量子力学第五章微扰理论
第5章 微扰理论-量子跃迁
§6.含时微扰论前面,我们解决的是H ˆ与t 无关,但不能直接求解,而利用020V m2P H ˆ+=有解析解,并且01V V H ˆ-=较小,通过微扰法求解)r (E )r ()p ˆ,r (H ˆψψ=的近似结果。
有时也能用试探波函数,通过变分来获得。
现在要处理的问题是:体系原处于0H ˆ的本征态(或叠加),而有一与t 有关的微扰)t (H ˆ1附加到该体系。
显然,这时体系的能量不是运动常数,其状态并不处于定态(即使1H ˆ在一段时间中不变),在0H ˆ的各定态中的几率并不是常数,而是随时间变化的。
而且无法获得解析结果。
有时附加作用在一段时间之后结束,这时体系处于0H ˆ的本征态的几率又不随时间变化。
当然,这与作用前的几率已有所不同。
也就是,体系可以从一个态以一定几率跃迁到另一态,这称为量子跃迁。
这就需要利用含时间的微扰论。
总之,含时间的微扰论就是处理体系所处的位势随时间发生变化时,或变化后,体系所处状态发生的变化。
H ˆ与t 有关,体系原处于)P ˆ,r (H ˆ0,随t 加一微动)t (V ψψH ˆti =∂∂ , )t (V H ˆ)t (H ˆ0+= 因0H ˆ不显含t ,而有 )r (E )r (H ˆn0n n 0ϕϕ= 则 ψψ0H ˆti =∂∂的通解为 ∑-=ψnt iEn n 0nea )t ,r (ϕ 0H 的定态∑=nn )t ,r (a ψt iEn ne )r ()t ,r (ϕψ=而 n a 是常数))0,r (),r (())t ,r (),t ,r ((a n n n ψ=ψ=ϕψ 不随t 变当nk n a δ=时,即0t =,处于)r (k ϕ时)t ,r (e )r ()t ,r (k t iEk kψϕ==ψ-即微扰不存在时,体系处于定态)t ,r (k ψ上。
当微扰存在时,特别是与t 有关时,则体系处于0H ˆ的各本征态(或定态) 的几率将可能随时间发生变化。
第五章微扰理论
2b 2 2 nπx 2b nπx ( 0 )∗ (0) = ∫ψ n H 'ψ n dx = − sin dx + sin 2 dx ∫ ∫ a 0 a a a a 0
a a 2 nπ
a
2b =− nπ
=−
2b sin ydy + ∫ nπ 0
2
2
nπ
n
∫ sin π
2
2
ydy ⎞ ⎟=0 。 ⎠
−n
2 3
)
[1 − (− 1) ] sin mLπ x
m+ n
。
⎧− b,0 ≤ x ≤ a / 2, 例 4、粒子处于宽为 a 的一维无限深势阱中,若微扰为 H ' = ⎨ 试求粒子 ⎩ b, a / 2 ≤ x ≤ a, ,
能量和波函数的一级修正。 解: (1)能量的一级修正,按公式
E
(1) n
m+ n
−1
] [
,
所以波函数的一级修正为:
(1) (x ) = ψn
∑
m
'
2 μL2 4 Lamn (− 1)m+ n − 1 ⋅ 2 2 2 2 2 2 2 2 π h (n − m ) (m − n ) π
]
2 mπ sin x L L
4
8μL3 an = 4 2 π h
2 L
∑
m
'
(m
m
2
2
。
E ( 0) + b a ⎞ ( 0) ˆ ( 0) 表象中的表示为 H = ⎛ ⎜ 1 ⎟ ,其中 E1 例 1、设体系的哈密顿在 H , E (20) 为 (0) ⎜ a ⎟ E2 + b⎠ ⎝
量子力学微扰理论
(a + b )n = a n + na n - 1b + + nab n - 1 + b n
9
根据等式两边λ同幂次的系数应该相等:
0 : 1 : 2 :
( ( ( ˆ H ( 0 ) n0 ) E n0 ) n0 ) ( ( ( ( ( ( ˆ ˆ H ( 0 ) n1) H (1) n0 ) E n0 ) n1) E n1) n0 ) ˆ ˆ H ( 0 ) ( 2 ) H (1) (1) E ( 0 ) ( 2 ) E (1) (1) E ( 2 ) ( 0 ) n n n n n n n n
18
讨论
(1)在一阶近似下: 表明微扰态矢ψn 可以看成是无微 扰态矢ψm(0)的线性叠加。
