Asymptotic behavior of the density of states on a random lattice

合集下载

统计学专业英语词汇完整版

统计学专业英语词汇完整版

统计学专业英语词汇AAbsolute deviation,绝对离差Absolute number,绝对数Absolute residuals,绝对残差Acceleration array,加速度立体阵Acceleration in an arbitrary direction,任意方向上的加速度Acceleration normal,法向加速度Acceleration space dimension,加速度空间的维数Acceleration tangential,切向加速度Acceleration vector,加速度向量Acceptable hypothesis,可接受假设Accumulation,累积Accuracy,准确度Actual frequency,实际频数Adaptive estimator,自适应估计量Addition,相加Addition theorem,加法定理Additivity,可加性Adjusted rate,调整率Adjusted value,校正值Admissible error,容许误差Aggregation,聚集性Alternative hypothesis,备择假设Among groups,组间Amounts,总量Analysis of correlation,相关分析Analysis of covariance,协方差分析Analysis of regression,回归分析Analysis of time series,时间序列分析Analysis of variance,方差分析Angular transformation,角转换ANOVA(analysis of variance),方差分析ANOVA Models,方差分析模型Arcing,弧/弧旋Arcsine transformation,反正弦变换Area under the curve,曲线面积AREG,评估从一个时间点到下一个时间点回归相关时的误差ARIMA,季节和非季节性单变量模型的极大似然估计Arithmetic grid paper,算术格纸Arithmetic mean,算术平均数Arrhenius relation,艾恩尼斯关系Assessing fit,拟合的评估Associative laws,结合律Asymmetric distribution,非对称分布Asymptotic bias,渐近偏倚Asymptotic efficiency,渐近效率Asymptotic variance,渐近方差Attributable risk,归因危险度Attribute data,属性资料Attribution,属性Autocorrelation,自相关Autocorrelation of residuals,残差的自相关Average,平均数Average confidence interval length,平均置信区间长度Average growth rate,平均增长率BBar chart,条形图Bar graph,条形图Base period,基期Bayes theorem, 贝叶斯定理Bell-shaped curve,钟形曲线Bernoulli distribution,伯努力分布Best-trim estimator,最好切尾估计量Bias,偏性Binary logistic regression,二元逻辑斯蒂回归Binomial distribution,二项分布Bisquare,双平方Bivariate Correlate,二变量相关Bivariate normal distribution,双变量正态分布Bivariate normal population,双变量正态总体Biweight interval,双权区间Biweight M-estimator,双权M估计量Block,区组/配伍组BMDP(Biomedical computer programs),BMDP统计软件包Box plots,箱线图/箱尾图Break down bound,崩溃界/崩溃点CCanonical correlation,典型相关Caption,纵标目Case-control study,病例对照研究Categorical variable,分类变量Catenary,悬链线Cauchy distribution,柯西分布Cause-and-effect relationship,因果关系Cell,单元Censoring,终检Center of symmetry,对称中心Centering and scaling,中心化和定标Central tendency,集中趋势Central value,中心值CHAID-χ2AutomaticInteractionDetector,卡方自动交互检测Chance,机遇Chance error,随机误差Chance variable,随机变量Characteristic equation,特征方程Characteristic root,特征根Characteristic vector,特征向量Chebshev criterion of fit,拟合的切比雪夫准则Chernoff faces,切尔诺夫脸谱图Chi-square test,卡方检验/χ2检验Choleskey decomposition,乔洛斯基分解Circle chart,圆图Class interval,组距Class mid-value,组中值Class upper limit,组上限Classified variable,分类变量Cluster analysis,聚类分析Cluster sampling,整群抽样Code,代码Coded data,编码数据Coding,编码Coefficient of contingency,列联系数Coefficient of determination,决定系数Coefficient of multiple correlation,多重相关系数Coefficient of partial correlation,偏相关系数Coefficient of production-moment correlation,积差相关系数Coefficient of rank correlation,等级相关系数Coefficient of regression,回归系数Coefficient of skewness,偏度系数Coefficient of variation,变异系数Cohort study,队列研究Column,列Column effect,列效应Column factor,列因素Combination pool,合并Combinative table,组合表Common factor,共性因子Common regression coefficient,公共回归系数Common value,共同值Common variance,公共方差Common variation,公共变异Communality variance,共性方差Comparability,可比性Comparison of bathes,批比较Comparison value,比较值Compartment model,分部模型Compassion,伸缩Complement of an event,补事件Complete association,完全正相关Complete dissociation,完全不相关Complete statistics,完备统计量Completely randomized design,完全随机化设计Composite event,联合事件/复合事件Concavity,凹性Conditional expectation,条件期望Conditional likelihood,条件似然Conditional probability,条件概率Conditionally linear,依条件线性Confidence interval,置信区间Confidence limit,置信限Confidence lower limit,置信下限Confidence upper limit,置信上限Confirmatory Factor Analysis,验证性因子分析Confirmatory research,证实性实验研究Confounding factor,混杂因素Conjoint,联合分析Consistency,相合性Consistency check,一致性检验Consistent asymptotically normal estimate,相合渐近正态估计Consistent estimate,相合估计Constrained nonlinear regression,受约束非线性回归Constraint,约束Contaminated distribution,污染分布Contaminated Gausssian,污染高斯分布Contaminated normal distribution,污染正态分布Contamination,污染Contamination model,污染模型Contingency table,列联表Contour,边界线Contribution rate,贡献率Control,对照Controlled experiments,对照实验Conventional depth,常规深度Convolution,卷积Corrected factor,校正因子Corrected mean,校正均值Correction coefficient,校正系数Correctness,正确性Correlation coefficient,相关系数Correlation index,相关指数Correspondence,对应Counting,计数Counts,计数/频数Covariance,协方差Covariant,共变Cox Regression, Cox回归Criteria for fitting,拟合准则Criteria of least squares,最小二乘准则Critical ratio,临界比Critical region,拒绝域Critical value,临界值Cross-over design,交叉设计Cross-section analysis,横断面分析Cross-section survey,横断面调查Cross tabs,交叉表Cross-tabulation table,复合表Cube root,立方根Cumulative distribution function,累计分布函数Cumulative probability,累计概率Curvature,曲率/弯曲Curve fit,曲线拟和Curve fitting,曲线拟合Curvilinear regression,曲线回归Curvilinear relation,曲线关系Cut-and-try method,尝试法Cycle,周期Cyclist,周期性DD test, D检验Data acquisition,资料收集Databank,数据库Data capacity,数据容量Data deficiencies,数据缺乏Data handling,数据处理Data manipulation,数据处理Data processing,数据处理Data reduction,数据缩减Data set,数据集Data sources,数据来源Data transformation,数据变换Data validity,数据有效性Data-in,数据输入Data-out,数据输出Dead time,停滞期Degree of freedom,自由度Degree of precision,精密度Degree of reliability,可靠性程度Degression,递减Density function,密度函数Density of datapoints,数据点的密度Dependent variable,应变量/依变量/因变量Depth,深度Derivative matrix,导数矩阵Derivative-free methods,无导数方法Design,设计Determinacy,确定性Determinant,行列式Determinant,决定因素Deviation,离差Deviation from average,离均差Diagnostic plot,诊断图Dichotomous variable,二分变量Differential equation,微分方程Direct standardization,直接标准化法Discrete variable,离散型变量Discriminant,判断Discriminant analysis,判别分析Discriminant coefficient,判别系数Discriminant function,判别值Dispersion,散布/分散度Disproportional,不成比例的Disproportionate sub-class numbers,不成比例次级组含量Distribution free,分布无关性/免分布Distribution shape,分布形状Distribution-free method,任意分布法Distributive laws,分配律Disturbance,随机扰动项Dose response curve,剂量反应曲线Double blind method,双盲法Double blind rial,双盲试验Double exponential distribution,双指数分布Double logarithmic,双对数Downward rank,降秩Dual-space plot,对偶空间图DUD,无导数方法Duncan's new multiple range method,新复极差法/Duncan 新法EEffect,实验效应Eigen value,特征值Eigen vector,特征向量Ellipse,椭圆Empirical distribution,经验分布Empirical probability,经验概率单位Enumeration data,计数资料Equal sun-class number,相等次级组含量Equally likely,等可能Equal variance,同变性Error,误差/错误Error of estimate,估计误差Error type I,第一类错误Error type II,第二类错误Estimand,被估量Estimated error mean squares,估计误差均方Estimated error sum of squares,估计误差平方和Euclidean distance,欧式距离Event,事件Exceptional data point,异常数据点Expectation plane,期望平面Expectation surface,期望曲面Expected values,期望值Experiment,实验Experimental sampling,试验抽样Experimental unit,试验单位Explanatory variable,说明变量/解释变量Exploratory data analysis,探索性数据分析Explore Summarize,探索-摘要Exponential curve,指数曲线Exponential growth,指数式增长Exsooth,指数平滑方法Extended fit,扩充拟合Extra parameter,附加参数Extra polation,外推法Extreme observation,末端观测值Extremes,极端值/极值FF distribution, F分布F test, F检验Factor,因素/因子Factor analysis,因子分析Factor score,因子得分Factorial,阶乘Factorial design,析因试验设计False negative,假阴性False negative error,假阴性错误Family of distributions,分布族Family of estimators,估计量族Fanning,扇面Fatality rate,病死率Field investigation,现场调查Field survey,现场调查Finite population,有限总体Finite-sample,有限样本First derivative,一阶导数First principal component,第一主成分First quartile,第一四分位数Fisher information,费雪信息量Fitted value,拟合值Fitting a curve,曲线拟合Fixed base,定基Fluctuation,随机起伏Forecast,预测Four fold table,四格表Fourth,四分点Fraction blow,左侧比率Fractional error,相对误差Frequency,频率Frequency polygon,频数多边图Frontier point,界限点Function relationship,泛函关系GGamma distribution,伽玛分布Gauss increment,高斯增量Gaussian distribution,高斯分布/正态分布Gauss-Newton increment,高斯-牛顿增量General census,全面普查GENLOG(Generalized liner models),广义线性模型Geometric mean,几何平均数Gini's mean difference,基尼均差GLM(General liner models),通用线性模型Goodness of fit,拟和优度/配合度Gradient of determinant,行列式的梯度Graeco-Latin square,希腊拉丁方Grand mean,总均值Gross errors,重大错误Gross-error sensitivity,大错敏感度Group averages,分组平均Grouped data,分组资料Guessed mean,假定平均数HHalf-life,半衰期Hampel M-estimators,汉佩尔M估计量Happenstance,偶然事件Harmonic mean,调和均数Hazard function,风险均数Hazard rate,风险率Heading,标目Heavy-tailed distribution,重尾分布Hessian array,海森立体阵Heterogeneity,不同质Heterogeneity of variance,方差不齐Hierarchical classification,组内分组Hierarchical clustering method,系统聚类法High-leverage point,高杠杆率点HILOGLINEAR,多维列联表的层次对数线性模型Hinge,折叶点Histogram,直方图Historical cohort study,历史性队列研究Holes,空洞HOMALS,多重响应分析Homogeneity of variance,方差齐性Homogeneity test,齐性检验Huber M-estimators,休伯M估计量Hyperbola,双曲线Hypothesis testing,假设检验Hypothetical universe,假设总体IImpossible event,不可能事件Independence,独立性Independent variable,自变量Index,指标/指数Indirect standardization,间接标准化法Individual,个体Inference band,推断带Infinite population,无限总体Infinitely great,无穷大Infinitely small,无穷小Influence curve,影响曲线Information capacity,信息容量Initial condition,初始条件Initial estimate,初始估计值Initial level,最初水平Interaction,交互作用Interaction terms,交互作用项Intercept,截距Interpolation,内插法Inter quartile range,四分位距Interval estimation,区间估计Intervals of equal probability,等概率区间Intrinsic curvature,固有曲率Invariance,不变性Inverse matrix,逆矩阵Inverse probability,逆概率Inverse sine transformation,反正弦变换Iteration,迭代JJacobian determinant,雅可比行列式Joint distribution function,联合分布函数Joint probability,联合概率Joint probability distribution,联合概率分布KK means method,逐步聚类法Kaplan-Meier,评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic,动力学Kolmogorov-Smirnove test,柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis,峰度LLack of fit,失拟Ladder of powers,幂阶梯Lag,滞后Large sample,大样本Large sample test,大样本检验Latin square,拉丁方Latin square design,拉丁方设计Leakage,泄漏Least favorable configuration,最不利构形Least favorable distribution,最不利分布Least significant difference,最小显著差法Least square method,最小二乘法Least-absolute-residuals estimates,最小绝对残差估计Least-absolute-residuals fit,最小绝对残差拟合Least-absolute-residuals line,最小绝对残差线Legend,图例L-estimator,L估计量L-estimator of location,位置L估计量L-estimator of scale,尺度L估计量Level,水平Life expectance,预期期望寿命Life table,寿命表Life table method,生命表法Light-taile distribution,轻尾分布Likelihood function,似然函数Likelihood ratio,似然比Line graph,线图Linear correlation,直线相关Linear equation,线性方程Linear programming,线性规划Linear regression,直线回归 /线性回归Linear trend,线性趋势Loading,载荷Location and scale equi variance,位置尺度同变性Location equi variance,位置同变性Location invariance,位置不变性Location scale family,位置尺度族Log rank test,时序检验Logarithmic curve,对数曲线Logarithmic normal distribution,对数正态分布Logarithmic scale,对数尺度Logarithmic transformation,对数变换Logic check,逻辑检查Logistic distribution,逻辑斯蒂分布Logit transformation, Logit转换LOGLINEAR,多维列联表通用模型Lognormal distribution,对数正态分布Lost function,损失函数Low correlation,低度相关Lower limit,下限Lowest-attained variance,最小可达方差LSD,最小显著差法的简称Lurking variable,潜在变量MMain effect,主效应Major heading,主辞标目Marginal density function,边缘密度函数Marginal probability,边缘概率Marginal probability distribution,边缘概率分布Matched data,配对资料Matched distribution,匹配过分布Matching of distribution,分布的匹配Matching of transformation,变换的匹配Mathematical expectation,数学期望Mathematical model,数学模型Maximum L-estimator,极大L 估计量Maximum likelihood method,最大似然法Mean,均数Mean squares between groups,组间均方Mean squares within group,组内均方Means (Compare means),均值-均值比较Median,中位数Median effective dose,半数效量Median lethal dose,半数致死量Median polish,中位数平滑Median test,中位数检验Minimal sufficient statistic,最小充分统计量Minimum distance estimation,最小距离估计Minimum effective dose,最小有效量Minimum lethal dose,最小致死量Minimum variance estimator,最小方差估计量MINITAB,统计软件包Minor heading,宾词标目Missing data,缺失值Model specification,模型的确定Modeling Statistics ,模型统计Models for outliers,离群值模型Modifying the model,模型的修正Modulus of continuity,连续性模Morbidity,发病率Most favorable configuration,最有利构形Multidimensional Scaling (ASCAL),多维尺度/多维标度Multinomial Logistic Regression ,多项逻辑斯蒂回归Multiple comparison,多重比较Multiple correlation ,复相关Multiple covariance,多元协方差Multiple linear regression,多元线性回归Multiple response ,多重选项Multiple solutions,多解Multiplication theorem,乘法定理Multiresponse,多元响应Multi-stage sampling,多阶段抽样Multivariate T distribution,多元T分布Mutual exclusive,互不相容Mutual independence,互相独立NNatural boundary,自然边界Natural dead,自然死亡Natural zero,自然零Negative correlation,负相关Negative linear correlation,负线性相关Negatively skewed,负偏Newman-Keuls method, q检验NK method, q检验No statistical significance,无统计意义Nominal variable,名义变量Nonconstancy of variability,变异的非定常性Nonlinear regression,非线性相关Nonparametric statistics,非参数统计Nonparametric test,非参数检验Normal deviate,正态离差Normal distribution,正态分布Normal equation,正规方程组Normal ranges,正常范围Normal value,正常值Nuisance parameter,多余参数/讨厌参数Null hypothesis,无效假设Numerical variable,数值变量OObjective function,目标函数Observation unit,观察单位Observed value,观察值One sided test,单侧检验One-way analysis of variance,单因素方差分析One way ANOVA ,单因素方差分析Open sequential trial,开放型序贯设计Optrim, 优切尾Optrim efficiency,优切尾效率Order statistics,顺序统计量Ordered categories,有序分类Ordinal logistic regression ,序数逻辑斯蒂回归Ordinal variable,有序变量Orthogonal basis,正交基Orthogonal design,正交试验设计Orthogonality conditions,正交条件ORTHOPLAN,正交设计Outlier cutoffs,离群值截断点Outliers,极端值OVERALS ,多组变量的非线性正规相关Overshoot,迭代过度PPaired design,配对设计Paired sample,配对样本Pairwise slopes,成对斜率Parabola,抛物线Parallel tests,平行试验Parameter,参数Parametric statistics,参数统计Parametric test,参数检验Partial correlation,偏相关Partial regression,偏回归Partial sorting,偏排序Partials residuals,偏残差Pattern,模式Pearson curves,皮尔逊曲线Peeling,退层Percent bar graph,百分条形图Percentage,百分比Percentile,百分位数Percentile curves,百分位曲线Periodicity,周期性Permutation,排列P-estimator,P估计量Pie graph,饼图Pitman estimator,皮特曼估计量Pivot,枢轴量Planar,平坦Planar assumption,平面的假设PLANCARDS,生成试验的计划卡Point estimation,点估计Poisson distribution,泊松分布Polishing,平滑Polled standard deviation,合并标准差Polled variance,合并方差Polygon,多边图Polynomial,多项式Polynomial curve,多项式曲线Population,总体Population attributable risk,人群归因危险度Positive correlation,正相关Positively skewed,正偏Posterior distribution,后验分布Power of a test,检验效能Precision,精密度Predicted value,预测值Preliminary analysis,预备性分析Principal component analysis,主成分分析Prior distribution,先验分布Prior probability,先验概率Probabilistic model,概率模型probability,概率Probability density,概率密度Product moment,乘积矩/协方差Profile trace,截面迹图Proportion,比/构成比Proportion allocation in stratified random sampling,按比例分层随机抽样Proportionate,成比例Proportionate sub-class numbers,成比例次级组含量Prospective study,前瞻性调查Proximities,亲近性Pseudo F test,近似F检验Pseudo model,近似模型Pseudo sigma,伪标准差Purposive sampling,有目的抽样QQR decomposition, QR分解Quadratic approximation,二次近似Qualitative classification,属性分类Qualitative method,定性方法Quantile-quantile plot,分位数-分位数图/Q-Q图Quantitative analysis,定量分析Quartile,四分位数Quick Cluster,快速聚类RRadix sort,基数排序Random allocation,随机化分组Random blocks design,随机区组设计Random event,随机事件Randomization,随机化Range,极差/全距Rank correlation,等级相关Rank sum test,秩和检验Rank test,秩检验Ranked data,等级资料Rate,比率Ratio,比例Raw data,原始资料Raw residual,原始残差Rayleigh's test,雷氏检验Rayleigh's Z,雷氏Z值Reciprocal,倒数Reciprocal transformation,倒数变换Recording,记录Redescending estimators,回降估计量Reducing dimensions,降维Re-expression,重新表达Reference set,标准组Region of acceptance,接受域Regression coefficient,回归系数Regression sum of square,回归平方和Rejection point,拒绝点Relative dispersion,相对离散度Relative number,相对数Reliability,可靠性Reparametrization,重新设置参数Replication,重复Report Summaries,报告摘要Residual sum of square,剩余平方和Resistance,耐抗性Resistant line,耐抗线Resistant technique,耐抗技术R-estimator of location,位置R估计量R-estimator of scale,尺度R估计量Retrospective study,回顾性调查Ridge trace,岭迹Ridit analysis , Ridit分析Rotation,旋转Rounding,舍入Row,行Row effects,行效应Row factor,行因素RXC table, RXC表SSample,样本Sample regression coefficient,样本回归系数Sample size,样本量Sample standard deviation,样本标准差Sampling error,抽样误差SAS(Statistical analysis system ),SAS统计软件包Scale,尺度/量表Scatter diagram,散点图Schematic plot,示意图/简图Score test,计分检验Screening,筛检SEASON,季节分析Second derivative,二阶导数Second principal component,第二主成分SEM (Structural equation modeling),结构化方程模型Semi-logarithmic graph,半对数图Semi-logarithmic paper,半对数格纸Sensitivity curve,敏感度曲线Sequential analysis,贯序分析Sequential data set,顺序数据集Sequential design,贯序设计Sequential method,贯序法Sequential test,贯序检验法Serial tests,系列试验Short-cut method,简捷法Sigmoid curve, S形曲线Sign function,正负号函数Sign test,符号检验Signed rank,符号秩Significance test,显著性检验Significant figure,有效数字Simple cluster sampling,简单整群抽样Simple correlation,简单相关Simple random sampling,简单随机抽样Simple regression,简单回归simple table,简单表Sine estimator,正弦Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Unweighted least squares, 未加权最小平方法Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求11欢迎下载。

