量是38;④估计身高在160cm至170cm(不含170cm)的学生约有400人其中合理的说法是()A . ①②B . ①④C . ②④D . ③④3、(2018福清.中考模拟) 下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A . 该学校教职工总人数是50人B . 年龄在40≤x<42小组的教职工人数占该学校总人数的20%C . 教职工年龄的中位数一定落在40≤x<42这一组D . 教职工年龄的众数一定在38≤x<40这一组4、(2017慈溪.中考模拟) 一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为()A . 9环与8环B . 8环与9环C . 8环与8.5环D . 8.5环与9环5、(2014温州.中考真卷) 如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A . 5~10元B . 10~15元C . 15~20元D . 20~25元6、(2016温州.中考真卷) 如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A . 2~4小时B . 4~6小时C . 6~8小时D . 8~10小时7、(2017宿州.中考模拟) 某单位在植树节派出50名员工植树造林,统计每个人植树的棵树之后,绘制成如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵以上的人数占总人数的()A . 40%B . 70%C . 76%D . 96%8、(2017安徽.中考真卷) 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A . 280B . 240C . 300D . 2609、(2017阜康.中考模拟) 某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是()A . 样本中位数是200元B . 样本容量是20C . 该企业员工捐款金额的平均数是180元D . 该企业员工最大捐款金额是500元10、为了减轻学生课外作业负担,数学老师准备按照学生每天课外作业完成量(完成题目个数)实行分档布置作业.作业量分档递增,计划使第一档、第二档和第三档的作业量覆盖全校学生的70%,20%和10%,为合理确定各档之间的界限,随机抽查了该校500名学生过去一个阶段完成作业量的平均数(单位:个);绘制了统计图.如图所示,下面四个推断合理的是( )A . 每天课外作业完成量不超过15个题的该校学生按第二档布置作业B . 每天课外作业完成量超过21个的该校学生按第三档布置作业C . 该校学生每天课外作业完成量的平均数不超过18D . 该校学生每天课外作业完成量的中位数在15﹣18之间填空题:11、(2017静安.中考模拟) 为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为________人.12、(2017浙江.中考模拟) 九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是________.13、(2015黄石.中考真卷) 九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是________ .14、(2011河池.中考真卷) 某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图,则仰卧起坐次数在20~25次之间的频数是________.15、(2020温州.中考真卷) 某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg 及以上的生猪有________头。

备考2023年中考数学二轮复习-统计与概率_数据收集与处理_频数(率)分布表-综合题专训及答案

备考2023年中考数学二轮复习-统计与概率_数据收集与处理_频数(率)分布表-综合题专训及答案

备考2023年中考数学二轮复习-统计与概率_数据收集与处理_频数(率)分布表-综合题专训及答案频数(率)分布表综合题专训1、(2018吉林.中考模拟) 在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:该班学生参加各项服务的频数、频率统计表:服务类别频数频率文明宣传员 4 0.08文明劝导员10义务小警卫8 0.16环境小卫士0.32小小活雷锋12 0.24请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动的学生共有名;(2)请补全频数、频率统计表和频数分布直方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.2、(2018玄武.中考模拟) 某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:请根据所给信息,解答下列问题:(1) a=,b=;(2)请补全频数分布直方图;(3)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?3、(2017昆山.中考模拟) 国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:获奖等次频数频率一等奖10 0.05二等奖20 0.10三等奖30 b优胜奖 a 0.30鼓励奖80 0.40请根据所给信息,解答下列问题:(1) a=,b=,(2)补全频数分布直方图;(3)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(4)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.4、(2019南浔.中考模拟) 为了庆祝中国人民海军成立70周年,某市举行了“海军知识”竞赛,为了了解竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示。

2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习(附答案)

2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习(附答案)

