第2章 化学键与分子结构

合集下载

化学键与分子结构

化学键与分子结构

PART 2
化学键的类型
化学键的类型
化学键主要分为 共价键、离子键 和金属键三种类

共价键
共价键是指两个或多 个原子通过共享电子 对形成的相互作用。 这种相互作用使得原 子能够稳定地结合在 一起,形成稳定的分 子。共价键的形成主 要是由于原子之间的 电子云重叠
化学键的类型
离子键
离子键是指由正离子 和负离子之间形成的 相互作用。正离子失 去电子,负离子得到 电子,从而形成稳定 的离子。离子键的形 成主要是由于静电相 互作用
化学键与分子结构
-
1 化学键的定义 3 分子结构与化学键的关系 5 化学键的断裂与形成 7 总结
2 化学键的类型 4 总结 6 化学键与生命活动
PART 1
化学键的子或晶体中原 子或离子之间的相互作用, 这种相互作用使得原子或离 子能够稳定地结合在一起
化学键的形成是化学反应的 基础,也是生命活动的基础
分子结构与化学键的关系
分子的物理性质
分子的物理性质如熔点、沸点、导电性和透 明度等主要由其化学键的类型和强度决定。 例如,共价化合物的熔点和沸点通常比离子 化合物要高,而金属化合物的导电性和透明 度则受到金属原子的种类和数量的影响
分子结构与化学键的关系
分子的化学性质
分子的化学性质如反应活性、氧化还原性质等主要由其 化学键的类型和强度决定。例如,共价化合物的反应活 性通常比离子化合物要低,而金属化合物的氧化还原性 质则受到金属原子的种类和数量的影响
化学键的类型
化学键的类型
金属键
金属键是指金属原子之间形成的相互作用。 金属原子最外层电子很容易失去,从而形成 自由电子。这些自由电子在金属原子之间流 动,形成了金属键。金属键的形成主要是由 于自由电子的流动

(现代基础化学课件)第二章分子结构和分子间力、氢键

(现代基础化学课件)第二章分子结构和分子间力、氢键

1)苯分子 (C6H6) 的结构:
2p
激发
2s
2s
C原子
杂化
sp2杂化轨道 2pz
2p 大π键
在苯分子中和每个C原子相 邻的有另2个C原子和1个H 原子。
2.3.5 有机化合物分子的结构
2)乙烷分子(C2H6)的结构:
H
H
sp3-s 键
H Csp3-sp3 键C H
H
H
3)乙烯分子(C2H4)的结构:
2.3.4 CO2分子的结构
经实验测得CO2分子为直线形,试用杂化轨道理 论解释之。
根据直线形结构,C 原子杂化方式为 sp 杂化:
2p 2s
2p 激发 2s
杂化sp杂化轨道 2p
C 原子轨道
所以CO2分子的 结构为:
O
C
O
2s2
2p4
8O: 1s2 2s2 2p4
2s2
2p4
8O: 1s2 2s2 2p4
杂化过程:a)激发 b)杂化 c)成键
ns np 杂化
激发 ns np
成键
sp3
sp3-x
杂化轨道特征:
1. 经杂化后轨道能量和成分均发生了变化。
2. 轨道形状改变。
3. 杂化后轨道与其它原子的成键能力增强。
2.3.1 sp 杂化
1个s 轨道和1个p 轨道的杂化。如BeCl2 的形成:
2p
2p
2p
价层电子对互斥理论VESPR
n=(中心原子价电子数+成键原子数-电 子数)/2-双键(1)三键(2)
例: CH4 n=(4+4)/2=4 H2O n=(6+2)/2=4 H3O+ n=(6+3-1)/2=4 SO42- n=(6+2)/2=4 NO2- n=(5+1)/2=3 C2H4 n=(4+2+2)/2-1=3 CH3CHO n=(4+1+1)/2=3

化学键与分子结构

化学键与分子结构






NaCl型晶体 属立方面心晶格

(3) 离子半径比与配位数和晶体构型的关系
-+-
+ -+
第 四 章
-+ -


键 与
r +/ r- = 0.414




-+- + -+ -+-
r +/ r- > 0.414
-+- +-+ -+-
r +/ r- < 0.414
1-5 晶格能
晶格能是相互远离的气态的正负离子结合成1 mol离子晶体所释放 的能量,用 U 表示。
化学键与分子结构
离子健理论 共价健理论 分子间作用力 金属健理论
河南油田高级中学 化学组
科塞尔(Kossel)-----离子键理论
第 四 章


路易斯(G.N. Lewis)-----共价键理论


分 化学键—分子中的两个(或多个)原子之间的相互作用



§1 离子键理论
离子健的形成

离子键的特点
结 构
(3)离子半径(离子半径越小,健的强度越大)
离子半径: 将离子晶体中的离子看成是相切的球体,正
负离子的核间距 d 是 r + 和 r- 之和 。
第 四
推算半径的方法:
鲍林半径
r
cn Z
r+ r -

哥德希密特半径
化 学
d
键 与
离子晶体 离子半径(pm) 溶点(摄氏) 硬度(摩氏)

化学键与分子结构2

化学键与分子结构2

键能数据是用光谱法、质谱法、热化学法、动力学 法以及电化学法测量出的,量子化学也能预测。 • • • • • D(H-CH2OH) = 401.9 D(H3C-OH) = 384.9 D(H3CO-H) = 440.2 可见C-O最易热裂解 生成乙二醇比较难,生成烯烃可以。
键长
分子中成键两原子核之间的距离。
多原子分子的偶极矩 = 键矩的矢量和,
例如:μ(SF6) = 0,键矩互相抵消, μ(H2O)≠0,键矩未能抵消。
分子的偶极矩μ(×10-30 C· m)
分子式 H2 N2 CO2 CS2 CH4 CO CHCl3 H2S 偶极矩 0 0 0 0 0 0.40 3.50 3.67 分子式 SO2 H2O NH3 HCN HF HCl HBr HI 偶极矩 5.33 6.17 4.90 9.85 6.37 3.57 2.67 1.40
-D

ro
r
H2分子的形成
两个中性原子间通过共用电子对相连形成分 子,是基于电子定域于两原子之间,形成了一个 密度相对大的电子云(负电性)(这就是价键理 论的基础)
H2的吸引态与排斥态等密度面
H2两种状态的||2和原子轨道重叠的示意图
共价键的形成条件: ①键合双方各提供自旋方向相反的未成对电子 ②原子轨道能量相近
F