DNA的复制课件-2023-2024学年高一下学期生物人教版(2019)必修2

DNA的复制课件-2023-2024学年高一下学期生物人教版(2019)必修2
B.若子代T₂噬菌体均同时含32P和35S,则该T₂噬菌体只繁殖了一代
C.这M个子代T₂噬菌体中,含32P的T₂噬菌体所占的比例为1/M
有2个,故其所占的比例为2/M,C 错误。培养足够长的时间,会出现 不含32P而含35S的T₂噬菌体,但一般不会出现含32P的大肠杆菌,D 错 误。
3 、在一个密闭的容器里,用含有同位素13C的脱氧核苷酸合成一个 DNA分子,然后加入普通的含12C的脱氧核苷酸,经n次复制后,所得DNA 分子中含¹2C的脱氧核苷酸链数与含13C的脱氧核苷酸链数之比是
特点 半保留复制;边解旋边复制;多起点复制;双向复制
结果 子链与母链结合,构成两个相同的新的DNA分子
意义 保持了遗传信息的连续性
总结规律
规律1:若 一 个DNA 复制n次。
1.在子代中共形成 2n 个DNA, 其中含有亲代
DNA链的DNA分子数 2 0 2.含有亲代DNA链的DNA分子数占DNA分子总
D . 含 1 0 0 个 碱 基 对 ( 其 中 胞 嘧 啶 6 0 个 ) 的 DNA复 制 3 次 共 需 要 2 8 0 个
2、用 DNA双链均被32P标记的一个T,噬菌体侵染被35S标记的大肠杆菌, 一段时间后释放出出了M个子代T₂噬菌体。下列有关叙述正确的是
()
A.用32P标记T₂噬菌体的方法与用35S标记大肠杆菌的方法相同
It has not eseaped our notice that the specife pairing we have postulated immediately guggests a p⁰ssible copying mechanism for the genetic materiaI.
Full details of the structure,including the conditions assumed in building it,together with a set of co-ordinatos for the atoms,will be published elsewhere.

电磁场微波词汇汉英对照表

电磁场微波词汇汉英对照表

电磁场微波词汇汉英对照表二画二端口网络two port network二重傅立叶级数double Fourier series入射场incident field入射波incident wave三画小波wavelet四画无功功率reactive power无限(界)区域unbound region无源网络passive network互易性reciprocity互阻抗mutual impedance互耦合mutual coupling互连interconnect天线antennas天线方向性图pattern of antenna匹配负载matched load孔aperture孔(缝)隙天线aperture antennas内阻抗internal impedance介电常数permittivity介质dielectric介质波导dielectric guide介质损耗dielectric loss介质损耗角dielectric loss angle介电常数dielectric constant反射reflection反射系数reflection coefficient分离变量法separation of variables五画主模dominant mode正交性orthogonality正弦的sinusoidal右手定则right hand rule平行板波导parallel plate waveguide平面波plane wave功率密度density of power功率流(通量)密度density of power flux 布魯斯特角Brewster angle本征值eigen value本征函数eigen function边值问题boundary value problem四端口网络four terminal network矢量位vector potential电压voltage电压源voltage source电导率conductivity电流元current element电流密度electric current density电荷守恒定律law of conservation of charge 电荷密度electric charge density电容器capacitor电路尺寸circuit dimension电路元件circuit element电场强度electric field intensity电偶极子electric dipole电磁兼容electromagnetic compatibility矢量vector矢径radius vector失真distortions平移translation击穿功率breakdown power节点node六画安培电流定律Ampere’s circuital law传播常数propagation constant亥姆霍兹方程Helmholtz equation动态场dynamic field共轭问题conjugate problem共面波导coplanar waveguide (CPW)有限区域finite region有源网络active network有耗介质lossy dielectric导纳率admittivity同轴线coaxial line全反射total reflection全透射total transmission各向同性物质isotropic matter各向异性nonisotropy行波traveling wave光纤optic fiber色散dispersion网格mesh全向天线omnidirectional antennas阵列arrays七画串扰cross-talk回波echo良导体good conductor均匀平面波uniform plane wave均匀传输线uniform transmission line近场near-field麦克斯韦方程Maxwell equation克希荷夫电流定律Kirchhoff’s current law 环行器circulator贝塞尔函数Bessel function时谐time harmonic时延time delay位移电流electric displacement current芯片chip芯片组chipset远场far-field八画变分法variational method定向耦合器directional coupler取向orientation法拉第感应定律Faraday’s law of induction 实部real part空间分量spatial components波导waveguide波导波长guide wave length波导相速度guide phase velocity波阻抗wave impedance波函数wave function波数wave number泊松方程Poisson’s equation拉普拉斯方程Laplace’s equation坡印亭矢量Poynting vector奇异性singularity 阻抗矩阵impedance matrix表面电阻surface resistance表面阻抗surface impedance表面波surface wave直角坐标rectangular coordinate极化电流polarization current极点pole非均匀媒质inhomogeneous media非可逆器件nonreciprocal devices固有(本征)阻抗intrinsic impedance单位矢量unit vector单位法线unit normal单位切线unit tangent单极天线monopole antenna单模single mode环行器circulator驻波standing wave驻波比standing wave ratio直流偏置DC bias九画标量位scalar potential品质因子quality factor差分法difference method矩量法method of moment洛伦兹互易定理Lorentz reciprocity theorem 屏蔽shield带状线stripline标量格林定理scalar Green’s theorem面积分surface integral相对磁导率relative permeability相位常数phase constant相移器phase shifter相速度phase velocity红外频谱infra-red frequency spectrum矩形波导rectangular waveguide柱面坐标cylindrical coordinates脉冲函数impulse function复介电常数complex permittivity复功率密度complex power density复磁导率complex permeability复矢量波动方程complex vector wave equation贴片patch信号完整性signal integrity信道channel寄生效应parasite effect指向天线directional antennas喇叭天线horn antennas十画准静态quasi-static旁路电流shunt current高阶模high order mode高斯定律Gauss law格林函数Green’s function连续性方程equation of continuity耗散电流dissipative current耗散功率dissipative power偶极子dipole脊形波导ridge waveguide径向波导radial waveguide径向波radial wave径向模radial mode能量守恒conservation of energy能量储存energy storage能量密度power density衰减常数attenuation constant特性阻抗characteristic impedance特征值characteristic value特解particular solution勒让德多项式Legendre polynomial积分方程integral equation涂层coating谐振resonance谐振长度resonance length十一画混合模hybrid mode部分填充波导partially filled waveguide 递推公式recurrence formula探针馈电probe feed接头junction基本单位fundamental unit理想介质perfect dielectric理想导体perfect conductor唯一性uniqueness虚部imaginary part透射波transmission wave透射系数transmission coefficient 球形腔spherical cavity球面波spherical wave球面坐标spherical coordinate终端termination终端电压terminal voltage射频radio frequency探针probe十二画涡旋vortices散度方程divergence equation散射scattering散杂电容stray capacitance散射矩阵scattering matrix斯托克斯定理Stoke’s theorem斯涅尔折射定律Snell’s law of refraction阴影区shadow region超越方程transcendental equation超增益天线supergain antenna喇叭horn幅角argument最速下降法method of steepest descent趋肤效应skin effect趋肤深度skin depth微扰法perturbational method等相面equi-phase surface等幅面equi-amplitude surface等效原理equivalence principle短路板shorting plate短截线stub傅立叶级数Fourier series傅立叶变换Fourier transformation第一类贝塞耳函数Bessel function of the first kind第二类汉克尔函数Hankel function of the second kind解析函数analytic function激励excitation集中参数元件lumped-element场方程field equation场源field source场量field quantity遥感remote sensing振荡器oscillators滤波器filter十三画隔离器isolator雷达反射截面radar cross section (RCS)损耗角loss angle感应电流induced current感应场induction field圆波导circular waveguide圆极化circularly polarized圆柱腔circular cavity铁磁性ferromagnetic铁氧体陶瓷ferrite ceramics传导电流conducting current传导损耗conduction loss传播常数propagation constant传播模式propagation mode传输线模式transmission line mode传输矩阵transmission matrix零点Zero静态场static field算子operator输入阻抗input impedance椭圆极化elliptically polarized微带microstrip微波microwave微波单片集成电路microwave monolithic integrated circuit MMIC毫米波单片集成电路millimeter wave monolithic integrated circuit M3IC十四画漏电电流leakage current渐进表示式asymptotic expression模式mode模式展开mode expansion模式函数mode模式图mode pattern截止波长cut off wavelength截止频率cut off frequency鞍点saddle频谱spectrum线性极化linearly polarized线积分line integral磁矢量位magnetic vector potential磁通magnetic flux 磁场强度magnetic intensity磁矩magnetic moment磁损耗角magnetic loss angle磁滞损耗magnetic hysteresis磁导率permeability十五画辐射radiate增益gain横电场transverse electric field横电磁波transverse electromagnetic wave 劈wedge十六画雕落场evanescent field雕落模式evanescent mode霍尔效应Hall effect辐射电阻radiation resistance辐射电导radiation conductance辐射功率radiation power辐射方向性图radiation pattern谱域方法spectral method十七画以上瞬时量insaneous quantity镜像image峰值peak value函数delta function注:本词汇表参考了《正弦电磁场》(哈林顿著孟侃译)。

密度估计

密度估计
通过交叉验证找到合适的 k(分量个数) 。显示每个 k 对应的交叉验证的似然 值的估计。 在这里高斯分量个数从 1 到 5,利用交叉验证,将数据分为 10 份,训练并测 试, 计算每个 k 对应的似然值。 重复两次实验。 因为 EM 会收敛到局部极值, 不一定会收敛到局部最优,程序中采用 Kmeans 对参数进行赋初值,所以进
1 N
N
w
i 1 t il
N
u
t 1 l

w X
i 1 N
i
w
i 1 N t il
t il
tl 1
w (X
i 1
i
ult 1 )( X i ult 1 )T
w
i 1
N
t il
(4) 令 (u1 ,
, uK ; 1 ,
, K ;1 ,
, K ) ,若 | | 小于某一个限定值, 即达到
3 / 10
* h Байду номын сангаас

K x dx 1 2 N 2 2 x K x dx f x dx
2
15

最佳带宽以 N 1 5 的速度下降。 分布密度函数 f 的核密度估计不仅与给定的样本点集合有关, 还与核函数 的选择有关, 其中带宽参数 h 控制在求点 h 处的近似密度时不同距离样本 点对点密度的影响程度。所以带宽 h 的选择非常重要。 d 维的情况如下:现在假设数据 X i ( X i1 , X i 2 ,
需求参数 k , uk , k , k 1, 2,
,K
N
似然函数为: log( L( | X , Y )) log(Yi fYi ( X i | Yi ))

Asymptotic analysis

Asymptotic analysis

1
Asymptotic analysis of a thin layer device with Tresca's contact law in elasticity
Summary :
In this paper, we consider a thin elastic layer between a rigid body and an elastic one. A Tresca law is assumed between the two elastic bodies. The Lame coe cients of the thin layer are assumed to vary with respect to its height ". This dependence is shown to be of primary importance in the asymptotic behavior of the device, a critical case leading to a non classical contact law when deleting the bond.
2 Stating the problem
2.1 The model problem
For sake of simplicity the study is made for a 2-dimensional problem but it is also valid for a 3-dimensional one. We consider the device de ned by g
A line of research in the study of friction between two bodies involves introducing a very thin third body between them. This third body, despite being often made by fragments of the two rst bodies, can exhibit very di erent mechanical properties than those of the initial bodies. A very similar situation occurs when taking into account the e ects of a thin layer which has been bonded onto the surface of a body to prevent wear caused by the contact with another solid. It is therefore of interest to study the asymptotic behavior of the thin layer between the two bodies, assuming various contact laws between them. This kind of con guration in which the geometric data exhibit di erent magnitudes can be found in many mechanical situations such as plates, reinforcement problems and lubrication. Rescaling the coordinate through the thin region is often carried out and an expansion procedure follows 1] 3] 5] 6] 7] 14]. In the present situation, the con guration is similar to that of a bond between two bodies. So far it seems that such problems have been treated, both in the elastic area or in the simpler context of the thermic area, only by assuming perfect adhesion conditions between all three bodies. A lot of papers have been devoted to such studies with various geometries, behavior laws and more or less rigorous approaches. In 1] 10], the asymptotic method has been used for a particular value of the Lame coe cients which have been set proportional to the height " of the joint. In this case, the expansion procedure with respect to the powers of " allows new asymptotic boundary conditions between the rst bodies to be obtained; these conditions replaced the vanishing joint. Another way to carry out the study without using the rescaling procedure may be found in 2]. The idea is to plunge the domain of the thin layer into a xed one and to use particular test functions to obtain the limit problem in the real domain. In this study, a range of variation for the Lame coe cients of the layer with respect to " is proposed, each of them leading to a di erent behavior for the device. Some generalisations appear in 13]. In the present paper, we study the behavior of a device constituted of three bodies, one of them sliding on a thin layer, itself bonded to a rigid support. The Lame coe cients of the thin layer are assumed to vary with respect of ". The 3

英语渐变类系表结构的句子

英语渐变类系表结构的句子

英语渐变类系表结构的句子1、The Development Of A Real-Time Transmittance Measuring System For Linear Variable Neutral Density Filters线性渐变滤光片透过率实时测量系统2、Research On Novel Ultra-Wideband Linear Tapered Balancer And Impedance Transformer新型超宽带线性渐变平衡器及阻抗变换器的研究3、GI(Grated Index)渐变折射线(光纤)4、Space (Density) Tapered Array Antenna间距密度渐变阵列天线5、The Path Grew More Obscure In The Fading Light、小径在渐渐消失的光线下变得更暗了。

6、Calculations Of 3-D Nonlinear Beam-Wave Interaction In Traveling Wave Tube With Dynamic Velocity Taper Helix动态渐变技术螺旋线行波管三维非线性互作用的计算7、Oscillation And Asymptotic Behavior Of Solutions Of First Order Linear Difference Equations With Oscillatory Coefficients;具变号系数的一阶线性差分方程的解的渐近性与振动性8、Select The Radial Gradient From The Tools Option、在属性栏上设置渐变模式为"径向渐变"、9、Dual-Band Tapered Slot-Line Antenna For WiMAX BaseStation用于WiMAX基站的双频段渐变槽线天线。

