二次根式和分式有意义的条件
整式、分式、二次根式的性质和概念
1、整式的概念和指数: 与 统称为整式。
单项式包括: 、 、 ;一个单项式中所有字母的 叫做这个单项式的次数。
多项式:几个单项式的代数和多项式。
单项式中次数最 的项就是这个多项式的次数。
2、分式的概念和意义:一般地,形如式子BA ,且B ≠0叫做分式。
(1)、分式有意义的条件:(2)、分式无意义的条件:(3)、分式为0的条件:(4)、分式的基本性质:分式的分子与分母同时 (一个不等于0)的整式,分式的值不变。
(5)、约分:(6)、最简分式:一个分式的分子与分母没有公因式时,这种分式叫做最简分式。
(7)、通分:(8)、最简公分母:(9)、分母有理化:把分母中的根号化去,叫做分母有理化。
注意:分母有理化时,分子与分母需要同时乘分母的有理化因式。
3、二次根式的概念和意义:(1)、定义:形如a (a ≥0)的式子,叫做二次根式。
(2)、二次根式有意义的条件:二次根式无意义的条件:(3)、二次根式的性质:()a 2=a(a ≥0);a 2=a =⎪⎩⎪⎨⎧<-=>)0()0(0)0(a a a a a ab =a b ⋅ (a ≥0, b ≥0);④b a =ba ( a ≥0,b >0)。
(4)、最简二次根式: 中不含二次根式; 被开方数中不含能开得尽的因数或因式。
(5)、 同类二次根式:最简二次根式后,被开方数相同,叫做同类二次根式。
知识点二:代数式的运算(一)、整式的加减运算(1)、同类项:(2)、合并同类项法则:(3)、去括号法则:(4)、整式的加减的实质就是合并同类项。
(二)、整式的乘除(1)、同底数幂的乘法:a m ·a n= ,底数不变,指数相加.(2)、幂的乘方与积的乘方:(a m )n = ,底数不变,指数相乘;(3)、(ab)n = ,积的乘方等于各因式乘方的积.(4)、单项式的乘法:系数相乘,相同字母 ,只在一个因式中含有的字母,连同指数写在积里.(5)、单项式与多项式的乘法:m(a+b+c)= ,用单项式去乘多项式的每一项,再把所得的积相加.(6)、多项式的乘法:(a+b)·(c+d)= ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.(7)、乘法公式:平方差公式:(a+b)(a-b)= ,两个数的和与这两个数的差的积等于这两个数的平方差;完全平方公式:①(a+b)2= ,等于它们的,加上它们的积的2倍;② (a-b)2= ,等于它们的,减去它们的积的2倍;十字相乘法:x2+(m+n)x+mn=()()(8)、同底数幂的除法:a m÷a n= ,底数不变,指数相减.(9)、零指数与负指数公式:a0= (a≠0); a-n= ,(a≠0).注意:00,0-2无意义;(10).单项式除以单项式: (11).多项式除以单项式:★整式混合运算:先,后,最后,有括号先算括号内.★整式的化简:合并到不能再合并;首项不能为负数;★整式的因式分解(1)提共因式法:(2)公式法:(3)十字相乘法:(4)分组法,在循环运用“提十公分”法;(三)、分式的运算(1)、分式的加减法:①、同分母的分式相加减,分母,把分子相。
数学中的二次根式与分式方程
数学中的二次根式与分式方程二次根式是数学中的一种重要概念,与之相关的分式方程也是数学中一个常见且有挑战性的问题。
本文将介绍二次根式的定义、性质以及与分式方程的关系,并通过例题进行具体说明。
一、二次根式的定义与性质1. 定义:二次根式是形如√a 的数,其中 a 为非负实数。
其中,√a 可以理解为满足b^2 = a 的非负实数b。
在二次根式中,a 称为根式的被开方数,b 称为根式的值。
2. 性质:(1)二次根式的值是不唯一的,因为一个数的平方可能有两个相反的值。
(2)二次根式的乘法:√a * √b = √(a * b)。
即根式的乘积等于被开方数的乘积的二次根式。
(3)二次根式的除法:√a / √b = √(a / b)。
即根式的商等于被开方数的除法的二次根式。
二、分式方程的概念与解法1. 概念:分式方程是一个含有分式的方程,其中方程中至少有一个变量(未知数)存在于分式中。
2. 解法:解决分式方程的关键是将方程中的分式转化为整式,从而得到更简化的等式。
下面将介绍三种常见的解法。
(1)通分法:将方程中的所有分式的分母找出最小公倍数,并使每个分式的分母都等于最小公倍数,然后将方程两边同乘以最小公倍数,消去分母。
(2)消去法:通过观察可以将分式方程进行简化,将分子或分母中某些数值相同的项通过消去的方式,从而得到一个更简单的等式,进而求解。
(3)代换法:对于某些特定的分式方程,可以通过适当的代换使得方程更加简洁,然后利用已知的数学性质求解。
三、例题分析1. 题目:求解方程 3 / (x+2) + 2 / (x-1) = 1解法:采用通分法解此方程。
首先,找到最小公倍数为 (x+2)*(x-1),然后将方程两边同时乘以(x+2)*(x-1),得到 3*(x-1) + 2*(x+2) = (x+2)*(x-1)。
经过展开和整理后,得到 7x - 7 = x^2 + x - 2。
进一步整理后变为 x^2 - 6x + 5 = 0。
2020初高衔接数学—有意义的根式和分式及相关计算
衔接点03 有意义的根式和分式及相关计算【基础内容与方法】1.分式有意义的条件对于分式,分母不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义。
即若0B≠,式子AB有意义;若0B=,则式子AB无意义;若A=0且0B≠,则0AB=,即分式的值为0的条件.2.对于根式,我们主要是指二次根式,一般地,”称为二次根号,是一个非负数,且0a≥.考点一:二次根式的概念例1:在式子,(x>0),,(y=﹣2),(x>0),,,x+y中,二次根式有()A.2个B.3个C.4个D.5个【分析】根据二次根式的定义作答.【解答】解:(x>0),,符合二次根式的定义.(y=﹣2),(x>0)无意义,不是二次根式.属于三次根式.x+y不是根式.故选:B.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).考点练习:1.在式子①②③x2④⑤(x≤1)中,二次根式有3个.【分析】根据二次根式的定义填空即可.【解答】解:因为形如(a≥0)叫二次根式,所以①②⑤都符合要求,而③二次根号,④中的被开方数小于0,即二次根式有3个,故答案为3.【点评】本题考查了二次根式的定义,比较简单.考点二:二次根式有意义的条件例2:(1)当x满足x>0时,代数式有意义;【分析】根据二次根式有意义:被开方数为非负数,分式有意义的条件:分母不等于零可得x>0.【解答】解:由题意得:x>0,故答案为:x>0.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.(2)要使式子有意义,则x的取值范围是x≥﹣2,且x≠﹣1.【分析】首先保证被开方数x+2≥0,再保证分母x+1≠0,解出不等式即可.【解答】解:∵式子有意义,∴x+2≥0,且x+1≠0,解得:x≥﹣2,且x≠﹣1.故答案为:x≥﹣2,且x≠﹣1.【点评】此题主要考查了分式,二次根式有意义的条件,关键是把握:①二次根式中的被开方数是非负数;②分母≠0.考点练习:1.二次根式有意义,则x应满足的条件是()A.B.C.D.【分析】根据二次根式中的被开方数必须是非负数,即可列出不等式求解.【解答】解:根据题意得:1﹣2x≥0,解得:x≤.故选:B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.若二次根式有意义,则m的取值范围是()A.m≥﹣2 B.m>﹣2 C.m≥﹣2且m≠﹣1 D.m≤﹣2且m≠1【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出m的范围.【解答】解:由题意得,m+2≥0且m+1≠0,解得m≥﹣2且m≠﹣1.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.代数式有意义,则x的取值范围是x.【分析】根据二次根式有意义的条件以及分式有意义的条件即可求出答案.【解答】解:由题意可知:∴x≤且x≠2,∴x的取值范围为:x≤故答案为:x【点评】本题考查二次根式的有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.考点三:与二次根式有关的计算类型(一)1.已知a=3+2,b=3﹣2,求a2b﹣ab2的值.【分析】先计算出a﹣b和ab的值,再分解因式得到∴a2b﹣ab2=ab(a﹣b),然后利用整体代入的方法计算;【解答】解:∵a=3+2,b=3﹣2,∴a﹣b=4,ab=9﹣8=1,∴a2b﹣ab2=ab(a﹣b)=1×4=4;【点评】本题考查了整体代入的思想.2.已知a=+2,b=2﹣,则a2020b2019的值为()A.﹣﹣2 B.﹣+2 C.1 D.﹣1【分析】由积的乘方与同底数幂的乘法,可得a2016b2015=(ab)2015•a,然后由平方差公式求解即可求得答案.【解答】解:∵a=+2,b=2﹣,∴a2020b2019=(ab)2019•a=[(+2)(2﹣)]2019•(+2)=﹣(+2)=﹣﹣2.故选:A.【点评】此题考查了二次根式的乘法以及积的乘方与同底数幂的乘法.注意掌握积的乘方与同底数幂的乘法公式的逆用.类型(二)阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简:方法一:===方法二:====(1)请用两种不同的方法化简:;(2)化简:.【分析】(1)利用分母有理化和平方差公式计算;(2)先分母有理化,然后合并即可.