2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习一、选择题1、一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是( ) A. 7 B. 8 C. 9 D. 102、一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 ( )A.10组 B.9组 C.8组 D.7组3、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为 ( ) A. 9 B. 12 C. 15 D. 184、某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x <32这个范围的频率为( )棉花纤维长度x频数 0≤x <8 1 8≤x <16 2 16≤x <24 8 24≤x <32 6 32≤x <403A.0.8 B .0.7 C .0.4 D .0.25、小杰调查了本班同学的体重情况,画出频数直方图如图所示,下列结论中,错误的是( )A. 全班总人数为45人B. 体重在50~55 kg 的人数最多C. “45~50 kg ”这一组的频率比“60~65 kg ”这一组的大0.1D. 体重在60~65 kg 的人数占全班总人数的196、某一组数据中,已知最大值是84,最小值是52,若分成6组,且组距为整数,某组组中值为72.5,则这组数据可能是( )A. 51.5~57.5B. 69.5~75.5C. 68.5~76.5D. 70.5~74.57、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图. 若25次为及格,则及格人数占总人数的( )A. 56.7%B. 90%C. 16.7%D. 33.3%8、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.260二、填空题9、一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 组10、有30个数据,其中最大值为40,最小值为15,若取组距为4,则应该分成 组11、有一个含有50个数据的数据组,已知最小数据是15,最大数据是45,且各数据都是整数,则这50个数据分为8组时,组距是________;若第1组的下限为14.5,则其上限为________,最末一组的上限为________.12、阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如下不完整的统计表.则表中的a=____.组别时间/时频数(人)频率A 0≤t≤0.560.15B 0.5≤t≤1 a 0.313、某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数分布表(部分)如下:项目 乒乓球 羽毛球 篮球 足球频数 80 50百分比 40% 25% m则表格中m的值为14、某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a= .组号 分组 频数一 6≤m<7 2二 7≤m<8 7三 8≤m<9 a四 9≤m≤10 215、一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为 组16、小丽抽样调查了学校40名同学的体重(均精确到1kg),绘制了如图频数分布直方图,那么在该样本中体重不小于55kg的频率是 .17、某地区中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 人.组别 立定跳远 坐位体前屈 实心球 一分钟跳绳频率 0.4 0.35 0.1 0.1518、空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为 %.19、将100个数据分成①~⑧组,如表所示:编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧频数 4 8 12 24 18 7 3那么第④组的频数为 .20、若小明统计了他家12月份打电话的通话时长,并列出频数分布表,则通话时长不超过10min的频率是 .通话时长 x/min 0<x≤5 5<x≤10 10<x≤15 x>15频数(通话次数)20 16 20 4三、解答题21、体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数 60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 2 4 21 13 8 4 (1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?22、每年的6月6日是全国爱眼日.某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查.如图所示为利用所得的数据绘制的频数直方图(长方形的高表示该组人数).请你根据图中提供的信息,回答下列问题:(1)本次调查共抽测了____名学生.(2)在这个问题中,样本是指_____________________.(3)视力在4.85~5.15这一组内的频数是_______.(4)如果视力小于4.85均属视力不良,那么该校约有_________名学生的视力不良,应给予治疗、矫正.23、为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:(1)这个问题中的总体是 ;(2)竞赛成绩在84.5~89.5分这一小组的频率是 ;(3)若竞赛成绩在90分以上(含90分)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有________人.24、在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频数直方图如下图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,问:这两组哪一组获奖率较高?25、在开展“经典阅读”活动中,某校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计图表.根据图表信息回答下列问题:(1)填空:a=____,b=____,m=____,n=____.(2)将频数直方图补充完整.(3)若该校有3000名学生,请根据上述调查结果,估计该校学生一周的课外阅读时间不足3 h的人数.26、为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是 ;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.27、为了了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘制成如图所示的频数直方图,已知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:(1)图中a的值为____.(2)绘制扇形统计图时,成绩x在“70≤x<80”范围内所对应扇形的圆心角的度数为____.(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀”的学生大约有____人.28、为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E的圆心角度数是 ;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160≤x<170的学生约有多少人?参考答案一、选择题1、一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是( C )A. 7B. 8C. 9D. 102、一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 ( A )A.10组 B.9组 C.8组 D.7组3、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为 ( B )A. 9B. 12C. 15D. 184、某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为(A)棉花纤维长度x 频数0≤x<8 18≤x<16 216≤x<24824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.25、小杰调查了本班同学的体重情况,画出频数直方图如图所示,下列结论中,错误的是(C )A. 全班总人数为45人B. 体重在50~55 kg 的人数最多C. “45~50 kg ”这一组的频率比“60~65 kg ”这一组的大0.1D. 体重在60~65 kg 的人数占全班总人数的19 【解】 8+10+14+8+5=45(人),故A 选项正确. 体重在50~55 kg 的人数有14人,最多,故B 选项正确. “45~50 kg ”这一组的频率是10÷45=29, “60~65 kg ”这一组的频率是5÷45=19, 29-19=19≠0.1,故C 选项错误.5÷45=19,故D 选项正确. 故选C.6、某一组数据中,已知最大值是84,最小值是52,若分成6组,且组距为整数,某组组中值为72.5,则这组数据可能是( B ) A. 51.5~57.5 B. 69.5~75.5 C. 68.5~76.5 D. 70.5~74.57、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图. 若25次为及格,则及格人数占总人数的( A )A. 56.7%B. 90%C. 16.7%D. 33.3%8、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.260【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.二、填空题9、一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 4 组10、有30个数据,其中最大值为40,最小值为15,若取组距为4,则应该分成 7 组11、有一个含有50个数据的数据组,已知最小数据是15,最大数据是45,且各数据都是整数,则这50个数据分为8组时,组距是________;若第1组的下限为14.5,则其上限为________,最末一组的上限为________.[解析] 45-15=30,3<30÷8<4,∴组距应为4.若第1组的下限为14.5,则其上限为14.5+4=18.5;最末一组的上限为14.5+4×8=14.5+32=46.5.[答案] 418.546.512、阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如下不完整的统计表.则表中的a=____.组别时间/时频数(人)频率A 0≤t≤0.560.15B 0.5≤t≤1 a 0.3【解析】∵被调查的总人数为6÷0.15=40(人),∴B组的人数为40×0.3=12(人),即a=12.13、某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数分布表(部分)如下:项目 乒乓球 羽毛球 篮球 足球频数 80 50百分比 40% 25% m则表格中m的值为 10%14、某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a= 9 .组号 分组 频数一 6≤m<7 2二 7≤m<8 7三 8≤m<9 a四 9≤m≤10 215、一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为 8 组16、小丽抽样调查了学校40名同学的体重(均精确到1kg),绘制了如图频数分布直方图,那么在该样本中体重不小于55kg的频率是 .【解答】解:观察直方图可知:因为该样本中体重不小于55kg的频数为:9+5+2=16,所以该样本中体重不小于55kg的频率是0.4.故答案为:0.4.17、某地区中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 人.组别 立定跳远 坐位体前屈 实心球 一分钟跳绳频率 0.4 0.35 0.1 0.15【解答】解:∵频率,∴频数=频率×总数=0.35×40=14人.故答案为14.18、空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为 %.【解答】解:空气质量类别为优和良的天数占总天数的百分比为100%=80%, 故答案为:80.19、将100个数据分成①~⑧组,如表所示:编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧频数 4 8 12 24 18 7 3那么第④组的频数为 24.【解答】解:由题意可得,第④组的频数为:100﹣4﹣8﹣12﹣24﹣18﹣7﹣3=24,故答案为:24.20、若小明统计了他家12月份打电话的通话时长,并列出频数分布表,则通话时长不超过10min的频率是 0.6 .通话时长 x/min 0<x≤5 5<x≤10 10<x≤15 x>15频数(通话次数)20 16 20 4三、解答题21、体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数 60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 2 4 21 13 8 4 (1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?解:(1)全班共有2+4+21+13+8+4=52(名)学生.(2)组距是80-60=20次,组数是6.(3)跳绳次数在120≤x<160范围内的学生有13+8=21(人).22、每年的6月6日是全国爱眼日.某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查.如图所示为利用所得的数据绘制的频数直方图(长方形的高表示该组人数).请你根据图中提供的信息,回答下列问题:(1)本次调查共抽测了__160__名学生.(2)在这个问题中,样本是指__160名学生的视力情况__.(3)视力在4.85~5.15这一组内的频数是__40__.(4)如果视力小于4.85均属视力不良,那么该校约有__1250__名学生的视力不良,应给予治疗、矫正.23、为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:(1)这个问题中的总体是 ;(2)竞赛成绩在84.5~89.5分这一小组的频率是 ;(3)若竞赛成绩在90分以上(含90分)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有________人.解(1)某地九年级学生参加消防知识竞赛的成绩(2)=0.32.(3)该地九年级获得奖励的人数约是(13+7)÷1%=2000(人)24、在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频数直方图如下图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.请解答下列问题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,问:这两组哪一组获奖率较高?【解】 (1)12÷42+3+4+6+4+1=60(件).(2)第四组上交的作品数量最多,有12×64=18(件).(3)第四组的获奖率为1018=59,第六组的获奖率为2÷⎝⎛⎭⎫12×14=23=69. ∵59<69,∴第六组获奖率较高.25、在开展“经典阅读”活动中,某校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计图表.根据图表信息回答下列问题:(1)填空:a =____,b =____,m =____,n =____. (2)将频数直方图补充完整.(3)若该校有3000名学生,请根据上述调查结果,估计该校学生一周的课外阅读时间不足3 h 的人数.【解】 (1)∵b =18÷0.12=150,∴n =36÷150=0.24,∴m =1-0.12-0.3-0.24-0.14=0.2,∴a=0.2×150=30.(2)补全频数直方图如解图中斜纹所示.(3)3000×(0.12+0.2)=960.答:估计该校学生一周的课外阅读时间不足3 h的人数为960.26、为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是 ;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.解:(1)B组捐款户数是10,则A组捐款户数为10×=2,样本容量为(2+10)÷(1﹣8%﹣40%﹣28%)=50.(2)统计表C、D、E 组的户数分别为20,14,4.组别 捐款额(x)元 户数A 1≤x<50 aB 100≤x<200 10C 200≤x<300 20D 300≤x<400 14E x≥400 4(3)估计全社区捐款不少于300元的户数是1000×(28%+8%)=360(户).27、为了了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘制成如图所示的频数直方图,已知成绩x(单位:分)均满足“50≤x <100”.根据图中信息回答下列问题: (1)图中a 的值为____.(2)绘制扇形统计图时,成绩x 在“70≤x <80”范围内所对应扇形的圆心角的度数为____. (3)此次比赛共有300名学生参加,若将“x ≥80”的成绩记为“优秀”,则获得“优秀”的学生大约有____人.【解】 (1)a =30-(2+12+8+2)=6,故a =6.(2)成绩x 在“70≤x <80”范围内所对应扇形的圆心角的度数为360°×1230=144°. (3)获得“优秀”的学生大约有300×8+230=100(人).28、为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题: (1)这次抽样调查,一共抽取学生 人; (2)扇形统计图中,扇形E 的圆心角度数是 ;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160≤x<170的学生约有多少人?【解答】解:(1)这次抽样调查,一共抽取学生4÷10%=40(人);(2)扇形统计图中,扇形E的圆心角度数是36054°,故答案为:40;54°;(3)身高在160≤x<170的人数为:40×20%=8人,补全频数分布直方图如图所示;(4)400×45%=180(人),答:估计身高在160≤x<170的学生约有180人.。

