2019大一轮高考总复习文数课时作业提升34 不等式的性质与一元二次不等式 含解析 精品

合集下载

高三数学 第一轮复习 02:不等式的性质及一元二次不等式

高三数学 第一轮复习 02:不等式的性质及一元二次不等式
ab D 、 a b 0 ,(a b)2 0 ,又 c2 0 ,(a b)2 c 0 ,本选项一定成立,故选: D 。
例1-6 下列命题正确的是 ( )
A.若 | a | b ,则 a2 b2 C.若 a2 b2 ,则 a | b |
B.若 a | b | ,则 a2 b2 D.若 a2 b2 ,则 1 1
m
x2
0
x1 m x2 m
0
f
(m )
0 ;(6) x1, x2 (m, n)
m
b n 2a
f (m) 0
f (n) 0
-3-
· 典例精讲 ·
模块01:不等式的性质及应用
① 不等式的基本性质:
例1-1 下列四个命题:
①若 a | b | ,则 a2 b2 ③若 a b , c d ,则 ac bd 其中正确命题的个数有 ( )
D. b b m aa
【答案】: B
【解析】:向糖水(不饱和)中再加入
m
克糖,那么糖水(不饱和)将变得更甜,可知浓度变大.由题意可得:b a
b a
m m

故选: B 。
例1-4 设 b a , d c ,则下列不等式中一定成立的是 ( )
A. a c b d
B. ac bd
C. a d b c
*作商法:作商法比大小的变形要围绕与1比大小进行。
作商法的基本步骤是:
①求商,②变形,③与1比大小从而确定两个数的大小。
(一般运用的范围在正数范围内,幂指运算,和后期的数列学习中)
模块02:一元二次不等式的解法
1、一般流程:
①将不等式的右边化为零,左边化为二次项系数大于零的不等式 ax2 bx c 0 或 ax2 bx c 0(a 0) 。

2019大一轮高考总复习文数(北师大版)讲义第7章 第01节 不等式的性质与一元二次不等式 Word版含答案

2019大一轮高考总复习文数(北师大版)讲义第7章 第01节 不等式的性质与一元二次不等式 Word版含答案

第一节不等式的性质与一元二次不等式.不等式的基本性质()对称性:>⇔<;()传递性:>,>⇒;>+>⇔()可加性:>++;>,>>+;⇒()可乘性:>,>⇒>;>>,>>⇒>;⇒(>()可乘方性:>>);≥,∈()可开方性:>>⇒>(∈,≥)..不等式的一些常用性质()倒数的性质:>,>⇒①<.<<②⇒<.>><<③⇒>.⇒④<<<或<<<.<<()有关分数的性质:若>>,>,则①<;>(->).②>;<(->)..三个“二次”之间的关系.不等式性质中辨明两个易误点()在应用传递性时,注意等号是否传递下去,如≤,<⇒<. ()在乘法法则中,要特别注意“乘数的符号”,例如当≠时,有>⇒>;若无≠这个条件,>⇒>就是错误结论(当=时,取“=”)..必会结论()++>(≠)恒成立的充要条件是:>且-<(∈).()++<(≠)恒成立的充要条件是:<且-<(∈)..判断下列结论的正误(正确的打“√”,错误的打“×”) ()一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( )()一个非零实数越大,则其倒数就越小.( )()同向不等式具有可加和可乘性.( ) ()若不等式++>的解集是(-∞,)∪(,+∞),则方程++=的两个根是和.( )()若方程++=(≠)没有实数根,则不等式++>的解集为.( )()不等式++≤在上恒成立的条件是<且Δ=-≤.( ) ()若二次函数=++的图像开口向下,则不等式++<的解集一定不是空集.( )答案:()×()×()×()√()×()×()√.(教材习题改编)设=(-),=(-)·(-),则与的大小关系为( ).>.≥.<.≤解析:选-=(-+)-(-+)=>,所以>.故选..若>>,则下列不等式中恒成立的是( ).+>+.>.+>+.>解析:选由>>⇒<<⇒+>+,故选.。

2019版高考数学一轮复习 第七章 不等式 第一节 不等式的性质及一元二次不等式实用

2019版高考数学一轮复习 第七章 不等式 第一节 不等式的性质及一元二次不等式实用

2.不等式的基本性质
性质 对称性 传递性 可加性
可乘性
性质内容 a>b⇔ b<a a>b,b>c⇒_a_>__c_ a>b⇔__a_+__c_>_b_+__c_ ac>>0b⇒_a_c_>__b_c ac<>0b⇒_a_c<__b_c_
特别提醒 ⇔ ⇒ ⇔
注意 c 的符号
性质
性质内容
特别提醒
同向可加性
ac>>db⇒__a_+__c_>__b_+__d__

同向同正可 乘性
ac>>db>>00⇒_a_c_>__b_d_>__0

可乘方性 a>b>0⇒_a_n_>__b_n(n∈N,n≥1)
可开方性
a>b>0⇒_n__a_>__n__b_ (n∈N,n≥2)
[答案] (1)[5,10] (2)③ (3)充分不必要
[方法技巧] 不等式性质应用问题的常见类型及解题策略
(1)不等式成立问题.熟记不等式性质的条件和结论是基 础,灵活运用是关键,要注意不等式性质成立的前提条件.
(2)与充分、必要条件相结合问题.用不等式的性质分别 判断 p⇒q 和 q⇒p 是否正确,要注意特殊值法的应用.
1.比较两个实数大小的方法 a-b>0⇔a > ba,b∈R,
(1)作差法a-b=0⇔a = ba,b∈R, a-b<0⇔a < ba,b∈R.
ab>1⇔a >ba∈R,b>0, (2)作商法ab=1⇔a = ba∈R,b>0,
ab<1⇔a < ba∈R,b>0.
[方法技巧] 比较两个数(式)大小的两种方法
不等式的性质 [例 2] (1)(2018·泰州期初测试)已知函数 f(x)=ax2+bx,且 1≤f(-1)≤2,2≤f(1)≤4,则 f(-2)的取值范围是________. (2)下列命题: ①若 a>b,c>d,则 ac>bd; ②若 ac>bc,则 a>b; ③若ca2<cb2,则 a<b; ④若 a>b,c>d,则 a-c>b-d. 其中正确命题的序号是________. (3)(2018·兴化八校联考)“x1>3 且 x2>3”是“x1+x2>6 且 x1x2>9”的______ 且 m+n<0,则下列不等式中成立的

高考数学文科一轮复习不等式的性质与一元二次不等式练习含答案精校打印版

高考数学文科一轮复习不等式的性质与一元二次不等式练习含答案精校打印版

高考数学文科一轮复习不等式的性质与一元二次不等式练习含答案精校打印版第1讲不等式的性质与一元二次不等式一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( )A .f (x )=g (x )B .f (x )>g (x )C .f (x )<g (x )D .随x 的值变化而变化解析f (x )-g (x )=x 2-2x +2=(x -1)2+1>0?f (x )>g (x ).答案 B2.已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b 成立的有( )A .1个B .2个C .3个D .4个解析运用倒数性质,由a >b ,ab >0可得1a <1b ,②、④正确.又正数大于负数,①正确,③错误,故选C. 答案 C3.(2017·河北省三市联考)若集合A ={x |3+2x -x 2>0},集合B ={x |2x <2},则A ∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)解析依题意,可求得A =(-1,3),B =(-∞,1),∴A ∩B =(-1,1).答案 C4.若集合A ={x |ax 2-ax +1<0}=?,则实数a 的取值范围是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}解析由题意知a =0时,满足条件.a ≠0时,由a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.答案 D5.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .(-1,0)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定解析由f (1-x )=f (1+x )知f (x )的图像关于直线x =1对称,即a2=1,解得a =2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2, f(x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2. 答案 C 二、填空题6.已知函数f (x )=x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为________.解析由题意知 x ≥0,x 2+2x >3或x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}.答案 {x |x >1}7.(2017·合肥模拟)若关于x 的不等式ax >b 的解集为? ?-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.解析由已知ax >b 的解集为? ?-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a ,得x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,故不等式ax 2+bx -45a >0的解集为? ?-1,45.答案 ? ?-1,458.不等式a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,则实数λ的取值范围为________.解析因为a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,所以a 2+8b 2-λb (a +b )≥0对于任意的a ,b ∈R 恒成立,即a 2-λba +(8-λ)b 2≥0恒成立,由二次不等式的性质可得,Δ=λ2b 2+4(λ-8)b 2=b 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0,解得-8≤λ≤4. 答案 [-8,4] 三、解答题9.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴?(-1)+3=a (6-a )3,(-1)×3=-6-b3,解得a =3±3,b =-3.即a 的值为3±3,b 的值为-3.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价. (1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解 (1)由题意得,y =100? ????1-x 10·100? ?1+850x .因为售价不能低于成本价,所以100? ?1-x 10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2].(2)由题意得40(10-x )(25+4x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134. 所以x 的取值范围是12,2.11.下面四个条件中,使a >b 成立的充分而不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3解析 A 项:若a >b +1,则必有a >b ,反之,当a =2,b =1时,满足a >b ,但不能推出a >b +1,故a >b +1是a >b 成立的充分而不必要条件;B 项:当a =b =1时,满足a >b -1,反之,由a >b -1不能推出a >b ;C 项:当a =-2,b =1时,满足a 2>b 2,但a >b 不成立;D 项:a >b 是a 3>b 3的充要条件,综上所述答案选A.答案 A12.(2017·湛江调研)已知函数f (x )=ax 2+bx +c (a ≠0),若不等式f (x )<0的解集为x |x <12或x >3,则f (e x )>0(e 是自然对数的底数)的解集是( )A .{x |x <-ln 2或x >ln 3}B .{x |ln 2<=""C .{x |x <="" p="">D .{x |-ln 2<=""解析法一依题意可得f (x )=a ? ????x -12(x -3)(a <0),则f (e x)=a ? ????e x -12(e x -3)(a <0),由f (e x )=a ? ????e x -12(e x -3)>0,可得12<=""D.法二由题知,f (x )>0的解集为x 12<3,令1<="" p="">2<="" p="" x="" 答案="">13.若不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是________.解析设f (x )=x 2+ax -2,由题知:Δ=a 2+8>0,所以方程x 2+ax -2=0恒有一正一负两根,于是不等式x 2+ax -2>0在区间[1,5]上有解的充要条件是f (5)>0,即a ∈? ????-235,+∞. 答案 ? ??-235,+∞14.解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ).解原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可以化为a (x -2)? ????x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·? ????x -1a <0.因为方程(x -2)? ??x -1a =0的两个根分别是2,1a ,所以当0<a <12时,2<1a ,则原不等式的解集是x |2<x <1a ;当a =12时,原不等式的解集是?;当a >12时,1a <2,则原不等式的解集是x1a <x <2. (2)当a =0时,原不等式为-(x -2)<0,解得x >2,即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)? ????x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·? ??x -1a >0,由于1a <2,故原不等式的解集是xx <1a 或x >2.综上所述,当a <0时,不等式的解集为?xx <1a 或x >2;当a =0时,不等式的解集为{x |x >2};当0<a <1 2时,不等式的解集为x 2<x <1a ;当a =12时,不等式的解集为?;当a >12时,不等式的解集为x ?1a <x <2.。