( 0) n
n
H mn ( ( 0) m0) (0) m n En Em
(2)展开系数 Hmn /(En(0) - Em(0)) 表明第m个态矢ψm(0)对第n 个 态矢ψn 的贡献有多大。展开系数反比于扰动前状态间的能量间 隔,所以能量最接近的态影响最大。因此态矢一阶近似无须计 算无限多项,只要算出最近邻的有限项即可。 (3)由En = En(0)+Hnn可知,扰动后体系能量是由扰动前第n态 能量En(0)加上微扰Hamilton量 H在无微扰态ψn(0)中的平均值组 成。该值可能是正或负,引起原来能级上移或下移。
8
代入Schrö dinger方程得:
( ( ( ˆ ˆ ( H ( 0 ) H (1) )( n0 ) n1) 2 n2 ) )
( ( ( ( ( ( ( En0 ) En1) 2 En2 ) )( n0 ) n1) 2 n2 ) )
第5章 微扰理论
(0)* 左乘,并积分, 以 ψm (m ≠ n ) 左乘,并积分,并注意 ψ l(0) 的正交归 (0)* 得到: 一性 ψm ψl(0)dτ = δml 得到:
∫
∑
l
′
( ( ( (El(0) En0) )al(1)δml = ∫ψ m0)*H′ψ n0)dτ
(17) 17) (18) 1
令微扰矩阵元 则 :
10
5.1 非简并定态微扰理论(续4)
Chapter 5. Perturbation Theory
为求 En
(0)* n
(1),以 ψ ( 0 )左乘(9)式两边,并对空间积分: 左乘( 式两边,并对空间积分:
n
(0)* (0) (0)* (0) (0) E (0))ψ(1)dτ = En(1) ψn ψn dτ ψn H′ψn dτ ∫ ∫ ∫ψ (H n n
将此式展开, 将此式展开,便得到一个两边均为 λ 的幂级数等 式,此等式成立的条件是两边 λ 同次幂的系数应相 于是得到一列方程: 等,于是得到一列方程:
8
5.1 非简并定态微扰理论(续2)
Chapter 5. Perturbation Theory
λ: 1 λ : (H(0) En(0) )ψn(1) =(H(1) En(1) )ψn(0)
( ( ( ′ E n1) = ∫ψ n0 )* H ′ψ n0 ) dτ = H nn
( ( ( ( ( ( ψ n0)* (H (0) En0) )ψ n1)dτ = ∫[(H (0) En0) )ψ n0) ]*ψ n1)dτ = 0 ∫
( ′ 在 ψ n0)态中的平均值。 能量的一级修正值 E 等于 H 态中的平均值 。
是基本部分, 其中 H (0) 是基本部分,与它对应的本征值和本征函 数由以下方程求出
大学课件 量子力学 微扰理论
a(1) kn
[
E
(0 k
)
E
(0 n
)
]
|
(0 k
)
[ Hˆ (1)
E n( 1 )
]
|
(0 n
)
k 1
左乘 <ψm (0) |
a(1) kn
[
E (0) k
E (0) n
]
(0) m
|
(0) k
(0) m
|
Hˆ (1)
|
(0 n
)
E (1) n
(0) m
|
(0) n
k 1
考虑到本征基矢的正交归一性:
2)体系 Hamilton 量显含时间——状态之间的跃迁问题 1.与时间 t 有关的微扰理论; 2.常微扰。
2. 非简并定态微扰理论
(1)微扰体系方程 (2)态矢和能量的一级修正 (3)能量的二阶修正 (4)微扰理论适用条件 (5)讨论 (6)实例
(1)微扰体系方程
微扰法不是量子力学所特有的方法,在处理天体运行的 天体物理学中,计算行星运行轨道时,就是使用微扰方法。计算 中需要考虑其他行星影响的二级效应。
|
(1) n
|
(0 k
)
(0 k
)
|
(1) n
a (1) kn
|
( 0 )
k
k 1
k 1
代回前面的第二式并计及第一式得:
akn(1) = <ψk (0) |ψn (1) >
[ Hˆ (0) En(0) ]
a (1) kn
|
(0 k
)
[ Hˆ (1)
E n( 1 )
]
|
微扰理论
( a + b ) = a + na
n
n
n- 1
b + L + n ab
n- 1