《频数分布表和频数分布直方图》习题

《频数分布表和频数分布直方图》习题

《频数分布表和频数分布直方图》习题1.在一块试验田里抽取1000个小麦穗,考察它们的长度(单位:cm),从频率分布表中看到,样本数据落5.75cm~6.05cm之间的频率是0.36,于是可以估计,在这块土地里,长度在5.75cm~6.05cm之间的麦穗约占________2.某人掷骰子共50次,出现奇数点的次数为22次,则出现偶数点的频数为________频率为__________.3.将50个数据分成3组,其中第一组和第三组的频率之和为0.7,则第二组的频率是________,第二组的频数是_________.4.一个样本的容量为100,分成若干组,在它的频数分布直方图中,某一组相应的小长方形的高为30,则落在该组的频率为__________5.数学教研组有25名教师,将他们按年龄分组,在38~45岁组内的教师有8名教师,那么这个小组的频率是__________6.若画频数分布直方图时,两个小长方形的高之比是3:5,则落入这两个小组的频数之比是___________7.某校抽查了50名九年级学生对艾滋病三种主要传播途径的知晓情况,结果如下表:估计该校九年级550人8.已知一个样本含20个数据:6869706668656465696267666567636564616566.在列频率分布表时,如果取组距为2,那么应分________组,64.5~66.5这一小组的频率为________,上述样本的容量是____________.9.聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是__________.10.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是__________.(第10题图)成绩90.5 75.5 80.5 85.5 95.5 100。