(完整版)生态学(双语)专业英语单词

(完整版)生态学(双语)专业英语单词

K-对策者 K-strategistisn维超体积资源空间 n—dimensional hyper—volume n维生态位 n—dimensional nicheRaunkiaer定律 Law of Frequencyr-对策者 r—strategistis奥陶纪 Ordovician period白垩土草地 chalk grassland斑块 patch斑块性 patchiness斑块性种群 patchy population半荒漠 semi—desert半矩阵或星系图 constellation diagrams伴生种 companion species饱和密度 saturation density饱和期 asymptotic phase保护哲学 conservation philosophy北方针叶林 northern conifer forest被动取样假说 passive sampling hypothesis本能 instinct本能行为 instinctive behavior避敌 avoiding predator边缘效应 edge effect变异性 variability标志重捕法 mark recapture methods标准频度图解 frequency diagram表现型适应 phenotypic adaptation并行的 simultaneous并行同源 paralogy捕食 predation不重叠的 non-overlapping残存斑块 remnant patch残余廊道 remnant corridor操作性条件作用 operant conditioning草原生态系统 grassland system层次性结构 hierachical structure产卵和取食促进剂 oviposition and feeding stimulant 产业生态学 industry ecology长日照植物 long day plant超体积生态位 hyper—volume niche成本外摊 externalized cost程序化死亡 programmed cell death尺度效应 scaling effect抽彩式竞争 competive lottery臭氧层破坏 ozone layer destruction出生率 natality或birth rate初级生产 primary production初级生产力 primary productivity初级生产者 primary producer传感器 sensor串行的 serial垂直结构 vertical structure春化 vernalization次级生产 secondary production次级生产力 secondary productivity次生演替 secondary successon粗密度 crude density存活曲线 survival curve存活值 survival value存在度 presence搭载效应 hitchhiking effect大陆—岛屿型复合种群 mainland—island metapopulation 带状廊道 strip corridor单联 single linkage单体生物 unitary organism单位努力捕获量 catch per unit effort单元的 monothetic淡水生态系统 fresh water ecosystem氮循环 nitrogen cycling等级(系统)理论 hierarchy theory等级的 hierarchical底内动物 infauna底栖动物 benthos地表火 surface fire地带性生物群落 biome地理信息系统 geographic information system地面芽植物 hemicryptophytes地上芽植物 chamaephytes地植物学 geobotany第三纪 Tetiary period第四纪 Quaternary period点突变 genic mutation或point mutation电荷耦合器 charge coupled device, CCD顶极阶段 climax stage顶极群落 climax community顶极种 climax species动态率模型 dynamic pool model动态平衡理论 dynamic equilibrium theory动态生命表 dynamic life table动物痕迹的计数 counts of animal signs动物计数 counts of animals冻原 tundra短日照植物 short day plant断层 gaps多波段光谱扫描仪 multichannel spectrum scanner, MSS 多度 abundance多样化 variety多元的 poly thetic厄尔尼诺El Nino反馈feedback反射reflex泛化种generalist防卫行为defennce behavior访花昆虫flower visitor非等级的non-hierarchical非空间模型non—spatial model非内稳态生物non-homeostatic organism非平衡态复合种群nonequilibrium metapopulation非平衡态跟踪生境复合种群nonequilibrium habitat—tracking metapopulation非平衡态下降复合种群nonequilibrium declining metapopulation非生态位non-niche非生物环境physical environment非线性关系nonlinear分布dispersion分解者decomposer分支过程branching process分子分类学molecular taxonomy分子进化的中性理论the neutral theory of molecular evolution分子生态学molecular ecology分子系统学molecular systematics浮游动物plankton负反馈negative feedback)负荷量carrying capacity负相互作用negative interaction负选择negative selection附底动物epifauna复合种群metapopulation富营养化现象eutrohication改良relamation盖度coverage盖度比cover ratio干扰disturbance干扰斑块disturbance patch干扰廊道disturbance corridor干扰作用interference高度height高斯假说Coarse's hypothesis高斯理论Coarse’s theory高位芽植物phanerophytes格林威尔造山运动Grenville Orogenesis 个体individual个体论概念individualistic concept更新renewal功能生态位functional niche攻击行为aggressive behavior构件modules构件生物modular organism关键种keystone species关联系数association coefficients光饱和点light saturation point光补偿点light compensation point光周期photoperiod过滤器filter哈德-温伯格原理Hardy-Weinberg principle 海洋生态系统Ocean ecosytem寒武纪Cambrian period旱生植物siccocolous河流廊道river corridor恒有度contancy红树林mangrove呼吸量respiration互利mutualism互利素synomone互利作用synomonal化感作用allelopathy化学防御chemical defence化学生态学chemical ecology化学物质allelochemicals化学隐藏chemocryptic划分的divisive环境environment环境伦理学environmental ethics环境容纳量environmental carryin capacity环境资源斑块environmental resource patch环境资源廊道environmental resource corridor 荒漠desert荒漠化desertification荒漠生态系统desert ecosystem黄化现象eitiolation phenomenon恢复生态学restoration ecology混沌学chaos混合型mixed type活动库exchange pool获得性行为acquired behavior机体论学派organismic school基础生态位Fundamental niche基质matrix极点排序法polar ordination集群型clumped寄生parasitism加速期accelerating phase价值value价值流value flow间接排序indirect ordination间接梯度分析indirect gradiant analysis减速期decelerating phase简单聚合法lumping碱性植物alkaline soil plant建群种constructive species接触化学感觉contact chemoreception解磷菌或溶磷菌Phosphate—solubiIizing Microorganisms, PSM 进化适应evolutionary adaptation经典型复合种群classic metapopulation经济密度economic density景观landscape景观格局landscape patten景观过程模型process based landscape model景观结构landscape structure景观空间动态模型spatial dynamic landscape model景观生态学landscape ecology净初级生产量net primary production竞争competition竞争排斥原理competition exclusion principle静态生命表static life table局部种群local population距离效应distance effect聚合的agglomerative均匀型uniform菌根mycorrhiza抗毒素phytoalexins可持续发展sustainable development 空间结构spatial structure空间模型spatial model空间生态位spatial niche空间异质性spatial heterogeneity 库pool矿产资源mineral resources廊道corridor离散性discrete利己素allomone利己作用allomona利他行为altruism利他作用kairomonal连续体continuum联想学习associative learning猎食行为hunting behavior林冠火crown fire磷循环phosphorus cycling零假说null hypothesis领悟学习insight learning领域性territoriality流flow绿色核算green accounting逻辑斯谛方程logistic equation铆钉假说Rivet hypothesis密度density密度比density ratio密度制约死亡density-dependent mortality 面积效应area effect灭绝extinction铭记imprinting模拟hametic模型modeling牧食食物链grazing food chain内禀增长率intrinsic rate of increase内稳态homeostasis内稳态生物homeostatic organisms内源性endogenous内在的intrinsic耐阴植物shade-enduring plants能量分配原则principle of energy allocation 能量流动energy flow能源资源energy resources能值emergy泥盆纪Devonian period拟寄生parasitoidism逆分析inverse analysis年龄分布age distribution年龄结构age structure年龄性别锥体age—sex pyramid年龄锥体age pyramids偶见种rare species排序ordination配额quota配偶选择mate selection偏害amensalism偏利commensalism频度frequency平衡选择balancing selection平台plantform平行进化parallel evolution栖息地habitat期望值外推法extrapolation by expected value 气候驯化acclimatisation器官organs亲本投资parental investment亲族选择kin selection趋光性phototaxis趋化性chemotaxis趋同进化convergent evolution趋性taxis趋异进化divergent evolution趋异适应radiation adaptation取食促进剂oviposition and feeding stimulant 取样调查法sampling methods去除取样法removal sampling全联法complete linkage全球global全球变暖global warnning全球定位系统global Positioning System全球生态学global ecology确限度fidelity群丛association群丛单位理论association unit theory群丛组association group群落community群落的垂直结构vertical structure群落生态学community ecology群落水平格局horizontal pattern群落外貌physiognomy群落演替succession群系formation群系组formation group热带旱生林tropical dry forest热带季雨林tropical seasonal rainforest热带稀树草原tropical savanna热带雨林tropical rainforest热力学第二定律second law of thermodynamics 热力学第一定律first law of thermodynamics 人工斑块introduced patch人工廊道introduced corridor人口调查法cencus technique人口统计学human demography日中性植物day neutral plant冗余redundancy冗余种假说Redundancy species hypothesis三叠纪Triassic period森林生态系统forest ecosystem熵值entropy value上渐线upper asymptotic社会性防卫行为defence behavior社会优势等级dominance hierarchy摄食行为feed behavior生活史life history生活史对策life history strategy生活小区biotope生活型life form生活周期life cycle生境habitat生境多样性假说habitat diversity hypothesis 生理出生率physiological natality生理死亡率physiological mortality生命表life table生态出生率ecological natality生态对策bionomic strategy生态反作用ecological reaction生态幅ecological amplitude生态工程ecological engineering生态工业ecological industry生态规划ecological planning生态恢复ecological restoration生态经济ecological economics生态旅游ecotourism生态密度ecological density生态农业ecological agriculture生态入侵ecological invasion生态设计ecological design生态适应ecological adaptation生态死亡率ecological mortality生态位niche生态位宽度niche breadth生态位相似性比例niche proportional similarity 生态位重叠niche overlap生态文明ecological civilization生态系统ecosystem生态系统产品ecosystem goods生态系统多样性ecosystem diversity生态系统服务ecosystem service生态系统生态学ecosystem ecology生态系统学ecosystemology生态型ecotype生态学ecology生态因子ecological factor生态元ecological unit生态作用ecological effect生物organism生物地球化学循环biogecochemical cycle生物多样性biodiversity生物量biomass生物潜能biotic potential生物群落biotic community,biome生物群落演替succession生殖潜能reproductive potential剩余空间residual space失共生aposymbiosis湿地wetland湿地生态系统wetland ecosystem湿地植物hygrophyte时间结构temporal structure实际出生率realized natality实际死亡率realized mortality食草动物herbivores食肉动物carnivores食物链food chain食物网food wed矢量vector适合度fitness适应辐射adaptive radiation适应值adaptive value适应组合adaptive suites收获理论harvest theory收益外泄externalized profit衰退型种群contracting population 水平格局horizontal pattern水土流失soil and water erosion 水循环water cycling瞬时增长率instantaneous rate死亡率mortality & death rate松散垂直耦连loose vertical coupling松散水平耦连loose horizontal coupling溯祖过程coalescent process溯祖理论coalescent theory酸性土理论acid soil plant酸雨acid rain随机型random碎屑食物链detritus food chainK-对策者K—strategistisn维超体积资源空间n-dimensional hyper—volume n维生态位n—dimensional nicheRaunkiaer定律Law of Frequencyr—对策者r-strategistis奥陶纪Ordovician period白垩土草地chalk grassland斑块patch斑块性patchiness斑块性种群patchy population半荒漠semi-desert半矩阵或星系图constellation diagrams伴生种companion species饱和密度saturation density饱和期asymptotic phase保护哲学conservation philosophy北方针叶林northern conifer forest被动取样假说passive sampling hypothesis本能instinct本能行为instinctive behavior避敌avoiding predator边缘效应edge effect变异性variability标志重捕法mark recapture methods标准频度图解frequency diagram表现型适应phenotypic adaptation并行的simultaneous并行同源paralogy捕食predation不重叠的non—overlapping残存斑块remnant patch残余廊道remnant corridor操作性条件作用operant conditioning草原生态系统grassland system层次性结构hierachical structure产卵和取食促进剂oviposition and feeding stimulant 产业生态学industry ecology长日照植物long day plant超体积生态位hyper—volume niche成本外摊externalized cost程序化死亡programmed cell death尺度效应scaling effect抽彩式竞争competive lottery臭氧层破坏ozone layer destruction出生率natality或birth rate初级生产primary production初级生产力primary productivity初级生产者primary producer传感器sensor串行的serial垂直结构vertical structure春化vernalization次级生产secondary production次级生产力secondary productivity次生演替secondary successon粗密度crude density存活曲线survival curve存活值survival value存在度presence搭载效应hitchhiking effect大陆—岛屿型复合种群mainland-island metapopulation 带状廊道strip corridor单联single linkage单体生物unitary organism单位努力捕获量catch per unit effort单元的monothetic淡水生态系统fresh water ecosystem氮循环nitrogen cycling等级(系统)理论hierarchy theory等级的hierarchical底内动物infauna底栖动物benthos地表火surface fire地带性生物群落biome地理信息系统geographic information system 地面芽植物hemicryptophytes地上芽植物chamaephytes地植物学geobotany第三纪Tetiary period第四纪Quaternary period点突变genic mutation或point mutation电荷耦合器charge coupled device, CCD顶极阶段climax stage顶极群落climax community顶极种climax species动态率模型dynamic pool model动态平衡理论dynamic equilibrium theory动态生命表dynamic life table动物痕迹的计数counts of animal signs动物计数counts of animals冻原tundra短日照植物short day plant断层gaps多波段光谱扫描仪multichannel spectrum scanner, MSS多度abundance多样化variety多元的poly thetic厄尔尼诺El Nino反馈feedback反射reflex泛化种generalist防卫行为defennce behavior访花昆虫flower visitor非等级的non-hierarchical非空间模型non—spatial model非内稳态生物non-homeostatic organism非平衡态复合种群nonequilibrium metapopulation非平衡态跟踪生境复合种群nonequilibrium habitat—tracking metapopulation非平衡态下降复合种群nonequilibrium declining metapopulation非生态位non-niche非生物环境physical environment非线性关系nonlinear分布dispersion分解者decomposer分支过程branching process分子分类学molecular taxonomy分子进化的中性理论the neutral theory of molecular evolution 分子生态学molecular ecology分子系统学molecular systematics浮游动物plankton负反馈negative feedback)负荷量carrying capacity负相互作用negative interaction负选择negative selection附底动物epifauna复合种群metapopulation富营养化现象eutrohication改良relamation盖度coverage盖度比cover ratio干扰disturbance干扰斑块disturbance patch干扰廊道disturbance corridor干扰作用interference高度height高斯假说Coarse’s hypothes is高斯理论Coarse's theory高位芽植物phanerophytes格林威尔造山运动Grenville Orogenesis个体individual个体论概念individualistic concept更新renewal功能生态位functional niche攻击行为aggressive behavior构件modules构件生物modular organism关键种keystone species关联系数association coefficients光饱和点light saturation point光补偿点light compensation point光周期photoperiod过滤器filter哈德-温伯格原理Hardy—Weinberg principle 海洋生态系统Ocean ecosytem寒武纪Cambrian period旱生植物siccocolous河流廊道river corridor恒有度contancy红树林mangrove呼吸量respiration互利mutualism互利素synomone互利作用synomonal化感作用allelopathy化学防御chemical defence化学生态学chemical ecology化学物质allelochemicals化学隐藏chemocryptic划分的divisive环境environment环境伦理学environmental ethics环境容纳量environmental carryin capacity环境资源斑块environmental resource patch环境资源廊道environmental resource corridor 荒漠desert荒漠化desertification荒漠生态系统desert ecosystem黄化现象eitiolation phenomenon恢复生态学restoration ecology混沌学chaos混合型mixed type活动库exchange pool获得性行为acquired behavior机体论学派organismic school基础生态位Fundamental niche基质matrix极点排序法polar ordination集群型clumped寄生parasitism加速期accelerating phase价值value价值流value flow间接排序indirect ordination间接梯度分析indirect gradiant analysis减速期decelerating phase简单聚合法lumping碱性植物alkaline soil plant建群种constructive species接触化学感觉contact chemoreception解磷菌或溶磷菌Phosphate-solubiIizing Microorganisms, PSM 进化适应evolutionary adaptation经典型复合种群classic metapopulation经济密度economic density景观landscape景观格局landscape patten景观过程模型process based landscape model景观结构landscape structure景观空间动态模型spatial dynamic landscape model 景观生态学landscape ecology净初级生产量net primary production竞争competition竞争排斥原理competition exclusion principle静态生命表static life table局部种群local population距离效应distance effect聚合的agglomerative均匀型uniform菌根mycorrhiza抗毒素phytoalexins可持续发展sustainable development空间结构spatial structure空间模型spatial model空间生态位spatial niche空间异质性spatial heterogeneity库pool矿产资源mineral resources廊道corridor离散性discrete利己素allomone利己作用allomona利他行为altruism利他作用kairomonal连续体continuum联想学习associative learning猎食行为hunting behavior林冠火crown fire磷循环phosphorus cycling零假说null hypothesis领悟学习insight learning领域性territoriality流flow绿色核算green accounting逻辑斯谛方程logistic equation铆钉假说Rivet hypothesis密度density密度比density ratio密度制约死亡density-dependent mortality 面积效应area effect灭绝extinction铭记imprinting模拟hametic模型modeling牧食食物链grazing food chain内禀增长率intrinsic rate of increase内稳态homeostasis内稳态生物homeostatic organisms内源性endogenous内在的intrinsic耐阴植物shade-enduring plants能量分配原则principle of energy allocation 能量流动energy flow能源资源energy resources能值emergy泥盆纪Devonian period拟寄生parasitoidism逆分析inverse analysis年龄分布age distribution年龄结构age structure年龄性别锥体age-sex pyramid年龄锥体age pyramids偶见种rare species排序ordination配额quota配偶选择mate selection偏害amensalism偏利commensalism频度frequency平衡选择balancing selection平台plantform平行进化parallel evolution栖息地habitat期望值外推法extrapolation by expected value 气候驯化acclimatisation器官organs亲本投资parental investment亲族选择kin selection趋光性phototaxis趋化性chemotaxis趋同进化convergent evolution趋性taxis趋异进化divergent evolution趋异适应radiation adaptation取食促进剂oviposition and feeding stimulant 取样调查法sampling methods去除取样法removal sampling全联法complete linkage全球global全球变暖global warnning全球定位系统global Positioning System全球生态学global ecology确限度fidelity群丛association群丛单位理论association unit theory群丛组association group群落community群落的垂直结构vertical structure群落生态学community ecology群落水平格局horizontal pattern群落外貌physiognomy群落演替succession群系formation群系组formation group热带旱生林tropical dry forest热带季雨林tropical seasonal rainforest热带稀树草原tropical savanna热带雨林tropical rainforest热力学第二定律second law of thermodynamics 热力学第一定律first law of thermodynamics 人工斑块introduced patch人工廊道introduced corridor人口调查法cencus technique人口统计学human demography日中性植物day neutral plant冗余redundancy冗余种假说Redundancy species hypothesis三叠纪Triassic period森林生态系统forest ecosystem熵值entropy value上渐线upper asymptotic社会性防卫行为defence behavior社会优势等级dominance hierarchy摄食行为feed behavior生活史life history生活史对策life history strategy生活小区biotope生活型life form生活周期life cycle生境habitat生境多样性假说habitat diversity hypothesis 生理出生率physiological natality生理死亡率physiological mortality生命表life table生态出生率ecological natality生态对策bionomic strategy生态反作用ecological reaction生态幅ecological amplitude生态工程ecological engineering生态工业ecological industry生态规划ecological planning生态恢复ecological restoration生态经济ecological economics生态旅游ecotourism生态密度ecological density生态农业ecological agriculture生态入侵ecological invasion生态设计ecological design生态适应ecological adaptation生态死亡率ecological mortality生态位niche生态位宽度niche breadth生态位相似性比例niche proportional similarity 生态位重叠niche overlap生态文明ecological civilization生态系统ecosystem生态系统产品ecosystem goods生态系统多样性ecosystem diversity生态系统服务ecosystem service生态系统生态学ecosystem ecology生态系统学ecosystemology生态型ecotype生态学ecology生态因子ecological factor生态元ecological unit生态作用ecological effect生物organism生物地球化学循环biogecochemical cycle 生物多样性biodiversity生物量biomass生物潜能biotic potential生物群落biotic community,biome生物群落演替succession生殖潜能reproductive potential剩余空间residual space失共生aposymbiosis湿地wetland湿地生态系统wetland ecosystem湿地植物hygrophyte时间结构temporal structure实际出生率realized natality实际死亡率realized mortality食草动物herbivores食肉动物carnivores食物链food chain食物网food wed矢量vector适合度fitness适应辐射adaptive radiation适应值adaptive value适应组合adaptive suites收获理论harvest theory收益外泄externalized profit衰退型种群contracting population水平格局horizontal pattern水土流失soil and water erosion水循环water cycling瞬时增长率instantaneous rate死亡率mortality & death rate松散垂直耦连loose vertical coupling松散水平耦连loose horizontal coupling溯祖过程coalescent process溯祖理论coalescent theory酸性土理论acid soil plant酸雨acid rain随机型random碎屑食物链detritus food chainK—对策者K—strategistisn维超体积资源空间n—dimensional hyper—volume n维生态位n—dimensional nicheRaunkiaer定律Law of Frequencyr—对策者r—strategistis奥陶纪Ordovician period白垩土草地chalk grassland斑块patch斑块性patchiness斑块性种群patchy population半荒漠semi—desert半矩阵或星系图constellation diagrams伴生种companion species饱和密度saturation density饱和期asymptotic phase保护哲学conservation philosophy北方针叶林northern conifer forest被动取样假说passive sampling hypothesis 本能instinct本能行为instinctive behavior避敌avoiding predator边缘效应edge effect。

伍德里奇计量经济学 (1)

