信号电缆故障的查找分析与处理_图文
电力电缆故障定位的步骤和原理
电力电缆故障定位的步骤和原理造成电缆故障的原因是复杂的。
要想对故障点进行快速判断,就需要对电缆的工作环境以及常见原因有所了解,这也是减少电缆故障的一个重要途径。
常见的故障原因主要包括外力破坏、电缆质量、电缆中间头制作不达标、管理存在问题、自然现象造成的损伤以及电缆生产质量等。
因故障导致供电中断后,测试人员应合理选择仪器和测试方法快速寻找故障点。
故障点查找的步骤是先故障分析再测距,最后精确定位。
1、故障分析故障分析是了解故障电缆的基本信息,对其进行综合分析,包括敷设方式、电缆长度、型号、走向,以及接头的位置、长度、预留地点、发生故障前运行状况等,了解路径的施工情况,对故障电缆的类型进行初步判断,对其进行绝缘测试。
发生故障后,可在敷设人员处获得施工详细资料,以此来提升故障定位的准确性。
如果不了解电缆的路径和长度,需要在定位时排查清楚,判断故障类型时可借助故障时保护装置动作情况。
2、测距在定位的过程中,测距是最关键的一步,准确的定位是减少检修时间重要途径,特别是在长电缆中,不能准确定位对检修工作的影响更严重。
在实际应用中,为保证测试的准确,可通过多种方法来验证,必要时可通过电桥法或者脉冲电流来验证。
(1)行波法测距原理该方法进行测距中,电缆会从理论上看做均匀长线,以此来对微观传播过程进行分析。
电缆传输线路中的分布参数包括电感元件、电容、电导、电阻等,在任意点的等效电路图中,每个无限小段的电缆传输线路如下图所示:▲均匀长线的等效电路图在长线理论中,影响故障波形分析和性质分析的重要因素包括波的透射和反射、特性阻抗以及波的速度。
其中波速v和特性阻抗分别为:其中C为光速,μ和分别为电缆芯线周围介质的相对导磁系数和相对介电系数。
可看出电波在电缆中的传输速度与芯线材料和界面剂无关,与介电性能相关,不同的绝缘材料中,电波的传输速度有所不同。
特性阻抗为实数,与频率无关。
两种电缆连接时因不同的波阻抗会在连接处存在阻抗不匹配的情形。
信号电缆故障处理
处理类似故障几点建议
XJWELL-513测试接地接线图
XJWELL-513测试电缆多处破皮接地接线图
断线故障点判断和查找方法
XJWELL-X3测试断线接线图
XJWELL-X3 0-1000m断线标准波形
XJWELL-X3 1001-32000m断线标准波形
电缆断线等同电容效应解析
长电缆 中部断线 E1 V1
BA
E2
V2
•
电缆芯线和外屏蔽层之间存在分布电容,当芯线断线后,等效为下图。相当于电缆线回路中串入电容,由 于系统信号属于高频交流信号,电容在此处只是造成电缆损耗增大,没有破坏信号传输通路。此时若按照 正确的调整表进行调整,由于电缆损耗增大,势必会造成轨出电压降低,但是现场维护人员缺乏对这方面 的了解,错误的升高发送电平,从而轨出电压仍能够满足系统指标。
信号接收器专 用互感器 C41
信号接收器专 用互感器 C30
电缆接头定 位传感器 机箱
信号发生器面板功能键示意图
信号接收器面板示意图
XJWELL-X3测试混线、短路接线图
XJWELL-513电缆混线查找示意图
XJWELL-513测试电缆芯线混线时接线图
XJWELL-X3测试混线、短路波形示意图
根据影响 行车情况, 进行应急 抢修
否
永 久 恢 复
联 锁 试 验
电 缆 接 续
联 系 要 点
准备电 缆接续 工具材 料
查看电缆配线 确定单芯用途
混线故障点 判断和查找方法
混线故障点 判断和查找方法
128
混线故障点 判断和查找方法
我段现阶段配备的XJWELL-513电缆接地混线故障查找仪器
高低阻信号 信号发送器 接收器
信号电缆故障与查找技巧
信号电缆故障与查找技巧铁路信号电缆是铁路信号设备的重要传输工具,电源与信号的正常传送,关系着信号设备的正常运转,在保障铁路的顺利运行与车辆的安全形势中占有举足轻重的地位。