中考数学复习频数分布表与频数分布直方图【培优讲练】

中考数学复习频数分布表与频数分布直方图【培优讲练】

7.4 频数分布表与频数分布直方图同步培优讲练综合1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.组距(2)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.3.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图.4.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.5. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.一、组距【例1】一个样本最大值为143,最小值为50,取组距为10,则可以分成 组.【例2】一组数据的最大值与最小值的差为2.8 cm,若取组距为0.4 cm,应将该数据分为 组.二、 频数分布直方图【例1】某校为了解学生参与“凤城悦读”的情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:)min ,然后利用所得数据绘制成如图不完整的统计图表: 课外阅读时间频数分布表:根据图表中提供的信息,回答下列问题: (1)a = ,b = ; (2)将频数分布直方图补充完整;(3)若全校有1200课外阅读时间不少于50min ?【例2】小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;②样本中每天微信阅读不足20分钟的人数大约占16%;③选取样本的样本容量是60;④估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()A.①②③B.①②④C.①③④D.②③④【例3】为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②三、综合应用(与条形统计图、扇形图的结合)【例1】为了了解春节晚会群众喜爱节目类型(“歌舞类”、“语言类”、“戏曲类”、“其他”)情况,对某地区的部分群众的喜爱节目类型做了调查,其中每人只能填选一项,现根据调查情况绘制了如图直方图和扇形统计图.请根据图中信息解答下列问题:(1)此次调查中一共调查了多少人?(2)求所调查的群众中,喜爱“戏曲”的人数,并补全直方图的空缺部分;(3)若该地区共有人口360万人,估计该地区喜爱“语言类”约有多少人.【例2】某校为了解九年级学生休息日时每天学习的时长情况,随机抽取了n名九年级学生进行调查,据调查每名学生休息日时每天学习时长都少于5小时.该校将所收集的数据分组整理,绘制了如图所示的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是.(填写“全面调查”或“抽样调查”)(2)求n的值.(3)若该校九年级共有450名学生,请估计该校休息日时每天学习时长在3≤t<4范围的学生人数.3≤t<43≤t<4【例3】为了得到一种零件的加工精度,从中抽出40个进行检测,其尺寸数据如下(单位:cm):161 165 164 166 160 158 163162 168 159 147 170 167 151164 159 152 159 149 172 162157 162 169 156 164 163 157163 165 173 159 157 169 165154 153 163 168 169将数据适当分组,并绘制相应的频数分布直方图,图中所反映出这种零件的尺寸在哪个范围内的最多?1.某校组织部分学生参加安全知识竞赛,并将成绩整理后绘制成频数分布直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14人.其中正确的有( )A.1个B.2个C.3个D.4个2.某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图.已知从左到右5个小长方形的高的比为1∶3∶7∶6∶3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有篇.3、三台县某中学“五.四”青年节举行了“班班有歌声”歌咏比赛活动.比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图.老师评委评分统计表:学生评委评分折线统计图师生评委评分频数分布直方图(1)补全频数分布直方图.(2)计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占60%、40%的方法计算各班最后得分,知甲班最后得分94.4分,试求统计表中的x.4、扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间t/h 频数频率0<t≤0.5 240.5<t≤1 36 0.31<t≤1.5 0.41.5<t≤2 12 b合计 a 1根据以上信息,回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1h的人数5、为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩的分布情况进行处理分析,制成如下图表(成绩得分均为整数):组别成绩分组频数A 47.5-59.5 2B 59.5-71.5 4C 71.5-83.5 aD 83.5-95.5 10E 95.5-107.5 bF 107.5-120 6图7-4-7根据图表中提供的信息解答下列问题:(1)在频数分布表中,a= ,b= ;在扇形统计图中,m= ,n= .(2)补全频数分布直方图.(3)已知全区八年级共有200个班(平均每班有40人),用这份试卷进行检测,108分及以上为优秀,预计优秀的人数约为人,72分及以上为及格,预计及格的人数约为人.7.4 频数分布表与频数分布直方图同步培优讲练综合1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.(3)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.3.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图.4.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.5. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.四、组距【例1】一个样本最大值为143,最小值为50,取组距为10,则可以分成组.【答案】10最大值-最小值组距【解析】解:极差为1435093-=, 93109.3∴÷=,∴可以分成10组,故答案为:10.【例2】一组数据的最大值与最小值的差为2.8 cm,若取组距为0.4 cm,应将该数据分为 组. 【答案】8 【解析】因为一组数据的最大值与最小值的差为2.8 cm,组距为0.4 cm,2.8÷0.4=7,所以应将该数据分为8组.五、频数分布直方图【例1】某校为了解学生参与“凤城悦读”的情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:)min ,然后利用所得数据绘制成如图不完整的统计图表: 课外阅读时间频数分布表:根据图表中提供的信息,回答下列问题: (1)a = ,b = ; (2)将频数分布直方图补充完整;(3)若全校有1200名学生,估计该校有多少名学生平均每天的课外阅读时间不少于50min ?【答案】见解析【解析】解:(1)总人数48%50÷=人, 5040%20a ∴=⨯=,16100%32%50b =⨯=, 故答案为20,32%.(2)频数分布直方图,如图所示.(3)20162 120091250++⨯=,答:估计该校有912名学生平均每天的课外阅读时间不少于50min.【例2】小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;②样本中每天微信阅读不足20分钟的人数大约占16%;③选取样本的样本容量是60;④估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()B.①②③B.①②④C.①③④D.②③④【答案】【解析】由直方图可得,样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少,故①正确;样本中每天微信阅读不足20分钟的人数大约占:(48)(4814201612)100%16%+÷+++++⨯≈,故②正确;选取样本的样本容量是:481420161274+++++=,故③错误;(101612)740.51++÷≈,即所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右,故④正确:故选:B.【例3】为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②【答案】C【解析】解:①根据频数分布直方图,可得众数为6080-元范围,故每人乘坐地铁的月均花费最集中的区域在6080-元范围内,故①错误;②每人乘坐地铁的月均花费的平均数8760087.61000==元,故每人乘坐地铁的月均花费不在40~60元范围内,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C.六、综合应用(与条形统计图、扇形图的结合)【例1】为了了解春节晚会群众喜爱节目类型(“歌舞类”、“语言类”、“戏曲类”、“其他”)情况,对某地区的部分群众的喜爱节目类型做了调查,其中每人只能填选一项,现根据调查情况绘制了如图直方图和扇形统计图.请根据图中信息解答下列问题:(1)此次调查中一共调查了多少人?(2)求所调查的群众中,喜爱“戏曲”的人数,并补全直方图的空缺部分;(3)若该地区共有人口360万人,估计该地区喜爱“语言类”约有多少人.【答案】(1)150 (2) 30 45 (3)108【解析】解:(1)3926%150÷=(人),答:此次调查中一共调查了150人;(2)所调查的群众中,喜爱“戏曲”的人数为15020%30⨯=(人),喜爱“语言”的人数为150(363039)45-++=(人),补全图形如下:(3)该地区喜爱“语言类”约有45360108150⨯=(万人).【例2】某校为了解九年级学生休息日时每天学习的时长情况,随机抽取了n名九年级学生进行调查,据调查每名学生休息日时每天学习时长都少于5小时.该校将所收集的数据分组整理,绘制了如图所示的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是.(填写“全面调查”或“抽样调查”)(2)求n的值.(3)若该校九年级共有450名学生,请估计该校休息日时每天学习时长在3≤t<4范围的学生人数.【答案】(1)抽样调查 (2)50 (3)135【解析】解:(1)在这次调查活动中,采取的调查方式是抽样调查, 故答案为:抽样调查; (2)1020%50n =÷=;(3)样本中每天学习时长在“3≤t <4”范围的学生人数为50(510164)15-+++=(人),∴1545013550⨯=(人), ∴该校九年级休息日时每天学习时长在“3≤t <4”范围的学生人数约为135人.【例3】为了得到一种零件的加工精度,从中抽出40个进行检测,其尺寸数据如下(单位:cm): 161 165 164 166 160 158 163 162 168 159 147 170 167 151 164 159 152 159 149 172 162 157 162 169 156 164 163 157 163 165 173 159 157 169 165 154 153 163 168 169将数据适当分组,并绘制相应的频数分布直方图,图中所反映出这种零件的尺寸在哪个范围内的最多? 【答案】见解析【解析】(1)计算最大值与最小值的差:在样本数据中,最大值是173cm,最小值是147 cm,它们的差是173-147=26(cm).(2)决定组距与组数:设组距为4 cm,则最大值-最小值组距=264=6.5,所以应分7组.(3)确定分点:把起点数147减去0.5,即147-0.5=146.5.这样依次分为:146.5-150.5,150.5-154.5,…,166.5-170.5,170.5-174.5. (4)列频数分布表:分组 频数 146.5-150.5 2 150.5-154.54154.5-158.5 5158.5-162.5 9162.5-166.5 11166.5-170.5 7170.5-174.5 2(5)画频数分布直方图,如图.从图中可以看出这种零件的尺寸在162.5-166.5 cm范围内的最多.1.某校组织部分学生参加安全知识竞赛,并将成绩整理后绘制成频数分布直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14人.其中正确的有( )A.1个B.2个C.3个D.4个【答案】B【解析】①参加本次竞赛的学生共有8÷(1-4%-12%-40%-28%)=50(人),此项错误;②第五组的百分比为1-4%-12%-40%-28%=16%,此项正确;③成绩在70-80分的人数最多,此项正确;④80分以上的学生有50×(28%+16%)=22(人),此项错误.故选B2.某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图.已知从左到右5个小长方形的高的比为1∶3∶7∶6∶3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有篇.【答案】160【解析】由题意可得,这次评比中共征集到的小作文有72÷920=160(篇)3、三台县某中学“五.四”青年节举行了“班班有歌声”歌咏比赛活动.比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图. 老师评委评分统计表:(1)补全频数分布直方图.(2)计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占60%、40%的方法计算各班最后得分,知甲班最后得分94.4分,试求统计表中的x . 【答案】见解析【解析】解:(1)依题意共有20个数据,自左向右第四组的频数为2034625----=⋯⋯(2分) (2)设x 表示有效成绩平均分,则1(9595949596979593)958x =+++++++=,0.6950.494.4x ⨯+⨯=教师,∴94x =教师,又共10位老师评委,去掉一个最高分、一个最低分后只有8位评委评分有效∴老师评委的有效总分为948752⨯=,在x ,91,98三个数中留下的数为752(94969391929693)97-++++++=, 97x ∴=.4、扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间t/h频数频率0<t≤0.5 240.5<t≤1 36 0.31<t≤1.5 0.41.5<t≤2 12 b合计 a 1根据以上信息,回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1h的人数【答案】(1) 120 0.1 (2)见解析(3)600【解析】解:(1)a=36÷0.3=120,b=12÷120=0.1.故答案为120,0.1.(2)1<t≤1.5的人数为120×0.4=48.补全图形如下:(3)估计该校学生每天课外阅读时间超过1 h的人数为1200×(0.4+0.1)=600(人)5、为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩的分布情况进行处理分析,制成如下图表(成绩得分均为整数):组别成绩分组频数A 47.5-59.5 2B 59.5-71.5 4C 71.5-83.5 aD 83.5-95.5 10E 95.5-107.5 b F107.5-1206图7-4-7根据图表中提供的信息解答下列问题:(1)在频数分布表中,a= ,b= ;在扇形统计图中,m= ,n= . (2)补全频数分布直方图.(3)已知全区八年级共有200个班(平均每班有40人),用这份试卷进行检测,108分及以上为优秀,预计优秀的人数约为 人,72分及以上为及格,预计及格的人数约为 人. 【答案】(1) 8、10、10、25 (2)见解析 (3)1200 6800 【解析】12.解:(1)因为被调查的总人数为2÷5%=40(人),所以a=40×20%=8,b=40-(2+4+8+10+6)=10,m%=440×100%=10%,n%=1040×100%=25%,即m=10,n=25.故答案为8,10,10,25. (2)补全频数分布直方图如下:(3)预计优秀的人数约为200×40×15%=1200(人),预计及格的人数约为200×40×(1-5%-10%)=6800(人).故答案为1200,6800.。