伍德里奇计量经济学 (1)
6
Stata results for Textbook Examples see this website:
/gstat/examples/wo oldridge/wooldridge.html
Introductory Econometrics
7
学习软件
Introductory Econometrics
introductory Econometrics 21
Properties of Expectations
E(a)=a, Var(a)=0 E(mX)=mX, i.e. E(E(X))=E(X) E(aX+b)=aE(X)+b E(X+Y)=E(X)+E(Y) E(X-Y)=E(X)-E(Y) E(X- mX)=0 or E(X-E(X))=0 E((aX)2)=a2E(X2)
XY
XY Cov ( X , Y ) 1 X Y Var ( X )Var (Y )2
introductory Econometrics 20
More Correlation & Covariance
If X,Y =0 (or equivalently X,Y =0) then X and Y are linearly unrelated If X,Y = 1 then X and Y are said to be perfectly positively correlated If X,Y = – 1 then X and Y are said to be perfectly negatively correlated Corr(aX,bY) = Corr(X,Y) if ab>0 Corr(aX,bY) = –Corr(X,Y) if ab<0

不对称自由基反应英文

不对称自由基反应英文

不对称自由基反应英文Asymmetric Radical Reactions: An Insight into Their Mechanism and Applications.Introduction.Asymmetric radical reactions have emerged as a powerful tool in organic synthesis, enabling the synthesis of chiral compounds with high enantiomeric purity. These reactions differ significantly from their symmetric counterparts, as they involve the generation and utilization of chiral radicals. These chiral radicals can undergo a range of reactions, including substitution, addition, and cyclization, leading to the formation of enantiomerically enriched products.Mechanism of Asymmetric Radical Reactions.The mechanism of asymmetric radical reactions typically involves three key steps: radical generation, chiralitytransfer, and radical termination.Radical Generation.The first step involves the generation of a radical species. This can be achieved through various methods, such as photolysis, thermal decomposition, or redox reactions. The generated radical can be chiral or achiral, depending on the starting materials and the conditions used.Chirality Transfer.The second step involves the transfer of chirality from a chiral auxiliary or catalyst to the radical species. This chirality transfer can occur through covalent or non-covalent interactions between the catalyst/auxiliary and the radical. The nature of these interactions determines the stereoselectivity of the reaction.Radical Termination.The final step involves the termination of the radicalspecies, leading to the formation of the desired product. This termination can occur through various mechanisms, such as coupling with another radical species, hydrogen atom abstraction, or disproportionation.Applications of Asymmetric Radical Reactions.Asymmetric radical reactions have found widespread applications in various fields of organic synthesis, including the synthesis of natural products, pharmaceuticals, and functional materials.Synthesis of Natural Products.Natural products often possess complex chiral structures, making their synthesis challenging. Asymmetric radical reactions have proven to be effective tools for the synthesis of such chiral natural products. For example, the use of chiral radicals generated from appropriate precursors has enabled the enantioselective synthesis of alkaloids, terpenes, and amino acids.Pharmaceutical Applications.The enantiomers of chiral drugs often differ significantly in their biological activities, making it crucial to control their enantiomeric purity. Asymmetric radical reactions can be used to synthesize enantiomerically enriched chiral drugs with high selectivity. This approach has been successfully applied to the synthesis of various drugs, including anti-inflammatory agents, anticancer agents, and antiviral agents.Functional Materials.Chiral materials possess unique physical and chemical properties that make them useful in various applications, such as displays, sensors, and catalysts. Asymmetricradical reactions can be used to synthesize chiral building blocks for the preparation of such materials. For instance, chiral polymers can be synthesized by utilizing asymmetric radical polymerization reactions, leading to the formation of materials with controlled chirality and tailored properties.Conclusion.Asymmetric radical reactions have emerged as powerful tools for the synthesis of enantiomerically enriched chiral compounds. Their unique mechanism, involving chirality transfer from a chiral catalyst/auxiliary to the radical species, enables high selectivity and enantiopurity in the product. The widespread applications of asymmetric radical reactions in organic synthesis, particularly in the synthesis of natural products, pharmaceuticals, and functional materials, highlight their importance in modern chemistry.Future Perspectives.Despite the significant progress made in the field of asymmetric radical reactions, there are still numerous challenges and opportunities for further exploration.Improving Selectivity and Efficiency.One of the key challenges in asymmetric radical reactions is achieving high selectivity and efficiency. While significant progress has been made in this area, there is still room for improvement. Future research could focus on developing new chiral catalysts/auxiliaries that can promote asymmetric radical reactions with higher selectivity and efficiency.Expanding the Scope of Reactions.Currently, the scope of asymmetric radical reactions is limited by the availability of suitable precursors and the reactivity of the generated radicals. Future research could aim to expand the scope of these reactions by developing new methods for generating radicals with desired functionalities and reactivities.Applications in Sustainable Chemistry.In the context of sustainable chemistry, asymmetric radical reactions offer an attractive alternative to traditional synthetic methods. By utilizing renewableresources and mild reaction conditions, asymmetric radical reactions could contribute to the development of more sustainable synthetic routes for the preparation of chiral compounds.Integration with Other Techniques.The integration of asymmetric radical reactions with other techniques, such as photocatalysis, electrochemistry, and microfluidics, could lead to the development of new and innovative synthetic methods. By combining the advantages of these techniques, it may be possible to achieve even higher selectivity, efficiency, and scalability in asymmetric radical reactions.In conclusion, asymmetric radical reactions have emerged as powerful tools for the synthesis of enantiomerically enriched chiral compounds. While significant progress has been made in this area, there are still numerous opportunities for further exploration and development. Future research in this field could lead tothe discovery of new and innovative synthetic methods with improved selectivity, efficiency, and sustainability.。

SPSS单词

SPSS单词

SPSS词汇(中英文对照)Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值 F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 一般线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点HILOGLINEAR, ***列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least signif icant difference, 最小显著差法Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换OGLINEAR, ***列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal suff icient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形Multidimensional Scaling (ASCAL), ***尺度/***标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal ranges, 正常范围Normal value, 正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分Semi-logarithmic paper, 半对数格纸SEM (Structural equation modeling), 结构化方程模型mic grSemi-logarithaph, 半对数图Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequential test, 贯序检验法Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significance test, 显著性检验Significant figure, 有效数字simple table, 简单表Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换。

