材料力学 组合变形及连接部分计算答案
材料力学 组合变形完整版汇总
|FN|最大处 |T|最大处
|M|最大处
组合变形/组合变形和叠加原理
求基本变形横截面上的应力:
变形类型
拉压
内力
轴力FN
正应力
FN/A 无
切应力 无 Tρ/Ip 无
忽略不计
扭转
纯弯曲
扭矩T
弯矩M
My/Iz
横力弯曲 弯矩M+剪力Fs My/Iz
材料力学
4.将危险截面的应力叠加,并进行强度校核
C L A D
30º
1.3m
F
材料力学
1.3m
B
组合变形/拉压与弯曲的组合
思路分析:பைடு நூலகம்
选AB为研究对象, 求A、B处的约束反力
C L A D
30º
根据受力分析判断AB杆 的变形组合类型 压缩和弯曲的组合
1.3m F
1.3m
B
分解成基本变形
做出压缩的轴力图和弯曲的弯矩图,确定危险截面 将D截面压缩的压应力与弯曲的最大压应力叠加, 进行强度校核
组合变形/拉压与弯曲的组合
巩固练习
练习一:图示的压力机框架为实心圆截面,直径d=100mm,最 大加工压力为F=12KN,已知材料许用应力为100Mpa,试校核 框架立柱的强度。
200
F
F
材料力学
组合变形/拉压与弯曲的组合
思路分析:
根据受力情况判断立柱的
变形组合类型
200
F
拉伸和弯曲的组合
拉伸: 求轴力,绘制轴力图 弯曲: 求弯矩,绘制弯矩图
2FL
FL
求中点处的最大正应力:
FL FL Wz Wy 0 2FL Wz Wy
求固定端的最大正应力:
《材料力学》课后习题答案详细
《材料力学》课后习题答案详细在学习《材料力学》这门课程时,课后习题是巩固知识、检验理解程度的重要环节。
一份详细准确的课后习题答案不仅能够帮助我们确认自己的解题思路是否正确,还能进一步加深对知识点的理解和掌握。
材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
它对于工程领域的学生来说至关重要,无论是机械工程、土木工程还是航空航天工程等,都离不开材料力学的知识支撑。
对于课后习题的解答,我们首先要明确每个问题所涉及的核心概念和原理。
比如,在研究杆件的拉伸和压缩问题时,需要清楚胡克定律的应用条件和计算公式。
胡克定律指出,在弹性限度内,杆件的伸长或缩短量与所受的拉力或压力成正比。
以一道常见的拉伸习题为例:一根直径为 20mm 的圆杆,受到100kN 的拉力,材料的弹性模量为 200GPa,求杆的伸长量。
解题思路如下:首先,根据圆杆的直径计算出横截面积 A =π×(d/2)^2 ,其中 d 为直径。
然后,根据胡克定律ΔL = FL/EA ,其中F 为拉力,L 为杆长,E 为弹性模量,A 为横截面积,代入已知数据进行计算。
在计算过程中,要注意单位的统一。
拉力的单位通常为牛顿(N),长度的单位要与弹性模量的单位相匹配,面积的单位要为平方米(m²)。
再来看一个关于梁的弯曲问题。
梁在受到横向载荷作用时,会产生弯曲变形。
在解答这类习题时,需要运用到弯矩方程、挠曲线方程等知识。
例如:一简支梁,跨度为 L,承受均布载荷 q,求梁的最大弯矩和最大挠度。
解题时,首先要根据梁的支座情况列出弯矩方程。
然后,通过积分求出挠曲线方程,再根据边界条件确定积分常数。
最后,求出最大弯矩和最大挠度的位置及数值。
在求解过程中,要理解弯矩和挠度的物理意义,以及它们与载荷、梁的几何形状和材料性质之间的关系。
对于扭转问题,要掌握扭矩的计算、切应力的分布规律以及扭转角的计算方法。
比如,一根轴受到扭矩 T 的作用,已知轴的直径和材料的剪切模量,求轴表面的最大切应力和扭转角。
材料力学组合变形及连接部分的计算
F
A y FAy
两相互垂直平面内的弯曲
q
Me 纵 向
对称面
B x
M y F1x M z F2x a
F2
FBy
a
z
x
1
Myz Iy
2
Mzy Iz
x
F1
y
1 2
Myz Iy
Mzy Iz
F2
a
z
1 2
Myz Iy
Mzy Iz
x 中性轴位置:
0
x
F1
y 令y0,z0代表中性轴上任一点的坐标
M y z0 M z y0 0
30kNm
max
FN A
Mz Wz
M z
Wz
查表并考虑轴力的影响:
20a Wz 237cm3 A 35.5cm2
Wz 187.5cm3
max
49.7 103 35.5102
30 106 237 103
140.6MPa
一桥墩如图示。承受的荷载为:上部结构传
递给桥墩的压力F0=1920kN,桥墩墩帽及墩身的 自重F1=330kN,基础自重F2=1450kN,车辆经 梁部传下的水平制动力FT=300kN。试绘出基础 底部AB面上的正应力分布图。已知基础底面积 为b×h=8m×3.6m的矩形。
2m y
F 30kN B
2m
F
x
y
150
Fy F cos Fz F sin
z
Mz
Fy L 4
My
Fz L 4
Wz 692cm3 Wy 70.8cm3
max
My Wy
Mz Wz
152MPa
2000年哈工大
组合变形习题及参考答案
组合变形一、判断题1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。
( )2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。
( )3.梁发生斜弯曲变形时,挠曲线不在外力作用面内。
( )4.正方形杆受力如图1所示,A点的正应力为拉应力。
( )图 15. 上图中,梁的最大拉应力发生在B点。
( )6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。
( )图 27.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。
( )8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。
( )图 39. 矩形截面的截面核心形状是矩形。
( )10.截面核心与截面的形状与尺寸及外力的大小有关。
( )11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。
( )12.计算组合变形的基本原理是叠加原理。
()二、选择题1.截面核心的形状与()有关。