学好频数分布直方图三方面

学好频数分布直方图三方面

学好频数分布直方图三方面一、了解频数分布直方图和频数折线图的意义和特点1将一组数据分成若干个组,属于每组的数据个数叫做这组的频数即频数是统计出的某一对象出现的次数2在相互垂直的两条轴上,把横轴分成若干段,表示组内数据的取值范围,以它为边作一长方形,等距分组时,为画图和看图方便,通常直接用小长方形的高表示频数,这一系列的长方形构成了频数分布直方图3取直方图中每一个长方形上边的中点,然后在横轴上直方图的左右取两个频数为0的点,它们分别与直方图左右相距半个组距,将所取的这些点用线段依次连接起来,就得到频数折线图由此可见,频数折线图更能让我们清晰地感受到一组数据的分布状况4频数分布直方图的特点:各小组的频数之和等于数据总数;能够显示各组频数分布的情况,由长方形的高可看出各小组的频数(看纵轴),由频数可找出数据所在的小组(看横轴);易于显示各组之间频数的差别二、能从已知频数分布直方图或频数折线图上获取信息频数分布直方图能直观清楚地反映数据在各个范围内的分布情况,从而更全面、准确、细致地反映事物的属性例1 如图1,根据频数分布直方图回答问题:(1)总共统计了多少名学生的心跳情况(2)哪些次数段的学生数最多占多大比例(3)如果半分钟心跳次数为,且30≤<39次属于正常范围,心跳次数属于正常的学生占多大比例(4)说说你从频数折线图中获得的信息析解:掌握频数分布直方图的特点是解决问题的关键从统计图中可以获知各组心跳情况的人数及分布情况(1)总共统计了图247531221=27(人)的心跳情况(2)30≤<33这个次数段的学生数最多,约占26%(3)30≤<39次数段的总人数有753=15人,15÷27≈56%,故心跳次数属于正常范围的学生约占56%(4)从折线统计图中,可知折线呈中间高两边低的趋势,就是说心跳正常的人数较多三、区别条形统计图与直方图(1)条形统计图中,横轴上的数据是孤立的,是一个具体的数据而直方图中,横轴上的数据是连续的,是一个范围例2,图2中的横轴表示的是雪糕的具体品种,品种A与品种B之间是相对独立的图3中的横轴表示的是身高范围,如其中第一个长方形表示身高在到之间的人数的多少,每个长方形包括前面一个数据,但不包括后面一个数据j 175.5170.5165.5160.5155.5150.5图2身高/cm频数(人数)121086402图10D C BA 25020015010050205120230170雪糕品种数量/个(2)条形统计图是用条形的高度表示频数的大小在图1中,长方形越高,表示这种雪糕的频数就越大而直方图是用长方形的面积表示频数,长方形的面积越大,就表示这组数据的频数越大;只有当长方形的宽都相等时,才可以用长方形的高表示频数的大小(3)条形统计图中,各个数据之间是相对独立的,各个条形之间是有空隙的而在直方图中,各长方形对应的是一个范围,由于每两个相邻范围之间不重叠、不遗漏,因而在直方图中,长方形之间没有空隙。