2019版一轮创新思维文数(人教版A版)练习:第六章 第一节 不等式的性质及一元二次不等式

2019版一轮创新思维文数(人教版A版)练习:第六章 第一节 不等式的性质及一元二次不等式

课时规范练 A 组 基础对点练1.已知x >y >z ,x +y +z =0,则下列不等式成立的是( ) A .xy >yz B .xz >yz C .xy >xzD .x |y |>z |y |解析:因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,所以x >0,又y >z ,所以xy >xz ,故选C. 答案:C 2.函数f (x )=1-xx +2的定义域为( ) A .[-2,1] B .(-2,1]C .[-2,1)D .(-∞,-2]∪[1,+∞)解析:要使函数f (x )=1-x x +2有意义,则⎩⎪⎨⎪⎧(1-x )(x +2)≥0,x +2≠0,解得-2<x ≤1,即函数的定义域为(-2,1]. 答案:B3.已知集合A ={1,2,3},B ={x |x 2<9},则A ∩B =( ) A .{-2,-1,0,1,2,3} B .{-2,-1,0,1,2} C .{1,2,3}D .{1,2}解析:易知B ={x |-3<x <3},又A ={1,2,3},所以A ∩B ={1,2}. 答案:D4.已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A .[-2,-1] B .[-1,2) C .[-1,1]D .[1,2)解析:A ={x |x ≤-1或x ≥3},故A ∩B =[-2,-1],选A. 答案:A5.若a >b >0,则下列不等式不成立的是( ) A.1a <1bB .|a |>|b |C .a +b <2ab D.⎝⎛⎭⎫12a <⎝⎛⎭⎫12b解析:∵a >b >0,∴1a <1b,且|a |>|b |,a +b >2ab ,又f (x )=⎝⎛⎭⎫12x是减函数, ∴⎝⎛⎭⎫12a <⎝⎛⎭⎫12b .故C 项不成立. 答案:C6.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( ) A .(1,2) B .[1,2] C .[1,2)D .(1,2]解析:A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}. 答案:D7.不等式(1+x )(1-x )>0的解集是( ) A .{x |-1<x <1} B .{x |x <1}C .{x |x <-1或x >1}D .{x |x <1且x ≠-1}解析:原式可化为(x +1)(x -1)<0, ∴-1<x <1. 答案:A8.已知a >0,且a ≠1,m =aa 2+1,n =a a +1,则( ) A .m ≥n B .m >n C .m <nD .m ≤n解析:由题易知m >0,n >0,两式作商,得mn =a (a 2+1)-(a +1)=a a (a -1),当a >1时,a (a -1)>0,所以a a (a -1)>a 0=1,即m >n ;当0<a <1时,a (a -1)<0,所以a a (a -1)>a 0=1,即m >n .综上,对任意的a >0,a ≠1,都有m >n . 答案:B9.不等式组⎩⎪⎨⎪⎧x 2-4x +3<0,2x 2-7x +6>0的解集是( )A .(2,3) B.⎝⎛⎭⎫1,32∪(2,3) C.⎝⎛⎭⎫-∞,32∪(3,+∞) D .(-∞,1)∪(2,+∞)解析:∵x 2-4x +3<0,∴1<x <3.又∵2x 2-7x +6>0,∴(x -2)(2x -3)>0,∴x <32或x >2,∴原不等式组的解集为⎝⎛⎭⎫1,32∪(2,3). 答案:B10.下列选项中,使不等式x <1x <x 2成立的x 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)解析:当x >0时,原不等式可化为x 2<1<x 3,解得x ∈∅,当x <0时,原不等式可化为⎩⎪⎨⎪⎧x 2>1,x 3<1,解得x <-1,选A. 答案:A11.若a >b >0,c <d <0,则一定有( ) A.a d >bc B.ad <b c C.a c >b dD.a c <b d解析:∵c <d <0,∴0>1c >1d ,两边同乘-1,得-1d >-1c >0,又a >b >0,故由不等式的性质可知-a d >-b c >0,两边同乘-1,得a d <bc .故选B. 答案:B12.已知关于x 的不等式ax 2+2x +c >0的解集为⎝⎛⎭⎫-13,12,则不等式-cx 2+2x -a >0的解集为_ _________.解析:依题意知,⎩⎨⎧-13+12=-2a ,-13×12=ca ,解得a =-12,c =2,∴不等式-cx 2+2x -a >0,即为-2x 2+2x +12>0,即x 2-x -6<0,解得-2<x <3.所以不等式的解集为(-2,3).答案:(-2,3)13.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是__________. 解析:原不等式为(x -a )⎝⎛⎭⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪a <x <1a14.已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________. 解析:不等式x 2-ax +2a >0在R 上恒成立,即Δ=(-a )2-8a <0,∴0<a <8,即a 的取值范围是(0,8). 答案:(0,8)15.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.解析:当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3). 答案:(-7,3)B 组 能力提升练1.已知a ,b ,c ∈R ,则下列命题正确的是( ) A .a >b ⇒ac 2>bc 2 B.a c >bc ⇒a >b C.⎭⎬⎫a >b ab <0⇒1a >1bD.⎭⎬⎫a >b ab >0⇒1a >1b解析:当c =0时,ac 2=0,bc 2=0,故由a >b 不能得到ac 2>bc 2,故A 错误;当c <0时,a c >bc⇒a <b ,故B 错误;因为1a -1b =b -aab >0⇔⎩⎨⎧ab >0,a <b 或⎩⎪⎨⎪⎧ab <0,a >b ,故选项D 错误,C 正确.故选C. 答案:C2.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0解析:∵f (0)=f (4)>f (1), ∴c =16a +4b +c >a +b +c , ∴16a +4b =0,即4a +b =0, 且15a +3b >0,即5a +b >0, 而5a +b =a +4a +b ,∴a >0.故选A. 答案:A3.函数f (x )=⎩⎪⎨⎪⎧2e x -1(x <2)log 3(x 2-1)(x ≥2),则不等式f (x )>2的解集为( )A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)解析:令2e x -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >10,故选C. 答案:C4.在R 上定义运算:⎝⎛⎭⎪⎫a b cd =ad -bc ,若不等式⎝⎛ x -1a +1⎭⎪⎫a -2x≥1对任意实数x 恒成立,则实数a 的最大值为( ) A .-12B .-32C.12D.32解析:由定义知,不等式⎝⎛ x -1a +1⎭⎪⎫a -2x≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立.∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.答案:D5.“(m -1)(a -1)>0”是“log a m >0”的一个( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当(m -1)(a -1)>0时,有⎩⎪⎨⎪⎧ m >1,a >1,或⎩⎪⎨⎪⎧m <1,a <1,当m <0,a <0时,log a m 无意义,故log a m >0不一定成立;当log a m >0时,有⎩⎨⎧m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,则(m -1)(a -1)>0恒成立,故“(m-1)·(a -1)>0”是“log a m >0”的必要不充分条件.故选B. 答案:B6.若0<b <a <1,则下列结论不一定成立的是( ) A.1a <1b B.a >b C .a b >b aD .log b a >log a b解析:对于A ,函数y =1x 在(0,+∞)上单调递减,所以当0<b <a <1时,1a <1b 恒成立;对于B ,函数y =x 在(0,+∞)上单调递增,所以当0<b <a <1时,a >b 恒成立;对于C ,当0<a <1时,函数y =a x 单调递减,所以a b >a a ,函数y =x a 单调递增,所以a a >b a ,所以a b >a a >b a 恒成立.所以选D. 答案:D7.若a <b <0,则下列不等式中不成立的是( ) A .|a |>|b | B.1a -b >1a C.1a >1bD .a 2>b 2解析:由不等式的性质可得|a |>|b |,a 2>b 2,1a >1b 成立.假设1a -b >1a 成立,由a <b <0得a -b <0,∴a (a -b )>0, 由1a -b >1a ⇒a (a -b )·1a -b >1a·a (a -b )⇒a >a -b ⇒b >0,与已知矛盾,故选B. 答案:B8.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数.设a =f (log 47),b =f ⎝⎛⎭⎫log 123,c =f (21.6),则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .b <c <aD .a <b <c解析:∵f (x )是定义在(-∞,+∞)上的偶函数,∴b =f (log 123)=f (-log 23)=f (log 23).∵log 23=log 49>log 47,21. 6>2,∴log 47<log 49<21.6.∵f (x )在(-∞,0]上是增函数,∴f (x )在[0,+∞)上为减函数, 则f (log 47)>f (log 49)>f (21.6),即c <b <a ,故选B. 答案:B9.设集合M ={-1,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪1x-2<0,则下列结论正确的是( ) A .N ⊆M B .N ∩M =∅ C .M ⊆ND .M ∪N =R解析:由1x -2<0⇒2x -1x >0⇒x <0或x >12,∴N =(-∞,0)∪⎝⎛⎭⎫12,+∞, 又∵M ={-1,1},∴可知C 正确,A ,B ,D 错误,故选C. 答案:C10.函数f (x )=⎩⎪⎨⎪⎧|3x -4|(x ≤2),2x -1(x >2),则f (x )≥1的解集为( )A.⎣⎡⎦⎤1,53 B.⎣⎡⎦⎤53,3C .(-∞,1)∪⎣⎡⎭⎫53,+∞ D .(-∞,1]∪⎣⎡⎦⎤53,3解析:不等式f (x )≥1等价于⎩⎨⎧x >2,2x -1≥1或⎩⎪⎨⎪⎧x ≤2,|3x -4|≥1,解之得x ≤1或53≤x ≤3,所以不等式的解集为(-∞,1]∪⎣⎡⎦⎤53,3,故选D. 答案:D11.若不等式组⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(1+a )≤0的解集不是空集,则实数a 的取值范围是( )A .(-∞,-4]B .[-4,+∞)C .[-4,3]D .[-4,3)解析:不等式x 2-2x -3≤0的解集为[-1,3],假设⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(a +1)≤0的解集为空集,则不等式x 2+4x -(a +1)≤0的解集为集合{x |x <-1或x >3}的子集,因为函数f (x )=x 2+4x -(a +1)的图象的对称轴方程为x =-2,所以必有f (-1)=-4-a >0,即a <-4,则使⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(1+a )≤0的解集不为空集的a 的取值范围是a ≥-4. 答案:B12.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________.解析:由8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立, 得Δ=(-8sin α)2-4×8cos 2α≤0,即64sin 2α-32(1-2sin 2α)≤0, 得到sin 2α≤14,∵0≤α≤π,∴0≤sin α≤12,∴0≤α≤π6或5π6≤α≤π,即α的取值范围为⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π. 答案:⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 13.已知函数f (x )=⎩⎪⎨⎪⎧x 2+ax ,x ≥0,bx 2-3x ,x <0为奇函数,则不等式f (x )<4的解集为__________.解析:若x >0,则-x <0,则f (-x )=bx 2+3x .因为f (x )为奇函数,所以f (-x )=-f (x ),即bx 2+3x =-x 2-ax ,可得a =-3,b =-1,所以f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥0,-x 2-3x ,x <0.当x ≥0时,由x 2-3x <4解得0≤x <4;当x <0时,由-x 2-3x <4解得x <0,所以不等式f (x )<4的解集为(-∞,4).答案:(-∞,4)14.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是__________. 解析:不等式x 2+mx +1≥0的解集为R ,相当于二次函数y =x 2+mx +1的最小值非负,即方程x 2+mx +1=0最多有一个实根,故Δ=m 2-4≤0,解得-2≤m ≤2. 答案:[-2,2]15.已知-12<a <0,A =1+a 2,B =1-a 2,C =11+a ,D =11-a ,则A ,B ,C ,D 的大小关系是__________.解析:令a =-14,则A =1716,B =1516,C =43,D =45,所以D <B <A <C .答案:D <B <A <C。