+ b
9
n
根据等式两边λ同幂次的系数应该相等 根据等式两边λ同幂次的系数应该相等 应该相等:
λ0 : λ1 : λ2 :
LL
( ( ( ˆ H ( 0 )ψ n0 ) = E n0 )ψ n0 ) ( ( ( ( ( ( ˆ ˆ H ( 0 )ψ n1 ) + H ( 1 )ψ n0 ) = E n0 )ψ n1 ) + E n1 )ψ n0 ) ˆ ˆ H ( 0 )ψ ( 2 ) + H ( 1 )ψ ( 1 ) = E ( 0 )ψ ( 2 ) + E ( 1 )ψ ( 1 ) + E ( 2 )ψ ( 0 ) n n n n n n n n
其中H 所描写的体系是可以精确求解的, 其中H(0) 所描写的体系是可以精确求解的, 本征值E 其本征值En(0) ,本征矢 Ψn(0) 。则:
ˆ ( 0)ψ ( 0) = E (0)ψ (0) H n n n
6
ˆ (0)ψ (0) = E(0)ψ (0) H n n n
时引入微扰,使体系能级发生移动, 当 H ′≠ 0 时引入微扰,使体系能级发生移动, 状态由ψ 由 En(0) → En ,状态由ψn(0)→ψn 。
8
代入Schrödinger方程得: 方程得: 代入 方程得
( ( ( ˆ ˆ ( H ( 0 ) + λH (1) )(ψ n0) + λψ n1) + λ2ψ n2) + L)
( ( ( ( ( ( = ( En0 ) + λEn1) + λ2 En2) + L)(ψ n0) + λψ n1) + λ2ψ n2) + L)
周世勋量子力学教程第二版课件量子力学第五章
E(2) n
l
a(1) l
Hˆ
(1) nl
l
Hˆ l(n1)
Hˆ
(1) nl
E(0) n
E(0) l
l
Hˆ
(1) nl
2
E(0) n
E(0) l
其中: Hˆ l(n1) Hˆ n(1l)*
(因 Hˆ l(n1)
(0)* l
Hˆ
(1)
(0) n
dx
[
Hˆ
(1)
E(1) n
)
(0) n
(2)
2 :
(Hˆ n(0)
E(0) n
)
(2) n
(Hˆ n(1)
E(1) n
)
(1) n
E(2) (0) nn
(3)
逐级求解。
6
一级近似:
(1)能量一级近似 由(2)式:
(Hˆ n(0)
E(0) n
)
(1) n
(Hˆ n(1)
E(1) n
En(0)
(1) n
2 En(0)
(2) n
En(1)
(0) n
E2 (1) (1) nn
E3 (1) (2) nn
L
5
比较的同次项
0 :
(Hˆ n(0)
E(0) n
)
(0) n
0
(1)
1 :
(Hˆ n(0)
E(0) n
)
(1) n
量子力学第五章微扰理论
H
'ψ
(0) n
dx
=
〈ψ
(0) k
H
'
ψ
(0) n
〉
(5 .1.14)
并将它代人(5.1.13)式,当 n = k 时,得
当 n ≠ k 时,得
E
(1) n
=
H
' nn
a (1) k
=
k
(5.1.15) (5.1.16)
注意(5.1.16)式只在
n
≠
k
时成立。对(5.1.11)式右端中的展开系数,还有
第五章 微扰理论
在量子力学中,由于体系的哈密顿算符往往比较复杂,薛定谔方程能够严格求解的情况寥寥可 数。因此,引入各种近似方法以求解薛定谔方程的问题就显得十分重要。常用的近似方法有微扰论、 变分法等。不同的近似方法有不同的适用范围。在本章中将讨论分立谱的微扰理论、变分法。
由于体系的哈密顿算符既可以显含时间,又可以不显含时间,因此,近似方法也可以分为适用 于定态的和适用于非定态的两类。本章将先讨论定态的微扰理论、变分法,然后再讨论含时间的微 扰理论以及光的发射和吸收等问题。
在后面再详细说明。由于 H 不显含 t,因此,无论 H (0) 或是 H ' 均不显含 t。
(2) H (0) 的本征值和本征函数已经求出,即 H (0) 的本征方程
ψ ψ H = E (0) (0) n
(0) (0) nn
(5.1.4)
中,能级
E
(0 n
)
及波函数ψ
(0 n
)
都是已知的。微扰论的任务就是从
(1) n
+
λ2ψ
(2) n
+ ...)