统计学专业英语词汇完整版

统计学专业英语词汇完整版

统计学专业英语词汇Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚A Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Absolute deviation, 绝对离差Attributable risk, 归因危险度Absolute number, 绝对数Attribute data, 属性资料Absolute residuals, 绝对残差Attribution, 属性Acceleration array, 加速度立体阵Autocorrelation, 自相关Acceleration in an arbitrary direction, 任意方向上的加速度Autocorrelation of residuals, 残差的自相关Acceleration normal, 法向加速度Average, 平均数Acceleration space dimension, 加速度空间的维数Average confidence interval length, 平均置信区间长度Acceleration tangential, 切向加速度Average growth rate, 平均增长率Acceleration vector, 加速度向量BAcceptable hypothesis, 可接受假设Accumulation, 累积Bar chart, 条形图Accuracy, 准确度Bar graph, 条形图Actual frequency, 实际频数Base period, 基期Adaptive estimator, 自适应估计量Bayes theorem, 贝叶斯定理Addition, 相加Bell-shaped curve, 钟形曲线Addition theorem, 加法定理Bernoulli distribution, 伯努力分布Additivity, 可加性Best-trim estimator, 最好切尾估计量Adjusted rate, 调整率Bias, 偏性Adjusted value, 校正值Binary logistic regression, 二元逻辑斯蒂回归Admissible error, 容许误差Binomial distribution, 二项分布Aggregation, 聚集性Bisquare, 双平方Alternative hypothesis, 备择假设Bivariate Correlate, 二变量相关Among groups, 组间Bivariate normal distribution, 双变量正态分布Amounts, 总量Bivariate normal population, 双变量正态总体Analysis of correlation, 相关分析Biweight interval, 双权区间Analysis of covariance, 协方差分析Biweight M-estimator, 双权M 估计量Analysis of regression, 回归分析Block, 区组/配伍组Analysis of time series, 时间序列分析BMDP(Biomedical computer programs),BMDP 统计软件包Analysis of variance, 方差分析Box plots, 箱线图/箱尾图Angular transformation, 角转换Break down bound, 崩溃界/崩溃点ANOVA (analysis of variance ),方差分析CANOVA Models, 方差分析模型Arcing, 弧/弧旋Canonical correlation, 典型相关Arcsine transformation, 反正弦变换Caption, 纵标目Area under the curve, 曲线面积Case-control study, 病例对照研究AREG, 评估从一个时间点到下一个时间点回归相关时的误差Categorical variable, 分类变量ARIMA, 季节和非季节性单变量模型的极大似然估计Catenary, 悬链线Arithmetic grid paper, 算术格纸Cauchy distribution, 柯西分布Arithmetic mean, 算术平均数Cause-and-effect relationship, 因果关系Arrhenius relation, 艾恩尼斯关系Cell, 单元Assessing fit, 拟合的评估Censoring, 终检Associative laws, 结合律Center of symmetry, 对称中心Centering and scaling, 中心化和定标Comparison of bathes, 批比较Central tendency, 集中趋势Comparison value, 比较值Central value, 中心值Compartment model, 分部模型CHAID- χ2AutomaticInteractionDetector, 卡方自动交互检测Compassion, 伸缩Chance, 机遇Complement of an event, 补事件Chance error, 随机误差Complete association, 完全正相关Chance variable, 随机变量Complete dissociation, 完全不相关Characteristic equation, 特征方程Complete statistics, 完备统计量Characteristic root, 特征根Completely randomized design, 完全随机化设计Characteristic vector, 特征向量Composite event, 联合事件/复合事件Chebshev criterion of fit, 拟合的切比雪夫准则Concavity, 凹性Chernoff faces, 切尔诺夫脸谱图Conditional expectation, 条件期望Chi-square test, 卡方检验/ χ2检验Conditional likelihood, 条件似然Choleskey decomposition, 乔洛斯基分解Conditional probability, 条件概率Circle chart, 圆图Conditionally linear, 依条件线性Class interval, 组距Confidence interval, 置信区间Class mid-value, 组中值Confidence limit, 置信限Class upper limit, 组上限Confidence lower limit, 置信下限Classified variable, 分类变量Confidence upper limit, 置信上限Cluster analysis, 聚类分析Confirmatory Factor Analysis, 验证性因子分析Cluster sampling, 整群抽样Confirmatory research, 证实性实验研究Code, 代码Confounding factor, 混杂因素Coded data, 编码数据Conjoint, 联合分析Coding, 编码Consistency, 相合性Coefficient of contingency, 列联系数Consistency check, 一致性检验Coefficient of determination, 决定系数Consistent asymptotically normal estimate, 相合渐近正态估Coefficient of multiple correlation, 多重相关系数计Coefficient of partial correlation, 偏相关系数Consistent estimate, 相合估计Coefficient of production-moment correlation, 积差相关系数Constrained nonlinear regression, 受约束非线性回归Coefficient of rank correlation, 等级相关系数Constraint, 约束Coefficient of regression, 回归系数Contaminated distribution, 污染分布Coefficient of skewness, 偏度系数Contaminated Gausssian, 污染高斯分布Coefficient of variation, 变异系数Contaminated normal distribution, 污染正态分布Cohort study, 队列研究Contamination, 污染Column, 列Contamination model, 污染模型Column effect, 列效应Contingency table, 列联表Column factor, 列因素Contour, 边界线Combination pool, 合并Contribution rate, 贡献率Combinative table, 组合表Control, 对照Common factor, 共性因子Controlled experiments, 对照实验Common regression coefficient, 公共回归系数Conventional depth, 常规深度Common value, 共同值Convolution, 卷积Common variance, 公共方差Corrected factor, 校正因子Common variation, 公共变异Corrected mean, 校正均值Communality variance, 共性方差Correction coefficient, 校正系数Comparability, 可比性Correctness, 正确性统计学专业英语词汇 3 Correlation coefficient, 相关系数Dead time, 停滞期Correlation index, 相关指数Degree of freedom, 自由度Correspondence, 对应Degree of precision, 精密度Counting, 计数Degree of reliability, 可靠性程度Counts, 计数/频数Degression, 递减Covariance, 协方差Density function, 密度函数Covariant, 共变Density of datapoints, 数据点的密度Cox Regression, Cox 回归Dependent variable, 应变量/依变量/因变量Criteria for fitting, 拟合准则Depth, 深度Criteria of least squares, 最小二乘准则Derivative matrix, 导数矩阵Critical ratio, 临界比Derivative-free methods, 无导数方法Critical region, 拒绝域Design, 设计Critical value, 临界值Determinacy, 确定性Cross-over design, 交叉设计Determinant, 行列式Cross-section analysis, 横断面分析Determinant, 决定因素Cross-section survey, 横断面调查Deviation, 离差Cross tabs, 交叉表Deviation from average, 离均差Cross-tabulation table, 复合表Diagnostic plot, 诊断图Cube root, 立方根Dichotomous variable, 二分变量Cumulative distribution function, 累计分布函数Differential equation, 微分方程Cumulative probability, 累计概率Direct standardization, 直接标准化法Curvature, 曲率/弯曲Discrete variable, 离散型变量Curve fit, 曲线拟和Discriminant, 判断Curve fitting, 曲线拟合Discriminant analysis, 判别分析Curvilinear regression, 曲线回归Discriminant coefficient, 判别系数Curvilinear relation, 曲线关系Discriminant function, 判别值Cut-and-try method, 尝试法Dispersion, 散布/分散度Cycle, 周期Disproportional, 不成比例的Cyclist, 周期性Disproportionate sub-class numbers, 不成比例次级组含量D Distribution free, 分布无关性/免分布Distribution shape, 分布形状D test, D 检验Distribution-free method, 任意分布法Data acquisition, 资料收集Distributive laws, 分配律Databank, 数据库Disturbance, 随机扰动项Data capacity, 数据容量Dose response curve, 剂量反应曲线Data deficiencies, 数据缺乏Double blind method, 双盲法Data handling, 数据处理Double blind rial, 双盲试验Data manipulation, 数据处理Double exponential distribution, 双指数分布Data processing, 数据处理Double logarithmic, 双对数Data reduction, 数据缩减Downward rank, 降秩Data set, 数据集Dual-space plot, 对偶空间图Data sources, 数据来源DUD, 无导数方法Data transformation, 数据变换Duncan's new multiple range method, 新复极差法/Duncan 新Data validity, 数据有效性法Data-in, 数据输入Data-out, 数据输出统计学专业英语词汇 4 E Factorial, 阶乘Factorial design, 析因试验设计Effect, 实验效应False negative, 假阴性Eigen value, 特征值False negative error, 假阴性错误Eigen vector, 特征向量Family of distributions, 分布族Ellipse, 椭圆Family of estimators, 估计量族Empirical distribution, 经验分布Fanning, 扇面Empirical probability, 经验概率单位Fatality rate, 病死率Enumeration data, 计数资料Field investigation, 现场调查Equal sun-class number, 相等次级组含量Field survey, 现场调查Equally likely, 等可能Finite population, 有限总体Equal variance, 同变性Finite-sample, 有限样本Error, 误差/错误First derivative, 一阶导数Error of estimate, 估计误差First principal component, 第一主成分Error type I, 第一类错误First quartile, 第一四分位数Error type II, 第二类错误Fisher information, 费雪信息量Estimand, 被估量Fitted value, 拟合值Estimated error mean squares, 估计误差均方Fitting a curve, 曲线拟合Estimated error sum of squares, 估计误差平方和Fixed base, 定基Euclidean distance, 欧式距离Fluctuation, 随机起伏Event, 事件Forecast, 预测Exceptional data point, 异常数据点Four fold table, 四格表Expectation plane, 期望平面Fourth, 四分点Expectation surface, 期望曲面Fraction blow, 左侧比率Expected values, 期望值Fractional error, 相对误差Experiment, 实验Frequency, 频率Experimental sampling, 试验抽样Frequency polygon, 频数多边图Experimental unit, 试验单位Frontier point, 界限点Explanatory variable, 说明变量/解释变量Function relationship, 泛函关系Exploratory data analysis, 探索性数据分析GExplore Summarize, 探索-摘要Exponential curve, 指数曲线Gamma distribution, 伽玛分布Exponential growth, 指数式增长Gauss increment, 高斯增量Exsooth, 指数平滑方法Gaussian distribution, 高斯分布/正态分布Extended fit, 扩充拟合Gauss-Newton increment, 高斯-牛顿增量Extra parameter, 附加参数General census, 全面普查Extra polation, 外推法GENLOG(Generalized liner models), 广义线性模型Extreme observation, 末端观测值Geometric mean, 几何平均数Extremes, 极端值/极值Gini's mean difference, 基尼均差F GLM(General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度F distribution, F 分布Gradient of determinant, 行列式的梯度F test, F 检验Graeco-Latin square, 希腊拉丁方Factor, 因素/因子Grand mean, 总均值Factor analysis, 因子分析Gross errors, 重大错误Factor score, 因子得分Gross-error sensitivity, 大错敏感度统计学专业英语词汇 5 Group averages, 分组平均Initial estimate, 初始估计值Grouped data, 分组资料Initial level, 最初水平Guessed mean, 假定平均数Interaction, 交互作用H Interaction terms, 交互作用项Intercept, 截距Half-life, 半衰期Interpolation, 内插法Hampel M-estimators, 汉佩尔M 估计量Inter quartile range, 四分位距Happenstance, 偶然事件Interval estimation, 区间估计Harmonic mean, 调和均数Intervals of equal probability, 等概率区间Hazard function, 风险均数Intrinsic curvature, 固有曲率Hazard rate, 风险率Invariance, 不变性Heading, 标目Inverse matrix, 逆矩阵Heavy-tailed distribution, 重尾分布Inverse probability, 逆概率Hessian array, 海森立体阵Inverse sine transformation, 反正弦变换Heterogeneity, 不同质Iteration, 迭代Heterogeneity of variance, 方差不齐JHierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法Jacobian determinant, 雅可比行列式High-leverage point, 高杠杆率点Joint distribution function, 联合分布函数HILOGLINEAR, 多维列联表的层次对数线性模型Joint probability, 联合概率Hinge, 折叶点Joint probability distribution, 联合概率分布Histogram, 直方图KHistorical cohort study, 历史性队列研究Holes, 空洞K means method, 逐步聚类法HOMALS, 多重响应分析Kaplan-Meier, 评估事件的时间长度Homogeneity of variance, 方差齐性Kaplan-Merier chart, Kaplan-Merier 图Homogeneity test, 齐性检验Kendall' s rank correlation, Kendall 等级相关Huber M-estimators, 休伯M 估计量Kinetic, 动力学Hyperbola, 双曲线Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Hypothesis testing, 假设检验Kruskal and Wallis test, Kruskal 及Wallis 检验/多样本的秩和检验/H 检验Hypothetical universe, 假设总体Kurtosis, 峰度ILImpossible event, 不可能事件Independence, 独立性Lack of fit, 失拟Independent variable, 自变量Ladder of powers, 幂阶梯Index, 指标/指数Lag, 滞后Indirect standardization, 间接标准化法Large sample, 大样本Individual, 个体Large sample test, 大样本检验Inference band, 推断带Latin square, 拉丁方Infinite population, 无限总体Latin square design, 拉丁方设计Infinitely great, 无穷大Leakage, 泄漏Infinitely small, 无穷小Least favorable configuration, 最不利构形Influence curve, 影响曲线Least favorable distribution, 最不利分布Information capacity, 信息容量Least significant difference, 最小显著差法Initial condition, 初始条件Least square method, 最小二乘法统计学专业英语词汇 6 Least-absolute-residuals estimates, 最小绝对残差估计Marginal probability, 边缘概率Least-absolute-residuals fit, 最小绝对残差拟合Marginal probability distribution, 边缘概率分布Least-absolute-residuals line, 最小绝对残差线Matched data, 配对资料Legend, 图例Matched distribution, 匹配过分布L-estimator,L 估计量Matching of distribution, 分布的匹配L-estimator of location, 位置L 估计量Matching of transformation, 变换的匹配L-estimator of scale, 尺度L 估计量Mathematical expectation, 数学期望Level, 水平Mathematical model, 数学模型Life expectance, 预期期望寿命Maximum L-estimator, 极大L 估计量Life table, 寿命表Maximum likelihood method, 最大似然法Life table method, 生命表法Mean, 均数Light-taile distribution, 轻尾分布Mean squares between groups, 组间均方Likelihood function, 似然函数Mean squares within group, 组内均方Likelihood ratio, 似然比Means (Compare means), 均值-均值比较Line graph, 线图Median, 中位数Linear correlation, 直线相关Median effective dose, 半数效量Linear equation, 线性方程Median lethal dose, 半数致死量Linear programming, 线性规划Median polish, 中位数平滑Linear regression, 直线回归/线性回归Median test, 中位数检验Linear trend, 线性趋势Minimal sufficient statistic, 最小充分统计量Loading, 载荷Minimum distance estimation, 最小距离估计Location and scale equi variance, 位置尺度同变性Minimum effective dose, 最小有效量Location equi variance, 位置同变性Minimum lethal dose, 最小致死量Location invariance, 位置不变性Minimum variance estimator, 最小方差估计量Location scale family, 位置尺度族MINITAB, 统计软件包Log rank test, 时序检验Minor heading, 宾词标目Logarithmic curve, 对数曲线Missing data, 缺失值Logarithmic normal distribution, 对数正态分布Model specification, 模型的确定Logarithmic scale, 对数尺度Modeling Statistics , 模型统计Logarithmic transformation, 对数变换Models for outliers, 离群值模型Logic check, 逻辑检查Modifying the model, 模型的修正Logistic distribution, 逻辑斯蒂分布Modulus of continuity, 连续性模Logit transformation, Logit 转换Morbidity, 发病率LOGLINEAR, 多维列联表通用模型Most favorable configuration, 最有利构形Lognormal distribution, 对数正态分布Multidimensional Scaling (ASCAL), 多维尺度/多维标度Lost function, 损失函数Multinomial Logistic Regression , 多项逻辑斯蒂回归Low correlation, 低度相关Multiple comparison, 多重比较Lower limit, 下限Multiple correlation , 复相关Lowest-attained variance, 最小可达方差Multiple covariance, 多元协方差LSD, 最小显著差法的简称Multiple linear regression, 多元线性回归Lurking variable, 潜在变量Multiple response , 多重选项M Multiple solutions, 多解Multiplication theorem, 乘法定理Main effect, 主效应Multiresponse, 多元响应Major heading, 主辞标目Multi-stage sampling, 多阶段抽样Marginal density function, 边缘密度函数Multivariate T distribution, 多元T 分布统计学专业英语词汇7 Mutual exclusive, 互不相容Outliers, 极端值Mutual independence, 互相独立OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度NPNatural boundary, 自然边界Natural dead, 自然死亡Paired design, 配对设计Natural zero, 自然零Paired sample, 配对样本Negative correlation, 负相关Pairwise slopes, 成对斜率Negative linear correlation, 负线性相关Parabola, 抛物线Negatively skewed, 负偏Parallel tests, 平行试验Newman-Keuls method, q 检验Parameter, 参数NK method, q 检验Parametric statistics, 参数统计No statistical significance, 无统计意义Parametric test, 参数检验Nominal variable, 名义变量Partial correlation, 偏相关Nonconstancy of variability, 变异的非定常性Partial regression, 偏回归Nonlinear regression, 非线性相关Partial sorting, 偏排序Nonparametric statistics, 非参数统计Partials residuals, 偏残差Nonparametric test, 非参数检验Pattern, 模式Normal deviate, 正态离差Pearson curves, 皮尔逊曲线Normal distribution, 正态分布Peeling, 退层Normal equation, 正规方程组Percent bar graph, 百分条形图Normal ranges, 正常范围Percentage, 百分比Normal value, 正常值Percentile, 百分位数Nuisance parameter, 多余参数/讨厌参数Percentile curves, 百分位曲线Null hypothesis, 无效假设Periodicity, 周期性Numerical variable, 数值变量Permutation, 排列O P-estimator,P 估计量Pie graph, 饼图Objective function, 目标函数Pitman estimator, 皮特曼估计量Observation unit, 观察单位Pivot, 枢轴量Observed value, 观察值Planar, 平坦One sided test, 单侧检验Planar assumption, 平面的假设One-way analysis of variance, 单因素方差分析PLANCARDS, 生成试验的计划卡One way ANOVA , 单因素方差分析Point estimation, 点估计Open sequential trial, 开放型序贯设计Poisson distribution, 泊松分布Optrim, 优切尾Polishing, 平滑Optrim efficiency, 优切尾效率Polled standard deviation, 合并标准差Order statistics, 顺序统计量Polled variance, 合并方差Ordered categories, 有序分类Polygon, 多边图Ordinal logistic regression , 序数逻辑斯蒂回归Polynomial, 多项式Ordinal variable, 有序变量Polynomial curve, 多项式曲线Orthogonal basis, 正交基Population, 总体Orthogonal design, 正交试验设计Population attributable risk, 人群归因危险度Orthogonality conditions, 正交条件Positive correlation, 正相关ORTHOPLAN, 正交设计Positively skewed, 正偏Outlier cutoffs, 离群值截断点Posterior distribution, 后验分布Power of a test, 检验效能Ratio, 比例Precision, 精密度Raw data, 原始资料Predicted value, 预测值Raw residual, 原始残差Preliminary analysis, 预备性分析Rayleigh' s test, 雷氏检验Principal component analysis, 主成分分析Rayleigh' s Z,雷氏Z 值Prior distribution, 先验分布Reciprocal, 倒数Prior probability, 先验概率Reciprocal transformation, 倒数变换Probabilistic model, 概率模型Recording, 记录probability, 概率Redescending estimators, 回降估计量Probability density, 概率密度Reducing dimensions, 降维Product moment, 乘积矩/协方差Re-expression, 重新表达Profile trace, 截面迹图Reference set, 标准组Proportion, 比/构成比Region of acceptance, 接受域Proportion allocation in stratified random sampling, 按比例分Regression coefficient, 回归系数层随机抽样Regression sum of square, 回归平方和Proportionate, 成比例Rejection point, 拒绝点Proportionate sub-class numbers, 成比例次级组含量Relative dispersion, 相对离散度Prospective study, 前瞻性调查Relative number, 相对数Proximities, 亲近性Reliability, 可靠性Pseudo F test, 近似F 检验Reparametrization, 重新设置参数Pseudo model, 近似模型Replication, 重复Pseudo sigma, 伪标准差Report Summaries, 报告摘要Purposive sampling, 有目的抽样Residual sum of square, 剩余平方和Q Resistance, 耐抗性Resistant line, 耐抗线QR decomposition, QR 分解Resistant technique, 耐抗技术Quadratic approximation, 二次近似R-estimator of location, 位置R 估计量Qualitative classification, 属性分类R-estimator of scale, 尺度R 估计量Qualitative method, 定性方法Retrospective study, 回顾性调查Quantile-quantile plot, 分位数-分位数图/Q-Q 图Ridge trace, 岭迹Quantitative analysis, 定量分析Ridit analysis , Ridit 分析Quartile, 四分位数Rotation, 旋转Quick Cluster, 快速聚类Rounding, 舍入R Row, 行Row effects, 行效应Radix sort, 基数排序Row factor, 行因素Random allocation, 随机化分组RXC table, RXC 表Random blocks design, 随机区组设计SRandom event, 随机事件Randomization, 随机化Sample, 样本Range, 极差/全距Sample regression coefficient, 样本回归系数Rank correlation, 等级相关Sample size, 样本量Rank sum test, 秩和检验Sample standard deviation, 样本标准差Rank test, 秩检验Sampling error, 抽样误差Ranked data, 等级资料SAS(Statistical analysis system ),SAS 统计软件包Rate, 比率Scale, 尺度/量表Scatter diagram, 散点图Spurious correlation, 假性相关Schematic plot, 示意图/简图Square root transformation, 平方根变换Score test, 计分检验Stabilizing variance, 稳定方差Screening, 筛检Standard deviation, 标准差SEASON, 季节分析Standard error, 标准误Second derivative, 二阶导数Standard error of difference, 差别的标准误Second principal component, 第二主成分Standard error of estimate, 标准估计误差SEM (Structural equation modeling), 结构化方程模型Standard error of rate, 率的标准误Semi-logarithmic graph, 半对数图Standard normal distribution, 标准正态分布Semi-logarithmic paper, 半对数格纸Standardization, 标准化Sensitivity curve, 敏感度曲线Starting value, 起始值Sequential analysis, 贯序分析Statistic, 统计量Sequential data set, 顺序数据集Statistical control, 统计控制Sequential design, 贯序设计Statistical graph, 统计图Sequential method, 贯序法Statistical inference, 统计推断Sequential test, 贯序检验法Statistical table, 统计表Serial tests, 系列试验Steepest descent, 最速下降法Short-cut method, 简捷法Stem and leaf display, 茎叶图Sigmoid curve, S 形曲线Step factor, 步长因子Sign function, 正负号函数Stepwise regression, 逐步回归Sign test, 符号检验Storage, 存Signed rank, 符号秩Strata, 层(复数)Significance test, 显著性检验Stratified sampling, 分层抽样Significant figure, 有效数字Stratified sampling, 分层抽样Simple cluster sampling, 简单整群抽样Strength, 强度Simple correlation, 简单相关Stringency, 严密性Simple random sampling, 简单随机抽样Structural relationship, 结构关系Simple regression, 简单回归Studentized residual, 学生化残差/t 化残差simple table, 简单表Sub-class numbers, 次级组含量Sine estimator, 正弦Subdividing, 分割Single-valued estimate, 单值估计Sufficient statistic, 充分统计量Singular matrix, 奇异矩阵Sum of products, 积和Skewed distribution, 偏斜分布Sum of squares, 离差平方和Skewness, 偏度Sum of squares about regression, 回归平方和Slash distribution, 斜线分布Sum of squares between groups, 组间平方和Slope, 斜率Sum of squares of partial regression, 偏回归平方和Smirnov test, 斯米尔诺夫检验Sure event, 必然事件Source of variation, 变异来源Survey, 调查Spearman rank correlation, 斯皮尔曼等级相关Survival, 生存分析Specific factor, 特殊因子Survival rate, 生存率Specific factor variance, 特殊因子方差Suspended root gram, 悬吊根图Spectra , 频谱Symmetry, 对称Spherical distribution, 球型正态分布Systematic error, 系统误差Spread, 展布Systematic sampling, 系统抽样SPSS(Statistical package for the social science), SPSS Tags, 标签统计软件包Tail area, 尾部面积Tail length, 尾长Vague concept, 模糊概念Tail weight, 尾重Validity, 有效性Tangent line, 切线VARCOMP (Variance component estimation), 方差元素估计Target distribution, 目标分布Variability, 变异性Taylor series, 泰勒级数Variable, 变量Test( 检验) Variance, 方差Test of linearity, 线性检验Variation, 变异Tendency of dispersion, 离散趋势Varimax orthogonal rotation, 方差最大正交旋转Testing of hypotheses, 假设检验Volume of distribution, 容积Theoretical frequency, 理论频数W test, W 检验Time series, 时间序列Weibull distribution, 威布尔分布Tolerance interval, 容忍区间Weight, 权数Tolerance lower limit, 容忍下限Weighted Chi-square test, 加权卡方检验/Cochran 检验Tolerance upper limit, 容忍上限Weighted linear regression method, 加权直线回归Torsion, 扰率Weighted mean, 加权平均数Total sum of square, 总平方和Weighted mean square, 加权平均方差Total variation, 总变异Weighted sum of square, 加权平方和Transformation, 转换Weighting coefficient, 权重系数Treatment, 处理Weighting method, 加权法Trend, 趋势W-estimation, W 估计量Trend of percentage, 百分比趋势W-estimation of location, 位置W 估计量Trial, 试验Width, 宽度Trial and error method, 试错法Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Tuning constant, 细调常数Wild point, 野点/狂点Two sided test, 双向检验Wild value, 野值/狂值Two-stage least squares, 二阶最小平方Winsorized mean, 缩尾均值Two-stage sampling, 二阶段抽样Withdraw, 失访Two-tailed test, 双侧检验Youden's index, 尤登指数Two-way analysis of variance, 双因素方差分析Z test, Z 检验Two-way table, 双向表Zero correlation, 零相关Type I error, 一类错误/ α错误Z-transformation, Z 变换Type II error, 二类错误/ β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Unweighted least squares, 未加权最小平方法Upper limit, 上限Upward rank, 升秩。

暗能量、残余引力波、CMB极化Darkenergy,relicGWand

暗能量、残余引力波、CMB极化Darkenergy,relicGWand
暗能量、残余引力波、CMB极化
Dark energy, relic GW and CMB polarization
张杨 (Yang Zhang) 中国科学技术大学 (USTC)
天体物理中心(CFA)
2020/10/20
1
Outline Of Topics
• 一、 Cosmic Dark Energy • 二、 Relic Gravitational Waves • 三、 CMB Polarizations by RGW
This will lead to the scaling behavior, and the track solution.
2020/10/20
13
Friedmann equation:
2020/10/20
14
2020/10/20
15
Non-interaction:
2020/10/20
16
Interaction with matter:
Other choices of Г/H also yield similar evolution behavior;
ρm levels off;
2020/10/20
23Biblioteka The asymptotic behavior of the tracker solution with
Ωy →0.73, Ωm→ 0.27, as t → ∞
It is a fixed point, and it is stable .
2020/10/20
24
Phase graph for trajectories:
2020/10/20
25
The model 2:

Collisional decoherence reexamined

Collisional decoherence reexamined

a rXiv:q uant-ph/03394v216M ay23Collisional decoherence reexamined Klaus Hornberger and John E.Sipe ∗Universit¨a t Wien,Institut f¨u r Experimentalphysik,Boltzmanngasse 5,1090Wien,Austria (Dated:Apil 17,2003)Abstract We re-derive the quantum master equation for the decoherence of a massive Brownian particle due to collisions with the lighter particles from a thermal environment.Our careful treatment avoids the occurrence of squares of Dirac delta functions.It leads to a decoherence rate which is smaller by a factor of 2πcompared to previous findings.This result,which is in agreement with recent experiments,is confirmed by both a physical analysis of the problem and by a perturbative calculation in the weak coupling limit.PACS numbers:03.65.Yz,03.65.Ta,03.75.-bI.INTRODUCTIONA classic result of decoherence theory is the rapid decay in the off-diagonal matrix el-ements in the coordinate representation of the density operatorρ(R1,R2;t)of a massive Brownian particle suffering collisions with the lighter particles of a thermal bath.Early cal-culations by Joos and Zeh[1]were improved by later authors,and the result of Gallis and Fleming[2]seems to be the most widely quoted[3].Theyfind,in the limit of an infinitely massive Brownian particle,that∂ρ(R1,R2;t)m dˆn1dˆn2equation derivations undertaken in,e.g.,quantum optics.In thefirst calculation wefind(2) withε=1.In the second wefind(2)withε=1and f(qˆn2,qˆn1)replaced by f B(qˆn2,qˆn1), thefirst Born approximation to that scattering amplitude.This is precisely what would be expected,since the second calculation requires the assumption of weak interaction;it thus serves to confirm theε=1result of thefirst.Neither of these is the most elegant or general calculation one could imagine;thefirst is rather cumbersome,and the second would be neater if generalized to second quantized form[5].But thefirst has the advantage of displaying the physics of decoherence in an almost pictorial way,while allowing a calculation involving the full scattering amplitude.And the second,in its simple form,establishes a clear connection with the usual approach to decoherence through the master equation approach common in quantum optics.Totally separate in their approaches,we feel that together they are a convincing demonstration thatε=1.These two calculations are presented in sections II and IV below.In section III we return to the traditional derivation and highlight its inherent shortcomings.We show how it should be modified by using a simple physical argument,which leads to a replacement rule for the occurring square of a Dirac delta function.This treatment then also yields the resultε=1. Our concluding remarks are presented in section V.II.SCATTERING CALCULATIONTo set our notation we begin with a review of the standard approach used to calculate collisional decoherence.However,we also wish to point out the difficulties that can arise in its application,so we begin in a more detailed way than is normally done.To apply scattering theory in a careful way one has to begin with an asymptotic-in state |φm |ψ ,a normalized ket that is the direct product of a Brownian particle ket|φm and abath particle ket|ψ .The asymptotic-in ket is the result of the evolution of a product ket |φ(−∞)m |ψ(−∞) at t=−∞to t=0under the Hamiltonian that describes the free evolution of both particles,without interaction.The effect of the two-particle scattering operator S on this asymptotic-in state,S(|φm |ψ ),then produces the asymptotic-out state.When evolved from t=0to t=∞by the non-interacting Hamiltonian,the asymptotic-out stateyields the actual state at t=∞that evolves from|φ(−∞)m |ψ(−∞) at t=−∞under the influence of the full Hamiltonian.FIG.1:Sketched are the wave packets associated with|φm and|ψ at t=0.In configuration(a) the state|φm |ψ could be taken as both an asymptotic-in state and an initial state at t=0;for configuration(b)that would not be possible.In general,of course,|φm |ψ does not describe the actual ket at t=0that evolves from |φ(−∞)m |ψ(−∞) at t=−∞,because the evolution of that actual ket involves the particle interaction.But if the kets|φm and|ψ are such that the(short-range)interaction between the particles has not yet had an effect(e.g.,Fig.1a but not Fig.1b),then|φm |ψ can be taken as the actual ket at t=0as well as the asymptotic-in ket.We only consider kets|φm and|ψ of this form below.We now turn to the impending collision of a bath particle characterized by|ψ and a Brownian particle described by a reduced density operator at t=0given by a convex sum of projectors|φm φm|,ρin= m p m|φm φm|= d R1d R2|R1 ρo(R1,R2) R2|,with probabilities p m>0, p m=1.Here the|R1,2 label position eigenkets of the Brownian particle,andρo(R1,R2)= m p m R1|φm φm|R2 (3) its position representation.Thenρtotalin=ρin⊗|ψ ψ|(4) can be considered both as the full initial(at t=0)density operator,and the full asymptotic-in density operator.The full asymptotic-out density operator is thenρtotal out =Sρtotalin S†= d R1d R2S(|R1 |ψ )ρo(R1,R2)( ψ| R2|)S†.To determine terms such as S(|R |ψ )it is useful tofirst consider the effect of the S operator on direct products|P |p of eigenkets|P of the Brownian particle momentum and eigenkets |p of the bath particle momentum.Since the total momentum commutes with the Soperator the scattering transformation can be reduced to a one-particle problem,with S(|P |p )= d q|P−q |p+q m∗M P+q|S o|m∗M P ,where the matrix element here is that of the one-particle scattering operator S o corre-sponding to the two-body interaction acting in the Hilbert space of the bath particle,and m∗=mM/(m+M)is the reduced mass.In the limit that the Brownian particle is much more massive than the bath particle,M≫m,this reduces toS(|P |p )→ d q|P−q |p+q p+q|S o|por,moving to a position representation for the Brownian particle,S(|R |p )= d q|R e−i q·R/ |p+q p+q|S o|p= d q|R |p+q p+q|e−i p·R/ S o e i p·R/ |p=|R e−i p·R/ S o e i p·R/ |p ,where p is the momentum operator for the bath particle,and so for general states|ψS(|R |ψ )=|R e−i p·R/ S o e i p·R/ |ψ≡|R ψR ,whereψR =e−i p·R/ S o e i p·R/ |ψ ,and thusρtotal= d R1d R2|R1 ψR1 ρo(R1,R2) ψR2 R2|.outis not thefinal density operator at t=∞,but only the asymptotic-out density Althoughρtotaloutoperator,it evolves to thefinal density operator through the non-interacting Hamiltonian, and overlaps of the form ψR2|ψR1 will be preserved during this free evolution.So thefinal reduced density operator for the Brownian particle at t=∞isρfinal= d R1d R2|R1 ψR2|ψR1 ρo(R1,R2) R2|≡ d R1d R2|R1 ρ(R1,R2) R2|,whereρ(R 1,R 2)= ψR 2|ψR 1 ρo (R 1,R 2).(5)As is well understood,decoherence arises because the bath particle becomes entangled with the Brownian particle and the two (asymptotic-out)states ψR 2 and ψR 1 resulting from scattering interactions associated with the same bath ket |ψ and different position eigenkets|R 2 and |R 1 can have negligible overlap even for |R 2−R 1|small.The change of the Brownian particle’s reduced density operator by a single collision is ∆ρ(R 1,R 2)≡ρ(R 1,R 2)−ρo (R 1,R 2)= ψR 2|ψR 1 −1 ρo (R 1,R 2).(6)It involves overlap terms of the form ψR 2|ψR 1 = ψ|e −i p ·R 2/ S †o e −i p ·(R 1−R 2)/ S o e i p ·R 1/ |ψ = ψ|S †2S 1|ψ =tr bath S †2S 1|ψ ψ| ,(7)where the operators S j =e −i p ·R j / S o e i p ·R j /(8)for j =1,2are translated scattering operators.We introduce corresponding T j operators according toS j =1+i T j ,(9)and using the unitarity of the S j ,which follows immediately because S o is unitary,we findS †2S 1=1+T †2T 1−12T †2T 2+i 2 T 2+T †2and so ψR 2|ψR 1 =1+ ψ|A|ψ ,(10)where A =T †2T 1−12T †2T 2+i 2T 2+T †2 .Thus the change in the Brownian particle reduced density operator is∆ρ(R1,R2)= ψ|A|ψ ρo(R1,R2)(11)The general strategy is to evaluate the matrix element ψ|A|ψ by inserting complete sets of momentum eigenstates,ψ|A|ψ = d q1d q2 ψ|q2 q2|A|q1 q1|ψ ,(12) determine q2|A|q1 ,and then perform the momentum eigenstate integrals.Writing S o= 1+i T o as well,and using the relations(8)and(9)wefindq2|A|q1 =e i(q1·R1−q2·R2)/ q2|T†o e i p·(R2−R1)/ T o|q1 (13)−1e i(q1−q2)·R2/ q2|T†o T o|q12i+δ(E2−E1)f(q2,q1),(14)2π mwhere f(q2,q1)is the scattering amplitude,we can identifyq2|T o|q1 =1f(q2,q1),2π q2where E i=q2i/(2m).Now in the traditional calculations[1,2,3]one calculates∂ρ(R1,R2)/∂t by considering the change∆ρ(R1,R2)in a time∆t due to collisions with bath particles that would pass in the neighborhood of the Brownian particle,taking the distribution of their velocities from the assumed thermal equilibrium of the bath.To calculate∆ρ(R1,R2)from one of these bath particles,a box-normalized momentum eigenstate, |q is used in place of a localized ket|ψ .Unlike the|φm |ψ states we introduced above,the|φm |q obviously cannot be considered either as asymptotic-in states or as the actual states at t=0since the |q are delocalized.Nonetheless,the traditional approach seems to simplify the calculation because, as is clear from(12),only diagonal elements q|A|q are required if the limit of an infinite boxis taken.But from the expression(13)for q2|A|q1 it is clear that,when a resolution over a complete set of momentum states|q′ is inserted between T†o and T o and the expression(15) for the matrix elements of T o is used,the diagonal elements q|A|q involve the square of Dirac delta functionsδ(q−q′).To evaluate these the“magnitude”ofδ(0)must be somehow set.This is done by relating it to an original normalization volume of the box.While not implausible,such a protocol is certainly not rigorous and is open to question.To avoid the necessity of this kind of maneuver we will employ bath states|ψ that are normalized and localized,as is required by a strict application of scattering theory.Before addressing the full calculation for a bath in thermal equilibrium we consider scattering involving a single state|ψ .A.Scattering of a single bath ketFrom the equations(12)and(13)for ψ|A|ψ in terms of q2|A|q1 it is clear that we require integrals of the formI1= d q1d q2u(q1,q2) q2|T o+T†o|q1 ,(16)I2(R)= d q1d q2u(q1,q2) q2|T†o e i p·R/ T o|q1 ,which we work out in Appendix A for an arbitrary function u(q1,q2)of the two momentum variables.Wefind that we can write these expressions exactly asI1= d q ˆq⊥d∆u(q−∆2)M1(q,∆)(17) andI2(R)= dˆn d q ˆq⊥d∆u(q−∆2)e i Q·R/ M2(q,ˆn,∆),(18) The integration over q covers all momentum space,while∆is a two dimensional momentum vector ranging over the plane perpendicular to q;ˆn is a unit vector with dˆn the associated solid angle element.Moreover,M1(q,∆)=12,q−∆2,q+∆4π2 2Q2)f(Q,q−∆FIG.2:For this as both the total asymptotic-inwithQ=ˆn 4.(21) With these formulas in hand we can address the expression for ψ|A|ψ once|ψ is specified. To do this,we take the bath particle wave function r′|ψ to be a Gaussian wave packet centered at r o in position and p o in momentum,r′|ψ =e i p o·(r′−r o)/√√2 q−∆πb2 3/2e i∆·r o/ e−∆2/(4b2)e−|q−p o|2/b2.We now assume that this wave packet is located far enough away from the regions of space where an initial density operator(3)is concentrated,and with an average momentum directed towards the Brownian particle such that the combined density operator(4)can be taken both as an initial density operator at t=0,and as the asymptotic-in density operator (see Fig.2).Then using the expressions above wefindψ|A|ψ = 1whereB(ˆn,q,∆)=e i q·(R1−R2)/ e i Q·(R2−R1)/ e−i∆·(r o−2e−i∆·(r o−R1)/ e−∆2/(4b2)M2(q,ˆn,∆)−12 e−i∆·(r o−R1)/ −e−i∆·(r o−R2)/ e−∆2/(4b2)M1(q,∆),and where we have put2.(23) The Gaussian functions will keep∆within about b of zero and q within about b of p o.We now assume that the central momentum p o is much greater in magnitude than its variance, p o≫b,and hence q≫b for all q that make a significant contribution;we also assume that the scattering amplitude varies little over the momentum range b.Then we can putM1(q,∆)≈14π2 2|f(qˆn,q)|2.Once these approximation are made the integral over∆of the three terms in B(ˆn,q,∆) can be done immediately.The integral over∆of thefirst term is not so simple because∆still appears in Q.In the exponential we have phase factors that vary asQ·(R2−R1)q2+∆2=qˆn·(R2−R1)8 q+...Thefirst correction term is of orderb2|R2−R1|(q/b)(24) Since q≫b this term will still be much smaller than unity even if the distance between the two positions of the Brownian particle is several widths of the wave packet.We assume that|R2−R1|is indeed such this quantity is much less than unity.Then we can replace the phase by its leading order expansionQ·(R2−R1) ,in the exponentials of thefirst two integrals,and the integration over∆can be done as well.These are two dimensional integrals over a plane perpendicular to q,and so they are of the form ˆq⊥d∆e−i∆·(r o−R),where we have used the fact that ab= and introducedexp − R2−(ˆq·R)2 /a2Γq(R)=A r o(q),(26)(πb2)3/2whereA r o(q)=Γq(r o−(Γq(r o−R1)+Γq(r o−R2)) dˆn|f(qˆn,q)|222πi+R.Moreover,since the integral in(26)restricts q to within a distance of about b of p o,in(27)we can replace q by p o in the scattering amplitudes and in the phase,using the assumption already made thatthey vary little over a range of b;we can also replace theΓq functions by correspondingΓpo functions.The integral in(26)can then be done,and using(11)wefind∆ρ(R1,R2)=−ρo(R1,R2)Γp(r o−oe−ℓ2/a2R)=FIG.3:A configuration where a≫R=|R1−R2|;ℓ=e−βp2/(2m)(29)ΩprovidedΩis much larger than the cube of the thermal de Broglie wave lengthλ= m.(30) The usual convex decomposition of(29)in terms of the delocalized energy eigenstates is the obvious one and,aside from the freedom in choosing orthogonal states from among adegenerate set,it is the only one in terms of orthogonal states.But a host of others can also found.A particularly convenient set of convex decompositions for our problem at hand can be obtained by usinge−βp2/(2m)= ¯β 2πm/ˆβ 3/2e−¯β(p−p)2/(2m)(31) which holds as long asˆβand¯βare both positive and11¯β+ ArrayΩ d pˆµ(p)|ψrp ψrp|,(32) whereˆµ(p)= ˆββ 3/4e−¯β(p−p)2/(4m)|r (34)=¯λ3/2e−¯β(p−p)2/(4m)|r ,are characterized by the length scale¯λ= m,(compare with (30)).One then immediately finds r ′|ψrp =2√¯λ3/2e i p ·(r ′−r )/ e −2π|r ′−r |2/¯λ2(35)so the wave packet |ψrp is centered at r and has an average momentum p .Indeed,it is of the Gaussian form used in the preceding section with minimal uncertainties,b ≡2m =k B ¯T2m =k B ˆT2m +(δp x )22.We see that in the class (32,33)of convex decompositions of ρbath a part of the thermal kinetic energy is associated with the size of the wave packets themselves,while the rest resides inthe motion of the centres of the wave packets.If we take ˆT→0then the wave packets are essentially all at rest characterized by a size ¯λ→λ,which is the thermal de Broglie wavelength.On the other hand,for ˆT≫¯T the wave packets are much larger than the thermal de Broglie wavelength,and essentially all the thermal kinetic energy is associated with the expectation value of the momenta of the wave packets;we have p 2 2mp 2ˆµ(p )d p =33k B ˆT1.Assumptions and choices1.We neglect initial correlations,taking the initial full density operator at t=0to be adirect product of a Brownian particle density operator and a density operator for the bath particles in thermal equilibrium,ρtotal(t=0)=ρo⊗ρbath.(36) 2.We assume that the density of bath particles is much less thanλ−3;then the issue ofparticle degeneracy does not matter and we may consider the density operator of the total bath to be just the product of density operators for individual particles.Thus we can calculate effects‘particle by particle’.We choose a volumeΩmuch larger than any other volume of interest.3.We use a convex decomposition ofρbath for a single bath particle of the type describedabove,with¯T≪T such thatˆT≈Tand thereforeb2≪ p2 .(37) This renders b sufficiently small so that the variation in scattering amplitudes over the momentum spread of a wave packet is negligible for essentially all of the wave packets in the convex decomposition.4.The value of¯T should also be small enough that the neglect of the variation of thescattering amplitudes in the integral(22)is justified,and that we can use the approx-imation of neglecting terms on the order of(24)above.For the latter we needb2q|R2−R1|≪1Now for typical wave packets the average momentum p,and hence q,will be of the order of mv wp=|R2−R1|= 8π λ≪1,vwpand sinceˆT≈T this reduces to¯T≪|R2−R1|5.We choose a coarse-graining time∆t sufficiently large thatv wp∆t≫a,(38)v wp∆t≫|R2−R1|.That is,a typical packet travels a distance much greater than its width and much greater than the distance between the two decohering sites during the coarse graining ing the expressions for v wp and a above,andˆT≈T,thefirst condition readsT∆t≫R(recall(23);see Fig.4).Of course,some of these will completely miss the Brownian particle,but none have had a collision with it in the past.For a given p we refer to this region of space as R(p).Returning to the wave packets,note that those with central positions r close to the R1 or R2of interest will initially be overlapping with regions of space for whichρo(R1,R2)is non-vanishing;here any talk of a collision is inappropriate,since at initiation,at t=0,the Brownian and bath particle would immediately be strongly interacting.This is an artifactΩ ψrp|A|ψrp ,where we assume that the inclusion of the problematic class of wave packets identified above will not lead to serious ing the result(26)from our scattering calculation above, we have∆ρ(R1,R2)=nρo(R1,R2) d pˆµ(p) R(p)d r d q e−|q−p|2/b2But this is not necessary.We can simply note that,by virtue of(37),ˆµ(p)will vary little over the range b that e−|q−p|2/b2peaks and falls.Hence we can replaceˆµ(p)byˆµ(q)and R(p)by R(q),and immediately do the integral over p to yield∆ρ(R1,R2)=nρo(R1,R2) d qˆµ(q) R(q)d r A r(q).Since the only r dependence is in theΓq,see(25),one can now do the r integral for each fixed q,putting d r=d r⊥dr ,where r refers to the distance in the direction−q.Since the integration over r⊥is unrestricted in the region R(q)we haveR(q)d r⊥Γq(r⊥−R⊥i)=1=R1,R2,orfor R∆t,mand so wefind∆ρ(R1,R2)ˆµ(q) dˆn e i(q−qˆn)·(R1−R2)/ −1 |f(qˆn,q)|2.mFinally,we recall thatˆT≈T and therefore putˆµ(q)≈µ(q),whereµ(q)= β,(41)4πand hence on a coarse grained time scale wefind(1,2)withε=1.III.THE TRADITIONAL APPROACH:A REMEDYWe showed in the preceding section how the problem of evaluating a squared Dirac function can be circumvented by expressing the thermal state of the bath particles in an over-complete,non-orthogonal basis of Gaussian wave packets(see Eq.(32)).However,it iscertainly reasonable to explore the possibility of using the standard diagonal representation of the thermal bath density operator,which facilitates the formal calculation considerably. After all,all the representations ofρbath are equally valid and should yield the same master equation provided the calculation is done in a correct way.It is therefore worthwhile to search for a way to deal properly with such an ill-defined object as the“square”of a delta distribution function.In this section we show how a proper evaluation of the diagonal momentum basis matrix elements can be implemented.This leads to an alternate derivation of the master equation (1,2),and allows us to highlight the origin of the problem plaguing earlier workers and to discuss further implications.However,rather than attempting a mathematically rigorous formulation,we base our presentation on a simple physical argument.Our point is that such an argument can lead to a prescription for correctly evaluating improper products of Dirac delta functions,although this differs from previous naive treatments.A.A single collisionLet us consider again the action of a single scattering event on the Brownian particle in position representationρo(R1,R2)and in the limit of a large mass.It follows from the discussion in section II that after the collision it differs merely by a factor from the initial Brownian state,ρ(R1,R2)=η(R1,R2)ρo(R1,R2)(42) which is given byη(R1,R2)=tr bath{e−i p R2/ S†o e i p(R2−R1)/ S o e i p R1/ ρbath},(43) (see Eqs.(5)and(7)).In section II only pure statesρbath=|ψ ψ|of the bath particle were considered,but the reasoning is immediately generalized to mixed states.The factorη(R1,R2)may be called the decoherence function,since it describes the ef-fective loss of coherence in the Brownian state which arises from disregarding the scattered bath particle.The normalization ofρbath impliesη(R1,R2)=1(44)lim|R1−R2|→0which means that the collision does not change the position distribution of the Brownian point particle,ρ(R,R)=ρo(R,R).On the other hand,possible quantum correlationsbetween increasingly far separated points will vanish,since a collision may be viewed as a position measurement of the Brownian particle by the bath which destroys superpositions of distant locations:lim|R1−R2|→∞η(R1,R2)=0(45) This complete loss of coherence implies that the collision took place with a probability of one.It could be realized,in particular,by taking the incoming bath particle state to be a momentum eigenket in a box centered on one of the scattering sites.In thermal equilibrium the density operator(29)of the bath particle can be written asρbath=λ3Ω p∈PΩµ(p) |p p|,(46) with the normalized momentum distribution function(40)atβ=1/(k B T).The |p are momentum eigenkets normalized with respect to the bath volumeΩ,|p =(2π )3/2(2π )3/2,(49) which satisfyp|p′ =δ(p−p′)and span the full space, d p|p p|=I.(50)Since the bath state(46)is diagonal in the momentum representation,an explicit expres-sion for the decoherence function(43)is readily obtained:η(R1,R2)→ d pµ(p) p|e−i p·R2/ S†o e i p·(R2−R1)/ S o e i p·R1/ |p= d pµ(p) 1− p|T†o T o |p +e i p·(R1−R2)/ p|T†o e i p·(R2−R1)/ T o |p= d pµ(p) 1−(2π )3Ω p∈PΩ→ d p.In the second line we introduced the operator T o=i(1−S o)and used the unitarity of S o,i(T o−T†o)=−T†o T o,as in section II and in[2,3].The last line follows after inserting a complete set of states (50)and noting the relation(47).The expression in square brackets in(51)should be well-defined andfinite.However, it involves two arbitrarily large quantities,the“quantization volume”Ω,which stems from the normalization of the bath particle,and the squared amplitude of the T o-operator with respect to(improper)momentum kets.The simple matrix element is given by the expression (15)p′|T o|p =δ(p−p′)|R1−R2|→∞.Therefore the limit(45)allows to specify the unknown function g(p)in(53).One obtainsg(p)=Ωσ(p)p2withσ(p)= dˆn f(pˆn,p) 2the total cross section for scattering at momentum p.Formally,this means that one should treat the expression involving the squaredδ-function and scattering amplitude asδ(p−p′)f(p′ˆn,p) 2→Ω∆t=−n d pµ(p)p∂tρ(R1,R2)=−F(R1−R2)ρ(R1,R2).(55) with F given by(2),again withε=1.C.InterpretationIt is clear that the derivation of the decoherence function(43)does not hold rigorously even for volume-normalized(47)momentum states,since their amplitude is uniform in spaceand they cannot be considered as asymptotic-in or asymptotic-out states.Nonetheless, the fact that one obtains the“correct”master equation by using the diagonal momentum representation(46)indicates that it can be reasonable,at least in a formal sense,to extend the applicability of(43)to volume-normalized momentum eigenstates.Then the appearance of the total cross section in the appropriate replacement rule(54) has a clear physical interpretation.The squared matrix element of the T o operator with respect to two orthogonal proper states may be viewed as the probability for a transition between the states due to a collision.The appropriate normalization of the probability necessary in the limit of improper states is then effected by the appearance of the total cross sectionσ(p)in(54),which is absent in the usual naive treatments of the squared delta function.This point of view is confirmed by the fact that the rule(54),which was derived from a simple physical argument(45),implies a conservation condition.Integrating(54)we have (2π )3=1(56)p2σ(p)and hence,using(50)and switching to volume-normalized states,p|T o T†o |p →1.(57) Inserting the identity(48)yieldsp′∈PΩ p′|T o |p 2→1.(58)This is reminiscent of the situation of a multi-junction in mesoscopic physics[8],or of the scattering offa quantum graph[9],where one defines a transition matrix T mn=|t mn|2 which connects afinite number of incoming and outgoing channels.There the t mn are the transmission amplitudes between the incoming and outgoing states and the currentconservation impliesm T mn=1with T mn=|t mn|2,in analogy to(58).The fact that the conservation relation(58)has no meaningful equivalence in the contin-uum limitΩ→∞is closely connected to the difficulty of evaluating the squared scattering amplitude in the momentum representation.It suggests that the diagonal representation ofρbath can be used in a rigorous formulation of the master equation only if the transition of going from a discrete to a continuous set of bath states is delayed until after the square of the scattering matrix element is evaluated.A calculation along this line,albeit in a perturbative framework,is presented in the following section.IV.WEAK-COUPLING CALCULATIONWe now consider an approach that is totally different from the derivation in Section II. Instead of performing a scattering calculation,we obtain a master equation for the reduced density operator from a weak coupling approximation that is very similar to the analyses of quantum optics.Again the assumption of a low density of bath particles will allow us to calculate the effect of the bath particles one particle at a time,so we begin with our Brownian particle and a single bath particle restricted to a box of normalization volumeΩ. While we will take the limitΩ→∞in the course of the calculation,we can do it in such a way that products of Dirac delta functions never appear.In the absence of any interaction between the particles the Hamiltonian readsH o=P22m,where m and M are the bath and Brownian particle masses and p and P are their momentum operators.The normalized eigenstates of H o are direct products |P |p ,where |p is given by(47)with(49),and similarlyR |P =e i P·R/ Ω.(59) The values of p and P are restricted to a discrete set,p,P∈PΩ,so that the wave functions respect periodic boundary conditions.Our full Hamiltonian is thenH=H o+V(r−R),where r and R are respectively the bath and Brownian particle position operators,and V describes the interaction.In the interaction picture the full density operator evolves according toρtotal I (t)=U(t)ρtotalI(0)U†(t),(60)。