第9章统计专题3 频率分布直方图常考题型专题练习——【含答案】

第9章统计专题3 频率分布直方图常考题型专题练习——【含答案】

1频率分布直方图【知识总结】 1.频率分布直方图(1)纵轴表示频率组距,即小长方形的高=频率组距;(2)小长方形的面积=组距×频率组距=频率;(3)各个小方形的面积总和等于1 . 2.频率分布表的画法第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表. 3. 频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标.(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.2【巩固练习】1、随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36. 根据上述数据得到样本的频率分布表如表所示.分组 频数 频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n 1 f 1(45,50] n 2 f 2(1)确定样本频率分布表中n 1,n 2,f 1和f 2的值;(2)根据上述频率分布表,画出样本频率分布直方图和频率分布折线图. 【答案】(1) n 1=7,n 2=2,f 1=0.28,f 2=0.08 (2)见解析【解析】(1)由所给数据知,落在区间(40,45]内的有7个,落在(45,50]内的有2个,故1n =7,2n =2,所以f 1=125n =725=0.28,f 2=225n =225=0.08. (2)样本频率分布直方图和频率分布折线图如图所示.32. 为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是( )A .35B .48C .60D .75【答案】C【解析】设被抽查的美术生的人数为n ,因为后2个小组的频率之和为(0.0375+0.0125)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n =515250.75++=60.故选:C.3、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为若低于60分的人数是15人,则该班的学生人数是( )A .B .C .D.【答案】B【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20,则成绩低于60分的频率P=(0.005+0.010)×20=0.3.又因为低于60分的人数是15人,所以该班的学生人数是15÷0.3=50.本题选择B选项.4、某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )4A.该校初三学生1分钟仰卧起坐的次数的中位数为25B.该校初三学生1分钟仰卧起坐的次数的众数为24C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为8[解析] 第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,∴x=1.25,∴中位数为26.25,故A错误;第三组数据所在的矩形最高,第三组数据的中间值为27.5,∴众数为27.5,故B错误;1分钟仰卧起坐的次数超过30的频率为0.2,∴超过30次的人数为400×0.2=80,故C正确;1分钟仰卧起坐的次数少于20的频率为0.1,∴1分钟仰卧起坐的次数少于20的人数为400×0.1=40,故D错误.故选C.[答案] C5、某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用[)0,0.1[)0.1,0.2[)0.2,0.3[)0.3,0.4[)0.4,0.5[)0.5,0.6[)0.6,0.756水量频数132 49 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)0,0.1[)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:7(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)直方图见解析;(2)0.48;(3)347.45m . 【解析】(1)频率分布直方图如下图所示:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于30.35m 的频率为0.20.110.1 2.60.120.050.48⨯+⨯+⨯+⨯=;因此该家庭使用节水龙头后日用水量小于30.35m 的概率的估计值为0.48; (3)该家庭未使用节水龙头50天日用水量的平均数为()110.0510.1530.2520.3540.4590.55260.6550.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为8()210.0510.1550.25130.35100.45160.5550.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水()()30.480.3536547.45m -⨯=.6、某电视台为宣传本省,随机对本省内1565~岁的人群抽取了n 人,回答问题“本省内著名旅游景点有哪些”统计结果如图表所示(1)分别求出a b x y 、、、的值;(2)从第234、、组回答正确的人中用分层抽样的方法抽取6人,求第234、、组每组各抽取多少人?(3)指出直方图中,这组数据的中位数是多少(取整数值)?【答案】(1)5a =,27b =,0.9x =,0.2y =;(2)2人,3人,1人;(3)42【解析】(1)由已知第4组人数为9250.36=,∴251000.02510n ==⨯,9由频率分布直方图得第一组人数为:1000.011010⨯⨯=,100.55a =⨯=,第二组人数为:1000.021020⨯⨯=,180.920x ==, 第三组人数为:1000.031030⨯⨯=,300.927b =⨯=,第五组人数为:1000.0151015⨯⨯=,30.215x ==. (2)第2、3、4组回答正确人数分别18、27、9,共54人,设第234、、组分别抽取,,x y z 人,则65418279x y z===,解得2,3,1x y z ===. (3)第1、2组频率和为0.10.20.3+=,第4、5组频率和为0.250.150.4+=,第3组频率为0.3,设中位数为m ,则350.50.3100.3m --=,241423m =≈. ∴中位数为42.7、某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.10(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数.【答案】(1)0.0075x =;(2)众数是230,中位数为224. 【解析】(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=,∴0.0075x =.(2)月平均用电量的众数是2202402302+=, ∵(0.0020.00950.011)200.450.5++⨯=<, 月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.0020.00950.011)200.0125(220)0.5a ++⨯+⨯-=,可得224a =, ∴月平均用电量的中位数为2248、为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.频率分布表组别分组频数频率1 [50,60) 9 0.182 [60,70) a3 [70,80) 20 0.404 [80,90) 0.085 [90,100] 2 b合计 1请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a,b,c,d的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内.1112【答案】(1) a =15,b =0.04,c =0.03,d =0.004 (2) 70≤x <80 【解析】(1)样本容量为9÷0.18=50,50×0.08=4, 所以a =50-9-20-4-2=15,b =2÷50=0.04,c =15÷50÷10=0.03,d =0.04÷10=0.004.(2)因为样本容量为50,则样本的中位数是第25,26个数据的平均数, 而第25,26个数据均位于70≤x <80范围内, 所以小王的测试成绩在70≤x <80范围内.9、某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.分数段[)50,60[)60,70[)70,80[)80,90:x y1∶12∶13∶44∶513(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[)50,90之外的人数. 【答案】(1)0.005a =;(2)73(分);(3)10.【解析】(1)由频率分布直方图知(20.020.030.04)101a +++⨯=,解得0.005a =. (2)由频率分布直方图知这100名学生语文成绩的平均分为550.00510650.0410750.0310850.0210950.0051073⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=(分).(3)由频率分布直方图知语文成绩在[)50,60,[)60,70,[)70,80,[)80,90各分数段的人数依次为:0.005101005,0.041010040,0.031010030,0.021010020⨯⨯=⨯⨯=⨯⨯=⨯⨯=由题中给出的比例关系知数学成绩在上述各分数段的人数依次为1455,4020,3040,2025234⨯=⨯=⨯=.故数学成绩在[50,90)之外的人数为100(5204025)10-+++=.10.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分[75,85) [85,95) [95,105) [105,115) [115,125) 组频数 6 26 38 22 8(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?14【答案】(1)见解析;(2)平均数100,方差为104;(3)不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.【解析】(1)直方图如图,(2)质量指标值的样本平均数为x=⨯+⨯+⨯+⨯+⨯=.800.06900.261000.381100.221200.08100质量指标值的样本方差为22222s=-⨯+-⨯+⨯+⨯+⨯=.(20)0.06(10)0.2600.38100.22200.08104(3)质量指标值不低于95的产品所占比例的估计值为++=,0.380.220.080.68由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.11、从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量1516结果得到如下频数分布表:质量指标值分组[)75,85[)85,95[)95,105[)105,115[)115,125频数62638228()1在图中作出这些数据的频率分布直方图;()2估计这种产品质量指标值的平均数、中位数(保留2位小数);()3根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?【答案】(1)直方图见解析;(2)平均数100,中位数99.74;(3)不能. 【解析】()1由已知作出频率分布表为:质量指标值分组[)75,85 [)85,95 [)95,105 [)105,115 [)115,12517频数 6 26 38 22 8频率0.06 0.26 0.38 0.22 0.08由频率分布表作出这些数据的频率分布直方图为:()2质量指标值的样本平均数为:800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=,[)75,95内频率为:0.060.260.32+=,∴中位数位于[)95,105内,设中位数为x ,则0.50.260.06951099.740.38x --=+⨯≈,∴中位数为99.74.()3质量指标值不低于95 的产品所占比例的估计值为0.380.220.080.68++=.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95 的产品至少要占全部产品80%的规定.18。

