北师大版八年级2018--2019学年度第一学期第三次月考数学试卷
北师大版-学年度上学期八年级期中数学试卷A(含解析)
北师大版2018-2019学年八年级上数学期中试卷一一.选择题(共10小题,满分30分,每小题3分)1.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A.3个B.4个C.5个D.6个2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0 B.b≤0 C.b≥0 D.b>03.下列条件:①∠A+∠B=∠C,②∠C=90°,③AC:BC:AB=3:4:5,④∠A:∠B:∠C=3:4:5中,能确定△ABC是直角三角形的有()A.1个B.2个C.3个D.4个4.如图,正方形的周长为8个单位.在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时方向环绕在该正方形上,则数轴上表示2019的点与正方形上的数字对应的是()A.0 B.2 C.4 D.65.在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)6.正比例函数如图所示,则这个函数的解析式为()A.y=x B.y=﹣x C.y=﹣2x D.y=﹣x7.已知一次函数y=(m﹣4)x+2m+1的图象不经过第三象限,则m的取值范围是()A.m<4 B.﹣≤m<4 C.﹣≤m≤4 D.m8.估计2﹣2的值介于下列哪两个整数之间()A.2和3 B.3和4 C.4和5 D.5和69.在平面直角坐标系中,点P的坐标为(0,2),点M的坐标为(m﹣1,﹣m﹣)(其中m为实数),当PM的长最小时,m的值为()A.﹣B.﹣C.3 D.410.把一次函数y=x+1的图象绕点(1,0)旋转180°,则所得直线的表达式为()A.y=x+1 B.y=﹣x﹣1 C.y=x﹣3 D.y=﹣x+3二.填空题(共6小题,满分18分,每小题3分)11.下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的有(填序号).12.如图,在平面直角坐标系xOy中,点B(﹣1,4),点A(﹣7,0),点P是直线y=x﹣2上一点,且∠ABP=45°,则点P的坐标为.13.点P(﹣3,4)到x轴和y轴的距离分别是.14.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,则关于x的方程3x+b=ax ﹣2的解为x=.15.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).16.如图,已知直线l:y=﹣x+4,在直线l上取点B1,过B1分别向x轴,y轴作垂线,交x轴于A1,交y轴于C1,使四边形OA1B1C1为正方形;在直线l上取点B2,过B2分别向x轴,A1B1作垂线,交x轴于A2,交A1B1于C2,使四边形A1A2B2C2为正方形;按此方法在直线l上顺次取点B3,B4,…,B n,依次作正方形A2A3B3C3,A3A4B4C4,…,A n﹣1A n B n C n,则A3的坐标为,B5的坐标为.三.解答题(共8小题,满分72分)17.(20分)化简计算①π0+2﹣1﹣﹣|1﹣|②﹣2③﹣(+2)④3﹣9+3⑤÷﹣×+.18.(6分)请你给如图建立平面直角坐标系,使文化宫的坐标为(﹣3,1),超市的坐标为(2,﹣3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)直接写出由超市、文化馆、市场围成的三角形的面积.19.(6分)已知|a﹣3|+,求()2和b a的值.20.(6分)已知一次函数y=(2m﹣3)x+2﹣n满足下列条件,分别求出m,n的取值范围.(1)使得y随x增加而减小.(2)使得函数图象与y轴的交点在x轴的上方.(3)使得函数图象经过一、三、四象限.21.(7分)如图,直线y=2x+3与x轴交于点A,与y轴于点B.(1)求A,B两点的坐标;(2)过点B过直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.22.(7分)如图,矩形A1B l C1D1沿EF折叠,使B1点落在A1D1边上的B处;沿BG 折叠,使D1点落在D处且BD过F点.(1)求证:四边形BEFG是平行四边形;(2)连接B1B;判断△B1BG的形状,并写出判断过程.23.(9分)甲,乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中其中一人因故障停止加工几分钟后又继续按原速加工,直到他们完成任务,如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,观察图象解决下列问题:(1)点B的坐标是,B点表示的实际意义是;(2)求线段BC对应的函数关系式和D点坐标;(3)乙在加工的过程中,多少分钟时比甲少加工100个零件?(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每分钟能加工3个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少分钟时开始帮助乙?并在图中用虚线画出丙帮助后y与x之间的函数关系的图象.24.(11分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为.参考答案与试题解析1.解:∵=,而(0<x<150)是一个整数,且x为整数,∴5×5×2×3x一定可以写成平方的形式,所以可以是6,24,54,96共有4个.故选:B.2.解:∵点A(﹣3,b)在第三象限,∴b<0,故选:A.3.解:①∠A+∠B=∠C时,∠C=90°,是直角三角形,②∠C=90°,是直角三角形,③AC:BC:AB=3:4:5,∴32+42=52,是直角三角形;④∠A:∠B:∠C=3:4:5时,∠C=180°×<90°,是锐角三角形,故选:C.4.解:从点﹣1到点2019共2020个单位长度,正方形的边长为8÷4=2(个单位长度),2020÷8=252余4,故数轴上表示2019的点与正方形上表示数字4的点对应,故选:C.5.解:点(1,1)关于y轴的对称点的坐标是(﹣1,1),故选:C.6.解:设这个函数的解析式为y=kx,∵函数图象经过(1,﹣1),∴﹣1=k,∴这个函数的解析式为y=﹣x.故选:B.7.解:根据题意得,解得﹣≤m<4.故选:B.8.解:∵3.5<<4,∴7<﹣1<8,∴5<2﹣2<6,即2﹣2在5和6之间,故选:D.9.解:由两点间的距离公式可知:PM2=(m﹣1)2+(﹣m﹣﹣2)2=(m+)2+16,∵>0,∴当m=﹣时,PM2最小.故选:B.10.解:令x=0,则y=1,即直线y=x+1与y轴交点为(0,1);令y=0,则x=﹣1,即直线y=x+1与x轴交点为(﹣1,0).点(0,1)绕点(1,0)旋转180°变为(2,﹣1);点(﹣1,0)绕点(1,0)旋转180°变为(3,0).设旋转后所得直线的表达式为y=kx+b,则有,解得:.故旋转后所得直线的表达式为y=x﹣3.故选:C.11.解:下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的为:②③,故答案为②③12.解:将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(3,﹣2),取AA′的中点K(﹣2,﹣1),直线BK与直线y=x﹣2的交点即为点P.∵直线BK的解析式为y=5x+9,由,解得,∴点P坐标为(﹣,﹣),故答案为(﹣,﹣).13.解:点P(﹣3,4)到x轴的距离为4,到y轴的距离是3,故答案为:4;3.14.解:∵直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,∴当x=﹣2时,3x+b=ax﹣2,∴关于x的方程3x+b=ax﹣2的解为x=﹣2.故答案为﹣2.15.解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.16.解:当x=0,y=4,当y=0时,﹣x+4=0,x=4,∴OE=OF=4,∴△EOF是等腰直角三角形,∴∠C1EF=45°∴△B1C1E是等腰直角三角形,∴B1C1=EC1,∵四边形OA1B1C1为正方形,∴OC1=C1B1=EC1=2,∴B1(2,2),A1(2,0),同理可得:C2是A1B1的中点,∴B2(2+1=3,1),A2(3,0),B3(2+1+=,),A3(,0),B4(+=,),A4(,0),B5(+=,).故答案为:(,0),(,).17.解:①原式=1+﹣﹣(﹣1)=2﹣.②原式=2+1﹣2=1.③原式=2﹣2﹣2=﹣2.④原式=12﹣3+6=15.⑤原式=4﹣+2=4+.18.解:(1)画坐标轴如图所示,火车站(0,0),体育场(﹣4,3),医院(﹣2,﹣2);(2)三角形的面积=7×6﹣×5×4﹣×2×6﹣×2×7,=42﹣10﹣6﹣7,=42﹣23,=19.19.解:由题意得a﹣3=0,a+b﹣1=0,解得a=3,b=﹣2,则()2=()2=5,b a=(﹣2)3=﹣8.20.解:(1)∵一次函数y=(2m﹣3)x+2﹣n的图象y随x的增大而减小,∴2m﹣3<0,解得m<,n取一切实数;(2)∵y=(2m﹣3)x+2﹣n,∴当x=0时,y=2﹣n,由题意,得2﹣n>0且2m﹣3≠0,∴m≠,n<2;(5)∵该函数的图象经过第一、三、四象限,∴2m﹣3>0,且2﹣n<0,解得m>,n>2.21.解:(1)令y=0,得x=﹣1.5,∴A点坐标为(﹣1.5,0),令x=0,得y=3,∴B点坐标为(0,3);(2)设P点坐标为(x,0),∵OP=2OA,A(﹣1.5,0),∴x=±3,∴P点坐标分别为P1(3,0)或P2(﹣3,0).∴S△ABP1=×(1.5+3)×3=6.75,S△ABP2=×(3﹣1.5)×3=2.25,∴△ABP的面积为6.75或2.25.22.(1)证明:显然,BE∥GF,根据对称性得∠1=∠2,∠3=∠4∵A1D1∥B1C1∴∠1+∠2=∠3+∠4∴∠1=∠2=∠3=∠4∴EF∥BG∴四边形BEFG是平行四边形;(2)解:△B1BG是直角三角形,理由:∵A1D1∥B1C1∴∠4=∠6∴∠3=∠6∴BF=FG∵B1F与BF关于EF对称∴B1F=BF∴B1F=BF=FG∴△B1BG是直角三角形.23.解:(1)B(15,0),B点表示的实际意义是:甲乙两人工作15分钟时,加工零件的数量相同故答案为:(15,0);甲乙两人工作15分钟时,加工零件的数量相同;(2)由图形可知:甲因故障停止加工15﹣10=5分钟后又继续按原速加工,甲105分钟时,完成任务,即甲100分钟,加工600个零件,甲加工的速度:=6,设乙每分钟加工a个零件,15a=10×6,a=4,600﹣105×4=600﹣420=180,∴C(105,180),设BC的解析式为:y=kx+b,把B(15,0)和C(105,180)代入得:,解得:,∴线段BC对应的函数关系式为:y=2x﹣30(15≤x≤105),=150,∴D(150,0);(3)当x=10时,y=6×10﹣4×10=20,∴A(10,20),易得CD:y=﹣4x+600,当y=100时,﹣2x﹣30=100,x=65,﹣4x+600=100,x=125,综上所述,乙在加工的过程中,65分钟或125分钟时比甲少加工100个零件;(4)设丙应在第x分钟时开始帮助乙,>15,∴x>15,由题意得:4x+(3+4)(105﹣x)=600,x=45,则丙应在第45分钟时开始帮助乙;丙帮助后y与x之间的函数关系的图象如右图所示.24.解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋转变换的性质可知,∠PAP′=60°,P′C=PB,∴△PAP′为等边三角形,∴∠APP′=60°,∵∠PAC+∠PCA==30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′2+PC2=P′C2,∴PA2+PC2=PB2,故答案为:150,PA2+PC2=PB2;(2)如图2,作将△ABP绕点A逆时针旋转120°得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=120°,P′C=PB,∴∠APP′=30°,∵∵∠PAC+∠PCA==60°,∴∠APC=120°,∴∠P′PC=90°,∴PP′2+PC2=P′C2,∵∠APP′=30°,∴PD=PA,∴PP′=PA,∴3PA2+PC2=PB2;(3)如图2,与(2)的方法类似,作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=α,P′C=PB,∴∠APP′=90°﹣,∵∵∠PAC+∠PCA=,∴∠APC=180°﹣,∴∠P′PC=(180°﹣)﹣(90°﹣)=90°,∴PP′2+PC2=P′C2,∵∠APP′=90°﹣,∴PD=PA•cos(90°﹣)=PA•sin,∴PP′=2PA•sin,∴4PA2sin2+PC2=PB2,故答案为:4PA2sin2+PC2=PB2.。
北师大版数学八年级上学期《期末测试卷》及答案
(1)求B,C两点坐标;
(2)①求△OPD的面积S关于t的函数关系式;
A 2.5mB.2mC.1.5mD.1m
[答案]C
[解析]
[分析]
根据图形分别求得二人的速度,相减后即可确定正确的选项.
[详解]观察图象知:甲跑64米用时8秒,速度为8m/s,
①把 向上平移5个单位后得到对应的 ,画出 ,并写出 的坐标;
②以原点 为对称中心,再画出与 关于原点 对称的 ,并写出点 的坐标.
五、本大题共2小题,每小题10分,满分20分.
19.某水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共3200千克,全部售出后卖了30400元.已知“妃子笑”荔枝每千克售价8元,“无核Ⅰ号”荔枝每千克售价12元,问该种植场今年这两种荔枝各收获多少千克?
=4,故B符合题意,
故选B.
[点睛]本题考查了算术平方根,利用乘方求一个正数的算术平方根,注意一个正数只有一个算术平方根.
2.下列实数中是无理数的是()
A. B.πC.0.141414D.﹣
[答案]B
[解析]
[分析]
根据无理数是无限不循环小数,可得答案.
[详解]A、 =2是有理数,故A错误;
B、π是无理数,故B正确;
七、本题满分12分.
22.直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B 坐标.