高考数学复习、高中数学 不等式的性质与一元二次不等式附答案解析

高考数学复习、高中数学  不等式的性质与一元二次不等式附答案解析

第七章 不等式第1节 不等式的性质与一元二次不等式课标要求 1.梳理等式的性质,理解不等式的概念,掌握不等式的性质.2.经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义;能够借助一元二次函数求解一元二次不等式;并能用集合表示一元二次不等式的解集.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.【知识衍化体验】知识梳理1. 实数的大小顺序与运算性质的关系(1);0>-⇔>b a b a (2);0=-⇔=b a b a (3).0<-⇔<b a b a 2. 不等式的性质(1)对称性:;a b b a ___⇔>(2)传递性:;c a c b b a ___,⇒>>(3)可加性:;;c b c a b a +>+⇔>d b c a d c b a ++⇒>>___,(4)可乘性:;;bc ac c b a ___0,⇒>>bd ac d c b a ___0,0⇒>>>>(5)可乘方:; )1,(___0≥∈⇒>>n N n b a b a nn (6)可开方:)2,(___0≥∈⇒>>n N n b a b a n n 3. 三个“二次”间的关系ac b 42-=∆ 0>∆ 0=∆0<∆二次函数)0(2>++=a c bx ax y 的图像一元二次方程)002>=++a c bx ax (的根 a ac b b x 2422,1-±-= a b x 22,1-=无实根)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 的解集[微点提醒] 1. 有关分数的性质:(1)若,则;(2)若0,0>>>m b a ma mb a b ++<. b a b a ab 11,0<⇔>>且2. 对于不等式,求解时不要忘记的情形.02>++c bx ax 0=a 3. 当时,不等式的解集时R 还是,要注意区别.0<∆)0(02≠>++a c bx ax φ基础自测疑误辨析1. 判断下列结论正误(在括号内打“√”或“×”)(1)若,则. ( ) 1>ba b a >(2). ( ) ba b a ab 11,0<⇔>>(3)若方程没有实数根,则不等式的解集为R.)0(02≠=++a c bx ax 02>++c bx ax ( )(4)若二次函数的图像开口向下,则不等式的解集一定c bx ax y ++=202<++c bx ax 不是空集. ( )教材衍化2. (必修5 P74 练习3改编)若都是实数,则“”是“”的b a ,0>-b a 22b a >( )A. 充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. (必修5P103A2改编)已知集合,,则}0121|{≤-=x x A }06|{2<--=x x x B ( )=B A)3,2.(-A )2,2.(-B ]2,2.(-C ]2,2.[-D 考题体验4. (2016年全国卷I 理科第8题)若,则 ( )10,1<<>>c b a c c b a A <.c c ba ab B <.c b c a C a b log log .<cc D b a log log .<5.(2019秋•海淀区校级期中)已知不等式的解集是[1,2],则b c +的值02≤++c bx x 为( )A .1-B .1C .2-D .26.(2019秋•徐州期中)若关于x 的不等式240x x a -->在14x <<内有解,则实数a 的取值范围( )A .3a <-B .0a <C .4a <-D .4a -…【考点聚焦突破】考点1 不等式性质的应用角度1 比较大小[例1-1](1) (2019秋•镇海区校级期中)若a ,b ,c R ∈且a b >,则下列不等式中一定成立的是( )A .ac bc >B .2()0a b c ->C .11a b< D .22a b -<- (2)已知实数满足,,则的大小关系是c b a ,,2346a a c b +-=+244a a b c +-=-c b a ,,( )A. B. C. D.a b c >≥b c a ≥>a b c >>b c a >>(3)(2019•西湖区校级模拟)设1x y >>,01a <<,则下列关系正确的是( ) A .a a x y --> B .x y a a > C .log log x y a a > D .log log a a x y >[训练1](1)(必修 5 P74例1改编)若,则一定有 0,0<<>>d c b a ( ) c b d a A >.c b d a B <.d b c a C >.db c a D <.(2)已知,比较与的大小. 0>>b a b a b a ab b a(3)已知01a b <<<.()I 试猜想a lnb +与b lna +的大小关系; ()II 证明()I 中你的结论.角度2 求取值范围[例1-2](2017春•黄陵县校级月考)设23a <<,43b -<<-,求a b +,a b -,a b ,ab ,2b a的取值范围.[规律方法]1. 比较两数大小常用的方法有:利用不等式性质进行比较,作差(作商)法比较,寻找中间值或构造函数利用单调性比较大小等.2. 在求式子的范围时,同向不等式才能相加,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.考点2 一元二次不等式的解法角度1 解一元二次不等式【例2-1】(1)不等式的解集是___________________. xx 1≤(2)(2019河南中原名校联考)已知是定义在R 上的奇函数.当时,)(x f 0>x ,则不等式的解集用区间表示为_______________.x x x f 2)(2-=x x f >)(角度2 解含参不等式【例2-2】解关于x 的不等式.)(222R a ax x ax ∈-≥-[规律方法]1. 解一元二次不等式的一般步骤:(1)化:把不等式变形为二次项系数大于零的标准形式;(2)判:计算对应方程的判别式,判断对应方程有无实根;(3)求:求出对应的一元二次方程的根;(4)写:利用“大于取两边,小于取中间”写出不等式的解集.(若方程无实根,则解集为R 或). φ含有参数的不等式求解,首先要对二次项系数讨论,然后讨论Δ,再比较(相应方程)根的大小,注意分类讨论思想的应用.[训练2] 解关于x 的不等式. )(043R a ax a x ∈≥+-考点3 一元二次不等式恒成立问题与有解问题角度1 恒成立问题[例3-1](1)对于任意实数x ,不等式恒成立,则实数a 的04)2(2)2(2<----x a x a 取值范围是_____________;(2)若不等式对任意恒成立,则实数a 的取值范围04)2(2)2(2<----x a x a ]3,1[∈x 是______________;(3)若不等式对任意恒成立,则实数x 的取值范围04)2(2)2(2<----x a x a ]3,1[∈a 是______________.角度2 有解问题[例3-2](2018秋•宝安区期末)在R 上定义运算a ※(1)b a b =+,若存在[1x ∈,2]使不等式()m x -※()4m x +<,成立,则实数m 的取值范围为( )A .(3,2)-B .(1,2)-C .(2,2)-D .(1,2)[规律方法] 1. 对于一元二次不等式的恒成立问题,恒大于零就是相应的二次函数图像在给定区间上全部在x 轴上方,恒小于零就是相应的二次函数图像在给定区间上全部在x 轴下方.恒成立问题常转化为求二次函数的最值或用分离参数法求最值.有解问题类似处理。

新人教版高考数学大一轮复习《不等式的性质及一元二次不等式》

新人教版高考数学大一轮复习《不等式的性质及一元二次不等式》

a
a
所以b>0,且 a=1,c=-6,
bb
所以不等式bx2+ax+c<0可化为x2+x-6<0, 解得-3<x<2, 所以该不等式的解集为(-3,2). 答案:(-3,2)
题组二:走进教材
1.(必修5P74T3改编)下列四个结论,正确的是 ( )
①a>b,c<d⇒a-c>b-d; ②a>b>0,c<d<0⇒ac>bd;
aln a bln b
又由0<c<1得ln c<0,
所以 allnnca>b⇔llnncbblogac>alogbc,C正确.
对D:要比较logac和logbc,只需比较
l l
n n
c和
a
ln c , ln b
而函数y=ln x在(1,+∞)上单调递增,故
a>b>1⇔ln a>ln b>0⇔1 1 .
2.若不等式ax2-bx+c<0的解集是(-2,3),则不等式 bx2+ax+c<0的解集是________.
【解析】因为不等式ax2-bx+c<0的解集是(-2,3),所以
a>0,且对应方程ax2-bx+c=0的实数根是-2和3,由根与
系数的关系,得
c a

2
3,
b
a

2
3,
即 c=-6,b=1,
Δ<0
二次函数y=ax2+bx+c (a>0)的图象
判别式Δ=b2-4ac
Δ>0
一元二次方程 ax2+bx+c=0(a>0)的根

高中数学不等式的性质及一元二次不等式知识要点及例题讲解

高中数学不等式的性质及一元二次不等式知识要点及例题讲解

不等式的性质及一元二次不等式考纲解读 1.利用不等式的性质判断不等式成立或比较大小;2.根据二次函数求解给定的一元二次不等式;3.利用三个“二次”间的关系求参数或不等式恒成立问题.[基础梳理]1.不等式的基本性质 (1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c . (3)可加性:a >b ⇒a +c >b +c .(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (5)加法法则:a >b ,c >d ⇒a +c >b +d . (6)乘法法则:a >b >0,c >d >0⇒ac >bd . (7)乘方法则:a >b >0⇒a n >b n (n ∈N ,n ≥1). (8)开方法则:a >b >0nb (n ∈N ,n ≥2). 2.不等式的倒数性质 (1)a >b ,ab >0⇒1a <1b .(2)a <0<b ⇒1a <1b .(3)a >b >0,0<c <d ⇒a c >bd .3.两个实数比较大小的依据 (1)a -b >0⇔a >b . (2)a -b =0⇔a =b . (3)a -b <0⇔a <b .4.一元二次不等式与相应的二次函数及一元二次方程的关系有两个相等实根[三基自测]1.下列四个结论,正确的是( )①a >b ,c <d ⇒a -c >b -d ;②a >b >0,c <d <0⇒ac >bd ;③a >b >0⇒3a >3b ;④a >b >0⇒1a 2>1b 2.A .①②B .②③C .①④D .①③ 答案:D2.不等式x (9-x )<0的解集为( ) A .(0,9) B .(9,+∞)C .(-∞,0)D .(-∞,0)∪(9,+∞)答案:D3.(必修5·习题3.2B 组改编)若函数y =mx 2-(1-m )x +m 的定义域为R ,则m 的取值范围是________.答案:[13,+∞)4.(2017·高考全国卷Ⅲ改编)设f (x )=⎩⎪⎨⎪⎧x +1 x ≤0x 2 x >0,则f (x )≥1的解集为__________.答案:{0}∪[1,+∞)考点一 一元二次不等式的解法|方法突破[例1] (1)不等式-x 2-3x +4>0的解集为________.(用区间表示) (2)解不等式x 2-4ax -5a 2>0(a ≠0). [解析] (1)-x 2-3x +4>0⇒(x +4)(x -1)<0. 如图,作函数y =(x +4)(x -1)的图象, ∴当-4<x <1时,y <0. (2)由x 2-4ax -5a 2>0, 知(x -5a )(x +a )>0.由于a ≠0,故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{x |x <5a 或x >-a }; a >0时,解集为{x |x >5a 或x <-a }. [答案] (1)(-4,1) [方法提升][母题变式]1.将例(1)的不等式改为“-x 2-3x +4≤0”,其解集为________. 解析:由-x 2-3x +4≤0得x 2+3x -4≥0, 即(x +4)(x -1)≥0,∴x ≥1或x ≤-4. 答案:(-∞,-4]∪[1,+∞)2.将例(1)的不等式变为“x 2-3x +4>0”,其解集为________. 解析:令y =x 2-3x +4,∵Δ=(-3)2-4×4<0,y >0恒成立.∴x ∈R . 答案:R3.将例(2)变为“x 2-4ax -5a 2>0”,如何求解. 解析:由例(2)知,(1)若a =0,不等式为x 2>0解集为{x |x ≠0}, (2)当a >0,5a >-a ,解集为{x |x >5a 或x <-a }, (3)当a <0,5a <-a ,解集为{x |x <5a 或x >-a }.考点二 不等式恒成立问题|方法突破[例2] (1)(2018·武汉调研)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k的取值范围为( )A .(-3,0)B .[-3,0]C .[-3,0)D .(-3,0](2)(2018·郑州调研)若不等式x 2+ax +1≥0对一切x ∈⎝⎛⎦⎤0,12都成立,则a 的最小值是________.(3)对于任意a ∈[-1,1],f (x )=x 2+(a -4)x +4-2a 的值恒大于0,那么x 的取值范围是________.[解析] (1)由题意可得⎩⎪⎨⎪⎧k <0,Δ=k 2-8k ×⎝⎛⎭⎫-38<0,解得-3<k <0,故选A. (2)法一:由于x >0,则由已知可得a ≥-x -1x在x ∈⎝⎛⎦⎤0,12上恒成立,而当x ∈⎝⎛⎦⎤0,12时,⎝⎛⎭⎫-x -1x max =-52,∴a ≥-52,故a 的最小值为-52. 法二:设f (x )=x 2+ax +1,则其对称轴为x =-a 2.①若-a 2≥12,即a ≤-1时,f (x )在⎝⎛⎦⎤0,12上单调递减,此时应有f ⎝⎛⎭⎫12≥0,从而-52≤a ≤-1.②若-a2<0,即a >0时,f (x )在⎝⎛⎦⎤0,12上单调递增,此时应有f (0)=1>0恒成立,故a >0. ③若0≤-a 2<12,即-1<a ≤0时,则应有f ⎝⎛⎭⎫-a 2=a 24-a 22+1=1-a 24≥0恒成立,故-1<a ≤0.综上,a 的最小值为-52.(3)令g (a )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4,由题意知g (-1)>0且g (1)>0,解得x <1或x >3.[答案] (1)A (2)-52 (3)(-∞,1)∪(3,+∞)[方法提升]一元二次不等式恒成立问题的破解方法[母题变式]在本例(1)中,改为“对于x ∈[1,2]上,2kx 2+kx -38<0恒成立”,求k 的取值范围.解析:k (2x 2+x )<38,当x ∈[1,2]时,3≤2x 2+x ≤10,∵k <38(2x 2+x )恒成立,380≤38(2x 2+x )≤18,∴k <380.考点三 比较大小问题|模型突破角度1 作差(商)法比较代数式的大小 [例3] 已知a >0,b >0,且a ≠b ,则( ) A .ab +1>a +b B .a 3+b 3>a 2b +ab 2 C .2a 3b >3a 2bD .a a b b <a b b a[解析] 选项A(作差法),ab +1-(a +b )=ab -a +(1-b )=a (b -1)+(1-b )=(a -1)(b -1),显然当a ,b 中有一个等于1时,(a -1)(b -1)=0,即ab +1=a +b ;故选项A 不正确. 选项B(作差法),a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2)=a 2(a -b )+b 2(b -a )=(a 2-b 2)(a -b )=(a -b )2(a +b ).因为a >0,b >0,a ≠b ,所以a +b >0,(a -b )2>0,故(a -b )2(a +b )>0,即a 3+b 3>a 2b +ab 2,故选项B 正确.[答案] B [模型解法]角度2 巧用不等式性质比较大小[例4] 若a >b ,则下列各式正确的是( ) A .a ·lg x >b ·lg x B .ax 2>bx 2 C .a 2>b 2D .a ·2x >b ·2x[解析] 已知a >b ,选项A ,由已知不等式两边同乘lg x 得到,由不等式的性质可知,当lg x >0时,a ·lg x >b ·lg x ;当lg x =0时,a ·lg x =b ·lg x ;当lg x <0时,a ·lg x <b ·lg x .故该选项不正确.选项B ,由已知不等式两边同乘x 2得到,由不等式的性质可知,当x 2>0时,ax 2>bx 2;当x 2=0时,ax 2=bx 2.故该选项不正确.选项C ,由已知不等式两边平方得到,由不等式的性质可知,当a >b >0时,a 2>b 2;当a >0>b 且|a |<|b |时,a 2<b 2.故该选项不正确.选项D ,由已知不等式两边同乘2x 得到,且2x >0,所以a ·2x >b ·2x .故该选项正确. [答案] D [模型解法]角度3 构造函数法比较代数式的大小[例5] 已知a =13ln 94,b =45ln 54,c =14ln 4,则( )A .a <b <cB .b <a <cC .c <a <bD .b <c <a[解析] a =13ln 94=13ln ⎝⎛⎭⎫322=23ln 32=ln 3232,b =45ln 54=ln 5454,c =14ln 4=14×2ln 2=ln 22.故构造函数f (x )=ln x x ,则a =f ⎝⎛⎭⎫32,b =f ⎝⎛⎭⎫54,c =f (2). 因为f ′(x )=1x ×x -1×ln x x 2=1-ln xx 2,由f ′(x )=0,解得x =e.故当x ∈(0,e)时,f ′(x )>0,函数f (x )在(0,e)上单调递增;当x ∈(e ,+∞)时,f ′(x )<0,函数f (x )在(e ,+∞)上单调递减.因为54<32<2<e ,所以f ⎝⎛⎭⎫54<f ⎝⎛⎭⎫32<f (2),即b <a <c .故选B. [模型解法][高考类题]1.(2017·高考天津卷)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:依题意a =g (-log 25.1)=(-log 25.1)·f (-log 25.1)=log 25.1f (log 25.1)=g (log 25.1). 因为f (x )在R 上是增函数,可设0<x 1<x 2, 则f (x 1)<f (x 2).从而x 1f (x 1)<x 2f (x 2),即g (x 1)<g (x 2). 所以g (x )在(0,+∞)上亦为增函数. 又log 25.1>0,20.8>0,3>0, 且log 25.1<log 28=3,20.8<21<3, 而20.8<21=log 24<log 25.1,所以3>log 25.1>20.8>0,所以c >a >b .故选C. 答案:C2.(2017·高考山东卷)若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1b C .a +1b <log 2(a +b )<b 2aD .log 2(a +b )<a +1b <b2a解析:法一:∵a >b >0,ab =1,∴log 2(a +b )>log 2(2ab )=1.∵b 2a =1a 2a =a -1·2-a ,令f (a )=a -1·2-a ,又∵b =1a ,a >b >0,∴a >1a,解得a >1.∴f ′(a )=-a -2·2-a -a -1·2-a ·ln 2=-a -2·2-a (1+a ln 2)<0, ∴f (a )在(1,+∞)上单调递减. ∴f (a )<f (1),即b 2a <12.∵a +1b =a +a =2a >a +b >log 2(a +b ),∴b 2a <log 2(a +b )<a +1b.故选B. 法二:∵a >b >0,ab =1,∴取a =2,b =12,此时a +1b =4,b 2a =18,log 2(a +b )=log 25-1≈1.3,∴b 2a <log 2(a +b )<a +1b .故选B. 答案:B1.[考点一](2014·高考大纲全国卷)不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}解析:由x (x +2)>0得x >0或x <-2;由|x |<1得-1<x <1,所以不等式组的解集为{x |0<x <1},故选C.答案:C2.[考点三](2016·高考北京卷)已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y>0 B .sin x -sin y >0 C.⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0D .ln x +ln y >0解析:函数y =⎝⎛⎭⎫12x在(0,+∞)上为减函数,∴当x >y >0时,⎝⎛⎭⎫12x <⎝⎛⎭⎫12y ,即⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0,故C 正确;函数y =1x 在(0,+∞)上为减函数,∴由x >y >0⇒1x <1y ⇒1x -1y<0,故A 错误;函数y =sin x 在(0,+∞)上不单调,当x >y >0时,不能比较sin x 与sin y 的大小,故B 错误;当x >0且y >0时,ln x +ln y >0⇔ln xy >0⇔xy >1,而x >y >0⇒/ xy >1,故D 错误.答案:C3.[考点二](2014·高考山东卷)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sin x >sin y D .x 3>y 3解析:∵a x <a y,0<a <1, ∴x >y ,∴x 3>y 3. 答案:D4.[考点二、三](2014·高考四川卷)若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b cD.a d <b c解析:依题意取a =2,b =1,c =-2,d =-1, 代入验证得A 、B 、C 均错,只有D 正确. 答案:D。