量子力学 第五章 微扰理论
分成两部分:
Hˆ Hˆ (0) Hˆ ,
Hˆ (0)
E (0)
(0)
n
n
(0) n
待求解的体系Ĥ叫做微扰体系。本征值和本征
函数可精确求解的体系Ĥ(0)叫做未微扰体系,Ĥ′可
以看做微扰。微扰论的具体形式多样但基本精神
相同,即逐级近似。
微扰理论适用范围:分立能级及所属波函数的修正 7
§5.1 非简并定态微扰理论
而此处所讨论的两个级数的高级项都不知道。无法
判断级数的收敛性,我们只能要求级数已知项中,
后项远小于前项。由此我们得到微扰理论适用条件
是:
H m n
E(0) n
注意:ψn(1) 和ψn(1) +aψn(0)(a为任意常数)都是
第二个方程的解。
12
§5.1 非简并定态微扰理论
由这组方程可以逐级求得其各级修正项,即求得
能量和波函数的近似解. λ的引入只是为了按数量级 分出以上方程,达到此目的后,便可省去。
Hˆ Hˆ (1)
En
E(0) n
E (1) n
E(2) n
l
a(1) (0) ll
可使得展开式中不含ψn(0)
n
(0) n
n(1() 假定波函数只含一级修正,且是归一化的)
n nd
(
(0) n
(1) n
)
(
(0) n
(1) n
)d
(0)
n
n(0)d
n(0) n(1)d
(1)
n
n(0)d
n(1) n(1)d
1
(an(1)
a(1) n
一.非简并微扰体系方程 Hˆ Hˆ (0) Hˆ
量子力学微扰理论
E ( 2) n
E(0) n
H nn
m
Hm n 2
E(0) n
E(0) m
(23)
第五章 微扰理论 5.1、 非简并定态微扰理论
5.1.3、讨论
5.1.3、讨论
微扰理论适用的条件:级数收敛
Hm n 2 1
E(0) n
E(0) m
(
E(0) n
E(0) m
)
因此,要求,
a) 矩阵元 Hm n 很小,即: H 是一个小的扰动;
5.1.3、讨论
为求解能级 Enj
E(0) n
E (1) nj
所对应的零级近似波函数,
可以把
E (1) nj
的值带回(3)式,
k
( H li
E (1) n
il )ci(0)
0,
l 1,2,L ,k 。
(3)
i1
k
解出一组
c(0) i
,再带入(2)式,
(0) n
ci(
0) i
,即可。
i1
第五章 微扰理论 5.3、 氢原子的一级斯塔克效应
5.1.3、讨论
5.3、 氢原子的一级斯塔克效应
斯塔克(Stark)效应:将原子置于外电场中,它发射的光谱
线会发生分裂的现象。
氢原子:能级的裂距 E1(外电场)一级斯塔克效应
碱金属:… …
E2
第五章 微扰理论 5.3、 氢原子的一级斯塔克效应
5.1.3、讨论
无外场时,氢原子中,库仑势( es2 r )具有球对称性,
5.1.2、 非简并情况下的微扰
(b) 波函数的一级修正
当k
n
时,由
C (1) k
量子力学第五章微扰理论
。
(1) n al(1) l(0) l 1
上式可以选取 a (1)
n
( ,使得展开式中不含 n0) 项,即 0
( ( 使 an1) n0) 0 ,则上展开式可改写为
8
( n1) al(1) l(0) l n
or