北师大版八年级(上)期末数学压轴题系列专题练习(含答案)
图3EDBA图2EDCBA图1EDCBA2018-2019学年北师大版八年级数学(上)八年级数学期末试题北师大版八年级上册期末压轴题系列11、如图,已知:点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =α.⑴如图1,当α=60°时,∠BCE = ;⑵如图2,当α=90°时,试判断∠BCE 的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;(图1) (图2) (图3)⑶如图3,当α=120°时,则∠BCE = ;2、如图1,在平面直角坐标系xoy 中,直线6y x =+与x 轴交于A ,与y 轴交于B ,BC ⊥AB 交x 轴于C 。
①求△ABC 的面积。
如图2,②D 为OA 延长线上一动点,以BD 为直角边做等腰直角三角形BDE ,连结EA .求直线EA 的解析式.③点E 是y 轴正半轴上一点,且∠OAE =30°,上一动点,是判断是否存在这样的点M 、N ,使得OM +NM 的值最小,若存在,请写出其最小值,并加以说明.3. 如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+,(1)求直线2l 的解析式;(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E ,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。
在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。
4. 如图①,直线AB 与x 轴负半轴、y 轴正半轴分别交于A 、B 两点.OA 、OB 的长度分别为a 和b ,且满足2220a ab b -+=.⑴判断△AOB 的形状.⑵如图②,正比例函数(0)y kx k =<的图象与直线AB 交于点Q ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM =9,BN =4,求MN 的长.⑶如图③,E 为AB 上一动点,以AE 为斜边作等腰直角△ADE ,P 为BE 的中点,连结PD 、PO ,试问:线段PD 、PO 是否存在某种确定的数量关系和位置关系?写出你的结论并证明.①OQ NMyxBA②OPy xE DBA③5、如图,已知△ABC 和△ADC是以AC为公共底边的等腰三角形,E、F分别在AD和CD上,已知:∠ADC+∠ABC=180°,∠ABC=2∠EBF;(1)求证:EF=AE+FC(2)若点E、F在直线AD和BD上,则是否有类似的结论?6、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.(1)探究线段BM、MN、NC之间的关系,并加以证明;(2)若点M、N分别是射线AB、CA上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图④中画出图形,并说明理由.(3)求证:CN-BM=MN图①图②图③图④EDCBAF北师大版八年级上册期末压轴题5答案; 1、⑴如图1,当α=60°时,∠BCE =120°;⑵证明:如图,过D 作DF ⊥BC ,交CA 或延长线于F 。
北师大版初中数学八年级上册期中试题(山东省济南市高新区
2018-2019学年山东省济南市高新区八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)在实数,,,,3.14中,无理数有()A.1个B.2个C.3个D.4个2.(4分)一个直角三角形的两条直角边分别是5和12,则斜边是()A.13B.12C.15D.103.(4分)下列函数中,是关于x的一次函数的是()A.y=B.y=2x2+1C.y=3﹣x D.y=4.(4分)如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)5.(4分)下面能满足方程3x+2=2y的一组解是()A.B.C.D.6.(4分)下列各式中,正确的是()A.=﹣2B.(﹣)2=9C.=﹣3D.±=±3 7.(4分)在已知点M(3,﹣4),在x轴上有一点与M的距离为5,则该点的坐标为()A.(6,0)B.(0,1)C.(0,﹣8)D.(6,0)或(0,0)8.(4分)若方程(2a+b)x2+2x+3y a﹣b=4是关于x、y的二元一次方程,则a、b的值是()A.B.C.D.9.(4分)正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x﹣k的图象大致是()A.B.C.D.10.(4分)已知方程组的解为,则2a﹣3b的值为()A.4B.6C.﹣6D.﹣411.(4分)如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC的高是()A.B.C.D.12.(4分)如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣2,4),B (4,2),直线y=kx﹣2与线段AB有交点,则k的值不可能是()A.﹣5B.﹣2C.3D.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4分)已知2x+y=5,请用含x的代数式表示y,则y=.14.(4分)一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B 点,那么它所行的最短路线的长是.15.(4分)如图,若在象棋盘上建立直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“兵”位于点.16.(4分)有一个数值转换器,原理如下:当输入x为64时,输出的y的值是.17.(4分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.18.(4分)对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分).20.(6分)解方程组:.21.(6分)如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD的面积.22.(8分)受气候等因素的影响,今年某些农产品的价格有所上涨.张大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元.则甲、乙两种蔬菜各种植了多少亩?23.(8分)如图,每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,分别按下列要求画三角形:(1)在图①中,画一个三角形,使它的三边长都是有理数;(2)在图②中,画一个三边长分别为3,2,的三角形,一共可画这样的三角形个.24.(10分)如图,在平面直角坐标系中,直线L是第一、三象限的角平分线.(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;(2)结合图形观察以上三组点的坐标,直接写出坐标面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为;(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线L上画出点Q,使△QDE 的周长最小,并求△QDE周长的最小值.25.(10分)甲、乙两年从A城出发匀速行驶至日城,在整个行选过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,根据图象提供的信息,解决下列问题:(1)A,B两城相距多少千米?(2)分别求甲、乙两车离开A城的距离y与x的关系式.(3)求乙车出发后几小时追上甲车?26.(12分)定义:如图①,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M、N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图②,在等腰直角△ABC中,AC=BC,∠ACB=90°,点M、N为边AB上两点,满足∠MCN=45°,求证:点M、N是线段AB的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程;(3)在(2)的问题中,若∠ACM=15°,AM=1,CM=+1.求BM的长.(提示:在直角三角形中,30°角所对的直角边等于斜边的一半.)27.(12分)操作体验(1)如图①,已知△ABC,请画出△ABC的中线AD,并判断△ABD与△ACD 的面积大小关系.(2)如图②,在平面直角坐标系中,△ABC的边BC在x轴上,已知点A(2,4),B(﹣1,0),C(3,0),试确定过点A的一条直线l,平分△ABC的面积,请写出直线l的表达式.综合运用(3)如图③,在平面直角坐标系中,若A(1,4),B(3,2),那么在直线y =﹣4x+20上是否存在一点C,使直线OC恰好平分四边形OACB的面积?若存在,请计算点C的坐标;若不存在,请说明理由.2018-2019学年山东省济南市高新区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)在实数,,,,3.14中,无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数是无限不循环小数,可得答案.【解答】解:,是无理数,故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,注意带根号的数不一定是无理数.2.(4分)一个直角三角形的两条直角边分别是5和12,则斜边是()A.13B.12C.15D.10【分析】此题利用勾股定理a2+b2=c2可直接得出答案.【解答】解;由一个直角三角形的两条直角边分别是5和12,利用勾股定理得斜边长为=13.故选:A.【点评】此题主要考查学生对勾股定理的理解和掌握,此题难度不大,是一道基础题.3.(4分)下列函数中,是关于x的一次函数的是()A.y=B.y=2x2+1C.y=3﹣x D.y=【分析】一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.【解答】解:A、y=不符合一次函数的一般形式,不符合题意;B、y=2x2+1自变量次数不为1,故不是一次函数,不符合题意;C、符合一次函数的一般形式,符合题意;D、y=不符合一次函数的一般形式,不符合题意.故选:C.【点评】本题主要考查一次函数的定义.一次函数解析式的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.4.(4分)如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)【分析】根据点在y轴上,可知P的横坐标为0,即可得m的值,再确定点P 的坐标即可.【解答】解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.【点评】解决本题的关键是记住y轴上点的特点:横坐标为0.5.(4分)下面能满足方程3x+2=2y的一组解是()A.B.C.D.【分析】把各选择支代入二元一次方程,验证即可.【解答】解:当x=4,y=2时,方程的左边=14,方程的右边=4,因为方程的左边≠方程的右边,所以A不满足方程;当x=3,y=5时,方程的左边=11,方程的右边=10,因为方程的左边≠方程的右边,所以B不满足方程;当x=2,y=4时,方程的左边=8,方程的右边=8,因为方程的左边=方程的右边,所以C满足方程;当x=1,y=3时,方程的左边=5,方程的右边=6,因为方程的左边≠方程的右边,所以D不满足方程;故选:C.【点评】本题考查了二元一次方程的解,二元一次方程有无数个解,它的解满足方程左右两边相等.6.(4分)下列各式中,正确的是()A.=﹣2B.(﹣)2=9C.=﹣3D.±=±3【分析】由平方根和立方根的定义即可得到.【解答】解:A、应=2,故此项错误;B、应=3,故此项错误;C、应=﹣,故此项错误;D、,故正确;故选:D.【点评】本题考查了平方根和立方根的定义,熟记定义是解题的关键.7.(4分)在已知点M(3,﹣4),在x轴上有一点与M的距离为5,则该点的坐标为()A.(6,0)B.(0,1)C.(0,﹣8)D.(6,0)或(0,0)【分析】到点M的距离为定值的点在以M为圆心,以5为半径的圆上,圆与x 轴的交点即为所求点.【解答】解:该点与M点的距离是5,则这点就是以M点为圆心,以5为半径的圆与x轴的交点,如图:过M作x轴的垂线,垂足是N,则ON=3,MN =4.根据勾股定理就可以求得OM=5,则O就是圆与x轴的一个交点,则O坐标是(0,0);设另一个交点是A,MN⊥OA,则本题满足垂径定理,AN =ON=3.∴点A的坐标是(6,0).故选D.【点评】本题运用了垂径定理,把求点的坐标的问题转化为求线段的长的问题,利用数形结合可以更直观地解题.8.(4分)若方程(2a+b)x2+2x+3y a﹣b=4是关于x、y的二元一次方程,则a、b的值是()A.B.C.D.【分析】根据二元一次方程的定义可得,再解方程组即可.【解答】解:由题意得:,解得.故选:C.【点评】此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.9.(4分)正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x﹣k的图象大致是()A.B.C.D.【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x﹣k的图象经过第一、三象限,且与y轴的正半轴相交.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x﹣k的一次项系数大于0,常数项大于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的正半轴相交.故选:A.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).10.(4分)已知方程组的解为,则2a﹣3b的值为()A.4B.6C.﹣6D.﹣4【分析】把原方程组的解代入方程组,求出a,b的值,再代入所求代数式即可.【解答】解:把代入原方程组,得,解得.2a﹣3b=2×﹣3×(﹣1)=6.故选:B.【点评】此题很简单,考查了二元一次方程组的解的定义,所谓“方程组”的解,指的是该数值满足方程组中的每一方程.11.(4分)如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC的高是()A.B.C.D.【分析】根据所给出的图形求出AB、AC、BC的长以及∠BAC的度数,再根据三角形的面积公式列出方程进行计算即可.【解答】解:根据图形可得:AB=AC==,BC==,∠BAC=90°,设△ABC中BC的高是x,则AC•AB=BC•x,×=•x,x=.故选:A.【点评】此题考查了勾股定理,用到的知识点是勾股定理、三角形的面积公式,关键是根据三角形的面积公式列出关于x的方程.12.(4分)如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣2,4),B (4,2),直线y=kx﹣2与线段AB有交点,则k的值不可能是()A.﹣5B.﹣2C.3D.5【分析】当直线y=kx﹣2与线段AB的交点为A点时,把A(﹣2,4)代入y=kx﹣2,求出k=﹣3,根据一次函数的有关性质得到当k≤﹣3时直线y=kx ﹣2与线段AB有交点;当直线y=kx﹣2与线段AB的交点为B点时,把B(4,2)代入y=kx﹣2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx﹣2与线段AB有交点,从而能得到正确选项.【解答】解:把A(﹣2,4)代入y=kx﹣2得,4=﹣2k﹣2,解得k=﹣3,∴当直线y=kx﹣2与线段AB有交点,且过第二、四象限时,k满足的条件为k ≤﹣3;把B(4,2)代入y=kx﹣2得,4k﹣2=2,解得k=1,∴当直线y=kx﹣2与线段AB有交点,且过第一、三象限时,k满足的条件为k ≥1.即k≤﹣3或k≥1.所以直线y=kx﹣2与线段AB有交点,则k的值不可能是﹣2.故选:B.【点评】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4分)已知2x+y=5,请用含x的代数式表示y,则y=﹣2x+5.【分析】本题由二元一次方程2x+y=5,直接移项可得y=﹣2x+5.【解答】解:由二元一次方程2x+y=5,移项可得y=﹣2x+5.【点评】本题主要考查二元一次方程的变形,解题的关键是熟练掌握解二元一次方程的基本步骤.14.(4分)一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B 点,那么它所行的最短路线的长是10.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:如图(1)所示:AB==;如图(2)所示:AB==10.由于>10,所以最短路径为10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.15.(4分)如图,若在象棋盘上建立直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“兵”位于点(﹣3,1).【分析】先根据“帥”的位置确定原点的坐标,建立平面直角坐标系,从而可以确定“兵”的位置.【解答】解:根据条件建立平面直角坐标系:由图得“兵”的坐标为:(﹣3,1).故答案为:(﹣3,1).【点评】本题考查了平面坐标系的建立,在平面直角坐标系中确定点的位置,本题难度较小.16.(4分)有一个数值转换器,原理如下:当输入x为64时,输出的y的值是2.【分析】由图中的程序知:输入x的值后,当是无理数时,y=;若的值是有理数,将的值再取算术平方根,直至输出的结果为无理数,也就求出了y的值.【解答】解:由题意,得:x=64时,=8,8是有理数,将8的值代入x中;当x=8时,=2,2是无理数,故y的值是2.故答案为:2.【点评】本题考查了实数的运算,弄清程序的计算方法是解答此类题的关键.17.(4分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是x=2.【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【解答】解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.【点评】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.18.(4分)对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=60.【分析】根据二元一次方程组的解法以及新定义运算法则即可求出答案.【解答】解:由题意可知:,解得:∵x<y,∴原式=5×12=60故答案为:60【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分).【分析】本题比较简单,解答本题只需将二次根式化为最简,然后合并同类二次根式即可得出的答案.【解答】解:原式=3﹣+2=.