【新】2019届高考数学一轮复习第六章不等式第一节不等式的性质、一元二次不等式课时作业

【新】2019届高考数学一轮复习第六章不等式第一节不等式的性质、一元二次不等式课时作业

第一节 不等式的性质、一元二次不等式课时作业 A 组——基础对点练1.已知x >y >z ,x +y +z =0,则下列不等式成立的是( ) A .xy >yz B .xz >yz C .xy >xzD .x |y |>z |y |解析:因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,所以x >0,又y >z ,所以xy >xz ,故选C. 答案:C 2.函数f (x )=1-xx +2的定义域为( ) A .[-2,1] B .(-2,1]C .[-2,1)D .(-∞,-2]∪[1,+∞)解析:要使函数f (x )=1-xx +2有意义,则⎩⎪⎨⎪⎧-x x +,x +2≠0,解得-2<x ≤1,即函数的定义域为(-2,1]. 答案:B3.已知集合A ={x ∈N|x 2-x -6<0},则集合A 的子集的个数为( ) A .3 B .4 C .7D .8解析:不等式x 2-x -6<0的解集为{x |-2<x <3},又x ∈N ,所以A ={0,1,2},故集合A 的子集的个数为23=8,故选D. 答案:D4.已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A .[-2,-1] B .[-1,2) C .[-1,1]D .[1,2)解析:A ={x |x ≤-1或x ≥3},故A ∩B =[-2,-1],选A. 答案:A5.若a >b >0,则下列不等式不成立的是( ) A.1a <1bB .|a |>|b |C .a +b <2abD .⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12b 解析:∵a >b >0,∴1a <1b,且|a |>|b |,a +b >2ab ,又f (x )=⎝ ⎛⎭⎪⎫12x 是减函数,∴⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12b.故C 项不成立. 答案:C6.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}. 答案:D7.不等式(1+x )(1-x )>0的解集是( ) A .{x |-1<x <1} B .{x |x <1}C .{x |x <-1或x >1}D .{x |x <1且x ≠-1}解析:原式可化为(x +1)(x -1)<0, ∴-1<x <1. 答案:A8.已知a >0,且a ≠1,m =aa 2+1,n =a a +1,则( ) A .m ≥n B .m >n C .m <nD .m ≤n解析:由题易知m >0,n >0,两式作商,得mn=a (a 2+1)-(a +1)=a a (a -1),当a >1时,a (a -1)>0,所以aa (a -1)>a 0=1,即m >n ;当0<a <1时,a (a -1)<0,所以aa (a -1)>a 0=1,即m >n .综上,对任意的a >0,a ≠1,都有m >n . 答案:B9.不等式组⎩⎪⎨⎪⎧x 2-4x +3<0,2x 2-7x +6>0的解集是( )A .(2,3)B.⎝ ⎛⎭⎪⎫1,32∪(2,3)C.⎝⎛⎭⎪⎫-∞,32∪(3,+∞) D .(-∞,1)∪(2,+∞)解析:∵x 2-4x +3<0,∴1<x <3.又∵2x 2-7x +6>0,∴(x -2)(2x -3)>0,∴x <32或x >2,∴原不等式组的解集为⎝ ⎛⎭⎪⎫1,32∪(2,3). 答案:B10.下列选项中,使不等式x <1x<x 2成立的x 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)解析:当x >0时,原不等式可化为x 2<1<x 3,解得x ∈∅,当x <0时,原不等式可化为⎩⎪⎨⎪⎧x 2>1,x 3<1,解得x <-1,选A. 答案:A11.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2B .a 2>ab >b 2C.1a <1bD .b a >a b解析:a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab .① 又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2. 答案:B12.已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,则不等式-cx 2+2x -a >0的解集为__________.解析:依题意知,⎩⎪⎨⎪⎧-13+12=-2a,-13×12=ca ,解得a =-12,c =2,∴不等式-cx 2+2x -a >0,即为-2x 2+2x +12>0,即x 2-x -6<0,解得-2<x <3.所以不等式的解集为(-2,3). 答案:(-2,3)13.若0<a <1,则不等式(a -x )⎝⎛⎭⎪⎫x -1a >0的解集是__________.解析:原不等式为(x -a )⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a <x <1a 14.已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________. 解析:不等式x 2-ax +2a >0在R 上恒成立,即Δ=(-a )2-8a <0,∴0<a <8,即a 的取值范围是(0,8). 答案:(0,8)15.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .求不等式f (x +2)<5的解集.解析:当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).B 组——能力提升练1.已知a ,b ,c ∈R ,则下列命题正确的是( ) A .a >b ⇒ac 2>bc 2B.a c >b c⇒a >bC.⎭⎪⎬⎪⎫a >b ab <0⇒1a >1b D .⎭⎪⎬⎪⎫a >b ab >0⇒1a >1b 解析:当c =0时,ac 2=0,bc 2=0,故由a >b 不能得到ac 2>bc 2,故A 错误;当c <0时,a c >bc⇒a <b ,故B 错误;因为1a -1b =b -aab >0⇔⎩⎪⎨⎪⎧ab >0,a <b 或⎩⎪⎨⎪⎧ab <0,a >b ,故选项D 错误,C 正确.故选C. 答案:C2.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0解析:∵f (0)=f (4)>f (1), ∴c =16a +4b +c >a +b +c , ∴16a +4b =0,即4a +b =0, 且15a +3b >0,即5a +b >0, 而5a +b =a +4a +b ,∴a >0.故选A. 答案:A3.在R 上定义运算:⎝⎛⎭⎪⎫a b c d =ad -bc ,若不等式⎝ ⎛ x -1a +1⎭⎪⎫a -2x≥1对任意实数x 恒成立,则实数a 的最大值为( ) A .-12B .-32C.12D .32解析:由定义知,不等式⎝⎛ x -1a +1⎭⎪⎫a -2x≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立.∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.答案:D4.“(m -1)(a -1)>0”是“log a m >0”的一个( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当(m -1)(a -1)>0时,有⎩⎪⎨⎪⎧ m >1,a >1,或⎩⎪⎨⎪⎧m <1,a <1,当m <0,a <0时,log a m 无意义,故log a m >0不一定成立;当log a m >0时,则⎩⎪⎨⎪⎧m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,则(m -1)(a -1)>0恒成立,故“(m-1)·(a -1)>0”是“log a m >0”的必要不充分条件.故选B. 答案:B5.若0<b <a <1,则下列结论不一定成立的是( ) A.1a <1bB .a >bC .a b>b aD .log b a >log a b解析:对于A ,函数y =1x 在(0,+∞)上单调递减,所以当0<b <a <1时,1a <1b恒成立;对于B ,函数y =x 在(0,+∞)上单调递增,所以当0<b <a <1时,a >b 恒成立;对于C ,当0<a <1时,函数y =a x 单调递减,所以a b >a a ,函数y =x a 单调递增,所以a a >b a ,所以a b >a a >b a恒成立.所以选D. 答案:D6.若a <b <0,则下列不等式中不成立的是( ) A .|a |>|b | B .1a -b >1aC.1a >1bD .a 2>b 2解析:由不等式的性质可得|a |>|b |,a 2>b 2,1a >1b 成立.假设1a -b >1a 成立,由a <b <0得a -b <0,∴a (a -b )>0, 由1a -b >1a ⇒a (a -b )·1a -b >1a·a (a -b )⇒a >a -b ⇒b >0,与已知矛盾,故选B.答案:B7.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数.设a =f (log 47),b =f ⎝⎛⎭⎪⎫log 123,c =f (21.6),则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .b <c <aD .a <b <c解析:∵f (x )是定义在(-∞,+∞)上的偶函数,∴b =f (log 123)=f (-log 23)=f (log 23).∵log 23=log 49>log 47,21.6>2,∴log 47<log 49<21.6.∵f (x )在(-∞,0]上是增函数,∴f (x )在[0,+∞)上为减函数, 则f (log 47)>f (log 49)>f (21.6),即c <b <a ,故选B. 答案:B8.(2018·武汉调研)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B ,使得MA ⊥MB ,则实数t 的取值范围为( )A .[-2,6]B .[-3,5]C .[2,6]D .[3,5] 解析:当MA ,MB 与圆相切时,|CM |=-2+t -2=20,由题意,圆C 上存在两点使MA ⊥MB ,则|CM |=-2+t -2≤20⇒2≤t ≤6,故选C.答案:C9.函数f (x )=⎩⎪⎨⎪⎧|3x -x ,2x -1x ,则f (x )≥1的解集为( )A.⎣⎢⎡⎦⎥⎤1,53B.⎣⎢⎡⎦⎥⎤53,3 C .(-∞,1)∪⎣⎢⎡⎭⎪⎫53,+∞ D .(-∞,1]∪⎣⎢⎡⎦⎥⎤53,3 解析:不等式f (x )≥1等价于⎩⎪⎨⎪⎧x >2,2x -1≥1或⎩⎪⎨⎪⎧x ≤2,|3x -4|≥1,解之得x ≤1或53≤x ≤3,所以不等式的解集为(-∞,1]∪⎣⎢⎡⎦⎥⎤53,3,故选D. 答案:D10.若不等式组⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -+a 的解集不是空集,则实数a 的取值范围是( )A .(-∞,-4]B .[-4,+∞)C .[-4,3]D .[-4,3)解析:不等式x 2-2x -3≤0的解集为[-1,3],假设⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -a +的解集为空集,则不等式x 2+4x -(a +1)≤0的解集为集合{x |x <-1或x >3}的子集,因为函数f (x )=x 2+4x -(a +1)的图象的对称轴方程为x =-2,所以必有f (-1)=-4-a >0,即a <-4,则使⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -+a 的解集不为空集的a 的取值范围是a ≥-4. 答案:B11.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________.解析:由8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立, 得Δ=(-8sin α)2-4×8cos 2α≤0, 即64sin 2α-32(1-2sin 2α)≤0, 得到sin 2α≤14,∵0≤α≤π,∴0≤sin α≤12,∴0≤α≤π6或5π6≤α≤π,即α的取值范围为⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π. 答案:⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π12.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,求实数m 的取值范围.解析:不等式x 2+mx +1≥0的解集为R ,相当于二次函数y =x 2+mx +1的最小值非负,即方程x 2+mx +1=0最多有一个实根,故Δ=m 2-4≤0,解得-2≤m ≤2.。