信号一旦发生问题,信号设备将无法正常运行。
信号电缆一般埋在地下,维护人员将无法快速准确的查找故障点,判断故障状态。
一旦发生故障,通常需要大量人力物力将电缆从地下挖出进行排查。
此类排查方法最容易造成排查效率低、查找时间长、测试精确度不高等问题。
利用现有设备最大程度将故障范围缩小,尽快找到故障点,解决故障问题,是信号人员所探究的重要问题。
本文将结合近几年的工作经验,探究信号电缆故障类型、主要原因以及利用DGC-H型电缆故障测试仪查找电缆故障的方法与技巧。
电缆故障类型及主要原因由于地理环境因素、电缆本身以及施工等因素,信号电缆故障的类型越来越多,电缆故障的情况也越来越复杂。
电缆故障的主要类型有断线、混线、浸水、绝缘不良。
其产生的原因有:1. 人为地面开挖、施工因素:施工时,如果没有及时了解地下信号电缆的走向以及其他铺设情况,没有做好地下电缆防护措施,就会造成因地面开挖或施工而造成的电缆损坏。
2. 电缆本身的因素:信号电缆本身的质量问题或者由于使用时间太长而造成的电缆老化、电缆层的折断与漏气、绝缘层的破损都是电缆损坏的重要原因。
3. 地理环境因素:由于地理环境的限制而造成的电缆埋藏深度不足、电缆线外漏都有可能使信号电缆在施工或者雨雪天气的作用下损坏。
4. 其他原因:鼠害、虫害或人为盗窃而造成的信号电缆的损坏。
DGC-H型电缆故障测试仪简介电缆故障日趋多样化使得信号电缆维护人员的工作量大大增加,要及时及准确查找故障点,利用相关的故障检测仪器必不可少。
DGC-H型电缆故障测试仪是一种常用的电缆故障测试仪,仪器采用脉冲法探测。
由于每条线路都有一定的阻抗性,这种性质是由线路的材料和结构所决定的。
在传输线上,任一点的输入阻抗等于特性阻抗,如果终端所接负载等于特性阻抗,线路始端发送的电流波或电压波沿线传送,到达终端被负载全部吸收而无反射。
铁路电力系统电缆故障的查找与分析
铁路电力系统电缆故障的查找与分析摘要:我国现代化建设事业的持续进步,需要重视电力系统的安全稳定运行,铁路电力系统的安全稳定直接影响着铁路系统的正常运行,尤其是铁路电力系统中的自闭线路,自闭线路的主要任务是用来为铁路的各个车站和电务等集中的电气装备提供安全、可靠、连续的供电,保障铁路信号系统的正常工作,以及确保列车的安全行驶。
关键词:铁路电力电缆;故障;成因;措施;检测铁路电力系统承担着整个铁路系统的电力供应功能,铁路电力系统出现故障将会给铁路运输造成很大影响,甚至会干扰国民经济的正常运行。
本文对铁路电力系统常见的电缆故障问题进行了分析研究,总结了故障的查找方法,以期对铁路电力系统的稳定运行提供帮助。
一、铁路电力电缆常见故障的分析铁路电力电缆常见故障主要有:①接地故障,这种电缆故障比较常见,一般我们分为多相接地故障和单相接地故障;②短路故障,这和接地故障的分类一样,通常也有多相短路故障和两相短路故障;③断线故障,顾名思义,电缆的部分电气性能正常,但是存在多相或者单相断路、不连续;④闪络故障,电缆工作在低电压区域时电气参数正常,一旦到高压环境下后,一段时间以后会出现突然性的绝缘击穿现象;⑤综合类故障,就是同时发生了综上所述的两种以上电缆故障。
二、故障查找方法2.1脉冲电流法该方法安全、可靠、接线简单。
它是将电缆故障点用高压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,并根据电流行波信号在测量端与故障点往返一趟的时间来计算故障距离。
该方法用互感器将脉冲电流耦合出来,波形较简单,较安全。
这种方法包括直闪法及冲闪法两种。
与脉冲电压法使用电阻、电容分压器进行电压取样不同,脉冲电流法使用线性电流耦合器平行地放置在低压测地线旁,与高压回路无直接电器连接,对记录仪器与操作人员来说,特别安全和方便,所以一般使用此方法。
2.2跨步电压法在铁路电力系统中,对电缆故障进行检查的时候,跨步电压法比较常用,该种检查方法的操作也比较简单。