【点评】本题考查二次根式的加减运算,属于基础题,比较简单,解答本题时注意先化简再合并,要细心运算,避免出错.20.(6分)解方程组:.【分析】可以先消x,也可以先消y,分别是xy的系数相等或互为相反数即可.【解答】解法一:①×2+②得5x=10(3分)解得:x=2(4分)将x=2代入①得y=﹣2(5分)∴方程组的解为(6分)解法二:由①得y=2x﹣6③(3分)将③代入②得x+2(2x﹣6)=﹣2解得:x=2(4分)将x=2代入③得y=﹣2(5分)∴方程组的解为(6分)【点评】本题考查了二元一次方程组的解法根据方程的特点,选加减消元法或代入消元法.21.(6分)如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD的面积.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,=AB•BC+AC•CD=×3×4+×5×12=36.∴S四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.22.(8分)受气候等因素的影响,今年某些农产品的价格有所上涨.张大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元.则甲、乙两种蔬菜各种植了多少亩?【分析】等量关系为:甲种蔬菜亩数+乙种蔬菜亩数=10;甲种蔬菜总获利+乙种蔬菜总获利=13800.【解答】解:设甲、乙两种蔬菜的种植面积分别为x、y亩.依题意可得:,解这个方程组得:.故甲、乙两种蔬菜各种植了4、6亩.【点评】解题关键是弄清题意,找到合适的等量关系.23.(8分)如图,每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,分别按下列要求画三角形:(1)在图①中,画一个三角形,使它的三边长都是有理数;(2)在图②中,画一个三边长分别为3,2,的三角形,一共可画这样的三角形16个.【分析】(1)画一个边长3,4,5的三角形即可;(2)由勾股定理容易得出结果.【解答】解:(1)∵=5,∴△ABC即为所求,如图1所示:(2)如图2所示:∵=2,=,∴△ABC,△DBC,…,都是符合条件的三角形,一共可画这样的三角形16个;故答案为:16.【点评】本题考查了正方形的性质、勾股定理、作图﹣﹣应用与设计作图;熟记勾股定理是解决问题的关键.24.(10分)如图,在平面直角坐标系中,直线L是第一、三象限的角平分线.(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′(3,5)、C′(5,﹣2);(2)结合图形观察以上三组点的坐标,直接写出坐标面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(b,a);(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线L上画出点Q,使△QDE 的周长最小,并求△QDE周长的最小值.【分析】(1)借助网格,根据轴对称的定义画出各点关于直线的对称点,即可解答.(2)由(1)中坐标得出规律,即可求出P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标.(3)作出D点的对称点D′,连接D′E,与直线L的交点即为所求点Q,利用勾股定理可得周长.【解答】解:(1)如图,由点关于直线y=x轴对称可知:B'(3,5),C'(5,﹣2),故答案为:(3,5)、(5,﹣2)(2)由(1)的结果可知,坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(b,a),故答案为:(b,a);(3)由(2)得,D(1,﹣3)关于直线l的对称点D'的坐标为(﹣3,1),连接D'E交直线l于点Q,此时点Q到D、E两点的距离之和最小,D'E==,DE==,∴△QDE周长的最小值+.【点评】本题主要考查作图﹣轴对称变换和轴对称﹣最短路线问题,解题的关键是熟练掌握轴对称变换的定义和性质.25.(10分)甲、乙两年从A城出发匀速行驶至日城,在整个行选过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,根据图象提供的信息,解决下列问题:(1)A,B两城相距多少千米?(2)分别求甲、乙两车离开A城的距离y与x的关系式.(3)求乙车出发后几小时追上甲车?【分析】(1)根据函数图象可以解答本题;(2)根据图象中的信息分别求出甲乙两车对应的函数解析式,(3)根据(2)甲乙两车对应的函数解析式,然后令它们相等即可解答本题.【解答】解:(1)由图可知,A、B两城相距300千米;(2)设甲对应的函数解析式为:y=kx,300=5k,解得,k=60,即甲对应的函数解析式为:y=60x,设乙对应的函数解析式为y=mx+n,解得:m=100,n=﹣100,即乙对应的函数解析式为y=100x﹣100;(3)解方程组得:,2.5﹣1=1.5,即乙车出发后1.5小时追上甲车.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26.(12分)定义:如图①,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M、N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图②,在等腰直角△ABC中,AC=BC,∠ACB=90°,点M、N为边AB上两点,满足∠MCN=45°,求证:点M、N是线段AB的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程;(3)在(2)的问题中,若∠ACM=15°,AM=1,CM=+1.求BM的长.(提示:在直角三角形中,30°角所对的直角边等于斜边的一半.)【分析】(1)①当MN为最大线段时,由勾股定理求出BN;②当BN为最大线段时,由勾股定理求出BN即可.(2)只要证明△MCN≌△MCN'以及∠NAM=90°即可.(3)如图,过N作于NH⊥CM于H.结合图中相关线段的和差关系和直角三角形的性质求得MN=2.由(2)得结论BN2+AM2=MN2,BN=.则BM=BN+MN.【解答】(1)解:①当MN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN===;②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN===,综上所述:BN=或;(2)①证明:连接MN′,∵∠ACB=90°,∠MCN=45°,∴∠BCN+∠ACM=45°,∵∠ACN'=∠BCN,∴∠MCN'=∠ACN′+∠ACM=∠BCN+∠ACM=45°=∠MCN,在△MCN和△MCN′中,,∴△MCN≌△MCN'(SAS),∴MN'=MN,∵∠CAN′=∠CAB=45°,∴∠MAN′=90,AN′2+AM2=MN′2,即BN2+AM2=MN2,∴点M、N是线段AB的勾股分割点;(3)如图,过N作于NH⊥CM于H.则∠NHM=90°,∠NMH=60°,设HM=x,则MN=2x,HN=x.得x+x=+1,∴x=1,∴MN=2.由(2)得结论BN2+AM2=MN2,BN=.∴BM=BN+MN=2+.【点评】本题考查几何变换综合题,需要掌握等腰三角形的性质、全等三角形的判定和性质、平行四边形的判定和性质等知识,利用旋转法添加辅助线是解决问题的关键.27.(12分)操作体验(1)如图①,已知△ABC,请画出△ABC的中线AD,并判断△ABD与△ACD 的面积大小关系.(2)如图②,在平面直角坐标系中,△ABC的边BC在x轴上,已知点A(2,4),B(﹣1,0),C(3,0),试确定过点A的一条直线l,平分△ABC的面积,请写出直线l的表达式.综合运用(3)如图③,在平面直角坐标系中,若A(1,4),B(3,2),那么在直线y =﹣4x+20上是否存在一点C,使直线OC恰好平分四边形OACB的面积?若存在,请计算点C的坐标;若不存在,请说明理由.【分析】(1)过A作AE⊥BC于点E,则可表示出△ABD和△ACD的面积,可比较其大小关系;(2)由(1)可知直线l应过BC的中点F,由B、C的坐标可求得F点的坐标,利用待定系数法可求得直线l的表达式;(3)由条件可知直线OC过AB的中点G,由AB的坐标可求得G的坐标,利用待定系数法可求得直线OC的解析式,联立两直线解析式可求得C点坐标.【解答】解:(1)如图①,过A作AE⊥BC于点E,∵AD为BC边上的中线,∴BD=CD,∴BD •AE =CD •AE ,即S △ABD =S △ACD ;(2)如图②,设BC 的中点为F ,∵直线l 平分△ABC 的面积,∴由(1)可知直线l 过点F ,∵B (﹣1,0),C (3,0),∴F (1,0),设直线l 的表达式为y =kx +b ,把A 、F 的坐标代入可得,解得,∴直线l 的表达式y =4x ﹣4;(3)如图③,连接AB 交OC 于点G ,∵直线OC 恰好平分四边形OACB 的面积,∴直线OC 过AB 的中点,即G 为AB 的中点,∵A (1,4),B (3,2),∴G (2,3),设直线OC解析式为y=ax,则3=2a,解得a=,∴直线OC表达式为y=x,联立两直线解析式可得,解得,∴存在满足条件的点C,其坐标为(,).【点评】本题为一次函数的综合应用,涉及待定系数法、三角形的中线、三角形的面积等知识.在(1)中表示出两三角形的面积是解题的关键,在(2)中确定出直线l过BC的中点是解题的关键,在(3)中求得直线OC的解析式是解题的关键.本题考查知识点较多,综合性较强,但难度不大.。
北师大版八年级数学上册期末试卷(难)重点
2017-2018学年度第一学期期终质检八年级数学科试卷一、选择题:(每题3分,共30分)1. 如图,OP =1,过点P 作1PP ⊥OP,且1PP =1,得2PP =2;再过点1P 作21P P ⊥1OP 且21P P =1,得2OP =3;又过点2P 作32P P ⊥2OP 且32P P =1,得3OP =2……依此法继续作下去,得2018OP 的值为( ) A .2016B .2017C.2018D .2019(第1题) (第2题) (第3题) (第5题)2.如图,一只跳蚤在第一象限及x 轴、y 轴上跳动,第一秒钟,它从原点跳动到(0,1),然后按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第24s时跳蚤所在位置的坐标是( )ﻫA.(0,3) B.(4,0) C.(0,4) D .(4,4)3.如图,在Rt △PQR 中,∠PR Q=90°,RP =RQ,边QR 在数轴上.点Q 表示的数为1,点R表示的数为3,以Q为圆心,QP 的长为半径画弧交数轴负半轴于点1P ,则1P 表示的数是( ) A.-2 B.22- C.22-1 D.1-224.如果一个三角形的三边长分别为1,k,3,则化简3k 281k 36k 4-72--+-的结果是()A .﹣5 B.1 C.13 D.19﹣4k5. 如图,在平面直角坐标系上有个点P(1,0),点P 第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P 2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P 第2017次跳动至P2017的坐标是( )A .(504,1007)B .(505,1009) C.(1008,1007) D.(1009,1009) 6.下列长度的线段中,能构成直角三角形的一组是( ) A .3,4,5B.6,7,8C.12,25,27 D.32,52,247.观察下列等式:3=3,23=9,33=27,43=81,53=243…,以此规律,则3+23+33…+20173+20183的和的末位数字是( )A .3B .2C .1 D.08. 一个两位数的十位数字与个位数字的和是7.如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的二位数,则这个两位数是( )A .36B .25C .61D .169.下列命题中,真命题的个数是( )ﻫ①同位角相等;②a,b,c 是三条直线,若a ⊥b ,b ⊥c ,则a ⊥c;③a ,b,c 是三条直线,若a ∥b,b ∥c,则a ∥c;④过一点有且只有一条直线与已知直线平行.A.1个 B .2个 C .3个 D.4个10ﻫ.如图,在△AB C中,∠ACB =90°,AC=BC .E、F 分别是射线AC 、CB 上的动点,且AE=BF,EF 与AB 交于点G,EH ⊥AB 于点H,设AE=x ,GH=y ,下面能够反映y 与x 之间函数关系的图象是:A. B.C . D.二、填空题:(每题4分,共24分)11. 一次函数b kx y +=,当1x 3-≤≤时,对应的y值为9y 1≤≤,则k+b=_______.12. 已知三个方程构成的方程组03x -2y -xy =,05y -3z -yz =,02z -5x -xz =,恰有一组非零解x=a,y=b,z =c ,则=++222c b a _______.13. 在直角坐标系内有两点A(-1,1)、B(2,3),若M 为x 轴上一点,且MA+M B最小,则M的坐标是_______,M A+MB=_______。
2018-2019学年辽宁省沈阳市大东区八年级(上)期末数学试卷(北师大版 含答案)
2018-2019学年辽宁省沈阳市大东区八年级(上)期末数学试卷一、选择题(每小题2分,共20分)1.(2分)下列各数中是无理数的是()A.B.C.D.3.142.(2分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)在,,,中,是最简二次根式的是()A.B.C.D.4.(2分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40°5.(2分)某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.方差D.众数6.(2分)若x|2m﹣3|+(m﹣2)y=8是关于x、y的二元一次方程,则m的值是()A.1B.任何数C.2D.1或27.(2分)如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130°D.140°8.(2分)如图,阴影部分是一个长方形,它的面积是()A.3cm2B.4cm2C.5cm2D.6cm29.(2分)如图,数轴上点P表示的数可能是()A.B.C.D.10.(2分)一次函数y=﹣x+8的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(每小题3分,共18分)11.(3分)化简:=.12.(3分)点P(a,8)到两坐标轴的距离相等,则a=.13.(3分)当m=时,函数y=(2m﹣1)x3m﹣2是正比例函数.14.(3分)一组数2,3,5,5,6,7的中位数是.15.(3分)若2a﹣b=5,a﹣2b=4,则a﹣b的值为.16.(3分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=8,AC=10,则△ADE的周长为.三、解答题(第17小题6分,第18小题8分,第19小题6分,共20分)17.(6分)解方程组:18.(8分)化简计算:(1);(2)+(﹣1﹣)2.19.(6分)已知:如图,∠DCE=∠E,∠B=∠D.求证:AD∥BC.四、(每小题8分,共16分)20.(8分)甲乙两名运动员进行射击选拔赛,每人射击10次,其中射击中靶情况如表:第一次第二次第三次第四次第五次第六次第七次第八次第九次第十次甲71081099108109乙107109910810710(1)选手甲的成绩的中位数是分;选手乙的成绩的众数是分;(2)计算选手甲的平均成绩和方差;(3)已知选手乙的成绩的方差是15,则成绩较稳定的是哪位选手?请直接写出结果.21.(8分)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点A(2,﹣1),C(6,2),点M为y轴上一点,△MAB的面积为6.请解答下列问题:(1)顶点B的坐标;(2)连接BD,求BD的长;(3)请直接写出点M的坐标.五、(本题10分)22.(10分)如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上,折痕的另一端F在AD边上且BG=10时.(1)证明:EF=EG;(2)求AF的长.六、(本题12分)23.(12分)某学校准备购进一批足球,从商场了解到:一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元.(1)列二元一次方程组解决问题:求一个A型足球和一个B型足球的售价各是多少元;(2)若该学校准备同时购进这两种型号的足球共80个,并且A型足球的数量小于等于60个,请设计出最省钱的购买方案,并说明理由.七、(本题12分)24.(12分)如图,在△ABC中,点D在AB上,CD=CB,点E为BD的中点,且EA=EC,点F为AC的中点,连接EF交CD于点M,连接AM.(1)求证:EF=AC;(2)求线段AM、DM、BC之间的数量关系.八、(本题12分)25.(12分)如图,在平面直角坐标系中,点E的坐标为(4,0),点F的坐标为(0,2),直线l1经过点E和点F,直线l1与直线l2:y=2x相交于点A.(1)求直线l1的表达式;(2)求点A的坐标;(3)求△AOE的面积;(4)当点P是直线l1上的一个动点时,过点P作y轴的平行线PB交直线l2于点B,当线段PB=3时,请直接写出P点的坐标.2018-2019学年辽宁省沈阳市大东区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)下列各数中是无理数的是()A.B.C.D.3.14【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【解答】解:=2,=2,2是有理数,3.14是有理数,是无理数,故选:A.【点评】此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.(2分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(2分)在,,,中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的概念分析得出答案.【解答】解:=2,不是最简二次根式;是最简二次根式;==,不是最简二次根式;=﹣3,不是最简二次根式;故选:B.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.4.(2分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40°【分析】根据等腰三角形两底角相等列式进行计算即可得解.【解答】解:∵AB=AC,∠B=70°,∴∠A=180°﹣2∠B=180°﹣2×70°=40°.故选:D.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等的性质.5.(2分)某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.方差D.众数【分析】一组数据中出现次数最多的一个数是这组数据的众数,班长最关心吃哪种水果的人最多,即这组数据的众数.