2019大一轮高考总复习文数北师大版课时作业提升34 不

2019大一轮高考总复习文数北师大版课时作业提升34 不

课时作业提升(三十四) 不等式的性质与一元二次不等式A 组 夯实基础1.(2016·全国卷Ⅱ)已知集合A ={1,2,3},B ={x |x 2<9},则A ∩B =( ) A .{-2,-1,0,1,2,3} B .{-2,-1,0,1,2} C .{1,2,3}D .{1,2}解析:选D ∵B ={x |-3<x <3},∴A ∩B ={1,2},选D .2.(2018·江西七校联考)设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3 B .1a <1bC .a b >1D .lg(b -a )<0解析:选D 取a =13,b =12,可知 A ,B ,C 错误,故选D .3.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( ) A .ab >ac B .c (b -a )>0 C .cb 2<ab 2D .ac (a -c )<0解析:选C 由题意知c <0,a >0,则A 一定正确;B 一定正确;D 一定正确;当b =0时C 不正确.4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4}D .{a |0≤a ≤4}解析:选D 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0.得0<a ≤4,所以0≤a ≤4,故选D .5.(2018·九江模拟)若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C .(-6,+∞)D .(-∞,- 6)解析:选A 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令g (x )=x 2-4x -2,x ∈(1,4),∴g (x )<g (4)=-2,∴a <-2.6.已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A .⎩⎨⎧x ⎪⎪⎭⎬⎫-1<x <12 B .⎩⎨⎧x ⎪⎪⎭⎬⎫x <-1或x >12 C .{x |-2<x <1} D .{x |x <-2或x >1}解析:选A 由题意知x =-1,x =2是方程ax 2+bx +2=0的根,且a <0.由韦达定理⎩⎨⎧-1+2=-b a,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1. ∴不等式2x 2+bx +a <0,即2x 2+x -1<0, 可知x =-1,x =12是对应方程的根,∴选A .7.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是________. 解析:∵ab 2>a >ab ,∴a ≠0,当a >0时,b 2>1>b ,即⎩⎪⎨⎪⎧ b 2>1,b <1,解得b <-1;当a <0时,b 2<1<b ,即⎩⎪⎨⎪⎧b 2<1,b >1,此式无解.综上可得实数b 的取值范围为(-∞,-1). 答案:(-∞,-1)8.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是________. 解析:作差可得(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(a 1-a 2)·(b 1-b 2), 因为a 1<a 2,b 1<b 2,所以(a 1-a 2)(b 1-b 2)>0, 即a 1b 1+a 2b 2>a 1b 2+a 2b 1. 答案:a 1b 1+a 2b 2>a 1b 2+a 2b 19.若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为________. 解析:x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4即可,解得-1≤a ≤4.答案:[-1,4]10.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是________. 解析:不等式x 2+mx +1≥0的解集为R ,相当于二次函数y =x 2+mx +1的最小值非负,即方程x 2+mx +1=0最多有一个实根,故Δ=m 2-4≤0,解得-2≤m ≤2.答案:[-2,2]11.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解:设该单位职工有n 人(n ∈N +),全票价为x 元,坐甲车需花y 1元,坐乙车需花y 2元, 则y 1=x +34x ·(n -1)=14x +34xn ,y 2=45nx .所以y 1-y 2=14x +34xn -45nx =14x -120nx =14x ⎝⎛⎭⎫1-15n . 当n =5时,y 1=y 2; 当n >5时,y 1<y 2; 当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,甲车队更优惠;少于5人时,乙车队更优惠.12.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a ) x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3>0, 即a 2-6a -3<0,解得3-23<a <3+2 3. ∴不等式的解集为{ a |}3-23<a <3+23. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, ∴⎩⎨⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.故a 的值为3+3或3-3,b 的值为-3.B 组 能力提升1.(2018·重庆模拟)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( )A .52B .72C .154D .152解析:选A 由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2.故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4× (-8a 2)=36a 2=152,得a =52,故选A .2.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间解析:选C 设销售价定为每件x 元,利润为y ,则:y =(x -8)[100-10(x -10)],依题意有(x -8)[100-10(x -10)]>320,即x 2-28x +192<0,解得12<x <16,所以每件销售价应定为12元到16元之间.3.求不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 解:将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )= (x -3)a +x 2-6x +9. 因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去. (2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.故x 的取值范围为(-∞,2)∪(4,+∞). 4.已知函数f (x )=x 2-2ax -1+a ,a ∈R . (1)若a =2,试求函数y =f (x )x(x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围.解:(1)依题意得y =f (x )x =x 2-4x +1x =x +1x-4.因为x >0,所以x +1x ≥2.当且仅当x =1x 时,即x =1时,等号成立. 所以y ≥-2.所以当x =1时,y =f (x )x 的最小值为-2.(2)因为f (x )-a =x 2-2ax -1,所以要使得“对任意的x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]恒成立”.不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧ g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎡⎭⎫34, +∞.。

2019大一轮高考总复习文数(北师大版)课时作业提升34 不等式的性质与一元二次不等式 Word版含解析

2019大一轮高考总复习文数(北师大版)课时作业提升34 不等式的性质与一元二次不等式 Word版含解析

课时作业提升(三十四)不等式的性质与一元二次不等式组夯实基础.(·全国卷Ⅱ)已知集合={},={<},则∩=( ).{-,-}.{-,-}.{}.{}解析:选∵={-<<},∴∩={},选..(·江西七校联考)设<<<,则下列不等式成立的是( ).<.>.(-)<.>解析:选取=,=,可知,,错误,故选..如果,,满足<<,且<,那么下列选项中不一定成立的是( ).(-)>.>.<.(-)<解析:选由题意知<,>,则一定正确;一定正确;一定正确;当=时不正确..若集合={-+<}=∅,则实数的取值范围是( ).{<<}.{≤<}.{≤≤}.{<≤}解析:选由题意知=时,满足条件.≠时,由(\\(>,,Δ=-≤.))得<≤,所以≤≤,故选..(·九江模拟)若关于的不等式--->在区间()内有解,则实数的取值范围是( ).(-,+∞).(-∞,-).(-∞,- ).(-,+∞)解析:选不等式--->在区间()内有解等价于<(--),令()=--,∈(),∴()<()=-,∴<-..已知不等式++>的解集为{-<<},则不等式++<的解集为( ).错误!.错误!.{<-或>}.{-<<}解析:选由题意知=-,=是方程++=的根,且<.由韦达定理(\\(-+=-(),,(-(×=()))⇒(\\(=-,=.))∴不等式++<,即+-<,可知=-,=是对应方程的根,∴选..已知存在实数满足>>,则实数的取值范围是.解析:∵>>,∴≠,当>时,>>,即(\\(>,<,))解得<-;当<时,<<,即(\\(<,>,))此式无解.综上可得实数的取值范围为(-∞,-).答案:(-∞,-).若<,<,则+与+的大小关系是.解析:作差可得(+)-(+)=(-)·(-),因为<,<,所以(-)(-)>,即+>+.答案:+>+.若不等式-+≥-对任意实数恒成立,则实数的取值范围为.解析:-+=(-)+的最小值为,所以-+≥-对任意实数恒成立,只需-≤即可,解得-≤≤.答案:[-].若关于的二次不等式++≥的解集为,则实数的取值范围是.解析:不等式++≥的解集为,相当于二次函数=++的最小值非负,即方程++=最多有一个实根,故Δ=-≤,解得-≤≤.答案:[-].某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受折优惠.”乙车队说:“你们属团体票,按原价的折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解:设该单位职工有人(∈+),全票价为元,坐甲车需花元,坐乙车需花元,则=+·(-)=+,=.所以-=+-=-=.当=时,=;当>时,<;当<时,>.因此当单位去的人数为人时,两车队收费相同;多于人时,甲车队更优惠;少于人时,乙车队更优惠..已知()=-+(-)+.()解关于的不等式()>;()若不等式()>的解集为(-),求实数,的值.。

推荐2019年高考数学一轮复习课时分层训练31不等式的性质与一元二次不等式文北师大版

推荐2019年高考数学一轮复习课时分层训练31不等式的性质与一元二次不等式文北师大版

课时分层训练(三十一) 不等式的性质与一元二次不等式A 组 基础达标(建议用时:30分钟)一、选择题1.(2018·赣州模拟)对于任意实数a ,b ,c ,d ,有以下四个命题:①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ;③若a >b ,c >d ,则ac >bd ;④若a >b ,则1a >1b. 其中正确的有( )【导学号:00090187】 A .1个B .2个C .3个D .4个 B [①ac 2>bc 2,则c ≠0,则a >b ,①正确;②由不等式的同向可加性可知②正确;③需满足a 、b 、c 、d 均为正数才成立;④错误,比如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B .] 2.(2018·哈尔滨模拟)设0<a <b <1,则下列不等式成立的是( )A .a 3>b 3B .1a <1bC .a b >1D .lg(b -a )<0D [取a =13,b =12,可知A ,B ,C 错误,故选D .] 3.设a ,b 是实数,则“a >b >1”是“a +1a >b +1b”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 A [因为a +1a -⎝ ⎛⎭⎪⎫b +1b =a -bab -ab ,若a >b >1,显然a +1a -⎝ ⎛⎭⎪⎫b +1b =a -bab -ab >0,则充分性成立,当a =12,b =23时,显然不等式a +1a >b +1b成立,但a >b >1不成立,所以必要性不成立.]4.(2018·长春模拟)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x | x <-1或x >13,则f (e x )>0的解集为( )A .{x |x <-1或x >-ln 3}B .{x |-1<x <-ln 3}C .{x |x >-ln 3}D .{x |x <-ln 3}D [f (x )>0的解集为x ∈⎝⎛⎭⎪⎫-1,13. 不等式f (e x )>0可化为-1<e x <13. 解得x <ln 13,∴x <-ln 3,即f (e x )>0的解集为{x |x <-ln 3}.] 5.若集合A ={}x |ax 2-ax +1<0=∅,则实数a 的值的集合是( ) A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4} D [由题意知a =0时,满足条件,a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.] 二、填空题 6.(2018·石家庄模拟)不等式-2x 2+x +1>0的解集为________.【导学号:00090188】⎝ ⎛⎭⎪⎫-12,1 [-2x 2+x +1>0,即2x 2-x -1<0,(2x +1)(x -1)<0,解得-12<x <1,∴不等式-2x 2+x +1>0的解集为⎝ ⎛⎭⎪⎫-12,1.] 7.(2017·南京、盐城二模)已知函数f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -2,x >0,则不等式f (x )≥-1的解集是__________. [-4,2] [不等式f (x )≥-1⇔⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -2≥-1,解得-4≤x ≤0或0<x ≤2,故不等式f (x )≥-1的解集是[-4,2].]8.若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.(-∞,0] [∵不等式4x -2x +1-a ≥0在[1,2]上恒成立, ∴4x -2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x +1-1=(2x -1)2-1.∵1≤x ≤2,∴2≤2x ≤4.由二次函数的性质可知:当2x =2,即x =1时,y 取得最小值0,。