A、外力的大小B、构件的受力情况C、构件的截面形状D、截面的形心2.圆截面梁受力如图4所示,此梁发生弯曲是()图 4A、斜弯曲B、纯弯曲C、弯扭组合D、平面弯曲三、计算题1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁内的最大拉应力,并在图中指明它的位置。
图 52.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。
3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为,试校核挡土墙的强度。
图 6 图 74.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。
材料力学 第11章 组合变形习题集
横截面m-m上任一点C(y,z)处由 弯矩Mz和My引起的正应力分别为
M z y M cos y M y z M sin z
Iz
Iz
Iy
Iy
38
C点的正应力
' ''
M
cos
Iz
y
sin
Iy
z
悬臂梁固定端截面A的弯矩Mz和My 均达到最大值,故该截
面是危险截面。设yo、zo为中性轴上任一点的坐标,并令σ
算 圆轴表面上与轴线成30°方位上的正应变。
32
解: (1)由内力图知,所有截面均为危险截面,危险点为靠近
轴表面的各点,应力状态如图。计算危险点的主应力。轴力
引起的正应力
FN 4F
A πd 2
扭矩引起的切应力
T M 8F
Wp Wp 5πd 2
危险点处的主应力为
1
2
(
)2
( )2
它在y、z两轴上的截距分别为
y* z* h / 2
该截面惯性半径的平方为
iy2
Iy A
h2 12
iz2
Iz A
b2 12
28
中性轴①对应的核心边界上点1的坐标为
ey1
iz2 y*
0
ez1
iy2 z*
h 6
按上述方法可求得与它们对应的截面核
心边界上的点2、3、4,其坐标依次为:
ey2
b 6
ez2 0
车臂的直径d。
18
解:两个缆车臂各承担缆车重量的一半,如 图。则缆车臂竖直段轴力为FN=W/2=3kN 弯矩为M=Wb/2=540N·m 危险截面发生在缆车臂竖直段左侧,由强度条件
材料力学习题组合变形
组合变形基 本 概 念 题一、选择题1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e 和中性轴到形心距离d 之间的关系是( )。
A .e = dB .e >dC .e 越小,d 越大D .e 越大,d 越小2.三种受压杆件如图所示,设杆1、杆2和杆3中的最大压应力(绝对值)分别用1max σ、2max σ、3max σ表示,则( )。
A .1max σ=2max σ=3max σB .1max σ>2max σ=3max σC .2max σ>1max σ=3max σD .2max σ<1max σ=3max σ 题2图3.在图示杆件中,最大压应力发生在截面上的( )。
A .A 点B .B 点C .C 点D .D 点题3图 题4图4. 铸铁杆件受力如图4所示,危险点的位置是( )。
A .①点B .②点C .⑧点D .④点5. 图示正方形截面直柱,受纵向力P 的压缩作用。
则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。
A .1﹕2B .2﹕5C .4﹕7D .5﹕26. 图示矩形截面偏心受压杆件发生的变形为( )。
A .轴向压缩和平面弯曲组合B .轴向压缩,平面弯曲和扭转组合C.轴向压缩,斜弯曲和扭转组合D.轴向压缩和斜弯曲组合-41-题5图题6图7.图所示悬臂梁的横截面为等边角钢,外力P垂直于梁轴,其作用线与形心轴y垂直,那么该梁所发生的变形是()。
A.平面弯曲B.扭转和斜弯曲C.斜弯曲D.两个相互垂直平面(xoy平面和xoz平面)内的平面弯曲题7图8.图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案,正确的是( )。
A.截面形心B.竖边中点A点C.横边中点B点D.横截面的角点D 点题8图题9图9.图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M,扭矩为T,截面上A点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W。
材料力学第10章 组合变形
如,如图10.1(b)所示的传动轴,在将齿轮啮合力向轴心简化后发现齿轮
轴将同时产生扭转与斜弯曲变形。将这种由两种或两种以上的基本变形所组 成的变形称为组合变形。
页
退出
材料力学
出版社 理工分社
图10.1
页
退出
材料力学
出版社 理工分社
10.2 两个相互垂直平面内的弯曲 如图10.2(a)所示的具有双对称截面的悬臂梁为例,横向外力F1和F2分 别作用在梁的水平和垂直两纵向对称平面内。此时,梁在F1和F2作用下分别 在水平对称面(xz平面)和铅垂对称面(xy平面)内发生对称弯曲,距离自 由端为x的横截面m—m上,由F1和F2引起的弯矩依次为 (a) 因此,横截面m—m上任意点C(y,z)处由弯矩My和Mz引起的正应力分别为 (b) 于是,利用叠加原理,在F1和F2分别同时作用下,横截面m—m上C点处的正 应力为 (10.1)
可得中性轴方程为 (10.2)
可见,中性轴是一条通过横截面形心的直线(见图10.2(c)),其与y轴的
夹角θ 为 (10.3)
页
退出
材料力学
出版社 理工分社
式中φ ——横截面上合成弯矩M=M2y+M2z矢量与y轴间的夹角。图10.2
图10.2
对于圆形、正方形等截面,惯性矩Iy=Iz,所以有φ =θ 。此时,正应力 也可用合成弯矩M= 进行计算。需要注意的是,由于梁各横截面上的
(1)如材料为钢材,许用应力[σ ]=160 MPa,试选择AC杆的工字钢型号。
(2)如材料为铸铁,许用拉应力[σ t]=30 MPa,许用压应力[σ c]=160 MPa,且AC杆截面形式和尺寸如图10.6(e)所示,A=15×10-3 m2,z0=75mm
材料力学第七章组合变形
P2=406N
外力向形心简化并分解 弯扭组合变形
每个外力分量对应 的内力方程和内力图
M (x)
M
2 y
(
x)M
2 z
(
x)
解续