【解答】解:吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.故选:D.【点评】此题主要考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.(2分)若x|2m﹣3|+(m﹣2)y=8是关于x、y的二元一次方程,则m的值是()A.1B.任何数C.2D.1或2【分析】根据二元一次方程的定义即可求解.【解答】解:根据题意可知:|2m﹣3|=1,解得:m=2或m=1,m﹣2≠0,m≠2,∴m=1.故选:A.【点评】本题考查了二元一次方程的定义、绝对值,解决本题的关键是掌握二元一次方程分定义.7.(2分)如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130°D.140°【分析】先根据平行线的性质得∠3=∠1=50°,然后根据邻补角的定义,即可求得∠2的度数.【解答】解:∵AB∥CD,∴∠3=∠1=50°,∴∠2=180°﹣∠3=130°.故选:C.【点评】本题考查了平行线性质,解题时注意:两直线平行,同位角相等.8.(2分)如图,阴影部分是一个长方形,它的面积是()A.3cm2B.4cm2C.5cm2D.6cm2【分析】由勾股定理求出直角三角形的斜边长,再由长方形的面积公式即可得出结果.【解答】解:由勾股定理得:=5(cm),∴阴影部分的面积=5×1=5(cm2);故选:C.【点评】本题考查了勾股定理、长方形的性质;熟练掌握勾股定理是解决问题的关键.9.(2分)如图,数轴上点P表示的数可能是()A.B.C.D.【分析】首先判定出2<<3,由此即可解决问题.【解答】解:因为2<<3,所以数轴上点P表示的数可能是.故选:B.【点评】本题考查实数与数轴,二次根式等知识,理解数与数轴上的点是一一对应关系是解题的关键,学会估计二次根式的近似值,属于中考常考题型.10.(2分)一次函数y=﹣x+8的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质得出结论.【解答】解:因为解析式y=﹣x+8中,﹣1<0,8>0,图象过一、二、四象限,故图象不经过第三象限,故选:C.【点评】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题(每小题3分,共18分)11.(3分)化简:=.【分析】先比较1与的大小,再根据绝对值的定义即可求解.【解答】解:=﹣1.【点评】此题主要考查了求实数的绝对值,其中非负数的绝对值等于他本身,负数的绝对值等于它的相反数.12.(3分)点P(a,8)到两坐标轴的距离相等,则a=±8.【分析】根据点到两坐标轴的距离相等,可得该点在象限角的角平分线上,据此可得答案.【解答】解:由题意,得|a|=8,解得a=±8,故答案为:±8.【点评】本题考查了点的坐标,利用点到两坐标轴的距离相等得出方程是解题关键.13.(3分)当m=1时,函数y=(2m﹣1)x3m﹣2是正比例函数.【分析】直接利用正比例函数的定义得出3m﹣2=1,进而得出答案.【解答】解:∵函数y=(2m﹣1)x3m﹣2是正比例函数,∴3m﹣2=1,解得:m=1,∵2m﹣1≠0,∴m≠.故答案为:1.【点评】此题主要考查了正比例函数的定义,正确把握定义是解题关键.14.(3分)一组数2,3,5,5,6,7的中位数是5.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:2,3,5,5,6,7,则中位数为:=5.故答案是:5.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.(3分)若2a﹣b=5,a﹣2b=4,则a﹣b的值为3.【分析】已知两等式左右两边相加,变形即可得到a﹣b的值.【解答】解:将2a﹣b=5,a﹣2b=4,相加得:2a﹣b+a﹣2b=9,即3a﹣3b=9,解得:a﹣b=3.故答案为:3.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.(3分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=8,AC=10,则△ADE的周长为18.【分析】两直线平行,内错角相等,以及根据角平分线性质,可得△OBD、△EOC均为等腰三角形,由此把△AEF的周长转化为AC+AB.【解答】解:∵DE∥BC∴∠DOB=∠OBC,又∵BO是∠ABC的角平分线,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴BD=OD,同理:OE=EC,∴△ADE的周长=AD+OD+OE+AE=AD+BD+AE+EC=AB+AC=18.故答案是:18.【点评】本题考查了平行线的性质和等腰三角形的判定及性质,正确证明△OBD、△EOC 均为等腰三角形是关键.三、解答题(第17小题6分,第18小题8分,第19小题6分,共20分)17.(6分)解方程组:【分析】应用加减消元法,求出方程组的解是多少即可.【解答】解:①+②,得4x=8,解得x=2.把x=2代入①中,得2﹣y=3.解得y=﹣1.∴原方程组的解是.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.18.(8分)化简计算:(1);(2)+(﹣1﹣)2.【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式性质,以及完全平方公式计算即可求出值.【解答】解:(1)原式=2﹣5+9=6;(2)原式=2+1+3+2=2+6.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.(6分)已知:如图,∠DCE=∠E,∠B=∠D.求证:AD∥BC.【分析】依据∠DCE=∠E,得出DC∥BE,可得∠D=∠DAE,再根据∠B=∠D,可得∠B=∠DAE,进而判定AD∥BC.【解答】证明:∵∠DCE=∠E,∴DC∥BE,∴∠D=∠DAE,又∵∠B=∠D,∴∠B=∠DAE,∴AD∥BC.【点评】本题主要考查了平行线的判定与性质的运用,两条直线被第三条所截,如果同位角相等,那么这两条直线平行.四、(每小题8分,共16分)20.(8分)甲乙两名运动员进行射击选拔赛,每人射击10次,其中射击中靶情况如表:第一次第二次第三次第四次第五次第六次第七次第八次第九次第十次甲71081099108109乙107109910810710(1)选手甲的成绩的中位数是9分;选手乙的成绩的众数是10分;(2)计算选手甲的平均成绩和方差;(3)已知选手乙的成绩的方差是15,则成绩较稳定的是哪位选手?请直接写出结果.【分析】(1)根据中位数,众数的定义判断即可.(2)根据平均数的定义,方差公式计算即可.(3)根据方差越小成绩越稳定判断即可.【解答】解:(1)甲的中位数==9分,乙的众数为10分.故答案为9,10.(2)甲的平均成绩=(7+10+8+10+9+9+10+8+10+9)=9,甲的方差=[(7﹣9)2+(10﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=1.(3)∵1<15,∴甲的成绩比较稳定.【点评】本题考查方差,平均数,众数,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(8分)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点A(2,﹣1),C(6,2),点M为y轴上一点,△MAB的面积为6.请解答下列问题:(1)顶点B的坐标(6,﹣1);(2)连接BD,求BD的长;(3)请直接写出点M的坐标.【分析】(1)根据点B的位置写出坐标即可;(2)利用勾股定理解答;(3)设△MAB的高为h,构建方程求出h即可解决问题;【解答】解:(1)(6,﹣1).故答案为解:(6,﹣1);(2)∵A(2,﹣1),C(6,2),B(6,﹣1),∴AB=4,BC=3,CD=4,DB===5;(3)设△MAB的高为h,根据题意得:AB•h=6,∵A(2,﹣1),B(6,﹣1).∴AB=4∴×h=6,∴h=3∴M(0,2)或M(0,﹣4).【点评】本题考查矩形的性质、坐标与图形的变化﹣平移等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.五、(本题10分)22.(10分)如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上,折痕的另一端F在AD边上且BG=10时.(1)证明:EF=EG;(2)求AF的长.【分析】(1)根据翻折的性质可得∠BGF=∠EGF,再根据两直线平行,内错角相等可得∠BGF=∠EFG,从而得到∠EGF=∠EFG,再根据等角对等边证明即可;(2)根据翻折的性质可得EG=BG,HE=AB,FH=AF,然后在Rt△EFH中,利用勾股定理列式计算即可得解.【解答】证明:(1)∵纸片折叠后顶点B落在边AD上的E点处,∴∠BGF=∠EGF,∵长方形纸片ABCD的边AD∥BC,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG;(2)∵纸片折叠后顶点B落在边AD上的E点处,∴EG=BG=10,HE=AB=8,FH=AF,∴EF=EG=10,∴FH===6,∴AF=FH=6.【点评】本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,熟记翻折前后两个图形能够重合得到相等的线段和角是解题的关键.六、(本题12分)23.(12分)某学校准备购进一批足球,从商场了解到:一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元.(1)列二元一次方程组解决问题:求一个A型足球和一个B型足球的售价各是多少元;(2)若该学校准备同时购进这两种型号的足球共80个,并且A型足球的数量小于等于60个,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一个A型足球x元,一个B型足球y元,根据“一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元”列方程组求解即可;(2)设A型足球a个,总费用w元,可得w=6000﹣25a,由一次函数的性质可求解.【解答】解:(1)设一个A型足球x元,一个B型足球y元,根据题意可得:解得:答:一个A型足球50元,一个B型足球75元.(2)设A型足球a个,总费用w元,根据题意可得:w=50a+75(80﹣a)=6000﹣25a,且a≤60,∵﹣25<0,∴w随着a的增大而减小,∴当a=60时,w的最小值为4500元.【点评】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键,难度不大.七、(本题12分)24.(12分)如图,在△ABC中,点D在AB上,CD=CB,点E为BD的中点,且EA=EC,点F为AC的中点,连接EF交CD于点M,连接AM.(1)求证:EF=AC;(2)求线段AM、DM、BC之间的数量关系.【分析】(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=AC;(2)由等腰三角形的性质可得AF=FC,EF⊥AC,由“SAS”可得△AFM≌△CFM,可得AM=CM,可得结论.【解答】(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=AC;(2)∵AE=EC,点F是AC中点,∴AF=FC,EF⊥AC,∴∠AFM=∠CFM,且AF=FC,MF=MF,∴△AFM≌△CFM(SAS)∴AM=CM,∵BC=CD=DM+CM=DM+AM.【点评】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质,证明△AFM≌△CFM是本题的关键.八、(本题12分)25.(12分)如图,在平面直角坐标系中,点E的坐标为(4,0),点F的坐标为(0,2),直线l1经过点E和点F,直线l1与直线l2:y=2x相交于点A.(1)求直线l1的表达式;(2)求点A的坐标;(3)求△AOE的面积;(4)当点P是直线l1上的一个动点时,过点P作y轴的平行线PB交直线l2于点B,当线段PB=3时,请直接写出P点的坐标.【分析】(1)根据待定系数法求得即可;(2)解析式联立,解方程组即可求得;(3)根据三角形面积公式求得即可;(4)设P(a,﹣+2),则B(a,2a),根据题意得|﹣+2﹣2a|=3,解方程即可求得P点的坐标.【解答】解:(1)设直线l1的解析式为y=kx+b,把E(4,0),F(0,2)代入得,解得k=﹣,b=2,∴直线l1的表达式为y=﹣x+2;(2)解得∴点A的坐标为(,);(3)∵点E的坐标为(4,0),∴OE=4,∴△AOE的面积==;(4)设P(a,﹣+2),则B(a,2a),根据题意得|﹣+2﹣2a|=3,解得a=﹣或a=2,∴P点的坐标为(﹣,)或(2,1).【点评】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,三角形面积等,交点坐标适合两直线解析式是解题的关键.。
北师大版2019—2020学年度八年级(上)期末考数学试卷(含答案)
河南省柘城县2015—2016学年度第一学期期末考试卷八年级数学一、选择题(每题3分,共24分): 1、 2的相反数是( )A 、2B 、-2C 、21-D 、212.下列满足条件的三角形中,不是直角三角形的是( )A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:5 3.如果P (m +3,2m +4)在y 轴上,那么点P 的坐标是( )。
A . (—2,0)B .(0,—2)C .(1,0)D .(0,1)4. 已知直线y =kx -4(k <0)与两坐标轴所围成的三角形面积等于4,则直线的表达式为( )A .y =-2x -4B .y =-x -4C .y =-3x +4D .y =-3x -4 5、4的算术平方根是( )A 、2B 、16C 、±2D 、±16 6.方程组43235x y k x y -=⎧⎨+=⎩,的解中x 与y 的值相等,则k 等于( )A.2B.4C.3D.1 7.一组数据6、8、7、8、10、9的中位数和众数分别是( ) A .7和8B .8和7C .8和8D .8和98.如图,已知a ∥b ,0651=∠,则2∠的度数为( ) A. 065 B. 0125 C.0115 D. 025 二、填空题。
(每题3分,共计21分)9.某校六个绿化小组一天植树的棵数如下:10,11,12,13,8,x .若这组数据的平均数是11,则这组数据的众数是 _____ .10.在△ABC 中,AB =13 cm ,AC =20 cm ,BC 边上的高为12 cm ,则△ABC 的面积为____________ ..11.已知a ,b 为两个连续的整数,且a >28>b ,则a +b = _____ .12.设实数x ,y 满足方程组14,31 2.3x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩则x +y = ______ .13.函数2y x =与1y x =+的图象的交点坐标为________.14. 某段时间,小明连续7天测得日最高温度如下表所示,那么这7天的最高温度的平均温度是 ______ ℃. 温度(℃) 26 27 25 天数13315.如图,在△ABC中,∠A =60°,∠B =40°,点D 、E 分别在BC 、AC的延长线上,则∠1= ______ 。
2023-2024学年度第一学期温州八年级数学第一次月考试卷(原卷+答案解析)
2023-2024学年度第一学期温州八年级数学第一次月考试卷一、选择题(本大题共有10个小题,每小题3分,共30分)1.下列长度的三条线段,能首尾相连围成三角形的是()A.1 cm,2 cm,3cm B.2 cm,3 cm,4 cmC.1 cm,1 cm,2 cm D.1 cm,2 cm,4 cm2.如图,用纸板挡住了三角形的一部分,小明根据所学知识很快就画出了一个与原来完全一样的三角形,他的依据是()A.ASA B.SAS C.AAS D.SSS∆的边AC上的高,下列画法中,正确的是()3.画ABCA.B.C.D.4.将一副三角板按如图方式重叠,则1∠的度数为()A .45°B .60°C .75°D .105°5.在△ABC 中,∠A=12∠B=13∠C ,则此三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形6. 如图,为测量池塘两端A 、B 的距离,小康在池塘外一块平地上选取了一点O ,连接AO ,BO ,并分别延长AO ,BO 到点C ,D ,使得AO DO =,BO CO =, 连接CD ,测得CD 的长为165米,则池塘两端A ,B 之间的距离为 ( )A .160米B .165米C .170米D .175米7 .如图,在三角形纸片ABC 中,8=AB cm ,7BC = cm ,5AC = cm ,将CDB ∆沿过点B 的直线折叠,使顶点C 落在AB 边上的点E 处,折痕为BD , 则AED ∆的周长为( )A .5cmB .6cmC .7cmD .8cm8 . 如图,已知12∠=∠,AC AD =,从①AB AE =,②BC ED =,③B E ∠=∠,④C D ∠=∠这四个条件中再选一个使ABC AED ≌△△,符合条件的有( )A .1个B .2个C .3个D .4个9 . 如图,在Rt ABC 中,∠C =90°,直线DE 是斜边AB 的垂直平分线交AC 于D .若AC =8,BC =6,则 DBC 的周长为( )A .12B .14C .16D .无法计算10. 如图在ABC ,ADE 中,90BAC DAE ∠=∠=°,AB AC =,AD AE =, 点C 、D 、E 点在同一条直线上,连结BD ,BE 以下四个结论:①BD CE =;②BD CE ⊥;③45ACE DBC∠+∠=°;④ACB DBC ∠=∠, 其中结论正确的个数有( )A .4B .3C .2D .111.如图所示,图中的1∠=______°.12.如图,已知∠1=∠2,请你添加一个条件 ,使得△ABD ≌△ACD .(添一个即可)13. 如图,已知∠B =∠C .添加一个条件使△ABD ≌△ACE (不标注新的字母,不添加新的线段),你添加的条件是 ;14.将一副三角板如图叠放,则图中∠α的度数为 .15.如图,在ABC 中,90C ∠=°,AD 平分BAC ∠,若2CD =,5AB =,则ABD △的面积为 .16.如图,ABC DEF ≌△△,点,,,B E C F 在一条直线上.已知8,5BC EC ==,则CF 的长为_______17.如图,在△ABC 中,AB=AC=10cm ,DE 是AB 的中垂线,△BDC 的周长为16cm ,则BC 的长为 cm .18. 如图,在△ABC 中,点D 、E 、F 分别为BC 、AD 、CE 的中点,且AEF S =24cm ,则△ABC 的面积为 2cm .三、解答题(本大题共有6个小题,共52分)20 . 如图,已知D 为ABC 边BC 延长线上一点,DF AB ⊥于F 交AC 于E ,35A ∠=°,42D ∠=°,求ACD ∠的度数.21.如图,在ABC ∆和ADE ∆中,AB AD =,12∠=∠,AC AE =.求证:BC DE =.22. 如图,在△ABC 中,AD 是△ABC 的高线,AE 是△ABC 的角平分线.已知∠B=40°,∠C=70°.