八年级数学下册 5.2 频数直方图 知识梳理 频数分布表

八年级数学下册 5.2 频数直方图 知识梳理 频数分布表

知识梳理:频数分布表与直方图1、数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在数据组中各数据的分布情况。

要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况。

如:1、八年级某班20名男生一次投掷标枪测试成绩如下(单位:m):25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28。

(1)将这20名男生的测试成绩按从小到大排列,统计出每种成绩的数值出现的频数,并制成统计表;(2)根据统计表回答:①成绩小于25米的同学有几人?占总人数的百分之几?②成绩大于28米的同学有几人?占总人数的百分之几?③这些同学的成绩大部分集中在哪个范围内,占总人数的百分比是多少?小结:利用频数、频率分布表,可以清楚地反映出一组数据中的每个数据出现的频数和频率,从而反映这些数据的整体分布情况。

2、频数分布直方图为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制分布直方图。

(1)频数分布直方图简称直方图,它是条形统计图的一种。

(2)直方图的结构:直方图由横轴、纵轴、条形图的三部分组成。

(3)作直方图的步骤:①作两条互相垂直的轴:横轴和纵轴;②在横轴上划分一引起相互衔接的线段,每条线段表示一组,在线段的左端点标明这组的下限,在最后一组的线段的右端点标明其上限;③在纵轴上划分刻度,并用自然数标记;④以横轴上的每条线段为底各作一个矩形立于数轴上,使各矩形的高等于相应的频数。

如:为了了解某地区八年级学生的身高情况,现随机抽取了60名八年级男生,测得他们的身高(单位:cm)分别为156 162 163 172 160 141 152 173 180 174 157 174 145 16 153 165 156 167 161 172 178 156 166 155 140 157 167 156 168 150 164 163 155 162 160 168 147 161 157 162 165 160 166 164 154 161 158 164 151 169 169 162 158 163 159 164 162 148 170 161(1)将数据适当分组,并绘制相应的频数分布直方图;(2)如果身高在cm 155≤cm x 170≤的学生身高为正常,试求落在正常身高范围内学生的百分比。

含频数分布直方图的中考题

含频数分布直方图的中考题
积 不 是 要 比 原 来 体 积 大 7倍 了吗 ? 人 们 绞 尽 脑 汁 想 找 出 一 个 答 案 , 是 ” 可 始 终 没 有 人 能 解 答 这 个 难 题 . 们 去 向 哲 学 家 柏 拉 图请 教 . 就 是 古 希 人 这 腊 三 个 难 题 的 开 端 .刚 才 的 传 说 便 是 指 其 中 的 一 个 难 题 :作 一 个 正 方 体 , 它 的体 积 是 已 知 正 方 体 体 积 的 两 倍 . 外 两 个 难 题 是 :三 等 分 一 使 另
人们连 夜赶 造 了一个长 、 、 都 比正 方体 祭 坛 大 一倍 的祭 坛 , 是 , 宽 高 可 那 传 染 病 传 播 得 更 加 厉 害 了. 们 又 来 到 阿 波 罗 神 像 前 祈 求. 说 : 我 要 人 神 “ 你 们 增 加 一 倍 的 是 祭 坛 的 体 积 , 们 把 长 、 、 都 增 加 1倍 , 坛 的体 你 宽 高 祭
数 分 布 直 方 图 , 图 1所 示 , 左 到 右 依 次 为 第 1 2 3 4、 如 从 、 、 、 5组 . 求 抽 取 了 多 少 名 男 生 测 人数( 人) 量身 高 ; ( )身 高 在 哪 个 范 围 内 的 男 2
生 人 数 最 多?
……
( ) 若 该 中 学 有 3 0 名 男 3 0
( )全 市 初 中 生 视 力 正 常 的 学 生 人 数 约 等 于 3 0 5 00 0× [7 + 5 ) (0 0 ÷ 2 0 , 为 1 0 4 ]即 5 0名 . 0
( )学 生 视 力 在 图 示 的 这 五 个 3 人数 ( 人) 范 围 中 的 哪 个 范 围 内 的人 数 最 多? ( )从 左 向 右 数 起 , 一 小 组 4 第