MMZz ((NNmm)) 71.25
40.6
MMyy ((NNmm)) MT n ((NNmm))
7.05 120 Mn
+
MM ((NNmm)) Mmax=71.3
41.2
核心边界上的一个角点;
截面角点边界
核心边界上的一条直线;
截面曲线边界
核心边界上的一条曲线。
例:
求右图示矩形截面的截面核心。
解:取截面切线 l1作为中性轴,其截距:
b
az
b 2
ay
4
3
a
并注意到: iz2 Iz / A h2 /12 iy2 I y / A b2 /12
故
h
5 21 z
34
ay
iz2 yP
az
iy2 zP
当偏心外力作用在截面 形心周围一个小区域内, 而对应的中性轴与截面周 边相切或位于截面之外时, 整个横截面上就只有压应 力而无拉应力。
2.截面核心的性质及其确定
(1)性质:是截面的一种几何特征,它只与截面的形状、尺
寸有关,而与外力无关。
(2)确定:根据中性轴方程知,截面上中性轴上的点的坐标
cmax
B
Fp A
MB Wz
Fp 6M B 13.4MPa bh bh2
在 B 截面右边缘处
3、最大拉应力
t
max
Fp A
MB Wz
3.4MPa
4、最大剪应力
武汉理工大学材料力学课件8 组合变形及连接部分的计算--JK
若横截面周边具有棱角,则无需确定中性轴的位置,直 接根据梁的变形情况,确定最大拉应力和最大压应力点 的位置。 D D
1 1
z
z D2 y 中性轴
D2
y
中性轴
强度条件:
()若 [ t ] [ c ] [ ], 则 1 (2)若 [ t ] [ c ], 则
t ,max [ t ] ,
z
c ,max
FN M max [ c ] A Wz
(1)若F 的作用点在杆的一对称轴上, F M 则强度条件为: [ t ] t , max A Wz 其中 M Fe
c ,max
F M [ c ] A Wz
23
(2) 若F 的作用点不在杆的任一对称轴上
FN My A Iz
z
c ,max
(2)若 t ] [ c ] [ ] , [
则
FN M max [ c ] A Wz
max Max { t ,max , c ,max } [ ]
20
[例8-3-1] 最大吊重为 P=20kN的简易吊车,如图所 示,AB为工字A3钢梁,许用应力[σ]=100MPa,试选 T YA 择工字梁型号。 Ty XA D
另外, 和 的正负号可由My和 Mz引起的变形是拉 8 还是压直接判断。
sin cos 则,F引起的应力为: M ( I z I y) y z
二、中性轴的位置 令(y0,z0)是中性轴上任一点,则有: 显然,中性轴是一条通过坐标原点的直线, 设其与z轴的夹角为α,则有:
A Tx
C
B F
A
30° 2m
C
1m
材料力学笔记(第八章)
材料力学(土)笔记第八章 组合变形及连接部分的计算1.概 述工程实际中,构件在荷载作用下往往发生两种或两种以上的基本变形若几种变形所对应的应力(变形)属于同一数量级,则构件的变形成为组合变形对于组合变形下的构件,在线弹性、小变形条件下,可按构件的原始形状和尺寸进行计算 可先将荷载简化为符合基本变形外力作用条件的外力系分别计算构件在每一种基本变形下的内力、应力或变形利用叠加原理,综合考虑各基本变形的组合情况以确定构件的危险截面、危险点的位置及危险点的应力状态,并据此进行强度计算 若构件的组合变形超过了线弹性范围,或虽在线弹性范围内但变形较大则不能按其初始形状或尺寸进行计算,不能用叠加原理工程实际中,经常需要将构件相互连接铆钉、螺栓、键等起连接作用的部件,统称为连接件连接件(或构件连接处)的变形往往比较复杂,而其本身尺寸都比较小在工程设计中,通常按照连接的破坏可能性采用既能反映受力的基本特征,又能简化计算的假设,计算其名义应力然后根据直接试验的结果,确定其相应的许用应力,来进行强度计算这种简化计算的方法,称为工程实用计算法2.两相互垂直平面内的弯曲对于横截面具有对称轴的梁当横向外力或外力偶作用在梁的纵向对称面内时,梁发生对称弯曲 这是,梁变形后的轴线是一条位于外力所在平面内的平面曲线碰到双对称截面梁在水平和垂直两纵向对称平面内同时承受横向外力的作用情况这时梁分别在水平纵对称面(Oxz 平面)和铅垂纵对称面(Oxy 平面)内发生对称弯曲 在梁的任意横截面m-m 上,由1F 和2F 引起的弯矩值依次为1y M F x = 和 2()z M F x a =-梁的任一横截面m-m 上任一点(,)C y z 处与弯矩y M 和z M 相应的正应力分别为'yyM z I σ= 和 ''z z M y I σ=- 由叠加原理,在1F 和2F 同时作用下,截面m-m 上C 点处的正应力为 '''y z y z M M z y I I σσσ=+=-式中y I 和z I 分别为横截面对于两对称轴y 和z 的惯性矩y M 和z M 分别是截面上位于水平和铅垂对称平面内的弯矩且其力矩矢量分别与y 轴和z 轴的正向相一致在具体计算中,也可先不考虑弯矩和坐标的正负号,以其绝对值代入然后根据梁在荷载分别作用下的变形情况,判断由其引起该点处正应力的正负号为确定横截面上最大正应力点的位置,需求截面上中性轴的位置由于中性轴上各点处的正应力均为零,令0y 、0z 代表中性轴上任一点的坐标则由上式可得中性轴方程000yz yzM M z y I I -=由上式可见,中性轴是一条通过横截面形心的直线其与y 轴的夹角为θ,且tan tan y y z I I z M y M I I θϕ==⨯= 对于圆形、正方形等y z ,有由于梁各横截面上的合成弯矩M 所在平面的方位一般不相同所以,虽然每一截面的挠度都发生在该截面的合成弯矩所在平面内梁的挠曲线一般仍是一条空间曲线梁的挠曲线方程仍应分别按两垂直平面内的弯曲来计算,不能直接用合成弯矩计算 确定中性轴位置后,作平行于中性轴的两条直线,分别与横截面周边相切于两点该两点即分别为横截面上拉应力和压应力为最大的点对于工程中常用的矩形、工字型等截面梁其横截面都有都有两个互相垂直的对称轴,且截面的周边具有棱角故横截面上的最大正应力必发生在截面的棱角处于是,可根据梁的变形情况,直接确定截面上最大拉、压应力点的位置,无需定出中性轴 在确定了梁的危险截面和危险点的位置,并算出危险点处的最大正应力之后由于危险点处于单轴应力状态,可按正应力强度条件计算横截面上的切应力,对于一般实体截面梁,其数值较小,可不必考虑3.拉伸(压缩)与弯曲3.1 横向力与轴向力共同作用等直杆受横向力和轴向力共同作用时,杆将发生弯曲与拉伸(压缩)组合变形对于弯曲刚度EI 较大的杆,由于横向力引起的挠度与横截面的尺寸相比很小因此,由轴向力在相应挠度上引起的弯矩可略去不计可分别计算由横向力和轴向力引起的杆横截面上的正应力按叠加原理求其代数和,即得在组合变形下,杆横截面上的正应力max ,max N t t b F M A Wσσσ=+=+ 当材料的许用拉应力和许用压应力不相等时杆内的最大拉应力和最大压应力必须分别满足杆件的拉、压强度条件对于弯曲刚度EI 较小的杆件,在压缩和弯曲组合变形下轴向压力引起的附加弯矩较大,且其转向与横向力引起的弯矩相同因此不能按杆的原始形状来计算,叠加原理也不再适用3.2 偏心拉伸(压缩)作用在直杆上的外力,当其作用线与杆的轴线平行但不重合时,将引起偏心拉伸或偏心压缩 横截面具有两对称轴的等直杆承受矩截面形心为e (称为偏心距)的偏心拉力F 为例 先将作用在杆端截面上A 点处的拉力F 向截面形心1O 点简化得到轴向拉力F 和力偶矩Fe ,将力偶矩分解为ey M 和ez Msin ey F M Fe Fz α==cos ez F M Fe Fy α==式中,坐标轴y 、z 为截面的两个对称轴F y 、F z 为偏心拉力F 作用点(A 点)的坐标于是的得到一个包含轴向拉力和两个在纵对称面内的力偶的静力等效力系此力系将分别使杆发生轴向拉伸和在两相互垂直的纵对称面内的纯弯曲当杆的弯曲刚度较大时,同样可按叠加原理求解在上述力系作用下任一横截面n-n 上的任一点(,)C y z 处相应于轴力N F F =和两个弯矩的正应力,由叠加原理,的C 点处的正应力F F y zFz z Fy y F A I I σ⨯⨯=++ 利用惯性矩与惯性半径间的关系 2y yI A i =⨯,2z z I A i =⨯ 式子可改写为22(1)FF y zz z y y F A i i σ=++ 上式是一个平面方程,表明正应力在横截面上按线性规律变化应力平面与横截面相交的直线(沿该直线0σ=)就是中性轴令0y 、0z 代表中性轴上任一点的坐标,代入即得中性轴方程002210F F y z z y z y i i ++= 在偏心拉伸(压缩)情况下,中性轴是一条不通过截面形心的直线为定出中性轴的位置,可利用其在y 、z 两轴上的截距y a 和z a在上式中,令00z =,相应的0y 即为截距y a ,而令00y =,相应的0z 即为截距z a 由此求得2z y F i a y =-,2y z Fi a z =- A 在第一象限内,F y 、F z 都为正值,则y a 、z a 均为负值即中性轴与外力作用点分别处于截面形心的相对两侧对于周边无棱角的截面,可作两条与中性轴平行的直线与横截面的周边相切两切点即为横街面上最大拉应力和最大压应力所在的危险点将危险点的坐标代入公式即可求得最大拉应力和最大压应力对于周边具有棱角的截面,其危险点必定在截面的棱角处,并可根据杆件的变形来确定 最大拉应力,max t σ和最大压应力,max c σ,其值为,max ,max t F F c yz Fz Fy F A W W σσ⎫⎪=±±⎬⎪⎭ 式子对箱型、工字形等具有棱角的截面都适用当外力的偏心距(F y 、F z )较小时,中性轴可能不与横截面相交即横截面就可能不出现与轴力异号的应力由于危险点仍处于单轴应力状态,可按正应力的强度条件进行计算3.3 截面核心如前所述,当偏心轴向力F 的偏心距较小时,杆横截面上就可能不出现异号应力 因此当偏心压力F 的偏心距较小时,杆的横截面上可能不出现拉应力外力作用点离形心越近,中性轴距形心就越远当外力作用点位于截面形心附近的一个区域内时,就可以保证中性轴不与横截面相交,这个区域就称为截面核心当外力作用在截面核心的边界上时相对应的中性轴正好与截面的周边相切,利用这一关系就可确定截面核心的边界为确定任意形状截面的截面核心边界,可将与截面周边相切的任一直线视作中性轴 在y 和z 形心主惯性轴上的截距分别为1y a 和1z a可确定与该中性轴对应的外力作用点1按上述方法求得与其对应的截面核心边界上的点2、3、…的坐标连接这些点所得到的一条封闭曲线,即为所求截面核心的边界该边界曲线所包围的带阴影线的区域,即为截面核心圆截面对于圆心O 时极对称的,因此,截面核心的边界对于圆心也是极对称的为一圆心为O 的圆作一条与圆截面周边相切于A 点的直线,将其视为中性轴取OA 为y 轴,于是,该中性轴在y 和z 形心主惯性轴上的截距为1/2y a d =, 1z a =∞圆截面的222/16y z i i d ==,将其代入公式即得与其对应的截面核心边界上点1的坐标2211/16/28z y y i d d a d ρ=-=-=-,2110y z z i a ρ=-= 从而可知,截面核心边界是一个以O 为圆心,/8d 为半径的圆对于边长为b h ⨯的矩形截面,两对称轴y 和z 为截面的形心主惯性轴将与AB 向切的直线①视作中性轴,其在y 和z 轴上的截距分别为,矩形截面2212yb i =,2212z h i = 将上式代入,即得中性轴①对应的截面核心边界点上点1的坐标为2211/12/26z y y i h h a h ρ=-=-=-, 2110y z z i a ρ=-= 同理,分别将与矩形边界相切的直线②、③、④视作中性轴可得对应的截面核心边界上点2、3、4的坐标从而得到了截面核心边界上的4个点当中性轴从截面的一个侧边绕截面的顶点旋转到其相邻边时 将得到一系列通过边界点B 但斜率不同的中性轴而B 点的坐标(,)B B y z 是一系列中性轴共有的 将其代入中性轴方程,经改写后得2222110F F B B B B F F y z y z z y z y z y z y i i i i ++=++= 上式中,B y 、B z 为常数 因此该式就可看作时表示外力作用点坐标(,)F F y z 间关系的直线方程即当中性轴绕B 点旋转时,相应的外力作用点移动的轨迹是一条连接点1、2的直线将1、2、3、4四点中相邻的两点连以直线,即得矩形截面的截面核心边界截面核心为位于截面中央的菱形对于具有棱角的截面,均可按照上述方法确定其截面核心对于周边有凹进部分的截面(例如槽型或T 字型截面等)在确定截面核心边界时,应该注意不能取与凹进部分的周边相切的直线作为中性轴,因为这种直线显然约横截面相交4.扭转与弯曲一般的传动轴通常发生扭转与弯曲组合变形讨论杆件发生扭转与弯曲组合变形时的强度计算直径为d 的等直圆杆AB ,A 端固定,B 端具有与AB 成直角的刚臂,并受铅垂力F 作用,将F 简化为一作用于杆端截面形心的横向力F 和一作用于杆端的力偶矩e M Fa = 杆AB 将发生弯曲与扭转组合变形分别作杆的弯矩图和扭矩图,可见杆的危险截面为固定端截面,内力分量分别为M Fl =, e T M Fa ==由弯曲和扭转的应力变化规律可知危险截面上的最大弯曲正应力σ发生在铅垂直径的上、下两端点对于许用拉应力,压应力相等的塑性材料来说,该两点的危险程度相同 研究任一点,围绕该点分别用横截面、径向纵截面和切向纵截面截取单元体 该点应力状态如图所示,可见该点处于平面应力状态,其三个主应力为132σσσ⎫=⎬⎭ 20σ= 对于塑性材料制成的杆件,选用第三或第四强度理论来建立强度条件用第三、第四强度理论,将上述各应力代入向相应的应力表达式求得相当应力后,即可根据材料的许用应力[]σ来建立强度条件,对杆进行强度计算 其中弯曲正应力/M W σ=,扭转切应力/p T W τ=,对于圆截面杆2p W W =截面周边各点处弯曲正应力的数值和正负号都将随着轴的转动而交替变化这种应力称为交变应力,交变应力下工作的构件另有相应的计算准则5.连接件的实用计算法5.1 剪切的实用计算设两块钢板用螺栓连接后承受拉力F螺栓在两侧面上分别收到大小相等、反向相反、作用线相距很近的两组分布力系的作用 螺栓在这样的作用下,将沿两侧外力之间,并与外力作用线平行的截面m-m 发生相对错动称为剪切面应用截面法,可得剪切面上的内力,即剪力s F在剪切实用计算中,假设剪切面上各点处的切应力相等 于是剪切面上的名义切应力为S sF A τ=式中s A 为剪切面面积,s F 为剪切面上的剪力 通过试验得到剪切破坏时材料的极限切应力u τ,除以安全因数,得许用应力[]τ 剪切强度表示为[]S sF A ττ=≤ 名义切应力并不反映剪切面上切应力的精确理论值只是剪切平面上的平均切应力但对于低碳钢等塑性材料材料制成的连接件,变形较大而临近破坏时剪切面上的切应力将逐渐趋于均匀而且满足剪切强度条件式,不至于发生剪切破坏,从而满足工程需要对于大多数的连接件来说,剪切变形及剪切强度时主要的5.2 挤压的实用计算螺栓连接中,在螺栓与钢板相互接触的侧面上,将发生彼此间的局部承压现象,称为挤压 在接触面上的压力,称为挤压力,并记为bs F挤压力可根据被连接件所受的外力,由静力平衡条件求得当挤压力过大时,可能引起螺栓压扁或钢板在孔缘压皱,从而导致连接松动失效在挤压实用计算中,假设名义挤压应力的计算式为bs bs bsF A σ= 式中,bs F 为接触面上的挤压力;bs A 为计算挤压面面积当接触面为圆柱面时,计算挤压面面积bs A 取为实际接触面在直径平面上的投影面积 理论表明,这类圆柱状连接件与钢板孔壁间接触面上的理论挤压应力沿圆柱的变化情况如图 计算所得的名义挤压应力与接触面中点处的最大理论挤压应力值相近当连接件与被连接构件的接触面为平面时,计算挤压面面积即为实际接触面的面积 通过试验,按名义挤压应力公式得到的材料的极限挤压应力,除以安全因数确定许用挤压应力[]bs σ,则挤压强度条件可表达为[]bs bs bs bsF A σσ=≤ 注意,挤压应力是在连接件和被连接件之间相互作用的当两者材料不同时,应校核其中许用挤压应力较低的材料的挤压强度6.铆钉连接的计算铆钉连接在建筑结构中被广泛采用铆接的方式主要有搭接、单盖板对接和双盖板对接三种搭接和单盖板对接中的铆钉具有一个剪切面(称为单剪)双盖板对接中的铆钉具有两个剪切面(称为双剪)6.1 铆钉组承受横向荷载在搭接和单盖板对接中,由铆钉的受力可见铆钉(或钢板)显然将发生弯曲在铆钉组连接中,在弹性变形阶段两端铆钉的受力与中间铆钉的受力并不完全相同 为简化计算,并考虑到连接在破坏前将发生塑性变形,在铆钉计算中假设①不论铆接的方式如如何,均不考虑弯曲的影响②若外力的作用线通过铆钉组横截面的形心,且同一组内各铆钉的材料与直径均相同,则每个铆钉的受力相等 按照上述假设,即可得每个铆钉的受力1F 为1F F n= 式中,n 为铆钉组中的铆钉数求得每个铆钉的受力1F 后,即可分别校核其剪切强度和挤压强度被连接件由于铆钉孔的削弱,其拉伸强度应以最弱截面(轴力较大,截面积较小)为依据 不考虑集中应力的影响对于销钉或螺栓连接,其分析计算方法与铆钉连接相同6.2 铆钉组承受扭转荷载承受扭转荷载的铆钉组,由于被连接件(钢板)的转动趋势每一铆钉的受力将不再相同令铆钉组横截面形心为O 点 假设钢板的变形不计,可视为刚体于是,每一铆钉的平均切应变与该铆钉截面中心至O 点的距离成正比,其方向垂直于该点与O 点的连线由合力矩定理,每一铆钉上的力对O 点力矩的代数和等于钢板所受的扭转力偶矩e M ,即 e i i M Fe Fa ==∑式中,i F 为铆钉i 所受的力;i a 为该铆钉截面中心至铆钉组截面形心的距离对于承受偏心横向荷载的铆钉组可将偏心荷载F 向铆钉组截面形心O 简化得到一个通过O 点的荷载F 和一个绕O 点旋转的扭转力偶矩e M Fe =若同一铆钉组中每一铆钉的材料和直径均相同则可分别计算由力F 引起的力'i F 和由转矩e M 引起的力''i F铆钉i 的受力为'i F 和''i F 的矢量和求得铆钉i 的受力i F 后,可分别校核受力最大的铆钉的剪切强度和挤压强度。
材料力学习题解答(组合变形)
N Mz
D C
D z 150 100
C z
My
Q
解:(1) 将力 P 和 H 向截面形心简化
M = 25 × 103 × 0.025 = 625 N .m
(2) 截面 ABCD 上的内力
N = − P = −25 kN M y = M = 625 N .m M z = H × 0.6 = 3 kN .m
N
如图作截面取上半部分,由静力平衡方程可得
N = P = 15kN
所以立柱发生拉弯变形。 (2) 强度计算 先考虑弯曲应力
上海理工大学 力学教研室
M = 0.4 P = 6kNm来自4σ t max =
d≥
M 32 M = ≤ [σ t ] πd3 W
3
π [σ t ]
32 M
=
3
32 × 6 × 103 = 120.4 mm π × 35 × 106
yc =
A1 y1c + A2 y2 c A
1.4 − 0.05 − 0.016 ⎞ ⎛ 1.204 × 0.7 + 1.105 × ⎜ 0.05 + ⎟ 2 ⎝ ⎠ = 0.51 m = 0.099
截面对形心轴的惯性矩
1 2 × 0.86 × 1.43 + ( 0.7 − 0.51) × 1.204 = 0.24 m 4 12 1 3 II I zc = × ( 0.86 − 2 × 0.016 ) × (1.4 − 0.05 − 0.016 ) 12
ZA YA P2
YC = P1a / 2 ZC = P2 a / 2
YA = P1a / 2 Z A = P2 a / 2
MzI
(2) 截开 I-I 截面,取左面部分 P1 QzI TI QyI MyI
材料力学大四
材料力学大四:组合变形(二)(弯.+扭.;拉+扭;压+扭;弯+弯+扭;拉+弯+扭) 题目材大4-1如图1所示传动轴AB 直径=120mm d ,轴长=3.6m L ,[]120MPa σ=,轮缘挂重物=12kN F 与扭转力偶矩e M 平衡,皮带轮C 的直径=800mm D 。
试按第三强度理论校核轴的强度。
图1材大4-1 图2大4-2材大4-2如图2所示钢制圆轴,直径为=100mm d ,若轴上作用的载荷=4.0kN F ,e =2.0kN m M ⋅,圆轴材料的许用应力[]=80MPa σ。
按第三强度理论校核圆轴的强度。
材大4-3一水平放置的直角曲拐如图3所示,在C 端受竖直向下力F 和平行AB 段轴线的力F 作用,AB 段为一直径为d 的等直圆杆, 1.5l a =,10a d =,试推导AB 段危险点的第三强度理论相当应力(用F 和d 表示)。
图3大4-3 图4大4-4材大4-4如图4所示传动结构中等截面圆轴AB 的直径为d ,抗弯截面系数为W ,轮C 、D 的直径均为4d ,两皮带张力分别为F 和3F ,方向分别与y 轴、z 轴平行。
(1)画内力图,指出圆轴AB 危险截面的位置; (2)计算危险点的第四强度理论相当应力。
材大4-5直角曲拐位于水平面内,A 端固定,AB 段为圆截面,自由端C 处受铅垂载荷F 作用。
如图5(a)所示。
由试验测得AB 段中间表面a 点处沿轴向方向线应变40104-⨯=ε,表面点b 处沿与母线成 45方向的线应变445103-⨯-=ε,(b 点在中性层上),如图4(b)所示。
已知材料的弹性模量200=E GPa ,泊松比3.0=ν,许用应力[]160=σMPa 。
试求:(1)画AB 段的内力图确定危险截面; (2)画a 、b 两点应力状态单元体; (3)采用第四强度理论校核AB 段的强度。
(a) (b)图5大4-4材大4-6(习14-6)皮带传动轴由电机带动,尺寸及受力如图6所示,皮带轮重=1kN G ,直径=1200mm D ,T 6kN F =,t =3kN F 。
材料力学:第11章:组合变形
2
≤[σ]
2
M + 0.75T W
3
≤[σ]
πd
32
例:图示悬臂梁的横截面为等边三角形, 图示悬臂梁的横截面为等边三角形, C为形心,梁上作用有均布载荷q,其作用方 为形心,梁上作用有均布载荷q,其作用方 为形心 q, 向及位置如图所示,该梁变形有四种答案: 向及位置如图所示,该梁变形有四种答案: A)平面弯曲; (√ )平面弯曲; (C)纯弯曲; )纯弯曲; (B)斜弯曲; )斜弯曲; (D)弯扭结合。 )弯扭结合。
Mz y My σ′=− =− sin ϕ Iz Iz
σ ′′ = −
ቤተ መጻሕፍቲ ባይዱ
My z Iy
Mz =− cos ϕ Iy
Py
Mz
Pz
My
y z σ = σ ′ + σ ′′ = − M sin ϕ + cos ϕ I Iy z
下面确定中性轴的位置: 下面确定中性轴的位置: 设中性轴上某一点的坐标为 y0 、 z0,则
α
ϕ
中性轴
ϕ
中性轴
二、位移计算 斜弯曲概念 为了计算梁在斜弯曲时的挠度, 为了计算梁在斜弯曲时的挠度,仍应用叠加法
fy = Py l
3
3EI Z
Pl3 = sin ϕ 3EI Z
Pl3 Pz l 3 fz = = cosϕ 3EI y 3EI y
ϕ
f =
2 fy
+f
2 z
tg β =
fy fz
=
Iy Iz
tg ϕ
tg β = tgα
α
β =α
ϕ
中性轴 总挠度f与中 总挠度 与中 性轴垂直
材料力学第5版(孙训方编)第八章
第八章 组合变形及连接部分的计算
故有中性轴的方程:
My Iy
z0
Mz Iz
y0
0
中性轴与y轴的夹角q(图a)为
tanq z0 M z I y I y tan
y0 M y I z I z
其中 角为合成弯矩 M
M
2 y
M
2 z
与y的夹角。
14
第八章 组合变形及连接部分的计算
tanq I y tan
c
z
dA
y
z
dA
y
(a)
横截面对于形心主惯性轴 的惯性矩则称为形心主惯性矩 (principal centroidal moment of inertia)。
29
第八章 组合变形及连接部分的计算
显然当梁的横截面具有一个对称轴时,这个对称轴和它垂 直的形心轴都是形心主惯性轴,外力产生的弯矩作用在包含其 中任何一根轴的纵向面内时梁都发生平面弯曲。
c
z
dA
y
z
dA
y
(a)
反之如果荷载产生的 弯矩作用在包含z轴的纵向 面内,亦发生平面弯曲。
28
第八章 组合变形及连接部分的计算
yz d A称为横截面对于一对相互垂直轴y , z的惯性积 A
(product of inertia),用Iyz表示。
而满足Iyz=0 且通过横截面形心的一对正交轴(y轴和z轴) 称为形心主惯性轴(principal centroidal axis of inertia)。
MzD=0.456 qa2 , 且 MyD= 0.444 qa2, 故D 截面也是可能的危险面。为确定危险截面,需比较A截面 和D 截面上的最大弯曲正应力。
材料力学组合变形及连接部分计算答案
8-1 14号工字钢悬臂梁受力情况如图所示。
已知m,,,试求危险截面上的最大正应力。
解:危险截面在固定端==返回8-2 受集度为的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为,如图所示。
已知该梁材料的弹性模量;梁的尺寸为m,mm,mm;许用应力;许可挠度。
试校核梁的强度和刚度。
解:=,强度安全,==刚度安全。
返回8-3(8-5)图示一悬臂滑车架,杆AB为18号工字钢,其长度为m。
试求当荷载作用在AB的中点D处时,杆内的最大正应力。
设工字钢的自重可略去不计。
解:18号工字钢,,AB杆系弯压组合变形。
,,====返回8-4(8-6)砖砌烟囱高m,底截面m-m的外径m,内径m,自重kN,受的风力作用。
试求:(1)烟囱底截面上的最大压应力;(2)若烟囱的基础埋深m,基础及填土自重按计算,土壤的许用压应力,圆形基础的直径D应为多大?注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。
解:烟囱底截面上的最大压应力:==土壤上的最大压应力:即即解得:m返回8-5(8-8)试求图示杆内的最大正应力。
力F与杆的轴线平行。
解:,z为形心主轴。
固定端为危险截面,其中:轴力,弯矩,=A点拉应力最大==B点压应力最大==因此返回8-6(8-9) 有一座高为1.2m、厚为0.3m的混凝土墙,浇筑于牢固的基础上,用作挡水用的小坝。
试求:(1)当水位达到墙顶时墙底处的最大拉应力和最大压应力(设混凝土的密度为);(2)如果要求混凝土中没有拉应力,试问最大许可水深h为多大?解:以单位宽度的水坝计算:水压:混凝土对墙底的压力为:墙坝的弯曲截面系数:墙坝的截面面积:墙底处的最大拉应力为:==当要求混凝土中没有拉应力时:即即m返回8-7(8-10)受拉构件形状如图,已知截面尺寸为40mm×5mm,承受轴向拉力。
现拉杆开有切口,如不计应力集中影响,当材料的时,试确定切口的最大许可深度,并绘出切口截面的应力变化图。
材料力学第8章 组合变形
b.未通过轴线或形心主惯性轴,向其分解
注意:荷载分解、简化的前提是不改变研究段的内力。
(2)内力分析方法
用截面法计算任意截面的内力,通过内力确定变形的组成
z
Fsz My
Ty
Fsy
M z FN
FN
T
x M z , Fsy M y , Fsz
轴向拉、压 扭转 x,y面内的平面弯曲 x,z面内的平面弯曲
§8-2 两相互垂直平面内的弯曲
F sin
F cos F
(2)求B点的应力
MB FN
WA
12.32103 25103
0.1 0.22
0.1 0.2
6
B
17.23 MPa
(3)求B点30º斜截面上的正应力
300 cos2 30 17.23 cos2 30 12.99 MPa
(4)求B点的主应力
1 0 2 0 3 17.23 MPa
z
面梁,其横截面都有两个相互垂直的对称 轴,且截面的周边具有棱角,故横截面上
Mz
的最大正应力发生在截面的棱角处。于是
,可根据梁的变形情况,直接确定截面上
My
最大拉、压应力点的位置,而无需定出其
y
中性轴。
因危险点为单向应力状态(忽略弯曲切应力的影响), 故,强度条件为:
max
M y max Wy
F sin
12.32kN m
F cos F
例: 如图示一矩形截面折杆,已知F=50kN,尺寸如图所示, α=30°。(1)求B点横截面上的应力;(2)求B点α=30°截
面上的正应力;(3)求B点的主应力σ1、 σ2、 σ3。
FN
B
MB 100mm
材料力学组合变形习题答案
材料力学组合变形习题答案材料力学组合变形习题答案材料力学是工程力学的重要分支之一,研究材料在受力作用下的力学性质和变形规律。
在学习材料力学的过程中,习题是不可或缺的一部分,通过解答习题可以更好地理解和掌握相关的知识。
下面,我将为大家提供一些材料力学中的组合变形习题的答案,希望对大家的学习有所帮助。
习题一:一根长为L的均匀悬臂梁,横截面为矩形,宽度为b,高度为h。
在悬臂梁的自由端施加一个纵向拉力F,求悬臂梁在纵向拉力作用下的最大弯曲应力和最大剪应力。
解答:根据悬臂梁的受力分析可知,最大弯曲应力出现在悬臂梁的根部,最大剪应力出现在悬臂梁的中部。
最大弯曲应力σ_max = (F * L) / (2 * b * h^2)最大剪应力τ_max = (F * L) / (2 * b * h)习题二:一根长为L的均匀悬臂梁,横截面为圆形,直径为d。
在悬臂梁的自由端施加一个纵向拉力F,求悬臂梁在纵向拉力作用下的最大弯曲应力和最大剪应力。
解答:与习题一类似,根据悬臂梁的受力分析可知,最大弯曲应力出现在悬臂梁的根部,最大剪应力出现在悬臂梁的中部。
最大弯曲应力σ_max = (F * L) / (4 * π * (d/2)^3)最大剪应力τ_max = (F * L) / (2 * π * (d/2)^2)习题三:一根长为L的均匀梁,横截面为矩形,宽度为b,高度为h。
在梁的两端分别施加一个纵向拉力F和F',求梁在纵向拉力作用下的最大弯曲应力和最大剪应力。
解答:根据梁的受力分析可知,最大弯曲应力出现在梁的中部,最大剪应力出现在梁的两端。
最大弯曲应力σ_max = (F * L) / (4 * b * h^2) + (F' * L) / (4 * b * h^2)最大剪应力τ_max = (F * L) / (2 * b * h) + (F' * L) / (2 * b * h)习题四:一根长为L的均匀梁,横截面为圆形,直径为d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8-1 14号工字钢悬臂梁受力情况如图所示。
已知m,,,试求危险截面上的最大正应力。
解:危险截面在固定端
=
=
返回
8-2 受集度为的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向
对称面间的夹角为,如图所示。
已知该梁材料的弹性模量;
梁的尺寸为m,mm,mm;许用应力;许可挠度。
试校核梁的强度和刚度。
解:
=
,强度安全
,
=
=刚度安全。
返回
8-3(8-5)图示一悬臂滑车架,杆AB为18号工字钢,其长度为m。
试求
当荷载作用在AB的中点D处时,杆内的最大正应力。
设工字钢的自重可略去不计。
解:18号工字钢,,AB杆系弯压组合变形。
,,
==
==
返回
8-4(8-6)砖砌烟囱高m,底截面m-m的外径m,内径m,自
重kN,受的风力作用。
试求:
(1)烟囱底截面上的最大压应力;
(2)若烟囱的基础埋深m,基础及填土自重按计算,土壤的
许用压应力,圆形基础的直径D应为多大?
注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。
解:烟囱底截面上的最大压应力:
==
土壤上的最大压应力:
即
即
解得:m
返回
8-5(8-8)试求图示杆内的最大正应力。
力F与杆的轴线平行。
解:,z为形心主轴。
固定端为危险截面,其中:
轴力,弯矩,
=
A点拉应力最大
==
B点压应力最大
==
因此
返回
8-6(8-9) 有一座高为1.2m、厚为0.3m的混凝土墙,浇筑于牢固的基础上,用作挡水用的小坝。
试求:
(1)当水位达到墙顶时墙底处的最大拉应力和最大压应力(设混凝土的密
度为);
(2)如果要求混凝土中没有拉应力,试问最大许可水深h为多大?
解:以单位宽度的水坝计算:
水压:
混凝土对墙底的压力为:
墙坝的弯曲截面系数:
墙坝的截面面积:
墙底处的最大拉应力为:
=
=
当要求混凝土中没有拉应力时:
即
即
m
返回
8-7(8-10)受拉构件形状如图,已知截面尺寸为40mm×5mm,承受轴向拉力。
现拉杆开有切口,如不计应力集中影响,当材料的时,试确定切口的最大许可深度,并绘出切口截面的应力变化图。
解:
即
整理得:
解得:mm
返回
8-8(8-11) 一圆截面直杆受偏心拉力作用,偏心距mm,杆的直径为70mm,
许用拉应力为120MPa。
试求杆的许可偏心拉力值。
解:圆截面面积
圆截面的弯曲截面系数
即:
,
返回
8-9(8-15) 曲拐受力如图示,其圆杆部分的直径mm。
试画出表示A点处应力状态的单元体,并求其主应力及最大切应力。
解:A点所在的横截面上承受弯矩和扭矩作用,其值
它们在点A分别产生拉应力和切应力,其应力状态如图8-15a,其中
注:剪力在点A的切应力为零。
返回
8-10(8-16) 铁道路标圆信号板,装在外径mm的空心圆柱上,所受的最
大风载,。
试按第三强度理论选定空心柱的厚度。
解:忽略风载对空心柱的分布压力,只计风载对信号板的压力,则信号板受风力
空心柱固定端处为危险截面,其弯矩:
扭矩:
=
mm
8-11(8-21) 试校核图示拉杆头部的剪切强度和挤压强度。
已知图中尺寸
mm,mm和mm,杆的许用切应力,许用挤压应
力。
解:
安全
安全
返回
8-12(8-22) 水轮发电机组的卡环尺寸如图所示。
已知轴向荷载,
卡环材料的许用切应力,许用挤压应力。
试校核卡
环的强度。
解:剪切面
安全
挤压面
安全
返回
8-13(8-23)正方形截面的混凝土柱,其横截面边长为200mm,其基底为边长
a=1m的正方形混凝土板。
柱承受轴向压力,如图所示。
假设地基对
混凝土板的支反力为均匀分布,混凝土的许用切应力为,试问为使
柱不穿过板,混凝土板所需的最小厚度应为多少?
解:
故
返回
8-14(8-24)图示一螺栓接头。
已知,螺栓的许用切应力
,许用挤压应力。
试计算螺栓所需的直径。
解:按剪切强度计算
故
按挤压强度计算:
故选取的螺栓。
返回
8-15(8-25)拉力的螺栓连接如图所示。
已知b=80mm,mm,
d=22mm,螺栓的许用切应力,钢板的许用挤压应力
,许用拉应力。
试校核接头的强度。
解:(1)螺栓剪切
(2)钢板挤压
(3)钢板拉伸
第一排截面上应力:
第二排孔截面上拉力与第一排螺钉上的剪力之和等于外力F,其中第一排螺钉上剪力为:
故第二排截面上拉应力合力为
于是
返回
8-16(8-26) 两直径mm的圆轴,由凸缘和螺栓连接,共有8个螺栓布置
在mm的圆周上,如图所示。
已知轴在扭转时的最大切应力为70MPa,
螺栓的许用切应力。
试求螺栓所需的直径。
解:
返回
8-17(8-27) 一托架如图所示。
已知外力,铆钉的直径mm,铆钉与钢板为搭接。
试求最危险的铆钉剪切面上切应力的数值及方向。
解:(1)在F力作用下,因为每个铆钉直径相等,故每个铆钉上所受的力
(2)在力偶作用下,四个铆钉上所
受的力应组成力偶与之平衡。
(1)
(2)
联解式(1)、(2)得。