计量经济学中英文词汇对照

计量经济学中英文词汇对照

Controlled experiments Conventional depth Convolution Corrected factor Corrected mean Correction coefficient Correctness Correlation coefficient Correlation index Correspondence Counting Counts Covaห้องสมุดไป่ตู้iance Covariant Cox Regression Criteria for fitting Criteria of least squares Critical ratio Critical region Critical value
Asymmetric distribution Asymptotic bias Asymptotic efficiency Asymptotic variance Attributable risk Attribute data Attribution Autocorrelation Autocorrelation of residuals Average Average confidence interval length Average growth rate BBB Bar chart Bar graph Base period Bayes' theorem Bell-shaped curve Bernoulli distribution Best-trim estimator Bias Binary logistic regression Binomial distribution Bisquare Bivariate Correlate Bivariate normal distribution Bivariate normal population Biweight interval Biweight M-estimator Block BMDP(Biomedical computer programs) Boxplots Breakdown bound CCC Canonical correlation Caption Case-control study Categorical variable Catenary Cauchy distribution Cause-and-effect relationship Cell Censoring

Density evolution, thresholds and the stability condition for non-binary LDPC codes

Density evolution, thresholds and the stability condition for non-binary LDPC codes

Density Evolution,Thresholds and the Stability Condition forNon-binary LDPC CodesVishwambhar Rathi and Ruediger UrbankeEPFL,CH-1015LausanneAbstractWe derive the density evolution equations for non-binary low-density parity-check (LDPC)ensembles when transmission takes place over the binary erasure channel.We introduce ensembles defined with respect to the general linear group over the binaryfield.For these ensembles the density evolution equations can be written compactly.The density evolution for the general linear group helps us in understanding the density evolution for codes defined with respect tofinitefields.We compute thresholds for different alphabet sizes for various LDPC ensembles.Surprisingly,the threshold is not a monotonic func-tion of the alphabet size.We state the stability condition for non-binary LDPC ensembles over any binary memoryless symmetric channel.We also give upper bounds on the MAP thresholds for various non-binary ensembles based on EXIT curves and the area theorem.1IntroductionIt is well known that using binary LDPC ensembles for transmission over binary memo-ryless symmetric(BMS)channels,one can construct codes which achieve rates seemingly arbitrarily close to capacity.In particular,for the binary erasure channel(BEC)there are provable capacity-achieving degree distributions obtained in[7,8,21]based on the method of density evolution.The method of density evolution was generalized to any BMS channel in[18].This generalization made it possible to construct codes for a given BMS channel which can achieve rates very close to the capacity[2,16].It should be noted however that good LDPC codes for a BMS channel other than the BEC are obtained by numerical1optimization.The problem offinding explicitly capacity-achieving degree distribution for a general BMS channel is still open.In either case,the main property of these capacity achieving/approaching degree distributions is that the underlying parity-check matrix gets denser and denser as the gap to capacity is reduced[20].Although binary ensembles are conjectured to constitute a powerful enough class to achieve capacity,it is nevertheless worth exploring the potential of non-binary ensembles. Clearly,by considering non-binary alphabets we add one more degree of freedom in our code design.Whereas the standard approach is tofix the alphabet size(to binary)and to increase the density of the underlying graph,let us take an alternative route here.Suppose wefix the degree distribution and let the alphabet size increase.As we will see shortly, if we consider the corresponding underlying binary graph,this graph becomes denser and denser as well(but of course we consider BP decoding on the non-binary graph).One might therefore hope tofind better and better performance,and an increase in the alphabet size might yet yield another way of achieving capacity.The relationship between alphabet size and performance is not a simple one and an increase in the underlying alphabet does not necessarily lead to increased performance.Nevertheless,there are many unexplored degrees of freedom in the system design and this paper is only the veryfirst step in a systematic study of these relationships.The possibility of using non-binary alphabets for LDPC codes was already proposed by Gallager in his landmark PhD thesis[5].The fact that by using non-binary alphabets, the performance of LDPC codes over BMS channels can be improved wasfirst reported by Davey and MacKay[3].They showed by specific examples that non-binary LDPC codes can perform significantly better than their binary counterparts for the BMS channels.Hu showed that even the performance of cycle codes can be improved considerably with non binary alphabets[6].In[22],Sridhara and Fuja have designed codes over certain rings and groups for coded modulation based on the principle of non-binary LDPC codes.Also,the design of LDPC code construction using“liftings”of multi-edge type designs[15,19]and the related framework of protographs[23]can be seen as non-binary LDPC ensembles.Despite of these results there has been no systematic study of non-binary LDPC en-sembles.In particular,no efficient method of evaluating their asymptotic performance is known.The difficulty is that the messages of the belief propagation decoder“live”in a2high-dimensional space,so that it is in general difficult to keep track of their densities.The paper is organized in the following way:in Section2,we define various quantities of interest.Section3describes the message-passing decoder for non-binary alphabets.In Section4,we derive the density evolution equations for ensembles over the general linear group andfinitefields and state the stability condition.We calculate an upper bound on the MAP threshold for non-binary alphabets in Section5.We conclude in Section6.Because of space limitations we skip all proofs.2PreliminariesWe consider transmission over a BMS channel using non-binary LDPC ensembles.We denote the set of symbols of the codeword by S and its cardinality by S q2m.For convenience we assume hereby that the alphabet size is a power of2.Thus we can think of each symbol as a binary m-tuple.In order to transmit a symbol over a BMS channel we transmit the bits representing this symbol.We define the non-binary LDPC ensemble in an analogous way as in the binary case[16].We define an ensemble of bipartite graphs n with degree distribution()and blocklength n.Next we assign a bijective linear mapping f:S S to each edge of every bipartite graph in the ensemble n. The mappings are chosen uniformly at random from a set of mappings F.A bipartite graph from the ensemble represents parity-check equations of the form∑if i x i0(1) where the x i x i S,are the variables which participate in the parity check equation and f i F.Note that a code defined by the parity-check equations of the form in(1)is linear as the mappings f are linear.The design rate of an ensemble with d.d.is the same as in the binary case:r11x dxchannel,we transmit its binary components and let the corresponding received word be y y11y1m y n1y nm.In this paper we will consider two variants of non-binary LDPC ensembles:Ensembles overfinitefields and ensembles over the general linear group.For ensembles overfinite fields,S GF2m,and the mappings f are of the form f x x,where GF2m, the multiplicative group of GF2m.Hence,by some abuse of notation F GF2m. This implies that F2m 1.We will denote an LDPC ensemble over GF2m with d.d.by EGF m(we do not show the dependence on the block length as we will be only interested in the asymptotic limit).Note that we canfind an equivalent binary code corresponding to every code in the ensemble EGF m.For example,Fig.1 shows the Forney Style Factor Graph(FSFG[4])of a simple code over GF4together with its corresponding parity-check matrix.This is equivalent to the binary code shown in Fig.2.E.g.,the constraint over GF4,x11z x20is equivalent to the two binary constraints x11x21x220and x12x220and so on.The corresponding binary FSFG and the binary parity-check matrix are shown in Fig.2.The ensemble over the general linear group is denoted by EGL m.It has as symbol set S the vector space GF m2of dimension m over the binaryfield.The mappings are given by f b W b,where b GF m2and W GL m2.GL m2is the set of all m m invertible matrices over the binaryfield.Note that the number of distinct invertible matrices over the binaryfield is∏m1l02m2l,[10].Again,we canfind an equivalent binary code corresponding to a code defined with respect to the general linear group.For example,if the parity-check matrix over GL22is given by:H H11H1200 00H23H24 H3100H34where,H111001H121110H2311014H241011H310111H340110Then the equivalent binary matrix is given by:H b 10110000 01100000 00001110 00000111 01000001 11000010Each constraint in the matrix H is equivalent to two constraints in the equivalent binary matrix H b.E.g.,the constraint H11x1H12x20is equivalent to x11x21x220and x12x210.We will be interested in the number of different subspaces of dimension k of the vector space GF m2.This number is known as the Gaussian binomial coefficient.We denote it by mk,and it is given by(see[10],pp.443):m k1if k0or k m ∏k1l02m2lsymbols with non-zero entries in the message belongs to the null space of the matrix M. We denote the subspace of the non-zero entries of the message by V.We say that V is the subspace of and denote the dimension of V by dim V dim.The orthogonal complement of V is denoted by V.We have the following relations,V nullspace M V rowspace MTo illustrate this,we consider an example for m 2.Lets assume that we have a variable node x i x i1x i2.For the sake of simplicity assume that x i10x i20and after trans-mission over the BEC x i1is not erased and x i2is erased.Then the initial message from0and dim 1.As the non-zero entries of1 the variable node x i is112satisfies x i10,so the associated matrix M10.The subspace V is0001. Clearly V nullspace M.If a subspace V has the basis vectors B b1b k,then we denote the set of basis vectors for V by B b1b k.We denote the linear span of a set of vectors B by Span B.3Belief Propagation AlgorithmThe messages in the belief propagation algorithm for non-binary LDPC codes from both the ensembles EGF m and EGL m are vectors of length q2m.An iteration of the message passing algorithm consists of the following steps:1.Initial Message:The initial message1x from a variable node x to a connected checknode is the posteriori probability distribution of symbols P x0y P xq1y,where i S,i0q 1.2.Edge Action:Before the messages reach the check nodes,we need to consider thepermutations induces by the edge labels and their associated mapping f x.Note that labels induce permutations since the mappings f are invertible.More precisely, if the edge label is f then the message vector1x1x01x q1 gets permuted to the message2x1x f101x f1q1.63.Check Node Action:The operation on the check node side is the convolution of theincoming messages.Lets consider a check node.Let its degree be3for the sake of simplicity.Let x,y,and z be the connected variables and lets consider the outgoing message along the edge to z as a function of the incoming messages along the edges connected to x and y.The outgoing message towards variable z is then3z∑S 02x2y∑S2x2y(2)where,01if0 0otherwise.In a brute force manner,the above summation can be accomplished with complexity O q2.However,note that3z is given in terms of a convolution of two mes-sage vectors,where the index calculations are done with respect to the additive group of GF2m.Note that the vector space GF m2andfinitefield GF2m are isomorphic groups with respect to addition.Hence,as suggested in[9,18],we can use Fourier transforms to accomplish this convolution in an efficient manner.Since the message size is2m,the Fourier transform is particularly simple.Write an element of S as an m-tuple with components in GF2,1m.Let S denote a vector whose components are taking values in.Let S denote its Fourier transform.The corresponding Fourier transform pair is∑1T1precisely,if the edge label is f then the message vector3x gets permuted to the message4x3x f03x f q1.5.Variable Node Action:The operation on the variable node side is the component-wise multiplication of the incoming messages and the initial message.We normalize the result of the multiplication.4Density Evolution For BECIt can be shown that the concentration of the error probability holds also for the non-binary LDPC ensembles.The proof is essentially the same as in[18].Hence,in the asymptotic limit the average behavior of the iterative decoder determines the performance of a randomly chosen code with probability one.As in[18]we can again show that the all-zero codeword assumption holds,i.e.,the error probability is the same for the belief propagation decoder in the cases when the all-zero codeword is transmitted and when any other codeword is transmitted.Lemma4.1(All-Zero Codeword Assumption)Consider transmission over a BMS chan-nel using an element of EGL m or EGF m.Then the conditional error proba-bility of the message passing decoder is independent of the transmitted codeword.4.1Density Evolution for EGL mIn order to derive the density evolution equations for the ensemble EGL m we need tofind the set of messages which arise in the belief propagation decoder.In the following lemma we characterize all the messages which appear in the belief propagation decoder.Lemma4.2(Message Space Characterization)Consider the ensemble EGL m and transmission over the BEC.The messages arising in the belief propagation decoder satisfy the following properties:1.All the non-zero entries in a message are equal.2.Let V GF m2:0.Then V is subspace of GF m2.83.The Fourier transform of a message has the property:1if V0otherwisewhere V is the orthogonal complement of V.Thus the total number of messages is equal to∑m i0mi.We observe that after the edge action and the inverse edge action,all the messages of the same dimension have equal probability.Hence we only need to keep track of the probability of the dimension of a message.Thus by this observation and Lemma4.2,we can write the density evolution as an m1dimensional recursion.Lemma4.3(Density Evolution for EGL m)Consider the non-binary LDPC en-semble EGL m.Let P l v k be the probability that a randomly chosen message is of dimension k after the edge action connected to a variable node of degree(i.e.,a message just before the check node processing).Similarly,P l c k denotes the probability that a randomly chosen message is of dimension k after the inverse edge action connected to a check node of degree(i.e.,a message just before the variable node processing).Then we have the following recursive relationships between different probabilities on the check node side:P l c k3k∑i0P l v ik∑j k im im kik j2k i k jmm jP l v j(5)9where P l v i is the average over the variable node degree distribution,P l v i∑P l v iThe equations on the variable node side for the probabilities in l1th iteration are:P l1v k2m∑i kmii1m im i k∑j kikm ij k2i k j kmjP l c j(7)where P l c j is the average over the variable node degree distribution,P l c j∑P l c jIn Table4.1,we list the thresholds for various ensembles.Note that for the ensem-ble with d.d.pair y y y y2,initially the threshold increases rapidly(as m is increased).Unfortunately it reaches a peak at m6and then starts decreasing.For the ensemble with d.d.pair y05y05y4y y5,the threshold increases by mov-ing from m1to m2,but after that it starts decreasing.For y y2y y3,the thresholds already start decreasing by moving from binary to an alphabet of size4.We have observed for various other ensembles that if there are no degree2variable nodes then the threshold already starts decreasing by moving from binary to an alphabet of size4.4.2Density Evolution for the Ensemble EGF mThe ensemble EGF m is a subset of the ensemble EGL m.We prove this and we characterize the set of messages for the ensemble EGF m in the following lemma.10y y y y2sh06667 m1234567815IT04044870435304194y y2,y y3 sh075m123is GF32withfields defined with respect to the irreducible polynomials1z3z5and 1z z2z3z5.The difference though between these twofields is very small and the resulting difference in the threshold is of the order of104.Note also that within this precision,the ensembles EGF m and EGL m seem to have the(approximately) same threshold.For the general case,an analysis in terms of density evolution is in principle possible but practically difficult.Even for codes over GF4densities already“live”in3.The BP threshold can be computed numerically by Monte Carlo methods in the same way as this is done in the setting of turbo codes,[17].Slightly less ambitious,one can investigate the behavior of density evolution close to the desiredfixed-point and derive a stability condition.Lemma4.5(Stability Condition for Non-Binary Ensembles)Consider the ensemble LDPC n.Assume that transmission takes place over a BMS channel with L-density and associated Battacharya constant.If1m101determined,P1is the probability that the symbol is known to be one of possible two (and there is a uniform distribution),and so on.Then the EXIT curve under BP decoding is given by:h BPm∑i0i P iSince the BP decoder is in general suboptimal we haveh MAP h BPwhere h MAP is the EXIT curve under MAP decoding.By the Area Theorem we have1MAPh MAP d r asHereby MAP is the MAP threshold of the ensemble and r as is the average rate of the ensemble.In general r as r design110x dxMAP1MAP MAP.In the binary case reference[13]gives some sufficient conditions for this bound to be tight.In short,the bound is tight if the residual graph which we get after running BP decoding at3. 6ConclusionFollowing the lead of Gallager,Davey and MacKay,as well as Hu,we have investigate the performance of non-binary LDPC ensembles.In particular,assuming that transmission takes place over the BEC(),we have given a compact representation of the density evo-lution equations for the ensemble EGL m,we have derived the stability condition, and we have shown how to compute an upper bound on the MAP threshold via the area13theorem.In many ways this paper is only the beginning of a systematic investigation of non-binary iterative ensembles.Let us state here what we consider to be some of the most interesting questions that re-main unanswered.From the examples we have investigated,it seems that for afix degree distribution the threshold is a unimodal function of the alphabet size.If there are suffi-ciently many degree-two variable nodes the threshold initially rises and eventually decays again as m is increased.Otherwise it decrease right away.This is somewhat disappointing. Although,the underlying binary graph becomes denser and denser as m increases(and in turn the MAP threshold converges to the Shannon limit very rapidly)the performance of the iterative decoder seems not to approach the Shannon limit.There is one degree of freedom which was already suggested in[3]and which we have not considered so far.In all our analysis we assumed a uniform distribution on the edge labels.In out setting it is natural to allow a non-uniform distribution on the edge labels in such a way that the distribution respects the underlying algebraic structure. E.g.,the ensemble EGF m can be considered a special case of the ensemble EGL m where we put a uniform distribution on the labels corresponding tofield elements and zero weight on all other labels.Obviously there are many degrees of freedom that could be explored.By a proper exploitation of these degrees of freedom one can hopefullyfind yet an-other way of approaching capacity,adding to our understanding of capacity approaching iterative coding schemes.References[1] A.A SHIKHMIN,G.K RAMER,AND S.TEN B RINK,Extrinsic information transferfunctions:model and erasure channel property,IEEE rm.Theory,50 (2004),pp.2657–2673.[2]S.-Y.C HUNG,J.F ORNEY,G.D.,T.R ICHARDSON,AND R.U RBANKE,On thedesign of low-density parity-check codes within0.0045db of the Shannon limit,IEEE Communications Letters,5(2001),pp.58–60.14[3]M.C.D AVEY AND D.J.C.M AC K AY,Low density parity check codes over GF(q),IEEE Communications Letters,2(1998).[4]J.F ORNEY,G.D.,Codes on graphs:Normal realizations,IEEE rm.Theory,47(2001).[5]R.G.G ALLAGER,Low-Density Parity-Check Codes,M.I.T.Press,Cambridge,Mas-sachusetts,1963.[6]X.H U,Low-Delay Low-Complexity Error-Correcting Codes on Sparse Graphs,PhDthesis,EPFL,Lausanne,Switzerland,2002.[7]M.L UBY,M.M ITZENMACHER,A.S HOKROLLAHI,AND D.A.S PIELMAN,Effi-cient erasure correcting codes,IEEE rm.Theory,47(2001),pp.569–584.[8],Maxwell construction:The hidden bridge between iterative and maximum a posteriori decoding.submitted to IEEE IT,2005.[14] C.M´E ASSON AND R.U RBANKE,An upper-bound on the ML thresholds of LDPCensembles over the BEC,in Proc.41th Annual Allerton Conference on Communica-tion,Control and Computing,Monticello,IL,October2003.[15]T.R ICHARDSON AND V.N OVICHKOV,Methods and apparatus for decoding LDPC Patent Number6,633,856,2003.15[16]T.R ICHARDSON, A.S HOKROLLAHI,AND R.U RBANKE,Design of capacity-approaching irregular low-density parity-check codes,IEEE rm.Theory, 47(2001),pp.619–637.[17]T.R ICHARDSON AND R.U RBANKE,Thresholds for turbo codes,in IEEE Interna-tional Symposium on Information Theory,Sorrento,Italy,June2000,p.317. [18],Modern Coding Theory,Cambridge University Press,2005.In preparation.[20]I.S ASON AND R.U RBANKE,Parity-check density versus performance of binary lin-ear block codes over memoryless symmetric channels,IEEE rm.Theory, 49(2003),pp.1611–1635.[21] A.S HOKROLLAHI,New sequences of linear time erasure codes approaching thechannel capacity,in Proceedings of AAECC-13,Lecture Notes in Computer Science 1719,no.1719in Lecture Notes in Computer Science,Springer Verlag,1999,pp.65–76.[22] D.S RIDHARA AND T.E.F UJA,Low density parity check codes over groups andrings,in Proc.of the IEEE Inform.Theory Workshop,Banglore,India,October2002.pp.163-166.[23]J.T HORPE,K.A NDREWS,AND S.D OLINAR,Methodologies for designing LDPCcodes using protographs and circulants,in Proc.of the IEEE Int.Symposium on Inform.Theory,Chicago,USA,June2004.pp.238.16x 1x 11x 21x 2x 21x 22x 3x 31x 32x 4x 41x 42H 11H 11x 1H 12x 20H 23x 3H 24x 40H 31x 1H 32x 2H 33x 30HH 11H 120000H 23H 24H 31H 320H 3411z 0000z z 1zz 01Figure 1:The FSFG of a simple code over GF 4and its associated parity-check matrixH.The primitive polynomial generating GF 4is p z 1z z 2.x 11x 12x 21x 22x 31x 32x 41x 42x 11x 21x 220x 12x 220x 21x 410x 31x 32x 41x 420x 11x 12x 22x 320x 12x 21x 22x 420H b101100000101000000000101000011111101001001110001Figure 2:The FSFG and its associated parity-check matrix corresponding to the equiv-alent binary code of the code given in Fig.1.h BPFigure 3:BP EXIT curves for the 23-regular ensembles over GF 2m for m 2345and 6and transmission over BEC .By integrating the area under the respec-tive BP EXIT curves starting from 1until the area is equal to 13we get the follow-ing upper bounds on the MAP thresholds:¯MAP m 105,¯MAP m 205775,¯MAP m 306209,¯MAP m 406426,¯MAP m 506540,¯MAPm 606599.These values should be compared to the Shannon threshold of 23066667.These upper bounds are conjectured to be tight.17。

Nonparametric Tests for Unit Roots and Cointegration

Nonparametric Tests for Unit Roots and Cointegration

Abstract
1
1 Introduction
In recent papers by Bierens (1997a,b) and Vogelsang (1998a,b) it was observed that it is possible to construct test statistics that asymptotically do not depend on parameters involved by the short run dynamics of the process. Accordingly, it is not necessary to estimate the nuisance parameters such as the coe cients for the lagged di erences in a Dickey-Fuller regression or the \long-run variance" (2 times the spectral density at frequency zero) by using a kernel estimate as in Phillips and Perron (1988). Such an approach is called \model free" in Bierens (1997a) and \nonparametric" in Bierens (1997b). Albeit both terms may be somewhat misleading, we follow Bierens (1997b) and use the term \nonparametric". In fact, asymptotically the tests only involve the parameter under test and it is di cult to think of any test, which is \less parametric". The idea behind this approach can be is the following. Under suitable conditions on the sequence "1; "2; : : : the functional central limit theorem (FCLT) implies

变点分析SIC,文献翻译

变点分析SIC,文献翻译

INFORMATION CRITERION AND CHANGE POINTPROBLEM FOR REGULAR MODELSInformation criteria are commonly used for selecting competing statistical models. They do not favor the model which gives the best to the data and little interpretive value, but simpler models with good fit. Thus, model complexity is an important factor in information criteria for model selection. Existing results often equate the model complexity to the dimension of the parameter space. Although this notion is well founded in regular parametric models, it lacks some desirable properties when applied to irregular statistical models. We refine the notion of model complexity in the context of change point problems, and modify the existing information criteria. The modified criterion is found consistent in selecting the correct model and has simple limiting behavior. The resulting estimatorof the location of the change point achieves the best convergence rate Op(1), and its limiting distribution is obtained. Simulation results indicate that the modified criterion has better power in detecting changes compared to other methodsIntroductionOut of several competing statistical models, we do not always use the one with the best to the data. Such models may simply interpolate the data and have little interpretive value. Information criteria, such as the Akaike information criterion and the Schwarz information criterion, are designed to select models with simple structure and good interpretive value, see Akaike (1973) and Schwarz (1978). The model complexity is often measured in terms of the dimensionality of the parameter space.Consider the problem of making inference on whether a process has undergone some changes. In the context of model selection, we want to choose between a model with a single set of parameters, or a model with two sets of parameters plus the location of change. The Akaike and the Schwarz information criteria can be readily adopted to this kind of change point problems. There have been many fruitful research done in this respect such as Hirotsu, Kuriki and Hayter (1992) and Chen and Gupta (1997), to name a few.Compared to usual model selection problems, the change point problem contains a special parameter: the location of the change. When it approaches the beginning or the end of the process, one ofthe two sets of the parameter becomes completely redundant. Hence, the model is un-necessarily complex. This observation motivates the notion that the model complexity also depends on the location of the change point. Consequently, we propose to generalize the Akaike and Schwarz information criteria by making the model complexity also a function of the location of the change point. The new method is shown to have a simple limiting behavior, and favourable power properties in many situations via simulation.The change point problem has been extensively discussed in the literature in recent years.The study of the change point problem dates back to Page (1954, 1955 and 1957) which tested the existence of a change point. Parametric approaches to this problem have been studied by a number of researchers, see Chernoff and Zacks (1964), Hinkley (1970), Hinkley et.al.(1980), Siegmund (1986) and Worsley (1979, 1986). Nonparametric tests and estimations have also been proposed (Brodsky and Darkhovsky, 1993; Lombard, 1987; Gombay and Huskova, 1998). Extensive discussions on the large sample behavior of likelihood ratio test statistics can be found in Gombay and Horvath (1996) and Csorgo and Horvath (1997).The detail can be found in some survey literatures such asBhattacharya (1994), Basseville and Nikiforov (1993), Zacks (1983), and Lai (1985). The present study deviates from other studies by refining the traditional measure of the model complexity, and bydetermining the limiting distribution of the resulting test statistic under very general parametric model settings.In Section 2, we define and motivate the new informationcriterion in detail. In Section 3, we give the conditions under which the resulting test statistic has chi-square limiting distribution and the estimator τ of change point attains the best convergence rate. An application example and some simulation results are given in Section4. The new method is compared to three existing methods and found to have good finite sample properties. The proofs are given in the Appendix.Main ResultsLet X 1,X 2, ……,Xn be a sequence of independent randomvariables. It is suspected that Xi has density function 1f (,)x θ when i<k and density 2f (,)x θ for i>k . We assume that 1f (,)x θand 2f (,)x θbelong to the same parametric distribution family {f (,):}d x R θθ∈.The problem is to test whether this change has indeed occurred and if so, find the location of the change k . The null hypothesis is 0H : 12θθ= and the alternative is 1H : 12θθ≠and 1k n <<Equivalently, we are asked to choose a model from 0H or a modelfrom 1H for the data.For regular parametric (not change point) models with loglikelihood function ()n l θ, Akaike and Schwarz information criteria are defined as:2()2dim()2()2dim()log()n n AIC l SIC l n θθθθ=-+=-+where θ is the maximum point of ()n l θ. The best model according to these criteria is the one which minimizes AIC or SIC . The Schwarz information criterion is asymptotically optimal according to certain Bayes formulation.The log likelihood function for the change point problem has the form121211(,;)log (,)log (,)k nn i i i i k l k f x f x θθθθ==+=+∑∑ The Schwarz information criterion for the change point problem becomes12()2(,;)[2dim()1]log()n SIC k l k n θθθ=-++and similarly for Akaike information criterion, where 12,θθmaximize 12(,;)n l k θθfor given k . See, for example, Chen and Gupta (1997). When the model complexity is the focus, we may also write it as1212()2(,;)(,;)log()n SIC k l k complexity k n θθθθ=-+We suggest that the notion of 12(,;)complexity k θθ = 2dim()1θ+ needs re-examination in the context of change point problem. When k takes values in the middle of 1 and n , both 1θand 2θare effectiveparameters. When k is near 1 or n , either 1θor 2θbecomes redundant.Hence, k is an increasingly undesirable parameter as k getting close to 1 or n . We hence propose a modified information criterion with2122(,;)2dim()(1)an k complexity k const t nθθθ=+-+ For 1<k<n, let 21212()2(,;)[2dim()(1)]log()n k MIC k l k n n θθθ=-++- Under the null model, we define12()2(,;)dim()log()n MIC k l k n θθθ=-+If 1()min ()k nMIC n MIC k <<>, we select the model with a change point and estimate the change point by τ such that1()min ()k nMIC MIC k τ<<= Clearly, this procedure can be repeated when a second change point is suspected.The size of model complexity can be motivated as follows. If the change point is at k , the variance of 1θ would be proportional to 1k -and the variance of 2θ would be proportionalto 1()n k --. Thus, the total variance is1211111[()]42k n k n k n --+=--- The specific form in (2) reflects this important fact. Thus, if a change at an early stage is suspected, relatively stronger evidence is needed to justify the change. Hence, we should place larger penalty when k is near 1 or n . This notion is shared by many researchers.The method in Inclan and Tiao (1994) scales down the statistics heavier when the suspected change point is near 1 or n . The U-statistic method in Gombay and Horvath (1995) is scaleddown by multiplying the factor k (n-k ).To assess the error rates of the method, we can simulate the finite sample distribution, or find the asymptotic distribution of the related statistics. For Schwarz information criterion,the relatedstatistic is found to have type I extreme value distributionasymptotically (Chen and Gupta, 1997; CsÄorgÄo and Horvath 1997). We show that the MIC statistic has chi-square limiting distribution for any regular distribution family, the estimator τ achieves the best convergence rate Op (1) and has a limiting distribution expressed via a random walk.Our asymptotic results under alternative model is obtained under the assumption that the location of the change point k , Thus, {:1,2}in X i n n <<> form a triangle array. The classical results on almost sure convergence for independent and identically distributed (iid) random variables cannot be directly applied. However, the conclusions on weak convergence will not be affected as the related probability statements are not affected by how one sequence is related to the other. Precautions will be taken on this issue but details will be omitted.Let1()min ()dim()log()n k nS MIC n MIC k n θ<<=-+ where MIC (k ) and MIC (n ) are defined in (3) and (4). Note that this standardization removes the constant term dim()log()n θ in the difference of MIC (k ) and MIC (n ).常见模型信息准则和变点分析问题 信息准则通常是用来选择统计模型的优劣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
arXiv:cond-mat/0409212v2 [cond-mat.dis-nn] 20 Jan 2005
ቤተ መጻሕፍቲ ባይዱ
Asymptotic behavior of the density of states on a random lattice
Jean-Yves Fortin
CNRS, Laboratoire de Physique Th´ eorique, UMR7085, 3 rue de l’Universit´ e, 67084 Strasbourg Cedex, France E-mail: fortin@lpt1.u-strasbg.fr Abstract. We study the diffusion of a particle on a random lattice with fluctuating local connectivity of average value q . This model is a basic description of relaxation processes in random media with geometrical defects. We analyze here the asymptotic behavior of the eigenvalue distribution for the Laplacian operator. We found that the localized states outside the mobility band and observed by Biroli and Monasson, in a previous numerical analysis [1], are described by saddle point solutions that breaks the rotational symmetry of the main action in the real space. The density of states is characterized asymptotically by a series of peaks with periodicity 1/q .
Asymptotic behavior of the density of states on a random lattice
3
effects arise outside the extended region, with peaks at some regular intervals where the inverse partition number is high, showing that these peaks are resonance for localization. The existence of a Griffiths region was analyzed by Rodgers and Bray [17] who found a tail distribution for large eigenvalues outside the mobility band (with a random matrix containing only elements -1, 0 and 1) but there is no peak structure in their analysis contrary to BM’s numerical result. Their saddle point solution is invariant by rotation in both replica and real spaces and they do not discuss the possibility of the rotational symmetry breaking in at least one of these spaces. We will analyze in this paper the possibility of a real space symmetry breaking for the site dependent fields, unlike the method of self-consistent field equations developped in [17]. It is clear that in order to describe the localized regime, we have to take account of this kind of solutions. Our motivation is therefore to find the asymptotic solutions in the region of the density of states outside the mobility band for the VRB’s model. The original model of relaxation in a geometrical disordered system consists of N points connected randomly by bonds Mij = −1/q with a probability equal to q/N and Mij = 0 else. This is an infinite range model, but the average coordination number q is finite and we may expect that the dilute exchange interactions make the model similar to a short range model [18]. We follow the references [1] and [15] for the notations. On a random lattice, a particle performs a random walk from one point to another. Let ci (t) be the probability for the particle to be on the site i at time t. Then the master equations describing the time evolution of these amplitudes are dci =− dt Mij cj
PACS numbers: 75.10.Nr,12.40.Ee,67.80.Mg
Asymptotic behavior of the density of states on a random lattice
2
Diffusion on random graphs can be a useful problem for studying relaxation processes in glassy systems in general. Usually, the disorder arises from a random potential, impurities, but a random geometry can also play this role [2]. One can visualize a diffusion of a particle on a random graph as the relaxation of a disordered system out of equilibrium on a complicate energy landscape. For example, this relaxation in random Ising magnets can be identified with diffusion on the vertices of a hypercube in the configuration space, and the edges correspond to the energy paths that connect one configuration to another [3]. Numerical simulations [3, 4] in Ising spin glasses of the order parameter q (t) = [< Si (t)Si (0) >]av , where < . . . > is the thermal average and [. . .]av the average over disorder, show that this quantity follows a Kohlrausch law similar to a “stretched” exponential exp(−(t/τ )β ) with 1/3 ≤ β ≤ 1 in the region just above the spin glass phase. This kind of non-exponential relaxation is typical of many glassy systems [2, 5, 6], unlike the usual exponential behavior with only one relaxation time. The coefficient β varies with temperature from 1 in the high temperature phase, to 1/3 at the glassy transition. In between, there seems to be a phase of localized states, or Griffiths phase, where β is in between from 1 to 1/3. The value 1/3 seems to be universal in many experimental systems and has been observed in spin glass Eu0.4 Sr0.6 S [7], at the glass transition of the crystalline fast ion conductor Na β -alumina [8], or molten salts CaK(NO3 ) [9]. The question about the universality of the Kohlrausch law has been raised, and exact dynamics on ultra-metric spaces [10] show that it depends on the scaling of the barriers with the distance between different states. It could be algebraic (linear dependence with the distance) or Kohlrausch like (logarithm dependence). Random graph models can also be a useful tool to study propagation of sound waves in granular and random media [11, 12], since diffusion, quasi-diffusion and localization of sound waves are similar to diffusion on a random network, the edges being the connections between the particles making up the medium. Frequency response [12] for different amplitudes shows a region of coherent propagation plus a quasi-diffusive regime. Numerical and simplified models [13] of a granular medium for small vibration amplitudes show modes that are extended and localized in space, like a particle moving on a random medium. In order to simulate the glassy systems discussed above with short-range interactions and also percolation problems, Viana, Rodgers and Bray (VRB) studied a simple model of diffusion based on sparse random matrix [14, 15]. Their model has the property to have long-range interactions with dilute coordination numbers, so that in average the coordination number is finite and we may expect to have a closer view of some experimental material. The spectrum of eigenvalues (all positive) spreads over a continuous band, and for the particular case of the Cayley tree model, are bounded between mobility edges, with a gap from below (see also [16]). Recently, Biroli and Monasson (BM) [1] studied the same model numerically, and showed that localization
相关文档
最新文档