(1) n al(1) l(0) l
五、求非简并定态微扰步骤 ˆ 1 写出体系的哈密顿算符 H n En n ˆ ˆ ˆ 2 把哈密顿算符写成 H H (0) H
( ˆ ˆ 3 写出或求出 H (0) 的本征值与本征函数 En0) 及 ψ n H ˆ H ( ( ˆ ( 4 利用 En1) n0 )* H n0 ) d H nn 及 H mn (1) ( n m0) 求能级及波函数的一级近似 ( ( En0) Em0) m n
0: 1:
ˆ ( H (0) En(0) ) n(0) 0 ˆ ˆ ( H (0) En(0) ) n(1) ( H (1) En(1) ) n(0)
ˆ ˆ 2: ( H (0) En(0) ) n(2) ( H (1) En(1) ) n(1) En(2) n(0)
求零级近似波函数
组 Cij0 的值,即可求得零级近似波函数
将能量一级修正 En1的 k 个根分别代回方程(4),可得 k
nj0 C ji0i
i
(7)
17
即
(1) ' H '11 Enj H 12 (1) H '21 H '22 Enj H' H 'k 2 k1
2 2 e2 ˆ H 2m r
量子力学第5章 周世勋
,
(0)
(0) k
Ek Ek
(0)
k k
(0)
2. 一级近似 ( H 0 E
0
( 0)
)
(1)
(E
(1)
W )
(0)
为求 E n1 ,以 n 左乘上式两边,并对空间积分:
n
( 0 )*
ˆ (H
0
n
( 0)
E n ) d E n
5.1 非简并定态微扰理论
问题:求解非简并的能量本征值和能量本征态 方法:用微扰的近似方法求解定态薛定谔方程
设体系的哈密顿算符 H不显含时间
其能量本征值方程为 : H E
系统满足以下条件:
1.假定体系的哈密顿算符 H 可以分成两部分:
H H 0 H H 0 W
1
ˆ H
(0)
n
(0)
En
(0)
(0) n
(3)
ˆ 而 H 相对很小,可视为加在 Hˆ ( 0 ) 上的微扰。现在的 ˆ 和 0 ,求出相应的修正项以得到 任务是通过 H n E 和 的近似解,为此,引入一个很小的实数 , ˆ 并将 H 表示为
(4) ˆ H W 相应地,将 E n 和 n 表为实参数 的级数形式:
Transition Probability
5.6与时间有关的微扰理论
Perturbation theory with time
5.7 跃迁几率
Transition Probability
5.8光的发射和吸收
Light emission and absorption
5.9选择定则
Selection rule
第五章 微扰理论1
13
例2 二维空间哈密顿算符 H 在能量表象中的矩阵表示为
E1( 0) a b H (0) b E2 a
其中 a, b 为实数。
(1)用微扰公式求能量至二级修正; (2)求能量精确解。
分析
微扰问题的关键是求出 H mn
ˆ 本问题的核心:从 H 的矩阵中找到 H 的矩阵元 H mn 。
波函数一级修正
H mn ( m0) ( ( En0) Em0)
( H n0) d
H mn
( 0) * m
核心计算!!