求∠DAE 的度数.23.如图,在四边形ABCD 中,AD ∥BC ,∠1=∠2,BD =BC .(1)求证:△ABD ≌△ECB(2)若∠1=25°,∠DBC =30°,求∠DEC 的度数.24.如图1,在ABC 中,AB AC =,AD 是ABC 的角平分线.(1) 写出图中全等的三角形______,线段AD 与线段BC 的位置关系是______;(2) 如图2,在(1)的条件下,过点B ,作BE AC ⊥,垂足为E ,交AD 于点F ,且AE BE =,请说明AEF BEC ≌的理由.25.如图,在△ABC中,AE,CD分别是∠BAC,∠ACB的平分线,且AE,CD相交于点F.(1)若∠BAC=80°,∠ACB=40°,求∠AFC的度数;(2)若∠B=80°,求∠AFC的度数;(3)若∠B=x°,用含x的代数式表示∠AFC的度数.2023-2024学年度第一学期温州八年级数学第一次月考试卷(解答卷)一、选择题(本大题共有10个小题,每小题3分,共30分)1.下列长度的三条线段,能首尾相连围成三角形的是()A.1 cm,2 cm,3cm B.2 cm,3 cm,4 cmC.1 cm,1 cm,2 cm D.1 cm,2 cm,4 cm【答案】B2.如图,用纸板挡住了三角形的一部分,小明根据所学知识很快就画出了一个与原来完全一样的三角形,他的依据是()A.ASA B.SAS C.AAS D.SSS【答案】A∆的边AC上的高,下列画法中,正确的是()3.画ABCA.B.C.D.【答案】D4.将一副三角板按如图方式重叠,则1∠的度数为( )A .45°B .60°C .75°D .105°【答案】C5.在△ABC 中,∠A=12∠B=13∠C ,则此三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形【答案】B6. 如图,为测量池塘两端A 、B 的距离,小康在池塘外一块平地上选取了一点O ,连接AO ,BO ,并分别延长AO ,BO 到点C ,D ,使得AO DO =,BO CO =, 连接CD ,测得CD 的长为165米,则池塘两端A ,B 之间的距离为 ( )A .160米B .165米C .170米D .175米【答案】B7 .如图,在三角形纸片ABC 中,8=AB cm ,7BC = cm ,5AC = cm ,将CDB ∆沿过点B 的直线折叠,使顶点C 落在AB 边上的点E 处,折痕为BD ,A .5cmB .6cmC .7cmD .8cm【答案】B8 . 如图,已知12∠=∠,AC AD =,从①AB AE =,②BC ED =,③B E ∠=∠,④C D ∠=∠ 这四个条件中再选一个使ABC AED ≌△△,符合条件的有( )A .1个B .2个C .3个D .4个【答案】C9 . 如图,在Rt ABC 中,∠C =90°,直线DE 是斜边AB 的垂直平分线交AC 于D .若AC =8,BC =6,则 DBC 的周长为( )A .12B .14C .16D .无法计算【答案】B10. 如图在ABC ,ADE 中,90BAC DAE ∠=∠=°,AB AC =,AD AE =, 点C 、D 、E 点在同一条直线上,连结BD ,BE 以下四个结论:①BD CE =;②BD CE ⊥;③45ACE DBC∠+∠=°;④ACB DBC ∠=∠, 其中结论正确的个数有( )A .4B .3C .2D .1【答案】B二、填空题(本大题共有8个小题,每小题3分,共24分)11.如图所示,图中的1∠=______°.【答案】5012.如图,已知∠1=∠2,请你添加一个条件 ,使得△ABD ≌△ACD .(添一个即可)13. 如图,已知∠B =∠C .添加一个条件使△ABD ≌△ACE (不标注新的字母,不添加新的线段),你添加的条件是 ;【答案】AB =AC (答案不唯一).14.将一副三角板如图叠放,则图中∠α的度数为 .【答案】15°.15.如图,在ABC 中,90C ∠=°,AD 平分BAC ∠,若2CD =,5AB =,则ABD △的面积为 .【答案】516.如图,ABC DEF ≌△△,点,,,B E C F 在一条直线上.已知8,5BC EC ==,则CF 的长为_______【答案】317.如图,在△ABC 中,AB=AC=10cm ,DE 是AB 的中垂线,△BDC 的周长为16cm ,则BC 的长为 cm .【答案】618. 如图,在△ABC 中,点D 、E 、F 分别为BC 、AD 、CE 的中点,且AEF S =24cm ,则△ABC 的面积为 2cm .【答案】32三、解答题(本大题共有6个小题,共52分)19.如图,已知点B ,E ,C ,F 在同一直线上,AB =DE ,AC =DF ,BE =CF .求证:AC ∥DF .证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF ,在△ABC 和△DEF 中,∵AB DE AC DF BC EF = = =,∴△ABC ≌△DEF (SSS ),∴∠F =∠ACB ,∴AC ∥DF .20 . 如图,已知D 为ABC 边BC 延长线上一点,DF AB ⊥于F 交AC 于E ,35A ∠=°,42D ∠=°,求ACD ∠的度数.解:∵DF AB ⊥,∵42D ∠=°,∴9048B D °−∠=∠=°,∴483583ACD B A ∠°°=∠+∠=+=°.答:83ACD ∠=°.21.如图,在ABC ∆和ADE ∆中,AB AD =,12∠=∠,AC AE =.求证:BC DE =.证明: 12∠=∠,∴12CAD CAD ∠+∠=∠+∠,∴BAC DAE ∠=∠, 在ABC 和ADE 中,AB AD BAC DAE AC AE = ∠=∠ =, ∴ABC ≌ADE ,∴BC DE =.22. 如图,在△ABC 中,AD 是△ABC 的高线,AE 是△ABC 的角平分线.已知∠B=40°,∠C=70°.求∠DAE 的度数.解:∵∠B=40°,∠C=70°,∴∠BAC=180°−∠B−∠C=180°−40°−70°=70°,∵AE平分∠BAC,∠BAC=35°,∴∠BAE=12∴∠AED=∠B+∠BAE=40°+35°=75°,∵AD⊥BC,∴∠DAE=90°−∠AED=90°−75°=15°,即∠DAE为15°.23.如图,在四边形ABCD中,AD∥BC,∠1=∠2,BD=BC.(1)求证:△ABD≌△ECB(2)若∠1=25°,∠DBC=30°,求∠DEC的度数.解:(1)∵AD∥BC,∴∠ADB =∠EBC ,在△ABD 和△ECB 中,12BD CBADB EBC ∠=∠ = ∠=∠, ∴△ABD ≌△ECB (ASA );(2)∵∠1=25°,∴∠2=∠1=25°,又∵∠DBC =30°,∴∠DEC =∠DBC +∠2=55°.24.如图1,在ABC 中,AB AC =,AD 是ABC 的角平分线.(1) 写出图中全等的三角形______,线段AD 与线段BC 的位置关系是______;(2) 如图2,在(1)的条件下,过点B ,作BE AC ⊥,垂足为E ,交AD 于点F ,且AE BE =,请说明AEF BEC ≌的理由.解:(1)∵AD 是ABC 的角平分线,∴BAD CAD ∠=∠, ∵AB AC =,AD AD =, ∴()SAS ABD ACD ≌△△,∴ADB ADC ∠=∠, ∵180ADB ADC∠+∠=°, ∴90ADB ADC ∠=∠=°,即AD BC ⊥, 故答案为:ABD ACD △≌△;垂直(或线段AD BC ⊥);(2)由(1)得AD BC ⊥,所以90ADC ∠=°. 所以90EAF C ∠+∠=°. 因为BE AC ⊥,所以90BEC AEF ∠∠==°. 所以90CBE C ∠+∠=°.所以EAF EBC ∠=∠又因为AE BE =,90BEC AEF ∠∠==°, 所以()ASA AEF BEC ≌.25.如图,在△ABC 中,AE ,CD 分别是∠BAC , ∠ACB 的平分线,且AE ,CD 相交于点F .(1) 若∠BAC =80°,∠ACB =40°,求∠AFC 的度数;(2) 若∠B =80°,求∠AFC 的度数;(3) 若∠B =x °,用含x 的代数式表示∠AFC 的度数. 解:(1)∵∠BAC =80°,∠ACB =40AE ,CD 分别是∠BAC ,∠ACB 的平分线,∴∠FAC =40°,∠FCA =20°, ∴∠AFC =180°-∠FAC -∠FCA =120°.(2)∵∠B =80°,∴∠BAC +∠BCA =100°, ∵AE ,CD 分别是∠BAC ,∠ACB 的平分线, ∴∠FAC +∠FCA =50°,∴∠AFC =130°.∴∠BAC+∠BCA=180°-x°,∵AE,CD分别是∠BAC,∠ACB的平分线,∴∠FAC+∠FCA=12(180°-x°),∴∠AFC=180°-(∠FAC+∠FCA)=180°-12(180°-x°)=90°+12x°.。
2013八年级(上)数学第三次月考试卷
2013—2014学年度第一学期八年级(上)数学第三次月考测试题(时间:120分钟 总分:150分 A 卷100分 B 卷50分)A 卷一、选择题:(每题3分,共30分) 1、在(3)5,,,2a b x x x a b x a b π-+++-,ma 1+中,是分式的有 ( ) A 、1个 B 、2个 C 、3个 D 、4个 2.下列运算正确的是 ( )(A)3412a a a ⋅= (B)3362a a a += (C)330a a ÷= (D)2353515x x x ⋅= 3.分式21,,234b x a b ab的最简公分母是( ). (A )24a 2b 3 (B)24ab 2 (C)12ab 2 (D)12a 2b 3 4下列约分正确的是 ( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy 5.若多项式x 2+pxy+qy 2=(x-3y)(x+3y),则p,q 的值依次为( ) A.-12,-9 B.-6,9 C.-9,-9 D.0,-96、无论x 取什么数时,总是有意义的分式是 ( ) A .122+x x B.12+x x C.133+x x D.25x x -7.如果把分式xx y+中的x 和y 都扩大3倍,那么分式的值( ). (A)扩大3倍 (B)不变 (C)缩小3倍 (D)缩小6倍8.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( )A.1个B.2个C.3个D.4个 9、若分式231xx -的值为正数,则( )A 、0>x B 、0<x C 、1>x D 、1<x10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则100!98!的值为( ). (A )5049(B )99! (C )9900 (D )2! 二、填空题:(每小题3分,共30分)11、在日常生活中,事物所呈现的对称性能给人们以平衡与和谐的美感. 我们的字母也有类似的情况,呈现轴对称图形的字母有 (至少写3个) 12. 计算:999×1001=______;13.在直角坐标系内有两点A(-1,1)、B(2,3),则A 点关于X 轴对称的坐标是:______ ,B 点关于Y 轴对称的点的坐标是: 14. 计算:)()(4332a a=________;)(323c b a -=___________.15、x 2-7在实数范围内分解因式为 . 16. 若y x Kxy 922+-是一个完全平方式,则k=_________.17.若x=3.2,y=6.8,则x 2+2xy+y 2= .18.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:111u v f+=.若f=6厘米v=8厘米,则物距u= 厘米. 19.计算:12-22+32-42+52-62+72-82+92-102= .班 姓 考密 封 线 内 不 要 答 卷………………………………………………装………………………………订………………………………线………………………………………………20、观察下面一列有规律的数:31,82,153,244,355,486,…… 根据规律可知第n 个数应是 (n 为正整数)三.解答题(共40分)21、计算(每小题3分,共9分) (1)232425()()()a a a ⋅÷.(2)4a 2x 2·(-52a4x 3y 3)÷(-21a 5xy 2);(3)23332)2(2)a c da cdb a ⋅÷-(22、分解因式:(每小题3分,共21分)(1) a 2-25 (2) 4x 2-9y 2 (3) (x+y+z)2-(x-y+z)2.(4) 2718x x +- (5) x 2+2xy+y 2-4 (6) 214x x -+.(7) 4-4(a -b)+(a -b)223、作图题:(要写作法)请作出△ABC 关于直线L 的对称图形△A`B`C` (本题5分)24.请将下面的代数式化简,再选择一个你喜欢的数(要合适哦!)代入求值:212(1)1a a a a --++-(本题5分)B 卷(每题10分.共50分)25.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.ABC26.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.27.已知a ,b,c 是△ABC 的三边,且满足关系式a 2+c 2=2a b+2bc-2b 2,试说明△ABC 是等边三角形28.已知1x 4x +=,则242x _________.x x 1=++ (请写出解题过程)29、已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使 CE = CD 求证:BD = DE .班级 姓名 考号密 封 线 内 不 要 答 卷………………………………………………装………………………………订………………………………线………………………………………………。
2018-2019学年度第一学期第一次月考试题数学试卷
2018/2019学年度第一学期第一次月考试题数学试卷第Ⅰ卷(选择题)一.选择题(共12小题,满分36分,每小题3分)1. 一个月内,小丽的体重增长﹣1千克,意思就是这个月内()A. 小丽的体重减少﹣1千克B. 小丽的体重增长1千克C. 小丽的体重减少1千克D. 小丽的体重没变化2.若|x|=|y|,那么x与y之间的关系是()A. 相等B. 互为相反数C. 相等或互为相反数D. 无法判断3.下列运算正确的是()A. (﹣3)+(﹣4)=﹣3+﹣4=…B. (﹣3)+(﹣4)=﹣3+4=…C. (﹣3)﹣(﹣4)=﹣3+4=…D. (﹣3)﹣(﹣4)=﹣3﹣44.2的相反数的倒数是()A. ﹣2B. ﹣C. 2D.5.3×3+(﹣2)=()A. 5B. 6C. 4D. 76.下列式子:2a2b,3xy﹣2y2,,4,﹣m,,,其中是单项式的有()A. 2个B. 3个C. 4个D. 5个7.下列运算不正确的是()A. 2a﹣a=aB. 2a+b=2abC. 3a2+2a2=5a2D. ﹣a2b+2a2b=a2b8.计算(﹣1)2017+(﹣1)2018的结果是()A. ﹣2B. 2C. 0D. ﹣19.若多项式5x2y|m|(m+1)y2﹣3是三次三项式,则m等于()A. ﹣1B. 0C. 1D. 210.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则()A. ①,②都不对B. ①对,②不对C. ①,②都对;D. ①不对,②对11.一个代数式与3x2﹣5x+2的和是2x2﹣x+1,则这个代数式是()A. 5x2﹣6x+3B. ﹣x2﹣4x﹣1C. x2+4x+1D. ﹣x2+4x﹣112.若多项式3x2﹣2(5+y﹣2x2)+mx2的值与x的值无关,则m等于()A. 0B. 1C. ﹣1D. ﹣7第Ⅱ卷(非选择题)二.填空题(共8小题,满分24分,每小题3分)13.重庆西站铁路综合交通枢纽(简称“重庆西站”)自1月25日开通以来,第一个月累计到发旅客2272000人次,实现安全、平稳、有序运行,经受了首场春运“大考”,将数字2272000用科学记数法表示为_____.14.若单项式3x3y2n与单项式9x3y4是同类项,则n=________.15.若3x m+5y2与x7y n的和是单项式,则n m=_____.16.若单项式﹣8x3m+n y的次数为5,若m,n均为正整数,则m﹣n的值为_____.17.乘积是6的两个负整数之和为_____.18.现有两张铁片:长方形铁皮长为x+2y,宽为x﹣2y(其中x﹣2y>0);正方形铁皮的边长为2(x﹣y),根据需要把两张铁皮裁剪后焊接成一张长方形的铁片,铁皮一边长为6x,则新铁片的另一边长为_____(不计损失)19.若a,b,c,d均为有理数,现规定一种新的运算:=ad﹣bc,例:=2×5﹣3×4.已知=2,则的值为_____.20.若|x|=4,|y|=2,且x<y,则x+y=_____.三.解答题(共6小题,满分60分)21.计算:(1)﹣42×+|﹣2|3×(2)3a2b﹣[2ab2﹣2(ab﹣)+ab]+3ab2.22.先化简,后求值:求代数式5(2a2b﹣ab2)﹣4(ab2+3a2b)的值,其中a=﹣1,b=2.23.某自行车厂计划每天生产200辆自行车,由于各种原因实际每天生产量与计划每天生产量相比有出入,下表是某周(5天)的实际生产情况(比计划超产为正,减产为负):(1)根据记录求这5天实际生产自行车的数量.(2)求产量最多的一天比产量最少的一天多生产自行车的数量.24.一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)若(m,n)是“相伴数对”,其中m≠0,求;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.25.“十一”黄金周期间,某市的在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).若9月30日外出旅游人数记为a(1)请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人.(2)如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?26.如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒3个单位长度的速度在数轴上由A向B运动,当点P到达点B后立即返回,仍然以每秒3个单位长度的速度运动至点A停止运动,设运动时间为t (单位:秒)(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离;(用含t的代数式表示)(4)当点P表示的有理数与原点的距离是3个单位长度时,直接写出所有满足条件的t值.。
2018-2019学年度八年级数学上册第一次月考试题
2018-2019学年度第一学期第一次检测试题(卷)八年级数学题号 一 二 三 23 24 25 26 27 合计 得分一、选择题(本大题共10小题,每题3分,共30分):1.下列长度的三条线段能组成三角形的是( ) A .1,2,3 B.2,2,4 C.3,4,5 D.3,4,82.一个三角形的两边长分别为3cm 和7cm,则此三角形第三边长可能是( ) A .3cm B.4 cm C. 7 cm D.11cm3.不一定在三角形内部的线段是( )A..三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对4.张师傅不小心将一块三角形玻璃打破成如图10中的三块,他准备去店里重新配置一块与原来一模一样的,最省事的做法是 ( )A .带Ⅰ去;B .带Ⅱ去;C .带Ⅲ去;D .三块全带去5.在△ABC 中,∠A=12∠B=13∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形 6.如图1,△ABD ≌△ACE ,点B 和点C 是对应顶点,AB=8,AD=6,BD=7,则BE 的长是( )A .1B .2C .4D .67.如图2,△ABC 与△DEF 是全等三角形,则图中相等的线段有( ) A .1对 B .2对 C .3对 D .4对图10图2 图18.如图3,△ABC ≌△FED ,则下列结论错误的是( )A .EC=BDB .EF ∥ABC .DF=BD D .AC ∥FD9.四边形ABCD 中,如果∠A +∠C+∠D=280°,则∠B 的度数是( ) A .80° B .90° C .170° D .20° 10.内角和等于外角和2倍的多边形是( )A .五边形B .六边形C .七边形D .八边形二、填空题(每小题3分,共30分)11.在△ABC 中,∠C=100°,∠B=10°,则∠A= .12.如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF ,∠B=∠F=72°,则∠D= 度. 13.如图,x = .14.△ABC 中,∠B=40°,D 在BA 的延长线上,AE 平分∠CAD ,且AE ∥BC ,则∠BAC= . 15.如图,五边形ABCDE 中,AE ∥CD ,∠A=147°,∠B=121°,则∠C= .16.如图所示,△ABC 中,BD 平分∠ABC ,CE 平分∠ACB 的邻补角∠ACM ,若∠BDC=130°,座位号---------------------------------------装----------------------------订-------------------------------------------线-------------------------------------------姓名:________________ 班级:______________ 学号:________________第16题图第15题图 AB C DE F BDC 图3EFAA CB D DE∠E=50°,则∠BAC的度数是.17.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).18.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.19.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于度.20.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有①,②,③,④的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带块.三.解答题21(5分).一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.(5分)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.23(10分).如图,AB=AE,∠B=∠AED,∠1=∠2,求证:△ABC≌△AED.24.(10分)如图,已知AD∥BC,AE,BE分别平分∠DAB,∠CBA,∠AEF=28°,求∠BEG 的大小.25(10分).如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.第20题图26(10分).如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27(10分).如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.。
2018-2019学年九年级上学期期中考试数学试题(含答案)
2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x-7 -6 -5 -4 -3 -2 y-27-13-3353则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ). A .(2,2)B .(2,2)C .(2,2)D .(2,2)(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A .20cmB .18cmC .25cmD .32cm10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ). A .12-B .26-C .2-D .23-二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 2(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.Q BP22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒5个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =, 由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,2x =±, ∴(2,2)P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时25PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴22OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴2BC =,6OC =,故(6,2)B --, 代入2y ax =中得:26a -=,26a =-.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+.分分分分 分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,25AC =,5BC =, ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,5AF t =,52AF AB AE AC ==,又∵EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-,∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。
(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》检测(答案解析)
一、选择题1.点()1,2-关于y 轴对称的点的坐标是( )A .()1,2-B .()2,1-C .()1,2--D .()1,2 2.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣3 4.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8865.如图,△ABC 中,AD 垂直BC 于点D ,且AD=BC ,BC 上方有一动点P 满足12PBC ABC S S ∆∆=,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A .30°B .45°C .60°D .90°6.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1) 7.如图,保持△ABC 的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是( )A .关于x 轴对称B .关于y 轴对称C .将原图形沿x 轴的负方向平移了1个单位D .将原图形沿y 轴的负方向平移了1个单位8.如图,在平面直角坐标系上有点()1,0A ,点A 第一次跳至点()11,1A -,第二次向右跳动3个单位至点()22,1A ,第三次跳至点()32,2A -,第四次向右跳动5个单位至点()43,2A , ...依此规律跳动下去,点A 第100次跳至点100A 的坐标是( )A .()50,50B .()51,50C .()50,51D .()49,509.A(-2,-3)到x 轴的距离为( )A .-2B .-3C .3D .210.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),……,按这样的运动规律,经过2020次运动后,动点P 的坐标是( )A .(2020,2020)B .(505,505)C .(1010,1010)D .(2020,2021) 11.已知(4,2)P a +在第一象限内,且点P 到两坐标轴的距离相等,则a 的值为( ) A .2 B .3 C .-6 D .2或-6 12.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(﹣2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2020的坐标是( )A .(0,1)B .(﹣2,4)C .(﹣2,0)D .(0,3)二、填空题13.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当0m ≠时,点()2,P m m -在第四象限内.其中真命题有________(填序号).14.如图,网格纸上每个小正方形的边长为1,点A ,点C 均在格点上,点P 为x 轴上任意一点,则PAC △周长的最小值为________.15.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.16.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.17.已知点M (3,-2),它与点N (x ,y )在同一条平行于x 轴的直线上,且MN =4,那么点N 的坐标是______.18.如图,将正整数按如图所示规律排列下去,若用有序数对(m ,n )表示m 排从左到右第n 个数,如(4,3)表示9,则(15,4)表示______.19.已知点A 在x 轴上方,y 轴左侧,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________.20.点(,)P x y 点在第四象限,且点P 到x 轴、y 轴的距离分别为6、8,则点P 的坐标为__________.三、解答题21.如图,在平面直角坐标系中,每个小方格的边长都是1个单位长度.(1)画出ABC 关于y 轴对称的A B C ''';(2)写出点A '、B '、C '的坐标;(3)求出ABC 的面积.22.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 满足4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B 的坐标为 ;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.23.已知ABC ,顶点A ,B ,C 的坐标分别为()4,1-,()1,2--,()3,2-.(1)请在平面直角坐标系中画出ABC 关于x 轴对称的111A B C △;(2)在y 轴上找到一点D ,使得CD BD +的值最小(在图中标出D 点位置即可,保留作图痕迹).24.已知点()5,12A a a --,解答下列问题:(1)若点A 到x 轴和y 轴的距离相等,求点A 的坐标;(2)若点A 向右平移若干个单位后,与点()2,3B --关于x 轴对称,求点A 的坐标. 25.如图,在平面直角坐标系xOy 中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出ABC 的面积.(2)在图中作出ABC 关于y 轴的对称图形111A B C △.(3)写出点A 1,B 1,C 1的坐标.26.如图,ABC 的坐标分别是()0,2A -、()2,5B -、()5,3C -.(1)如图1,画出ABC 关于x 轴对称的图形111A B C △;(2)如图2,在x 轴上找出点P ,使PA PC +最小,并直接写出P 点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据关于y 轴对称的点的坐标的变化特征求解即可.【详解】解:关于y 轴对称的点的坐标变化规律是:纵坐标不变,横坐标变为原来的相反数, 所以,点()1,2-关于y 轴对称的点的坐标是(-1,-2),故选:C .【点睛】本题考查了关于y 轴对称点的坐标变化规律,解题关键是树立数形结合思想,掌握坐标变化规律.2.B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】-,∵点()3,4-在第二象限,∴点()3,4故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).3.B解析:B【分析】直接利用关于y轴对称点的性质得出答案.【详解】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.故选:B.【点睛】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.C解析:C【分析】根据点的坐标变化寻找规律即可.【详解】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=()12n n -,有(n+1)个点,共2n 个点; 2+4+6+8+10+…+2n≤2018, ()222n n +≤2018且n 为正整数, 得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=45时,x=45462⨯=990,46个点, ∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:C .【点睛】 本题考查了规律型:点的坐标,解决本题的关键是观察点的坐标的变化寻找规律. 5.B解析:B【分析】 根据12PBC ABC S S ∆∆=得出点P 到BC 的距离等于AD 的一半,即点P 在过AD 的中点且平行于BC 的直线l 上,则此问题转化成在直线l 上求作一点P ,使得点P 到B 、C 两点距离之和最小,作出点C 关于直线l 的对称点C ’,连接BC ’,然后根据条件证明△BCC ’是等腰直角三角形即可得出∠PBC 的度数.【详解】解:∵12PBC ABC S S ∆∆=, ∴点P 到BC 的距离=12AD , ∴点P 在过AD 的中点E 且平行于BC 的直线l 上,作C 点关于直线l 的对称点C ’,连接BC ’,交直线l 于点P ,则点P 即为到B 、C 两点距离之和最小的点,∵AD ⊥BC ,E 为AD 的中点,l ∥BC ,点C 和点C ’关于直线l 对称,∴CC ’=AD =BC ,CC ’⊥BC ,∴三角形BCC ’是等腰直角三角形,∴∠PBC =45°.故选B .【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P 在过AD 的中点E 且平行于BC 的直线l 上是解决此题的关键.6.C解析:C【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可.【详解】解:由题意得:()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A . 故选C .【点睛】 本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.7.A解析:A【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x 轴对称.【详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x 轴对称.故选:A .【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.8.B解析:B【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),故第100次跳动至点的坐标是(51,50).故选:B.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.9.C解析:C【分析】平面内一点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值.【详解】解:点A(-2,-3)到x轴的距离为|-3|=3.故选C.【点睛】此题考查了平面内的点到坐标轴的距离和点的坐标的关系.注意:平面内一点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值.10.C解析:C【分析】观察不难发现,偶次运动到的点的横纵坐标都是次数的12,据此解答即可.【详解】解:由图可知,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),第四次运动到点(2,2),第二次接着运动到点(2,3),第三次接着运动到点(3,3),……,不难发现,偶次运动到的点的横纵坐标都是次数的12,∴经过2020次运动后,动点P的坐标是2020202022(,),即(1010,1010).故选:C.【点睛】本题是点的坐标的规律变化的考查,准确识图,观察出偶次运动到的点的横纵坐标都是次数的12是解题的关键.11.A解析:A【分析】本题可通过横坐标为4确定点P到纵轴距离,继而根据点P到坐标轴距离相等列方程求解.【详解】由已知得:24a+=,因为点P在第一象限,故:24a+=,解得:2a=.故选:A.【点睛】本题考查平面直角坐标系、一元一次方程、绝对值的化简,易错点在于若坐标含有未知数,考查距离问题时需要加绝对值或者分类讨论,确保结果不重不漏.12.B解析:B【分析】按照反弹规律依次画图即可.【详解】解:解:如图,根据反射角等于入射角画图,可知光线从P2反射后到P3(0,3),再反射到P4(-2,4),再反射到P5(-4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2020÷6=336……4,即点P2020的坐标是(-2,4),故选:B.【点睛】本题是规律探究题,解答时要注意找到循环数值,从而得到规律.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.①【分析】根据对顶角相等平行线的性质实数的平方不同象限内点的坐标的特征进行判断【详解】解:①对顶角相等故①是真命题;②如果两条平行线被第三条直线所截那么同位角相等故②是假命题;③如果两个实数的平方相解析:①【分析】根据对顶角相等、平行线的性质、实数的平方、不同象限内点的坐标的特征进行判断.【详解】解:①对顶角相等,故①是真命题;②如果两条平行线被第三条直线所截,那么同位角相等,故②是假命题;③如果两个实数的平方相等,那么这两个实数相等或互为相反数,故③是假命题;④当m≠0时,点P(m2,﹣m)在第四象限内或第一象限内,故④是假命题;故答案为:①.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.14.【分析】根据勾股定理可得AC的长度作点C关于x轴的对称点C′连接AC′与x轴交于点P利用勾股定理求出AP+PC的最小值从而得出答案【详解】AC=如图作点C关于x轴的对称点C′连接AC′与x轴交于点P解析:21022【分析】根据勾股定理可得AC的长度,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,利用勾股定理求出AP+PC的最小值,从而得出答案.【详解】 AC=222222+=,如图,作点C 关于x 轴的对称点C′,连接AC′,与x 轴交于点P ,则AP+PC=AP+PC′=AC′,此时AP+PC 2226210+=所以△PAC 周长的最小值为21022故答案为:21022.【点睛】本题主要考查了轴对称-最短路线问题,解题的关键是掌握轴对称变换的性质. 15.5【分析】作BD ⊥x 轴于DCE ⊥x 轴于E 则∠ADB=∠AEC=根据点B(-11)得到BD=1CE=2OA=1OD=1OE=2求得AD=2AE=1根据代入数值计算即可【详解】作BD ⊥x 轴于DCE ⊥x 轴解析:5【分析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,根据点1,0A 、B(-1,1)、()2,2C ,得到BD=1,CE=2,OA=1,OD=1,OE=2,求得AD=2,AE=1,根据BDEC ABD A ABC CE SS S S =--△梯形代入数值计算即可.【详解】 作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,∵点1,0A 、B(-1,1)、()2,2C ,∴BD=1,CE=2,OA=1,OD=1,OE=2, ∴AD=2,AE=1,∴BDEC ABD A ABC CE S S S S =--△梯形 =11()2212B AD DC B ED CE D AE E -⋅-⋅+⋅11(12)321221122=--+⨯⨯⨯⨯⨯ =2.5,故答案为:2.5..【点睛】此题考查直角坐标系中图形面积计算,点到坐标轴的距离,理解点到坐标轴的距离得到线段长度由此利用公式计算面积是解题的关键.16.四【详解】解:∵点M(a-2a+3)在y 轴上∴a-2=0∴a=2∴点N 的坐标为N(2+22-3)即(4-1)∴点N 在第四象限故答案为:四【点睛】本题考查了各象限内点的坐标的符号特征记住各象限内点的坐解析:四【详解】解:∵点M(a-2,a+3)在y 轴上,∴a-2=0,∴a=2,∴点N 的坐标为N(2+2,2-3),即(4,-1),∴点N 在第四象限,故答案为:四.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).17.或【分析】本题根据两点在同一平行于轴的直线上确定点N 的纵坐标继而根据两点距离确定点N 的横坐标【详解】由已知得:点N 的纵坐标为设点N 的横坐标为则MN 的距离可表示为∵∴求解得:或故点N 坐标为或故填:或【 解析:(1,2)--或(7,2)-【分析】本题根据两点在同一平行于x 轴的直线上确定点N 的纵坐标,继而根据两点距离确定点N 的横坐标.【详解】由已知得:点N 的纵坐标为2-,设点N 的横坐标为x ,则M 、N 的距离可表示为3x -,∵4MN =,∴34x -=,求解得:7x =或1x =-,故点N 坐标为(1,2)--或(7,2)-.故填:(1,2)--或(7,2)-.【点睛】本题考查点坐标的求法,解题关键在于理清两点之间的位置关系,其次此类型题目通常需要分类讨论,确保结果不重不漏.18.109【分析】每排数据的个数等于排号数则可计算出前14排共有105个数然后再往后数4个数即可【详解】解:前14排共有1+2+3+…+14=105个数所以第15排的第4个数为109即(154)表示10解析:109【分析】每排数据的个数等于排号数,则可计算出前14排共有105个数,然后再往后数4个数即可.【详解】解:前14排共有1+2+3+…+14=105个数,所以第15排的第4个数为109,即(15,4)表示109.故答案为109.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.19.(-43)【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限第二象限中的点横坐标为负数纵坐标为正数所以点A 的坐标为(-43)故答案为:解析:(-4,3) .【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值.【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A 的坐标为(-4,3)故答案为:(-4,3) .【点睛】本题考查点的坐标,利用数形结合思想解题是关键.20.【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可【详解】∵点P 在第四象限且点P 到x 轴和y 轴的距离分别为68∴点P 的横坐标是8纵坐标是-6即点P 的坐标为故答案为【点睛】此题考查点 解析:(8,6)-【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.【详解】∵点P 在第四象限,且点P 到x 轴和y 轴的距离分别为6、8,∴点P 的横坐标是8,纵坐标是-6,即点P 的坐标为(8,6)-.故答案为(8,6)-.【点睛】此题考查点的坐标,解题关键在于掌握横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.三、解答题21.(1)答案见解析;(2)()3,2A '、()4,3B '-、()1,1C '-;(3)132. 【分析】(1)首先根据关于y 轴对称的点的特点找到相应的,,A B C ''',然后顺次连接,,A B C '''即可;(2)直接根据A B C '''在坐标系中的位置即可写出各标点的坐标; (3)用所在ABC 的长方形的面积减去三个小三角形的面积即可.【详解】解:(1)如图所示,A B C '''即为所求;(2)由图可知,()3,2A '、()4,3B '-、()1,1C '-.(3)A B C '''的面积为11113352323152222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题主要考查作图能力,掌握轴对称图形的作法是解题的关键.22.(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】试题分析:(1460.a b --=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O CB A O 的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P移动的时间即可.试题b-=(1)∵a、b60.∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.23.(1)见详解;(2)见详解【分析】(1)找出ABC关于x轴的对应点A1,B1,C1,再顺次连接起来,即可;(2)作出点B关于y轴的对称点B′,连接CB′,交y轴于点D,即可.【详解】(1)如图所示;(2)作出点B关于y轴的对称点B′,连接CB′,交y轴于点D,即为所求.【点睛】本题主要考查坐标与图形-轴对称,掌握“马饮水”模型,是解题的关键.24.(1)点A 的坐标为()3,3--或()9,9-;(2)()6,3-.【分析】(1)分别根据点A 的位置列方程求解即可;(2)根据平移规律求解即可.【详解】解:(1)若点A 在第一象限或第三象限,512a a -=-,解得2a =,5123a a -=-=-.∴点A 的坐标为()3,3--,若点A 在第二象限或第四象限,5120a a -+-=,解得4a =-,59a -=-,129a -=,∴点A 的坐标为()9,9-.综上所述,点A 的坐标为()3,3--或()9,9-.(2)∵若点A 向右平移若干个单位,其纵坐标不变,为()12a -,又∵点A 向右平移若干个单位后与点()2,3B --关于x 轴对称,∴()1230a -+-=,∴1a =-,∴5156a -=--=-,()121213a -=-⨯-=,即点A 的坐标为()6,3-.【点睛】此题主要考查了关于x 轴对称的点的坐标特征,关键是掌握点的坐标变化规律. 25.(1)152;(2)见解析;(3)A 1(1,5),B 1(1,0),,C 1(4,3) 【分析】(1)利用面积公式直接计算求出答案;(2)根据轴对称的性质确定点A 1,B 1,C 1的位置,顺次连线即可得到图形;(3)根据(2)直接解答即可.【详解】(1)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),∴AB ∥y 轴,AB=5-0=5,AB 边上的高为-1-(-4)=3, ∴1532ABC S=⨯⨯=152; (2)如图:(3)A 1(1,5),B 1(1,0),,C 1(4,3).【点睛】此题考查轴对称的性质,轴对称作图,直接坐标系中点的坐标,正确理解轴对称的性质作出图形是解题的关键.26.(1)见解析;(2)见解析,点P 的坐标为(2,0).【分析】(1)作出A ,B ,C 关于x 轴对称点A 1,B 1,C 1即可;(2)作点A 关于x 轴 对称点A′,连接CA′交x 轴于点P ,点P 即为所求.【详解】解:(1)△A 1B 1C 1如图所示.(2)作点A关于x轴对称点A′,连接CA′交x轴于点P,点P即为所求,点P的坐标为(2,0).【点睛】本题考查作图-轴对称变换,轴对称最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
北师大版八年级数学上第三、四单元测试卷含答案
第三章位置与坐标第Ⅰ卷(选择题共30分)一、选择题(每题3分,共30分)1.下列关于确定一个点的位置的说法中,能具体确定点的位置的是( )A.东北方向B.东经35°10′,北纬12°C.距点A100米D.偏南40°,8000米2.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在的象限是( )A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定3.如图1,△ABC与△DFE关于y轴对称,若点A的坐标为(-4,6),则点D的坐标为( )图1A.(-4,6) B.(4,6)C.(-2,1) D.(6,2)4.若A(a,b),B(a,d)表示两个不同的点,且a≠0,则这两个点在( )A.平行于x轴的直线上B.第一、三象限的角平分线上C.平行于y轴的直线上D.第二、四象限的角平分线上5.甲、乙两名同学用围棋子做游戏,如图2所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也组成轴对称图形,则下列下子方法不正确的是[说明:棋子的位置用数对表示,如点A在(6,3)]( )图2A.黑(3,7),白(5,3) B.黑(4,7),白(6,2)C.黑(2,7),白(5,3) D.黑(3,7),白(2,6)6.以下是甲、乙、丙三人看地图时对四个地标的描述: 甲:从学校向北直走500米,再向东直走100米可到图书馆; 乙:从学校向西直走300米,再向北直走200米可到博物馆; 丙:博物馆在体育馆正西方向200米处.根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是( )A .向南直走300米,再向西直走200米B .向南直走300米,再向西直走600米C .向南直走700米,再向西直走200米D .向南直走700米,再向西直走600米7.若点P(-m ,3)与点Q(-5,n)关于y 轴对称,则m ,n 的值分别为( )A .-5,3B .5,3C .5,-3D .-3,58.有甲、乙、丙三个人,他们所处的位置不同,甲说:“以我为坐标原点,乙的位置是(2,3).”丙说:“以我为坐标原点,乙的位置是(-3,-2).”则以乙为坐标原点,甲、丙的坐标分别是(已知三人所建立的直角坐标系中x 轴、y 轴的方向相同,且单位长度一致)( )A .(-3,-2),(2,-3)B .(-3,2),(2,3)C .(-2,-3),(3,2)D .(-2,-3),(-2,-3)9.已知点A(1,0),B(0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为( )图3A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定10.如图3所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是( )A .(2019,0)B .(2019,-1)C .(2019,1)D .(2018,0)请将选择题答案填入下表:二、填空题(每题3分,共18分)11.若m>0,n<0,则点P(m,n)关于x轴的对称点在第________象限.12.已知A(2x-1,3x+2)是第一、三象限角平分线上的点,则点A的坐标是________.13.在同一直角坐标系中,一同学误将点A的横、纵坐标的次序颠倒,写成A(a,b);另一同学误将点B的坐标写成关于y轴对称的点的坐标,写成B(-b,-a),则A,B两点原来的位置关系是__________.14.在平面直角坐标系中,已知点A(-3,0),B(3,0),点C在坐标轴上,且AC+BC=10,写出满足条件的所有点C的坐标:________.15.已知等边三角形ABC的两个顶点的坐标分别为A(-4,0),B(2,0),则点C的坐标为____________,△ABC的面积为________.16.如图4是某同学在课下设计的一款软件,蓝精灵从点O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到达A2n后,要向________方向跳________个单位长度落到A2n+1.图4三、解答题(共52分)17.(6分)如图5,△ABC中,AB=AC=13,BC=24,请你建立适当的平面直角坐标系,并直接写出A,B,C三点的坐标.图518.(6分)(1)若点M(5+a,a-3)在第二、四象限角平分线上,求a的值;(2)已知点N的坐标为(2-a,3a+6),且点N到两坐标轴的距离相等,求点N的坐标.19.(6分)在平面直角坐标系中,将坐标是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的点用线段依次连接起来形成一个图案Ⅰ.(1)作出该图案关于y轴对称的图案Ⅱ;(2)将所得到的图案Ⅱ沿x轴向上翻折180°后得到一个新图案Ⅲ,试写出它的各顶点的坐标;(3)观察图案Ⅰ与图案Ⅲ,比较各顶点的坐标和图案位置,你能得到什么结论?20.(6分)已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点.请回答下列问题:(1)在坐标系内描出点A,B,C的位置.(2)求出以A,B,C三点为顶点的三角形的面积.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明理由.图621.(6分)已知点P(2m+4,m-1).根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过点A(2,-3)且与x轴平行的直线上.22.(6分)如图7,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,若将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.图723.(8分)如图8,正方形ABFG和正方形CDEF的顶点在边长为1的正方形网格的格点上.(1)建立平面直角坐标系,使点B,C的坐标分别为(0,0)和(5,0),并写出点A,D,E,F,G的坐标;(2)连接BE和CG相交于点H,BE和CG相等吗?并计算∠BHC的度数.图824.(8分)如图9,在平面直角坐标系中,直线l过点M(3,0)且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.图9答案:1.B 2.B 3.B 4.C 5.C 6.A 7.A 8.C 9.C 10.B 11.一 12.(-7,-7) 13.关于x 轴对称14.(-5,0),(5,0),(0,4),(0,-4) 15.(-1,3 3)或(-1,-3 3) 9 3[解析] 当点C 在第二象限时,作CH ⊥AB 于点H .因为A (-4,0),B (2,0),所以AB =6.因为△ABC 是等边三角形,所以AH =BH =3.由勾股定理得CH =3 3,所以C (-1,3 3);同理,当点C 在第三象限时,C (-1,-3 3).所以△ABC 的面积为12×6×3 3=9 3.16.(9,6) 正东 (2n +1) [解析] 因为蓝精灵从点O 第一跳落到A 1(1,0),第二跳落到A 2(1,2),第三跳落到A 3(4,2),第四跳落到A 4(4,6),所以蓝精灵先向正东跳动,再向正北跳动,每次跳动的距离为前一次的距离加1,即可求出.第五跳落到A 5(9,6).到达A 2n 后,要向正东方向跳(2n +1)个单位长度落到A 2n +1.17.解:答案不唯一,如以BC 所在直线为x 轴,过点B 作BC 的垂线为y 轴建立平面直角坐标系, 由图可知,点A (12,5),B (0,0),C (24,0). 18.解:(1)由题意可得5+a +a -3=0,解得a =-1.(2)由题意可得|2-a |=|3a +6|,即2-a =3a +6或2-a =-(3a +6),解得a =-1或a =-4,所以点N 的坐标为(3,3)或(6,-6).19.解:图案Ⅰ如图. (1)作出图案Ⅱ如图.(2)作出图案Ⅲ如图.图案Ⅲ各个顶点的坐标分别为(5,0),(4,2),(3,0),(2,2),(1,0).(3)观察图案Ⅰ与图案Ⅲ,不难发现:①从各顶点坐标看,横、纵坐标均互为相反数;②从图案的位置上看,图案Ⅰ在第三象限,图案Ⅲ在第一象限,二者关于坐标原点对称.20.解:(1)描点如图.(2)如图,依题意,得AB ∥x 轴,且AB =3-(-2)=5, 所以S △ABC =12×5×2=5.(3)存在.因为AB =5,S △ABP =10,所以点P 到AB 的距离为4.又因为点P 在y 轴上,所以点P 的坐标为(0,5)或(0,-3).21.解:(1)由题意,得2m +4=0,解得m =-2,则m -1=-3,所以点P 的坐标为(0,-3). (2)由题意,得m -1=0,解得m =1,则2m +4=6,所以点P 的坐标为(6,0).(3)由题意,得m -1=(2m +4)+3,解得m =-8,则2m +4=-12,m -1=-9, 所以点P 的坐标为(-12,-9).(4)由题意,得m -1=-3,解得m =-2,则2m +4=0,所以点P 的坐标为(0,-3).22.解:由题意,可知折痕AD 所在的直线是四边形OAED 的对称轴.在Rt △ABE 中,AE =OA =10,AB =8,所以BE =AE 2-AB 2=102-82=6, 所以CE =4,所以E (4,8). 在Rt △DCE 中,DC 2+CE 2=DE 2, 又DE =OD ,所以(8-OD )2+42=OD 2, 所以OD =5,所以D (0,5).23.解:(1)按已知条件建立平面直角坐标系(如图),A (-3,4),D (8,1),E (7,4),F (4,3),G (1,7).(2)连接BE 和CG 相交于点H ,由题意,得BE =72+42=65,CG =72+42=65,所以BE =CG .借助全等及三角形内角和等性质可得∠BHC 的度数:∠BHC =90°.24.解:(1)△A 2B 2C 2的三个顶点的坐标分别是A 2(4,0),B 2(5,0),C 2(5,2).(2)①如图①,当0<a ≤3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),所以P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.②如图②,当a >3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),所以P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.综上所述,PP 2的长为6.第四章一次函数检测题1、点P在直线y=-x+1上,且到y轴的距离为1,则点P的坐标是()A、(1,0)B、(-1,2)C、(1,0)或(-1,2)D、(0,1)2、若直线y=-2x+1经过(3,y1),(-2,y2),则y1 ,y2的大小关系是()A、y1>y2B、y1<y2C、y1=y2D、无法确定3、对于一次函数y=﹣2x+4,下列结论错误的是()A、函数值随自变量的增大而减小B、函数的图象不经过第三象限C、函数的图象向下平移4个单位长度得y=﹣2x的图象D、函数的图象与x轴的交点坐标是(0,4)4、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A、y=-x+2B、y=x+2C、y=x-2D、y=-x-25、一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过()A、第二、四象限B、第一、二、三象限C、第一、三象限D、第二、三、四象限6、若函数y=(a-5)x1-b+b是一次函数,则a、b应满足的条件是().A、a=5且b≠0B、a=5且b=0C、a≠5且b≠0D、a≠5且b=07、某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A、20kgB、25kgC、28kgD、30kg8、小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A、3km/h和4km/hB、3km/h和3km/hC、4km/h和4km/hD、4km/h和3km/h9、关于函数y=﹣x,下列结论正确的是()A、函数图象必过点(﹣2,﹣1)B、函数图象经过第1、3象限C、y随x的增大而减小D、y随x的增大而增大10、正比例函数y=2kx的图象如图所示,则y=(k﹣2)x+1﹣k图象大致是()A、B、C、D、11、已知函数y=(m-3)x|m|-2+3是一次函数,求解析式.12、某种拖拉机的油箱可储油40L,加满油并开始工作后,•油箱中的余油量y(L)与工作时间x(h)之间为一次函数关系,如图所示.(1)求y与x的函数解析式.(2)一箱油可供拖位机工作几小时?13、鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]鞋码”为y,,y)在你学过的哪种函数的图象上?(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?14、某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?15、已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.16、如图,正比例函数y=kx ,y=mx ,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k ,m ,n的大小关系是________.17、若一次函数的图象过点(0,2),且函数y随自变量x的增大而增大,请写出一个符合要求的一次函数表达式:________.18、(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=________ ,b=________ .19、函数y=kx(k≠0)的图象过P(﹣3,3),则k=________ ,图象过________ 象限.20、点P(-1,m)、Q(2,n)是直线y=-2x上的两点,则m与n的大小关系是________.21、当x=2时,函数y=kx+10与y=3x+3k的值相等,则k的值是________。
北师大版八年级数学上册第一次月考考试题【附答案】
北师大版八年级数学上册第一次月考考试题【附答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,23.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .124.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11 6.计算()22b a a -⨯ 的结果为( ) A .b B .b - C . ab D .b a7.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S2+S3=10,则S2的值为()A.113B.103C.3 D.838.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.39.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B +∠BDC=180°10.若关于x的一元二次方程2210x x kb-++=有两个不相等的实数根,则一次函数y kx b=+的图象可能是:()A. B.B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)1.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.2.若二次根式x1-有意义,则x的取值范围是▲.3.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=________.4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是________.5.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM BN=,连接AC 交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是________.6.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________。
八年级数学上学期期中模拟测试卷02(北师大版)考试版
8.如图,一棵垂直于地面的树在一次强台风中从高地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为( )
A.4.5米B.6米C. 米D.9米
9.已知点(﹣4,y1),(2,y2)都在直线y=﹣ x+b上,则y1与y2的大小关系是( )
A.y1>y2B.y1=y2C.y1<y2D.不能确定
(2)如图2,若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.
22.(10分)如图,已知直线y=﹣ x+1与x轴、y轴分别交于A、B两点,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,点P为直线BC上一个动点.
(2)已知P为y轴上一点,若△ABP与△ABC的面积相等,请直接写出点P的坐标.
20.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
4.测试范围:第一-第四单元(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、单项选择题(本题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的。)
1.81的平方根为( )
A.3B.±3C.9D.±9
(1)轿车到达乙地时,求货车与甲地的距离;
(2)求线段CD对应的函数表达式;
(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前 北师大版八年级2018--2019学年度第一学期 第三次月考数学试卷 温馨提示:亲爱的同学们,考试只是检查我们对所学知识的掌握情况,希望你不要慌张,平心静气,做题时把字写得工整些,让老师和自己看得舒服些,祝你成功! 一、单选题(计30分) 1.(本题3分)在平面直角坐标系中,到x 轴的距离为1,到y 轴的距离为2的点有( )A .1个B .2个C .3个D .4个 2.(本题3分)甲、乙两车从A 城出发沿相同的路线匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =45或415.其中正确的是________(填序号). 3.(本题3分)已知是正整数,则整数n 的最大值为( ) A . 12 B . 11 C . 8 D . 3 4.(本题3分)如图,若象棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点( ) A . (1,-1) B . (-1,1) C . (-1,2) D . (1,-2) 5.(本题3分)下列各数中,无理数是( ).A .0.10101B .0C .D .23- 6.(本题3分)若点A (a ,4)和B (3,b )关于y 轴对称,则a 、b 的值分别为( ) A . 3,4 B . 2,-4 C . -3,4 D . -3,-4 7.(本题3分)如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点(0,1),(1,1), (1,0), (2,0),…那么点A 4n +1(n 为自然数)的坐标为( )A . (2n,0)B . (2n,1)C . (4n,0)D . (4n,1)8.(本题3分)设三角形的三边长分别等于下列各组数,能构成直角三角形的是( )A .31,14,51B .4,5,6C .5,6,10D .6,8,109.(本题3分)a -1与3-2a 是某正数的两个平方根,则实数a 的值是( )A . 4B . -34C . 2D . -210.(本题3分)小林在某商店两次购买商品A 、B ,购买商品A 、B 的数量和费用如下表:则商品A 、B 的单价分别是( )A . 60元,90元B . 90元,60元C . 90元,120元D . 120元,90元二、填空题(计32分)11.(本题4的平方根是____________.12.(本题4分)如图是一个程序运算,若输入的x 为﹣6,则输出y 的结果为 .14.(本题4分)14.(本题4分)已知x ,y 满足,则3x +4y=_____. 15.(本题4分)已知A ,B ,C 三地位置如图所示,∠C=90°,A ,C 两地的距离是4 km ,B ,C 两地的距离是3 km ,则A ,B 两地的距离是_________km ;若A 地在C 地的正东方向,则B 地在C 地的_____方向.16.(本题4分)16.(本题4分)将实数5,π,0,-6用“<”连接起来是______________________________. 17.(本题4分) 的平方根是它本身, 的立方根是它本身. 18.(本题4分)园林队在某公司进行 绿化,中间休息了一段时间,已知绿化面积(平方米)与工作时间(小时)的关系的图像如图所示,则休息后园林队每小时绿化面积为__________平方米. 三、解答题(计58分) 19.(本题8分)(1)计算:498163+--; (2)求x 的值:22(2)8x -=.20.(本题8分)解方程组:x 3y 12 2x 3y 6+=⎧⎨-=⎩ ①②. 21.(本题8分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:已知华氏温度y (℉)是摄氏温度x (℃)的一次函数.求该一次函数的解析式;当华氏温度14℉时,求其所对应的摄氏温度.22.(本题8分)观察下列算式:①1×5+4=32;②2×6+4=42;③3×7+4=52;④4×8+4=62,…利用探索出的规律解决下列问题:(1)按照上面的规律,写出第⑥个等式: ;(2)仿照上面的方法,写出下面等式的左边: =20182;(3)按照上面的规律,写出第n 个式子,并证明其成立.23.(本题8分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。
乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠。
该班需球拍5副,乒乓球若干盒(不小于5盒)。
问:(1)设购买乒乓球x盒时,在甲家购买所需多少元?在乙家购买所需多少元?(用含x的代数式表示,并化简)(2)当购买乒乓球多少盒时,两种优惠办法付款一样?(3)当购买30盒乒乓球时,若让你选择一家商店去办这件事,你打算去哪家商店购买?为什么?24.(本题9分)如图,在△ABC 中,AD ⊥BC 于点D ,若AD=4,BD=2,CD=8,那么△ABC 是直角三角形吗?为什么?25.(本题9分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线y=x k的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k 的值;(3)当棚内温度不低于16℃时,该蔬菜能够快速生长,请问这天该蔬菜能够快速生长多本卷由系统自动生成,请仔细校对后使用,答案仅参考答案1.D【解析】因为到y轴的距离为2,所以|x|=2,x=±2.因为到x轴的距离为1,所以|y|=1,y=±1,所以点的坐标为(2,1),(-2,1),(2,-1),(-2,-1),共4个.2.①②【解析】由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y=kt,甲把(5,300)代入可求得k=60,=60t,∴y甲=mt+n,设乙车离开A城的距离y与t的关系式为y乙把(1,0)和(4,300)代入可得,解得,∴y=100t-100,乙令y=y乙可得:60t=100t-100,解得t=2.5,甲即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;-y乙|=50,可得|60t-100t+100|=50,即|100-40t|=50,令|y甲当100-40t=50时,可解得t=,当100-40t=-50时,可解得t=,=50,此时乙还没出发,又当t=时,y甲当t=时,乙到达B城,y=250;甲本卷由系统自动生成,请仔细校对后使用,答综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;故答案是:③,④。
3.B【解析】【分析】根据二次根式的意义可知12-n≥0,解得n≤12,且12-n开方后是正整数,符合条件的12-n的值有1、4、9…,其中1最小,此时n的值最大.【详解】由二次根式的意义可知12-n≥0,解得:n≤12,所以,当等于最小的正整数1时,n取最大值,则n=11,故选B.【点睛】本题考查了二次根式有意义的条件,二次根式的被开方数是非负数.4.B【解析】试题分析:先利用“象”所在点的坐标画出直角坐标系,然后写出“炮”所在点的坐标即可.解:如图,“炮”位于点(﹣1,1).故选:B.考点:坐标确定位置.5.C.【解析】试题分析:无限不循环小数是无理数,只有C.考点:无理数的概念.6.C【解析】∵点A(a,4)和B(3,b)关于y轴对称,∴a=-3,b=4.故选C.点睛:关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.7.B【解析】分析:根据图象可得移动4次图象完成一个循环,由n=1,2,3,总结得出点A4n+1的坐标.详解:由图可知,n=1时,4×1+1=5,点A5的坐标为(2,1),n=2时,4×2+1=9,点A9的坐标为(4,1)n=1时,4×1+1=5,点A5的坐标为(6,1)所以点A4n+1的坐标为(2n,1)故选:B.点睛:本题考查了点的坐标的变化规律,仔细观察图形,分别求出n=1,2,3,4时对应的点A4n+1的对应的坐标是解题的关键.8.D.【解析】试题解析:根据勾股定理逆定理62+82=102,可得6,8,10能够成直角三角形,故选D.考点:勾股定理的逆定理.9.C【解析】试题解析:∵a−1与3−2a是某正数的两个平方根,∴a−1+3−2a=0,解得a=2,故选C.点睛:一个正数有两个平方根,它们互为相反数.10.C【解析】分析:根据题意,由A 、B 的数量和费用的数值关系,列二元一次方程组求解即可. 详解:设A 的单价为x 元,B 的单价为y 元,根据题意得解得故选:C.点睛:此题主要考查了二元一次方程组的应用,根据题意中的表格确定等量关系是解题关键. 11.2±4=,再求4的平方根可得: ±2,故答案为: ±2.12.-5.【解析】试题解析:把6x =-代入程序中计算得, ()()()()64356435 5.⎡⎤-+--⨯-=-++⨯-=-⎣⎦故答案为: 5.-13.2【解析】∵(a+2)2+|b -1|0,∴a+2=0,b -1=0,3-c=0,∴a=-2,b=1,c=3,∴a +b +c=-2+1+3=2,故答案为:2.14.10 【解析】试题解析:,①×2-②得:y=1,把y=1代入①得:x=2,把x=2,y=1代入3x+4y=10,故答案为:1015. 5 正北【解析】试题分析:∵∠C=90°,A ,C 两地的距离是4km ,B ,C 两地的距离是3km ,∴(km ),又∵A 地在C 地的正东方向,则B 地在C 地的 正北方向.故答案为:5;正北.考点:1.勾股定理的应用;2.方向角.16.-6<0<<π【解析】正数大于0和负数,0大于负数,所以-6<0<<π,故答案为-6<0<<π. 17.0;0,±1.【解析】试题解析:0的平方根是它本身,0,±1的立方根是它本身.考点:1.立方根;2.平方根.18.50【解析】分析:根据图象可得,休息后园林队2小时绿化面积为160-60=100(cm²),然后可得绿化速度.详解:根据图象可得,休息后园林队2小时绿化面积为160-60=100(cm²)每小时绿化面积为100÷2=50(m²),故答案为:50.点睛:本题考查了函数的图象,解题的关键是正确理解题意,能从图象中读取正确的信息.19.(1)152;(2)124,0x x ==. 【解析】试题分析:(1)首先根据二次根式和三次根式的计算法则求出各根式的值,然后进行求和;(2)利用直接开平方法进行求解.试题解析:(1)原式=4-(-2)+32=152(2)2(2)x -=4则x -2=±2∴x=2±2解得:124,0x x ==考点:根式的计算、解一元二次方程.20.解:①+②得,3x=18,解得x=6,把x=6代入①得,6+3y=12,解得y=2。