2019年高考数学(理)一轮复习精品课时练习:(三十一) 不等式的性质及一元二次不等式 Word版含解析

2019年高考数学(理)一轮复习精品课时练习:(三十一) 不等式的性质及一元二次不等式 Word版含解析

2019年高考数学(理)一轮复习精品课时练习课时达标检测(三十一) 不等式的性质及一元二次不等式[小题对点练——点点落实]对点练(一) 不等式的性质1.(2018·安徽合肥质检)下列三个不等式:①x +1x ≥2(x ≠0);②c a <c b (a >b >c >0);③a +m b +m >a b (a ,b ,m >0且a <b ),恒成立的个数为( )A .3B .2C .1D .0解析:选B 当x <0时,①不成立;由a >b >c >0得1a <1b ,所以c a <c b 成立,所以②恒成立;a +m b +m -a b =m (b -a )b (b +m ),由a ,b ,m >0且a <b 知a +m b +m -ab>0恒成立,故③恒成立,所以选B. 2.若a >b >0,c <d <0,则一定有( ) A .ac >bd B .ac <bd C .ad <bcD .ad >bc解析:选B 根据c <d <0,有-c >-d >0,由于a >b >0,故-ac >-bd ,ac <bd ,故选B. 3.已知实数a ,b 满足关系a 2=b 2-b +1,则下列结论正确的是( ) A .若a <1,b <12,则a >bB .若a <1,b <12,则a <bC .若a >1,b >12,则a >bD .若a >1,b >12,则a <b解析:选D 由题意知,a 2=b 2-b +1=⎝⎛⎭⎫b -122+34,对于A ,取a =-1,b =0,a >b 不成立;对于B ,取a =578,b =18,a <b 不成立;对于C ,取a =3,b =2,a >b 不成立;对于D ,若a >1,则b 2-b >0,又b >12,得b >1,1-b <0,所以a 2=b 2-b +1<b 2,则a <b ,故选D.4.若0<a <b ,且a +b =1,则a ,12,2ab ,a 2+b 2中最大的数为( )A .aB .12C .2abD .a 2+b 2解析:选D 因为0<a <b ,且a +b =1,所以a <12,a 2+b 2>(a +b )22=12,2ab =2a (1-a )=-2⎝⎛⎭⎫a -122+12<12,所以a ,12,2ab ,a 2+b 2中最大的数为a 2+b 2. 5.(2018·山西康杰中学月考)设a >b >1,则下列不等式成立的是( ) A .a ln b >b ln a B .a ln b <b ln a C .a e b <b e aD .a e b >b e a解析:选C 观察A ,B 两项,实际上是在比较ln b b 和ln a a 的大小,引入函数y =ln x x ,x >1.则y ′=1-ln x x 2,可见函数y =ln xx 在(1,e)上单调递增,在(e ,+∞)上单调递减.函数y =ln xx 在(1,+∞)上不单调,所以函数在x =a 和x =b 处的函数值无法比较大小.对于C ,D 两项,引入函数f (x )=e x x ,x >1,则f ′(x )=x e x -e x x 2=(x -1)e x x 2>0,所以函数f (x )=e xx 在(1,+∞)上单调递增,又因为a >b >1,所以f (a )>f (b ),即e a a >e bb ,所以a e b <b e a ,故选C.6.已知函数f (x )=ax +b,0<f (1)<2,-1<f (-1)<1,则2a -b 的取值范围是________.解析:设2a -b =mf (1)+nf (-1)=(m -n )·a +(m +n )b ,则⎩⎪⎨⎪⎧m -n =2,m +n =-1,解得m =12,n =-32,∴2a -b =12f (1)-32f (-1),∵0<f (1)<2,-1<f (-1)<1,∴0<12f (1)<1,-32<-32f (-1)<32,则-32<2a -b <52.答案:⎝⎛⎭⎫-32,52 7.若a >b >0,给出以下几个不等式: ①b a <b +5a +5;②lg a +b 2<lg a +lg b 2; ③a +1b >b +1a ;④a -b >a -b .其中正确的是________.(请填写所有正确的序号)解析:因为a >b >0,所以b +5a +5-b a =5(a -b )a (a +5)>0,①正确;lg a +lg b 2=lg ab <lg a +b2,②不正确;因为a+1b -⎝⎛⎭⎫b+1a=a-b+a-bab>0,所以③正确;(b+a-b)2=a+2b(a-b)>a,所以④不正确.答案:①③对点练(二)一元二次不等式1.(2018·信阳一模)已知关于x的不等式x2-ax-6a2>0(a<0)的解集为(-∞,x1)∪(x2,+∞),且x2-x1=52,则a=()A.- 5 B.-3 2C.- 2 D.-5 2解析:选C关于x的不等式x2-ax-6a2>0(a<0)可化简为(x+2a)(x-3a)>0,因为a<0,所以-2a>3a,所以解不等式得x>-2a或x<3a,所以x1=3a,x2=-2a.又x2-x1=52,所以-5a=52,所以a=- 2.2.设实数a∈(1,2),关于x的一元二次不等式x2-(a2+3a+2)x+3a(a2+2)<0的解集为()A.(3a,a2+2) B.(a2+2,3a)C.(3,4) D.(3,6)解析:选B由x2-(a2+3a+2)x+3a(a2+2)<0,得(x-3a)·(x-a2-2)<0,∵a∈(1,2),∴3a>a2+2,∴关于x的一元二次不等式x2-(a2+3a+2)x+3a(a2+2)<0的解集为(a2+2,3a).故选B.3.(2018·河北石家庄二中月考)在R上定义运算☆:a☆b=ab+2a+b,则满足x☆(x-2)<0的实数x的取值范围为()A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)解析:选B根据定义得x☆(x-2)=x(x-2)+2x+(x-2)=x2+x-2<0,解得-2<x<1,所以实数x的取值范围为(-2,1),故选B.4.(2018·河南洛阳诊断)若不等式x2+ax-2>0在区间[1,5]上有解,则a的取值范围是()A.⎝⎛⎭⎫-235,+∞ B .⎣⎡⎦⎤-235,1 C .(1,+∞)D .⎝⎛⎦⎤-∞,-235 解析:选A 由Δ=a 2+8>0知方程恒有两个不等实根,又因为x 1x 2=-2<0,所以方程必有一正根,一负根,对应二次函数图象的示意图如图.所以不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故选A.5.(2018·重庆凤鸣山中学月考)若不存在整数x 满足不等式(kx -k 2-4)(x -4)<0,则实数k 的取值范围是________.解析:容易判断k =0或k <0时,均不符合题意,所以k >0.所以原不等式即为k ⎝⎛⎭⎪⎫x -k 2+4k (x -4)<0,等价于⎝⎛⎭⎪⎫x -k 2+4k (x -4)<0,依题意应有3≤k 2+4k ≤5且k >0,所以1≤k ≤4.答案:[1,4]6.(2018·辽宁沈阳模拟)若不等式mx 2+2mx -4<2x 2+4x 对任意x 均成立,则实数m 的取值范围是________.解析:不等式等价于(m -2)x 2+2(m -2)x -4<0,①当m =2时,上式为-4<0,对任意的x ,不等式都成立; ②当m -2<0时,Δ=4(m -2)2+16(m -2)<0,∴-2<m <2. 综合①②,得m ∈(-2,2]. 答案:(-2,2][大题综合练——迁移贯通]1.(2018·黑龙江虎林一中期中)已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5). (1)求f (x )的解析式;(2)若对于任意的x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的取值范围. 解:(1)∵f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5),∴0和5是方程2x 2+bx +c =0的两个根,由根与系数的关系知,-b 2=5,c2=0,∴b =-10,c =0,f (x )=2x 2-10x .(2)f (x )+t ≤2恒成立等价于2x 2-10x +t -2≤0恒成立,∴2x 2-10x +t -2的最大值小于或等于0. 设g (x )=2x 2-10x +t -2,则由二次函数的图象可知g (x )=2x 2-10x +t -2在区间[-1,1]上为减函数, ∴g (x )max =g (-1)=10+t , ∴10+t ≤0,即t ≤-10. ∴t 的取值范围为(-∞,-10].2.已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围; (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)∵函数f (x )=ax 2+2ax +1的定义域为R ,∴ ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立. 当a ≠0时,需满足题意,则需⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a ≤0,解得0<a ≤1,综上可知,a 的取值范围是[0,1]. (2)f (x )=ax 2+2ax +1=a (x +1)2+1-a ,由题意及(1)可知0<a ≤1, ∴当x =-1时,f (x )min =1-a ,由题意得,1-a =22,∴a =12, ∴不等式x 2-x -a 2-a <0可化为x 2-x -34<0.解得-12<x <32,∴不等式的解集为⎝⎛⎭⎫-12,32. 3.(2018·江西八校联考)已知函数f (x )=x 2-2ax -1+a ,a ∈R .(1)若a =2,试求函数y =f (x )x(x >0)的最小值; (2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围.解:(1)依题意得y =f (x )x =x 2-4x +1x =x +1x-4.因为x >0,所以x +1x ≥2.当且仅当x =1x 时, 即x =1时,等号成立. 所以y ≥-2.所以当x =1时,y =f (x )x 的最小值为-2. (2)因为f (x )-a =x 2-2ax -1,所以要使得“∀x ∈[0,2],不等式f (x )≤a 成立”, 只要“x 2-2ax -1≤0在[0,2]恒成立”. 不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧ g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎡⎭⎫34,+∞.。