频数分布表和直方图练习题

频数分布表和直方图练习题

频数分布表和直方图练习题1. 2019年3月教育局对某校七年级学生进行体质监测共收集了200名学生的体重,并绘制成了频数分布直方图,从左往右数每个小长方形的长度之比为2:3:4:1,其中第三组的频数为( )A.80人B.60人C.20人D.10人2. 小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28∼35次的人数最多③有1的人每周使用手机支付的次数在35∼42次5④每周使用手机支付不超过21次的有15人其中正确的是()A.①②B.②③C.③④D.④3. 某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是()A.该班有50名同学参赛B.第五组的百分比为16%C.成绩在70∼80分的人数最多D.80分以上的学生有14名4. (3分)某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25∼30之间的频率为________.5. 某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5∼46.5;B:46.5∼53.5;C:53.5∼60.5;D:60.5∼67.5;E:67.5∼74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是________,并补全频数分布直方图;(2)C组学生的频率为________,在扇形统计图中D组的圆心角是________度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?6. 2011年我市体卫站对某校九年级学生体育测试情况进行调研,从该校360名九年级学生中抽取了部分学生的成绩(成绩分为A、B、C三个层次)进行分析,绘制了频数分布表与频数分布直方图(如图),请根据图表信息解答下列问题:(1)补全频数分布表与频数分布直方图;(2)如果成绩为A等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?7. 某校一学生社团参加数学实践活动,和交警一起在金山大道入口用移动测速仪监测一组汽车通过的时速(千米/小时),在数据整理统计,绘制频数直方图的过程中,不小心墨汁将表中数据污染(见下表),请根据下面不完整的频数分布表和频数分布直方图,解答问题:(注:50∼60指时速大于等于50千米/小时而小于60千米/小时,其他类同)(1)请用你所学的数学统计知识,补全频数分布直方图.(2)如果此地汽车时速不低于80公里即为违章,求这组汽车的违章频率.(3)如果请你根据调查数据绘制扇形统计图,那么时速在70∼80范围内的车辆数所对应的扇形圆心角的度数是________.8. 每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是________;(2)补全频数分布直方图,求扇形图中“6吨−−9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX 年中考复习(33)——频数分布直方图专题
1、 “勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务. 王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查
(时间取整数小
时间分组
0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5~100.5 频 数
20 25 30 15 10 (1)抽取样本的容量是 . (2)根据表中数据补全图中的频数分布直方图.
(3)样本的中位数所在时间段的范围是
. (4)若该学校有学生1260人,那么大约有多少学生在寒假做家务的时间在40.5~100.5小时之间?
2、为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:
请根据以上图表提供的信息,解答下列问题:
(1)表中m n 和所表示的数分别为:__________m n ==,__________; (2)请在图中,补全频数分布直方图; (3)比赛成绩的中位数落在哪个分数段?
(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?
频数分数(分)
3、某校为了解九年级男生1000米长跑的成绩,从中随机抽取了50名男生进行测试,根据测试评分标准,将他们的得分进行统计后分为A B C D ,,,四等,并绘制成下面的频数分布表和扇形统计图.
(1)试直接写出x y m n ,,,的值;
(2)求表示得分为C 等的扇形的圆心角的度数;
(3)如果该校九年级共有男生200名,试估计这200名男生中成绩达到A 等和B 等的人数共有多少人?
4、某中学组织全校4 000名学生进行了民族团结知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图6的频数分布表和频数分布直方图(不完整).
请根据以上提供的信息,解答下列问题: (1)补全频数分布表; (2)补全频数分布直方图;
(3)上述学生成绩的中位数落在哪一组范围内?
(4)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校4 000名学生中约有多少名获奖?
分组 频数 频率
50.5~60.5 0.05 60.5~70.5 70.5~80.5 80
80.5~90.5 0.26 90.5~100.5 148 0.37
合计
1 图6 频数 /分
5、初三(1)班男生一次50米短跑测验成绩如下.(单位:秒)
6.9
7.0 7.1 7.2 7.0 7.4 7.3 7.5 7.0 7.4 7.3 6.8 7.0 7.1 7.3 6.9 7.1 7.2 7.4 6.9 7.0 7.2 7.0 7.2 7.6
体育老师按0.2秒的组距分段,统计每个成绩段出现的频数,填入频数分布表,并绘制了频数分布直方图.
(1)请把频数分布表及频数分布直方图补充完整.
(2)请说明哪个成绩段的男生最多?
哪个成绩段的男生最少? (3)请计算这次短跑测验的合格率
(7.5秒及7.5秒以下)和优秀率 (6.9秒及6.9秒以下).
4、(20XX 年安徽)某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取
部分学生进行1min 的跳绳测试,并指定甲、乙、丙、丁四名同学对这次 测试结果的数据作出整理,下图是这四名同学提供的部分信息: 甲:将全体测试数据分成6组绘成直方图(如图); 乙:跳绳次数不少于105次的同学占94%吧。

丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12; 丁:第②、③、④组的频数之比为4:17:15. 根据这四名同学提供的材料,请解答如下问题:
(1)这次跳绳测试共抽取多少名学生?各组有多少人?
(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?
(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1min 跳绳次数的平均值.
(秒)
频数分布直方图
第21题图
20XX 年中考复习(33)——统计专题(2)
1、(20XX 年烟台市)某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).
请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中a 的值,并求出该校初一学生总数;
(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图; (3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数; (4)在这次抽样调查中,众数和中位数分别是多少?
(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人? 2、.为了改进银行的服务质量,随机抽查了30名顾客在窗口办理业务所用的时间(单位:分钟).下图是这次调查得到的统计图.请你根据图中的信息回答下列问题: (1)办理业务所用的时间为11分钟的人数是 ; (2)补全条形统计图;
(3)这30名顾客办理业务所用时间的平均数是 分钟.
27
时间
3、某中学结合“八荣八耻”德育计划,开展了一次“诚信做人”的教育主题演讲比赛。


程共分为“预赛、复赛和决赛”三个阶段,预赛有各班举行,全员参加,按统一标准评分。

统计后已分年级制成“预赛成绩统计表(未画完整)”,从预赛中各年级产生10名选手进行复赛,成绩见“复赛成绩记载表”。

(采用100制记分,得分都为60分以上的整
(1)如果将九年级预赛成绩制成扇形统计图,则“90分以上的人数”对应的圆心角度
数是。

(2)如果八年级复赛成绩在
90分以上的人数是预赛时同类成绩人数的0.5%,请补全..预赛成绩统计图.......
,则这次全校参加预赛的人数共有 。

(3)复赛成绩中,七年级的总数是 ;八年级的中位数是 ;九年级
的平均数是 。

(4)若在每个年级参加复赛的选手中分别选出3人参加决赛,你认为哪个年级实力最
强?说说理由。

4、 某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3∶4∶5∶8∶2,又知此次调查中捐15元和20元的人数共39人. (1)他们一共抽查了多少人?捐款数不少于20元的概率是多少? (2)这组数据的众数、中位数各是多少?
(3)若该校共有2310名学生,请估算全校学生共捐款多少元?
第22题图 元
30015010050分 分 分 分
第22题图
5、某学习小组对所在城区初中学生的视力情况进行抽样调查,图1是这些同学根据调查结果画出的条形统计图.请根据图中信息解决下列问题: (1)本次抽查活动中共抽查了多少名学生?
(2)请估算该城区视力不低于4.8的学生所占的比例,用扇形统计图在图5中表示出来. (3)假设该城区八年级共有4000名学生,请估计这些学生中视力低于4.8的学生约有多少人?
6、甲、乙两位同学本学年11次数学单元测验成绩(整数)的统计如图8所示: (1)分别求他们的平均分;
(2)请你从中挑选一人参加数学“学用杯”竞赛,并说明你挑选的理由.

2 图1


次数
7、为了解某品牌A ,B 两种型号冰箱的销售状况,王明对其专卖店开业以来连续七个月的销
(2)请你根据七个月的销售情况在图中绘制成折线统计图,
并依据折线图的变化趋势,对专卖店今后的进货情况提出建议(字数控制在20~50字).
8、某商场对今年五.一节这天销售A 、B 、C 三种品牌电脑的情况进行了统计,绘制如图6和图7所示的统计图.根据图中信息解答下列问题:
(1)哪一种品牌电脑的销售量最大? (2)补全图6中的条形统计图.
(3)写出A 品牌电脑在图7中所对应的圆心角的度数. (4)根据上述统计信息,明年五.一节期间该商场对A 、B 、C 三种品牌的电脑如何订货? 请你提一条合理化的建议.
图 7
图 6。

相关文档
最新文档