8
一级近似: (3) 二级近似
( ( En En0) En1)
( ( n n0) n1)
由方程
利用
: ( H E )
(1 Enj ) ( j 1,2, k ) 所以简并情况下能级的 上可解出 k 个根:
一级近似为
En E
( 0) n
E
(1) nj
(1) 若 k 个 Enj 各不相等,则简并能级
E n分裂成
k 个,简并完全消除
21
(1) 若 Enj 的 k 个根中仍有重根,则简并只是部分消除。
改写为线性方程组
( E1( 0) a E ) b 0 ( b ( E20) a E ) 0
、
有非零解的条件是
E1( 0) a E b 0 ( 0) b E2 a E
(久期方程)
16
由此可得关于本征值 E 的二次方程
( ( E 2 ( E1(0) E20) 2a) E [( E1(0) a)( E20) a) b 2 ] 0
山东大学量子力学 第五章 微扰理论
(0) n
H kn ( 0) ( 0) k ( 0) k n En - Ek
(14)
(13)、(14)式成立的条件(逐步近似法适用的条件)为
| ck | 1,
即
( 0) ( 0) || En | Hkn - Ek |
(15)
(0) 如果紧靠着 En 存在别的 Ek(0) ,即使 H H 0 ,
-
n 2
1 ( 0) n -1 ( 0) (0) E n - E n -1
n1 2
-
e
n 2
1 (0) n -1
1
3
n1 2
1 (0) n1 -
(0) - n n -1
e
2
n 1
(0) n1
微扰论也不适用。
例
带电量为e的一维谐振子,受到恒定弱电场 的微 扰 H -ex 作用 试用微扰论求能级的变化,并与精确解比较。
将 Hamilton 量分成H0 + H’ 两部分,在弱电 场下,上式最后一项很小,可看成微扰。 (1)电谐振子Hamilton 量
2 2 d ˆ H 2 2 dx 1 2
n 1,2,Lk L
(3)
(6)
( 0) ( 0) ˆ ) ( 0) c ( E ( 0) H ˆ ) ( 0) E ( 0) E ( En H c k k n k n n n k k k n k n
用 n
(0)*
左乘(6)式并积分就得到
(0) c k H nk En H nn En k n
ˆ H ˆ ) E (H 0 n n n
(4)
ˆ H ˆ )( ( 0) C ( 0) ) E ( ( 0) c ( 0) ) (H k k k k 0 n n n
§5 微扰理论
∧
∧
用ψ n( 0)∗ 左乘两边后对整个空间积分得:
∫ψ n ( H
( 0 )∗
∧
∧ ( 0)
− E n )ψ n dτ = − ∑ al H ′ nl + E n
(0 ) ( 2) ' (1) l≠ n
(1 )
∑
l≠ n
'
al δ nl + En
(1)
( 2)
同样因 H ( 0) 是厄密算符,等式左边为零,而右边第二项也等于零, 所以能量微扰二级修正等于 : ..........
(H
∧ ( 0)
∧
∧
− E n )ψ n = En
( 0) (1 )
(1 )
∑ c i ϕ i − ∑ ci H ′ ϕi
(0 ) ( 0) i =1 i =1
k
k
∧
以 ϕ i∗ 左乘上式,并对整个空间积分,得:
∑(H ′ − E
li i =1
k
∧ (1) n
δ li ) ci
( 0)
=0
l = 1, 2, L, k
( 0) H (0 ) ϕ i = E n ϕi ∧
∧
i = 1,2,L , k
(5.1.23)
把零级波函数ψ n(0 ) 写成 ϕ 的线性组合
ψ n = ∑ ci ϕ i
( 0) (0 ) i =1 k
(5.1.24)
代入 ( H ( 0) − E n( 0) )ψ n(1) = −( H (1) − En(1) )ψ n( 0) 式得
1) a (m =
H′ mn ( 0) E − Em
( 0) n
(5.1.17)
量子力学第五章微扰理论
目
的
1.掌握非简并定态微扰理论波函数一级修正和能级一级、二级修正的计算。
2.对于简并的微扰论,应能掌握零级波函数的研定和一级能量修正的计算。
3.能解释氢原子一级斯塔克效应。
4.了解定态及其对氦原子基态的研究
6.关于与时间有关的微扰论要求如下:
a.了解由初态 跃迁到末态 的概率表达式,特别是常微扰和周期性微扰下的表达式;
b.理解由微扰矩阵元 可以确定选择定则;
c.理解能量与时间之间的不确定关系: 。
d.理解光的发射与吸收的爱因斯坦系数以及原子内电子由 态跃迁到 态的辐射强度均与矩阵元 的模平方 成正比,由此可以确定偶极跃迁中角量子数和磁量数的选择定则。。
教
学
重
点
重点:非简并定态微扰理论