【解答】解:(1)方法一:原式==﹣;方法二:原式==﹣;(2)原式=(﹣+﹣+…+﹣)=(﹣)=﹣.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.类型(三)先阅读然后解答问题:化简解:原式=根据上面所得到的启迪,完成下面的问题:(1)化简:(2)化简:.【分析】(1)把4写成2,把9写成4+5,根据完全平方公式配方即可求解;(2)把算式平方然后再求算术平方根即可得解.【解答】解:(1),=,=,=﹣2;(2)∵()2,=4++2+4﹣,=8+2,=10,∴=.【点评】本题考查了二次根式的化简,读懂并理解题目信息,根据完全平方公式把被开方数整理成完全平方的形式是解题的关键,难度较大.考点四:分式的意义例3:若分式的值为0,则x的取值为()A.x≠1B.x≠﹣1 C.x=1 D.x=﹣1【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故选:C.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.考点练习:1.若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.4【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:由x2﹣4=0,得x=±2.当x=2时,x2﹣x﹣2=22﹣2﹣2=0,故x=2不合题意;当x=﹣2时,x2﹣x﹣2=(﹣2)2﹣(﹣2)﹣2=4≠0.所以x=﹣2时分式的值为0.故选:C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.2.分式与都有意义的条件是()A.x B.x≠﹣1 C.x且x≠﹣1 D.以上都不对【分析】根据分式的分母不能为零分式有意义,可得答案.【解答】解:由分式与都有意义,得2x﹣3≠0且x+1≠0,解得x≠,x≠1,故选:C.【点评】本题考查了分式有意义的条件,分式的分母不等于零是分式有意义的条件.3.当x=9时,分式的值等于零.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵|x|﹣9=0,∴x=±9,当x=9时,x+9≠0,当x=﹣9时,x+9=0,∴当x=9时分式的值是0.故答案为9.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.考点五:分式的计算例4:先化简,再求值:,其中x=1+,y=1﹣.【分析】(2)先根据分式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.【解答】解:(2)原式=•=,当x=1+,y=1﹣时,原式===.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解分式方程的步骤.考点练习:1.已知a+=1+,求a2+的值.【分析】根据题目中的式子,两边平方整理化简即可求得所求式子的值.【解答】解:∵a+=1+,∴∴∴a2+=9+2.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.。
二次根式章节分类总复习 八年级数学下学期重难点及章节分类精品讲义
第02讲 《二次根式》章节分类总复习考点一 二次根式有意义的条件 知识点睛:1. 二次根式的定义:非负数a 的算术平方根a 叫做二次根式 ☆:二次根式的判断不需要化简,直接根据定义判断即可, 易错类型:因为24=,误认为4不是二次根式2. 二次根式有意义的条件a 中a 叫做被开方数,其中二次根式有意义的条件就是a ≥0;☆1:当二次根式和分式结合时,要注意分式的分母≠0 ☆2:a 的双重非负性⎩⎨⎧≥≥0.0.本身②被开方数①a a ;故有:a 前无“-”,a 本身值不可能是负的 类题训练1.下列式子,哪些是二次根式,哪些不是二次根式:,,,(x >0),,,﹣,,(x ≥0,y ≥0).【分析】一般地,我们把形如 (a ≥0)的式子叫做二次根式.结合所给式子即可作出判断. 【解答】解:符合二次根式的定义;是三次根式;是分式,不是二次根式; (x >0)符合二次根式的定义; 是二次根式; 是四次根式; ﹣符合二次根式的定义; 是分式,不是二次根式;(x ≥0,y ≥0)符合二次根式的定义.2.(2021春•下城区期末)已知二次根式,当x =1时,此二次根式的值为( ) A .2 B .±2 C .4D .±4【分析】将x的值代入二次根式,然后利用二次根式的性质化简求解.【解答】解:当x=1时,原式=,故选:A.3.(2021春•阳谷县期末)已知是整数,则正整数n的最小值是【分析】因为是整数,且=2,则6n是完全平方数,满足条件的最小正整数n为6.【解答】解:∵=2,且是整数,∴2是整数,即6n是完全平方数;∴n的最小正整数值为6.故答案为:6.4.(2021秋•普陀区期中)若是二次根式,那么x的取值范围是.【分析】二次根式要求被开方数是非负数,即10﹣5x≥0,从而解得x的取值范围.【解答】解:∵是二次根式,∴10﹣5x≥0,∴x≤2.故答案为:x≤2.5.(2021春•余杭区期中)当x=时,的值最小.【分析】根据二次根式的性质即可求出答案.【解答】解:当x=3时,此时2x﹣6=0,的最小值为0,故答案为:36.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.【分析】(1)根据二次根式的定义得出3﹣x≥0,解之可得答案;(2)将x=﹣2代入计算可得;(3)当被开方数为0时,二次根式的值即为0,据此列出关于x的方程求解可得.【解答】解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.7.已知x、y为实数,且满足,求5x+|2y﹣1|﹣的值.【分析】先根据二次根式的性质列出不等式组,求出x的取值,再把x的值代入所求代数式即可解答.【解答】解:则;==2.考点二二次根式相关概念知识点睛:1.最简二次根式:满足以下2个条件的二次根式成为最简二次根式①被开方数的因数是整数,因式是整式;②不含开的尽方的因数或因式☆:判断最简二次根式,被开方数的字母部分次数最高为1次,且不含分母二次根式的运算,最后结果都要求必须化为最简二次根式2.同类二次根式:所含被开方数相同的最简二次根式叫做同类二次根式类题训练1.(2021秋•桐柏县期中)下列二次根式中的最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:A、原式=3,故A不符合题意.B、原式=3,故B不符合题意.C、是最简二次根式,故C符合题意.D、原式=2,故D不符合题意.故选:C.2.把下列根式化成最简二次根式.(1)5(2)6(3)(a>0)(4)(n<0)【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的性质化简得出答案;(4)直接利用二次根式的性质化简得出答案.【解答】解:(1)5=5×2=10;(2)6=6×=6×=;(3)(a>0)=5a;(4)(n<0)=×=﹣.3.(2021春•岳麓区校级期末)下列式子能与合并的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、==4,能与合并,符合题意;B 、=2,不能与合并,不符合题意;C 、=,不能与合并,不符合题意;D 、=,不能与合并,不符合题意;故选:A . 4.如果最简二次根式与2是同类二次根式,则a = .【分析】根据同类二次根式的定义列出方程,解方程得到答案. 【解答】解:∵最简二次根式与2是同类二次根式,∴3a ﹣8=17﹣2a , 解得,a =5, 故答案为:5.考点三 二次根式的运算知识点睛:二次根式乘法公式:())(③②)(①0b ,0··)0()0(022≥≥=⎩⎨⎧≤-≥==≥=a b a b a a a a a a a a a a 二次根式除法公式:()()()()ba b a c b a b a b a c ba ca aa ab b ab b a b a b a ba ba --=-+-=+=≥==≥=)0(1)0,0()0,0(>>变形公式:>④类题训练1.(2021秋•拱墅区期中)下列计算正确的是( ) A .B .C .D .【分析】根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案. 【解答】解:A 、原式=0.3,故A 不符合题意.公式①、②、③常用于以下两种题型:(1)化简求值(2)无理数比较大小常见比较大小的三种方式:(1)利用近似值比较大小(2)把系数移到根号内比较(3)分别平方,然后比较大小以上方法注意两数的正负号公式④及其变形常用于分母有理化的化简,即分式的分子分母同乘分母的无理化因式,使分母变为整数。
分式有意义的条件试题集锦解析
1.(2015•南宁模拟)要使分式有意义,x的取值范围为()A.x≠﹣5 B.x>0 C.x≠﹣5且x>0 D.x≥0考点:分式有意义的条件;二次根式有意义的条件.分析:根据分式有意义的条件可得x+5≠0,再根据二次根式有意义的条件可得x≥0,再解即可.解答:解:由题意得:x+5≠0,且x≥0,解得:x≥0,故选:D.点评:此题主要考查了分式和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.2.(2015•泰州校级一模)分式有意义的条件是()A.x≠1 B.x>0 C.x≠﹣1 D.x<0考点:分式有意义的条件.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,1﹣x≠0,解得x≠1.故选A.点评:从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.(2015•杭州模拟)使代数式有意义的x的取值范围是()A.x<B.x=C.x>D.x≠考点:分式有意义的条件.分析:分式的分母不等于零.解答:解:当分母2x﹣3≠0即x≠时,代数式有意义.故选:D.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.(2015•杭州模拟)使分式无意义的x的值是()A.x≠﹣B.x≠C.x=D.x=﹣考点:分式有意义的条件.分析:根据分式分母为零分式无意义,可得答案.解答:解:由分式无意义,得2x﹣1=0.解得x=,故选:C.点评:本题考查了分式有意义的条件,分母为零是分式无意义的条件.5.(2015•椒江区一模)若分式无意义,则x的值为()A.0B.1C.﹣1 D.2考点:分式有意义的条件.分析:根据分式的分母为零分式无意义,可得答案.解答:解:由分式无意义,得x+1=0.解得x=﹣1,故选:C.点评:本题考查了分式有意义的条件,利用分式的分母为零分式无意义得出方程是解题关键.6.(2015•温州二模)要使分式有意义,x的取值范围满足()A.x≠﹣1 B.x≠1 C.x>1 D.x<1考点:分式有意义的条件.分析:根据分式有意义的条件可得x﹣1≠0,再解即可.解答:解:由题意得:x﹣1≠0,解得:x≠1,故选:B.点评:此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.7.(2015春•山西期中)分式有意义,则x的取值范围是()A.x=3 B.x≠3 C.x≠﹣3 D.x=﹣3考点:分式有意义的条件.分析:根据分式有意义的条件可得:x﹣3≠0,再解不等式即可.解答:解:由题意得:x﹣3≠0,解得:x≠3,故选:B.点评:此题主要考查了分式有意义的条件,关键是掌握分式有意义,分母不为零.8.(2014•温州)要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1考点:分式有意义的条件.分析:根据分式有意义,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≠0,解得x≠2.故选:A.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.9.(2014•贺州)使分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≤1 D.x≥1考点:分式有意义的条件.分析:根据分式有意义的条件:分母不等于0,即可求解.解答:解:根据题意得:x﹣1≠0,解得:x≠1.故选:A.点评:本题主要考查了分式有意义的条件,正确理解条件是解题的关键.10.(2014•宜昌)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣1考点:分式有意义的条件.专题:常规题型.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故选:A.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.11.(2014•六盘水)下列说法正确的是()B.﹣2的绝对值是﹣2A.﹣3的倒数是C.﹣(﹣5)的相反数是﹣5 D.x取任意实数时,都有意义考点:分式有意义的条件;相反数;倒数.分析:根据倒数的定义,相反数的定义以及分式有意义的条件对各选项分析判断利用排除法求解.解答:解:A、﹣3的倒数是﹣,故A选项错误;B、﹣2的绝对值是2,故B选项错误;C、﹣(﹣5)的相反数是﹣5,故C选项正确;D、应为x取任意不等于0的实数时,都有意义,故D选项错误.故选:C.点评:本题考查了分式有意义,分母不等于0,相反数的定义以及倒数的定义,是基础题,熟记概念是解题的关键.12.(2014•大冶市校级模拟)分式有意义,则x应满足的条件是()A.x≠1 B.x≠2C.x≠1且x≠2 D.以上结果都不对考点:分式有意义的条件.专题:计算题.分析:本题主要考查分式有意义的条件:分母≠0,即(x﹣1)(x﹣2)≠0,解得x的取值范围.解答:解:∵(x﹣1)(x﹣2)≠0,∴x﹣1≠0且x﹣2≠0,∴x≠1且x≠2.故选C.点评:本题考查的是分式有意义的条件:当分母不为0时,分式有意义.13.(2014•衡阳二模)若分式有意义,则x的取值范围是()A.x>5 B.x≠﹣5 C.x≠5 D.x>﹣5考点:分式有意义的条件.分析:根据分式有意义,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣5≠0,解得x≠5.故选C.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14.(2014•普宁市模拟)要使分式有意义,则x应满足条件()A.x≠1 B.x≠﹣2 C.x>1 D.x>﹣2考点:分式有意义的条件.分析:根据分式有意义的条件可得x﹣1≠0,再解即可.解答:解:由题意得:x﹣1≠0,解得:x≠1,故选:A.点评:此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不为0.15.(2014•重庆模拟)如果代数式有意义,那么x取值范围是()A.x≠﹣1 B.x≠1 C.x≠1且x≠0 D.x≠﹣1且x≠0考点:分式有意义的条件.分析:根据分式有意义的条件可得x﹣1≠0,再解不等式即可.解答:解:由题意得:x﹣1≠0,解得:x≠1,故选:B.点评:此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不能等于零.16.(2014•广东模拟)分式中,x的取值范围是()A.x≠1 B.x≠﹣2 C.x>1 D.x>﹣2考点:分式有意义的条件.分析:分式有意义,父母不等于零.解答:解:当分母x﹣1≠0,即x≠1时,分式有意义.故选:A.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.17.(2014•杭州模拟)关于分式,有下列说法,错误的有()个:(1)当x取1时,这个分式有意义,则a≠3;(2)当x=5时,分式的值一定为零;(3)若这个分式的值为零,则a≠﹣5;(4)当x取任何值时,这个分式一定有意义,则二次函数y=x2﹣4x+a与x轴没有交点.A.0B.1C.2D.3考点:分式有意义的条件;分式的值为零的条件;抛物线与x轴的交点.分析:根据分式有意义的条件是分母不等于零,分式值为零的条件是分子等于零且分母不等于零进行分析可得答案.解答:解:(1)当x取1时,这个分式有意义,1﹣4+a≠0,则a≠3,说法正确;(2)当x=5时,a≠﹣5时,分式的值一定为零,原题说法错误;(3)若这个分式的值为零,则a≠﹣5,说法正确;(4)当x取任何值时,这个分式一定有意义,则二次函数y=x2﹣4x+a与x轴没有交点,说法正确;故选:B.点评:此题主要考查了分式有意义和分式值为零的条件,关键是注意:分式值为零时“分母不为零”这个条件不能少.18.(2014•海曙区模拟)使分式有意义的字母x的取值范围是()A.x≠0 B.x≠2 C.x≠3 D.x≠2且x≠3考点:分式有意义的条件.分析:根据分式有意义的条件可得x﹣2≠0,再解即可.解答:解:由题意得:x﹣2≠0,解得:x≠2,故选:B.点评:此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不为0.19.(2014•重庆模拟)已知分式有意义,则x的取值范围是()A.x≥2 B.x≥3 C.x≠2 D.x≠3考点:分式有意义的条件.分析:根据分式有意义的条件可得x﹣2≠0,再解不等式即可.解答:解:由题意得:x﹣2≠0,解得:x≠2,故选:C.点评:此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.20.(2014•清新县模拟)若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x>0且x≠1考点:分式有意义的条件.分析:根据分式有意义的条件可得x﹣1≠0,再解即可.解答:解:由题意得:x﹣1≠0,解得:x≠1,故选:A.点评:此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.。
专题06 二次根式篇(解析版)
专题06 二次根式考点一:二次根式之定义与有意义的条件1. 二次根式的定义:形如()0≥aa的式子叫做二次根式。
2. 二次根式有意义的条件:二次根式的被开方数大于等于0。
即a中,0≥a。
1.(2022•湘西州)要使二次根式63-x有意义,则x的取值范围是( )A.x>2B.x<2C.x≤2D.x≥2【分析】根据二次根式有意义的条件:被开方数是非负数即可得出答案.【解答】解:∵3x﹣6≥0,∴x≥2,故选:D.2.(2022•广州)代数式11+x有意义时,x应满足的条件为( )A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:代数式有意义时,x+1>0,解得:x>﹣1.故选:B.3.(2022•贵阳)代数式3-x在实数范围内有意义,则x的取值范围是( )A.x≥3B.x>3C.x≤3D.x<3【分析】直接利用二次根式的定义得出x﹣3≥0,进而求出答案.【解答】解:∵代数式在实数范围内有意义,∴x ﹣3≥0,解得:x ≥3,∴x 的取值范围是:x ≥3.故选:A .4.(2022•绥化)若式子21-++x x 在实数范围内有意义,则x 的取值范围是( )A .x >﹣1B .x ≥﹣1C .x ≥﹣1且x ≠0D .x ≤﹣1且x ≠0【分析】根据二次根式的被开方数是非负数,a ﹣p =(a ≠0)即可得出答案.【解答】解:∵x +1≥0,x ≠0,∴x ≥﹣1且x ≠0,故选:C .5.(2022•雅安)使2-x 有意义的x 的取值范围在数轴上表示为( )A .B .C .D .【分析】根据二次根式有意义的条件,得出关于x 的不等式,解不等式,即可得出答案.【解答】解:∵∴x ﹣2≥0,∴x ≥2,故选:B .6.(2022•菏泽)若31-x 在实数范围内有意义,则实数x 的取值范围是 .【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得,x ﹣3>0,解得x >3.故答案为:x >3.7.(2022•青海)若式子11-x 有意义,则实数x 的取值范围是 .【分析】根据二次根式的被开方数为非负数,分式的分母不等于零列式计算可求解.【解答】解:由题意得x ﹣1>0,解得x >1,故答案为:x >1.8.(2022•包头)若代数式x x 11++在实数范围内有意义,则x 的取值范围是 .【分析】根据二次根式有意义的条件,分式有意义的条件是分母不等于零,列不等式组,解出即可.【解答】解:根据题意,得,解得x ≥﹣1且x ≠0,故答案为:x ≥﹣1且x ≠0.9.(2022•常德)要使代数式4-x x 有意义,则x 的取值范围为 .【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:x ﹣4>0,解得:x >4,故答案为:x >4.10.(2022•邵阳)若21-x 有意义,则x 的取值范围是 .x 的不等式组,求出x 的取值范围即可.【解答】解:∵有意义,∴,解得x >0.故答案为:x >2.考点二:二次根式之性质与化简1. 二次根式的性质:①二次根式的双重非负性:二次根式本身是一个非负数,恒大于等于0。
数学中的二次根式与分式
数学中的二次根式与分式在数学中,二次根式和分式是我们经常会遇到的两个概念。
它们在解决方程、计算和简化表达式等方面都具有重要的作用。
本文将详细介绍二次根式和分式的定义、性质以及它们在数学中的应用。
一、二次根式的定义与性质二次根式是指根号下包含二次项的表达式。
具体地说,对于一个非负实数a和正整数n,我们定义二次根式√a为满足以下条件的实数x:x的n次方等于a,即x^n = a。
其中,n称为根式的指数,而a则是根式的被开方数。
二次根式的性质如下:1. 非负性质:二次根式的值不会小于0,即根号下的被开方数必须为非负实数。
2. 分解性质:对于一个二次根式√ab,可以将其分解为√a * √b。
3. 合并性质:对于两个同类项的二次根式√a和√b,可以合并为√(a+b)。
4. 化简性质:如果被开方数能够整除完全平方数,那么二次根式就可以化简为一个有理数。
二、分式的定义与性质分式是数学中的一种表达形式,通常由分子和分母组成,中间用分数线分隔。
分式可以表示两个数之间的关系,其中分子表示被除数,分母表示除数。
分式的定义如下:对于两个整数a和b(其中b≠0),我们定义分式a/b为两个整数a和b的比值。
在分式中,a被称为分子,b被称为分母。
分式的性质如下:1. 除法性质:分式表示的是除法运算,即a/b = a÷b。
2. 分子和分母的性质:在一个分式中,如果分子和分母乘(或除)以同一个非零实数k,则分式的值不变。
3. 分式的简化:如果分子和分母有一个公因数,那么可以进行约分,将分式化简为最简形式。
4. 分式的加减乘除:两个分式的加减可以通过通分和化简的方法进行,两个分式的乘除可以通过分子乘分子、分母乘分母的方法进行。
三、二次根式与分式的联系与应用二次根式和分式在数学中经常会有联系,并在解决问题中应用到一起。
1. 化简分式时可以利用二次根式的性质进行转化。
比如,在分式中出现二次根式时,可以将其转化为最简形式,使得分母中不存在二次根式。
九年级上册数学《二次根式》知识点整理
九年级上册数学《二次根式》知识点整理二次根式本节研究指导:在研究二次根式时,我们不仅要研究它的概念,还要巩固平方根的知识。
这样有助于我们系统性研究,把零散的知识整合起来。
在本节中,我们需要掌握二次根式的有意义条件。
知识要点:1、二次根式的概念:形如a(a≥0)的式子叫做二次根式。
需要注意的是,被开方数可以是数、单项式、多项式、分式等代数式。
但是,a≥0是二次根式的前提条件。
例如,5、x2+1都是二次根式,而-5、-x2都不是二次根式。
2、取值范围:1)二次根式有意义的条件:由二次根式的意义可知,当a≥0时,a有意义,是二次根式。
因此,只要被开方数大于或等于零,就可以使二次根式有意义。
2)二次根式无意义的条件:由于负数没有算术平方根,所以当a<0时,a没有意义。
3、二次根式a(a≥0)的非负性:a(a≥0)表示a的算术平方根,也就是说,a(a≥0)是一个非负数,即a≥0.由于正数的算术平方根是正数,负数的算术平方根是不存在的,因此非负数的算术平方根也是非负数。
这个性质类似于绝对值、偶次方的性质,在解答题目时应用较多。
例如,如果a+b=0,则a=0,b=0;如果a-b=0,则a=0,b=0;如果a×b=0,则a=0,b=0.4、二次根式(a)的性质:a)=a(a≥0)描述为:一个非负数的算术平方根的平方等于这个非负数。
需要注意的是,这个性质公式(a)=a(a≥0)是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:如果a≥0,则a=(a)。
例如,2=(2),1=(1)。
5、二次根式的性质:a(a≥0)a2=a=___(a<0)描述为:一个数的平方的算术平方根等于这个数的绝对值。
需要注意的是:1)化简a2时,一定要弄明白被开方数的底数a是正数还是负数。
如果是正数或0,则等于a本身,即a2=a=a(a≥0);如果a是负数,则等于a的相反数-a,即2≈1.414,3≈1.732,5≈2.236,7≈2.646.2)a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义。
初中数学 分式二次根式知识点归纳
第四节 分式与二次根式考点一:分式的概念分式:两个整式相除,且除式中含有字母,这样的代数式叫做分式。
分式中字幕的取值不能使分母为零,当分母为零时,分式就没有意义。
<分式为零的条件>分式为零的条件:当分子为零时,分式的值为零。
<分式有意义的条件>分式有意义的条件:当分母不为零时,分式有意义。
考点二:分式的基本性质与运算<分式的基本性质>分式的分子与分母都乘以(或除以)一个不等于零的整式,粉饰的值不变。
A A×X A A÷M= =B B×X , B B÷M , (其中M 是不等于零的整式)<约分>分式的约分:把一个分式的分子和分母的公因式约去,叫做分式的约分,约分要约去分子、分母的所有公因式。
分子、分母没有公因式的分式叫做最简分式。
利用分式的约分,可以进行多项式的除法。
把两个多项式相除先表示成分式,然后通过分解因式、约分等把分式简化,用整式或最简分式表示所求的商。
<分式的运算>分式的乘除:分式乘分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
a c = aca c a d adb d bd , b d bc bc分式的加减:同分母的分式相加减,分式的分母不变,把分子相加减。
a b = a b c c c 通分:把分母不相同的几个分式化成分母相同的分式,叫做痛分,一分母分式的加减就转化为同分母分式的加减,然后按同分母分式的加减法则进行计算。
通分时,一般取各分母的系数的最小公倍数与各分母所有字母的最高词目的积为公分母。
分式方程:只含分式,或分式和整式,并且分母里含有未知数的方程叫做分式方程。
考点三:二次根式<二次根式有意义的条件>二次根式:表示算术平方根的代数式叫做二次根式。
一般地,式子a ( a≥0)叫做二次根式,a 叫做被开方数。
二次根式知识点及例题
第十六章 二次根式知识点一、二次根式1.定义0)a ≥二次根号下的a 叫做被开方数.注意:(1)二次根号的定义是从形式上界定的,即必须含有二次根号.(2)二次根式的被开方数可以是一个数字,也可以是一个代数式,但必须满足被开方数大于等于0. (3)根指数是2,这里的2可以省略不写.(4)形如0)a ≥的式子也是二次根式,它表示b例题:!1.下列各式中,一定是二次根式的是 .12x ⎫<⎪⎭练习:1.下列各式中,一定是二次根式的是 .0,0)x y ≥≥知识点二、二次根式有意义的条件1.0a ≥0a <2.从具体的情况总结,如下:(1)0A ≥;(2)⋅⋅⋅有意义的条件:000A B N ≥⎧⎪≥⎪⎨⋅⋅⋅⎪⎪≥⎩;?(3)0A >;(4)二次根式作为分式的分子如B A有意义的条件:00A B ≥⎧⎨≠⎩.例题:1.当x 是怎样的实数时,下列各式在实数范围内有意义.11x +练习:知识点三、二次根式的性质(重点,难点)性质10)a ≥具有双重非负性,它即表示二次根式,又表示非负数a 的算式平方根,具体描述为:0;a 是非负数. 注意:几个非负数的和为0时,这几个非负数必须同时为0.、例题:@练习:则2015)(yx 的值为________.3.已知a ,b 4b +,求a ,b 的值.·2210b b -+=,求221a b a +-的值.性质2:2(0)a a=≥,即一个非负数的算术平方根的平方等于它本身.注意:不能忽略0a≥这一限制条件,导致类似24=-的错误.性质3(0)(0)a aaa a≥⎧==⎨-<⎩,即当一个数为非负数时,它的平方的算术平方根等于它本身,(0)a a=≥;(0)a a-<.&注意:不要认为a2-的错误.2的区别与联系:例题:1.计算:(1) 2(2)2(3) 2(-(4)22.计算:'(1)23()5(2)23()5- (3)2(6)- (4)2(3.14)π-3.当m <3时,2(3)m -=_______.4.设三角形的三边长为a ,b ,c ,试化简:2222()()()()a b c a b c b a c c b a +++--+-----.、练习: 1.计算:(1) 2( 3.4) (2) 2( 3.4)- (3)2(3)π- (4) 2(4)π-2.若23a <<,则22(2)(3)a a ---等于( )~A . 52a -B . 12a -C . 25a -D . 21a - 3.已知实数a b 、在数轴上的位置如图所示,化简:222+()a b a b +-.4.已知a 2224a a a +--的值.$知识点四、二次根式的乘除1.二次根式的乘法法则0,0)a b ab a b =≥≥.提示:(1)在设计二次根式运算时没有特备说明,所有字母都表示正数;(2),a b 可以是数,也可以是代数式,但必须是非负的. 推广a b cd abcd =()0,0,0,0a b c d ≥≥≥≥.2.ab ab =a b (0,0a b ≥≥).#例题: 1.计算:(1)62⨯ (2) )32(276-⨯ (3))196()121(-⨯-(4))33)(31(+- (5) 38xy y 8y y!2.化简:(1)1259⨯ (2) 24323.(1)比较的大小__________, (2)比较3655与的大小__________. 练习: 1.计算: (1) )196()121(-⨯- (2) )33)(31(+- (3) 329y (4) 9y xy@2.化简:(1)12116⨯ (2) 96323.比较6456与的大小__________,(2)比较8338与的大小__________. 3.分母有理化:把分母中的根号化去,叫做分母有理化。
二次根式的知识点汇总
二次根式的知识点汇总知识点一:二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
知识点五:二次根式的性质知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab a b(a≥0,b≥0);b ba aa>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【例题精选】二次根式有意义的条件:例1:求下列各式有意义的所有x 的取值范围。
2020年中考数学复习考点03 分式与二次根式-备战2020年中考数学考点一遍过
考点03分式与二次根式一、分式1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称A B为分式. (2)分式A B中,A 叫做分子,B 叫做分母. 【注意】①若B ≠0,则A B有意义; ②若B =0,则A B无意义; ③若A =0且B ≠0,则A B =0. 2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C ⋅=≠⋅或(0)A A C C B B C÷=≠÷,其中A ,B ,C 均为整式. 3.约分及约分法则(1)约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(2)约分法则把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.【注意】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式. 4.最简分式分子、分母没有公因式的分式叫做最简分式.【注意】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 5.通分及通分法则(1)通分根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分.(2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;③若分母是多项式,则先分解因式,再通分.【注意】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.最简公分母几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.7.分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:()(nn n a a n b b=为正整数,0)b ≠. (5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.二、二次根式1.二次根式的有关概念(1)二次根式的概念 形如)0(≥a a开方数.【注意】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0.(2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式.2.二次根式的性质(1)a ≥ 0(a ≥0);(2))0()(2≥=a a a ; (3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)a b =≥≥;(50,0)a b ≥>. 3.二次根式的运算(1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.(2)二次根式的乘除0,0)a b=≥≥;0,0)a b≥>.(3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.考向一分式的有关概念1.分式的三要素:(1)形如AB的式子;(2),A B均为整式;(3)分母B中含有字母.2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即0B≠.(2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.典例1x的取值范围是A.x≥4B.x>4 C.x≤4D.x<4 【答案】D4-x>0,解得:x<4,即x的取值范围是:x<4,故选D.【名师点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.1.若分式21xx-在实数范围内无意义,则x的取值范围是A.x≠1 B.x=1C.x=0 D.x>1考向二分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.典例2 分式233x yxy+中的x、y的值都扩大到原来的2倍,则分式的值为A.扩大为原来2倍B.缩小为原来的12倍C.不变D.缩小为原来的14倍【答案】B【解析】∵若x、y的值都扩大到原来的2倍,则为()()()2234623123 12432323x yx y x y x y xy xy xy xy++++===⋅∴把分式233x yxy+中的x、y的值都扩大到原来的2倍,则分式的值为原来的12,故选B.【名师点睛】本题考查了分式的基本概念和性质的相关知识.这类题目的一个易错点是:在没有充分理解题意的情况下简单地通过分式的基本性质得出分式值不变的结论.对照分式的基本性质和本题的条件不难发现,本题不符合分式基本性质所描述的情况,不能直接利用其结论.因此,在解决这类问题时,要注意认真理解题意.2.下列变形正确的是A .a b =22a b ++B .0.220.1a b a b b b++= C .a b –1=1a b - D .a b =22(1)(1)a mb m ++ 考向三分式的约分与通分约分与通分的区别与联系:1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值;2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.典例3关于分式的约分或通分,下列哪个说法正确A .211x x +-约分的结果是1xB .分式211x -与11x -的最简公分母是x -1 C .22x x约分的结果是1 D .化简221x x --211x -的结果是1 【答案】D【解析】A 、211x x +-=11x -,故本选项错误; B 、分式211x -与11x -的最简公分母是x 2-1,故本选项错误; C 、22x x =2x ,故本选项错误;D 、221x x --211x -=1,故本选项正确,故选D . 【名师点睛】本题主要考查分式的通分和约分,这是分式的重要知识点,应当熟练掌握.3.下列分式中,是最简分式的是A .2xy xB .222x y -C .22x yx y +- D .22x x + 考向四分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.(2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.典例4 化简:2291(1)362m m m m -÷---. 【解析】2291(1)362m m m m -÷--- ()()()333322m m m m m m +--=÷-- ()()()332323m m m m m m +--=⋅-- 33m m+=. 【名师点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.4.先化简,再求值:2221()211x xx x x x+÷--+-,其中x=4.考向五二次根式的概念与性质1.二次根式的意义:首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.典例5 函数yA.x>0且x≠0B.x≥0且x≠12C.x≥0D.x≠12【答案】B【解析】根据题意得,x≥010≠,∴x≥0且x≠12.故选B.【名师点睛】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足被开方数是非负数且分母不为零.5.已知:x>4=__________.典例6 下列二次根式是最简二次根式的是A B C D【答案】C=,故原选项不是最简二次根式;【解析】A2B=C是最简二次根式;D=4,故原选项不是最简二次根式,故选C.6;.其中是最简二次根式的有A.2个B.3个C.4个D.5个考向六二次根式的运算1.二次根式的运算(1)二次根式的加减法就是把同类二次根式进行合并.(2)二次根式的乘除法要注意运算的准确性;要熟练掌握被开方数是非负数.(3)二次根式混合运算先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号).2.比较分式与二次根式的大小(1)分式:对于同分母分式,直接比较分子即可,异分母分式通常运用约分或通分法后作比较;(2)二次根式:可以直接比较被开方数的大小,也可以运用平方法来比较.典例7 下列计算正确的是A=B6=C5==D4【答案】A【解析】A、原式-,正确;B、原式C+D、原式,错误,故选A.7.计算:(1÷(2)(.典例8 比较大小:(填“>” “<”或“=”).【答案】>【解析】因为22(27)28,525==,28>25,所以27>5.故答案为:>.【名师点睛】比较二次根式的大小,可以转化为比较被开方数的大小,也可以将两个数平方,计算出结果,再比较大小.8.设a =6-2,b =3-1,c =231+,则a ,b ,c 之间的大小关系是 A .c >b >a B .a >c >b C .b >a >cD .a >b >c11(2)a a +-有意义,则实数a 的取值范围是 A .1a ≥B .2a ≠C .1a ≥-且2a ≠D .a >22.若分式293x x -+的值为零,则x 值为A .x =±3B .x =0C .x =-3D .x =33.下列式子是最简二次根式的是 A 8B 36C 21D .317- 4.在化简分式23311x x x-+--的过程中,开始出现错误的步骤是 A .33(1)(1)(1)(1)(1)x x x x x x -+-+-+-B .331(1)(1)x x x x --++-C .22(1)(1)x x x --+-D .21x -- 5.下列关于分式的判断,正确的是 A .当x =2时,12x x +-的值为零B .当x ≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值D .无论x 为何值,231x +的值总为正数6.计算33a a a +-的结果是A .6a a +B .6a a-C .1aD .17a 的值为 A .1 B .2C .23D .328.化简2211x ax ÷--的结果是21x +,则a 的值是A .1B .-1C .2D .-29.已知1x < A .1x - B .1x - C .1x --D .1x +10.下列运算中错误的是AB .+C2D =411.若分式11x x -+的值为0,则x 的值为 A .1 B .−1 C .±1D .无解12 A .2B .21x - C .23x -D .41x x --13.若x 、y ()2210y -=,则x y +的值等于A .1B .32 C .2D .5214a=,则1x x+的值为 A .22a - B .2a C .24a -D .不确定15.16最接近的整数是__________.17.比较大小:>、<、或=”)18.计算(--2)(-2)的结果是__________.19.已知a ,b 互为倒数,代数式222a ab b a b+++_____________.20.若1112a b -=,则a b abab a b--=-__________.21.计算:(10)a ≥;(2.22.先化简,再求值:22(1)a ba b a b-÷--,其中1a =,1b =.23.先化简:22144(1)1m m m m m-+-÷--,再从-1≤m ≤2中选取合适的整数代入求值.24.先化简,再求值:22121(1)1121m m m m m --÷-+--+,其中m 为一元二次方程230x x +-=的根.25.先化简,再求代数式21211a aa a a -÷-+-的值,其中a =2cos30°.1.(2019•常州)若代数式13x x +-有意义,则实数x 的取值范围是 A .x =-1 B .x =3 C .x ≠-1D .x ≠32.(2019x 的取值范围是 A .x >0B .x ≥-1C .x ≥1D .x ≤13.(2019•黄石)若式子2x -在实数范围内有意义,则x 的取值范围是 A .x ≥1且x ≠2B .x ≤1C .x >1且x ≠2D .x <14.(2019•山西)下列二次根式是最简二次根式的是A BCD 5.(2019•贵港)若分式211x x -+的值等于0,则x 的值为A .±1B .0C .-1D .16.(2019=A .B .4CD . 7.(2019•扬州)分式13x-可变形为 A .13x + B .13x -+ C .13x -D .13x --8.(2019•江西)计算1a ÷(21a-)的结果为 A .a B .-aC .31a-D .31a9.(2019·天津)计算2211a a a +++的结果是 A .2B .22a +C .1D .41aa + 10.(2019•临沂)计算21a a --a -1的正确结果是A .11a -- B .11a -C .211a a --- D .211a a -- 11.(2019•北京)如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为A .-3B .-1C .1D .312.(2019•河北)如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在A .段①B .段②C .段③D .段④13.(2019·重庆A 卷)估计 A .4和5之间 B .5和6之间 C .6和7之间D .7和8之间14.(2019•有意义时,x 应满足的条件是__________.15.(2019__________.16.(2019•=__________.17.(2019•吉林)计算:22yx·x y =__________.18.(2019·天津)计算1)的结果等于__________.19.(2019·南充)计算:2111x x x+=--__________.20.(2019•武汉)计算221164a a a ---的结果是__________.21.(20192)2622.(2019•益阳)化简:2244 (4)2x xx x+--÷.23.(2019•深圳)先化简(132x-+)2144xx x-÷++,再将x=-1代入求值.24.(2019•河南)先化简,再求值:2212(1)244x x xx x x+--÷--+,其中x25.(2019•烟台)先化简(x+373x--)2283x xx-÷-,再从0≤x≤4中选一个适合的整数代入求值.26.(2019•安顺)先化简2221(1)369xx x x-+÷--+,再从不等式组24324xx x-<⎧⎨<+⎩的整数解中选一个合适的x的值代入求值.1.【答案】B 【解析】∵分式21xx-在实数范围内无意义, ∴1-x =0,即x =1, 故选B . 2.【答案】D【解析】A .a b ≠22a b ++,故A 错误; B .0.20.1a b b +=210a b b +,故B 错误;C .a b -1=a b b-,故C 错误,故选D . 3.【答案】D 【解析】A 、2xy x =yx,错误; B 、222x y -=1x y -,错误;C 、22x y x y +-=1x y-,错误;D 、22xx +是最简分式,正确. 故选D .4.【解析】2221()211x x x x x x+÷--+-=2(+1)2(111)()()x x x x x x x --÷--=2()(+1)111)(x x x x x x -⋅-+ =21x x -, 当x =4时,原式=2416413=-.5.【答案】B【解析】根据二次根式被开方数必须是非负数的条件知,必须101x x -≥⇒≥.故选B .6.【答案】B==,=,∴ 故选B .7.【解析】(1)原式2×162.(2)原式=(=12. 8.【答案】D【解析】a1),b1,c2×−1),>1>2,∴a>b>c.故选D.1.【答案】C【解析】由题意得:a+1≥0,且a–2≠0,解得,1a≥-且2a≠.故选C.2.【答案】D【解析】∵分式293xx-+的值为零,∴x2-9=0且x+3≠0.解得:x=3.故选D.3.【答案】C【解析】A=B,不是最简二次根式,故本选项不符合题意;C是最简二次根式,故本选项符合题意;D、7=-,不是最简二次根式,故本选项不符合题意,故选C.4.【答案】B【解析】∵正确的解题步骤是:23311xx x-+--33(1)(1)(1)(1)(1)x xx x x x-+=-+-+-333(1)(1)x xx x---=+-,∴开始出现错误的步骤是331(1)(1)x xx x--++-.去括号是漏乘了.故选B.5.【答案】1【解析】∵x >4,∴x -4>0,∴原式=44x x --=1, 故答案为:1.【名师点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键. 6.【答案】D 【解析】33331a a a a a++--==,故选D . 7.【答案】D 【解析】1+4a a =-,解得32a =,故选D . 8.【答案】A 【解析】22122111111x x a x x x x +=÷==--+--,∴a =1,故选A . 9.【答案】B【解析】∵x <1,∴x -1<0x -1|=1-x .故选:B .10.【答案】B【解析】A .原式,所以A 选项的计算正确;B .和B 选项的计算错误C .原式2,所以C 选项的计算正确;D .原式,所以D 选项的计算正确.故选B .11.【答案】A 【解析】∵分式11x x -+的值为0,∴|x |−1=0,且x +1≠0,解得:x =1.故选A . 12.【答案】B(13x -−11x -)•(x −3)=13x -•(x −3)−11x -•(x −3)=1−31x x --=21x -.故选B . 13.【答案】B【解析】()2210y -=,∴()2121022101x x y y ⎧-=⎧=⎪⎪⇒⎨⎨-=⎪⎪⎩=⎩.∴13122x y +=+=.故选B .14.【答案】Ax +2+1x =a ²,∴x +1x=a ²−2,故选A . 15==. 16.【答案】4<<,,故答案为:4.17.【答案】<,因为12<18,所以18.【答案】-16【解析】原式=-()(2)=-(20-4)=-16.故答案为:-16.19.【答案】1【解析】对待求值的代数式进行化简,得()ab a b a b +⋅+ab =, ∵a ,b 互为倒数,∴ab =1,∴原式=1.故答案为:1.20.【答案】–32【解析】∵1112a b -=, ∴a −b =−2ab .∴原式=−22ab ab ab ab --=−2+12=−32. 故答案为:−32.21.【解析】(1)原式=4a 2.(2)原式.22.【解析】22(1)a b a b a b-÷-- ()()a b a b a a b a b b+--+=⋅- ()()a b a b b a b b +-=⋅- a b =+,当1a =,1b =时,原式11=.23.【解析】原式=2-2(1)1(2)m m m m m -⋅-- =2m m -, 根据分式有意义的条件可知:m =-1, ∴原式=13. 24.【解析】原式=()()()22122111111m m m m m m m --+--÷++--=()()()()21121112m m m m m m m ---⋅++-- =()1111m m m m --++ =()()11m m m m --+ =()11m m + =21m m+. 由m 是方程230x x +-=的根,得到23m m +=,所以原式=13. 25.【解析】原式=2111(1)1a a a a --+÷-- =211(1)a a a a--⨯-, =1a. ∵a=2= ∴原式=1.【答案】D【解析】∵代数式13x x +-有意义,∴x -3≠0,∴x ≠3.故选D . 2.【答案】C【解析】由题意,得x -1≥0,解得x ≥1,故选C .3.【答案】A 【解析】依题意,得x -1≥0且x -200,解得x ≥1且x ≠2.故选A .4.【答案】D【解析】A 2=,故A 不符合题意;B 7=,故B 不符合题意;C =C 不符合题意;D D 符合题意.故选D .5.【答案】D 【解析】21(1)(1)11x x x x x -+-==++x -1=0,∴x =1,经检验:x =1是原分式方程的解,故选D . 6.【答案】B4==.故选B .7.【答案】D 【解析】分式13x -可变形为:13x --.故选D . 8.【答案】B 【解析】原式1a =·(-a 2)=-a ,故选B . 9.【答案】A【解析】原式=222(1)211a a a a ++==++,故选A . 10.【答案】B 【解析】原式()211a a a =-+-22111a a a a -=---11a =-.故选B . 11.【答案】D【解析】原式=2()m n m n m m n ++--·(m +n )(m -n )=3()m m m n -·(m +n )(m -n )=3(m +n ), 当m +n =1时,原式=3.故选D .12.【答案】B 【解析】∵2222(2)1(2)111441(2)111x x x x x x x x x x ++-=-=-=+++++++,又∵x为正整数,∴12≤x<1,故表示22(2)1441xx x x+-+++的值的点落在②,故选B.13.【答案】C【解析】,又因为,所以,故选C.14.【答案】x>8有意义时,x-8>0,解得x>8.故答案为:x>8.15.【答案】3,故答案为:3.16.【答案】【解析】原式==.故答案为:17.【答案】12x【解析】22yx·12xy x=,故答案为:12x.18.【答案】2【解析】原式=3-1=2.故答案为:2.19.【答案】x+1【解析】2111xx x+--=2111xx x---211xx-=-()()111x xx+-=-1x=+,故答案为:x+1.20.【答案】14a+【解析】原式()()()()244444a aa a a a+=-+-+-()()2444a aa a--=+-()()444aa a-=+-14a=+.故答案为:14a+.21.【解析】原式=3+4-6=3+4-=7.22.【解析】原式=2(2)2(2)(2)x x x x x -⋅+- =242x x -+. 23.【解析】原式21(2)21x x x x -+=⨯+- =x +2,将x =-1代入得:原式=x +2=1.24.【解析】原式=212(2)()22(2)x x x x x x x +---÷--- =322x x x-⋅- =3x , 当x时,原式25.【解析】(x +373x --)2283x x x -÷- =(29733x x x ----)2283x x x -÷- (4)(4)3x x x +-=-·32(4)x x x -- 42x x+=, 当x =1时,原式145212+==⨯. 26.【解析】原式232(3)3(1)(1)x x x x x -+-=⨯-+- =31x x -+, 解不等式组24324x x x -<⎧⎨<+⎩①②得-2<x <4,∴其整数解为-1,0,1,2,3,∵要使原分式有意义,∴x可取0,2.∴当x=0时,原式=-3,(或当x=2时,原式=13 ).。
知识点090二次根式有意义的条件
考点:二次根式有意义的条件。
分析:根据二次根式有意义的条件,被开方数是非负数,就可得到x的范围,就可去掉式子中的绝对值符号,求得x的值.解答:解:∵x﹣2009≥0,∴x≥2009,则原式可化简为:x﹣2008+=x,即:=2008,∴x﹣2009=20082,∴x﹣20082=2009.点评:求出x的范围,对原式进行化简是解决本题的关键.2、已知数a满足,求a﹣20042的值.考点:二次根式有意义的条件;绝对值。
分析:根据二次根式的性质可得,a﹣2005≥0,即a≥2005.化简原式即可求解.解答:解:根据二次根式的性质可得,a﹣2005≥0,即a≥2005,由原式可得,a﹣2004+=a∴=2004∴a﹣2005=20042∴a﹣20042=2005.点评:考查了二次根式和绝对值的有关内容,二次根式中被开方数是非负数,是此题的突破口.3、已知x、y为实数,,试求3x+4y的值.考点:二次根式有意义的条件;分式有意义的条件。
分析:根号内是非负数,分母不为0来综合考虑,得到相应的未知字母的值.解答:解:依题意得∴x2=4,∴x=±2又∵x﹣2是原式分母,∴x﹣2≠0∴x≠2∴x=﹣2,此时,y=﹣,∴3x+4y=3×(﹣2)+4×(﹣)=﹣7.点评:用到的知识点为:互为相反数的两个数都在根号里,那么这两个数都为0.4、求使下列各式有意义的字母的取值范围:(1)(2)(3)(4)考点:二次根式有意义的条件;分式有意义的条件。
分析:(1)(2)(3)根据二次根式的性质,被开方数大于等于0可知.(4)根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0可知:﹣≥0且x≠0,即可求解.解答:解:(1)依题意有3x﹣4≥0,解得.即时,二次根式有意义;(2)依题意有1﹣2a≥0,解得.即时,二次根式有意义;(3)依题意有m2+4>0,故m取全体实数,有意义;(4)依题意有:﹣≥0且x≠0,解得x<0.即x<0时,二次根式有意义.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.5、已知x,y是实数,且y=,求5x+6y的值.考点:二次根式有意义的条件;分式有意义的条件。
八年级下册数学--二次根式知识点整理
二次根式1、 算术平方根的定义:一般地,如果一个正数x 的平方等于a ,那么这个正数x 叫做a 的算术平方根。
2、 解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x >4,不等式两边同除以-2得x <-2。
不等式组的解集是两个不等式解集的公共部分。
如3、 分母≠04、 绝对值:|a |=a (a ≥0);|a |= - a (a <0) 一、 二次根式的概念一般地,我们把形如 a (a ≥0)的式子叫做二次根式,“ ”称为二次根号。
★ 正确理解二次根式的概念,要把握以下五点:(1) 二次根式的概念是从形式上界定的,必须含有二次根号“ ”,“ ”的根指数为2,即“2 ”,我们一般省略根指数2,写作“ ”。
如25 可以写作 5 。
(2) 二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3) 式子 a 表示非负数a 的算术平方根,因此a ≥0, a ≥0。
其中a ≥0是 a 有意义的前提条件。
(4) 在具体问题中,如果已知二次根式 a ,就意味着给出了a ≥0这一隐含条件。
(5) 形如b a (a ≥0)的式子也是二次根式,b 与 a 是相乘的关系。
要注意当b 是分数时不能写成带分数,例如83 2 可写成8 2 3 ,但不能写成2 23 2 。
练习:一、判断下列各式,哪些是二次根式(1) 6 ; (2)-18 ; (3)x 2+1 ; (4)3-8 ; (5)x 2+2x+1 ; (6)3|x | ; (7)1+2x (x <- 12)二、当x 取什么实数时,下列各式有意义(1)2-5x ;(2)4x2+4x+1 二、二次根式的性质:练习:计算(1)(35)2 (2) (4 3 )2 (3) (-62)(4)-(- 18)2 (6)x 2-2x+1 + x 2-6x+9 (1≤x ≤3)★( a )2(a ≥0)与a 2 的区别与联系:三、代数式用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫代数式。
二次根式知识点总结及常见题型
二次根式知识点总结及常见题型二次根式知识点总结及常见题型一、二次根式的定义形如$a\sqrt{a}$的式子叫做二次根式。
其中$\sqrt{a}$叫做二次根号,$a$叫做被开方数。
1) 二次根式有意义的条件是被开方数为非负数。
据此可以确定字母的取值范围。
2) 判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“$\sqrt{}$”;②被开方数是否为非负数。
若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式。
3) 形如$m\sqrt{a}$的式子也是二次根式,其中$m$叫做二次根式的系数,它表示的是:$m\sqrt{a}=m\cdot\sqrt{a}$。
4) 根据二次根式有意义的条件,若二次根式$A-B$与$B-A$都有意义,则有$A=B$。
二、二次根式的性质二次根式具有以下性质:1) 双重非负性:$a\geq0$,$\sqrt{a}\geq0$。
(主要用于字母的求值)2) 回归性:$(\sqrt{a})^2=a$,其中$a\geq0$。
(主要用于二次根式的计算)begin{cases}sqrt{a}(a\geq0)\\sqrt{a}(a\leq0)end{cases}$(主要用于二次根式的化简)重要结论:1) 若几个非负数的和为0,则每个非负数分别等于0.若$A+B^2+C=0$,则$A=0$,$B=0$,$C=0$。
应用与书写规范:$\because A+B^2+C=0$,$A\geq0$,$B^2\geq0$,$C\geq0$,$\therefore A=0$,$B=0$,$C=0$。
该性质常与配方法结合求字母的值。
2) $\begin{cases}A-B(A\geq B)\\frac{(A-B)^2}{A+B}\end{cases}$(主要用于二次根式的化简)3) $AB=\begin{cases}A\cdot B(A>0)\\A\cdot B(A<0)\end{cases}$,其中$B\geq0$。
二次根式有意义的条件被开方数
二次根式有意义的条件被开方数
首先,我们来回顾一下二次根式的定义。
对于一个非负数a,它的二次根式记作√a,其中
√表示平方根。
若a≥0,则√a是一个实数,且有着明确的数学意义。
而若a<0,√a将变成一个虚数,这时√a的数学意义就不太明确了。
接着,我们来讨论二次根式的有意义条件。
对于一个二次根式√a,其中a必须是一个非负数,才能确保√a有着明确的数学意义。
换句话说,二次根式的被开方数a必须大于或等
于0。
为了满足题目中要求的开方数字数不少于6000字以上的条件,我们可以从不同的角度来
进行阐述。
例如,我们可以介绍二次根式在实际生活中的应用,如在几何问题、物理问题
以及工程问题中的应用。
我们还可以介绍二次根式在数学中的性质和运算规律,以及与二
次根式相关的定理和推论。
此外,我们还可以介绍二次根式在数学研究中的深入应用,如
在代数、分析等数学领域的应用。
通过对二次根式的有意义条件进行讨论,我们不仅可以加深对二次根式概念的理解,还可
以将它与实际应用相结合,从而更好地理解数学知识在实际生活中的意义。
因此,对于二
次根式有意义的条件的阐述,能够帮助我们更好地理解数学知识,并且拓展我们对数学知
识的应用和理解能力。
总之,二次根式的有意义条件是其被开方数必须大于或等于0。
在论述这一条件的过程中,我们可以从不同的角度进行阐述,以满足开方数字不少于6000字以上的要求。
通过对二
次根式有意义条件的深入探讨,我们可以更好地理解数学知识的应用意义,并且提高对数
学知识的理解和运用能力。
二次根式及其有意义的条件
【考点精讲】1. a ≥0)的式子叫做二次根a ”叫做被开方数。
2. 当a >0a 0;当a =00=0。
a ≥0)是一个非负数。
【典例精析】例题1 下列各式中,是二次根式的有( ) 10,32+x ,315,π,5- A. 1个 B. 2个 C. 3个 D. 4个思路导航:315的根指数为3;5-的被开方数是负数,所以不是二次根式;10,32+x ,π符合二次根式的条件,所以是二次根式的有3个。
答案:C点评:二次根式必须满足两个条件:①根指数为2;②被开方数为非负数。
这两个条件缺一不可。
利用这两个条件逐一判断即可。
例题2 当x 取何值时,下列各式在实数范围内有意义? (1)2)3(-x ;(2)x 34-;(3)11-x 思路导航:要使被开方数有意义,则被开方数必须是非负数,如果分母中有根式,那么被开方数必须是正数,因为零不能作分母。
答案:解:(1)因为(x -3)2≥0,所以无论x 取任何实数,2)3(-x 都有意义;(2)若x 34-有意义,则必有4-3x ≥0,即当x ≤34时,x 34-有意义; (3)若11-x 有意义,则必有x -1>0,即当x >1时,11-x 有意义。
点评:本题考查了二次根式及分式有意义的条件。
用到的知识点:要使分式有意义,分母不能为0;二次根式的被开方数是非负数。
本题应注意在求得取值后应排除不在取值范围内的值。
例题3 已知x 、y 为实数,y=12x -,试求3x+4y 的值。
思路导航:根号内是非负数,分母不为0来综合考虑,得到相应的未知字母的值。
答案:解:依题意得⎪⎩⎪⎨⎧≥-≥-040422x x ,所以x2=4,所以x=±2,又因为x -2是原式分母,所以x -2≠0,所以x ≠2,所以x=-2,此时,y=-41,所以3x+4y=3×(-2)+4×(-41)=-7。
点评:用到的知识点为:互为相反数的两个数都是被开方数,那么这两个数都为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解答
例4:(2012四川德阳3分 )函数 y= x 中自变
量x的取值范围是【 】
2x 1
A.x 0 B. x 1 C.x 0且 x 1 D.一切实数
2
2
【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根
据二次根式.
C.
D.
例2:(2012湖南郴州3分)函数y= 1 中自变
量x的取值范围是【B 】
x2
A.x=2 B.x≠2 C.x>2 D.x<2
能力提升
第三环节能力提升
例3:(2012湖南衡阳3分)函数 y = 2
中自变量x的取值范围是【 】
x+2
A.x>﹣2 B.x≥2 C.x≠﹣2 D.x≥﹣2
例4:(2012四川德阳3分 )函数 y= x 中
自变量x的取值范围是【 】
2x 1
A. x 0 B. x 1
2
C. x
0且 x
1 2
D.一切实数
例三解答 例四解答
解答
例3:(2012湖南衡阳分)函数 y = 2
中自变量x的取值范围
x+2
A.x>﹣2 B.x≥2 C.x≠﹣2 D.x≥﹣2
中考试题中专题16---函数表达式中 自变量的取值范围
知识准备
知识应用
能力提升
第一环节知识准备
分式有意义的条件: 分母不为零
算术根有意义的条件:
被开方数大于等于零
知识应用 能力提升 数轴找解集
第二环节知识应用
例1: (2012浙江衢州3分)函数y= x 1 的自变
量x的取值范围在数轴上可表示为【D 】
围内有意义,必须 X≥0
X≥0
2X-1≠0
x 1
2
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
x0
且x
1 2
故选c
知识应用 能力提升 小结
函数表达式中自变量的取值范围求解步骤
看 列 解答
(分式、根式) (不等式或不等式组) (数轴)
【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根
据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范
围内有意义,必须 x+20 x2 x+20x2x>2
故选A
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
知识应用 能力提升