HNH
FBF
H
F
在形成共价键时,单电子也可以由成对电子分开
而得到,如CH4分子。
2s
2p
电子激发 2s

2p
PCl 5 分子的成键:
3s
3p
激发
3d
3s


3d 激发后,有 5 个单电子,与 5 个 Cl 形成共价键 。

分子结构和化学键

分子结构和化学键

分子结构和化学键分子结构和化学键是化学中两个重要的概念。

分子结构描述了分子中原子的相对位置和连接方式,而化学键则是连接原子的力。

一、分子结构分子结构是描述分子中原子相对位置和连接方式的方式。

目前最常用的描述方法是路易斯结构和空间结构。

1. 路易斯结构路易斯结构由美国化学家吉尔伯特·路易斯提出,采用简单的点和线表示原子和电子。

在路易斯结构中,原子通过化学键连接,而电子以点的形式表示,用于补充原子的电子。

例如,氨分子(NH3)的路易斯结构中,一个氮原子和三个氢原子通过共价键连接在一起,氮原子周围有一个孤对电子。

2. 空间结构空间结构是描述分子三维形状的方法。

根据VSEPR理论(分子形状理论),分子的最稳定状态是使电子对排斥最小的状态。

根据电子对的排列情况,分子的形状可以分为线性、角形、平面三角形、四面体等多种形式。

二、化学键化学键是连接原子的力,可以分为离子键、共价键和金属键等不同类型。

1. 离子键离子键是由离子之间的电荷吸引力形成的。

当一个原子失去一个或多个电子时,形成正离子;当一个原子获得一个或多个电子时,形成负离子。

正离子和负离子之间发生静电作用,形成离子键。

例如,氯化钠(NaCl)中,钠离子失去一个电子形成正离子(Na+),氯原子获得一个电子形成负离子(Cl-),通过电荷吸引力形成离子键。

2. 共价键共价键是由共享电子形成的。

在共价键中,原子通过共享电子对相互连接。

共有单电子对形成单键,共享两对电子形成双键,共享三对电子形成三键。

例如,氢气(H2)中,两个氢原子通过共享一个电子对形成一个共价键。

3. 金属键金属键是金属原子之间的电子云形成的强力。

金属结构中,金属原子失去价层的一个或多个电子,形成阳离子,而这些电子形成了电子云,使金属原子之间产生强烈的吸引力。

金属键是金属物质特有的键。

总结:分子结构和化学键是化学中重要的概念。

分子结构描述了分子中原子的相对位置和连接方式,常用路易斯结构和空间结构表示。

第2章 分子结构1-离子键

第2章 分子结构1-离子键

性越强。
6
3.离子极化作用对离子化合物性质的影响 化学键的性质由离子键逐渐向共价键过渡,表现
出化合物的熔沸点降低、在极性溶剂中溶解度减小 、颜色逐渐加深等性质变化。
例如AgF,AgCl,AgBr, AgI: 熔沸点: AgF > AgCl > AgBr > AgI
溶解度: AgF > AgCl > AgBr > AgI 颜色: AgF < AgCl < AgBr < AgI
分子结构 (在线1:离子键)
化学键:分子内或原子、离子晶体中相邻原 子或相邻离子间强烈的相互作用力称为~。
离子键:正、负离子间通过静电引力形成。 化学键 金属键:通过共用能流动的自由电子形成。
共价键:通过共用电子对形成。 人类发现和合成的化合物90%以上都是 以共价键相结合的。
2
第一节 离子键
一、离子键的形成 Δχ >1.7的非金属和金属原子相遇时,有达到稳定结 构倾向,发生电子的转移,形成正、负离子;正、 负离子间以静电引力形成离子键。
7
二、离子键的特点 离子键没有饱和性和方向性。
三、影响离子键强弱的因素 离子的电荷、半径和电子构型。
1.离子的电荷 电荷越高,化合物离子键越强。
3
2.离子的半径 (1)电子层越多,离子半径越大; (2)同一周期正离子的离子半径比负离子小; (3)同一周期正、负离子的离子半径都随核电荷数的
增大而减小。
离子半径越小,化合物的离子键越强。离子键强弱 用晶格能(U)来衡量:
U Z Z r0
4
3.离子的电子构型 1)正离子的电子层构型一般有5种: (1) 2电子构型Li+、Be2+ (2) 8电子构型Na+、Mg 2+ (3) 9~17电子构型Mn 2+ 、Fe2+ (4)18电子构型Ag+、Cu+ (5) (18+2)电子构型Pb2+ 、Sn2+ 2)不同构型的正离子与负离子的离子键强弱: 18+2或18构型 > 9~17构型 > 8电子层构型 因为正离子电子构型越大,半径越小,离子键越强。

2[1].2 分子结构与化学键

2[1].2 分子结构与化学键

基本保持稳定,只是价电子在空间的几率分布会随着晶体中原子之间 的相互作用重新分布——形成化学键。 离子键、共价键最强(结合能最大),金属键次之,分子键最弱。

晶体结合能:
晶体结合的过程就是原子之间互相靠近,相互作用增强,内能发生变 化的过程。在把分散的原子(离子或分子)结合成为晶体的过程中将 有一定的能量被释放出来,称为结合能。反之,易于理解。
其中,r为相邻离子间距离;为马德隆常数,与晶体结构有关。 b 重叠排斥能(泡利不相容原理) U r n r

系统内能
A B U U c U r N [ n ] r r
A B U U c U r N [ n ] r r
d 2U K (V ) 2 V0 dV
两原子的结合能(化学键)>>>晶体结合能
1 N N N U (r ) u (rij )(i j ) u (r1 j )( j 1) 2 i j 2 j

典型的晶体:I-VII族化合物(NaCl)和II-VI族化合物(MgO)。 原子间作用力:库仑吸引作用和重叠排斥作用 2 q 库仑作用能 U c 4 0 r

离子共价混合晶体 III-V族化合物:GaAs 共价金属混合晶体 大部分过渡金属,如Fe(3d64s2) 共价-金属-范德华键混合——石墨

•具有稳固的电子结构的原子或分子,靠范德华力结 合成晶体。
•范德华力:是一种瞬时的感生的偶极子-偶极子相 互作用,是一种长程作用力。 •勒纳-琼斯势——相距为r的两个原子的总势
rn

对于不同类型的晶体,n、m值不同: 如:离子晶体:n=1, m=9;某些金属n=1, m=3

化学键与分子结构

化学键与分子结构

化学键与分子结构化学键是指原子间的相互作用力,它决定了分子的结构和性质。

在化学中,常见的化学键包括共价键、离子键和金属键。

本文将分别介绍这些化学键以及它们对分子结构的影响。

一、共价键共价键是两个或多个原子通过电子的共用而形成的化学键。

共价键的强度取决于原子之间电子的共享程度和电子云的重叠程度。

共价键的形成使得原子能够达到稳定的电子结构,从而形成分子。

共价键可以进一步分为单键、双键和三键。

1. 单键单键是一对原子间共享一个电子对形成的共价键。

它们通常是通过轨道的重叠来实现电子的共享。

单键的键能较低,结构松散,所以分子在空间上具有较高的自由度。

2. 双键双键是两对原子间共享两个电子对形成的共价键。

它们相较于单键更强,键能更高,分子更加稳定。

双键结构比单键结构更为刚性,分子一般比较扁平。

3. 三键三键是三对原子间共享三个电子对形成的共价键。

它们是最强的共价键,键能最高,分子最为稳定。

由于三键的存在,许多分子呈线性结构。

二、离子键离子键是由带正电的金属离子和带负电的非金属离子之间的静电相互作用形成的化学键。

离子键的强度通常比共价键更大,因此离子化合物具有高熔点和高沸点。

离子键的结构比共价键更加有序和紧密,离子排列规则。

三、金属键金属键是由金属原子通过电子的共享形成的化学键。

在金属中,原子间的外层电子形成共同的电子云,这种共享形成一种特殊的金属键。

金属键的存在使得金属具有良好的导电性和热导性。

化学键的类型决定了分子的结构和性质。

共价键使得分子具有较高的自由度和灵活性,而离子键使得分子有序排列,具有较高的熔点和沸点。

金属键使金属具有特殊的性质,如导电和热导。

总结起来,化学键的类型与分子结构有密切关系,不同类型的化学键决定了分子的稳定性、形状以及物理化学性质。

深入理解化学键与分子结构对于研究化学反应机理和合成新材料具有重要意义。

第2章 化学键与分子结构(4)

第2章 化学键与分子结构(4)

HCl
键的极性 多原子分子 分子的极性 分子的几何构型 例 H2O H H
+ _
O
+ _ _ + _+
极性分子
CO2
O
_+
C
O
_ 非极性分子 +
极性分子 (Polar molecules)
A diatomic molecule is polar if its bond is polar. A polyatomic molecule is polar if it has polar bonds arranged in space in such a way what their dipoles do not cancel.
分子间力的影响因素:
分子间距离:分子间距离越大,分子间力越弱。
取向力:温度越高,取向力越弱;分子的偶极矩越大, 取向力越强。
诱导力:极性分子的偶极矩越大、非极性分子的极化率越大,诱导 力越强。
色散力:分子的极化率越大, 色散力越强。
一般来说,结构相似的同系列物质,相对分子质量越大,分子变 形性越大,分子间力越强,熔、沸点越高。溶质或溶剂分子的 变形性越大,分子间力越大,溶解度越大。
不同元素的原子形成化学键时,由于正负电荷重心不重合, 形成极性共价键。两元素之间的电负性差越大,键的极性就 越大;两元素之间的电负性差越小,键的极性也越小。 HF、HCl、HBr、HI 自左至右分子的极性逐渐减小
§4
分子间作用力(Intermolecular Forces)
分子内原子间的结合靠化学键,物质中分子间存在着分子间 作用力。 一、分子的偶极矩(Dipole Moment, ) 1. 永久偶极 分子的正电重心和负电重心不重合,则为 极性分子,其极性的大小可以用偶极矩 μ来度量。

化学键与分子结构

化学键与分子结构

子键。
Na+ + [:C·l·:]- NaCl
首页
上··一页
下一页
末页
6
❖ 键的离子性与元素电负性的关系

离子键形成的重要条件是相互作用的原子的电
负性差值较大。一般电负性差值越大,形成键的离子
性越强。以电负性差值为1.7作标准。

在CsF中离子性约占92%。
❖ 晶格能U 由气态离子生成一摩尔稳定的固态晶体所放出的
首页
上一页
下一页
末页
15
现代价键理论
1927年, Heitler和London用量子力学处理H2分 子的形成过程,得到 E—R关系曲线。
首页
上一页
下一页
末页
16
共价键的本质是由于原子相互接近时轨道重叠(即波 函数叠加),原子间通过共用自旋相反的电子对使能 量降低而成键。
首页
上一页
下一页
末页
17
一、价键理论
杂化轨道数 2 3 4
4
成键轨道夹角 180 120 10928' 10928'
分子空间构型
s+(2)p 3
120
直线形 三角形 四面体 三角锥
实例
BeCl 2 BF3 CH4 NH 3
HgCl 2 BCl 3 SiCl 4 PH 3
中心原子 Be(ⅡA) B(ⅢA) C,Si N,P
1.理论要点 a.具有自旋相反的未成对电子的原子相互接近时,
自旋相反的单电子可以相互配对成键—共价键。
H-H H-Cl 共价单键
O=O 共价双键
N≡N 共价叁键
b. 成键双方的原子轨道对称性匹配,最大程度重叠。

化学键与分子结构

化学键与分子结构

化学键与分子结构化学键是指原子之间的相互作用力,能够维持分子的结构和化学性质。

它是化学反应和化学变化的基础,决定了物质的性质和性质的变化。

化学键的类型有离子键、共价键和金属键。

离子键是发生在金属和非金属之间的电荷转移。

在化学反应中,金属原子失去一个或多个电子,形成正离子,非金属原子接收这些电子,形成负离子。

由于正负电荷的吸引作用,形成了离子键。

离子键的特点是电离度高,熔点和沸点也较高,如NaCl(氯化钠)。

共价键是由非金属原子通过共享电子而形成的。

在共价键中,原子间的电子云重叠形成共享电子对。

共价键的强度一般比离子键弱,熔点和沸点较低,如氢气(H2)。

金属键是由金属原子形成的。

在金属中,金属原子失去了外层电子形成正离子,并成为电子云中的自由电子。

这些自由电子可以自由移动,形成带电离子云。

金属键的特点是电子云的移动性,导电性和热导性高,如铁。

分子结构是指物质中原子之间的排列和空间结构。

分子结构直接影响物质的性质。

分子结构的主要要素是共价键和原子之间的相互作用。

共价键的形成导致了分子的稳定性和特定的形状。

共价键的方向性和长度也影响着分子的形状。

例如,在H2O分子中,氢原子和氧原子之间的共价键角度约为104.5°,由于氧原子更电负,电子云会向氧原子倾斜,使得分子呈现出角度为104.5°的V形结构。

除了共价键,分子中的非共价相互作用力也对分子结构产生影响。

这些相互作用力包括范德华力、氢键、离子-离子相互作用和离子-偶极相互作用。

范德华力是由于电子云不对称分布引起的瞬时偶极耦合引力。

氢键是一种特殊的强相互作用力,通常发生在氢原子与电负原子(如氮、氧和氟)之间。

氢键在分子结构和物质性质中起着重要作用。

离子-离子相互作用是由正负电荷之间产生的静电相互作用力。

离子-偶极相互作用是正或负电荷与偶极分子之间的相互作用力。

分子结构对物质的性质产生重要影响。

例如,在化合物的空间结构中,分子中的原子排列会影响其物理性质,如熔点、沸点和密度。

第2章化学键与分子结构

第2章化学键与分子结构

第2章化学键与分子结构第2章化学键与分子结构习题一、思考题1.什么叫共价键的饱和性和方向性?为什么共价键具有饱和性和方向性,而离子键无饱和性和方向性?2.举例说明什么是σ键,什么是π键?它们有哪些不同?3.价键理论和分子轨道理论的基本要点是什么?4.s、p原子轨道主要形成哪几种类型的杂化轨道?中心原子利用上述杂化轨道成键时,其分子构型如何?5.实验测定BF3为平面三角形,而[BF4]-为正四面体形。

试用杂化轨道的概念说明在BF3和[BF4]-中硼的杂化轨道类型有何不同?6.试用分子轨道表示式写出O2+的电子构型。

7.分子间力有几种?各种力产生的原因是什么?试举例说明极性分子之间、极性分子和非极性分子之间以及非极性分子之间的分子间力。

在大多数分子中以哪一种分子间力为主?8.何为极性分子和非极性分子?分子的极性与化学键的极性有何联系?9.分子间力的大小对物质的物理性质有何影响?10.什么叫做氢键?哪些分子间易形成氢键?形成氢键对物质的性质有哪些影响?11.氢键与化学键有何区别?与一般分子间力有何区别?12.下列各化合物中分子间有氢键的有哪几种?C2H6,NH3,C2H5OH,H3BO3,CH4。

13.写出下列物质的晶体类型:SO2,SiC,HF,KCl,MgO。

14.晶体有几种类型?确定晶体类型的主要因素是什么?各种类型晶体的性质有何不同?15.根据下列物质的性质,判断它们是属于何种类型的晶体。

(1)CaCO3晶体的硬度高,在1173K时尚未熔融就已分解。

(2)B的硬度极高,熔点为2573K,导电性很差。

(3)SnCl4熔点为240K,沸点为387K16.要使BaF2,F2,Ba,Si晶体熔融,需分别克服何种作用力?二、是非题(对的在括号内填“√”号,错的填“×”号)1.共价键的重叠类型有σ键π键两种。

()2.NH3和BF3都是4原子分子,所以二者空间构型相同。

()3.He2的分子轨道表示式为(σ1s)2(σ1s*)2。

第二章分子结构

第二章分子结构

第⼆章分⼦结构第⼆章分⼦结构教学要求1、认识化学键的本质;2、掌握价键理论的内容;会⽤价键理论解释共价键的特征,会⽤价电⼦对互斥理论和杂化轨道理论解释简单的分⼦结构;3、初步认识分⼦轨道理论;4、认识分⼦间作⽤⼒和氢键的本质,会⽤其解释对物质性质的影响。

教学重点共价键的形成和本质;现代价键理论,价层电⼦对互斥模型和杂化轨道理论,同核双原⼦分⼦的分⼦轨道构成与意义;分⼦间的作⽤⼒和氢键。

教学难点价层电⼦对互斥理论,分⼦轨道理论。

教学时数9学时教学内容2.1 经典的Lewis学说2.2 价键理论2.3杂化轨道理论2.4分⼦轨道理论2.5价层电⼦对互斥理论2.6共价分⼦的性质2.7分⼦间⼒和氢键教学⽅法与媒体讲解,ppt展⽰。

引⾔通过上⼀章的学习,我们知道只有研究物质的微观结构,才能从本质上更深⼊的理解物质的性质及其变化规律。

本章内容是在原⼦结构的基础上,围绕以共价键结合的分⼦讨论有关共价键的各种理论模型以及分⼦的各种性质。

化学键:通常把分⼦或晶体中相邻原⼦之间(或离⼦)强烈的相互作⽤。

化学键有共价键、离⼦键、⾦属键。

分⼦结构通常包括:分⼦中原⼦的化学键,分⼦的空间构型,分⼦的结构与物质的物理性质、化学性质。

2.1 Lewis理论(路易斯1916年)1、电⼦配对理论---共⽤电⼦对成键。

1916年,美国的Lewis提出共价键理论,认为分⼦中的原⼦都有形成稀有⽓体电⼦结构的趋势,求得本⾝的稳定。

⽽达到这种结构,并⾮通过电⼦转移形成离⼦键来完成,分⼦中原⼦之间通过共享电⼦对⽽使每⼀个原⼦都具有稀有⽓体的稳定的电⼦结构,也称为⼋隅律规则。

路易斯结构式:把⽤短棍表⽰共价键,同时⽤⼩⿊点表⽰⾮键合的“孤对电⼦”的结构式叫做路易斯结构式。

2、Lewis学说成绩:⑴解释了⼀些简单的⾮⾦属单质和化合物分⼦的形成过程;⑵指出了共价键与离⼦键的差异。

3、Lewis学说的局限性:⑴未能阐明共价键的本质及特征,为什么都带负电荷的2个电⼦不是互相排斥,⽽配对成键?为什么共价键有⽅向性?⑵⼋偶体规则,例外很多。

分子与分子键:分子结构和化学键的类型

分子与分子键:分子结构和化学键的类型

分子与分子键:分子结构和化学键的类型分子是由两个或多个原子通过化学键连接而成的,它们以一定的方式排列在一起,形成了不同种类的分子结构。

分子结构的形成与分子间的化学键类型有着密切的关系。

本文将从分子结构和化学键的类型两个方面来介绍分子与分子键的关系。

一、分子结构分子结构描述了分子中各个原子的排列方式和相互之间的关系。

根据分子中原子之间的连接方式,可以将分子结构分为线性结构、分支结构和环状结构。

1. 线性结构线性结构的分子由一条直线上的原子构成,原子间通过共价或离子键相连接。

例如,氢气(H2)的分子结构就是线性的,两个氢原子通过共价键连接在一起。

2. 分支结构分支结构的分子由一个或多个支链与主链相连而成。

支链与主链的连接点被称为侧基。

例如,异丙醇(C3H8O)的分子就是分支结构,它由三个碳原子和一个氧原子构成,其中一个碳原子上连接着一个甲基。

3. 环状结构环状结构的分子由一个或多个原子形成一个环状结构。

例如,蔗糖(C12H22O11)的分子就是环状结构,它由12个碳原子、22个氢原子和11个氧原子构成一个环。

二、化学键的类型化学键是用来连接原子的强力化学键。

根据原子间的电荷差异、共享电子对数目和电子云重叠程度,可以将化学键分为共价键、离子键和金属键。

1. 共价键共价键是由两个原子之间共享电子对而形成的。

它主要存在于非金属元素之间,在分子中连接了原子之间的化学键。

共价键可以进一步分为单键、双键和三键,取决于原子间共享的电子对数目。

例如,氨气(NH3)中氮原子与三个氢原子之间通过共价单键连接。

2. 离子键离子键是由正负电荷相互吸引而形成的键。

它主要存在于金属元素和非金属元素之间,形成了离子晶体的结构。

离子键是通过转移电子形成的,阳离子和阴离子之间通过吸引力相互连接。

例如,氯化钠(NaCl)的晶体结构由钠阳离子和氯阴离子通过离子键连接。

3. 金属键金属键是存在于金属元素之间的键。

它的形成是由于金属元素中的自由电子形成了电子海,多个金属原子通过共享这些自由电子而连接在一起。

第二章 分子结构

第二章 分子结构

共享电子对
·● ·

非金属元素通过和其它元素共用一对电 子形成共价键结合在一起。
H + Cl
H Cl 路易斯结构式
Lewis学说的局限性: 1. 无法解释两个带负电荷的电子为什么不互相排斥,
反而相互配对趋于稳定;
2. 无法解释许多共价化合物分子中原子的外层电子数 虽少于8,或多于8仍能稳定存在。
F
B
F
F
平面三角形结构的BF3分子
3.sp3杂化
CH4的空间构 型为正四面体。
C:2s22p2
2p
2s
键角为:109.5°
45
2s
2p 激发 2s 2p
sp3杂化
sp3
CH4形成 时的sp3杂化。
46
四个sp3杂化轨道
47
二、杂化轨道理论
(三)等性与不等性杂化 (1)等性杂化:所有的杂化轨道都是等同的。 (2)不等性杂化:
原子相互接近时,由于原子轨道的重叠,原子 间通过共用自旋方向相反的电子对使体系能量降低, 由此形成共价键。
重叠部分越大,键越牢固,分子越稳定。
成键原理:
① 电子配对原理 ② 原子轨道最大重叠原理
一、价键理论(Valence Bond Theory, VB)
① 电子配对原理:原子上如果有自旋相反的成单
经典的共价键理论(G.N. Lewis, 1916, 美国)
1. 要点:
共价分子中的原子都有形成稀有气体电子结构的 趋势,求得自身的稳定。
原子通过共用电子对形成化学键。——共价键
“-”单键 “=”双键“ ”三键,价键结构式如:NN
Lewis 的贡献,在于提出了一种不同于离子键的 新的键型,解释了电负性比较小的元素之间原子的成键 事实。

有机化学第二章化学键

有机化学第二章化学键

4、分子轨道理论
n个原子轨道经线性组合可以得到n个分子轨 道 。成键电子云离域于整个分子。 1 = 1 + 2 2 = 1 - 2
二、共价键的属性及其断裂行为
1、键长
形成共价键的两个原子核之间的距离。
常见共价键的平均键长:
C—H C—O
0.110nm 0.143nm
C—C C—F
0.154nm 0.142nm
C—N C—Cl
0.147nm 0.178nm
C—Br
0.191nm
C—I
0.213nm
O—H
0.097nm
2、键角
两价以上的原子在与至少两个原子成键时,键与
键之间的夹角称为键角。
H O H
104.5
H C H
H
H
109.5
H C C H
117.3°
H
H
3、键能
形成共价键所释放的能量或断裂共价键所吸
H H C H C H C C
1,3-丁二烯
1
CH2=CH-CH=CH2
2 3 4
H C1~C2 0.134nm(0.133nm) H
C2~C3 0.148nm(0.154nm)
P~ 共轭:
氯乙烯
CH2=CH-Cl
H Cl C H C H
H H C C H C H H
CH2
CH
Cl
CH2
CH
CH2
COOH
CHO H OH CH2OH HO
CHO
HO H CH3
H CH2OH
L-乳酸
D-甘油醛
L-甘油醛
R/ S法:
R/S法是根据手性碳原子上不同的四个原子或基 团的空间排列顺序,以一定的方法给予标记。 Cahn-Ingold-Prelog 次序规则:

化学键与分子结构习题

化学键与分子结构习题

化学键与分⼦结构习题第2章化学键与分⼦结构习题1.选择题2-1.下列关于化学键的描述正确的是……………………………………………………( )(A) 原⼦与原⼦之间的相互作⽤; (B) 分⼦之间的⼀种相互作⽤;(C) 相邻原⼦之间的强烈相互作⽤; (D) 相邻分⼦之间的强烈相互作⽤; 2-2.下列各组卤化物中,化学键的离⼦性依次增强的是………………………… ( )(A) KI ,KBr ,KCl ,KF (B) NaF ,NaCl ,NaBr ,NaI(C) RbBr ,RbI ,RbF ,KCl (D) KCl ,NaF ,C s I ,RbBr2-3.下列各组分⼦或离⼦中,中⼼原⼦都采⽤sp 3杂化轨道成键且构型⼜都为⾓形的是………………………………………………………………………………………… ( )(A) OF 2、ClO 2﹣、NH 2﹣ (B) NCl 3、PO 43﹣ (C) SO 2、NO 3﹣ (D) BeCl 2、CO 2 2-4.下列分⼦或离⼦中,键⾓最⼩的是…………………………………………………( )(A) HgCl 2 (B) H 2O (C) NH 3 (D) CH 42-5.下列化学键中,极性最弱的是………………………………………………………()(A) H —F (B)H —O (C) O —F (D) C —F2-6.下列氟化物分⼦中,分⼦的偶极矩不为0的是…………………………………()(A) PF 5 (B) BF 3 (C) IF 5 (D) XeF 42-7.下列分⼦或离⼦中,键⾓最⼤的是…………………………………………………()(A) XeF 2 (B) NCl 3 (C)-23CO (D)4PCl2-8.下列各体系中,溶质和溶剂分⼦之间,三种范德华⼒和氢键都存在的是…()(A) I 2的CCl 4溶液(B) I 2的酒精溶液 (C) 酒精的⽔溶液 (D) CH 3Cl 的CCl 4溶液2-9.下列分⼦中,磁矩不为0的是………………………………………………………()(A) PF 5 (B) ClF 3 (C) ClO 2 (D) XeF 42-10.为确定分⼦式为XY 2的共价分⼦是直线形还是⾓形的,最好要测定它的()(A)与另⼀个化合物的反应性能(B) 偶极矩 (C) 键能 (D) 离⼦性百分数2-11.下列分⼦中C 与O 之间键长最短的是……………………………………………()(A) CO (B) CO 2 (C) CH 3OH (D) CH 3COOH2-12.下列各组原⼦轨道中不能重叠成键的是……………………………………()(A) p x–p x (B) p x–p y(C) s–p x(D) s–p z2-13.下列说法中正确的是……………………………………………………………()(A) BCl3分⼦和B—Cl键都是⾮极性的(B) BCl3分⼦和B—Cl键都是极性的(C) BCl3分⼦是极性分⼦,⽽B—Cl键是⾮极性键(D) BCl3分⼦是⾮极性分⼦,⽽B—Cl键是极性键2-14.下列分⼦或离⼦中键级由⼤到⼩的是……………………………………( )(A) O2>N2>F2>O2+ (B) O2>O2+>F2>N2(C) O2>N2>O2+>F2 (D) N2>O2+>O2>F22-15.下列关于分⼦间⼒的说法正确的是……………………………………… ( )(A)分⼦量⼤的分⼦型物质的沸点⼀定⾼;(B)⼤多数含氢化合物中都存在氢键;(C)极性分⼦间仅存在取向⼒;(D)⾊散⼒存在于所有相邻分⼦间。

高三化学第2章 分子结构 现代价键理论 杂化轨道理论 分子轨道理论

高三化学第2章 分子结构 现代价键理论 杂化轨道理论 分子轨道理论

第2章分子结构[教学要求]1.掌握离子键和共价键的基本特征和它们的区别。

2.掌握价键理论,杂化轨道理论。

3.掌握分子轨道理论的基本内容。

4.了解分子间作用力及氢键的性质和特点。

[教学重点] 1.VSEPR 2.VB法3.MO法[教学难点] MO法[教学时数] 6学时[主要内容]1.共价键:价键理论-电子配对法(本质,要点,饱和性,方向性,类型σ键、π键)。

2.VSEPR:价电子互斥理论的提出,价电子互斥理论的基本要点以及用价电子互斥理论分析各类分子和原子团的空间构型。

3.杂化轨道理论:杂化轨道理论的提出,杂化轨道理论的基本要点,杂化轨道的类型-sp、spd 等各种类型及举例。

4.分子轨道理论:分子轨道理论的基本要点,分子轨道的能级图,实例-同核:H2、He、O2、F2、N2;异核:NO、HF。

5.共价键的属性:键长,键角,键能,键级。

6.分子间的作用力和氢键。

[教学内容]上一章主要研究的是原子的结构与性质,本章进一步讨论原子同原子之间和分子之间靠什么力结合在一起?分子有什么性质?具体的讲2-1 路易斯结构式一、弗兰克兰结构式到19世纪时,化学家们已经知道了许多分子的成分,如氯化氢HCl、水H2O、二氧化碳CO2、氨NH3等,并用短棍线“—”的形式来描述分子中原子之间的相互结合“1价”,还总结出一些规律。

其中英国化学家弗兰克兰和瑞典化学家贝采尼乌斯贡献较大。

这些表达方式,在我们中学化学课本中还在沿用。

二、路易斯结构式1916年美国的著名化学家(加里福尼亚大学教授)路易斯利用原子结构知识对弗兰克兰结构式的短棍线“—”进行了解释,即“—”代表一对共用电子对,= 代表两对共用电子对,≡代表三对共用电子对,并进一步提出了键合电子和孤对电子的概念以及分子结构稳定性的“八隅律”—原子倾向于通过共用电子对使它们的最外层达到稀有气体的8电子稳定构型。

1923年路易斯进一步将化合物分子中两个原子在一起的共享电子对称为共价键,从而建立了路易斯共价键理论。

第2章 化学键与分子结构(2)

第2章 化学键与分子结构(2)

④中心原子周围在最小角度的位置上斥力大的电子对数目
越少其结构越稳定
因此,若分子中同时有几种键角,则只须考察键角最小的 情况,如构型为三角双锥的分子中有90°和120°两种键角,只 须考察90°时的斥力即可。
Divide by 2 to give electron pairs 3
3 electron pairs: trigonal geometry for the three shape-determining electron pairs
分子构型:平面三角
[PF6]hexafluorophosphate, [PF6]Lewis structure: Central atom phosphorus Valence electrons on central atom 5 6 F each contribute 1 electron: 6 Add one for the negative charge on P 1 Total 12 Divide by 2 to give electron pairs 6
三、价层电子对互斥理论
(Valence Shell Electron Pair Repulsion ,VSEPR)
1940 年N V Sidgwick和Powell提出价层电子对互斥理论,
用以判断分子的几何构型,Gillespie作出了重要的发展。
1 理论要点 ABn 型分子的几何构型取决于中心A的价层中电子对的
1°中心价层电子的总数和对数 a ) 中心原子价层电子总数等于中心A 的价电子数 (s + p) 加上配体 B 在成键过程中提供的电子数 。 如 CCl 4 4+14 = 8
价电子对(VP)包括成键电子对(BP)和孤电子对(LP)

第二章共价键理论和分子结构讲解

第二章共价键理论和分子结构讲解

第二章 化学键与分子结构一、单项选择题(每小题1分)1. σ型分子轨道的特点是( )① 能量最低 ② 其分布关于键轴呈圆柱形对称③ 无节面 ④ 由s 原子轨道组成2. F 2+,F 2,F 2- 的键级顺序为( )① F 2+ > F 2 > F 2- ② F 2+ < F 2 < F 2-③ F 2 > F 2- > F 2+ ④ F 2 < F 2- < F 2+3. 呋喃的分子图为0.36,关于它的反应活性,下列说法正确的是( )① 自由基易在3位发生反应② 亲核基团易在1位发生反应③ 亲核基团易在3位发生反应④ 亲电试剂易在3位发生反应4. 以下哪个分子的π电子离域能最大( )① 环丙稀自由基 ② 环丁二烯③ 环戊二烯负离子 ④ 苯分子5. 属于下列点群的分子哪个为非极性分子( )① D 6h ② C s③ C 3v ④ C ∞v6. 分子轨道的含义是( )① 分子空间运动的轨迹② 描述分子电子运动的轨迹③ 描述分子空间轨道运动的状态函数④ 描述分子中单个电子空间运动的状态函数7. π型分子轨道的特点是( )① 分布关于键轴呈圆柱形对称② 有一个含键轴的节面③ 无节面④ 由p 原子轨道组成8. F 2+,F 2,F 2- 的键长顺序为( )① F 2+ > F 2 > F 2- ② F 2+ < F 2 < F 2-③ F 2 > F 2- > F 2+ ④ F 2 < F 2- < F 2+9.CO 分子的一个成键轨道O C c c φφψ21+=,且|c 1|>|c 2|,此分子轨道中电子将有较大的几率出现在( )① C 核附近 ② O 核附近③ CO 两核连线中点 ④ CO 两核之间10.属于下列分子点群的分子哪个偶极矩不为零( )① T d ② D n ③ D 4h ④ C ∞v11.杂化轨道是由( )① 同一原子的原子轨道线性组合得到的② 两个原子中原子轨道的线性组合而得到的③ 同一分子中分子轨道间的线性组合而得到的④ 同一分子中各个原子的原子轨道的线性组合而得到的12.由分子轨道法比较O 2+,O 2,O 2-的键长顺序为( )① O 2+>O 2>O 2- ② O 2+<O 2<O 2-③ O 2>O 2->O 2+ ④ O 2<O 2-<O 2+13.下列哪个化合物不含有正常离域大π键( )① 己三烯 ② NO 2 ③ CO 2 ④ 萘14.属于下列点群的分子哪个偶极矩不为零( )① C nh ② O h ③ D nh ④ C ∞v15.比较O 2+,O 2,O 2-的键级顺序为( )①O 2+>O 2>O 2- ② O 2+<O 2<O 2-③ O 2>O 2->O 2+ ④ O 2<O 2-<O 2+16.NO 分子的一个成键轨道O N c c φφψ21+=,且|c 1|>|c 2|,此分子轨道中电子将有较大的几率出现在( )① N 核附近 ② O 核附近③ NO 两核连线中点 ④ NO 两核之间17.下列分子哪个旋光性不为零( )① CO 2 ② CH 4 ③ HCl ④ H 2O 218.以下哪个分子的π电子离域能最大( )①丙烯基 ② 丁二烯 ③苯分子 ④ 萘分子19.通过变分法计算得到的微观体系的能量总是( )①等于真实体系基态能量②大于真实体系基态能量③不小于真实体系基态能量④小于真实体系基态能量20. Cr 与CO 形成羰基配合物Cr(CO)6,其分子点群为( )① T d ②O h ③ D nh ④ C ∞v21.以下哪个分子的π电子离域能最大( )① 乙烯 ②苯分子③ 环戊二烯负离子 ④ 己三烯22.下列氯化物中,氯的活泼性最差的是( )① C 6H 5Cl ② CH 2=CHCl③ C 2H 5Cl ④ C 6H 5CH 2Cl23.下列氯化物中,氯的活泼性最强的是( )① C 6H 5Cl ②C 2H 5Cl③ CH 2=CHCl ④ C 6H 5CH 2Cl24.下列分子或离子中不是sp 3杂化的是( )① H 2S ②BCl 3 ③NH +4 ④ CH 425.下列分子或离子中哪个偶极矩不为零( )① BF 3 ②HCl ③NH +4 ④ CH 426. 下列分子(或离子)哪个是顺磁性的( )① F 2 ② B 2 ③CO ④ N 227.O 2的最高占据轨道(HOMO )是( )①3g σ ②1u π ③1g π ④ 3u σ28. N 2的最低空轨道(LUMO )是( )①3g σ ②1u π ③1g π ④ 3u σ29. 下列分子中,不适合用HMO 理论处理的是( )①丁烯 ② 丁二烯 ③苯分子 ④ 萘分子30. 以z 轴为键轴,按对称性匹配原则,下列各对原子轨道能组成分子轨道的是( )①s,dxy ② p x, dz 2 ③p y , dz 2 ④ p z , dz 231.按MO 理论处理,下列键级顺序哪个正确( )① F 2+>F 2>F 2- ②F 2+<F 2<F 2-③ O 2+<O 2<O 2- ④N 2+<N 2<N 2-32.下列分子中,不属于C nv 点群的是( )① H 2S ②H 2O 2 ③NH 3 ④ CH 2Cl 233.下列说法正确的是( )① 凡是八面体配合物一定是O h 点群② 凡是四面体配合物一定是T d 点群③ H 2O 2属于C 2v 点群④ 异核双原子分子一定没有对称中心34. 2,4,6-三硝基苯酚是平面分子,存在离域π键,它是( )①1814∏ ② 1816∏ ③1616∏ ④ 2016∏35. 属于下列点群的分子哪个偶极矩不为零( )①Cs ②D 3d ③C 2h ④D 2h36.含奇数个电子的分子或自由基在磁性上( )① 一定是反磁性 ② 一定是顺磁性③ 可为顺磁性或反磁性 ④不确定37. 下列分子的键长次序正确的是( )① OF -> OF > OF + ② OF > OF -> OF +③ OF +> OF > OF - ④ OF - > OF +> OF38. 若以x 轴为键轴,下列何种轨道能与p y 轨道最大重叠( ) ① s ② d xy ③ p z ④ d xz39. 下面说法正确的是( )① 如构成分子的各类原子均是成双出现的,则此分子必有对称中心② 分子中若有C 4,又有i ,则必有σ③ 凡是平面型分子必然属于C s 群④ 在任何情况下,2ˆn S =E ˆ40. 下列分子中:(1)对-二氟苯 (2)邻-二氟苯 (3)间-二氟苯,哪些有相同的点群( ) ① 1,2 ② 1,3 ③ 2,3 ④ 1,2,341. Cr 与 CO 形成羰基化合物 Cr(CO)6,其分子点群为( )①D 4h ②T d ③ D 6h ④ O h42. 下列各组分子中,哪些有极性但无旋光性( )(1)I 3- (2)O 3 (3)N 3-① 1,2 ② 1,3 ③ 2,3 ④ 243.下列分子(或离子)中,哪些是反磁性的( )① O 2+ ② O 2- ③ CO ④ O 244. 下列说法中,不是LCAO-MO 三个原则的是:①能量相近 ②能量最低③对称性匹配 ④最大重叠45. H 2+的R r r H b a 11121ˆ2+--∇-=时,已采用的下列处理手段是( ) ①单电子近似 ②变量分离③定核近似 ④中心力场近似46. 若以x 轴为键轴,下列何种轨道能与p x 轨道最大重叠( ) ① s ② d xy ③ p z ④ d xz47. NiCl 4为正四面体结构,其分子点群为( )①D 4h ②T d ③ D 6h ④ O h48. 下列分子中,哪些含正常离域大π键( )① CO 2 ② NO 3- ③ BF 3 ④ 苯49. 用紫外光照射某双原子分子, 使该分子电离出一个电子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章化学键与分子结构习题一、思考题1.什么叫共价键的饱和性和方向性?为什么共价键具有饱和性和方向性,而离子键无饱和性和方向性?2.举例说明什么是σ键,什么是π键?它们有哪些不同?3.价键理论和分子轨道理论的基本要点是什么?4.s、p原子轨道主要形成哪几种类型的杂化轨道?中心原子利用上述杂化轨道成键时,其分子构型如何?5.实验测定BF3为平面三角形,而[BF4]-为正四面体形。

试用杂化轨道的概念说明在BF3和[BF4]-中硼的杂化轨道类型有何不同?6.试用分子轨道表示式写出O2+的电子构型。

7.分子间力有几种?各种力产生的原因是什么?试举例说明极性分子之间、极性分子和非极性分子之间以及非极性分子之间的分子间力。

在大多数分子中以哪一种分子间力为主?8.何为极性分子和非极性分子?分子的极性与化学键的极性有何联系?9.分子间力的大小对物质的物理性质有何影响?10.什么叫做氢键?哪些分子间易形成氢键?形成氢键对物质的性质有哪些影响?11.氢键与化学键有何区别?与一般分子间力有何区别?12.下列各化合物中分子间有氢键的有哪几种?C2H6,NH3,C2H5OH,H3BO3,CH4。

13.写出下列物质的晶体类型:SO2,SiC,HF,KCl,MgO。

14.晶体有几种类型?确定晶体类型的主要因素是什么?各种类型晶体的性质有何不同?15.根据下列物质的性质,判断它们是属于何种类型的晶体。

(1)CaCO3晶体的硬度高,在1173K时尚未熔融就已分解。

(2)B的硬度极高,熔点为2573K,导电性很差。

(3)SnCl4熔点为240K,沸点为387K16.要使BaF2,F2,Ba,Si晶体熔融,需分别克服何种作用力?二、是非题(对的在括号内填“√”号,错的填“×”号)1.共价键的重叠类型有σ键π键两种。

()2.NH3和BF3都是4原子分子,所以二者空间构型相同。

()3.He2的分子轨道表示式为(σ1s)2(σ1s*)2。

()4.色散力只存在于非极性分子之间,取向力只存在于极性分子之间。

()5.色散力是主要的分子间力。

()6.μ= 0的分子中的化学键一定是非极性键。

()7.分子中的化学键为极性键,则分子为极性分子。

()8.非极性分子内的化学键一定是非极性键。

()9.van der Waals 力属于一种较弱的化学键。

()10.一般晶格能越大的离子晶体,熔点越高,硬度也越大。

()11.凡有规则外形者都必定是晶体。

()12.同一周期主族和副族元素的单质的晶体类型从左至右由金属晶体到原子晶体,再到分子晶体呈规律性过渡。

()参考答案: 1.√ 2.× 3.√ 4.× 5.√ 6.×7.×8.×9.×10.√11.×12.√三、选择题(在正确的答案下打“√”)1.下列关于共价键说法错误的是_______。

A.两个原子间键长越短,键越牢固B.两个原子半径之和约等于所形成的共价键键长C.两个原子间键长越长,键越牢固D.键的强度与键长无关2.下列关于杂化轨道说法错误的是_______。

A.所有原子轨道都参与杂化B.同一原子中能量相近的原子轨道参与杂化C.杂化轨道能量集中,有利于牢固成键D.杂化轨道中一定有一个电子3.下列分子中既有σ键又有π键的是A. N2B. MgCl2C. CO2D. Cu4.s轨道和p轨道杂化的类型有A. sp,sp2杂化B. sp,sp2,sp3杂化C. sp,sp3杂化D. sp,sp2,sp3杂化和sp3不等性杂化5.下列分子构型中以sp3杂化轨道成键的是_____。

A. 直线形B. 平面三角形C. 八面体形D. 四面体形6.凡是中心原子采用sp3d2杂化轨道成键的分子,其空间构型可能是______A. 八面体B. 平面正方形C. 四方锥D. 以上3种均有可能7.下列关于O22-和O2-的性质的说法中,不正确的是_____。

A. 两种离子都比O2分子稳定性小。

B. O22-的键长比O2-的键长短。

C. O22-是反磁性的,而O2-是顺磁性的。

D. O2-的键能比O22-的键能大。

8.下列分子中键级等于零的是______。

A. O2B. Be2C. Ne2D. Cl29.下列分子中具有顺磁性的是_______。

A. B2B. N2C. O2D. F210.根据分子轨道理论解释He2分子不存在,是因为He2分子的电子排布式为______。

A.(σ1s)2(σ1s*)2B.(σ1s)2(σ2s)2C.(σ1s)2(σ1s)1(σ2s)1D.(σ1s)2(σ2p)211.下列物质中,既有共价键又有离子键的是_______。

A. KClB. COC. Na2SO4D. NH4+12.在下列离子晶体中,晶格能最大的是______A. NaClB. KClC. RbClD. CsCl13.下列说法中正确的是______。

A. BCl3分子中B—Cl键是非极性的。

B. BCl3分子中B—Cl键不都是极性的。

C. BCl3分子是极性分子,而B—Cl键是非极性的。

D. BCl3分子是非极性分子,而B—Cl键是极性的。

14.下列各分子中,是极性分子的为A. BeCl2B. BF3C. NF3D. C6H615.H2O的沸点是100℃,H2Se的沸点是-42℃,这可用下列哪种理论来解释A. 范德华力B. 共价键C. 离子键D. 氢键16.下列分子中不能形成氢键的是______。

A. NH3B. N2H4C. C2H5OHD. HCHO17.下列化合物中哪一个氢键表现得最强?______A. NH3B. H2OC. HClD. HF18.下列说法中正确的是A. 相同原子间双键键能是单键键能的两倍B. 原子形成共价键的数目,等于基态原子未成对电子数C. 分子轨道是由同一原子中能量近似,对称性匹配的原子轨道线性组合而成D.O22-是反磁性的,而O2-是顺磁性的19.下列各物质中只需克服色散力就能使之气化的是A. HClB. CC. N2D. MgCO320.下列属于分子晶体的是_____。

A. KClB. FeC.H2O(s) D. CO2(s)21.下列晶体中,熔化时只需克服色散力的是_____。

A. KB. SiF4C. H2OD. SiC22.石英和金刚石的相似之处在于。

A. 都具有四面体结构B. 都是以共价键结合的原子晶体C. 都具有非极性共价键D. 其硬度和熔点相近23.下列晶体中硬度较高,导电性好的是______。

A. SiO2,CaOB. SiC,NaClC. Cu,AgD. Cu,石墨24.下列物质熔点由低至高的排列顺序为______。

A. CCl4<CO2<SiC<CsClB. CO2<CCl4<SiC<CsClC. CO2<CCl4<CsCl<SiCD. CCl4<CO2<CsCl<SiC参考答案:1.C,D 2.A,D 3.A,C 4.D 5.D 6.D 7.B 8.B,C 9.A,C 10.A11.C 12.A 13.D 14.C 15.D 16.D 17.D 18.D 19.C 20.C,D21.B 22.B 23.C 24.C四、填空题1.共价键的特点是,具有性和性。

2.根据杂化轨道理论,BF3分子的空间构型为,电偶极矩零,NF3分子的空间构型为。

3.采用等性sp3杂化轨道成键的分子,其几何构型为;采用不等性sp3杂化轨道成键的分子,其几何构型为和。

4.SiCl4分子具有四面体构型,这是因为Si原子以杂化轨道与四个Cl原子分别成键,杂化轨道的夹角为。

5.COCl2(∠ClCCl=120°,∠OCCl=120°)中心原子的杂化轨道类型是,该分子中σ键有个,π键有个。

PCl3(∠ClPCl=101°)中心原子的杂化轨道是,该分子中σ键有个。

6.CO2和CS2分子均为直线形分子,这是因为。

7.填充下表:化学式杂化轨道类型杂化轨道数目键角空间构型PCl3 102°BCl3 120°[PdCl4]2-平面四方形[Cd(CN)4]2-四面体形8.根据分子轨道理论写出N2分子电子排布式为。

9.根据分子轨道理论写出O2分子电子排布式为,其中有个三电子π键。

10.Li2分子按分子轨道理论表示的电子构型为,说明(答“有”或“无”)Li2分子存在。

11.分子间普遍存在、且起主要作用的分子间力是,它随相对分子质量的增大而。

12.极性分子是指,而为非极性分子。

13.分子之间存在着键,致使H2O的沸点远于H2S、H2Se等。

H2O中存在着的分子间力有、和,以为主,这是因为H2O有。

14.在ⅥA族的氢化物中,具有相对最高的。

这种反常行为是由于在态的分子之间存在着。

15.在C2H6,NH3,CH4等分别单独存在的物质中,分子间有氢键的是。

16.汽油的主要成分之一辛烷(C8H18)的结构是对称的,因此它是(答“极性”或非“极性”)_________分子。

汽油和水不相溶的原因是__________________________________________。

17.KCl、SiC、HI、BaO晶体中,熔点从大到小排列顺序。

18.已知某元素的原子的电子构型为1s22s22p63s23p63d104s24p1。

①元素的原子序数为;②属第周期,第族;③元素的价电子构型为;单质晶体类型是。

19.填充下表:化合物晶体中质点间作用力晶体类型熔点高低KClSiCHIH4OMgO参考答案:1.饱和性和方向性2.平面三角形,等于,三角锥形3.正四面体,三角锥形,V形4.s p3σ109°28′5.sp2,3,1,sp3,36.C原子均以sp杂化轨道分别与两个O原子和两个S原子成键7.化学式杂化轨道类型杂化轨道数目键角空间构型PCl3 sp3不等性杂化4个三角锥形BCl3 sp2杂化3个平面三角形[PdCl4]2-dsp2杂化4个90°[Cd(CN)4]2-sp3杂化4个109°28′8.(σ1s)2(σ1s*)2(σ2s)2(σ2s*)2(π2py )2(π2pz)2(σ2px)29.(σ1s)2(σ1s*)2(σ2s)2(σ2s*)2(σ2px )2(π2py)2(π2pz)2(π2py*)1(π2p z*)1 210.(σ1s)2(σ1s*)2(σ2s)2有11.色散力增大12.分子内正、负电荷中心不重合正负电荷中心重合的13.氢,大,色散力,诱导力,取向力,取向力,较大的电偶极矩14.H2O,沸点,液,氢键15.NH316.非极性汽油的非极性分子与水分子的强极性之间的极性差异大17.SiC、BaO、KCl、HI18.31 4,ⅢA 3d104s24p1金属晶体19.化合物晶体中质点间作用力晶体类型熔点高低KCl离子键离子晶体较高SiC共价键原子晶体高HI 分子间作用力分子晶体低H4O 分子间作用力,氢键分子晶体低MgO 离子键离子晶体较高五、简答题1.试用杂化轨道理论解释:(1)H2S的分子的键角为92°,而PCl3分子的键角为102°。

相关文档
最新文档