难点:简并态微扰,变分法及含时微扰
理解光的发射与吸收的爱因斯坦系数以及原子内电子由i?态跃迁到f?态的辐射强度均与矩阵元fir的模平方2fir成正比由此可以确定偶极跃迁中角量子数和磁量数的选择定则
南华大学课程教案
课程名称:量子力学与电动力学授课教师:路兴强
量子力学部分
章次名称
第五章微扰理论
授课学时
总学时:8课堂讲授:8实验:上机:
教
教
学
方
法
在采用的教学
手段中:打(√)
课堂讲授
√
使用教模(具)
挂图
参观
现代化手段
幻灯机
投影仪
电视录像
多媒体
√
CAI情况
软件名称
上机学时
教
学
内
容
本章重点讨论两种应用最广的近似方法:微扰论和变分法。微扰论是各种量子力学近似方法中最基本的一种,它的许多结果几乎成为量子力学理论的组成部分。变分法则特别适用于研究体系的基态。变分法可以和微扰论配合使用,得出精确度的较高的结果。本章重点是非简并定态微扰理论,对于简并态微扰,变分法及含时微扰等要基本了解。
第五章 微扰理论
第五章 微扰理论5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 rze r U 024πε-=)()(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出, ⎰∞-=r E d r e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,4344102003003303420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rE d re E d r e r U ⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(822030020022203002r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε 由于0r 很小,所以)(2ˆˆ022)0(r U H H+∇-=<<'μ,可视为一种微扰,由它引起的一级修正为(基态r a Ze a Z 02/1303)0(1)(-=πψ) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∴0a r <<,故102≈-r a Z e 。
∴ ⎰⎰+--=0302404220330024)1(1)3(2r r r d ra e Z dr r r r r a e Z Eπεπε 2030024505030300242)5(2r a e Z r r r a e Z πεπε+--= 23002410r a e Z πε= 20302452r a e Z s = #5.2 转动惯量为I 、电偶极矩为D 的空间转子处在均匀电场在ε中,如果电场较小,用微扰法求转子基态能量的二级修正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
(0) n
9
2:
(Hˆ (0)
E(0) n
)
(2) n
(Hˆ
(1)
E (1) n
)
(1) n
E (2) (0) nn
10
M
M
k:
(Hˆ
(0)
E(0) n
)
(k) n
(Hˆ
(1)
E (1) n
)
(k n
1)
En(2)
( k 2) n
L
En(k
)
(0) n
11
5
由这组方程可以逐级求得其各级修正项,即求得能量和
1 写出体系的哈密顿算符 Hˆn Enn
2 把哈密顿算符写成 Hˆ Hˆ (0) Hˆ
3
写出或求Hˆ 出 Hˆ
(0)
的 本Hˆ 征值与本征函数
E (0) n
及
ψ (0) n
4 利用 En(1)
(0)* n
Hˆ
(0) n
d
Hnn
及
(1) n
mn
H m n
E (0) n
E (0) m
(0) m
能量的一级修正值 En(等1) 于 在Hˆ 态中n(0)的平均值。
已知 En后(1) ,由(9)式可求波函数的一级修正 。n(1)
将 n(1)按 Hˆ的(0本) 征函数系 展l(0开)
(1) n
a(1) (0) ll
l 1
上式可以选取
a (1) n
,0使得展开式中不含
项,n(0即)
使 an(1) n(0),则0 上展开式可改写为
mn
H m n
E (0) n
E (0) m
(0) m
三、高级修正(能量的二级修正)
由二级近似方程可以求得能量的而二级近似
(19) (20)
10
E(2) n
(0)* n
Hˆ
(1) n
d
m
Hm n
E(0) n
E(0) m
(0)* n
Hˆ
(0) m
d
∑ =
m
′| Hn′m |2 En(0) Em(0)
Hˆ Hˆ (0) Hˆ
(2)