2019年高考数学(理)大一轮复习 人教版 第七章 不等式 第1节 不等式的性质与一元二次不等式

2019年高考数学(理)大一轮复习 人教版 第七章 不等式 第1节 不等式的性质与一元二次不等式

第1节 不等式的性质与一元二次不等式最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一元二次不等式模型;3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.知 识 梳 理1.两个实数比较大小的方法(1)作差法⎩⎨⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b ;(2)作商法⎩⎪⎨⎪⎧ab >1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b >0),a b <1⇔a <b (a ∈R ,b >0).2.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0n ∈N ,n ≥2). 3.三个“二次”间的关系1.有关分数的性质(1)若a >b >0,m >0,则b a <b +m a +m ;b a >b -ma -m (b -m >0).(2)若ab >0,且a >b ⇔1a <1b .2.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形.3.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.诊 断 自 测1.思考辨析(在括号内打“√”或“×”) (1)a >b ⇔ac 2>bc2.( )(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( )(4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( ) 解析 (1)由不等式的性质,ac 2>bc 2⇒a >b ;反之,c =0时,a >b ⇒ac 2>bc 2. (3)若方程ax 2+bx +c =0(a <0)没有实根.则不等式ax 2+bx +c >0的解集为∅. (4)当a =b =0,c ≤0时,不等式ax 2+bx +c ≤0也在R 上恒成立. 答案 (1)× (2)√ (3)× (4)×2.(必修5习题改编)若a >b >0,c <d <0,则一定有( ) A.a d >b c B.a d <b c C.a c >b dD.a c <b d解析 因为c <d <0,所以0>1c >1d ,两边同乘-1,得-1d >-1c >0,又a >b >0,故由不等式的性质可知-ad >-b c >0.两边同乘-1,得a d <bc . 答案 B3.设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N 等于( ) A.(0,4]B.[0,4)C.[-1,0)D.(-1,0]解析 ∵M ={x |x 2-3x -4<0}={x |-1<x <4}, ∴M ∩N =[0,4). 答案 B4.不等式2x +1<1的解集是________.解析 由2x +1<1得1-x x +1<0等价于 (x -1)(x +1)>0,解得x >1或x <-1. 答案 {x |x <-1或x >1}5.已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值范围是________.解析 若a =0,则f (x )=-1≤0恒成立, 若a ≠0,则由题意,得⎩⎨⎧a <0,Δ=a 2+4a ≤0,解得-4≤a <0, 综上,得a ∈[-4,0]. 答案 [-4,0]考点一 比较大小及不等式的性质的应用【例1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A.c ≥b >a B.a >c ≥b C.c >b >aD.a >c >b(2)(一题多解)若1a <1b <0,给出下列不等式:①1a +b<1ab ;②|a |+b >0;③a -1a>b -1b ;④ln a 2>ln b 2.其中正确的不等式是( ) A.①④ B.②③ C.①③D.②④解析 (1)∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,∴b >a ,∴c ≥b >a .(2)法一 因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A ,B ,D.法二 由1a <1b <0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误; ③中,因为b <a <0,又1a <1b <0,则-1a >-1b >0, 所以a -1a >b -1b ,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确. 答案 (1)A (2)C规律方法 1.比较大小常用的方法: (1)作差法;(2)作商法;(3)函数的单调性法.2.判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.【训练1】 (1)(2018·赣州、吉安、抚州七校联考)设0<a <b <1,则下列不等式成立的是( )A.a 3>b 3B.1a <1bC.a b >1D.lg(b -a )<0(2)已知p =a +1a -2,q =⎝ ⎛⎭⎪⎫12x 2-2,其中a >2,x ∈R ,则p ,q 的大小关系是( )A.p ≥qB.p >qC.p <qD.p ≤q解析 (1)取a =13,b =12,可知A ,B ,C 错误,故选D. (2)由a >2,故p =a +1a -2=(a -2)+1a -2+2≥2+2=4,当且仅当a =3时取等号.因为x 2-2≥-2,所以q =⎝ ⎛⎭⎪⎫12x 2-2≤⎝ ⎛⎭⎪⎫12-2=4,当且仅当x =0时取等号,所以p ≥q .答案 (1)D (2)A考点二 一元二次不等式的解法(多维探究) 命题角度1 不含参的不等式【例2-1】 (2018·河北重点八所中学模拟)不等式2x 2-x -3>0的解集为( )A.⎩⎨⎧⎭⎬⎫x |-1<x <32 B.⎩⎨⎧⎭⎬⎫x |x >32或x <-1 C.⎩⎨⎧⎭⎬⎫x |-32<x <1D.⎩⎨⎧⎭⎬⎫x |x >1或x <-32 解析 由2x 2-x -3>0,得(x +1)(2x -3)>0, 解得x >32或x <-1.∴不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x |x >32或x <-1.答案 B命题角度2 含参不等式【例2-2】 解关于x 的不等式ax 2-2≥2x -ax (a ≤0). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a ≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 规律方法 含有参数的不等式的求解,往往需要比较(相应方程)根的大小,对参数进行分类讨论:(1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便写出解集. 【训练2】 已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x |-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.解析 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=b a,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎨⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0,解得x ≥3或x ≤2.答案 {x |x ≥3或x ≤2}考点三 不等式的恒成立问题(多维探究) 命题角度1 在R 上恒成立【例3-1】 若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( ) A.(-3,0]B.[-3,0)C.[-3,0]D.(-3,0)解析 一元二次不等式2kx 2+kx -38<0对一切实数x 都成立, 则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝ ⎛⎭⎪⎫-38<0, 解之得-3<k <0. 答案 D命题角度2 在给定区间上恒成立【例3-2】 (一题多解)设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________. 解析 要使f (x )<-m +5在[1,3]上恒成立, 故mx 2-mx +m -6<0,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0.法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是.答案命题角度3 给定参数范围的恒成立问题【例3-3】 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( ) A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞) C.(-∞,1)∪(3,+∞)D.(1,3)解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4, 则由f (a )>0对于任意的a ∈[-1,1]恒成立, 所以f (-1)=x 2-5x +6>0, 且f (1)=x 2-3x +2>0即可,解不等式组⎩⎨⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.答案 C规律方法 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【训练3】 (1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是( ) A.[-1,4]B.(-∞,-2]∪[5,+∞)C.(-∞,-1]∪[4,+∞)D.[-2,5](2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.解析 (1)由于x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4. (2)二次函数f (x )对于任意x ∈[m ,m +1], 都有f (x )<0成立,则⎩⎨⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. 答案 (1)A (2)⎝ ⎛⎭⎪⎫-22,0基础巩固题组 (建议用时:40分钟)一、选择题1.(2018·汕头一模)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x ≤0,B ={0,1,2,3},则A ∩B =( ) A.{1,2} B.{0,1,2} C.{1}D.{1,2,3}解析∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x ≤0={x |0<x ≤2}, ∴A ∩B ={1,2}. 答案 A2.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( ) A.f (x )=g (x ) B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ).答案 B3.(2018·河南百校联盟模拟)设a,b∈R,则“(a-b)a2≥0”是“a≥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由(a-b)a2≥0,推不出a≥b,如a=0,b=2,因为a2≥0,a≥b,所以(a-b)a2≥0,故“(a-b)a2≥0”是“a≥b”的必要不充分条件.答案 B4.(2018·清远一中一模)关于x的不等式ax-b<0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是()A.(-∞,-1)∪(3,+∞)B.(1,3)C.(-1,3)D.(-∞,1)∪(3,+∞)解析关于x的不等式ax-b<0即ax<b的解集是(1,+∞),∴a=b<0,∴不等式(ax+b)(x-3)>0可化为(x+1)(x-3)<0,解得-1<x<3,∴所求不等式的解集是(-1,3).答案 C5.已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是()A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定解析由f(1-x)=f(1+x)知f(x)的图象关于直线x=1对称,即a2=1,解得a=2.又因为f(x)开口向下,所以当x∈[-1,1]时,f(x)为增函数,所以f(x)min=f(-1)=-1-2+b2-b+1=b2-b-2,f(x)>0恒成立,即b2-b-2>0恒成立,解得b<-1或b>2.答案 C二、填空题6.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为________. 解析 由题意知⎩⎨⎧x ≥0,x 2+2x >3或⎩⎨⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}.答案 {x |x >1}7.(2018·郑州调研改编)规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是________.解析 由题意知k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1,所以-1<k <1.答案 (-1,1)8.不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是________.解析 当a -2=0,即a =2时,不等式即为-4<0,对一切x ∈R 恒成立,当a ≠2时,则有⎩⎨⎧a -2<0,Δ=4(a -2)2+16(a -2)<0, 解得-2<a <2.综上,可得实数a 的取值范围是(-2,2].答案 (-2,2]三、解答题9.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3. 故a 的值为3±3,b 的值为-3.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解 (1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2. 能力提升题组(建议用时:20分钟)11.(2018·咸阳模拟)已知0<a <b ,且a +b =1,则下列不等式中正确的是( )A.log 2a >0B.2a -b <12C.log 2a +log 2b <-2D.2a b +b a <12 解析 由题意知0<a <1,此时log 2a <0,A 错误;由已知得0<a <1,0<b <1,所以-1<-b <0,又a <b ,所以-1<a -b <0,所以12<2a -b <1,B 错误;因为0<a <b ,所以a b +b a >2a b ·b a =2,所以2a b +b a >22=4,D 错误;由a +b =1>2ab ,得ab <14,因此log 2a +log 2b =log 2(ab )<log 214=-2,C 正确.答案 C12.若不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是________.解析 设f (x )=x 2+ax -2,由题知Δ=a 2+8>0,所以方程x 2+ax -2=0恒有一正一负两根,于是不等式x 2+ax -2>0在区间[1,5]上有解的充要条件是f (5)>0,即a ∈⎝ ⎛⎭⎪⎫-235,+∞. 答案 ⎝ ⎛⎭⎪⎫-235,+∞ 13.解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ).解 原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可以化为a (x -2)⎝ ⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝ ⎛⎭⎪⎫x -1a <0.因为方程(x -2)⎝ ⎛⎭⎪⎫x -1a =0的两个根分别是2,1a ,所以当0<a <12时,2<1a ,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,原不等式的解集是∅;当a >12时,1a <2,则原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <2. (2)当a =0时,原不等式为-(x -2)<0,解得x >2,即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)⎝ ⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝ ⎛⎭⎪⎫x -1a >0, 由于1a <2,故原不等式的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <1a 或x >2. 综上所述,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <1a 或x >2;当a =0时,不等式的解集为{x |x >2};当0<a <12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <1a ;当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <2.。

2019高考数学复习:不等式的性质与一元二次不等式

2019高考数学复习:不等式的性质与一元二次不等式

第1节 不等式的性质与一元二次不等式最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一元二次不等式模型;3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.知 识 梳 理1.两个实数比较大小的方法(1)作差法⎩⎨⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b ;(2)作商法⎩⎪⎨⎪⎧ab >1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b >0),a b <1⇔a <b (a ∈R ,b >0).2.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒n ∈N ,n ≥2). 3.三个“二次”间的关系[常用结论与微点提醒] 1.有关分数的性质(1)若a>b>0,m>0,则ba<b+ma+m;ba>b-ma-m(b-m>0).(2)若ab>0,且a>b⇔1a< 1 b.2.对于不等式ax2+bx+c>0,求解时不要忘记讨论a=0时的情形.3.当Δ<0时,ax2+bx+c>0(a≠0)的解集为R还是∅,要注意区别.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)a>b⇔ac2>bc2.()(2)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.()(3)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0的解集为R.()(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.() 解析(1)由不等式的性质,ac2>bc2⇒a>b;反之,c=0时,a>b⇒/ ac2>bc2.(3)若方程ax2+bx+c=0(a<0)没有实根.则不等式ax2+bx+c>0的解集为∅.(4)当a=b=0,c≤0时,不等式ax2+bx+c≤0也在R上恒成立.答案(1)×(2)√(3)×(4)×2.若a>b>0,c<d<0,则一定有()A.a d >b cB.a d <b cC.a c >b dD.a c <b d解析 因为c <d <0,所以0>1c >1d ,两边同乘-1,得-1d >-1c >0,又a >b >0,故由不等式的性质可知-a d >-b c >0.两边同乘-1,得a d <bc .故选B. 答案 B3.设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N 等于( ) A .(0,4]B .[0,4)C .[-1,0)D .(-1,0]解析 ∵M ={x |x 2-3x -4<0}={x |-1<x <4}, ∴M ∩N =[0,4). 答案 B4.(2018·梧州模拟)不等式2x +1<1的解集是________. 解析 由2x +1<1得1-x x +1<0等价于 (x -1)(x +1)>0,解得x >1或x <-1. 答案 {x |x <-1或x >1}5.已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值范围是________.解析 若a =0,则f (x )=-1≤0恒成立, 若a ≠0,则由题意,得⎩⎨⎧a <0,Δ=a 2+4a ≤0,解得-4≤a <0, 综上,得a ∈[-4,0]. 答案 [-4,0]考点一 比较大小及不等式的性质的应用【例1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b(2)(一题多解)若1a <1b <0,给出下列不等式:①1a +b<1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式是( ) A .①④B .②③C .①③D .②④解析 (1)∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,∴b >a ,∴c ≥b >a .(2)法一 因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A ,B ,D.法二 由1a <1b <0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b<0,1ab>0.故有1a +b <1ab ,即①正确;②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误; ③中,因为b <a <0,又1a <1b <0,则-1a >-1b >0, 所以a -1a >b -1b ,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确. 答案 (1)A (2)C规律方法 1.比较大小常用的方法: (1)作差法;(2)作商法;(3)函数的单调性法.2.判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.【训练1】 (1)(2018·赣州、吉安、抚州七校联考)设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3 B.1a <1b C .a b >1D .lg(b -a )<0(2)已知p =a +1a -2,q =⎝ ⎛⎭⎪⎫12x 2-2,其中a >2,x ∈R ,则p ,q 的大小关系是( )A .p ≥qB .p >qC .p <qD .p ≤q解析 (1)取a =13,b =12,可知A ,B ,C 错误,故选D. (2)由a >2,故p =a +1a -2=(a -2)+1a -2+2≥2+2=4,当且仅当a =3时取等号.因为x 2-2≥-2,所以q =⎝ ⎛⎭⎪⎫12x 2-2≤⎝ ⎛⎭⎪⎫12-2=4,当且仅当x =0时取等号,所以p ≥q . 答案 (1)D (2)A考点二 一元二次不等式的解法(多维探究) 命题角度1 不含参的不等式【例2-1】 (2018·河北重点八所中学模拟)不等式2x 2-x -3>0的解集为( )A.⎩⎨⎧⎭⎬⎫x |-1<x <32 B.⎩⎨⎧⎭⎬⎫x |x >32或x <-1 C.⎩⎨⎧⎭⎬⎫x |-32<x <1D.⎩⎨⎧⎭⎬⎫x |x >1或x <-32 解析 由2x 2-x -3>0,得(x +1)(2x -3)>0, 解得x >32或x <-1. ∴不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x |x >32或x <-1. 答案 B命题角度2 含参不等式【例2-2】 解关于x 的不等式ax 2-2≥2x -ax (a ≤0). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a ≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 规律方法 含有参数的不等式的求解,往往需要比较(相应方程)根的大小,对参数进行分类讨论:(1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便写出解集. 【训练2】 已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x |-12<x <-13,则不等式x 2-bx-a ≥0的解集是________.解析 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎨⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2. 答案 {x |x ≥3或x ≤2}考点三 不等式的恒成立问题(多维探究) 命题角度1 在R 上恒成立【例3-1】 若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( ) A .(-3,0]B .[-3,0)C .[-3,0]D .(-3,0)解析 一元二次不等式2kx 2+kx -38<0对一切实数x 都成立, 则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝ ⎛⎭⎪⎫-38<0, 解之得-3<k <0. 答案 D命题角度2 在给定区间上恒成立【例3-2】 (一题多解)设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________. 解析 要使f (x )<-m +5在[1,3]上恒成立, 故mx 2-mx +m -6<0,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0. 综上所述,m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0. 法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 . 答案 ⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0命题角度3 给定参数范围的恒成立问题【例3-3】 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( )A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3)解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4, 则由f (a )>0对于任意的a ∈[-1,1]恒成立, 所以f (-1)=x 2-5x +6>0, 且f (1)=x 2-3x +2>0即可,解不等式组⎩⎨⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.答案 C规律方法 1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【训练3】 (1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是( ) A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5](2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.解析 (1)由于x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4. (2)二次函数f (x )对于任意x ∈[m ,m +1], 都有f (x )<0成立,则⎩⎨⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0.答案 (1)A (2)⎝ ⎛⎭⎪⎫-22,0基础巩固题组 (建议用时:40分钟)一、选择题1.(2018·汕头一模)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x ≤0,B ={0,1,2,3},则A ∩B =( )A .{1,2}B .{0,1,2}C .{1}D .{1,2,3}解析∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x ≤0={x |0<x ≤2}, ∴A ∩B ={1,2}. 答案 A2.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( ) A .f (x )=g (x ) B .f (x )>g (x )C .f (x )<g (x )D .随x 的值变化而变化解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ). 答案 B3.(2018·河南百校联盟模拟)设a ,b ∈R ,则“(a -b )a 2≥0”是“a ≥b ”的( ) A .充分不必要条件B .必要不充分条件C.充要条件D.既不充分也不必要条件解析由(a-b)a2≥0,推不出a≥b,如a=0,b=2,因为a2≥0,a≥b,所以(a-b)a2≥0,故“(a-b)a2≥0”是“a≥b”的必要不充分条件.答案 B4.(2018·清远一中一模)关于x的不等式ax-b<0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是()A.(-∞,-1)∪(3,+∞)B.(1,3)C.(-1,3)D.(-∞,1)∪(3,+∞)解析关于x的不等式ax-b<0即ax<b的解集是(1,+∞),∴a=b<0,∴不等式(ax+b)(x-3)>0可化为(x+1)(x-3)<0,解得-1<x<3,∴所求不等式的解集是(-1,3).答案 C5.已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是()A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定解析由f(1-x)=f(1+x)知f(x)的图象关于直线x=1对称,即a2=1,解得a=2.又因为f(x)开口向下,所以当x∈[-1,1]时,f(x)为增函数,所以f(x)min=f(-1)=-1-2+b2-b+1=b2-b-2,f(x)>0恒成立,即b2-b-2>0恒成立,解得b<-1或b>2.答案 C二、填空题6.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为________.解析 由题意知⎩⎨⎧x ≥0,x 2+2x >3或⎩⎨⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x>1}.答案 {x |x >1}7.(2018·郑州调研改编)规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是________. 解析 由题意知k 2+1+k 2<3, 化为(|k |+2)(|k |-1)<0,所以|k |<1, 所以-1<k <1. 答案 (-1,1)8.不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是________.解析 当a -2=0,即a =2时,不等式即为-4<0,对一切x ∈R 恒成立, 当a ≠2时,则有⎩⎨⎧a -2<0,Δ=4(a -2)2+16(a -2)<0, 解得-2<a <2.综上,可得实数a 的取值范围是(-2,2]. 答案 (-2,2] 三、解答题9.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, ∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3.故a 的值为3±3,b 的值为-3.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解 (1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x .因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0. 所以y =f (x )=40(10-x )(25+4x ), 定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0.解得12≤x ≤134. 所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.能力提升题组 (建议用时:20分钟)11.(2018·咸阳模拟)已知0<a <b ,且a +b =1,则下列不等式中正确的是( ) A .log 2a >0B .2a -b <12 C .log 2a +log 2b <-2D .2a b +b a <12解析 由题意知0<a <1,此时log 2a <0,A 错误;由已知得0<a <1,0<b <1,所以-1<-b <0,又a <b ,所以-1<a -b <0,所以12<2a -b <1,B 错误;因为0<a <b ,所以a b +b a >2a b ·b a =2,所以2a b +b a >22=4,D 错误;由a +b =1>2ab ,得ab <14,因此log 2a +log 2b =log 2(ab )<log 214=-2,C 正确. 答案 C12.若不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是________. 解析 设f (x )=x 2+ax -2,由题知Δ=a 2+8>0, 所以方程x 2+ax -2=0恒有一正一负两根,于是不等式x 2+ax -2>0在区间[1,5]上有解的充要条件是f (5)>0,即a ∈⎝ ⎛⎭⎪⎫-235,+∞. 答案 ⎝ ⎛⎭⎪⎫-235,+∞13.解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ). 解 原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可以化为a (x -2)⎝ ⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝ ⎛⎭⎪⎫x -1a <0.因为方程(x -2)⎝ ⎛⎭⎪⎫x -1a =0的两个根分别是2,1a ,所以当0<a <12时,2<1a ,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,原不等式的解集是∅;当a >12时,1a <2,则原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <2. (2)当a =0时,原不等式为-(x -2)<0,解得x >2, 即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)⎝ ⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝ ⎛⎭⎪⎫x -1a >0, 由于1a <2,故原不等式的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <1a 或x >2.综上所述,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <1a 或x >2;当a =0时,不等式的解集为{x |x >2};当0<a <12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <1a ;当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <2.。

2019学年年高考数学一轮复习课时分层训练31不等式的性质与一元二次不等式文北师大版1

2019学年年高考数学一轮复习课时分层训练31不等式的性质与一元二次不等式文北师大版1
会当凌绝顶,一览众山小
课时分层训练 ( 三十一 ) 不等式的性质与一元二次不等式
A 组 基础达标
( 建议用时: 30 分钟 )
一、选择题
1.(2018 ·赣州模拟 ) 对于任意实数 a, b, c,d,有以下四个命题: ①若 ac2> bc2,则 a> b;
②若 a> b, c> d,则 a+ c> b+ d;
x>0,

x- 1 2≥- 1,
解得-
4≤ x≤0或 0<x≤2,故不等式 f ( x) ≥- 1 的解集是 [ - 4,2] . ]
8.若关于 x 的不等式 4x- 2x+1- a≥0在 [1,2] 上恒成立,则实数 a 的取值范围为 ________.
( - ∞ , 0] [ ∵不等式 4x- 2x+1- a≥0 在 [1,2] 上恒成立,
(3) 当
1 0 < a< 时 , Δ > 0 , 方 程
2x2 - 3(1 + a) x + 6a = 0 的 两 个 根 为
x1 =
3
3a+ 3- 9a2- 30a+ 9
3a+ 3+ 9a2- 30a+9
4
, x2=
, 4
因为 x2> x1,所以原不等式的解集为
3a+3+ 9a2- 30a+9
x x>
第 3页 共 5页
A. { x| x<-1 或 x>- ln 3}
B. { x| - { x| x>-ln 3}
D. { x| x<- ln 3}
1 D [ f ( x)>0 的解集为 x∈ - 1,3 .
不等式
f
(e
x
)>0
可化为-
x1 1<e <3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业提升(三十四) 不等式的性质与一元二次不等式A 组 夯实基础1.(2016·全国卷Ⅱ)已知集合A ={1,2,3},B ={x |x 2<9},则A ∩B =( ) A .{-2,-1,0,1,2,3} B .{-2,-1,0,1,2} C .{1,2,3}D .{1,2}解析:选D ∵B ={x |-3<x <3},∴A ∩B ={1,2},选D .2.(2017·江西赣州、吉安、抚州七校联考)设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3 B .1a <1bC .a b >1D .lg(b -a )<0解析:选D 取a =13,b =12,可知A ,B ,C 错误,故选D .3.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( ) A .ab >ac B .c (b -a )>0 C .cb 2<ab 2D .ac (a -c )<0解析:选C 由题意知c <0,a >0,则A 一定正确;B 一定正确;D 一定正确;当b =0时C 不正确.4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4}D .{a |0≤a ≤4}解析:选D 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0.得0<a ≤4,所以0≤a ≤4,故选D .5.(2018·九江模拟)若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C .(-6,+∞)D .(-∞,-6)解析:选A 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令g (x )=x 2-4x -2,x ∈(1,4),∴g (x )<g (4)=-2,∴a <-2.6.已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A .⎩⎨⎧x ⎪⎪⎭⎬⎫-1<x <12 B .⎩⎨⎧x ⎪⎪⎭⎬⎫x <-1或x >12 C .{x |-2<x <1} D .{x |x <-2或x >1}解析:选A 由题意知x =-1,x =2是方程ax 2+bx +2=0的根,且a <0.由韦达定理⎩⎨⎧-1+2=-b a,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1. ∴不等式2x 2+bx +a <0,即2x 2+x -1<0, 可知x =-1,x =12是对应方程的根,∴选A .7.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是________. 解析:∵ab 2>a >ab ,∴a ≠0,当a >0时,b 2>1>b ,即⎩⎪⎨⎪⎧ b 2>1,b <1,解得b <-1;当a <0时,b 2<1<b ,即⎩⎪⎨⎪⎧b 2<1,b >1,此式无解.综上可得实数b 的取值范围为(-∞,-1). 答案:(-∞,-1)8.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是________. 解析:作差可得(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(a 1-a 2)·(b 1-b 2), 因为a 1<a 2,b 1<b 2,所以(a 1-a 2)(b 1-b 2)>0, 即a 1b 1+a 2b 2>a 1b 2+a 2b 1. 答案:a 1b 1+a 2b 2>a 1b 2+a 2b 19.若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为________. 解析:x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4即可,解得-1≤a ≤4.答案:[-1,4]10.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是________. 解析:不等式x 2+mx +1≥0的解集为R ,相当于二次函数y =x 2+mx +1的最小值非负,即方程x 2+mx +1=0最多有一个实根,故Δ=m 2-4≤0,解得-2≤m ≤2.答案:[-2,2]11.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解:设该单位职工有n 人(n ∈N *),全票价为x 元,坐甲车需花y 1元,坐乙车需花y 2元, 则y 1=x +34x ·(n -1)=14x +34xn ,y 2=45nx .所以y 1-y 2=14x +34xn -45nx =14x -120nx =14x ⎝⎛⎭⎫1-15n . 当n =5时,y 1=y 2; 当n >5时,y 1<y 2; 当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,甲车队更优惠;少于5人时,乙车队更优惠.12.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3>0, 即a 2-6a -3<0,解得3-23<a <3+2 3. ∴不等式的解集为{ a |}3-23<a <3+23. (2)∵f (x )>b 的解集为(-1,3),∴方程- 3x 2+a (6-a )x +6-b =0的两根为-1,3, ∴⎩⎨⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.故a 的值为3+3或3-3,b 的值为-3.B 组 能力提升1.(2018·重庆模拟)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( )A .52B .72C .154D .152解析:选A 由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2.故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52,故选A .2.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A .12元B .16元C .12元到16元之间D . 10元到14元之间解析:选C 设销售价定为每件x 元,利润为y ,则:y =(x -8)[100-10(x -10)],依题意有(x -8)[100-10(x -10)]>320,即x 2-28x +192<0,解得12<x <16,所以每件销售价应定为12元到16元之间.3.求不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 解:将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )=(x -3)a +x 2-6x +9. 因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去. (2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.故x 的取值范围为(-∞,2)∪(4,+∞). 4.已知函数f (x )=x 2-2ax -1+a ,a ∈R . (1)若a =2,试求函数y =f (x )x(x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围.解:(1)依题意得y =f (x )x =x 2-4x +1x =x +1x-4.因为x >0,所以x +1x ≥2.当且仅当x =1x 时,即x =1时,等号成立. 所以y ≥-2.所以当x =1时,y =f (x )x 的最小值为-2.(2)因为f (x )-a =x 2-2ax -1,所以要使得“对任意的x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]恒成立”.不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧ g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎡⎭⎫34, +∞.。

相关文档
最新文档