高压电缆故障的分析判断和故障点查找
高压电缆故障的分析判断和故障点查找摘要:随着我国经济的迅速发展,以及社会的现代化进程,电力市场对电力的需求量越来越大,电力电缆的安全问题也越来越引起人们的重视。
与常规的电缆相比,高压电缆具有更高的安全性、更好的稳定性和更好的维护能力,是当前电力设备、电能传输、电能分配的首选电缆。
随着高压电缆的失效,电力系统的运行受到很大的影响,对高压电缆的故障进行了分析,为正确的分析和诊断、找出故障点提供了依据,以便及时、高效的解决问题,确保电力的正常供给,避免对人们生活、生产造成较大困扰。
关键词:高压电缆;故障分析;故障点查找1.高压电缆故障概述1.1电缆老化电缆在长时间的工作中,由于受到机械、电力、光、热等多种因素的影响,电缆的绝缘性能会明显下降,从而增加电缆失效的几率。
一般条件下,高压电缆在30年后会逐步老化。
但是,由于外界因素的作用,使其在较短的时期内发生老化是非常常见的。
造成电缆过早老化的原因有:①选用的电缆型号不合理,造成了长时间超负荷运行时电缆过早老化;②高压电缆线路与热源距离较近,在长时间的高温下,会导致电缆的热老化;③环境中有一种材料,它会对电缆绝缘层造成不利的化学反应。
在长时间的使用中,线缆会不断地产生化学反应,从而引起线缆的提前老化。
1.2电缆附件故障高压电缆的配件质量要求很高,生产工艺也比较复杂,因此,电缆的连接器、端子及其它附属设备都有可能发生故障。
目前,造成附件失效的主要原因有:①导线压接、导线连接管压接等,由于加工工艺和技术上的规定不符合要求,造成零件质量低劣,造成失效;②配件的制作材料选用不当,造成线缆配件与主体膨胀系数差距大,造成密封性差,造成短路失效;③在电缆接头制造时,由于环境湿度达不到要求,会严重地影响到电缆的绝缘性能,严重时会造成电缆失效。
1.3电缆护层故障为了保证线缆本体的腐蚀损伤降至最低,一般会在线缆的外层增加一层外壳。
为了保证电缆外壳的工作性能,电缆外壳必须具备很好的绝缘能力。
电气线路与电缆故障排查方法
超负荷运行
线路负载过大,导致线路过热,加速绝缘层 老化破损,引发故障。
02
CATALOGUE
故障排查方法
直接观察法
总结词
通过观察电气线路和电缆的外观,判 断是否存在故障。
详细描述
直接观察法是最简单、直观的故障排 查方法。通过观察线路的外观,如是 否有破损、变色、烧焦等现象,可以 初步判断线路是否存在故障。
排查过程
检查数据中心配电柜和UPS设备,使用电力质量分 析仪检测电压和频率波动,发现电源存在谐波干扰 。
解决方案
增加滤波器,对电源进行净化处理,同时对 整个电气系统进行优化和升级,提高数据中 心的可靠性和稳定性。
THANKS
感谢观看
01
根据使用环境和负载要 求选择合适的电缆和接 头材料,如铜、铝、橡 胶、塑料等。
02
接头的紧固和密封。
03
对电缆的弯曲半径进行 控制,避免因弯曲过度 导致的电缆损坏。
04
在安装过程中注意保护 电缆,避免受到机械损 伤和化学腐蚀。
电缆的敷设与保护
根据现场环境和负载要求选择 合适的敷设方式,如直埋、穿
电压和电流测量法
使用万用表或钳形电流表测 量线路上的电压和电流,判 断是否有异常,从而定位故 障点。
绝缘电阻测量法
使用兆欧表测量线路的绝缘 电阻,如果绝缘电阻值过低 ,说明线路存在漏电或短路 故障。
仪器检测法
使用专门的电气检测仪器, 如示波器、频谱分析仪等, 对线路进行信号检测和频谱 分析,定位故障点。
修复方法
更换损坏的电线和电缆
如果发现电线或电缆有明显的破损或老化,应立 即更换。
检查并修复接触不良的连接点
对于接触不良的连接点,应检查并清洁接触面, 确保连接牢固。
电缆故障查找方法及精确定位
l 电缆 故 障 的 成 因及 性 质
造 成 电缆故 障 的原 因 主要 有 以下 几种 : (1)外 力损伤 。 电缆 的很 多故障 是 由于 敷设安 装 时造 成 的 机械 损伤 或敷 设后在 电缆 线路上 施工造 成 的外 力损 伤而 直接 引起 的 。有 时虽 然损伤 轻微 ,但在 几个 月 甚 至几年 后其 损伤 部位 的绝缘将 逐渐 降低而 导致击 穿 。 (2)绝缘 受潮 。 附件 密 封 不 良或本 体 有 小孔 及 电缆 长 期 在 潮 湿 的 环 境 中运 行 导 致 电缆 绝 缘层 受 潮 , 电缆 绝缘 性 能 降低 。 (3)长期 过 负荷 运行 。 由 于 过负 荷运行 ,电缆 的温 度会 随之升 高 ,尤其在 炎 热 的夏 季 , 电缆 的温 升 常常导致 电缆薄弱 处和对 接 头 处 首 先被 击 穿 。 (4)制造 质 量 、设 计质 量 、施 工 质 量不 符合 标准 。设计 和制作 工 艺不 良,不按规 程 要求 制 作 ,也 往 往 是 形 成 电缆 故 障 的重 要 原 因 。 (5)化 学腐 蚀 导致 电缆故 障 。 电缆保 护 层受 地下 酸 碱腐蚀 而导致 绝缘被 破坏 。
=
,』
。
㈩
…
简化 后得 :Lx-
。
2)两相 短路 故障 的测 量 基本 上和 测量单 相接地 故 障一样 ,所不 同之 处 就是利 用两短 路相 中的一 相作 为单相接 地故 障 中的 地线 , 以接通 电桥 的 电源 回路 。其测 量方法 和计 算 方法 与单相接 地故 障完全相 同 。 2.2脉 冲法 脉冲法 是应用 行波 信号进 行 电缆故 障测距 的测 试方 法 ,分 为低压脉 冲法 、闪络法 、二 次脉冲 法 。 1)测试原 理 在测试 时 ,从 测试 端 向电缆 中输 入一 个脉冲 行 波信 号 ,该信 号沿着 电缆传播 ,当遇 到 电缆 中的 阻
常见电缆故障及电缆故障处理方法
常见电缆故障及电缆故障处理方法电缆线路常见的故障有机械损伤、绝缘损伤、绝缘受潮、绝缘老化变质、过电压、电缆过热故障等。
当线路发生上述故障时,应切断故障电缆的电源,寻找故障点,对故障进行检查及分析,然后进行修理和试验,该割除的割除,待故障消除后,方可恢复供电。
电缆故障最直接的原因是绝缘降低而被击穿。
一、常见的电缆故障原因主要有:1、超负荷运行.长期超负荷运行,将使电缆温度升高,绝缘老化,以致击穿绝缘,降低施工质量.2、电气方面有:电缆头施工工艺达不到要求,电缆头密封性差,潮气侵入电缆内部,电缆绝缘性能下降;敷设电缆时未能采取保护措施,保护层遭破坏,绝缘降低.3、土建方面有:工井管沟排水不畅,电缆长期被水浸泡,损害绝缘强度;工井太小,电缆弯曲半径不够,长期受挤压外力破坏.主要是市政施工中机械野蛮施工,挖伤挖断电缆。
4、腐蚀.保护层长期遭受化学腐蚀或电缆腐蚀,致使保护层失效,绝缘降低。
5、电缆本身或是电缆头附件质量差,电缆头密封性差,绝缘胶溶解,开裂,导致站出现的谐振现象为线路断线故障使线路相间电容及对地电容与配电变压器励磁电感构成谐振回路,从而激发铁磁谐振。
二、断线故障引起谐振的危害断线谐振在严重情况下,高频与基频谐振叠加,能使过压幅值达到相电压[P]的2.5倍,可能导致系统中性点位移,绕组及导线出现过压,严重时可使绝缘闪络,避雷器爆炸,电气设备损坏.在某些情况下,负载变压器相序可能反转,还可能将过电压传递到变压器的低压侧,造成危害。
三、防止断线谐振过压的措施防止断线谐振过压的主要措施有:1、不采用熔断器,避免非全相运行;2、加强线路的巡视和检修,预防断线的发生;3、不将空载变压器长期挂在线路上;4、采用环网或双电源供电;5、在配变侧附加相间电容,其原理是:采用电容作为吸能元件来吸收暂态过程中的能量,从而降低冲击扰动强度以抑制谐振的发生.s一(o+ 3C,,) 1C.,在配变侧附加相间电容△C,使8一[Co+ 3(C U+ A0)/Ca增大,从而增大等值电容C和等值电动势Eo所需电容值可根据文献[6]中方法求出.(6)采用励磁特性较好的变压器有助于减少断线过压的发生几率。
电力电缆技术及应用 5.3 电缆路径查寻及故障精确定点
2、电缆线路鉴别
3)利用脉冲磁场方向鉴别电缆 在需鉴别电缆的对端做一个相对地间隙模拟故障,然后通过高压信 号发生器向电缆中施加高压脉冲信号,把感应线圈分别放在各条电缆的 两侧,磁场方向发生变化的电缆就是作业电缆。
3、电缆故障的精确定点
电缆故障的精确定点是故障探测的关键。目前,比较常 用的方法是冲击放电声测法,声磁信号同步接收定点法、跨 步电压法及主要用于低阻故障定点的音频感应法。
3、电缆故障的精确定点
1)冲击放电声测法 冲击放电声测法(简称声测法)是利用直流高压试验设备向电容器 充电、储能,当电压达到某一数值时,球间隙击穿,高压试验设备和电 容器上的能量经球间隙向电缆故障点放电,产生机械振动声波,用人耳 的听觉予以区别。声波的强弱,决定于击穿放电时的能量。能量较大的 放电,可以在地坪表面辨别,能量小的就需要用灵敏度较高的拾音器沿 初测确定的范围加以辨认。声测试验的接线图,按故障类型不同而有所 差别。图5-13是接地(短路)、断路不接地和闪络三种类型故障的声测 接线图。
2、电缆线路鉴别
当音频信号源开机后,发出1kHz或10kHz的音频信号,在待鉴别的 电缆处,用专用接收机、探测线圈和耳机在现场收听。当探测线圈环绕 待测电缆转动时,耳机中的音频信号有明显的强弱变化。
在采用第一种接法时,当探测线圈分别在两相接入信号的导体的上 下方时,音频信号为最强。
在采用第二种接法时,当探测线圈靠近接入信号的导体时音频信号 为最强。
3、电缆故障的精确定点
(a)接地(短路)故障 Tt—调压器; T2—试验变压器;U—硅整流器;F—球间隙;C—电容器
信号设备常见故障的处理方法
2、电阻法:故障回路没有电压或能断开电源,可采用电阻法。方法有:回路电阻法和分段测量法。 (1)回路电阻法:从电源或室内向负载方向顺序分段测量回路电阻,故障应在大电阻与小电阻之间. 这种方法适用于道岔启动电路和信号机允许灯光的点灯电路.
(2)分段测量法:其测试方法与电压法中分段测量法一致.其区别在于前者用电压档,后者用电阻档. 3、中间选点法:当初步确定的故障范围较广,线路较长或经过的接点、接线端子较多时,可采用此法:先把故障线路分成两半,在中间处选点进行测试判断,可将故障缩短一半。
2、X1与X3相混
2、X1与X3相混 道岔原在定位,无位置表示,向反位操纵后,道岔能转换到底,但在反位密贴处来回窜动,控制台上电流表指针往返摆动,一直无位置表示。由于X1与X3相混,当道岔向反位转换完毕后,断开自动开闭器第1排接点,接通第2排接点,虽然反位启动电路被断开,但因 1DQJ有缓放作用,在接点转换过程中能一直保持吸起,启动电源没有断开。于是DZ经自动开闭器11—21—22—Z1~2--自动开闭器23-24移位接触器01—02--自动开闭器43—44—X3—X1--自动开闭器41—42--电动机1-3电动机3-4遮断开关05—06—X4--DF接通定位启动电路,使道岔向定位转换。但只要道岔向定位启动,自动开闭器接点立即变位,断开第2排接点又接通第1排接点,即断开刚接通的定位启动电路,重新接通了反位启动电路,又使道岔向反位转换。反位刚转换完毕,自动开闭器动接点又迅速打向第2排静接点,于是定位启动电路又被接通。就这样,循环往复出现道岔在定位密贴处来回窜动的现象。 道岔原在反位,有反位表示;操纵至定位,能转换完毕,但无定位表示;再操反位出现道岔在反位密贴处来回窜动的现象。原因分析同上。
这种方法较为简明直观,可以脱离图纸,一般情况下能迅速处理出来。但有其不足之处:一方面没有考虑故障的特殊性,漏检部分线路;另一方面依靠无电压确定电路良好进行判断不确切,倘若因表笔接触不良将会造成误判。
10kV电力电缆常见故障快速查找及防范措施
10kV电力电缆常见故障快速查找及防范措施摘要:与架空线路相比,电缆故障具有对电力系统安全稳定运行影响更大、故障点查找难度更大、抢修恢复时间更长等特点。
其故障的快速检测和预防一直困扰着供电企业一线运维人员。
文章现结合实践中的一些经验和分析,总结出10kV电力电缆常见故障的快速查找方法和预防措施,希望能为配电网运维提供有益的参考。
关键词:10kV;电力电缆;常见故障;快速查找;防范措施1一般电缆故障的主要原因1.1外力损坏电缆故障大多发生在电缆安装、敷设过程中的机械损坏,或在运行中电缆路径附近受到的机械损坏直接在操作过程中。
1.2绝缘受潮和老化通常发生在直埋电缆或管道中的中间接头处。
在潮湿的气候条件下,电缆中间接头制作或电缆中间接头长期浸入水中,会使接头渗入水或水汽,在作用下形成水枝长时间的电场作用,会逐渐破坏电缆的绝缘强度,并引起失效和漏电现象。
同时,电缆在过热的环境下容易老化,电缆绝缘变差。
导致电缆过热的因素分为内部和外部两种。
电缆绝缘层中的内部气隙会导致局部过热,从而使绝缘层老化和劣化。
此外,由于电缆长期超负荷运行,高温会使绝缘迅速老化,甚至引起绝缘薄弱和击穿。
1.3施工工艺不规范电缆中间接线头、电缆终端头施工工艺不佳(如线头压接不严密、压接接头未打磨、刀痕太深)、选材不匹配,都会造成电场分布不均,引起电缆故障。
要想快速修复故障电缆,必须快速确定故障点的位置。
通常先断开线路电源,然后逐级进行试送电,初步缩小故障范围,然后在估计范围内确定故障点的准确位置。
2电缆故障点的初步估计与定位电缆故障点的初步估计与定位一般采用脉冲反射法。
正确的脉冲波施加在电缆的首端,当脉冲波传播到故障点时,会产生反射波。
设故障点距电缆头端的距离为Lx,脉冲波在电缆中的传播速度为v,则在tx=2Lx/v时刻,电缆头端将接收到反射波。
因此,由波速v和接收到反射波的时间tx可以得到故障点到电缆首端的距离Lx=vtx/2。
反射波的信号强度对于确定tx非常重要。
电气线路与电缆故障排查方法
漏电
线路中电流未经正常路径而流 到地线,可能是由于绝缘层老 化、破损或电气设备漏电。
过载
线路中电流超过其安全载流量 ,可能是由于负载过大或电源
电压过高。
故障排查工具与设备
验电器
万用表
钳形电流表
绝缘电阻表
用于检测线路是否带电 。
用于测量电压、电流和 电阻等参数。
用于测量线路中的电流 。
用于测量线路和设备的 绝缘电阻。
故障排查流程与注意事项
确定故障区域
根据故障现象和经验判断故障可能发生的区 域。
安全措施
确保排查过程中人员和设备安全,如穿戴绝 缘手套和鞋,断开电源等。
逐步排查
从电源端开始,逐Leabharlann 检查线路和设备,直到 找到故障点。
详细记录
对排查过程中发现的问题和测试结果进行详 细记录,以便后续分析和处理。
电缆漏电故障排查
总结词
检查电缆的绝缘材料
详细描述
检查电缆的绝缘材料是否符合要求 ,有无老化、龟裂等现象。
总结词
测量电缆的泄露电流
详细描述
使用漏电电流表测量电缆的泄露电流 ,确定漏电的位置。
总结词
检查电缆的敷设环境
详细描述
检查电缆敷设的环境是否潮湿、存 在腐蚀性气体或液体,以避免绝缘 材料受损引起的漏电。
详细描述
排查高压漏电故障时,应先检查线路和设备的绝缘材料是否老化或破损,特别是 在潮湿或污染的环境下。使用适当的检测仪器测量线路和设备的绝缘电阻,若绝 缘电阻值较低,则说明存在漏电故障。
高压绝缘电阻降低故障排查
总结词
高压绝缘电阻降低故障是指线路或设备 的绝缘性能下降,可能导致漏电或短路 故障。
《故障分析与处理》PPT课件
三、处理故障的程序
精选PPT
6
处理故障不能盲目乱动,要按一定的程序进行,这是缩短处理 时间,防止将故障扩大化、复杂化的关键所在。处理设备故障一 般应按以下的程序进行。
1、故障发生赶赴现场
当接到行车人员信号故障通知时或自己发现信号设备故障时, 信号维修人员应立即赶赴运转室和现场。
2、询问了解
信号维修人员到达现场后,应向行车人员询问当时操作情况和 故障状态(可通过控制台观察故障现象,必要时可会同车务人员 共同试验进一步了解故障状态)。
3、初步判断
在观察了解情况的基础上,初步判断故障的性质和地点是室内 还是室外。
4、登记停用
了解当时列车运行情况,根据故障繁简和所处位置及故障处理 所需时间,如果不能马上排除时,应采取果断措施,在车站《行 车设备检查登记簿》上登记停用。登记故障发生与设备停用的时 间,停用设备的名称,签上登精选记PP者T 姓名,并经车站值班员同意7 签
(2)常见的信号事故:信号设备发生故障,构成行车事故时,一 般常见的以延误列车运行、挤道岔、列车冲突、列车车辆脱轨等 较为多见。
常见的信号事故有以下几个方面:
①信号设备维修不良;
②信号维修人员违章作业;
③车站人员发现信号设备不良危及行车安全时,应立即停止使用, 来不及采取措施而耽误列车。
④信号设备中安装的集成元件、分立电子元件及组成的整机,未经 测试或超周期使用,运行列车运行时;
即用全波整流型表来测试实测电压ud测12ud685v直流vd09ud测617v通过对zd6表示电路在电容器短路开路继电器线圈断线3种故障状态及正常工作状态下表示电路输出交直流电压的分析计算说明了长期困扰现场信号工看似异常的测试数据问题同时也为从事信号维修工作人员提供了用电工知识来研究实际信号电路的方法对学习和掌握类似电路提高分析电路能力都有积极作用
常见电力电缆故障原因分析及处理方法
常见电力电缆故障原因分析及处理方法本文结合实际,通过对工作中常见的电力电缆故障进行总结分析,得到故障产生的原因,并且有针对性地提出了故障处理的方法及防范措施,为今后的工作和学习提供了经验性保障,有利于提高工作中分析和处理电缆故障的能力。
标签:电力电缆故障原因分析处理方法1.电缆故障的分类和原因分析1.1常见电缆故障分类通过近年来我们对所遇到的电缆故障进行分类总结,发现高压电缆和低压电缆的故障各有许多不同之处,高压电缆故障多以运行故障为主,且大多数是高阻故障,而高阻故障又分泄露和闪络两大类型;而低压电缆故障只有开路、短路和断路三种情况(当然,高压电缆也包括这三种情况)。
1.2电缆故障产生的原因电缆故障产生的最直接原因是绝缘降低而被击穿。
导致绝缘降低的因素很多,归纳一下不外乎以下几种情况:1.2.1外力损伤根据近年来的运行分析来看,由于装置扩容迅速,地面施工较多,造成相当多的电缆故障是由于机械损伤引起的。
比如:加制氢进线电缆在敷设安装时由于不规范施工,造成了机械损伤;在直埋电缆上搞土建施工也极易将运行中的电缆损伤。
有时如果损伤不严重,要几个月甚至几年才会导致损伤部位彻底击穿形成故障,有时破坏严重的可能发生短路故障,直接影响用电单位的安全生产,2.20大停电事故,正是由于这个原因造成的。
1.2.2绝缘受潮这种情况也很常见,一般发生在直埋或排管里的电缆接头处。
比如:电缆接头制作不合格和在潮湿的气候条件下做接头,都会使接头进水或混入水蒸气,时间久了在电场作用下形成水树枝,逐渐损害电缆的绝缘强度而造成故障。
1.2.3化学腐蚀电缆直接埋在有酸碱作用的地区,往往会造成电缆的铠装、铅皮或外护层被腐蚀,保护层因长期遭受化学腐蚀或电解腐蚀,致使保护层失效,绝缘降低,也会导致电缆故障。
特别是像我厂这样的化工单位电缆腐蚀情况就相当严重。
1.2.4长期过负荷运行。
超负荷运行,由于电流的热效应,负载电流通过电缆时必然导致导体发热,同时电荷的集肤效应以及钢铠的涡流损耗、绝缘介质损耗也会产生附加热量,从而使电缆温度升高。
信号电缆故障原因分析与防范
信号电缆故障原因分析与防范王洪(本钢运输部电信段)摘要:本文介绍了易发、多发性信号电缆故障的原因分析及防范措施。
关键词:电缆故障原因分析SignalcablefaultcaueanalyiandpreventionWANGHONG(ignalTranportationminitryofBEN某ISTEELminitry)Abtract:Decribeaprone,multipleignalcablefaultreaonanalyiandprotectivemea ure.Keyword:CaueFaultReaonanalyi1引言铁路信号电缆是信号设备的重要组成部分,担负着传输现场设备驱动电源及信号控制信息的重要任务,是电源、信息传送的必经通道,是保证信号设备正常运转的动脉。
一旦信号电缆发生问题,信号设备就无法正常工作。
由于电缆故障处理难度大,必然造成延时长,干扰正常的铁路运输秩序,影响运输效率。
因此,近几年来,我们高度重视电缆安全防护工作,已经把电缆技术安全状态,摆在了电信段设备安全的重要位置,也相继制定了电缆定期检测制度,通过大力开展电缆维修养护和定期检测,电缆故障频发态势已得到有效控制但还时有发生,因此,如何预防电缆故障的发生及准确查找处理故障点缩短电缆故障导致设备停机时间,是我们减低故障对运输产生的影响的核心问题。
2电缆故障的主要形式及造成的危害2.1电缆故障的主要形式现本钢站场都采用铠装多芯电缆直埋的方法,现场电缆发生故障方式却是多种多样,既芯线间绝缘层破损导致电路极性短路的现象。
还有铠装电缆绝缘层破损芯线绝缘层破,导致钢带与芯线短路接地的现象。
还有电缆芯线断路的现象等等。
2.2电缆故障造成的危害电缆芯线间的短路故障可造成电源正负极短路烧毁熔丝及用电设备,如果尚未完全短路电流小可能不会立即造成短路烧断熔丝,但极易造成用电设备内部电子元器件的损坏导致设备故障停机。
电缆外绝缘层与芯线缘层同时破损通过铠装钢带接地,可导致供电端驱动设备的电源通过大地构成回路,使受电端设备因得不到驱动电源而无法正常工作停机。
110kV电力电缆故障查找方法及问题
110kV电力电缆故障查找方法及问题摘要:与架空线路相比,电缆更易于操作和维护,不占用地面空间,便于输电和运行维护。
但是,在电力电缆运行过程中,一旦发生故障,很难迅速找出故障点的准确位置,也无法及时排除故障恢复供电,导致停电停机。
对于配电运行维护人员来说,如何快速找到电缆故障点是一项必备的技能。
尽管这种电缆有许多优点,但在实际应用过程中会发现各种问题和缺点。
在施工过程中,电缆的中间和终端采用人工操作安装,因此有人为因素影响电缆故障,造成极大的运维压力。
所以平时必须要加强对110kV电缆的故障分析, 查找故障原因所在, 从而加大防范力度, 这样才能最大限度地保证运行质量, 达到稳定运行。
关键词:110kV;电力电缆;故障查找方法;问题1 110kV电力电缆故障和产生原因1.1、 110kV电力电缆故障产生原因在对相关问题进行深度分析后, 能得出110kV电力电缆出现故障的主要原因, 从而有效分析相关问题。
一方面,主要关系到110kV电力电缆本身的质量。
在实际的系统管理过程中,电缆的整体质量直接决定着建设项目的具体工程质量。
在110kV电力电缆系统中,电缆及其附件是最基本的组成部分,也是机组结构中存在较大问题的部分。
一般来说,电缆及电缆附件的制造工艺非常复杂,也造成了许多问题。
其中,电缆绝缘层中的杂质问题更为严重。
设计人员应结合生产标准进行全面分析,否则会出现电缆接头处理不一致的问题。
也就是说,材料强度不合格和防水性能不全是造成安全性有限的主要因素。
此外,110kV电力电缆的绝缘老化问题也十分重要。
由于工艺流程的限制,在电力电缆生产过程中,110kV电力电缆线路的绝缘保护层将受到限制和影响。
当保护层被外力穿透时,整个110kV电力电缆的绝缘电阻质量将受到限制,电力电缆故障时有发生。
需要注意的是,110kV电力电缆在运行过程中会产生更多的热量。
如果绝缘不良,会导致老化问题,最终影响整体结构的运行效果和整体质量。