其中 Hˆ (0)是基本部分,与它对应的本征值和本征函数由以 下方程求出
Hˆ
(0)
(0) n
E(0) (0) nn
(3)
3
而 Hˆ 相对很小,可视为加在 Hˆ (0上) 的微扰。现在的任务是
通过 Hˆ 和 n0,求出相应的修正项以得到 E和 的近 似解,为此,引入一个很小的实数 ,并 将Hˆ 表示为
8
(1) n
a (1) l
(0) l
or
ln
代入(9)式得
(1) n
a(1) (0) ll
(16)
l
El(0)al(1)
E (0)
(0)
l
n
a(1) (0) ll
E(1) (0) nn
Hˆ
(0) n
l
l
以
(0)* m
(m左 乘n),并积分,并注意
的正交l(0归) 一性
得到:m(0)* l(0)d ml
E (1) n
2
E(2) n
L
)(
(0) n
(1) n
2
(2) n
L
)
(7)
将此式展开,便得到一个两边均为 的幂级数等式,此等式 成立的条件是两边 同次幂的系数应相等,于是得到一系列
方程:
0:
(Hˆ (0)
E(0) n
)
(0) n
0
8
1:
(Hˆ (0)
E(0) n
)
(1) n
(Hˆ
(1)
E (1) n
(El(0) En(0) )al(1)ml
(0)* m
Hˆ
n(0)d
l
令微扰矩阵元
Hm n
(0)* m
Hˆ
(0) n
d
(17) (18)
9
则:
( En(0) Em(0) )am(1) H m n
a (1) m
H m n
E(0) n
E(0) m
代入(16)式,得波函数的一级修正为
(1) n
n
n(0)d
n(0)*Hˆ n(0)d
注意到 Hˆ 是0 厄米算符, 是En实0 数,则有
(15)
(0)* n
(
Hˆ
(0)
En(0) ) n(1)d
[(Hˆ (0)
En(0)
)
(0) n
]*
n(1)d
0
7
再注意 n的0 正交归一性,由(15)式得
En(1) n(0)*Hˆ n(0)d Hnn
于是,能量的二级近似
En
E(0) n
Hnn
m
| Hnm |2
E(0) n
E(0) m
波函数的一级近似
n
(0 n
)
m
Hm n
E(0) n
E(0) m
(0 m
)
(22) (23)
11
四、微扰理论适用的条件
H
′
mn
En(0) Em(0)
<< 1
(En(0) Em(0) )
(26)
五、求非简并定态微扰步骤
Hˆ Hˆ (1)
(4)
相应地,将 En和 表n 为实参数 的级数:
EnE(0) n来自E(1) n2
E(2) n
L
kE
(k) n
L
(5)
n
(0) n
(1) n
2
(2) n
L
k n (k) L
(6)
将以上几式代入(1)式得:
4
(Hˆ (0)
Hˆ
(1)
)(
(0) n
(1) n
2
(2) n
L
)
(
E(0) n
En2、
2
n
为二级修正
Enk
、
k
n
为 k级修正
6
二、一级修正
当 En0 非简并时,En0的本征函数只有一个,它就是波函数
的零级近似 。n0 (设 n是0 归一化的)。
为求 E,n1以 左乘n0(9)式两边,并对整个空间积分:
(0)* n
(
Hˆ
(0)
En(0) ) n(1)d
En(1)
(0)*
求能级及波函数的一级近似
∑ 5 利用
E
(2 n
)
=
m
′| Hn′m |2 En(0) Em(0)
求能级的二级近似
12
5.2 简并情况下的微扰理论
若 En(是0) 度k 简并的,则有 k个本征函数 1,2 , k
满足方程
波函数的近似解. 的引入只是为了从方程(7)按数量级
L 分出(8)、(9)、 、(11)等方程,达到此目的后,
便可省去 。
En
E(0) n
E (1) n
E(2) n
L
E
(k) n
L
n
(0) n
(1) n
(2) n
L
n (k) L
(12) (13)
Hˆ (1) Hˆ
(14)
En1、
1
n
为一级修正,
Chapter 5 微扰理论
Perturbation Theory
1
引言
前面已讨论了量子力学的基本理论,并应用薛定谔方 程求得了一些简单问题的解。
在实际微观体系中,由于哈密顿算符的复杂性,能求 出薛定谔方程精确解的问题是极少的。例如一个氦原子 体系就难以得到精确解。因此,在量子力学中,用近似 方法求薛定谔方程近似解就显得尤为重要。
近似方法很多,微扰方法和变分法就是其中两种重要 的近似方法。微扰方法是通过简单问题的精确解来求得 复杂问题的近似解。微扰方法又视其哈密顿算符是否与 时间有关分为定态和含时两大类。
2
5.1 非简并定态微扰理论
一、基本方程
设体系的哈密顿算符不显含时间,则其定态薛定谔方程为
Hˆ n Enn
(1)
当Hˆ比较复杂,方程(1)难求解时,将 H写ˆ 成: