宁波市海曙区2016年初中毕业生模拟考试数学试题含答案
2016届浙江宁波海曙区中考一模试卷数学试卷(带解析)
绝密★启用前2016届浙江宁波海曙区中考一模试卷数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:139分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、 A .2016B .﹣2016C .±2016D .【答案】A【解析】试题分析:﹣2016的绝对值是|﹣2016|=2016, 故选:A . 考点:实数的性质二、选择题(题型注释)2、如图,平面直角坐标系中,平行四边形OABC 的顶点C (3,4),边OA 落在x 正半轴上,P 为线段AC 上一点,过点P 分别作DE ∥OC ,FG ∥OA 交平行四边形各边如试卷第2页,共25页图.若反比例函数的图象经过点D ,四边形BCFG 的面积为8,则k 的值为( )A .16B .20C .24D .28【答案】B 【解析】试题分析:由图可得,S ▱ABCD ,又∵S △FCP =S △DCP 且S △AEP =S △AGP , ∴S ▱OEPF =S ▱BGPD ,∵四边形BCFG 的面积为8, ∴S ▱CDEO =S ▱BCFG =8,又∵点C 的纵坐标是4,则▱CDOE 的高是4,∴OE=CD=,∴点D 的横坐标是5, 即点D 的坐标是(5,4),∴4=,解得k=20,故选B .考点:反比例函数系数k 的几何意义、平行四边形的性质3、如图,半径为1cm 的⊙O 中,AB 为⊙O 内接正九边形的一边,点C 、D 分别在优弧与劣弧上.则下列结论:①S 扇形AOB =πcm 2;②;③∠ACB=20°;④∠ADB=140°.错误的有( )A .0个B .1个C .2个D .3个【答案】B 【解析】试题分析:∵AB 为⊙O 内接正九边形的一边,∴∠AOB==40°,∴S 扇形AOB ==π(cm 2),的长==π(cm );∠ACB=∠AOB=20°;∴①②③正确;∠ADB=180°﹣20°=160°; ∴④错误;错误的有1个, 故选:B .考点:正九边形的性质、扇形面积公式和弧长公式、圆周角定理以及圆内接四边形的性质4、定义:将一个图形L 沿某个方向平移一段距离后,该图形在平面上留下的痕迹称之为图形L 在该方向的拖影.如图,四边形ABB′A′是线段AB 水平向右平移得到的拖影.则将下面四个图形水平向右平移适当距离,其拖影是五边形的是( )【答案】A 【解析】试题分析:只有三角形的拖影是五边形, 故选A考点:平移变换的作图试卷第4页,共25页5、如图,△ABC 中,BA=BC ,BD 是三角形的角平分线,DE ∥BC 交AB 于E ,下列结论:①∠1=∠3;②DE=AB ;③S △ADE =S △ABC .正确的有( )A .0个B .1个C .2个D .3个【答案】D 【解析】试题分析:∵BA=BC ,BD 平分∠ABC , ∴∠1=∠2,BD ⊥AC ,且AD=CD , ∵DE ∥BC ,∴∠2=∠3,△ADE ∽△ACB , ∴∠1=∠3,故①正确;,即DE=BC ,故②正确;由△ADE ∽△ACB ,且=可得=()2=,即S △ADE =S △ABC ,故③正确;故选:D .考点:等腰三角形的性质、平行线的性质及相似三角形的判定与性质6、如图,在6×6的正方形网格中,连结两格点A ,B ,线段AB 与网格线的交点为M 、N ,则AM :MN :NB 为( )A .3:5:4B .1:3:2C .1:4:2D .3:6:5【答案】B 【解析】试题分析:过A 点作AE ⊥BE ,交于点E ,连接MC 、ND 、BE , ∵是一个正方形, ∴MC ∥ND ∥BE ,∴AM :MN :NB=AC :CD :DE=1:3:2, ∴AM :MN :NB=1:3:2. 故选:B .考点:平行线分线段成比例定理7、如图,将长方体表面展开,下列选项中错误的是( )【答案】C 【解析】试题分析:A 、是长方体平面展开图,不符合题意; B 、是长方体平面展开图,不符合题意;C 、有两个面重合,不是长方体平面展开图,不符合题意;D 、是长方体平面展开图,不符合题意.试卷第6页,共25页故选:C .考点:长方体的展开图8、下表为宁波市2016年4月上旬10天的日最低气温情况,则这10天中日最低气温的中位数和众数分别是( ) 温度(℃) 11 13 14 15 16 天数 1 5 2 1 1 A .14℃,14℃ B .14℃,13℃ C .13℃,13℃D .13℃,14℃【答案】C 【解析】试题分析:∵13出现了5次,它的次数最多, ∴众数为13. ∵共10天天气,∴根据表格数据可以知道中位数=(13+13)÷2=13,即中位数为13. 故选C .考点:中位数和众数9、已知三角形的两边长分别为3,4,则第三边长的取值范围在数轴上表示正确的是( )【答案】B 【解析】试题分析:已知三角形的两边长分别为3,4,则第三边长的取值范围为4﹣3<x <4+3,即1<x <7, 表示在数轴上为:故选B考点:数轴上表示不等式的解集 10、下列运算正确的是( ) A .a 3+a 3=a 6 B .a 2a 2=a 4 C .(2a )4=2a 4D .a 6÷a 3=a 2【答案】B 【解析】试题分析:A .a 3+a 3="2" a 3,故原题计算错误; B .a 2a 2=a 4 故原题计算准确; C .(2a )4=16a 4,故原题计算错误; D. a 6÷a 3=a 3故原题计算错误;考点:同底数幂的乘法、同底数幂的除法、积的乘方11、人工智能AlphaGo 因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为( ) A .0.2×107B .2×107C .0.2×108D .2×108【答案】B 【解析】试题分析:将“两千万”用科学记数法表示为:2×107, 故选:B考点:科学记数法的表示方法12、下列各式中,属于最简二次根式的是( )A .B .C .D .【答案】D 【解析】试题分析:被开方数含分母,不属于最简二次根式,A 错误;=2,不属于最简二次根式,B 错误; =2,不属于最简二次根式,C 错误;属于最简二次根式,D 正确; 故选:D .考点:最简二次根式的概念试卷第8页,共25页第II 卷(非选择题)三、填空题(题型注释)13、如图,已知△ABC 是一个水平放置圆锥的主视图,AB=AC=5cm ,,则圆锥的侧面积为 cm 2.【答案】15π 【解析】试题分析:圆锥底面圆的半径=5×=3(cm ),所以此圆锥的侧面积=2π35=15π(cm 2).故答案为15π. 考点:圆锥的计算14、如图,P (12,a )在反比例函数图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为_________ .【答案】【解析】 试题分析:∴a==5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan∠POH=,故答案为:.考点:反比例函数图象上点的坐标特征,锐角三角函数的定义及运用15、正五边形的一个内角的度数是_________【答案】108°【解析】试题分析:∵正多边形的内角和公式为:(n﹣2)×180°,∴正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=108°.考点:多边形的内角和计算公式16、x的值为时,分式无意义.【答案】-1【解析】试题分析:由分式无意义,得x+1=0,解得x=﹣1,故答案为:﹣1.考点:分式有意义的条件17、如图,矩形ABCD中,AD=6,CD=6+,E为AD上一点,且AE=2,点F,H分别在边AB,CD上,四边形EFGH为矩形,点G在矩形ABCD的内部,则当△BGC试卷第10页,共25页为直角三角形时,AF 的值是 .【答案】2或4 【解析】试题分析:如图过点G 作MN ⊥AB 垂足为M ,交CD 于N ,作GK ⊥BC 于K . ∵四边形EFGH 是矩形, ∴GH=EF ,GH ∥EF ,∠A=90°, ∴∠DNM+∠NMA=90°, ∴∠AMN=∠DNM=90°, ∵CD ∥AB , ∴∠NHG=∠AFE , 在△HNG 和△FAE 中,,∴△HNG ≌△FAE , ∴AE=NG=2,ED=GM=4,∵四边形NGKC 、四边形GMBK 都是矩形, ∴CK=GN=2,BK=MG=4,当∠CGB=90°时,∵△CGK ∽△GBK ,∴,∴GK=MB=CN=2,∴DN=AM=AB ﹣MB=6,∴四边形AMND 是正方形,设AF=x ,则FM=6﹣x , ∵△AEF ∽△MFG ,∴,试卷第11页,共25页∴∴x 2﹣6x+8=0, ∴x=2或4. ∴AF=2或4. 故答案为2或4考点:矩形的性质、全等三角形得到和性质、相似三角形的判定和性质18、已知抛物线y=2x 2+bx+c 与直线y=﹣1只有一个公共点,且经过A (m ﹣1,n )和B (m+3,n ),过点A ,B 分别作x 轴的垂线,垂足记为M ,N ,则四边形AMNB 的周长为 .【答案】22 【解析】试题分析:y=2x 2+bx+c=,∵抛物线y=2x 2+bx+c 与直线y=﹣1只有一个公共点,∴,得,∵抛物线y=2x 2+bx+c 经过A (m ﹣1,n )和B (m+3,n ),∴该抛物线的对称轴为:直线x==,∴b=﹣4(m+1),∴=2m 2+4m+1,∴y=2x 2+bx+c=2x 2﹣4(m+1)x+2m 2+4m+1,∴n=2×(m ﹣1)2﹣4(m+1)(m ﹣1)+2m 2+4m+1=7, 即AM=BN=7,∵A (m ﹣1,n ),B (m+3,n ),试卷第12页,共25页∴AB=(m+3)﹣(m ﹣1)=4,∴四边形AMNB 的周长为是:AM+MN+NB+BA=7+4+7+4=22, 故答案为:22.y=2x 2+bx+c=,∵抛物线y=2x 2+bx+c 与直线y=﹣1只有一个公共点,∴,得,∵抛物线y=2x 2+bx+c 经过A (m ﹣1,n )和B (m+3,n ),∴该抛物线的对称轴为:直线x==,∴b=﹣4(m+1),∴=2m 2+4m+1,∴y=2x 2+bx+c=2x 2﹣4(m+1)x+2m 2+4m+1,∴n=2×(m ﹣1)2﹣4(m+1)(m ﹣1)+2m 2+4m+1=7, 即AM=BN=7,∵A (m ﹣1,n ),B (m+3,n ), ∴AB=(m+3)﹣(m ﹣1)=4,∴四边形AMNB 的周长为是:AM+MN+NB+BA=7+4+7+4=22, 故答案为:22. 考点:二次函数的性质四、解答题(题型注释)19、先化简,后求值:,其中x=3.【答案】【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可试卷第13页,共25页试题解析:原式===,当x=3时,原式=.考点:分式的化简求值20、已知关于x 的方程x 2﹣5x+3a+3=0 (1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a 的取值范围.【答案】(1)x 1=2,x 2=3(2)a <【解析】试题分析:(1)把a=1代入原方程,然后利用因式分解法解方程即可;(2)根据方程两个不相等的实数根,得到根的判别式△>0,列出a 的不等式即可. 试题解析:(1)当a=1时,x 2﹣5x+6=0, (x ﹣2)(x ﹣3)=0, ∴x 1=2,x 2=3;(2)∵方程有两个不相等的实数根, ∴△=(﹣5)2﹣4(3a+3)>0,解得a <.考点:根的判别式21、在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同. (1)判断下列甲乙两人的说法,认为对的在后面括号内答“√”,错的打“×”. 甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件 ;乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球 ;试卷第14页,共25页(2)小明说:从箱子里摸出一个球,不放回,再摸出一个球,则“摸出的球中有白球”这一事件的概率为,你认同吗?请画树状图或列表计算说明.【答案】(1)√;×;(2)不认同; 【解析】试题分析:(1)由必然事件与随机事件的定义,即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的球中有白球的情况,再利用概率公式即可求得答案.试题解析:摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球.× 故答案为:√;×; (2)不认同. 画树状图得:∵共有6种等可能的结果,摸出的球中有白球的有2种情况,∴P (摸出的球中有白球)=.故不认同.考点:列表法或树状图法求概率22、李克强总理连续三年把“全民阅读”写入《政府工作报告》,足以说明阅读的重要性.某校为了解学生最喜爱的书籍的类型,随机抽取了部分学生进行调查,并绘制了如下的条形统计图(部分信息未给出).已知,这些学生中有15%的人喜欢漫画,喜欢小说名著的人数是喜欢童话的,请完成下列问题:试卷第15页,共25页(1)求本次抽取的学生人数;(2)喜欢小说名著、喜欢童话故事的学生各有多少人?并补全条形统计图; (3)全校共有2100名学生,请估计最喜欢“小说名著”的人数有多少?【答案】(1)60人(2)喜欢小说名著和童话故事的人数是:60﹣9﹣12=36(人),喜欢小说的人数是:36×=15(人),喜欢童话的人数是:36×=21(人),(3)525人 【解析】试题分析:(1)根据漫画的人数和所占的百分比即可求出总人数;(2)先求出喜欢小说名著和童话故事的总人数,再根据喜欢小说名著的人数是喜欢童话的,分别求出喜欢小说的人数和喜欢童话的人数,从而补全统计图;(3)用全校的总人数乘以最喜欢“小说名著”的人数所占的百分比,即可得出答案. 试题解析:(1)根据题意得: 9÷15%=60(人).答:本次抽取的学生人数是60人;(2)喜欢小说名著和童话故事的人数是:60﹣9﹣12=36(人),喜欢小说的人数是:36×=15(人),喜欢童话的人数是:36×=21(人),补图如下:试卷第16页,共25页(3)根据题意得:2100×=525(人).答:最喜欢“小说名著”的人数有525人. 考点:条形统计图 23、如图,⊙O 中,点A 为中点,BD 为直径,过A 作AP ∥BC 交DB 的延长线于点P .(1)求证:PA 是⊙O 的切线; (2)若,AB=6,求sin ∠ABD 的值.【答案】(1)AP 是⊙O 的切线(2)【解析】试题分析:(1)根据垂径定理得出AO ⊥BC ,进而根据平行线的性质得出AP ⊥AO ,即可证得结论;(2)根据垂径定理得出BE=2,在RT △ABE 中,利用锐角三角函数关系得出sin ∠BAO=,再根据等腰三角形的性质得出∠ABD=∠BAO ,即可求得求试卷第17页,共25页sin ∠ABD=sin ∠BAO=.试题解析:(1)证明:连结AO ,交BC 于点E . ∵点A 是的中点∴AO ⊥BC , 又∵AP ∥BC , ∴AP ⊥AO , ∴AP 是⊙O 的切线; (2)解:∵AO ⊥BC ,,∴,又∵AB=6∴sin ∠BAO=,∵OA=OB∴∠ABD=∠BAO ,∴ sin ∠ABD=sin ∠BAO=.考点:切线的判定,垂径定理的应用,等腰三角形的性质以及锐角三角函数关系 24、张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶50千米.假设加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.试卷第18页,共25页(1)求张师傅加油前油箱剩余油量y (升)与行驶时间t (小时)之间的关系式; (2)求出a 的值;(3)求张师傅途中加油多少升?【答案】(1)y=﹣8t+28 (2)a=3 (3)46 【解析】试题分析:(1)直接利用待定系数法求出一次函数解析式进而得出答案; (2)首先求出y=0时,t 的值,进而得出a 的值;(3)根据汽车的耗油量以及剩余油量和加油量之间关系得出等式求出答案. 试题解析:(1)设加油前函数解析式为y=kt+b (k≠0), 把(0,28)和(1,20)代入,得,解得:,故张师傅加油前油箱剩余油量y (升)与行驶时间t (小时)之间的关系式为:y=﹣8t+28; (2)当y=0时,﹣8t+28=0,解得:t=,故a=﹣=3;(3)设途中加油x 升,则28+x ﹣34=8×,解得:x=46,试卷第19页,共25页答:张师傅途中加油46升. 考点:一次函数的应用25、定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD 中,∠ABC=90°,若AB=2,BC=3,则BD= ; ②如图2,直角坐标系中,A (0,3),B (5,0),若整点P 使得四边形AOBP 是准矩形,则点P 的坐标是 ;(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD 中,点E 、F 分别是边AD 、AB 上的点,且CF ⊥BE ,求证:四边形BCEF 是准矩形;(3)已知,准矩形ABCD 中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC 为等腰三角形时,请直接写出这个准矩形的面积是 ; ; .【答案】(1)(2)(5,3),(3,5)(3);;【解析】试题分析:(1)利用准矩形的定义和勾股定理计算,再根据准矩形的特点和整点的特点求出即可;(2)先利用正方形的性质判断出△ABE ≌△BCF ,即可;(2)分三种情况分别计算,用到梯形面积公式,对角线面积公式,对角线互相垂直的四边形的面积计算方法.试题解析:(1)①∵∠ABC=90, ∴BD=,故答案为,②∵A (0,3),B (5,0), ∴AB==6,设点P (m ,n ),A (0,0),试卷第20页,共25页∴OP==6,∵m ,n 都为整数,∴点P (3,5)或(5,3); 故答案为P (3,5)或(5,3); (2)∵四边形ABCD 是正方形, ∴AB=BC ∠A=∠ABC=90°, ∴∠EAF+∠EBC=90°, ∵BE ⊥CF ,∴∠EBC+∠BCF=90°, ∴∠EBF=∠BCF , ∴△ABE ≌△BCF , ∴BE=CF ,∴四边形BCEF 是准矩形; (3);;∵∠ABC=90°,∠BAC=60°,AB=2, ∴BC=2,AC=4,准矩形ABCD 中,BD=AC=4, ①当AC=AD 时,如图1,作DE ⊥AB ,∴AE=BE AB=1,∴DE=,∴S 准矩形ABCD =S △ADE +S 梯形BCDE=DE×AE+(BC+DE )×BE=×+(2+)×1=+;②当AC=CD 时,如图2,作DF ⊥BC , ∴BD=CD ,∴BF=CF=BC=,∴DF=,∴S 准矩形ABCD =S △DCF +S 梯形ABFD=FC×DF+(AB+DF )×BF=××+(2+)×=+;③当AD=CD ,如图3,连接AC 中点和D 并延长,连接BG ,过B 作BH ⊥DG , ∴BD=CD=AC=4,∴AG=AC=2,∵AB=2, ∴AB=AG ,试卷第22页,共25页∵∠BAC=60°, ∴∠ABG=60°, ∴∠CBG=30°在Rt △BHG 中,BG=2,∠BGH=30°, ∴BH=1,在Rt △BHM 中,BH=1,∠CBH=30°,∴BM=,HM=,∴CM=,在Rt △DHB 中,BH=1,BD=4,∴DH=,∴DM=DH ﹣MH=﹣,∴S 准矩形ABCD =S △DCF +S 四边形AMCD=BM×AB+AC×DM=××2+×4×(﹣)=2;故答案为;;.考点:四边形综合题,主要考查了新定义,勾股定理,梯形面积公式,对角线面积公式,三角形面积公式26、如图,平面直角坐标系中,O 为菱形ABCD 的对称中心,已知C (2,0),D (0,﹣1),N 为线段CD 上一点(不与C 、D 重合).(1)求以C 为顶点,且经过点D 的抛物线解析式;(2)设N 关于BD 的对称点为N 1,N 关于BC 的对称点为N 2,求证:△N 1BN 2∽△ABC ; (3)求(2)中N 1N 2的最小值;(4)过点N 作y 轴的平行线交(1)中的抛物线于点P ,点Q 为直线AB 上的一个动点,且∠PQA=∠BAC ,求当PQ 最小时点Q 坐标.【答案】(1)y=﹣(x ﹣2)2(2)△ABC ∽△N 1BN 2(3)(4)【解析】试题分析:(1)用待定系数法求,即可;(2)由对称的特点得出∠N 1BN 2=2∠DBC 结合菱形的性质即可;(3)先判定出,当BN ⊥CD 时,BN 最短,再利用△ABC ∽△N 1BN 2得到比例式,求解,即可;(4)先建立PE=m 2﹣m+2函数解析式,根据抛物线的特点确定出最小值.试题解析:(1)由已知,设抛物线解析式为y=a (x ﹣2)2把D (0,﹣1)代入,得a=﹣∴y=﹣(x ﹣2)2(2)如图1,连结BN .∵N 1,N 2是N 的对称点试卷第24页,共25页∴BN 1=BN 2=BN ,∠N 1BD=∠NBD ,∠NBC=∠N 2BC ∴∠N 1BN 2=2∠DBC ∵四边形ABCD 是菱形 ∴AB=BC ,∠ABC=2∠DBC∴∠ABC=∠N 1BN 2,∴△ABC ∽△N 1BN 2(3)∵点N 是CD 上的动点,∴点到直线的距离,垂线段最短, ∴当BN ⊥CD 时,BN 最短. ∵C (2,0),D (0,﹣1) ∴CD=,∴BNmin=,∴BN 1min =BN min =,∵△ABC ∽△N 1BN 2∴,N 1N 2min =,(4)如图2,过点P 作PE ⊥x 轴,交AB 于点E . ∵∠PQA=∠BAC ∴PQ 1∥AC∵菱形ABCD 中,C (2,0),D (0,﹣1)∴A (﹣2,0),B (0,1)∴l AB :Y=x+1不妨设P (m ,﹣(m ﹣2)2),则E (m ,m+1)∴PE=m 2﹣m+2∴当m=1时,此时,PQ 1最小,最小值为=,∴PQ 1=PQ 2=.考点:二次函数综合题,涉及到菱形的性质,待定系数法求解析式,相似三角形的性质和判定,对称的特点。
浙江宁波海曙区中考一模考试卷数学考试卷(解析版)(初三)中考模拟.doc
浙江宁波海曙区中考一模考试卷数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】A. 2016B. ﹣2016C. ±2016D.【答案】A【解析】试题分析:﹣2016的绝对值是|﹣2016|=2016,故选:A.考点:实数的性质【题文】下列各式中,属于最简二次根式的是()A. B. C. D.【答案】D【解析】试题分析:被开方数含分母,不属于最简二次根式,A错误;=2,不属于最简二次根式,B错误;=2,不属于最简二次根式,C错误;属于最简二次根式,D正确;故选:D.考点:最简二次根式的概念【题文】人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107 B.2×107 C.0.2×108 D.2×108【答案】B【解析】试题分析:将“两千万”用科学记数法表示为:2×107,故选:B考点:科学记数法的表示方法【题文】下列运算正确的是()A、a3+a3=a6B、a2a2=a4C.(2a)4=2a4 D、a6÷a3=a2【答案】B【解析】试题分析:A.a3+a3=2 a3,故原题计算错误;B.a2a2=a4故原题计算准确;C.(2a)4=16a4,故原题计算错误;D. a6÷a3=a3故原题计算错误;考点:同底数幂的乘法、同底数幂的除法、积的乘方【题文】已知三角形的两边长分别为3,4,则第三边长的取值范围在数轴上表示正确的是()【答案】B【解析】试题分析:已知三角形的两边长分别为3,4,则第三边长的取值范围为4﹣3<x<4+3,即1<x<7,表示在数轴上为:故选B考点:数轴上表示不等式的解集【题文】下表为宁波市2016年4月上旬10天的日最低气温情况,则这10天中日最低气温的中位数和众数分别是()温度(℃) 11 13 14 15 16天数 1 5 2 1 1A.14℃,14℃ B.14℃,13℃C.13℃,13℃ D.13℃,14℃【答案】C【解析】试题分析:∵13出现了5次,它的次数最多,∴众数为13.∵共10天天气,∴根据表格数据可以知道中位数=(13+13)÷2=13,即中位数为13.故选C.考点:中位数和众数【题文】如图,将长方体表面展开,下列选项中错误的是()【答案】C【解析】试题分析:A、是长方体平面展开图,不符合题意;B、是长方体平面展开图,不符合题意;C、有两个面重合,不是长方体平面展开图,不符合题意;D、是长方体平面展开图,不符合题意.故选:C.考点:长方体的展开图【题文】如图,在6×6的正方形网格中,连结两格点A,B,线段AB与网格线的交点为M、N,则AM:MN :NB为()A.3:5:4 B.1:3:2 C.1:4:2 D.3:6:5【答案】B【解析】试题分析:过A点作AE⊥BE,交于点E,连接MC、ND、BE,∵是一个正方形,∴MC∥ND∥BE,∴AM:MN:NB=AC:CD:DE=1:3:2,∴AM:MN:NB=1:3:2.故选:B.考点:平行线分线段成比例定理【题文】如图,△ABC中,BA=BC,BD是三角形的角平分线,DE∥BC交AB于E,下列结论:①∠1=∠3;②DE=AB ;③S△ADE=S△ABC.正确的有()A.0个 B.1个 C.2个 D.3个【答案】D【解析】试题分析:∵BA=BC,BD平分∠ABC,∴∠1=∠2,BD⊥AC,且AD=CD,∵DE∥BC,∴∠2=∠3,△ADE∽△ACB,∴∠1=∠3,故①正确;,即DE=BC,故②正确;由△ADE∽△ACB,且=可得=()2=,即S△ADE=S△ABC,故③正确;故选:D.考点:等腰三角形的性质、平行线的性质及相似三角形的判定与性质【题文】定义:将一个图形L沿某个方向平移一段距离后,该图形在平面上留下的痕迹称之为图形L在该方向的拖影.如图,四边形ABB′A′是线段AB水平向右平移得到的拖影.则将下面四个图形水平向右平移适当距离,其拖影是五边形的是()【答案】A【解析】试题分析:只有三角形的拖影是五边形,故选A考点:平移变换的作图【题文】如图,半径为1cm的⊙O中,AB为⊙O内接正九边形的一边,点C、D分别在优弧与劣弧上.则下列结论:①S扇形AOB=πcm2;②;③∠ACB=20°;④∠ADB=140°.错误的有()A.0个 B.1个 C.2个 D.3个【答案】B【解析】试题分析:∵AB为⊙O内接正九边形的一边,∴∠AOB==40°,∴S扇形AOB==π(cm2),的长==π(cm);∠ACB=∠AOB=20°;∴①②③正确;∠ADB=180°﹣20°=160°;∴④错误;错误的有1个,故选:B.考点:正九边形的性质、扇形面积公式和弧长公式、圆周角定理以及圆内接四边形的性质【题文】如图,平面直角坐标系中,平行四边形OABC的顶点C(3,4),边OA落在x正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA交平行四边形各边如图.若反比例函数的图象经过点D,四边形BCFG的面积为8,则k的值为()A.16 B.20 C.24 D.28【答案】B【解析】试题分析:由图可得,S▱ABCD,又∵S△FCP=S△DCP且S△AEP=S△AGP,∴S▱OEPF=S▱BGPD,∵四边形BCFG的面积为8,∴S▱CDEO=S▱BCFG=8,又∵点C的纵坐标是4,则▱CDOE的高是4,∴OE=CD=,∴点D的横坐标是5,即点D的坐标是(5,4),∴4=,解得k=20,故选B.考点:反比例函数系数k的几何意义、平行四边形的性质【题文】x的值为时,分式无意义.【答案】-1【解析】试题分析:由分式无意义,得x+1=0,解得x=﹣1,故答案为:﹣1.考点:分式有意义的条件【题文】正五边形的一个内角的度数是_________【答案】108°【解析】试题分析:∵正多边形的内角和公式为:(n﹣2)×180°,∴正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=108°.考点:多边形的内角和计算公式【题文】如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为_________ .【答案】【解析】试题分析:∵P(12,a)在反比例函数图象上,∴a==5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan∠POH=,故答案为:.考点:反比例函数图象上点的坐标特征,锐角三角函数的定义及运用【题文】如图,已知△ABC是一个水平放置圆锥的主视图,AB=AC=5cm,,则圆锥的侧面积为 cm2.【答案】15π【解析】试题分析:圆锥底面圆的半径=5×=3(cm),所以此圆锥的侧面积=2π35=15π(cm2).故答案为15π.考点:圆锥的计算【题文】如图,矩形ABCD中,AD=6,CD=6+,E为AD上一点,且AE=2,点F,H分别在边AB,CD上,四边形EFGH为矩形,点G在矩形ABCD的内部,则当△BGC为直角三角形时,AF的值是.【答案】2或4【解析】试题分析:如图过点G作MN⊥AB垂足为M,交CD于N,作GK⊥BC于K.∵四边形EFGH是矩形,∴GH=EF,GH∥EF,∠A=90°,∴∠DNM+∠NMA=90°,∴∠AMN=∠DNM=90°,∵CD∥AB,∴∠NHG=∠AFE,在△HNG和△FAE中,,∴△HNG≌△FAE,∴AE=NG=2,ED=GM=4,∵四边形NGKC、四边形GMBK都是矩形,∴CK=GN=2,BK=MG=4,当∠CGB=90°时,∵△CGK∽△GBK,∴,∴GK=MB=CN=2,∴DN=AM=AB﹣MB=6,∴四边形AMND是正方形,设AF=x,则FM=6﹣x,∵△AEF∽△MFG,∴l∵抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,∴,得,∵抛物线y=2x2+bx+c经过A(m﹣1,n)和B(m+3,n),∴该抛物线的对称轴为:直线x==,∴b=﹣4(m+1),∴=2m2+4m+1,∴y=2x2+bx+c=2x2﹣4(m+1)x+2m2+4m+1,∴n=2×(m﹣1)2﹣4(m+1)(m﹣1)+2m2+4m+1=7,即AM=BN=7,∵A(m﹣1,n),B(m+3,n),∴AB=(m+3)﹣(m﹣1)=4,∴四边形AMNB的周长为是:AM+MN+NB+BA=7+4+7+4=22,故答案为:22.y=2x2+bx+c=,∵抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,∴,得,∵抛物线y=2x2+bx+c经过A(m﹣1,n)和B(m+3,n),∴该抛物线的对称轴为:直线x==,∴b=﹣4(m+1),∴=2m2+4m+1,∴y=2x2+bx+c=2x2﹣4(m+1)x+2m2+4m+1,∴n=2×(m﹣1)2﹣4(m+1)(m﹣1)+2m2+4m+1=7,即AM=BN=7,∵A(m﹣1,n),B(m+3,n),∴AB=(m+3)﹣(m﹣1)=4,∴四边形AMNB的周长为是:AM+MN+NB+BA=7+4+7+4=22,故答案为:22.考点:二次函数的性质【题文】先化简,后求值:,其中x=3.【答案】【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可试题解析:原式===,当x=3时,原式=.考点:分式的化简求值【题文】已知关于x的方程x2﹣5x+3a+3=0(1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a的取值范围.【答案】(1)x1=2,x2=3(2)a<【解析】试题分析:(1)把a=1代入原方程,然后利用因式分解法解方程即可;(2)根据方程两个不相等的实数根,得到根的判别式△>0,列出a的不等式即可.试题解析:(1)当a=1时,x2﹣5x+6=0,(x﹣2)(x﹣3)=0,∴x1=2,x2=3;(2)∵方程有两个不相等的实数根,∴△=(﹣5)2﹣4(3a+3)>0,解得a<.考点:根的判别式【题文】在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.(1)判断下列甲乙两人的说法,认为对的在后面括号内答“√”,错的打“×”.甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件;乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球;(2)小明说:从箱子里摸出一个球,不放回,再摸出一个球,则“摸出的球中有白球”这一事件的概率为,你认同吗?请画树状图或列表计算说明.【答案】(1)√;×;(2)不认同;【解析】试题分析:(1)由必然事件与随机事件的定义,即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的球中有白球的情况,再利用概率公式即可求得答案.试题解析:摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球.×故答案为:√;×;(2)不认同.画树状图得:∵共有6种等可能的结果,摸出的球中有白球的有2种情况,∴P(摸出的球中有白球)=.故不认同.考点:列表法或树状图法求概率【题文】李克强总理连续三年把“全民阅读”写入《政府工作报告》,足以说明阅读的重要性.某校为了解学生最喜爱的书籍的类型,随机抽取了部分学生进行调查,并绘制了如下的条形统计图(部分信息未给出).已知,这些学生中有15%的人喜欢漫画,喜欢小说名著的人数是喜欢童话的,请完成下列问题:(1)求本次抽取的学生人数;(2)喜欢小说名著、喜欢童话故事的学生各有多少人?并补全条形统计图;(3)全校共有2100名学生,请估计最喜欢“小说名著”的人数有多少?【答案】(1)60人(2)喜欢小说名著和童话故事的人数是:60﹣9﹣12=36(人),喜欢小说的人数是:36×=15(人),喜欢童话的人数是:36×=21(人),(3)525人【解析】试题分析:(1)根据漫画的人数和所占的百分比即可求出总人数;(2)先求出喜欢小说名著和童话故事的总人数,再根据喜欢小说名著的人数是喜欢童话的,分别求出喜欢小说的人数和喜欢童话的人数,从而补全统计图;(3)用全校的总人数乘以最喜欢“小说名著”的人数所占的百分比,即可得出答案.试题解析:(1)根据题意得:9÷15%=60(人).答:本次抽取的学生人数是60人;(2)喜欢小说名著和童话故事的人数是:60﹣9﹣12=36(人),喜欢小说的人数是:36×=15(人),喜欢童话的人数是:36×=21(人),补图如下:(3)根据题意得:2100×=525(人).答:最喜欢“小说名著”的人数有525人.考点:条形统计图【题文】如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:PA是⊙O的切线;(2)若,AB=6,求sin∠ABD的值.【答案】(1)AP是⊙O的切线(2)【解析】试题分析:(1)根据垂径定理得出AO⊥BC,进而根据平行线的性质得出AP⊥AO,即可证得结论;(2)根据垂径定理得出BE=2,在RT△ABE中,利用锐角三角函数关系得出sin∠BAO=,再根据等腰三角形的性质得出∠ABD=∠BAO,即可求得求sin∠ABD=sin∠BAO=.试题解析:(1)证明:连结AO,交BC于点E.∵点A是的中点∴AO⊥BC,又∵AP∥BC,∴AP⊥AO,∴AP是⊙O的切线;(2)解:∵AO⊥BC,,∴,又∵AB=6∴sin∠BAO=,∵OA=OB∴∠ABD=∠BAO,∴ sin∠ABD=sin∠BAO=.考点:切线的判定,垂径定理的应用,等腰三角形的性质以及锐角三角函数关系【题文】张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶50千米.假设加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.(1)求张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式;(2)求出a的值;(3)求张师傅途中加油多少升?【答案】(1)y=﹣8t+28(2)a=3(3)46【解析】试题分析:(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)首先求出y=0时,t的值,进而得出a的值;(3)根据汽车的耗油量以及剩余油量和加油量之间关系得出等式求出答案.试题解析:(1)设加油前函数解析式为y=kt+b(k≠0),把(0,28)和(1,20)代入,得,解得:,故张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式为:y=﹣8t+28;(2)当y=0时,﹣8t+28=0,解得:t=,故a=﹣=3;(3)设途中加油x升,则28+x﹣34=8×,解得:x=46,答:张师傅途中加油46升.考点:一次函数的应用【题文】定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是;(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是;;.【答案】(1)(2)(5,3),(3,5)(3);;【解析】试题分析:(1)利用准矩形的定义和勾股定理计算,再根据准矩形的特点和整点的特点求出即可;(2)先利用正方形的性质判断出△ABE≌△BCF,即可;(2)分三种情况分别计算,用到梯形面积公式,对角线面积公式,对角线互相垂直的四边形的面积计算方法.试题解析:(1)①∵∠ABC=90,∴BD=,故答案为,②∵A(0,3),B(5,0),∴AB==6,设点P(m,n),A(0,0),∴OP==6,∵m,n都为整数,∴点P(3,5)或(5,3);故答案为P(3,5)或(5,3);(2)∵四边形ABCD是正方形,∴AB=BC∠A=∠ABC=90°,∴∠EAF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(3);;∵∠ABC=90°,∠BAC=60°,AB=2,∴BC=2,AC=4,准矩形ABCD中,BD=AC=4,①当AC=AD时,如图1,作DE⊥AB,∴AE=BE AB=1,∴DE=,∴S准矩形ABCD=S△ADE+S梯形BCDE =DE×AE+(BC+DE)×BE=×+(2+)×1=+;②当AC=CD时,如图2,作DF⊥BC,∴BD=CD,∴BF=CF=BC=,∴DF=,l∴∠ABG=60°,∴∠CBG=30°在Rt△BHG中,BG=2,∠BGH=30°,∴BH=1,在Rt△BHM中,BH=1,∠CBH=30°,∴BM=,HM=,∴CM=,在Rt△DHB中,BH=1,BD=4,∴DH=,∴DM=DH﹣MH=﹣,∴S准矩形ABCD=S△DCF+S四边形AMCD=BM×AB+AC×DM=××2+×4×(﹣)=2;故答案为;;.考点:四边形综合题,主要考查了新定义,勾股定理,梯形面积公式,对角线面积公式,三角形面积公式【题文】如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.【答案】(1)y=﹣(x﹣2)2(2)△ABC∽△N1BN2(3)(4)【解析】试题分析:(1)用待定系数法求,即可;(2)由对称的特点得出∠N1BN2=2∠DBC结合菱形的性质即可;(3)先判定出,当BN⊥CD时,BN最短,再利用△ABC∽△N1BN2得到比例式,求解,即可;(4)先建立PE=m2﹣m+2函数解析式,根据抛物线的特点确定出最小值.试题解析:(1)由已知,设抛物线解析式为y=a(x﹣2)2把D(0,﹣1)代入,得a=﹣∴y=﹣(x﹣2)2(2)如图1,连结BN.∵N1,N2是N的对称点∴BN1=BN2=BN,∠N1BD=∠NBD,∠NBC=∠N2BC∴∠N1BN2=2∠DBC∵四边形ABCD是菱形∴AB=BC,∠ABC=2∠DBC∴∠ABC=∠N1BN2,∴△ABC∽△N1BN2(3)∵点N是CD上的动点,∴点到直线的距离,垂线段最短,∴当BN⊥CD时,BN最短.∵C(2,0),D(0,﹣1)∴C D=,∴BNmin=,∴BN1min=BNmin=,∵△ABC∽△N1BN2∴,N1N2min=,(4)如图2,过点P作PE⊥x轴,交AB于点E.∵∠PQA=∠BAC∴PQ1∥AC∵菱形ABCD中,C(2,0),D(0,﹣1)∴A(﹣2,0),B(0,1)∴lAB:Y=x+1不妨设P(m,﹣(m﹣2)2),则E(m, m+1)∴PE=m2﹣m+2∴当m=1时,此时,PQ1最小,最小值为=,∴PQ1=PQ2=.考点:二次函数综合题,涉及到菱形的性质,待定系数法求解析式,相似三角形的性质和判定,对称的特点。
浙江省宁波市宁海县中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题
2016年某某省某某市某某县中考数学模拟试卷一、选择题1.在﹣5,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣5 B.2 C.﹣1 D.32.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab×107×107,结果用科学记数法表示为()×107×106C.1×107D.1×1064.在某班组织的跳绳比赛中,第一小组五位同学跳绳次数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.2095.下列正多边形的地砖中,不能铺满地面的正多边形是()A.正三角形 B.正方形C.正五边形 D.正六边形6.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26° B.36° C.46° D.56°8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B. =C.D.9.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A.B.C.D.10.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.11.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.12.把2X形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两X形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是()A.4m B.2(m+n) C.4n D.4(m﹣n)二、填空题13.6的平方根为.14.分解因式:2a2﹣2=.15.命题“全等三角形的面积相等”的逆命题是命题.(填入“真”或“假”)16.若关于x,y的二元一次方程组的解满足x+y<2,则a的取值X围为.17.如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径作⊙C,G是⊙C上一个动点,P是AG中点,则DP的最大值为.18.如图,在△ABC中,AB=AC=a,BC=b,∠A=100°,点D在AC边上,∠ABD=30°,则AD 的长为.三、解答题(本大题有8小题,共78分)19.计算:2×(﹣3)+4×()﹣1﹣20160;(2)解方程:﹣1=0.20.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好如图,某某市共湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请帮助小X求出小桥PD的长.(≈1.414,≈1.732,结果精确到)22.(10分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)23.(10分)在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数y=(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)求k的值;(2)判断△QOC与△POD的面积是否相等,并说明理由.24.(10分)某工厂计划招聘A,B两个工种的工人120人,已知A,B两个工种的工人的月工资分别为800元和1000元.(1)若工厂每月所支付的工资为110 000元,那么A,B两个工种的工人各招聘多少人?(2)若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所支付的工资最少?25.(12分)定义:有一组邻边相等且对角线相等的四边形称为“美好四边形”.(1)从学过的特殊四边形中,写出一个“美好四边形”;(2)如图,在4×4的网格图中有A、B两个格点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形互不全等的“美好四边形”,画出相应的“美好四边形”,并写出该“美好四边形”的对角线长.(3)如图,已知等边△ABC,在△ABC外存在点D,设∠BDC=α,∠DAC=β,探究α、β满足什么关系时,四边形ABCD为“美好四边形”.26.(14分)如图1,抛物线y=ax2+bx+c经过A(﹣2,0)、B(8,0)、C(0,4)三点,顶点为D,连结AC,BC.(1)求抛物线的函数关系式及顶点D的坐标;(2)如图2,点P是该抛物线在第一象限内上的一点.①过点P作y轴的平行线交BC于点E,若CP=CE,求点P的坐标;②连结AP交BC于点F,求的最大值.(3)若点Q在该抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.2016年某某省某某市某某县中考数学模拟试卷参考答案与试题解析一、选择题(2016•象山县模拟)在﹣5,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣5 B.2 C.﹣1 D.3【考点】18:有理数大小比较.【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵﹣5<﹣2<﹣1<2<3,∴在﹣5,2,﹣1,3这四个数中,比﹣2小的数是﹣5.故选:A.【点评】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab【考点】4H:整式的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.【解答】解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.【点评】本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.×107×107,结果用科学记数法表示为()×107×106C.1×107D.1×106【考点】1I:科学记数法—表示较大的数.【分析】直接根据乘法分配律即可求解.【解答】×107×107=(3.8﹣3.7)×107×107=1×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.注意灵活运用运算定律简便计算.4.在某班组织的跳绳比赛中,第一小组五位同学跳绳次数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.209【考点】W4:中位数.【分析】根据中位数的定义进行求解即可.【解答】解:这组数据按照从小到大的顺次排列为:198,209,216,220,230,则中位数为:216;故选C.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.下列正多边形的地砖中,不能铺满地面的正多边形是()A.正三角形 B.正方形C.正五边形 D.正六边形【考点】L4:平面镶嵌(密铺).【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.【解答】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴只用上面正多边形,不能进行平面镶嵌的是正五边形.故选:C.【点评】本题考查了学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想.由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.6.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【考点】2B:估算无理数的大小.【分析】直接利用32=9,42=16得出的取值X围.【解答】解:∵32=9,42=16,∴估计在3和4之间.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出接近无理数的有理数是解题关键.7.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26° B.36° C.46° D.56°【考点】JA:平行线的性质.【分析】如图,首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B.【点评】该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B. =C.D.【考点】B6:由实际问题抽象出分式方程.【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:D.【点评】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.9.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A.B.C.D.【考点】S9:相似三角形的判定与性质;M5:圆周角定理.【分析】根据AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所对的圆周角相等,求证△ABD ∽△BED,利用其对应边成比例可得=,然后将已知数值代入即可求出DE的长.【解答】解;∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所对的圆周角相等)∴∠DBC=∠BAD,∴△ABD∽△BED,∴=,∴DE==.故选D.【点评】此题主要考查相似三角形的判定与性质和圆周角定理等知识点的理解和掌握,难度不大,属于基础题,要求学生应熟练掌握.10.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.【考点】X4:概率公式;P3:轴对称图形.【分析】由共有13个白色的小正方形,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵共有13个白色的小正方形,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的有5种情况,∴任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是:.故选B.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选A【点评】此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x 的函数解析式.12.把2X形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两X形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是()A.4m B.2(m+n) C.4n D.4(m﹣n)【考点】44:整式的加减.【分析】设2X形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.【解答】解:设2X形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选(A)【点评】本题考查整式的运算,解题的关键是设2X形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后根据图中的结构求出分割后的两个阴影长方形的周长和.本题属于中等题型.二、填空题13.6的平方根为.【考点】21:平方根.【分析】根据平方运算,可得一个数的平方根.【解答】解:∵()2=6∴6的平方根为,故答案为:.【点评】本题考查了平方根,平方运算是求平方根的关键.14.分解因式:2a2﹣2= 2(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【解答】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【点评】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.命题“全等三角形的面积相等”的逆命题是假命题.(填入“真”或“假”)【考点】O1:命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,如果能就是真命题.【解答】解:“全等三角形的面积相等”的逆命题是“面积相等的三角形是全等三角形”,根据全等三角形的定义,不符合要求,因此是假命题.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.16.若关于x,y的二元一次方程组的解满足x+y<2,则a的取值X围为a<4 .【考点】C6:解一元一次不等式;98:解二元一次方程组.【分析】先解关于关于x,y的二元一次方程组的解集,其解集由a表示;然后将其代入x+y<2,再来解关于a的不等式即可.【解答】解:由①﹣②×3,解得y=1﹣;由①×3﹣②,解得x=;∴由x+y<2,得1+<2,即<1,解得,a<4.解法2:由①+②得4x+4y=4+a,x+y=1+,∴由x+y<2,得1+<2,即<1,解得,a<4.故答案是:a<4.【点评】本题综合考查了解二元一次方程组、解一元一次不等式.解答此题时,采用了“加减消元法”来解二元一次方程组;在解不等式时,利用了不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变.17.如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径作⊙C,G是⊙C上一个动点,P是AG中点,则DP的最大值为.【考点】KX:三角形中位线定理;KH:等腰三角形的性质;M8:点与圆的位置关系.【分析】据等腰三角形的性质可得点D是AB的中点,然后根据三角形中位线定理可得DP=BG,然后利用两点之间线段最短就可解决问题.【解答】解:连接BG,如图.∵CA=CB,CD⊥AB,AB=6,∴AD=BD=AB=3.又∵CD=4,∴BC=5.∵E是高线CD的中点,∴CE=CD=2,∴CG=CE=2.根据两点之间线段最短可得:BG≤CG+CB=2+5=7.当B、C、G三点共线时,BG取最大值为7.∵P是AG中点,D是AB的中点,∴PD=BG,∴DP最大值为.【点评】本题主要考查的是三角形中位线定理,涉及了等腰三角形的性质、勾股定理、两点之间线段最短等知识,根据题意作出辅助线,利用三角形的中位线定理求解是解决本题的关键.18.如图,在△ABC中,AB=AC=a,BC=b,∠A=100°,点D在AC边上,∠ABD=30°,则AD 的长为.【考点】S9:相似三角形的判定与性质;KH:等腰三角形的性质;KK:等边三角形的性质.【分析】以BC为边在△ABC的下面作等边三角形BCE,连接AE,由等腰三角形和等边三角形的性质得出AE⊥BC,CE=BC=b,∠BCE=60°,由等腰三角形的性质和三角形内角和定理得出∠ACB=∠ABC=50°,∠CAE=∠BAC=50°,求出∠ADB=∠CAE,∠ACE=∠ACB+∠BCE=∠BAC,证出△ABD∽△CAE,得出对应边成比例,即可得出答案.【解答】解:以BC为边在△ABC的下面作等边三角形BCE,连接AE,如图所示:则AE⊥BC,CE=BC=b,∠BCE=60°,∵AB=AC,∠BAC=100°,∴∠ACB=∠ABC=(180°﹣1100°)÷2=50°,∠CAE=∠BAC=50°,∵∠ABD=30°,∴∠ADB=180°﹣∠BAC﹣∠ABD=50°,∴∠ADB=∠CAE,∠ACE=∠ACB+∠BCE=100°=∠BAC,∴△ABD∽△CAE,∴,即,解得:AD=;故答案为:.【点评】本题考查了等腰三角形的性质、等边三角形的性质、相似三角形的判定与性质、三角形内角和定理等知识;熟练掌握等腰三角形的性质,证明三角形相似是解决问题的关键.三、解答题(本大题有8小题,共78分)19.(1)计算:2×(﹣3)+4×()﹣1﹣20160;(2)解方程:﹣1=0.【考点】B3:解分式方程;6E:零指数幂;6F:负整数指数幂.【分析】(1)分别利用负指数幂的性质以及零指数幂的性质分别化简进而求出答案;(2)首先移项,进而去分母解方程即可,再检验得出答案.【解答】解:(1)2×(﹣3)+4×()﹣1﹣20160=﹣6+4×2﹣1=1;(2)原式可变为: =1,则x﹣1=1,解得:x=2,检验:当x=2时,x﹣1≠0,故x=2是原方程的根.【点评】此题主要考查了解分式方程以及实数运算,正确掌握分式方程的解法是解题关键.20.某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(2016•象山县模拟)如图,某某市共湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请帮助小X求出小桥PD的长.(≈1.414,≈1.732,结果精确到)【考点】T8:解直角三角形的应用.【分析】设PD=x米,根据锐角三角函数的概念用x表示出AD和BD的长,根据题意列式计算即可得到答案.【解答】解:设PD=x米,∵PD⊥AB,则∠ADP=∠BDP=90°.在Rt△PAD中,tan∠PAD=,故AD==x,在Rt△PBD中,tan∠PBD=,则DB===x,又∵AB=60米,∴x+x=60,解得:x=30﹣30≈22.0.答:小桥PD的长度约为.【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,解答时,把锐角三角函数的概念理解为公式,代入公式计算即可.22.(10分)(2013•某某)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)【考点】R8:作图﹣旋转变换;PA:轴对称﹣最短路线问题;Q4:作图﹣平移变换.【分析】(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象;(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2;(3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.【解答】解;(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).【点评】此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.23.(10分)(2013•某某)在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数y=(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)求k的值;(2)判断△QOC与△POD的面积是否相等,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)根据点B与点A关于y轴对称,求出B点坐标,再代入反比例函数解析式解可求出k的值;(2)设点P的坐标为(m,n),点P在反比例函数y=(x>0)的图象上,求出S△POD,根据AB∥x轴,OC=3,BC=4,点Q在线段AB上,求出S△QOC即可.【解答】解:(1)∵点B与点A关于y轴对称,A(﹣3,4),∴点B的坐标为(3,4),∵反比例函数y=(x>0)的图象经过点B.∴=4,解得k=12.(2)相等.理由如下:设点P的坐标为(m,n),其中m>0,n>0,∵点P在反比例函数y=(x>0)的图象上,∴n=,即mn=12.∴S△POD=OD•PD=mn=×12=6,∵A(﹣3,4),B(3,4),∴AB∥x轴,OC=3,BC=4,∵点Q在线段AB上,∴S△QOC=OC•BC=×3×4=6.∴S△QOC=S△POD.【点评】本题考查了反比例函数综合题,涉及反比例函数k的几何意义,反比例函数图象上点的坐标特征等,综合性较强.24.(10分)(2007•某某)某工厂计划招聘A,B两个工种的工人120人,已知A,B两个工种的工人的月工资分别为800元和1000元.(1)若工厂每月所支付的工资为110 000元,那么A,B两个工种的工人各招聘多少人?(2)若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所支付的工资最少?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)A,B两个工种的工人的月工资乘以它们的人数就是工厂每月所支付的工资为110000元,因此可列方程,进而解答;(2)在(1)的基础之上又多出了一个最值问题,需要运用函数,考虑函数和自变量的增减性,找出自变量取值X围,进行解答.【解答】解:(1)设招聘A工种工人x人,则招聘B工种工人(120﹣x)人,根据题意得800x+1 000(120﹣x)=110 000解得x=50,则120﹣x=70即招聘A工种工人50人,招聘B工种工人70人;(2)设每月所支付的工资为y元,招聘A工种工人x人,则招聘B工种工人(120﹣x)人,根据题意得y=800x+1 000(120﹣x)=﹣200x+120 000,由题意得120﹣x≥2x,解得x≤40,y=﹣200x+120 000中的y随x的增大而减少,所以当x=40时,y取得最小值112000.即当招聘A工种工人40人时,可使每月所付工资最少.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.要熟练掌握利用自变量的取值X围求最值的方法.注意本题的不等关系为:B工种的人数不少于A工种人数的2.25.(12分)(2016•象山县模拟)定义:有一组邻边相等且对角线相等的四边形称为“美好四边形”.(1)从学过的特殊四边形中,写出一个“美好四边形”;(2)如图,在4×4的网格图中有A、B两个格点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形互不全等的“美好四边形”,画出相应的“美好四边形”,并写出该“美好四边形”的对角线长.(3)如图,已知等边△ABC,在△ABC外存在点D,设∠BDC=α,∠DAC=β,探究α、β满足什么关系时,四边形ABCD为“美好四边形”.【考点】LO:四边形综合题.【分析】(1)根据正方形的性质和“美好四边形”的定义解答;(2)根据“美好四边形”的定义作图,根据勾股定理求出对角线的长;(3)根据等边三角形的性质和“美好四边形”的定义以及三角形内角和定理、等腰三角形的性质计算即可.【解答】解:(1)∵正方形四条边相等且对角线相等,满足“美好四边形”的条件,∴正方形是“美好四边形”;(2)图1中两个四边形ABCD都是“美好四边形”,它们的对角线长都是;(3)∵△ABC是等边三角形,四边形ABCD为“美好四边形”,∴AB=AC=BC=BD,∠CBA=∠CAB=60°,∵∠BDC=α,∴∠BCD=α,∴∠DBC=180°﹣2α,∴∠ABD=60°﹣∠DBC=2α﹣120°,∵BA=BD,∴∠BAD=∠BDA==150°﹣α,∵∠DAC=β,∴150°﹣α﹣β=60°,∴α+β=90°.【点评】本题考查的是新定义、等腰三角形的性质、等边三角形的性质,正确理解“美好四边形”的定义、掌握等腰三角形的性质和等边三角形的性质是解题的关键.26.(14分)(2016•象山县模拟)如图1,抛物线y=ax2+bx+c经过A(﹣2,0)、B(8,0)、C(0,4)三点,顶点为D,连结AC,BC.(1)求抛物线的函数关系式及顶点D的坐标;(2)如图2,点P是该抛物线在第一象限内上的一点.①过点P作y轴的平行线交BC于点E,若CP=CE,求点P的坐标;②连结AP交BC于点F,求的最大值.(3)若点Q在该抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x+2)(x﹣8),将点C的坐标代入可求得a的值,从而得到抛物线的解析式,然后依据抛物线的对称性得到抛物线的对称轴方程,将x=3代入可求得抛物线的顶点坐标;(2)①如图1所示:作CM⊥PE,垂足为M.先利用待定系数法求得BC的解析式,设点P(m,﹣ m2+m+4),则点E(m,﹣ m+4),M(m,4),接下来依据等腰三角形的性质可得到PM=EM,从而得到关于m的方程,于是可求得点P的坐标②作PN⊥BC,垂足为N.先证明△PNE∽△COB,由相似三角形的性质可知PN=PE,然后再证明△PFN∽△CAF,由相似三角形的性质可得到PF:AF与m的函数关系式,从而可求得的最大值;(3)设⊙Q与直线CD的切点为G,连接QG,过点C作CH⊥QD于H,如图3所示:先依据勾股定理可求得DC的长,设Q(3,b),然后依据锐角三角函数的定义得到QG的长,从而得到AQ的长,最后再△AQP中依据勾股定理可得到关于b的方程,从而得到点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+2)(x﹣8).∵抛物线经过点C(0,4),∴﹣16a=4,解得a=﹣.∴抛物线的解析式为y=﹣(x+2)(x﹣8)=x2+x+4.∵A(﹣2,0)、B(8,0),∴抛物线的对称轴为x=3.∵将x=3代入得:y=,∴抛物线的顶点坐标为(3,).(2)①如图1所示:作CM⊥PE,垂足为M.设直线BC的解析式为y=kx+b.∵将B、C的坐标代入得:,解得k=﹣,b=4,∴直线BC的解析式为y=﹣x+4.设点P(m,﹣ m2+m+4),则点E(m,﹣ m+4),M(m,4).∵PC=EC,CM⊥PE,∴PM=EM.∴﹣m2+m+4﹣4=4﹣(﹣m+4),解得:m=0(舍去),m=4.∴P(4,6).②作PN⊥BC,垂足为N.由①得:PE=﹣m2+2m.∵PE∥y轴,PN⊥BC,∴∠PNE=∠COB=90°,∠PEN=∠BCO.∴△PNE∽△BOC.∴==.∴PN=PE=(﹣m2+2m).∵AB=10,AC=2,BC=4,∴AC2+BC2=AB2.∴∠BCA=90°,又∵∠PFN=∠CFA,∴△PFN∽△CAF.∴==﹣m2+m.∴当m=4时,的最大值为.(3)设⊙Q与直线CD的切点为G,连接QG,过点C作CH⊥QD于H,如图3所示:由(1)可知:CH=3,DH=﹣4=.在△CHD中,由勾股定理可知DC==.设Q(3,b)则QD=﹣b.∵sin∠D==,在△AQP中,由勾股定理得QG=(﹣b)=b2+52.解得:b=0,b=﹣.∴点Q的坐标为(3,0)或(3,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、等腰三角形的性质、锐角三角函数的定义、勾股定理的应用,与m的函数关系式是解题的关键.。
【精编】2016年浙江省宁波市海曙区数学中考一模试卷及解析
2016年浙江省宁波市海曙区中考数学一模试卷一、选择题(本题有12小题,每小题4分,共48分)1.(4分)下列各数中,属于无理数的是()A.πB.0 C .D .﹣2.(4分)下列运算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)4=a6D.a4÷a2=a23.(4分)如图所示,两个紧靠在一起的圆柱体组成的物体,它的主视图是()A .B .C .D .4.(4分)雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米 C.2×10﹣5米D.2×10﹣4米5.(4分)在一次学校运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是()A.1.35,1.40 B.1.40,1.35 C.1.40,1.40 D.3,56.(4分)已知m﹣n=100,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.99 B.101 C.﹣99 D.﹣1017.(4分)已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,﹣3),那么该抛物线有()A.最小值﹣3 B.最大值﹣3 C.最小值2 D.最大值28.(4分)图①、图②、图③分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).图②中E为AB的中点,图③中AJ>JB.判断三人行进路线长度的大小关系为()A.甲=乙=丙B.甲<乙<丙C.乙<丙<甲D.丙<乙<甲9.(4分)在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.4010.(4分)如图,点A(p,q)(0<p<q)在反比例函数y=的图象上,且OA=5,过A作AC⊥y轴垂足为C,线段OA的垂直平分线交OC于点B,连结AB,则△ABC的周长为()A.8 B.7 C.2 D.11.(4分)如图:菱形ABCD中,∠BAD:∠ADC=1:2,对角线AC=20,点O沿A点以1cm/s的速度运动到C点(不与C重合),以O为圆心的圆始终保持与菱形的两边相切,设⊙O的面积为S,则S与点O运动的时间t的函数图象大致为()A.B.C.D.12.(4分)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)13.(4分)在函数y=中,自变量x的取值范围是.14.(4分)因式分解:3x2﹣12x+12=.15.(4分)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是.16.(4分)对于非零的两个实数a,b,规定a*b=,若5*(3x﹣1)=2,则x的值为.17.(4分)已知函数y=x2﹣2mx+2015(m为常数)的图象上有三点:A(x1,y1),B(x2,y2),C(x3,y3),其中x1=m﹣,x2=m+,x3=m﹣1,则y1、y2、y3的大小关系是.18.(4分)如图,四边形ABCD为正方形,⊙O过正方形的顶点A和对角线的交点P,分别交AB、AD于点F、E.若⊙O的半径为,AB=+1,则的值为.三、解答题(共78分)19.(6分)计算:|1﹣|﹣+(﹣1)2016+()﹣3.20.(6分)先化简,再代入求值:(x+2)(x﹣1)﹣,x=.21.(10分)中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.22.(10分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D 作DH丄AB于H,交AO于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.23.(10分)已知:当x>0时,反比例函数y1=和y2=﹣的图象在坐标系中的位置如图所示,直线y3=﹣x+b与两图象分别交于点A、B.(1)若A点的坐标为(2,a),求a、b的值;(2)在(1)的条件下,连接OA、OB,求△OAB的面积;(3)结合图象,写出在第一、四象限内,y1>y3>y2时,x的取值范围.24.(10分)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?25.(12分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.26.(14分)已知,点A (10,0)、B(6,8),点P为线段OA上一动点(不与点A、点O重合),以PA为半径的⊙P与线段AB的另一个交点为C,作CD⊥OB 于D(如图①).(1)判断△OAB是否是等腰三角形,并求sin∠BOA的值;(2)求证:CD是⊙P的切线;(3)求当⊙P与OB相切时⊙P的半径;(4)在(3)的情况下,设(3)中⊙P与OB的切点为E,连结PB交CD于点F (如图②)①求CF的长;②在线段DE上是否存在点G使∠GPF=45°?若存在,求出EG的长;若不存在,请说明理由.2016年浙江省宁波市海曙区中考数学一模试卷参考答案与试题解析一、选择题(本题有12小题,每小题4分,共48分)1.(4分)下列各数中,属于无理数的是()A.πB.0 C.D.﹣【解答】解:A、π是无理数,正确;B、0是有理数,故错误;C、=2是有理数,故错误;D、﹣是有理数,故错误;故选:A.2.(4分)下列运算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)4=a6D.a4÷a2=a2【解答】解:A、a2,a3不是同类项,不能合并,故本选项错误;B、a2•a3=a5,故本选项错误;C、(a2)4=a8,故本选项错误;D、a4÷a2=a2,故本选项正确.故选D.3.(4分)如图所示,两个紧靠在一起的圆柱体组成的物体,它的主视图是()A.B.C.D.【解答】解:从正面看左边是一个正方形,右边是一个矩形,故选:B.4.(4分)雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米 C.2×10﹣5米D.2×10﹣4米【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.5.(4分)在一次学校运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是()A.1.35,1.40 B.1.40,1.35 C.1.40,1.40 D.3,5【解答】解:在这一组数据中1.40是出现次数最多的,故众数是1.40;在这15个数中,处于中间位置的第8个数是1.35,所以中位数是1.35.所以这些运动员跳高成绩的中位数和众数分别是1.35,1.40.故选A.6.(4分)已知m﹣n=100,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.99 B.101 C.﹣99 D.﹣101【解答】解:∵m﹣n=100,x+y=﹣1,∴原式=n+x﹣m+y=﹣(m﹣n)+(x+y)=﹣100﹣1=﹣101.故选D.7.(4分)已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,﹣3),那么该抛物线有()A.最小值﹣3 B.最大值﹣3 C.最小值2 D.最大值2【解答】解:因为抛物线开口向下和其顶点坐标为(2,﹣3),所以该抛物线有最大值﹣3.故选B.8.(4分)图①、图②、图③分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).图②中E为AB的中点,图③中AJ>JB.判断三人行进路线长度的大小关系为()A.甲=乙=丙B.甲<乙<丙C.乙<丙<甲D.丙<乙<甲【解答】解:图1中:甲走的路线长是:AC+BC;图②中:延长AD和BF交于C.∵∠DAE=∠FEB=40°,∴AD∥EF,则DC∥EF.同理EF∥CD,∴四边形CDEF是平行四边形,∴EF=CD,DE=CF,即乙走的路线长是:AD+DE+EF+FB=AD+CD+CF+BC=AC+BC;图③中,延长AI和BK交于C.与以上证明过程类似IC=JK,CK=IJ,即丙走的路线长是AI+IJ+JK+KB=AI+CK+IC+BK=AC+BC;即甲=乙=丙,故选:A.9.(4分)在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.40【解答】解:∵MN丄MC,tan∠MCN=,∴=,∵∠AMN+∠DMC=90°,∠AMN+∠ANM=90°,∴∠ANM=∠DMC,∵∠A=∠D=90°,∴△AMN∽△DCM,∴==,∵AN=2,∴MD=8,∵M为AD的中点,∴AM=8,∵△AMN∽△DCM,∴==,∴=,∴DC=32,∴AB=32.故选A.10.(4分)如图,点A(p,q)(0<p<q)在反比例函数y=的图象上,且OA=5,过A作AC⊥y轴垂足为C,线段OA的垂直平分线交OC于点B,连结AB,则△ABC的周长为()A.8 B.7 C.2 D.【解答】解:∵线段OA的垂直平分线交OC于点B,∴AB=OB,∴△ABC周长=AC+BC+AB=AC+BC+OB=AC+OC,∵点A(p,q)(0<p<q)在反比例函数y=的图象上,∴AC•OC=×3,∴AC•OC=3,∵OA=5,∴AC2+OC2=OA2=25,∴(AC+OC)2=25+6=31,∴AC+OC=,即△ABC的周长为,故选D.11.(4分)如图:菱形ABCD中,∠BAD:∠ADC=1:2,对角线AC=20,点O沿A点以1cm/s的速度运动到C点(不与C重合),以O为圆心的圆始终保持与菱形的两边相切,设⊙O的面积为S,则S与点O运动的时间t的函数图象大致为()A.B.C.D.【解答】解:当点O由点A到达AC的中点时,圆的面积为S=π()2=t2(0<t<10);当点O到达AC的中点时,圆的面积为S=t2(t=10)最大;当点O由AC的中点到点C时,圆的面积为S=π[(t﹣10)2]=(t﹣10)2(10<t<20);由此可知符合函数图象是C.故选:C.12.(4分)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B.C.D.【解答】解:过点A作AD⊥OB于点D,∵在Rt△AOD中,∠AOB=45°,∴OD=AD=OA•cos45°=×1=,∴BD=OB﹣OD=1﹣,∴AB==,∵AC是⊙O的直径,∴∠ABC=90°,AC=2,∴sinC=.故选:B.二、填空题(本题有6小题,每小题4分,共24分)13.(4分)在函数y=中,自变量x的取值范围是x≥﹣1.【解答】解:根据题意得:x+1≥0,解得,x≥﹣1.14.(4分)因式分解:3x2﹣12x+12=3(x﹣2)2.【解答】解:原式=3(x2﹣4x+4)=3(x﹣2)2,故答案为:3(x﹣2)215.(4分)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是70°.【解答】解:∵Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋转的性质得∠C=∠AC′B′=70°.故答案为:70°.16.(4分)对于非零的两个实数a,b,规定a*b=,若5*(3x﹣1)=2,则x的值为.【解答】解:∵a*b=,5*(3x﹣1)=2,∴﹣=2,去分母得,15﹣2(3x﹣1)=10(3x﹣1),整理得,36x=27,解得x=,经检验,x=是原方程的解,故答案为.17.(4分)已知函数y=x2﹣2mx+2015(m为常数)的图象上有三点:A(x1,y1),B(x2,y2),C(x3,y3),其中x1=m﹣,x2=m+,x3=m﹣1,则y1、y2、y3的大小关系是y3<y1<y2.【解答】解:在二次函数y=x2﹣2mx+2015,对称轴x=m,在图象上的三点A(x1,y1),B(x2,y2),C(x3,y3),|m﹣1﹣m|<|m﹣﹣m|<|m+﹣m|,则y1、y2、y3的大小关系为y3<y1<y2.故答案为y3<y1<y2.18.(4分)如图,四边形ABCD为正方形,⊙O过正方形的顶点A和对角线的交点P,分别交AB、AD于点F、E.若⊙O的半径为,AB=+1,则的值为或.【解答】解:连EF,∵∠BAD=90°,∴EF为⊙O的直径,而⊙O的半径为,∴EF=,∴AF2+AE2=EF2=()2=3①,而DE=AF,DE2+AE2=3;又∵AD=AE+ED=AB,∴AE+ED=②,由①②联立起来组成方程组,解之得:AE=1,ED=或AE=,ED=1,∴的值为或.故答案为:或.三、解答题(共78分)19.(6分)计算:|1﹣|﹣+(﹣1)2016+()﹣3.【解答】解:|1﹣|﹣+(﹣1)2016+()﹣3=﹣1﹣2+1+8=8﹣20.(6分)先化简,再代入求值:(x+2)(x﹣1)﹣,x=.【解答】解:原式=x2+x﹣2﹣=x2+x﹣2﹣x+1=x2﹣1,当x=时,原式=()2﹣1=2﹣1=1.21.(10分)中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了200名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.【解答】解:(1)2÷%=200(名);(2)④所在扇形的圆心角×360°=126°,③的人数200×9%=18人,②的人数200﹣18﹣2﹣70=110人,第②种情况110人,第③种情况18,补全图形如图:.(3)p==,他属于第②种情况的概率为.22.(10分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D 作DH丄AB于H,交AO于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∵DH⊥AB于H,∴∠DHA=∠DOG=90°,∵∠AGH=∠DGO,∴△AGH∽△DGO,∴,∴AG•GO=HG•GD;(2)解:∵四边形ABCD是菱形,∠ABC=120°,∴∠DAB=60°,AB=AD=6,∴△ABD是等边三角形,∵AC⊥DB,OD=OB=BD=3,∵DH⊥AB,∴∠ODG=30°,∴OG=OD•tan30°=.23.(10分)已知:当x>0时,反比例函数y1=和y2=﹣的图象在坐标系中的位置如图所示,直线y3=﹣x+b与两图象分别交于点A、B.(1)若A点的坐标为(2,a),求a、b的值;(2)在(1)的条件下,连接OA、OB,求△OAB的面积;(3)结合图象,写出在第一、四象限内,y1>y3>y2时,x的取值范围.【解答】解:(1)∵点A是反比例函数y1=图象上的点,∴a==2,∴A(2,2),∵点A在直线y3=﹣x+b上,∴2=﹣2+b,∴b=4.(2)设直线与x轴的交点为C,由直线y3=﹣x+4可知直线与x轴的交点坐标为C(4,0),解得,,∴B(5,﹣1),=S△AOC+S△BOC =×4×2+×4×1=6;∴S△OAB(3)由图象可知:y1>y3>y2时x的取值范围为0<x<5且x≠2.24.(10分)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.25.(12分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.【解答】(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°,∴∠D=∠B=80°,∴∠C=360°﹣80°﹣80°﹣70°=130°;(2)①证明:如图1,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;②解:小红的猜想不正确,如图:四边形ABCD是“等对角四边形”∠A=∠C=90°,AB=AD,但是BC和CD不等,所以小红的猜想不正确;(3)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC==2;综上所述:AC的长为2或2.26.(14分)已知,点A (10,0)、B(6,8),点P为线段OA上一动点(不与点A、点O重合),以PA为半径的⊙P与线段AB的另一个交点为C,作CD⊥OB 于D(如图①).(1)判断△OAB是否是等腰三角形,并求sin∠BOA的值;(2)求证:CD是⊙P的切线;(3)求当⊙P与OB相切时⊙P的半径;(4)在(3)的情况下,设(3)中⊙P与OB的切点为E,连结PB交CD于点F (如图②)①求CF的长;②在线段DE上是否存在点G使∠GPF=45°?若存在,求出EG的长;若不存在,请说明理由.【解答】解:(1)过点B作BN⊥x轴于N,∵BN=8,ON=6,在Rt△OBN中,OB===10,∴OB=OA=10,故△OAB是等腰三角形,sin∠BOA===;(2)连结PC,∵PC=PA,∴∠1=∠2,又∵OA=OB,∴∠OBA=∠1,∴∠OBA=∠2,∴PC∥OB,∵CD⊥OB,∴CD⊥PC,∴CD是⊙P的切线;(3)如图1.设⊙P的半径为r,∵⊙P与OB相切于点E,∴OB⊥PE,∴在Rt△OPE中,sin∠EOP===,解得:r=;(4)①如图2.∵由(2)知r=,∴在Rt△OPE中,OE===,∵∠PCD=∠CDE=∠PED=90°,∴四边形PCDE为矩形.∵PE=PC,∴矩形PCDE为正方形.∴DE=DC=r=,∴BD=OB﹣OE﹣DE=10﹣=,∵∠BFD=∠PFC,∠PEO=∠PCF=90°,∴△BDF∽△PCF,∴,即解得:CF=,DF=;②解法一:在线段DE上存在点G使∠GPF=45°(如图3),在DE延长线上截取ET=FC,∵四边形PCDE为正方形,∴∠PCF=∠PEO=90°,PC=EC,∴△PET≌△PCF,∴∠3=∠4,PF=PT,∵∠CPE=90°,∠GPF=45°,∴∠3+∠GPE=∠CPE﹣∠GPF=45°,∴∠TPG=∠4+∠GPE=∠3+∠GPE=45°,∴∠GPF=∠TPG,∵PF=PT,∠GPF=∠TPG,PG=PG,∴△PGT≌△PGF,∴GF=TG=TE+EG=CF+EG设GE=a,则GD=,GF=CF+EG=,∵在Rt△DFG中,DF2+DG2=GF2,∴=,解得:a=,∴;解二:在线段DE上存在点G使∠GPF=45°(如图4),在EP上截取EQ=EG,∵OB⊥PE,∴∠GQE=45°,∴∠GQP=135°,∵四边形PCDE为正方形,∴PD==,∠EPD=∠PDC=45°,∴∠4+∠5=45°,∵∠FPG=45°,∴∠3+∠5=45°,∴∠3=∠4,∵∠BDP=∠BDC+∠PDC=90°+45°=135°,∴∠GQP=∠BDP,∴△GQP∽△BDP,∴,∵OE=,DE=,OB=10,∴BD=OB﹣ED﹣OE=,设EG=a,则GQ=a,PQ=PE﹣EQ=,∴,解得:a=,∴EG=.。
浙江省宁波市2016届中考数学模拟试卷含答案解析
2016年浙江省宁波市中考数学模拟试卷一、选择题(共12小题,每小题4分,满分48分)1.下列各数中不是分数的是()A.﹣0.2 B.C.D.25%2.宁波轨道交通2号线于2015年9月26日通车,全长50千米,50千米用科学记数法表示为()A.5×104米B.5×125米C.50×103米 D.50×104米3.下列图形都是由两个全等三角形组成的,其中是轴对称图形的是()A.B.C.D.4.方程3x2﹣2x+2=0的根的情况是()A.无实根B.有两个等根C.有两个不等根 D.有分数根5.如图,点C,D在AB同侧,∠CAB=∠DBA,下列条件中不能判定△ABD≌△BAC的是()A.∠D=∠C B.BD=AC C.∠CAD=∠DBC D.AD=BC6.如图,菱形ABCD中,∠A=60°,周长是16,则菱形的面积是()A.16 B.16C.16D.87.如图,Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB的中垂线与BC交于点E,则BE的长等于()A.B.C.D.8.某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10 B.(1﹣25%)x+10 C.25%(x+10)D.(1﹣25%)(x+10)9.已知一个等腰三角形腰上的高等于底边的一半,那么腰与底边的比是()A.1:B.:1 C.1:D.:110.已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题是图形是()A.B.C.D.11.有一种几何体是用相同正方体组合而成的,有人说:这样的几何体如果只给出主视图和左视图是不能唯一确定的,我们可以找出一个反例来说明这个命题是假命题,这个反例可以是()A.B.C.D.12.已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是()A.a=2,b=﹣1 B.a=﹣4,b=3 C.a=1,b=﹣7 D.a=﹣7,b=5二、填空题(共6小题,每小题4分,满分24分)13.请你写出一个比1小的正无理数是.14.分解因式:x4﹣x2y2=.15.某饮料公司生产多种饮料,为了了解大众更喜欢哪种饮料,公司组织了“你投票,我送礼”的活动,投票者只要在选票所列举的每种饮料后都写上一个1到10之间的评价数即可获利,活动结束后,在平均数、众数、中位数和方差四个统计量中,公司应该关注的一个统计量是.16.如图是一个转盘,转一次指针指向灰色部分的概率是.17.如图,矩形OABC中,OB=6,点O是坐标原点,点A,C分别在x轴,y轴的正半轴上,反比例函数y=(k>0,x>0)的图象分别交AB,BC于点E,F,F是BC的中点,则EF的长为.18.如图是一把折扇,∠O=120°,AB交于点E,F,已知AE=20,EF=4,则扇面(阴影部分)的面积为.三、解答题(共8小题,满分78分)19.计算:(1)(﹣3)3﹣(﹣1)÷(﹣);(2)sin60°.20.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.21.某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.22.已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的进价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?23.如图,矩形ABCD的边长是常量,点E在AD上以每秒3个单位的速度从D运动到A,当运动时间为1秒时,△ABE的面积为10;当运动时间为2秒时,△ABE的面积为4.(1)设AD=a,AB=b,点E的运动时间为t秒,△ABE的面积为S,用含a,b,t的式子表示S;(2)求a和b的值;(3)求运动时间为0.5秒时,△ABE的面积.24.如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CE∥AB交半圆于点E.(1)求∠D的度数;(2)求证:以点C,O,B,E为顶点的四边形是菱形.25.【阅读理解】已知△ABC的三条中线分别是AD,BE,CF.通过适当平移,这是三条中线可以组成一个三角形,我们把这个三角形叫做△ABC的中线三角形,如图①中,△BEG就是△ABC的中线三角形.【特例研究】(1)已知图①中每个小正方形的边长均为1,△ABC的三边长分别是6,8,10,那么△ABC的面积S1=,△ABC的中线三角形的面积S2=,=.【拓展推广】(2)如图②,△ABC的三条中线分别是AD,BE,CF,将AD平移至GB,连结EG.①求证:△BEG是△ABC的中线三角形;②设△ABC的面积为S1,△BEG的面积为S2,计算的值.26.如图是一个二次函数的图象,顶点是原点O,且过点A(2,1),(1)求出二次函数的表达式;(2)我们把横、纵坐标都为整数的点称为整点,请用整数n表示这条抛物线上所有的整点坐标.(3)过y轴的正半轴上一点C(0,a)作AO的平行线交抛物线于点B,①求出直线BC的函数表达式(用a表示);②如果点B是整点,求证:△OAB的面积是偶数.2016年浙江省宁波市中考数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.下列各数中不是分数的是()A.﹣0.2 B.C.D.25%【考点】实数.【分析】根据把“1”平均分成若干份,其中的一份或几份,可得答案.【解答】解:A、﹣0.2是分数,故A不符合题意;B、是分数,故B不符合题意;C、是无理数,故C符合题意;D、25%是分数,故D不符合题意;故选:C.【点评】本题考查了实数,利用分数的定义是解题关键.2.宁波轨道交通2号线于2015年9月26日通车,全长50千米,50千米用科学记数法表示为()A.5×104米B.5×125米C.50×103米 D.50×104米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:50千米=5×104米,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形都是由两个全等三角形组成的,其中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此作答.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点评】本题考查了轴对称的概念.轴对称的关键是寻找对称轴,图象沿某一直线折叠后可以重合.4.方程3x2﹣2x+2=0的根的情况是()A.无实根B.有两个等根C.有两个不等根 D.有分数根【考点】根的判别式.【分析】先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.【解答】解:∵a=3,b=﹣2,c=2,∴△=b2﹣4ac=24﹣24=0,∴一元二次方程有两个相等的实数根.故选B.【点评】此题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.如图,点C,D在AB同侧,∠CAB=∠DBA,下列条件中不能判定△ABD≌△BAC的是()A.∠D=∠C B.BD=AC C.∠CAD=∠DBC D.AD=BC【考点】全等三角形的判定.【分析】根据图形知道隐含条件BC=BC,根据全等三角形的判定定理逐个判断即可.【解答】解:A、添加条件∠D=∠C,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;B、添加条件BD=AC,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;C、∵∠CAB=∠DBA,∠CAD=∠DBC,∴∠DAB=∠CBA,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;D、添加条件∠D=∠C,还有已知条件∠CAB=∠DBA,BC=BC,不符合全等三角形的判定定理,不能推出△ABD≌△BAC,故本选项正确;故选D.【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,符合SSA和AAA不能推出两三角形全等.6.如图,菱形ABCD中,∠A=60°,周长是16,则菱形的面积是()A.16 B.16C.16D.8【考点】菱形的性质.【分析】根据菱形的性质以及锐角三角函数关系得出DE的长,即可得出菱形的面积.【解答】解;如图所示:过点D作DE⊥BC于点E,∵在菱形ABCD中,周长是16,∴AD=AB=4,∵∠A=60°,∴DE=AD•sin60°=2,∴菱形ABCD的面积S=DE×AB=8.故选D.【点评】此题主要考查了菱形的面积以及其性质,得出DE的长是解题关键.7.如图,Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB的中垂线与BC交于点E,则BE的长等于()A.B.C.D.【考点】线段垂直平分线的性质;勾股定理.【分析】根据勾股定理求出AB的长,根据中垂线的定义和相似三角形的判定定理得到△BDE∽△BCA,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵∠ACB=90°,AC=5,BC=12,∴AB==13,∵DE是AB的中垂线,∴BD=AD=6.5,∵DE⊥AB,∠ACB=90°,∴△BDE∽△BCA,∴=,即=,解得,BE=,故选:C.【点评】本题考查的是线段垂直平分线的概念和性质以及勾股定理的应用,掌握线段垂直平分线的定义、相似三角形的判定定理是解题的关键.8.某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10 B.(1﹣25%)x+10 C.25%(x+10)D.(1﹣25%)(x+10)【考点】列代数式.【专题】探究型.【分析】根据某商品原价每件x元,后来店主将每件增加10元,再降价25%,可以求得表示现在的单价代数式,从而可以解答本题.【解答】解:由题意可得,现在的单价是:(x+10)(1﹣25%),故选D.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.9.已知一个等腰三角形腰上的高等于底边的一半,那么腰与底边的比是()A.1:B.:1 C.1:D.:1【考点】解直角三角形.【专题】探究型.【分析】根据题意画出合适的图形,然后根据题目中的信息可以得到腰AB与底边BC的关系,从而可以求得腰与底边的比.【解答】解:如下图所示,∵CD⊥BA的延长线于点D,CD=,∴∠B=30°,∵AB=AC,CD⊥BA,∴∠B=∠ACB,∠CDB=90°,∴∠CAD=60°,∴∠ACD=30°,设AD=x,则AC=2x,tan∠DAC=,∴,得CD=,∴BC=2CD=2,∴,故选A.【点评】本题考查解直角三角形,解题的关键是明确题意,画出相应的图形,找出所求问题需要的条件.10.已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题是图形是()A.B.C.D.【考点】完全平方公式的几何背景.【分析】根据完全平方公式得到:(x+2y)2=x2+4xy+4y2=(x﹣2y)2+6xy,即可解答.【解答】解:(x+2y)2=x2+4xy+4y2=(x﹣2y)2+6xy.故选:A.【点评】本题考查了完全平方公式的几何背景,解决本题的关键是熟记完全平方公式.11.有一种几何体是用相同正方体组合而成的,有人说:这样的几何体如果只给出主视图和左视图是不能唯一确定的,我们可以找出一个反例来说明这个命题是假命题,这个反例可以是()A.B.C.D.【考点】命题与定理;由三视图判断几何体.【分析】从A、C、D都可确定几何体,而从B中不能确定几何体.【解答】解:说明这个命题是假命题,这个反例可以是B.故选B.【点评】本考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了三视图.12.已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是()A.a=2,b=﹣1 B.a=﹣4,b=3 C.a=1,b=﹣7 D.a=﹣7,b=5【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】利用加减消元法判断即可确定出a与b的值.【解答】解:已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b 的值可以是a=﹣7,b=5,故选D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,每小题4分,满分24分)13.请你写出一个比1小的正无理数是.【考点】实数大小比较.【专题】开放型.【分析】根据实数的大小比较法则计算即可.【解答】解:此题答案不唯一,举例如:,等,故答案为.【点评】本题考查了实数的大小比较,解题的关键是理解正无理数这一概念.14.分解因式:x4﹣x2y2=x2(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x2,再对余下的多项式利用平方差公式继续分解.【解答】解:x4﹣x2y2,=x2(x2﹣y2),=x2(x+y)(x﹣y).故答案为:x2(x+y)(x﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.某饮料公司生产多种饮料,为了了解大众更喜欢哪种饮料,公司组织了“你投票,我送礼”的活动,投票者只要在选票所列举的每种饮料后都写上一个1到10之间的评价数即可获利,活动结束后,在平均数、众数、中位数和方差四个统计量中,公司应该关注的一个统计量是众数.【考点】统计量的选择.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是对该饮料销售情况作调查,那么应该关注那种饮料的最多,故值得关注的是众数.【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为:众数.【点评】此题主要考查统计的有关知识,关键是根据平均数、中位数、众数、方差的意义解答.16.如图是一个转盘,转一次指针指向灰色部分的概率是.【考点】几何概率.【分析】根据几何概率的求法:指针指向阴影部分的概率即阴影部分面积与总面积的比值,也即为阴影部分所占的圆心角与360的比值.【解答】解:指向阴影部分概率是=.故答案为:.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.17.如图,矩形OABC中,OB=6,点O是坐标原点,点A,C分别在x轴,y轴的正半轴上,反比例函数y=(k>0,x>0)的图象分别交AB,BC于点E,F,F是BC的中点,则EF的长为3.【考点】矩形的性质;三角形中位线定理.【分析】连接AC,根据矩形的性质得到AC=BO=6,根据反比例函数图象上点的坐标特征求出点E 是AB的中点,根据三角形中位线定理计算即可.【解答】解:连接AC,∵四边形OABC是矩形,∴AC=BO=6,设OA=a,OC=b,则CF=,∵点F在反比例函数y=的图象上,∴ab=k,设点E的坐标为(a,d),∵点E在反比例函数y=的图象上,∴ad=k=ab,∴d=b,即点E是AB的中点,∴EF=AC=3,故答案为:3.【点评】本题考查的是反比例函数图象上点的坐标特征、矩形的性质和三角形中位线定理的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.18.如图是一把折扇,∠O=120°,AB交于点E,F,已知AE=20,EF=4,则扇面(阴影部分)的面积为1444π.【考点】扇形面积的计算.【分析】过点O作OH⊥AB于点H,利用垂径定理和解直角△AHO求得AO的长度,然后根据扇形面积的计算公式进行解答.【解答】解:如图,过点O作OH⊥AB于点H,连接EO.∵AE=20,EF=4,∴AH=22.又∵∠O=120°,∴∠AOH=60°,∴AO==,OH=AO=,∴OE2=EH2+OH2=164,==1444π.则S阴影故答案是:1444π.【点评】本题考查了扇形面积的计算,垂径定理以及解直角三角形的应用.熟记扇形面积公式是解题的关键.三、解答题(共8小题,满分78分)19.计算:(1)(﹣3)3﹣(﹣1)÷(﹣);(2)sin60°.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果;(2)原式利用算术平方根及特殊角的三角函数值计算即可得到结果.【解答】解:(1)原式=﹣27﹣×=﹣27﹣4=﹣31;(2)原式=﹣×=﹣=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.【考点】反比例函数的性质;反比例函数的图象;反比例函数图象上点的坐标特征;关于x轴、y 轴对称的点的坐标.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m 的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m ﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.21.某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据各个等级的百分比得出答案即可;(2)根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;(3)首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.【解答】解:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.【点评】本题难度中等,主要考查统计图表的识别;解本题要懂得频率分布直分图的意义.同时考查了平均数和中位数的定义.22.已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的进价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设每个篮球x元,每个足球y元,根据买1个篮球和2个足球共需180元,购买1个篮球和1个足球共需130元,列出方程组,求解即可;(2)设买m个篮球,则购买(54﹣m)个足球,根据总价钱不超过4000元,列不等式求出x的最大整数解即可.【解答】解:(1)设每个篮球x元,每个足球y元,由题意得,,解得:,答:每个篮球80元,每个足球50元;(2)设买m个篮球,则购买(54﹣m)个足球,由题意得,80m+50(54﹣m)≤4000,解得:m≤,∵m为整数,∴m最大取43,答:最多可以买43个篮球.【点评】本题考查了二元一次方程组的一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.23.如图,矩形ABCD的边长是常量,点E在AD上以每秒3个单位的速度从D运动到A,当运动时间为1秒时,△ABE的面积为10;当运动时间为2秒时,△ABE的面积为4.(1)设AD=a,AB=b,点E的运动时间为t秒,△ABE的面积为S,用含a,b,t的式子表示S;(2)求a和b的值;(3)求运动时间为0.5秒时,△ABE的面积.【考点】四边形综合题.【分析】(1)根据路程=速度×时间得出DE=3t,则AE=AD﹣DE=a﹣3t,再根据S△ABE=AE•AB,代入数据即可求出S=ab﹣bt;(2)将t=1,S=10;t=2,S=4分别代入(1)中所求解析式,得出关于a、b的方程组,求解即可求出a和b的值;(3)由(2)可得S=16﹣6t,将t=0.5代入计算即可求解.【解答】解:(1)∵点E在AD上以每秒3个单位的速度从D运动到A,AD=a,∴DE=3t,AE=AD﹣DE=a﹣3t,∴S△ABE=AE•AB=(a﹣3t)•b=ab﹣bt,即S=ab﹣bt;(2)∵当运动时间为1秒时,△ABE的面积为10,∴ab﹣b=10,∵当运动时间为2秒时,△ABE的面积为4,∴ab﹣3b=4.解方程组,得,即a的值为8,b的值为4;(3)∵a=8,b=4,∴S=×8×4﹣×4t,即S=16﹣6t,运动时间为0.5秒时,将t=0.5代入S=16﹣6t,得S=16﹣6×0.5=13.即△ABE的面积为13.【点评】本题是四边形综合题,其中涉及到路程、速度与时间关系的应用,三角形的面积,求函数解析式以及代数式求值.用含a,b,t的式子正确表示出S是解题的关键.24.如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CE∥AB交半圆于点E.(1)求∠D的度数;(2)求证:以点C,O,B,E为顶点的四边形是菱形.【考点】切线的性质;菱形的判定.【分析】(1)连接AC,根据切线的性质以及等腰三角形的性质得出∠D=∠ACD=∠ABC,根据圆周角定理得出∠ACB=90°,然后根据三角形内角和定理即可求得∠D的度数;(2)连接OC、BE,先证得△AOC是等边三角形,然后证得四边形COBE是平行四边形即可证得结论.【解答】(1)解:连接AC,∵CD是⊙O的切线,∴∠ACD=∠ABC,∵AB是直径,∴∠ACB=90°,∵CD=CB,∴∠D=∠ABC,∴∠D=∠ACD=∠ABC,∵∠D+∠ACD+∠ABC+∠ACB=90°,∴∠D=30°;(2)证明:连接OC、BE,∵∠D=∠ACD=30°,∴∠CAB=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OC,∠AOC=60°,∵CE∥AB,∴AC=EB,∴四边形ACEB是等腰梯形,OC=BE,∴∠CAB=∠EBA=60°,∴∠AOC=∠EBA=60°,∴OC∥BE,∴四边形COBE是平行四边形,∵OC=OB,∴以点C,O,B,E为顶点的四边形是菱形.【点评】本题考查了切线的性质,圆周角定理,等腰梯形的判定和性质,菱形的判定等,作出辅助线构建直角三角形和等边三角形是解题的关键.25.【阅读理解】已知△ABC的三条中线分别是AD,BE,CF.通过适当平移,这是三条中线可以组成一个三角形,我们把这个三角形叫做△ABC的中线三角形,如图①中,△BEG就是△ABC的中线三角形.【特例研究】(1)已知图①中每个小正方形的边长均为1,△ABC的三边长分别是6,8,10,那么△ABC的面积S1=24,△ABC的中线三角形的面积S2=18,=.【拓展推广】(2)如图②,△ABC的三条中线分别是AD,BE,CF,将AD平移至GB,连结EG.①求证:△BEG是△ABC的中线三角形;②设△ABC的面积为S1,△BEG的面积为S2,计算的值.【考点】相似形综合题;面积及等积变换;全等三角形的判定与性质;勾股定理的逆定理;平行四边形的判定与性质.【专题】阅读型.【分析】(1)根据勾股定理的逆定理可证到∠ACB=90°,就可求出S1,然后运用割补法就可求出是S2,从而可求出;(2)①连接AG、GF、EF,如图2①,要证△BEG是△ABC的中线三角形,只需证EG=CF,只需证四边形ECFG是平行四边形,只需证EC∥GF,EC=GF,由于AE=EC,只需证四边形AEFG是平行四边形即可;②延长GA、BE交于点N,如图2②,易证△AEN≌△CEB,从而可得AN=BC,NE=BE,即可得到AN=2AG,NG=3AG,=.由AE=EC,NE=BE,根据等高三角形的面积比等于底的比可得S2=S△NEG,S1=2S△ABE=2S△ANE,进而可得==2×,问题得以解决.【解答】解:(1)如图1,∵BC=6,AC=8,AB=10,∴BC2+AC2=AB2,∴∠ACB=90°,∴S1=×6×8=24,S2=6×8﹣×3×4﹣×3×8﹣×4×6=18,∴==.故答案为24,18,;(2)①连接AG、GF、EF,如图2①,∵AD∥BG,AD=BG,∴四边形ADBG是平行四边形,∴AG∥BD,AG=DB.∵AE=EC,AF=BF,CD=BD,∴EF∥BC,EF=BC=DB,∴AG∥EF,AG=EF,∴四边形AEFG是平行四边形,∴AE∥GF,AE=GF,∴EC∥GF,EC=GF,∴四边形ECFG是平行四边形,∴EG=CF,∴△BEG是△ABC的中线三角形;②延长GA、BE交于点N,如图2②,∵AG∥BC即AN∥BC,∴∠N=∠EBC.在△AEN和△CEB中,,∴△AEN≌△CEB,∴AN=BC,NE=BE,∴AN=BC=2AG,∴NG=NA+AG=BC+AG=3AG,∴==.∵AE=EC,NE=BE,∴S△BEG=S△NEG,S△ABC=2S△ABE=2S△ANE,∴==2×=2×=.【点评】本题主要考查来了勾股定理的逆定理、平行四边形的判定与性质、全等三角形的判定与性质、等高三角形的面积比等于底的比、三角形中位线定理、平行线的传递性等知识,证到四边形ECFG 是平行四边形是解决第(2)①小题的关键,借助于平行线和中点构造全等三角形是解决第(2)②小题的关键.26.如图是一个二次函数的图象,顶点是原点O,且过点A(2,1),(1)求出二次函数的表达式;(2)我们把横、纵坐标都为整数的点称为整点,请用整数n表示这条抛物线上所有的整点坐标.(3)过y轴的正半轴上一点C(0,a)作AO的平行线交抛物线于点B,①求出直线BC的函数表达式(用a表示);②如果点B是整点,求证:△OAB的面积是偶数.【考点】二次函数综合题;奇数与偶数;待定系数法求一次函数解析式;两条直线相交或平行问题.【专题】综合题.【分析】(1)可设抛物线的解析式为y=ax2,然后只需把点A的坐标代入抛物线的解析式,就可解决问题;(2)由抛物线的解析式可知,要使y是整数,只需x是偶数,故x可用2n表示(n为整数),由此就可解决问题;(3)①可运用待定系数法求出直线OA的解析式,然后根据两直线平行一次项的系数相同,就可得到直线BC的函数表达式;②由于点B是整点,点B的坐标可表示为(2n,n2),代入直线BC 的解析式,即可得到a的值(用n表示),然后根据平行等积法可得S△OAB=S△OAC=n(n﹣1),由于n与n﹣1是相邻整数,必然一奇一偶,因而n(n﹣1)是偶数,问题得以解决.【解答】解:(1)设抛物线的解析式为y=ax2,。
中考数学一模试卷(含解析)10
浙江省宁波市慈溪市2016年中考数学一模试卷一、选择题(毎小题4分,共48分,在每小题给出的四个选项中,只有一项是正确的)1.﹣2016的倒数是()A.2016 B.2016 C.D.2.下列计算正确的是()A.(a2)3=a5B.2a﹣a=2 C.(2a)2=4a D.a•a3=a43.宁波地铁1号线二期于2016年3月19日开通试运营,当天客流量超25万人次,数据25万用科学记数法表示为()A.2.5×104B.2.5×105C.0.25×105D.0.25×1064.不等式组的解集是()A.x>﹣B.x<﹣C.x<1 D.﹣<x<15.在一次汉字听写大赛中,10名学生得分情况如表:那么这10名学生所得分数的中位数和众数分别是()A.85和82.5 B.85.5和85 C.85和85 D.85.5和806.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A. B. C. D.7.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=1 D.(x﹣2)2=﹣18.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A .2πB .πC .D .9.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为( )A .B .C .D .10.在平面直角坐标系中,二次函数y=﹣x 2+6x ﹣9的图象顶点为A ,与y 轴交于点B .若在该二次函数图形上取一点C ,在x 轴上取一点D ,使得四边形ABCD 为平行四边形,则D 点的坐标为( )A .(﹣9,0)B .(﹣6,0)C .(6,0)D .(9,0)11.如图,在△ABC 、△ADE 中,C 、D 两点分别在AE 、AB 上,BC 、DE 交于点F ,若BD=DC=CE ,∠ADC+∠ACD=114°,则∠DFC 为( )A .114°B .123°C .132°D .147°12.如图1是一张等腰直角三角形彩色纸,将斜边上的高线四等分,然后裁出三张宽度相等的长方形纸条,若恰好可以用这些纸条为一幅正方形美术作品镶边(纸条不重叠),则这张彩色纸的面积与镶嵌所得的作品(如图2)面积之比为( )A.2:3 B.3:4 C.1:1 D.4:3二、填空题13.已知函数y=,下列x的值:①x=﹣9;②x=0;③x=4:其中在自变量取值范围内的有(只要填序号即可)14.已知直线y=kx+b经过点(2,3),则4k+2b﹣7= .15.一个不透明的布袋中,装有红、黄、白、黑四种只有颜色不同的小球,其中红色小球有30个,黄、白、黑色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,放回后再次搅匀…多次试验发现摸到红球的频率是,则估计黄色小球的数目是.16.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE= .17.如图,0为原点,A(4,0),E(0,3),四边形OABC,四边形OCDE都为平行四边形,OC=5,函数y=(x>0)的图象经过AB的中点F和DE的中点G,则k的值为.18.如图,A点的坐标是(0,6),AB=BO,∠ABO=120°,C在x轴上运动,在坐标平面内作点D,使AD=DC,∠ADC=120°,连结OD,则OD的长的最小值为.三、解答题(19题6分,20~21每题8分,22〜24每題10分,25题12分,26题14分,共78分)19.(6分)计算:(﹣3)2+()0﹣+2﹣1+•tan30°.20.(8分)先化简,再求值:,其中x=﹣3.21.(8分)中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)22.(10分)如图,在平面直角坐标系中,一次函数y=ax﹣a(a为常数)的图象与y轴相交于点A,与函数的图象相交于点B(m,1).(1)求点B的坐标及一次函数的解析式;(2)若点P在y轴上,且△PAB为直角三角形,请直接写出点P的坐标.23.(10分)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如图:(注:A为可回收物,B为厨余垃圾,C为有害垃圾,D为其他垃圾)根据图表解答下列问题:(1)在抽样数据中,产生的有害垃圾共多少吨?(2)请将条形统计图补充完整;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?24.(10分)我市某校准备组织学生及学生家长坐高铁到杭州进行社会实践,为了便于管理.所有人员必须乘坐在同一列高铁上.根据报名人数,若都买一等座单程火车票需6560元,若都买二等座单程火车票,则需3120元(学生票二等座打7.5折,一等座不打折).已知学生家长与教师的人数之比为3:1,余姚北站到杭州东站的火车票价格如表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买m张(m小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y(元)(用含m的代数式表示).25.(12分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1)如图1,△ABC中,∠C=90°,AB=5,BC=3,则AC边上的伴随圆的半径为.(2)如图2,已知等腰△ABC,AB=AC=5,BC=6,画草图并直接写出它的所有伴随圆的半径.(3)如图3,△ABC中,∠ACB=90°,点P在边AB上,AP=2BP,D为AC中点,且∠CPD=90°.①求证:△CPD的外接圆是△ABC某一条边上的伴随圆;②求cos∠PDC的值.26.(14分)如图,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0),交y轴于点C,点D是线段OB上一动点,连接CD,将CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF,CE交于点G.(1)求抛物线解析式;(2)求线段DF的长;(3)当DG=时,①求tan∠CGD的值;②试探究在x轴上方的抛物线上,是否存在点P,使∠EDP=45°?若存在,请写出点P的坐标;若不存在,请说明理由.2016年浙江省宁波市慈溪市中考数学一模试卷参考答案与试题解析一、选择题(毎小题4分,共48分,在每小题给出的四个选项中,只有一项是正确的)1.﹣2016的倒数是()A.2016 B.2016 C.D.【考点】倒数.【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣2016的倒数是,故选D【点评】此题主要考查了倒数的定义,正确把握互为倒数之间关系是解题关键.2.下列计算正确的是()A.(a2)3=a5B.2a﹣a=2 C.(2a)2=4a D.a•a3=a4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3=a6,故错误;B、2a﹣a=a,故错误;C、(2a)2=4a2,故错误;D、正确;故选:D.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.宁波地铁1号线二期于2016年3月19日开通试运营,当天客流量超25万人次,数据25万用科学记数法表示为()A.2.5×104B.2.5×105C.0.25×105D.0.25×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:25万=2.5×105, 故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.不等式组的解集是( )A .x >﹣B .x <﹣C .x <1D .﹣<x <1 【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x <﹣,由②得,x <1,故不等式组的解集为:x<﹣. 故选B .【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.在一次汉字听写大赛中,10名学生得分情况如表:那么这10名学生所得分数的中位数和众数分别是( ) A .85和82.5B .85.5和85C .85和85D .85.5和80【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【解答】解:在这一组数据中85是出现次数最多的,故众数是85;排序后处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;故选:C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得左侧有2个正方形,右侧有一个正方形.故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=1 D.(x﹣2)2=﹣1【考点】解一元二次方程-配方法.【分析】方程变形后,配方得到结果,即可做出判断.【解答】解:方程x2﹣4x+1=0,变形得:x2﹣4x=﹣1,配方得:x2﹣4x+4=﹣1+4,即(x﹣2)2=3,故选A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.【考点】弧长的计算;圆周角定理;圆内接四边形的性质.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选B.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式L=.9.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为()A.B.C.D.【考点】几何概率;轴对称图形.【分析】直接利用轴对称图形的定义得出符合题意的图形,进而利用概率公式求出答案.【解答】解:如图所示:所涂的小正方形与原阴影图形的小正方形至少有一边重合的一共有9个,能构成轴对称图形的有所标数据1,2,3,4,共4个,则所得到的阴影图形恰好是轴对称图形的概率为:.故选:C.【点评】此题主要考查了结合概率以及轴对称图形的定义,正确得出符合题意的图形位置是解题关键.10.在平面直角坐标系中,二次函数y=﹣x2+6x﹣9的图象顶点为A,与y轴交于点B.若在该二次函数图形上取一点C,在x轴上取一点D,使得四边形ABCD为平行四边形,则D点的坐标为()A.(﹣9,0)B.(﹣6,0)C.(6,0) D.(9,0)【考点】平行四边形的判定;二次函数图象上点的坐标特征.【分析】首先将二次函数配方求得顶点A的坐标,然后求得抛物线与y轴的交点坐标,根据电C和点B的纵坐标相同求得点C的坐标,从而求得线段BC的长,根据平行四边形的性质求得AD的长即可求得点D的坐标.【解答】解:如图:∵y=﹣x2+6x﹣9=﹣(x﹣3)2,∴顶点A的坐标为(3,0),令x=0得到y=﹣9,∴点B的坐标为(0,﹣9),令y=﹣x2+6x﹣9=﹣9,解得:x=0或x=6,∴点C的坐标为(6,﹣9),∴BC=AD=6,∴OD=OA+AD=3+6=9,∴点D的坐标为(9,0),故选D.【点评】本题考查了平行四边形的判定以及二次函数的性质等知识.主要利用了抛物线与坐标轴交点的求法,平行四边形的对边平行且相等的性质.11.如图,在△ABC、△ADE中,C、D两点分别在AE、AB上,BC、DE交于点F,若BD=DC=CE,∠ADC+∠ACD=114°,则∠DFC为()A.114°B.123°C.132°D.147°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质得出∠B=∠DCB,∠E=∠CDE,再利用三角形的内角和进行分析解答即可.【解答】解:∵BD=CD=CE,∴∠B=∠DCB,∠E=∠CDE,∵∠ADC+∠ACD=114°,∴∠BDC+∠ECD=360°﹣114°=246°,∴∠B+∠DCB+∠E+∠CDE=360°﹣246°=114°,∴∠DCB+∠CDE=57°,∴∠DFC=180°﹣57°=123°,【点评】此题考查等腰三角形的性质,关键是利用等边对等角和三角形内角和分析解答.12.如图1是一张等腰直角三角形彩色纸,将斜边上的高线四等分,然后裁出三张宽度相等的长方形纸条,若恰好可以用这些纸条为一幅正方形美术作品镶边(纸条不重叠),则这张彩色纸的面积与镶嵌所得的作品(如图2)面积之比为()A.2:3 B.3:4 C.1:1 D.4:3【考点】相似三角形的应用.【分析】设三张宽度相等的长方形纸条的宽为x,则△ABC的高为4x,如图1,根据等腰直角三角形的性质得到AB=8x,则S△ABC=16x2,根据平行线分线段成比例定理由DE∥AB,FG∥AB,MN∥AB得到=, =, =,则DE=2x,FG=4x,MN=6x,所以DE+FG+MN=2x+4x+6x=12x,即镶嵌所得的作品的周长为16x,所以镶嵌所得的作品的面积=16x2,然后计算这张彩色纸的面积与镶嵌所得的作品(如图2)面积之比.【解答】解:设三张宽度相等的长方形纸条的宽为x,则等腰直角三角形的高为4x,如图1,∴AB=8x,∴S△ABC=•4x•8x=16x2,∵DE∥AB,FG∥AB,MN∥AB,∴=, =, =,∴DE=AB=2x,FG=4x,MN=6x,∴DE+FG+MN=2x+4x+6x=12x,∴镶嵌所得的作品的周长为12x=4x=16x,∴镶嵌所得的作品的边长为4x,∴镶嵌所得的作品的面积=16x2,∴这张彩色纸的面积与镶嵌所得的作品(如图2)面积之比为1:1.【点评】本题考查了相似三角形的应用:从实物图中抽象出几何图形,再证明三角形相似,然后利用相似比计算相应的线段长.也考查了等腰三角形和正方形的性质.二、填空题13.已知函数y=,下列x的值:①x=﹣9;②x=0;③x=4:其中在自变量取值范围内的有②(只要填序号即可)【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算求出x的取值范围,然后选择答案即可.【解答】解:由题意得,x≥0且﹣2≠0,解得x≥0且x≠4.所以,在自变量取值范围内的有②.故答案为:②.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.已知直线y=kx+b经过点(2,3),则4k+2b﹣7= ﹣1 .【考点】一次函数图象上点的坐标特征.【分析】由点在直线上可得出3=2k+b,将代数式4k+2b﹣7化成2k+b的形式,代入数据即可得出结论.【解答】解:∵直线y=kx+b经过点(2,3),∴3=2k+b.∴4k+2b﹣7=2×(2k+b)﹣7=2×3﹣7=﹣1.故答案为:﹣1.【点评】本题考查了一次函数图象上点的坐标特征,解题的关键是找出2k+b=3.本题属于基础题,难度不大,解决该题型题目时,根据点在直线上,找出两未知数间的关系是关键.15.一个不透明的布袋中,装有红、黄、白、黑四种只有颜色不同的小球,其中红色小球有30个,黄、白、黑色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,放回后再次搅匀…多次试验发现摸到红球的频率是,则估计黄色小球的数目是20个.【考点】用样本估计总体.【分析】根据布袋中红球有30个,多次试验发现摸到红球的频率是,可以得到布袋中小球总的数量,由一个不透明的布袋中,装有红、黄、白、黑四种只有颜色不同的小球,其中红色小球有30个,黄、白、黑色小球的数目相同,可以得到黄色小球的数目.【解答】解:由题意可得,布袋中小球一共有:30÷=90,∵布袋中红色小球有30个,黄、白、黑色小球的数目相同,∴黄色小球的数目是:(90﹣30)÷3=60÷3=20(个),故答案为:20个.【点评】本题考查用样本估计总体,解题的关键是明确题意,由红球的数量和出现的频率得到总的小球数量.16.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE= 71°.【考点】翻折变换(折叠问题).【分析】根据三角形内角和定理求出∠B,根据折叠求出∠ECD和∠CED,根据三角形内角和定理求出即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=26°,∴∠B=64°,∵将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,∠ACB=90°,∴∠BCD=∠ECD=45°,∠CED=∠B=64°,∴∠CDE=180°﹣∠ECD﹣∠CED=71°,故答案为:71°.【点评】本题考查了折叠的性质,三角形内角和定理的应用,能求出∠CED和∠ECD的度数是解此题的关键,注意:折叠后的两个图形全等.17.如图,0为原点,A(4,0),E(0,3),四边形OABC,四边形OCDE都为平行四边形,OC=5,函数y=(x>0)的图象经过AB的中点F和DE的中点G,则k的值为9 .【考点】反比例函数图象上点的坐标特征;平行四边形的性质.【分析】(1)根据两平行四边形对边平行且相等可知:OE=3,OA=4,并由设出C、B、D的坐标;(2)表示出点F和G的坐标,并根据反比例函数列等式,求出a与b的关系:3a=4b,a=;(3)由OC的长及点C的坐标列式:a2+b2=52,求出a与b的值;(4)写出点G或点F的坐标,计算k的值.【解答】解:∵A(4,0),E(0,3),∴OE=3,OA=4,由▱OABC和▱OCDE得:OE∥DC,BC∥OA且DC=OE=3,BC=OA=4,设C(a,b),则D(a,b+3)、B(4+a,b),∵AB的中点F和DE的中点G,∴G(),F(),∵函数y=(x>0)的图象经过点G和F,则,3a=4b,a=,∵OC=5,C(a,b),∴a2+b2=52,,b=±3,∵b>0,∴b=3,a=4,∴F(6,),∴k=6×=9;故答案为:9.【点评】本题考查了平行四边形及反比例函数的性质,根据坐标特点及平行四边形对边平行相等的性质,利用点C的坐标表示出点B和D的坐标是本题的突破口,找出两组等量关系列方程是本题的关键;同时利用待定系数法求反比例函数的比例系数.18.如图,A点的坐标是(0,6),AB=BO,∠ABO=120°,C在x轴上运动,在坐标平面内作点D,使AD=DC,∠ADC=120°,连结OD,则OD的长的最小值为.【考点】相似三角形的判定与性质;坐标与图形性质;含30度角的直角三角形.【分析】先判定△ABO∽△ADC,得出=,再根据∠BAD=∠OAC,得出△ACO∽△ADB,进而得到∠ABD=∠AOC=90°,得到D始终在直线BE上,当OD⊥BE时,OD最小,最后过O作OF⊥BD于F,根据∠OBF=30°,求得OF=OB=,即OD最小值为;作B关于y轴的对称点B',则同理可得OD最小值为.【解答】解:如图,作直线BD,由∠DAC=∠DCA=∠BAO=∠BOA=30°,可得△ABO∽△ADC,∴=,即=,又∵∠BAD=∠OAC,∴△ACO∽△ADB,∴∠ABD=∠AOC=90°,∴D始终在直线BE上,当OD⊥BE时,OD最小,过O作OF⊥BD于F,则△BOF为Rt△,∵A点的坐标是(0,6),AB=BO,∠ABO=120°,∴易得OB=2,∵ABO=120°,∠ABD=90°,∴∠OBF=30°,∴OF=OB=,即OD最小值为;如图,作B关于y轴的对称点B',作直线DB',则同理可得:△ACO∽△ADB',∴∠AB'D=∠AOC=90°,∴D始终在直线B'E上,当OD⊥B'E时,OD最小,过O作OF'⊥B'D于F',则△B'OF'为Rt△,∵A点的坐标是(0,6),AB'=B'O,∠A B'O=120°,∴易得OB'=2,∵AB'O=120°,∠AB'D=90°,∴∠OB'F'=30°,∴OF'=OB'=,即OD最小值为.故答案为:.【点评】本题主要考查了相似三角形的判定与性质、含30°角的直角三角形的性质的综合应用,解决问题的关键是作辅助线,利用垂线段最短进行判断分析.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.三、解答题(19题6分,20~21每题8分,22〜24每題10分,25题12分,26题14分,共78分)19.计算:(﹣3)2+()0﹣+2﹣1+•tan30°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,乘方的意义,立方根定义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=9+1﹣2++×=9.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:,其中x=﹣3.【考点】分式的化简求值.【分析】化简分式,首先把分式的分母分解因式,确定各个分式的最简公分母,把两个分式通分,然后即可利用同分母的分式的加减即可求解.【解答】解:原式=====.当x=﹣3时,原式==1.【点评】本题考查了分式的化简求值,关键是分式的化简,容易出现=的错误.21.中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)【考点】解直角三角形的应用-方向角问题.【分析】过A作AD⊥CF于D,根据题意求出∠ACD=60°,根据正弦的定义求出AD的长,比较即可得到答案.【解答】解:过A作AD⊥CF于D,由题意得∠CAG=15°,∴∠ACE=15°,∵∠ECF=75°,∴∠ACD=60°,在Rt△ACD中,sin∠ACD=,则AD=AC•sin∠ACD=250≈433米,433米>400米,∴不需要改道.答:消防车不需要改道行驶.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确标注方向角、熟记锐角三角函数的概念是解题的关键.22.(10分)(2016•商丘三模)如图,在平面直角坐标系中,一次函数y=ax﹣a(a为常数)的图象与y轴相交于点A,与函数的图象相交于点B(m,1).(1)求点B的坐标及一次函数的解析式;(2)若点P在y轴上,且△PAB为直角三角形,请直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点在函数图象上,得到点的坐标满足函数解析式,利用待定系数法即可求得.(2)分两种情况,一种是∠BPA=90°,另一种是∠PBA=90°,所以有两种答案.【解答】解:(1)∵B在的图象上,∴把B(m,1)代入y=得m=2∴B点的坐标为(2,1)∵B(2,1)在直线y=ax﹣a(a为常数)上,∴1=2a﹣a,∴a=1∴一次函数的解析式为y=x﹣1.(2)过B点向y轴作垂线交y轴于P点.此时∠BPA=90°∵B点的坐标为(2,1)∴P点的坐标为(0,1)当PB⊥AB时,在Rt△P1AB中,PB=2,PA=2∴AB=2在等腰直角三角形PAB中,PB=PA=2∴PA==4∴OP=4﹣1=3∴P点的坐标为(0,3)∴P点的坐标为(0,1)或(0,3).【点评】主要考查了一次函数和反比例函数的交点问题,待定系数法是常用的方法,结合图形去分析,体现数形结合思想的重要性.23.(10分)(2016•慈溪市一模)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如图:(注:A为可回收物,B为厨余垃圾,C为有害垃圾,D为其他垃圾)根据图表解答下列问题:(1)在抽样数据中,产生的有害垃圾共多少吨?(2)请将条形统计图补充完整;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据题意可以求得在抽样数据中,有害垃圾由多少吨;(2)根据题意可以求得B的吨数,从而可以将条形统计图补充完整;(3)根据题意可以求得每月回收的塑料类垃圾可以获得的二级原料有多少吨.【解答】解:(1)由题意可得,在抽样数据中,产生的有害垃圾有:5÷10%×(1﹣10%﹣30%﹣54%)=5÷10%×6%=3(吨),即在抽样数据中,产生的有害垃圾共3吨;(2)由题意可得,B有:5÷10%×30%=15(吨),补全的条形统计图如右图所示,(3)由题意可得,每月回收的塑料类垃圾可以获得的二级原料有:5000×54%××0.7=945(吨),即每月回收的塑料类垃圾可以获得的二级原料有945吨.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.(10分)(2016•慈溪市一模)我市某校准备组织学生及学生家长坐高铁到杭州进行社会实践,为了便于管理.所有人员必须乘坐在同一列高铁上.根据报名人数,若都买一等座单程火车票需6560元,若都买二等座单程火车票,则需3120元(学生票二等座打7.5折,一等座不打折).已知学生家长与教师的人数之比为3:1,余姚北站到杭州东站的火车票价格如表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买m张(m小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y(元)(用含m的代数式表示).【考点】二元一次方程组的应用.【分析】(1)设设教师人数为x人,学生家长人数为3x人,学生人数为y人,根据:若都买一等座单程火车票需6560元、若都买二等座单程火车票,则需3120元(学生票二等座打7.5折,一等座不打折)列方程组求解可得;(2)根据0<m<60、60≤m<80分别列示表示即可.【解答】解:(1)设教师人数为x人,学生家长人数为3x人,学生人数为y人.由题意得:,解得:,∴3x=3×5=15答:老师5人,家长15人,学生60人.(2)①当0<m<60时,y=82(80﹣m)+48×75%m=6560﹣46m;②当60≤m<80时,y=48×75%×60+48(m﹣60)+82(80﹣m)=5840﹣34m.【点评】本题考查二元一次方程组的知识解决实际问题,解决本题的关键是根据相等关系列出方程组及分段函数的运用.25.(12分)(2016•慈溪市一模)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1)如图1,△ABC中,∠C=90°,AB=5,BC=3,则AC边上的伴随圆的半径为 2 .(2)如图2,已知等腰△ABC,AB=AC=5,BC=6,画草图并直接写出它的所有伴随圆的半径.(3)如图3,△ABC中,∠ACB=90°,点P在边AB上,AP=2BP,D为AC中点,且∠CPD=90°.①求证:△CPD的外接圆是△ABC某一条边上的伴随圆;②求cos∠PDC的值.【考点】圆的综合题.【分析】(1)先依据勾股定理求得AC的长,然后依据切线的性质可知AC为圆的直径,故此可求得△BAC的伴随圆的半径等于AC的一半;(2)当O在BC上时,连接OD,过点A作AE⊥BC.由等腰三角形的性质和勾股定理求得AE=4,依据切线的性质可证明OD⊥AB,接下来证明△ODB∽△AEB,由相似三角形的性质可求得圆O 的半径;当O在AB上且圆O与BC相切时,连接OD、过点A作AE⊥BC,垂足为E.先证明△BOD∽△BAE,由相似三角形的性质可求得圆O的半径,当O在AB上且圆O与AC相切时,连接OD、过点B作BF⊥AC,过点A作AE⊥BC,垂足为E.先依据面积法求得BF的长,然后再证明△AOD∽△ABF,由相似三角形的性质可求得圆O的半径;。
海曙区2016年中考模拟数学统考试卷 参考答案及评分标准
海曙区2016年初中毕业生模拟考试数 学(答案)一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一个符合题目要求)二、填空题(每小题4分,共24分)三、解答题(第19题6分,第20、21题每题8分,第22、23、24题每题10分,第25题12分,第26题14分,共78分) 19.(1)原式()224222x x x x --=⋅-+ ……………………………………2分()()()222222x x x x x +--=⋅-+ ………………………………3分22x x -=+…………………………………………4分当3x =时,原式15=………………………………6分 20.(1)当1a =时,2560x x -+= ………………………………1分()()230x x --=………………………………2分∴12x =,23x =………………………………4分(2)∵方程有两个不相等的实数根∴()()254330a ∆=--+>………………………………6分1312a <………………………………8分21.(1)√;×…………………………………………4分 (2)不认同.…………………………………………5分………………………………………………7分∴P (摸出的球中有白球)2132=≠………………………………8分221红1白白第二次第一次22.(1)915%60÷=人 ……………………………………2分 (2)6091236--=人 ………………………………3分 小说:5361512⨯=人 ………………………………4分童话:7362112⨯=人………………………………5分…………………………7分(3)15210052560⨯=人……………………………………10分23.(1)连结AO ,交BC 于点E . ∵点A 是 BC的中点 ∴AO BC ⊥ ……………………2分 又∵AP ∥BC∴AP AO ⊥……………………4分∴AP 是⊙O 的切线…………5分(2)∵AO BC ⊥,BC =∴12BE BC == …………………………6分又∵6AB = ∴sin BE BAO AB ∠== …………………………8分∵OA OB =∴ABD BAO ∠=∠…………………………9分∴sin sin ABD BAO ∠=∠=…………………………10分 24.(1)设加油前函数解析式为y kt b =+()0k ≠…………………………1分把()0,28和()1,20代入, 得2820b k b =⎧⎨+=⎩ ∴828k b =-⎧⎨=⎩ …………………………3分∴828y t =-+………………………………4分某校各类书籍最喜爱的人数条形统计图故事文献书刊名著P(2)当0y =时,8280t -+=72t =………………………………6分∴75032100a =-=……………………………………7分(3)设途中加油x 升,则50028348100x +-=⨯……………………………………9分 46x =……………………………………10分∴张师傅途中加油46升 25.(1………………2分②()5,3,()3,5………………4分(2)∵四边形ABCD 是正方形 ∴AB BC =90A ABC ∠=∠=︒∴1290∠+∠=︒ ∵BE CF ⊥ ∴2390∠+∠=︒ ∴13∠=∠∴△ABE ≌△BCF ………………………………6分 ∴BE CF =………………………………7分∴四边形BCEF 是准矩形………………………………8分(312分(答对一个给1分,答对两个给2分)参考:当AC AD BD ==时, 当AC CD BD ==时, 当AD CD =时,S =S =S =26.(1)由已知,设抛物线解析式为()22y a x =-把()0,1D -代入,得14a =-………………………………2分∴()2124y x =-- …………………………………………3分AF E AAA(2)连结BN . ∵1N ,2N 是N 的对称点 ∴12BN BN BN ==12∠=∠,34∠=∠∴122N BN DBC ∠=∠…………4分∵四边形ABCD 是菱形∴AB BC =,2ABC DBC ∠=∠…………∴12ABC N BN ∠=∠,12AB BCBN BN =∴△ABC ∽△12N BN………………………………6分(3)∵点N 是CD 上的动点 ∴当BN CD ⊥时,BN 最短 ∵()2,0C ,()0,1D - ∴CD = ∴min BD CO BN CD ⋅==………………………………8分∴1min min BN BN ==∵△ABC ∽△12N BN ∴112AB ACBN N N =12min 165N N =…………………………………10分(4)过点P 作PE x ⊥轴,交AB 于点E . ∵PQA BAC ∠=∠ ∴1PQ ∥AC∵菱形ABCD 中,()2,0C ,()0,1D - ∴()2,0A -,()0,1B∴1:12AB l y x =+不妨设()21,24P m m ⎛⎫-- ⎪⎝⎭,则1,12E m m ⎛⎫+ ⎪⎝⎭∴211242PE m m =-+∴当1m =时,min 74PE =………………………………12分此时,1PQ 最小,最小值为17tan 2PE EQ P =∠显然1272PQ PQ ==………………………………14分。
2015-2016年浙江省宁波市海曙区八年级第一学期期末数学试卷带答案
2015-2016学年浙江省宁波市海曙区初二(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)三条小棒搭成了一个三角形模型,这三条小棒的长度不可能是(单位:分米)()A.1,2,3B.2,3,4C.3,4,5D.4,5,6 2.(3分)根据下列表述,能够确定一点位置的是()A.东北方向B.宁波大剧院音乐厅8排C.永丰西路D.东经20度北纬30度3.(3分)下列能断定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.∠A=2∠B=80°D.AB=3,BC=6,周长为134.(3分)一元一次不等式2(x+1)≥4的解在数轴上表示为()A.B.C.D.5.(3分)在△ABC中和△DEF中,已知AC=DF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠A=∠D D.∠B=∠E 6.(3分)若实数a、b、c满足a+b+c=0,且a>b>c,则函数y=ax+c的图象可能是()A.B.C.D.7.(3分)如图为作一个角的角平分线的示意图,该作法的依据是全等三角形判定的基本事实,可简写为()A.SSS B.SAS C.ASA D.AAS8.(3分)如图,在△ABC中,AB=AC,D为BC边上一点,且AD=AE,则∠BAD 与∠EDC的关系为()A.∠BAD=∠EDC B.∠BAD=2∠EDCC.∠BAD+∠EDC=45°D.∠BAD+∠EDC=60°9.(3分)如图所示,矩形ABCD中,AB=4,BC=,点E是折线ADC上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的位置共有()A.2个B.3个C.4个D.5个10.(3分)小宁、小波从学校出发到青少年宫参加书法比赛,小宁步行一段时间后,小波骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小宁出发时间t(分)之间的函数关系如图所示.下列说法:①小波先到达青少年宫;②小波的速度是小宁速度的2.5倍;③a=25;④b=460.其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(每小题3分,共24分)11.(3分)在函数y=中,自变量x的取值范围是.12.(3分)在平面直角坐标系中,点A(﹣2,3)在第象限.13.(3分)命题“等腰三角形的两个底角相等”的逆命题是.14.(3分)根据下表中一次函数的自变量x与函数y的对应值,可得p的值为.15.(3分)如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC 的延长线于点E,已知∠B=50°,则∠CAF的度数为.16.(3分)如图,CD是Rt△ABC斜边AB上的高,将△ACD沿CD折叠,A点恰好落在AB的中点E处,则∠B等于度.17.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y 轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为.18.(3分)如图,在直线l上依次摆放着4031个正方形,已知斜放着的2015个正方形的面积分别是1、2、3、…、2015,正放置的2016个正方形的面积依次是S1、S2、S3…、S2016,那么S1+S2+S3+…+S2016=.三、解答题(第19、20、21题每小题6分,第22题每小题6分,第23、24题每小题6分,共46分)19.(6分)解下列不等式(组):(1)3x﹣1>2x+5(2).20.(6分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.21.(6分)已知:A(0,1),B(2,0),C(4,﹣4)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积.22.(8分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y 关于x的函数解析式;(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?23.(10分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D 不与B、C重合),连接AD,作∠ADE=40°,DE交线AC段于E.(1)当∠BDA=115°时,∠BAD=°,∠DEC=°;(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.24.(10分)如图,直线y=kx+b分别交x轴、y轴正半轴于点A、B,其中A(6,0),P为x轴正半轴上一个动点.(1)若OB:OA=4:3,求点B坐标及一次函数解析式;(2)在(1)的条件下,连结BP,若BP平分∠OBA,求点P坐标及△BPA的面积;(3)若OB=OA,在第一象限内作等腰直角△BPM,其中∠BPM=90°,直线MA 交y轴于点C,则点C是否为定点?请说明理由.2015-2016学年浙江省宁波市海曙区初二(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)三条小棒搭成了一个三角形模型,这三条小棒的长度不可能是(单位:分米)()A.1,2,3B.2,3,4C.3,4,5D.4,5,6【解答】解:A、1+2=3,不能构成三角形,故此选项正确;B、3+2>4,能构成三角形,故此选项错误;C、4+3>5,能构成三角形,故此选项错误;D、5+4>6,能构成三角形,故此选项错误;故选:A.2.(3分)根据下列表述,能够确定一点位置的是()A.东北方向B.宁波大剧院音乐厅8排C.永丰西路D.东经20度北纬30度【解答】解:根据题意可得,A、东北方向无法确定位置,故选项A不合题意;B、东北方向无法确定位置,故选项B不合题意;C、东北方向无法确定位置,故选项C不合题意;D、东经20°,北纬30°可以确定一点的位置,故选项D正确,符合题意,故选:D.3.(3分)下列能断定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.∠A=2∠B=80°D.AB=3,BC=6,周长为13【解答】解:A、∠C=180°﹣30°﹣60°=90°,没有相等的角,则不是等腰三角形,选项错误;B、∠C=180°﹣50°﹣80°=50°,有相等的角,则是等腰三角形,选项正确;C、∵∠A=2∠B=80°,∴∠B=40°,∴∠C=60°,没有相等的角,则不是等腰三角形,选项错误;D、∵AB=3,BC=6,周长为13,∴AC=13﹣6﹣3=4,没有相等的边,则不是等腰三角形,选项错误;故选:B.4.(3分)一元一次不等式2(x+1)≥4的解在数轴上表示为()A.B.C.D.【解答】解:由2(x+1)≥4,可得x+1≥2,解得x≥1,所以一元一次不等式2(x+1)≥4的解在数轴上表示为:.故选:A.5.(3分)在△ABC中和△DEF中,已知AC=DF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠A=∠D D.∠B=∠E【解答】解:∵AC=DF,∠C=∠F,∴当BC=EF时,满足SAS,可以判定△ABC≌△DEF,故A可以;当AB=DE时,满足SSA,无法判定△ABC≌△DEF,故B不能;当∠A=∠D时,满足AAS,可以判定△ABC≌△DEF,故C可以;当∠B=∠C时,满足AAS,可以判定△ABC≌△DEF,故D可以;故选:B.6.(3分)若实数a、b、c满足a+b+c=0,且a>b>c,则函数y=ax+c的图象可能是()A.B.C.D.【解答】解:∵实数a、b、c满足a+b+c=0,且a>b>c,∴a>0,c<0,∴函数y=ax+c的图象过一、三、四象限.故选:C.7.(3分)如图为作一个角的角平分线的示意图,该作法的依据是全等三角形判定的基本事实,可简写为()A.SSS B.SAS C.ASA D.AAS【解答】解:连接BC,AC,由作图知:在△OAC和△OBC中,∴△OAC≌△OBC(SSS),故选:A.8.(3分)如图,在△ABC中,AB=AC,D为BC边上一点,且AD=AE,则∠BAD 与∠EDC的关系为()A.∠BAD=∠EDC B.∠BAD=2∠EDCC.∠BAD+∠EDC=45°D.∠BAD+∠EDC=60°【解答】解:∠BAD=2∠CDE.理由如下:∠AED=∠CDE+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC.故选:B.9.(3分)如图所示,矩形ABCD中,AB=4,BC=,点E是折线ADC上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的位置共有()A.2个B.3个C.4个D.5个【解答】解:①BP为等腰三角形一腰长时,符合点E的位置有2个,是BC的垂直平分线与以B为圆心BA为半径的圆的交点即是点P;②BP为底边时,C为顶点时,符合点E的位置有2个,是以B为圆心BA为半径的圆与以C为圆心BC为半径的圆的交点即是点P;③以PC为底边,B为顶点时,这样的等腰三角形不存在,因为以B为圆心BA为半径的圆与以B为圆心BC为半径的圆没有交点.故选:C.10.(3分)小宁、小波从学校出发到青少年宫参加书法比赛,小宁步行一段时间后,小波骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小宁出发时间t(分)之间的函数关系如图所示.下列说法:①小波先到达青少年宫;②小波的速度是小宁速度的2.5倍;③a=25;④b=460.其中正确的是()A.①②③B.①②④C.①③④D.①②③④【解答】解:由题意和图象可得,小波骑车速度比小宁步行速度快,故小波先到达青少年宫,故①正确,小宁的速度是:720÷9=80米/分,小波的速度是:(80×15)÷(15﹣9)=200米/分,∵200÷80=2.5,即小波的速度是小宁速度的2.5倍,故②正确,a=(19﹣9)×200÷80=25,故③正确,b=(19﹣9)×200﹣19×80=480,故④错误,故选:A.二、填空题(每小题3分,共24分)11.(3分)在函数y=中,自变量x的取值范围是x≥.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.12.(3分)在平面直角坐标系中,点A(﹣2,3)在第二象限.【解答】解:点A(﹣2,3)在第二象限.故答案为:二.13.(3分)命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.14.(3分)根据下表中一次函数的自变量x与函数y的对应值,可得p的值为1.【解答】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣2时y=3;x=1时y=0,∴,解得,∴一次函数的解析式为y=﹣x+1,∴当x=0时,y=1,即p=1.故答案是:1.15.(3分)如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC 的延长线于点E,已知∠B=50°,则∠CAF的度数为50°.【解答】解:∵AD的垂直平分线交BC的延长线于点E,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B=50°.故答案为:50°.16.(3分)如图,CD是Rt△ABC斜边AB上的高,将△ACD沿CD折叠,A点恰好落在AB的中点E处,则∠B等于30度.【解答】解:∵在Rt△ABC中,CE是斜边AB的中线,∴AE=CE=BE,∴∠B=∠BCE,∵△CED是由△CAD折叠而成,∴∠A=∠CED,∵∠CEA=∠B+∠BCE=2∠B,∴∠A=2∠B,∵∠A+∠B=90°,∴∠B=30°.故答案为:30.17.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y 轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x 的函数关系为y=﹣2x﹣1.【解答】解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2x+y+1=0,即y=﹣2x﹣1.故答案为:y=﹣2x﹣1.18.(3分)如图,在直线l上依次摆放着4031个正方形,已知斜放着的2015个正方形的面积分别是1、2、3、…、2015,正放置的2016个正方形的面积依次是S1、S2、S3…、S2016,那么S1+S2+S3+…+S2016=1016064.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,在△ABC和△BED中,,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3,S5+S6=5,…,S2011+S2012=2011,则S1+S2+S3+S4+…S2016=1+3+5+…+2015=×=1016064,故答案为1016064三、解答题(第19、20、21题每小题6分,第22题每小题6分,第23、24题每小题6分,共46分)19.(6分)解下列不等式(组):(1)3x﹣1>2x+5(2).【解答】解:(1)3x﹣1>2x+5,3x﹣2x>5+1,x>6;(2)解不等式≤1得:x≤3;解不等式x﹣2<4(x+1)得:x>﹣2.∴不等式组的解是﹣2<x≤3.20.(6分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.【解答】证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.21.(6分)已知:A(0,1),B(2,0),C(4,﹣4)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积.【解答】解:(1)如图,=×(2+4)×4+×2×1﹣×4×5=3.(2)S△ABC22.(8分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y 关于x的函数解析式;(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【解答】解:(1)y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,(2)∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值为﹣5×25+2000=1875(元).23.(10分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D 不与B、C重合),连接AD,作∠ADE=40°,DE交线AC段于E.(1)当∠BDA=115°时,∠BAD=25°,∠DEC=115°;(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.【解答】解:(1)∵在△BAD中,∠B=∠C=∠40°,∠BDA=115°,∴∠BAD=180°﹣∠B﹣∠BDA=180°﹣40°﹣115°=25°;∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°.∠DEC=180°﹣∠C﹣∠EDC=180°﹣40°﹣25°=115°,故答案为:25,115;(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)可以;当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAE=70°,∴∠AED=180°﹣70°﹣40°=70°∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAE=40°,∴∠DAE=∠ADE∴△ADE的形状是等腰三角形.24.(10分)如图,直线y=kx+b分别交x轴、y轴正半轴于点A、B,其中A(6,0),P为x轴正半轴上一个动点.(1)若OB:OA=4:3,求点B坐标及一次函数解析式;(2)在(1)的条件下,连结BP,若BP平分∠OBA,求点P坐标及△BPA的面积;(3)若OB=OA,在第一象限内作等腰直角△BPM,其中∠BPM=90°,直线MA 交y轴于点C,则点C是否为定点?请说明理由.【解答】解(1)∵A(6,0),∴OA=6,∵OB:OA=4:3,∴OB=8,∴B(0,8),∴,∴,∴一次函数解析式为y=﹣x+8,(2)∵OA=6,OB=8,∴AB=10,设P(a,0),∴OP=a,ap=6﹣a,∵BP平分∠OBA,∴,∴,∴a=,∴P(,0),PA=6﹣=,=PA×OB=××8=,∴S△BPA(3)点C是定点,理由:如图,由(1)知,OA=6,∵OB=OA,∴OB=6,∴B(0,6),过点M作MN⊥OA,设P(m,0),由旋转知,BP=MP,∠BPM=90°,∴∠BPO+∠MPN=90°,∵∠OBP+∠BPO=90°,∴∠OBP=∠NPM,在△OBP和△NPM中,,∴△OBP≌△NPM,∴MN=OP=m,PN=OB=6,∴ON=m+6,∴M(m+6,m),∵A(6,0),∴直线AM的解析式为y=x﹣6,∴C(0,﹣6)为定点.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。
浙江省宁波市北仑区2016届九年级中考一模试卷数学试题解析(解析版)
一、选择题(每小题4分,共48分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣2的相反数为()A.2 B.12C.﹣2 D.—12【答案】A【解析】试题分析:与﹣2符号相反的数是2,所以,数﹣2的相反数为2.故选A.考点:相反数的意义2. 据初步统计,2015年北仑区实现地区生产总值(GDP)约为1134.6亿元.其中1134.6亿元用科学记数法表示为()A.1134.6×108元B.11.346×1010元C.1.1346×1011元 D.1.1346×1012元【答案】 C【解析】试题分析:1134.6亿用科学记数法表示应为:1.1346×1011考点:科学记数法的表示方法3. 3.下列运算正确的是()A.a2•a3=a6B.(3a)3=9a3C.a3﹣2a3=﹣1 D.(a2)3=a6【答案】D考点:同底数幂的乘法、积的乘方、合并同类项、幂的乘方4. 有意义的字母x的取值范围是()A.x≥34B.x≤34C.x<34D.x≠34【答案】B【解析】试题分析::由题意得,3﹣4x≥0,解得x≤34,故选:B.考点:二次根式有意义的条件5. 如图是由四个大小相同的立方体组成的几何体,则这个几何体的左视图是()【答案】A【解析】试题分析:解:从左边看,第一层是两个小正方形,第二层左边一个小正方形,故选:A.考点:简单组合体的三视图6. 在四张完全相同的卡片上,分别画有等边三角形、菱形、正五边形、圆.现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.14B.12C.34D.1【答案】D【解析】试题分析:卡片上的图形恰好是中心对称图形的有4个,所以从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是1,故选D考点:概率问题7. 不等式组3012xx-⎧⎪⎨-⎪⎩<≥-1的解在数轴上表示正确的是()【答案】C 【解析】试题分析:3012xx-⎧⎪⎨-⎪⎩<①≥-1②,由①得,x<3,由②得x≥﹣1,故不等式组的解集为:﹣1≤x<3,在数轴上表示为:.故选C.考点:在数轴上表示不等式的解集8. 将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为()A.10°B.15°C.20°D.25°【答案】B【解析】试题分析:∵BC∥DE,∴∠BCE=∠E=30°,∴∠ACE=∠ACB﹣∠BCE=45°﹣30°=15°,故选:B.考点:平行线的性质9. 下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是4【答案】D考点:随机事件发生的可能性(概率)的计算方法10. 如图,已知▱ABCD中,AE⊥BC,AF⊥DC,BC:CD=3:2,AB=EC,则∠EAF=()A.50°B.60°C.70°D.80°【答案】B【解析】试题分析:设BC=3x,则CD=2x,∵四边形ABCD是平行四边形,∴AB=CD=2x,AB∥DC,∵AE⊥BC,AF⊥DC,∴∠AEB=90°,AF ⊥AB ,∴∠BAF=90°,∵AB=EC ,∴EC=2x ,∴BE=BC=EC=x=12AB , ∴∠BAE=30°,∴∠EAF=90°﹣30°=60°,故选B .考点:平行四边形的性质、含30°角的直角三角形的判定、平行线的性质11. 如图,在矩形ABCD 中,AB=4,AD=5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线BC 于点M ,切点为N ,则DM 的长为( )A .133B .92CD .【答案】A【解析】试题分析:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,∵∠A=∠B=90°,CD=AB=4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE ,FBGO 是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM 是⊙O 的切线,∴DN=DE=3,MN=MG ,∴CM=5﹣2﹣MN=3﹣MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=43,∴DM=34+3=133,故选A.考点:切线的性质,勾股定理,正方形的性质12. 如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8 D.9【答案】C【解析】试题分析:设抛物线的解析式是y=ax2+bx+c,∵抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,∴0 16404a b ca b cc++=⎧⎪++=⎨⎪=-⎩解得154a b c =-⎧⎪=⎨⎪=-⎩∴y=﹣x2+5x ﹣4,设过点B (4,0),C (0,﹣4)的直线的解析式为y=kx+m404k m m +=⎧⎨=-⎩解得14k m =⎧⎨=-⎩即直线BC 的直线解析式为:y=x ﹣4,设点D 的坐标是(x ,﹣x2+5x ﹣4)∴S △ABC= =﹣2(x ﹣2)2+8,∴当x=2时,△BCD 的面积取得最大值,最大值是8.故选C .考点:二次函数的最值二、填空题(每小题4分,共24分)13. 因式分解:4a 3﹣16a= .【答案】4a (a+2)(a ﹣2)【解析】试题分析:原式=4a (a2﹣4)=4a (a+2)(a ﹣2),故答案为:4a (a+2)(a ﹣2)考点:提公因式法与公式法的综合运用14. 已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为 cm 2.(结果保留π)【答案】15π【解析】试题分析:底面圆的半径为3cm ,则底面周长=6πc ,侧面面积=12×6π×5=15πcm 2. 考点:圆的周长公式和扇形面积公式15. 已知a+b=ab ,则(a ﹣1)(b ﹣1)= .【答案】1【解析】试题分析:(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1,∵a+b=ab,∴原式=ab﹣ab+1=1.故答案是:1.考点:多项式的乘法法则16. 如图,在△ABC中,D,E两点分别在边AB,AC上,AB=8cm,AC=6cm,AD=3cm,要使△ADE与△ABC相似,则线段AE的长为cm.【答案】4或9 4【解析】试题分析:①当△ADE∽△ABC时,有AD:AB=AE:AC,∵AB=8,AC=6,AD=3,∴AE=94;②当△AED∽△ABC时,有AD:AE=AC:AB,∵AB=8,AC=4,AD=3,∴AE=4,所以AE等于4或94.故答案为:4或94.考点:似三角形的判定和性质17. 如图,已知A,B两点的坐标分别为(0),(0,10),M是△AOB外接圆⊙C上的一点,且∠AOM=30°,则点M的坐标为.【答案】(,4).【解析】试题分析:∵A ,B 两点的坐标分别为(,0),(0,10),∴OB=10,,∴∵∠AOB=90°,∴AB 是直径,,∴Rt△AOB 外接圆的圆心为AB 中点,∴C ,5),过点C 作CF∥OA,过点M 作ME⊥OA 于E 交CF 于F ,作CN⊥OE 于N ,如图所示:则ON=AN=12, 设ME=x ,∵∠AOM=30°,∴x∴∠CFM=90°,∴MF=5﹣x ,x ,在△CMF x 2+(5﹣x )2=()2,解得:x=4或x=0(舍去),∴故答案为:(,4).考点:圆周角定理、直角三角形的性质、勾股定理18. 如图,点P 1(x 1,y 1),点P 2(x 2,y 2),…,点P n (x n ,y n )在函数y=1x (x >0)的图象上,△P 1OA ,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n ﹣1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n ﹣1A n 都在x 轴上(n 是大于或等于2的正整数).若△P 1OA 1的内接正方形B 1C 1D 1E 1的周长记为l 1,△P 2A 1A 2的内接正方形的周长记为l 2,…,△P n A n ﹣1A n 的内接正方形B n C n D n E n 的周长记为l n ,则l 1+l 2+l 3+…+l n = (用含n 的式子表示).. 【解析】试题分析:过P 1作P 1M 1⊥x 轴于M 1,易知M 1(1,0)是OA 1的中点,∴A 1(2,0).可得P 1的坐标为(1,1),∴P 1O 的解析式为:y=x ,∵P 1O∥A 1P 2,∴A 1P 2的表达式一次项系数相等,将A 1(2,0)代入y=x+b ,∴b=﹣2,∴A 1P 2的表达式是y=x ﹣2,与y=1x (x >0)联立,解得P 2(,﹣).仿上,A 2(,0).P 3),A 3(,0).依此类推,点A n 的坐标为(0),∵l 1=43OA 1,l 2=43A 1A 2,l 3=43A 2A 3…l n =43A n ﹣1A n ,∴l 1+l 2+l 3+…+l n =43OA n =43..考点:反比例函数图象上点的坐标特征,等腰直角三角形的性质,正方形的性质三、解答题(本题有8小题,共78分)19. |﹣2|+(1)0﹣9tan30°.1.【解析】试题分析:原式第一项化为最简二次根式,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.试题解析:原式2+1﹣9=﹣1.考点:实数的运算20. 如图,从热气球C 处测得地面A ,B 两点的俯角分别为30°,45°,此时热气球C 处所在位置到地面上点A 的距离为400米.求地面上A ,B 两点间的距离.【答案】+200(米).【解析】试题分析:如图,过点C作CD⊥AB于点D,构建直角△ACD和直角△BCD,通过解这两个直角三角形求AD、BD的长度,则易求AB=AD+BD.试题解析:如图,过点C作CD⊥AB于点D,在直角△ACD中,∠A=30°,AC=400米,则AD=ACcos30°=400CD=12AC=200米.在直角△BCD中,∠B=45°,∠CDB=90°,则∠BCD=∠B=45°,所以BD=CD=200米,所以+200(米).考点:解直角三角形的应用﹣仰角俯角问题21. 某市为了解九年级学生的身体素质测试情况,随机抽取了该市九年级部分学生的身体素质测试成绩作为样本,按A(优秀),B(良好),C(合格),D(不合格)四个等级进行统计,并将统计结果绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整,并计算扇形统计图中“A”部分所对应的圆心角的度数.(3)该市九年级共有8000名学生参加了身体素质测试,估计测试成绩在良好以上(含良好)的人数.【答案】(1)500人(2)72°,图见解析(3)4800(人)【解析】试题分析:(1)用B等级人数÷B等级人数所占百分比即可算出总人数;(2)用总人数减去A、B、D三等级人数可得C等级人数,将360°乘以A等级人数占被调查人数百分比可得;(3)用样本中良好(A、B两等级)等级人数占被调查人数百分比乘以总人数8000可得.试题解析:(1)此次共调查学生20040%=500(人),答:此次共调查了500名学生;(2)C等级人数为:500﹣100﹣200﹣60=140(人),A等级对应扇形圆心角度数为:100500×360°=72°,补全条形图如图:(3)估计测试成绩在良好以上(含良好)的人数为:8000×100200500=4800(人),答:估计测试成绩在良好以上(含良好)的约有4800人.考点:条形统计图和扇形统计图的综合运用22. 2016年宁波市北仑区体育中考的3个选测项目分别是50米跑,一分钟跳绳,篮球运球投篮.另规定:游泳满分的学生,只需从3个选测项目中选择一项进行测试;游泳未得满分或未参加的学生,需从3个选测项目中任选两项进行测试.(1)小明因游泳测试获得了满分,求他在3个选测项目中选择“一分钟跳绳”项目的概率.(2)若小红和小慧的游泳测试都未得满分,她们都必须从3个选测项目中选择两项进行体育中考测试,请用列表(或画树状图)的方法,求出小红和小慧选择的两个项目完全相同的概率.【答案】(1)他在3个选测项目中选择“一分钟跳绳”项目的概率为:13;(2)红和小慧选择的两个项目完全相同的概率为:13(图见解析)【解析】试题分析:(1)直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小红和小慧选择的两个项目完全相同的情况,再利用概率公式即可求得答案.试题解析:(1)∵小明因游泳测试获得了满分,∴他在3个选测项目中选择“一分钟跳绳”项目的概率为:13;(2)分别用A,B,C表示50米跑,一分钟跳绳,篮球运球投篮;画树状图得:∵共有9种等可能的结果,小红和小慧选择的两个项目完全相同的有3种情况,∴小红和小慧选择的两个项目完全相同的概率为:39=13.考点:列表法或树状图法求概率23. 如图,△ABC是等边三角形,点E,F分别在BC,AC上,且BE=CF,连结AE与BF相交于点G.将△ABC沿AB边折叠得到△ABD,连结DG.延长EA到点H,使得AH=BG,连结DH.(1)求证:四边形DBCA是菱形.(2)若菱形DBCA 的面积为,45DB DG =,求△DGH 的面积.【答案】(1)四边形DBCA 是菱形(证明过程见解析)(2)S △DGH. 【解析】 试题分析:(1)利用等边三角形的性质和折叠的定义,可知AC=AD=BC=BD ,利用菱形的判定定理可得结论;(2)首先证得△ABE≌△BCF(SAS ),再由菱形的性质和全等三角形的判定证得△DBG≌△DAH(SAS ),由全等三角形的性质和相似三角形的判定可证得△DBA∽△DGH,由相似三角形的性质面积比等于相似比的平方,可得结果.试题解析:证明:∵△ABC 是等边三角形,∴AC=BC 由折叠知AC=AD ,BC=BD ,∴AC=AD=BC=BD ,∴四边形DBCA 是菱形;(2)解:∵△ABC 是等边三角形,∴AB=BC ,∠ABC=∠C=60°,在△ABE 与△BCF 中,AB BC ABC C BE CF =⎧⎪=⎨⎪=⎩∠∠,∴△ABE≌△BCF(SAS ),∴∠AEB=∠BFC,∵四边形DBCA 是菱形,∴DA∥BC,DB∥AC,∠BDA=∠C=60°,∴∠HAD=∠AEB,∠DBG=∠BFC,∴∠HAD=∠DBG,在△DBG 与△DAH 中,DA DB AH BG =⎧⎪=⎨⎪=⎩∠HAD ∠DBG ,∴△DBG≌△DAH(SAS ),∴DG=DH ,∠BDG=∠ADH,∴∠HDG=∠ADH+∠GDA=∠BDG+∠GDA=∠BDA=60°,又∵DA=DB ,DG=DH ,∴△DBA∽△DGH, ∴221625S DBA DB S DGH DG ==△△, ∵S △DBA =12S 菱形DBCA=1×2∴S △DGH考点:全等三角形的判定及性质、折叠的定义、相似三角形的性质及判定24. 某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD ,线段CD 分别表示该产品每千克生产成本y 1(单位:元),销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系. (1)请解释图中点D 的实际意义.(2)求线段CD 所表示的y 2与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【答案】(1)点D 的横坐标、纵坐标的实际意义:当产量为140kg 时,该产品每千克生产成本与销售价相等,都为40元(2)y 2与x 之间的函数表达式为y 2=﹣35x+124(0≤x≤140)(3)当该产品的质量为80kg 时,获得的利润最大,最大利润为2560元【解析】试题分析:(1)点D 的横坐标、纵坐标的实际意义:当产量为140kg 时,该产品每千克生产成本与销售价相等,都为40元;(2)根据线段AB 经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)先求出销售价y 2与产量x 之间的函数关系,利用:总利润=每千克利润×产量列出有关x 的二次函数,求得最值即可.试题解析:(1)点D 的实际意义:当产量为140kg 时,该产品每千克生产成本与销售价相等,都为40元.(2)设线段CD 所表示的y 2与x 之间的函数表达式为y 2=k 1x+b 1,∵点(0,124),(140,40)在函数y 2=k 1x+b 1的图象上∴11112414040b k b =⎧⎨+=⎩,解得:1135124k b ⎧=-⎪⎨⎪=⎩, ∴y 2与x 之间的函数表达式为y 2=﹣35x+124(0≤x≤140);(3)设线段AB 所表示的y 1与x 之间的函数表达式为y 1=k 2x+b 2,∵点(0,60),(100,40)在函数y 1=k 2x+b 2的图象上 ∴2226010040b k b =⎧⎨+=⎩,解得:221560k b ⎧=-⎪⎨⎪=⎩, ∴y 1与x 之间的函数表达式为y 1=﹣15x+60(0≤x≤100) 设产量为x 千克时,获得的利润为W 元①当0≤x≤100时,W=[(﹣35x+124)﹣(﹣15x+60)]x=﹣25(x ﹣80)2+2560, ∴当x=80时,W 的值最大,最大值为2560元. ②当100≤x≤140时,W=[(﹣35x+124)﹣40]x=﹣35(x ﹣70)2+2940 由﹣35<0知,当x≥70时,W 随x 的增大而减小∴当x=100时,W的值最大,最大值为2400元.∵2560>2400,∴当该产品的质量为80kg时,获得的利润最大,最大利润为2560元.考点:待定系数法求函数解析式及二次函数的应用25. 如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线.(2)如图2,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数.(3)如图3,△ABC是一个腰长为2的等腰锐角三角形,且它是特异三角形,若它的顶角度数为整数,请求出其特异线的长度;若它的顶角度数不是整数,请直接写出顶角度数.【答案】(1)AE是△ABC是一条特异线(2)符合条件的∠ABC的度数为135°或112.5°或140°.(3)若它的顶角度数不是整数,则顶角度数为(1807)°.【解析】试题分析:(1)只要证明△ABE,△AEC是等腰三角形即可.(2)如图2中,当BD是特异线时,分三种情形讨论,如图3中,当AD是特异线时,AB=BD,AD=DC根据等腰三角形性质即可解决问题,当CD为特异线时,不合题意.(3)如图3中,当BD是特异线时,分两种情形讨论即可.当AD是特异线时,不合题意.试题解析:(1)证明:如图1中,∵DE是线段AC的垂直平分线,∴EA=EC,即△EAC是等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,即△EAB是等腰三角形,∴AE是△ABC是一条特异线.(2)如图2中,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°=15°=135°,如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°,如果AD=DB,DC=DB,则ABC=∠ABD+∠DBC=30°+60°=90°(不合题意舍弃).如图3中,当AD是特异线时,AB=BD,AD=DC,则∠ABC=180°﹣20°﹣20°=140°当CD为特异线时,不合题意.∴符合条件的∠ABC的度数为135°或112.5°或140°.(3)如图3中,当BD是特异线时,有两种情形,如果AD=BD=BC,设∠A=x,则x+2x+2x=180°,解得x=36°,设AD=BD=BC=a,由△BCD∽△ABC得到BC CD AB CB=,∴22a aa-=,∴a2+2a﹣4=0,∴a=﹣1如果AD=BC,BC=CD,设∠A=x,则2x+2x+3x=180°解得x=(1807)°.当AD是特异线时,如果DA=DB,CA=CD,设∠B=∠C=x,则x+2x+2x=180°,解得x=36°,∴∠BAC=108°,不符合题意.∴△ABC是一个腰长为2的等腰锐角三角形,且它是特异三角形,若它的顶角度数为整数,其特异线的长度为﹣,若它的顶角度数不是整数,则顶角度数为(1807)°.考点:三角形综合题,等腰三角形的判定和性质、三角形内角和定理26. 如图,已知二次函数图象的对称轴为直线x=2,顶点为点C,直线y=x+m与该二次函数的图象交于点A,B两点,其中点A的坐标为(5,8),点B在y轴上.(1)求m的值和该二次函数的表达式.为线段AB上一个动点(点P不与A,B两点重合),过点P作x 轴的垂线,与这个二次函数的图象交于点E.①设线段PE的长为h,求h与x之间的函数关系式,并写出自变量x的取值范围.②若直线AB与这个二次函数图象的对称轴的交点为D,求当四边形DCEP是平行四边形时点P的坐标.(3)若点P(x,y)为直线AB上的一个动点,试探究:以PB为直径的圆能否与坐标轴相切?如果能请求出点P的坐标,如果不能,请说明理由.【答案】(1)m=3,抛物线解析式为y=(x﹣2)2﹣1=x2﹣4x+3(2)①h=PE=x+3﹣(x2﹣4x+3)=﹣x2+5x,(0≤x≤5)②点P的坐标为(3,6)(3)故存在点P,坐标为P(﹣,﹣)或P(﹣6﹣,﹣3﹣)时,以PB为直径的圆能与坐标轴相切.【解析】试题分析:(1)根据点A在直线AB上,求出直线解析式,再根据点A,B求出抛物线的解析式;(2)①根据点P在直线AB上,表示出点P,求出h=PE;②由DC∥PE,只要DC=PE即可,求出点P的坐标;(3)由点P在直线AB上,确定出点P到x,y轴的距离,再由以BC为直径的圆与坐标轴相切,求出点P 坐标.试题解析:(1)A的坐标为(5,8)在直线y=x+m上,∴8=5+m,∴m=3,∴直线AB解析式为y=x+3,∴B(0,3),设抛物线解析式为y=a(x﹣2)2+k,∵点A,B在抛物线上,∴98a ka k+=⎧⎨+=⎩,∴11 ak=⎧⎨=-⎩,∴抛物线解析式为y=(x﹣2)2﹣1=x2﹣4x+3,顶点C(2,﹣1)(2)①∵点P在线段AB上,∴P(x,x+3)(0≤x≤5),∵PE⊥x轴,交抛物线与E,P(x,x+3),∴E(x,x2﹣4x+3),∴h=PE=x+3﹣(x2﹣4x+3)=﹣x2+5x,(0≤x≤5)②∵直线AB与这个二次函数图象的对称轴的交点为D,∴D(2,5),∴DC=6,∵四边形DCEP是平行四边形,∴PE=DC=6,∵PE=|﹣x2+5x|,Ⅰ、当0≤x≤5时,﹣x2+5x=6,∴x1=2(舍),x2=3,∴P(3,6),Ⅱ、当x<0,或x>5时,x2﹣5x=6,∴x3=﹣1,x4=6,∴P(﹣1,2)或P(6,9),(舍)即:点P的坐标为(3,6)(3)∴点P(x,y)为直线AB上的一个动点,∴P(x,x+3),∴点P到x轴的距离为|x+3|,到y轴的距离为|x|,∵点B(0,3),∴=,∵以PB为直径的圆能与坐标轴相切,∴①以PB为直径的圆能与y轴相切,∴|x|,∴x=0(舍),②以PB为直径的圆能与x轴相切,∴|x|,∴x=﹣6﹣或x=﹣,∴P(﹣6﹣,﹣)或P(﹣6﹣,﹣3﹣).故存在点P,坐标为P(﹣)或P(﹣6﹣,﹣3﹣)时,以PB为直径的圆能与坐标轴相切.考点:待定系数法求函数解析式的方法,平行四边形的性质,圆的特点。
北仑区2016年初中毕业生学业考试第一次模拟数学参考答案
(第20题图)45︒30︒F E DCBA(第21题图)北仑区2016年初中毕业生学业考试第一次模拟数学参考答案19. 解: 原式=339-12-32⨯+ 3分 =33-12-32+=1-3- 6分 20. 解: 过点C 作AB CD ⊥于点D由题意得︒=∠=∠30ECA A ,︒=∠=∠45FCB B ∵在Rt △ACD 中,ACCD A =sin ,ACAD A =cos∴CD=AC A sin =︒30sin 400=400×21=200(m) 2分AD= AC A cos =︒30cos 400=400×23=2003(m ) 4分 ∵在Rt △BCD 中, tanB=BDCD∴BD=B CD tan =︒45tan 200=200 (m) 6分 ∴AB=AD+BD=()2003200+ m答:地面上A ,B 两点间的距离为()2003200+ m . 8分21. 解: (1)200÷40%=500(名)答:此次共调查了500名学生. 2分(2)C 等级人数为500-100-200-60=140(名) 补全条形统计图如图: 4分扇形统计图中“A ”部分所对应的圆心角的度数为:︒=⨯︒72500100360 6分 (3)8000×500200100+=4800(人)答:测试成绩在良好以上(含良好)的人数有4800人. 8分 22. 解:(1)他选择“一分钟跳绳”项目的概率=314分C.7分 ∴小红和小慧选择的两个项目完全相同的概率是P=93=3110分 23. 解: (1)证明:∵△ABC 是等边三角形 ∴AC=BC由折叠知 AC=AD,BC=BD ∴AC=AD=BC=BD∴四边形DBCA 是菱形 3分 (2)∵△ABC 是等边三角形 ∴AB=BC ,∠ABC=∠C=60° 又∵BE=CF∴△ABE ≌△BCF 4分 ∴∠AEB=∠BFC∵四边形DBCA 是菱形∴DA ∥BC,DB ∥AC, ∠BDA=∠C=60° ∴∠HAD=∠AEB, ∠DBG=∠BFC ∴∠HAD=∠DBG 又∵DA=DB,BG=AH ∴△DBG ≌△DAH∴DG=DH, ∠BDG=∠ADH∴∠HDG=∠ADH+∠GDA=∠BDG+∠GDA=∠BDA=60° 又∵DA=DB,DG=DH ∴DH DADG DB =∴△DBA ∽△DGH 8分 ∴2)(DGDB S S DGH DBA =∆∆∵38=DBCA S 菱形∴34=∆D BA S ∴2)54(34=∆DGH S ∴4325=∆DGH S 10分24.解:(1)点D的横坐标、纵坐标的实际意义:当产量为140kg 时,该产品每千克生产成本与销售价相等,都为40元. 2分 (2)设线段CD 所表示的2y 与x 之间的函数表达式为112b x k y +=∵点(0,124),(140,40)在函数112b x k y +=的图象上∴⎩⎨⎧=+=40140124111b k b 解得⎪⎩⎪⎨⎧=-=1245311b k∴2y 与x 之间的函数表达式为124532+-=x y (0≤x ≤140) 5分 (3)设线段AB 所表示的1y 与x 之间的函数表达式为221b x k y +=∵点(0,60),(100,40)在函数221b x k y +=的图象上∴⎩⎨⎧=+=4010060222b k b 解得⎪⎩⎪⎨⎧=-=605122b k∴1y 与x 之间的函数表达式为60511+-=x y (0≤x ≤100) 7分 设产量为xkg 时,获得的利润为W元 当0≤x ≤100时,W=[)6051()12453(+--+-x x ]x =2560)80(522+--x ∴当80=x 时,W的值最大,最大值为2560元. 当100≤x ≤140时,W=[40)12453(-+-x ]x =2940)70(532+--x 由053<-知,当x ≥70时,W随x 的增大而减小 ∴当x =100时,W的值最大,最大值为2400元. 9分 ∵2560>2400∴当该产品的质量为80kg 时,获得的利润最大,最大利润为2560元. 10分 25.解:⑴证明:∵DE 是线段AC 的垂直平分线∴EA=EC ,即△EAC 是等腰三角形 ∴∠EAC=∠C∴∠AEB=∠EAC+∠C=2∠C ∵∠B=2∠C∴∠AEB=∠B ,即△EAB 是等腰三角形∴AE 是△ABC 的一条特异线 3分⑵①当BD 是特异线若∠A=∠ADB=︒30,∠ABD=︒120等腰△BCD 中,∠C=∠CBD=︒15 ∴∠ABC=︒135 若∠ABD=∠ADB=︒75等腰△BCD 中,∠C=∠CBD=︒5.37 ∴∠ABC=︒5.112 若∠A=∠DBA=︒30则等腰△BCD 中,∠CDB=∠C=∠CBD=︒60 ∴∠ABC=︒90(舍去) ②当AD 是特异线,等腰△ACD 中,设∠C=∠CAD=α∴等腰△ABD 中,∠BAD=∠ADB=α2 ∴∠BAC=α330=︒,︒=10α ∴∠ABC=︒140经检验其他分割均不合题意 ∴∠ABC=︒135,︒5.112或︒140 8分⑶如图1中,设顶角∠A=x ,则︒=++18022x x x ,︒=36x ,即顶角∠A=︒36此时△BCD ∽△ABC ,BC AC CD BD =,BDBD BD 22=- , 解得特异线BD=15-如图2中,︒=1807x ,7180︒=x ,即顶角∠A=7180︒12分26. 解:(1)∵点A (5,8)在直线y =x +m 上∴8=5+m ,解得m=3 1分 ∴y =x +3当x =0时,y =3 ∴B (0,3)设该二次函数的表达式为y =a ()22-x +k ∵点A (5,8),B(0,3)在二次函数的图象上 ∴⎩⎨⎧=+=+3489k a k a 解得⎩⎨⎧==1-1k a∴该二次函数的表达式为y =()22-x -1=342+-x x 3分(2)①∵PE ⊥x 轴∴点P 与点E 的横坐标相同 ∵点E 在二次函数的图象上∴E (x ,342+-x x )∵点P (x ,y )在线段AB 上 ∴P (x ,3+x )∴h =(x +3)- (342+-x x )=x x 52+-∴h 与x 之间的函数关系式为h =x x 52+- 6分自变量x 的取值范围为0<x <5. 7分②由题意得,D(2,5),C(2,-1),DC ∥PE ,则DC=6 若四边形DCEP 是平行四边形,则DC=PE即65-2=+x x解得1x =2(不合题意,舍去) 2x =3∴当四边形DCEP 是平行四边形时,点P 的坐标为(3,6) 10分 (3)分两种情况: ① 若以PB 为直径的圆与y 轴相切,而点B 在y 轴上, 则点B 必为切点,BP ⊥y 轴,但题中BP 与y 轴不垂直,因此以PB 为直径的圆不能与y 轴相切 11分 ② 若以PB 为直径的圆与x 轴相切,设圆心为M ,切点为N连结MN ,则MN ⊥x 轴∵P (x ,3+x ),B(0,3)∴圆心M 的坐标为⎪⎭⎫ ⎝⎛+262x x , 12分D D2X 3X 2X X X X 2X 2XXX C A 图2A B C图1∵⊙M 切x 轴于点N ∴MN=MB=r 即22MB MN =∴222)326()2(26-++=+x x x )( 解得1x =6+62,2x =6-62 ∴点P 的坐标为(6+62,9+62)或(6-62, 综上所述,存在点P ,且点P 的坐标为(6+62,9+62)或(6-62,9-62). 14分。
宁波市中考数学一模试卷
宁波市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016九上·腾冲期中) ﹣7的倒数是()A . ﹣B . 7C .D . ﹣72. (2分) (2017七上·启东期中) 据萧山区劳动保障局统计,到“十一五”末,全区累计参加各类养老保险总人数达到88.2万人,比“十五”末增加37.7万人,参加各类医疗保险总人数达到130.5万人,社会保险加快从制度全覆盖向人员全覆盖迈进.将数据130.5万用科学记数法(请保留两个有效数字)表示为()A . 1.3×102B . 1.305×106C . 1.3×106D . 1.3×1053. (2分)如图,BC∥DE,∠1=105°, ∠AED=65°, 则∠A的大小是A . 25°B . 35°C . 40°D . 60°4. (2分)(2018·临沂) 如表是某公司员工月收入的资料.月收入/元45000180001000055005000340033001000人数111361111能够反映该公司全体员工月收入水平的统计量是()A . 平均数和众数B . 平均数和中位数C . 中位数和众数D . 平均数和方差5. (2分)如图,是某种工件和其俯视图,则此工件的左视图是()A .B .C .D .6. (2分)(2015·泗洪) 关于x的一元二次方程x2-mx-1=0的根的情况()A . 有两个不相等的实数根B . 有两个相等的实数根C . 有一个实数根D . 没有实数根7. (2分)将一个正六面体骰子连掷两次,它们的点数都是4的概率是()A .B .C .D .8. (2分)如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB,CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是()A . 3mB . 4mC . 5mD . 6m9. (2分)(2020·嘉兴模拟) 我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,其中O点是坐标原点,AO=2,BO=3,BC=4,点A、B是固定点,把矩形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A .B .C .D .10. (2分) (2018九上·衢州期中) 如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是()A . 1B . 2C . 3D . 4二、填空题 (共5题;共5分)11. (1分)若式子有意义,则x的取值范围是________ .12. (1分)(2019·平谷模拟) 如图所示,半圆O的直径AB=10cm,弦AC=6cm,弦AD平分∠BAC,AD的长为________cm.13. (1分)(2017·松北模拟) 如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=________.14. (1分)(2017·天桥模拟) 如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x >0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为________.15. (1分)(2017·河南模拟) 如图,△ABC中,AB= ,AC=5,tanA=2,D是BC中点,点P是AC上一个动点,将△BPD沿PD折叠,折叠后的三角形与△PBC的重合部分面积恰好等于△BPD面积的一半,则AP的长为________.三、解答题 (共8题;共80分)16. (5分)已知关于x,y的方程组的解为非负数,求整数m的值.17. (13分) (2017九上·铁岭期末) 为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了________名学生,两幅统计图中的m=________,n=________.(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛学生为1男1女的概率是多少?18. (10分) (2015九上·罗湖期末) 如图,某测量员测量公园内一棵树DE的高度,他们在这棵树左侧一斜坡上端点A处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.(1)求斜坡AC的长;(2)请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).19. (10分)(2017·重庆) 某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.20. (10分)(2018·岳池模拟) 如图,直线与轴交于点C,与轴交于点B,与反比例函数的图象在第一象限交于点A,连接OA,且.(1)求ΔBOC的面积.(2)求点A的坐标和反比例函数的解析式.21. (7分)阅读材料,在平面直角坐标系中,已知x轴上两点A(x1 , 0),B(x2 , 0)的距离记作AB=|x1﹣x2|;若A,B是平面上任意两点,我们可以通过构造直角三角形来求AB间的距离,如图,过A,B分别向x轴、y轴作垂线AM1、AN1和BM2、BN2 ,垂足分别是M1、N1、M2、N2 ,直线AN1交BM2于点Q,在Rt△ABQ中,AQ=|x1﹣x2|,BQ=|y1﹣y2|,∴AB2=AQ2+BQ2=|x1﹣x2|+|y1﹣y2|2=(x1﹣x2)2+(y1﹣y2)2 ,由此得到平面直角坐标系内任意两点A(x1 , y1),B(x2 , y2)间的距离公式为:(1) AB=________.(2)直接应用平面内两点间距离公式计算点A(1,﹣3),B(﹣2,1)之间的距离为________;(3)根据阅读材料并利用平面内两点间的距离公式,求代数式 + 的最小值.22. (10分) (2017九上·河东期末) 图1和图2中的正方形ABCD和四边形AEFG都是正方形.(1)如图1,连接DE,BG,M为线段BG的中点,连接AM,探究AM与DE的数量关系和位置关系,并证明你的结论;(2)在图1的基础上,将正方形AEFG绕点A逆时针方向旋转到图2的位置,连结DE、BG,M为线段BG的中点,连结AM,探究AM与DE的数量关系和位置关系,并证明你的结论.23. (15分)(2017·邗江模拟) 如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共80分)16-1、17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。
2015-2016年浙江省宁波市海曙区初三上学期期末数学试卷及答案
2015-2016学年浙江省宁波市海曙区初三上学期期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)若=,则的值等于()A.B.C.D.2.(4分)如图是由五个相同的小正方体组成的几何体,则下列说法正确的是()A.左视图面积最大B.俯视图面积最小C.左视图面积和主视图面积相等D.俯视图面积和主视图面积相等3.(4分)抛物线y=﹣(x+1)2﹣3的顶点坐标是()A.(1,﹣3)B.(1,3)C.(﹣1,3)D.(﹣1,﹣3)4.(4分)挂钟的分针长10cm,经过45分钟,它的针尖经过的路程是()A.cm B.15πcm C.cm D.75πcm 5.(4分)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m6.(4分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D,如果∠A=35°,那么∠C=()A.55°B.35°C.30°D.20°7.(4分)数学活动课上,小明、小华各画了△ABC和△DEF,尺寸如图所示,两个三角形的面积分别记作S△ABC 和S△DEF,那么下列选项正确的是()A.S△ABC>S△DEF B.S△ABC<S△DEFC.S△ABC=S△DEF D.不能确定8.(4分)在一个不透明的盒子里装有4个分别写有数字﹣3、﹣2、﹣1、0的小球,它们除数字不同外其余全部相同,现从盒子里随机取出一个小球,记下数字a后放回,再取出一个记下数字b,那么点(a,b)在抛物线y=﹣x2+1上的概率是()A.B.C.D.9.(4分)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AD=AB B.∠D+∠BOC=90°C.∠BOC=2∠D D.∠D=∠B10.(4分)如图所示,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A.B.C.D.11.(4分)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线三角形系数”.若抛物线三角形系数为[﹣1,b,0]的“抛物线三角形”是等边三角形,则b的值为()A.±2B.±C.2D.12.(4分)如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F,则下列结论正确的有()①∠CBD=∠CEB;②=;③点F是BC的中点;④若=,tanE=.A.①②B.③④C.①②④D.①②③二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)2cos30°=.14.(4分)一个圆锥的底面圆的半径为2,母线长为4,则它的侧面积为.15.(4分)已知线段AB长为2,点P是其黄金分割点(AP>BP),则BP长为.16.(4分)直径为4的圆内接正三角形的边长为.17.(4分)如图,在矩形AOBC中,AO=3,BO=4,⊙O的半径为1,点M是矩形对角线AB边上的动点,过点M做⊙O的一条切线MN,切点为N,则切线长MN的最小值是.18.(4分)如图,△ABC中,∠ACB=90°,∠A=30°,BC=2,CD⊥AB于D,P为线段AC延长线上一动点,E为BP上一点,=,过D、B、E三点的圆交线段CD于F,设CP=x,CF=y,则y与x的函数关系式为.三、解答题(共78分)19.(6分)已知△ABC中.AB=15cm,BC=20cm,AC=25cm,另一个与它相似的△A′B′C′的最长边A′C′=50cm,求△A′B′C′的周长和面积.20.(8分)杭州湾跨海大桥两主塔与它们之间的斜拉索构成美轮美奂的对称造型,现测得大桥主塔AB、CD之间的距离BD为444米,∠AFB=28.2°,且EF 的长度为36米,求该桥的主塔AB高为多少米.(精确到米)(参考数据:sin28.2°≈0.47,cos28.2°≈0.88,tan28.2°≈0.54)21.(8分)已知二次函数y=x2+bx+c的图象经过点A(1,0),B(﹣3,0).(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.22.(10分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图或列表法,求恰好选中甲、乙两位同学的概率;(2)比赛完,甲、乙都进入了前三,前三名随机站成一排拍照,甲、乙刚好相邻的概率是多少?23.(10分)(1)小明用若干个正三角形和长方形拼成了一个直三棱柱的展开图(如图1),拼完后,小明看来看去觉得所拼图形似乎存在问题,请你帮小明分析一下拼图是否存在问题;若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)图2为做成的直三棱柱及其三视图,若直三棱柱的底面是边长为4cm的正三角形,求主视图中AE和左视图中MN的长;(3)在(2)的条件下,若矩形ABFE与矩形ABCD相似,求此直三棱柱的侧棱长.24.(10分)如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=60°,∠ACB=50°,请解答下列问题:(1)设AD、BC相交于点E,AB、CD的延长线相交于点F,则∠AEC=,∠AFC=;(2)若AD=6,求图中阴影部分的面积.25.(12分)如图1,如果一条直线截一个三角形的任意两边,把这个三角形分成了一个四边形和一个三角形.若这个四边形的四个顶点在同一个圆上,则称这条直线为该三角形的一条共圆线.(1)如图1,DE为△ABC的一条共圆线,判断△ABC被DE所分成的三角形与△ABC的形状有什么关系?并说明理由;(2)如图2,在Rt△ABC中,∠C=90°,AB=5,AC=3,点P是边BC上的一点,PC=1,求过P的共圆线被△ABC两边截得的线段长;(3)如图3,A(1,3),B(﹣3,0),C(4,0),点P为线段BC上一动点,设CP=x,若过P存在△ABC的共圆线,求x的取值范围.26.(14分)已知抛物线y=ax2+x+c(a≠0)经过点A(﹣1,0),B(2,0)两点,与y轴相交于点C,点D为抛物线的顶点.(1)求抛物线的解析式及点D的坐标;(2)△ABC的外接圆与抛物线的另一交点为E,直接写出E点的坐标;(3)记△ABC得外接圆圆心为M,求圆心M的坐标;(4)在x轴上有一点P,且∠EBO+∠MPO=α,当tanα=3时,求OP的长.2015-2016学年浙江省宁波市海曙区初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)若=,则的值等于()A.B.C.D.【解答】解:∵=,∴a=b,∴==,故选:C.2.(4分)如图是由五个相同的小正方体组成的几何体,则下列说法正确的是()A.左视图面积最大B.俯视图面积最小C.左视图面积和主视图面积相等D.俯视图面积和主视图面积相等【解答】解:观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选:D.3.(4分)抛物线y=﹣(x+1)2﹣3的顶点坐标是()A.(1,﹣3)B.(1,3)C.(﹣1,3)D.(﹣1,﹣3)【解答】解:抛物线y=﹣(x+1)2﹣3的顶点坐标是(﹣1,﹣3).故选:D.4.(4分)挂钟的分针长10cm,经过45分钟,它的针尖经过的路程是()A.cm B.15πcm C.cm D.75πcm【解答】解:∵分针经过60分钟,转过360°,∴经过45分钟转过270°,则分针的针尖转过的弧长是l===15π(cm).故选:B.5.(4分)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴∵BE=20m,CE=10m,CD=20m,∴解得:AB=40,故选:B.6.(4分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D,如果∠A=35°,那么∠C=()A.55°B.35°C.30°D.20°【解答】解:如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,即∠ODC=90°,∵AB为直径,∴∠COD=2∠A=70°,∴∠C=90°﹣70°=20°,故选:D.7.(4分)数学活动课上,小明、小华各画了△ABC和△DEF,尺寸如图所示,两个三角形的面积分别记作S△ABC 和S△DEF,那么下列选项正确的是()A.S△ABC>S△DEF B.S△ABC<S△DEFC.S△ABC=S△DEF D.不能确定【解答】解:如图,过点C、D分别作CH⊥AB,DG⊥EF,垂足分别为G、H,在Rt△DFG中,DG=DFsinF=5×sin 50°=5sin 50°,在Rt△CBH中,∠CBH=180°﹣130°=50°,CH=CBsin∠CBH=5sin 50°,∴CB=DF.∵AB=4,EF=4,∴S=S△DEF.△ABC故选:C.8.(4分)在一个不透明的盒子里装有4个分别写有数字﹣3、﹣2、﹣1、0的小球,它们除数字不同外其余全部相同,现从盒子里随机取出一个小球,记下数字a后放回,再取出一个记下数字b,那么点(a,b)在抛物线y=﹣x2+1上的概率是()A.B.C.D.【解答】解:画树状图如下:由树状图可知共有16种等可能结果,其中在抛物线y=﹣x2+1上的有(﹣2,﹣3)、(﹣1,0)2种结果,∴点(a,b)在抛物线y=﹣x2+1上的概率是=,故选:A.9.(4分)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AD=AB B.∠D+∠BOC=90°C.∠BOC=2∠D D.∠D=∠B【解答】解:A、根据垂径定理不能推出AD=AB,故A选项错误;B、∵直径CD⊥弦AB,∴,∵对的圆周角是∠ADC,对的圆心角是∠BOC,∴∠BOC=2∠D,不能推出∠D+∠BOC=90°,故B选项错误;C、∵,∴∠BOC=2∠D,∵C选项正确;D、根据已知不能推出∠DAB=∠BOC,不能推出∠D=∠B,故D选项错误;故选:C.10.(4分)如图所示,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A.B.C.D.【解答】解:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA==,故选:B.11.(4分)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线三角形系数”.若抛物线三角形系数为[﹣1,b,0]的“抛物线三角形”是等边三角形,则b的值为()A.±2B.±C.2D.【解答】解:(1)∵抛物线三角形系数为[﹣1,b,0],∴抛物线解析式为y=﹣x2+bx=﹣(x﹣)2+,∴顶点坐标为(,),令y=0,则﹣x2+bx=0,解得x1=0,x2=b,∴与x轴的交点为(0,0),(b,0),∵“抛物线三角形”是等边三角形,∴b2=+,∵b=0时,抛物线与x轴只有一个交点(0,0),∴b=0不符合题意,∴b=±2,故b的值为±2.故选:A.12.(4分)如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F,则下列结论正确的有()①∠CBD=∠CEB;②=;③点F是BC的中点;④若=,tanE=.A.①②B.③④C.①②④D.①②③【解答】证明:①∵BC⊥AB于点B,∴∠CBD+∠ABD=90°,∵∠BAD+∠ABD=90°∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,故①正确.②∵∠C=∠C,∠CEB=∠CBD,∴△EBC∽△BDC,∴=,故②正确,③∵∠EBD=∠BDF=90°,∴DF∥BE,假设点F是BC的中点,则点D是EC的中点,∴ED=DC,∵ED是直径,长度不变,而DC的长度是不定的,∴DC不一定等于ED,故③是错误的.④∵=,设BC=3x,AB=2x,∴OB=OD=x,∴在Rt△CBO中,OC=x,∴CD=(﹣1)x∵由(2)知,=,∴===,∵tanE=,∴tanE=.故④正确.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)2cos30°=.【解答】解:原式=.故答案为:.14.(4分)一个圆锥的底面圆的半径为2,母线长为4,则它的侧面积为8π.【解答】解:底面半径为2,则底面周长=4π,圆锥的侧面积=×4π×4=8π,故答案为:8π.15.(4分)已知线段AB长为2,点P是其黄金分割点(AP>BP),则BP长为3﹣.【解答】解:∵点P是线段AB的黄金分割点,AP>PB,AB=2,∴BP=2×=3﹣.故答案为3﹣.16.(4分)直径为4的圆内接正三角形的边长为2.【解答】解:如图:△ABC是等边三角形,过点O作OD⊥BC于D,连接OB,OC,∴BD=CD=BC,∵△ABC是等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴∠BOD=∠BOC=60°,∵直径为4,∴OB=×4=2,∴BD=OB•sin∠BOD=2×=,∴BC=2BD=2,即直径为4的圆的内接正三角形的边长为:2.故答案为:2.17.(4分)如图,在矩形AOBC中,AO=3,BO=4,⊙O的半径为1,点M是矩形对角线AB边上的动点,过点M做⊙O的一条切线MN,切点为N,则切线长MN的最小值是.【解答】解:连结ON、如图,在Rt△AOB中,∵OA=3,OB=4,∴AB==5,∵MN为⊙O切线,∴ON⊥MN,在Rt△OMN中,MN==,当OM最小时,MN最小,而当OM⊥AB时,OM最小,此时OM==,∴MN的最小值为==.故答案为.18.(4分)如图,△ABC中,∠ACB=90°,∠A=30°,BC=2,CD⊥AB于D,P为线段AC延长线上一动点,E为BP上一点,=,过D、B、E三点的圆交线段CD于F,设CP=x,CF=y,则y与x的函数关系式为y=﹣x+.【解答】解:如图连接DE、EF.在△ABC中,∠ACB=90°,∠A=30°,BC=2,CD⊥AB于D,∴BD=1,AB=4,AD=3,CD=,AC=2,∠ABC=∠DEF=60°,∴BD:AD=BE:EP=1:3,∴DE∥AP,∴∠BDE=∠A=30°,∵∠CDB=90°,∴∠EDF=60°,∴△DEF是等边三角形,∴DE=DF=﹣y,∵=,∴=,∴y=﹣x+.故答案为y=﹣x+.三、解答题(共78分)19.(6分)已知△ABC中.AB=15cm,BC=20cm,AC=25cm,另一个与它相似的△A′B′C′的最长边A′C′=50cm,求△A′B′C′的周长和面积.【解答】解:∵△ABC中,AB=15cm,BC=20cm,AC=25cm,∴△ABC的周长=60cm,AB2+BC2=AC2,∴△ABC是直角三角形,∴△ABC的面积=×15×20=150cm2,∵△ABC∽△A′B′C′,且△ABC中最长边为25cm,△A′B′C′的最长边长为50cm,∴相似比为,∴=,即=,=120cm,解得C△A′B′C′∵=()2,∴=,=600cm2.解得S△A′B′C′20.(8分)杭州湾跨海大桥两主塔与它们之间的斜拉索构成美轮美奂的对称造型,现测得大桥主塔AB、CD之间的距离BD为444米,∠AFB=28.2°,且EF 的长度为36米,求该桥的主塔AB高为多少米.(精确到米)(参考数据:sin28.2°≈0.47,cos28.2°≈0.88,tan28.2°≈0.54)【解答】解:∵BE=FD===204米,∴BF=BE+EF=204+36=240米,∵在直角△ABF中,tan∠AFB=,∴AB=BF•tan∠AFB=240×tan28.2°≈240×0.536=129.6≈130米.答:该桥的主塔AB高为130米21.(8分)已知二次函数y=x2+bx+c的图象经过点A(1,0),B(﹣3,0).(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.【解答】解:(1)∵二次函数y=x2+bx+c过点A(1,0),B(﹣3,0),∴,解得,∴二次函数的解析式为y=x2+2x﹣3;(2)∵A(1,0),B(﹣3,0),∴AB=4,设P(m,n),∵△ABP的面积为10,∴AB•|n|=10,解得:n=±5,当n=5时,m2+2m﹣3=5,解得:m=﹣4或2,∴P(﹣4,5)或P(2,5);当n=﹣5时,m2+2m﹣3=﹣5,方程无解,故P(﹣4,5)或P(2,5).22.(10分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图或列表法,求恰好选中甲、乙两位同学的概率;(2)比赛完,甲、乙都进入了前三,前三名随机站成一排拍照,甲、乙刚好相邻的概率是多少?【解答】解:(1)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两位同学的只有2种情况,∴恰好选中甲、乙两位同学的概率为:=;(2)∵前三名站成一排拍照,可能的结果有3×2×1=6种情况,甲乙刚好相邻而站的有4种情况:∴甲乙刚好相邻而站的概率是=.23.(10分)(1)小明用若干个正三角形和长方形拼成了一个直三棱柱的展开图(如图1),拼完后,小明看来看去觉得所拼图形似乎存在问题,请你帮小明分析一下拼图是否存在问题;若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)图2为做成的直三棱柱及其三视图,若直三棱柱的底面是边长为4cm的正三角形,求主视图中AE和左视图中MN的长;(3)在(2)的条件下,若矩形ABFE与矩形ABCD相似,求此直三棱柱的侧棱长.【解答】解:(1)多余,如图1所示,黑色或红色中的其中一个均可;(2)∵底面正三角形的边长为4,∴AE=AD=2,∴正三角形的高线为2,∴MN=2;(3)∵矩形ABFE与矩形ABCD相似,∴,∴,∴AB=2.24.(10分)如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=60°,∠ACB=50°,请解答下列问题:(1)设AD、BC相交于点E,AB、CD的延长线相交于点F,则∠AEC=100°,∠AFC=20°;(2)若AD=6,求图中阴影部分的面积.【解答】解:(1)由圆周角定理可知:∠ADC=∠ABC=60°,∵AD是⊙O的直径,∴∠DCA=90°,∴∠ECD=∠DCA﹣∠ACB=40°,∴∠AEC=∠ECD+∠ADC=100°,由圆周角定理可知:∠BAD=∠ECD=40°,∵∠DAC=180°﹣∠AEC﹣∠ACB=30°,∴∠FAC=∠DAC+∠BAD=70°,∴∠AFC=90°﹣∠FAC=20°,(2)连接CO,作OH⊥AC于点H,则∠AOC=2∠ABC=120°,∠DAC=30°,∴OH=OA=AC=3=AC•OH=×3×=∴S△AOCS阴影=S扇形﹣S△AOC=﹣﹣=3π﹣故答案为:(1)100°;20°25.(12分)如图1,如果一条直线截一个三角形的任意两边,把这个三角形分成了一个四边形和一个三角形.若这个四边形的四个顶点在同一个圆上,则称这条直线为该三角形的一条共圆线.(1)如图1,DE为△ABC的一条共圆线,判断△ABC被DE所分成的三角形与△ABC的形状有什么关系?并说明理由;(2)如图2,在Rt△ABC中,∠C=90°,AB=5,AC=3,点P是边BC上的一点,PC=1,求过P的共圆线被△ABC两边截得的线段长;(3)如图3,A(1,3),B(﹣3,0),C(4,0),点P为线段BC上一动点,设CP=x,若过P存在△ABC的共圆线,求x的取值范围.【解答】解:(1)如图1,△DEC∽△BAC,理由是:∵A、B、E、D四点共圆,∴∠EDC=∠B,∵∠C=∠C,∴△DEC∽△BAC;(2)分两种情况:①如图2(a),过P作PD⊥AB于D,∴∠ADP=90°,∵∠C=90°,∴∠ADP+∠C=180°,∴A、D、P、C四点共圆,∴直线PD就是△ABC的共圆线,在Rt△ABC中,AB=5,AC=3,由勾股定理得:BC=4,∴BP=BC﹣PC=4﹣1=3,∵∠BDP=∠C=90°,∠B=∠B,∴△BDP∽△BCA,∴,∴,∴PD=;②如图2(b),当∠PDC=∠B时,A、B、P、D四点共圆,直线PD为就是△ABC的共圆线,∴△PDC∽△ABC,∴,∴,∴PD=;(3)过A作AD⊥BC于D,∵A(1,3),C(4,0),∴AD=3,CD=4﹣1=3,∴△ADC是等腰直角三角形,∴∠ACD=45°,过A作AE⊥AB,交AC于E,作∠BAE的平分线AP,交x轴于P,∵∠DAE+∠DAB=90°,∠DAE+∠AED=90°,∴∠DAB=∠AED,∵∠ADB=∠ADE=90°,∴△ADE∽△BDA,∴,在Rt△ADB中,AD=3,BD=3+1=4,∴AB=5,∴,∴AE=,由勾股定理得:BE===,∴EC=7﹣=,∵AP平分∠BAE,∴,∴=,∴x=;如图4,在AB上任意取一点D作DE⊥AB,交BC于E,再作∠BDE的平分线,则∠BDE=90°,∴∠BDP=45°,∵∠ACD=45°,∴∠ACD=∠BDP,∴A、D、P、C四点共圆,∴当<x<7时,过P存在△ABC的共圆线,如图5,作∠CAP=∠ABC,∴△APE∽△BAD,∵AD=3,BD=4,∴设PE=3a,AE=4a,则EC=3a,AP=5a,∴PC=3a,∴PD=DC﹣PC=3﹣3a,在Rt△APD中,,7a2+18a﹣18=0,(a+3)(7a﹣3)=0,a1=﹣3(舍),a2=,∴PC=3a=3×=,如图6,同理作∠PEC=∠ABC,则A、B、P、E四点共圆,则当0<x<时,过P存在△ABC的共圆线,综上所述,当0<x<和<x<7时,过P存在△ABC的共圆线.26.(14分)已知抛物线y=ax2+x+c(a≠0)经过点A(﹣1,0),B(2,0)两点,与y轴相交于点C,点D为抛物线的顶点.(1)求抛物线的解析式及点D的坐标;(2)△ABC的外接圆与抛物线的另一交点为E,直接写出E点的坐标;(3)记△ABC得外接圆圆心为M,求圆心M的坐标;(4)在x轴上有一点P,且∠EBO+∠MPO=α,当tanα=3时,求OP的长.【解答】解:(1)∵抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,∴,解得.∴抛物线为y=﹣x2+x+2=﹣(x﹣)2+,∴顶点D(,);(2)E点的坐标为(1,2);(3)由题意M在线段AB的垂直平分线上,即抛物线对称轴上,设M(,m),由MC=MA得()2+m2=()2+(2﹣m)2,解得m=,∴M(,);(4)作EH⊥AB于H,延长HE至F点使FH=3,则tan∠FBH=3,∴∠α=∠FBH,∠MPO=∠FBE,作EG⊥FB,△FEG∽△FBH,得EG=,FG=,∴BG=,∴tan∠FBE=,∴tan∠MPO=,作MN⊥OB于N,在Rt△MPN中,MN=,∴NP=,∴OP=±=4或﹣3.。
浙江省宁波市2016年初中毕业学业考试数学试题(含答案)
宁波市2016年初中毕业生学业考试数 学 试 题满分150分,考试时间120分钟一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1. 6的相反数是A. -6B.61 C. 61- D. 6 2. 下列计算正确的是A. 633a a a =+B. 33=-a aC. 523)(a a =D. 32a a a =⋅ 3. 宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学计数法表示为A. 0.845×1010元B. 84.5×108元C. 8.45×109元D. 8.45×1010元4. 使二次根式1-x 有意义的x 的取值范围是A. 1≠xB. 1>xC. 1≤xD. 1≥x5. 如图所示的几何体的主视图为6. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同。
从中任意摸出一个球,是红球的概率为 A. 61 B. 31 C. 21 D. 32 7. 某班10名学生校服尺寸与对应人数如下表所示:则这10名学生校服尺寸的众数和中位数分别为A. 165cm ,165cmB. 165cm ,170cmC. 170cm ,165cmD. 170cm ,170cm8. 如图,在△ABC 中,∠ACB =90°,CD ∥AB ,∠ACD =40°,则∠B 的度数为A. 40°B. 50°C. 60°D. 70°9. 如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为A. 30πcm 2B. 48πcm 2C. 60πcm 2D. 80πcm 210. 能说明“对于任何实数a ,a a ->”是假命题的一个反例可以是A. 2-=aB. 31=a C. 1=a D. 2=a 11. 已知函数122--=ax ax y (a 是常数,a ≠0),下列结论正确的是A. 当1=a 时,函数图象过点(-1,1)B. 当2-=a 时,函数图象与x 轴没有交点C. 若0>a ,则当1≥x 时,y 随x 的增大而减小D. 若0<a ,则当1≤x 时,y 随x 的增大而增大12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为A. 4S 1B. 4S 2C. 4S 2+S 3D. 3S 1+4S 3二、填空题(每小题4分,共24分)13. 实数 -27的立方根是 ▲14. 分解因式:xy x -2= ▲15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,……,按此规律,图案⑦需 ▲ 根火柴棒16. 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为 ▲ m (结果保留根号)17. 如图,半圆O 的直径AB =2,弦CD ∥AB ,∠COD =90°,则图中阴影部分面积为 ▲18. 如图,点A 为函数)0(9>=x x y 图象上一点,连结OA ,交函数)0(1>=x xy 的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为 ▲三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:)3()1)(1(x x x x -+-+,其中2=x20.(本题8分)下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形;(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海曙区 2016 年初中毕业生模拟考试数 学试题卷Ⅰ一、选择题(每小题 4 分,共 48 分,在每小题给出的四个选项中,只有一个符合题目要求) 1. 2016 的绝对值是 A. 2016 B. 2016 C.1 2016 1 2016D. 2.下列各式中,属于最简二次根式的是 A.1 2B. 4C. 8D. 103.人工智能 AlphaGo 因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决 战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学计数法表示为 A. 0.2 107 4.下列运算正确的是 A. a 3 a 3 a 6 B. a 2 a 2 a 4 C. 2a 2a44B. 2 107C. 0.2 108D. 2 108 D. a 6 a3 a 25.已知三角形的两边长分别为 3 , 4 ,则第三边长的取值范围在数轴上表示正确的是3A.41B.73C.71D.46.下表为宁波市 2016 年 4 月上旬 10 天的日最低气温情况,则这 10 天中日最低气温的中位数和众数分别是温度(℃) 天数 11 1 13 5 14 2 15 1 16 1A. 14C , 14C A.B. 14C , 13C B.C. 13C , 13C C. D.D. 13C , 14C7.如图,将长方体表面展开,下列选项中错误的是(第 7 题图)A M8.如图,在 6 6 的正方形网格中,连结两格点 A , B , 线段 AB 与网格线的交点为 M 、 N ,则 AM : MN : NB 为 A. 3 : 5 : 4 C. 1: 4 : 2 B. 1 : 3 : 2 D. 3 : 6 : 5B N(第 8 题图)9.如图,△ ABC 中, BA BC , BD 是三角形的角平分线, DE ∥ BC 交 AB 于 E ,下列结论:① 1 3 ; 1 1 ② DE AB ;③ SADE SABC .正确的有 2 4A. 0 个B. 1 个C. 2 个D. 3 个10.定义:将一个图形 L 沿某个方向平移一段距离后,该图形在平面上留下的痕迹称之为图形 L 在该方向的拖 影.如图,四边形 ABB ' A' 是线段 AB 水平向右平移得到的拖影.则将下面四个图形水平向右平移适当距 离,其拖影是五边形的是A A'BB'(第 10 题图)A.B.C.D.11.如图,半径为 1cm 的⊙ O 中, AB 为⊙ O 内接正九边形的一边,点 C 、 D 分别在优弧与劣弧上.则下列结 1 2 论:① S扇形AOB cm2 ;② l AB cm ;③ ACB 20 ; 9 9 ④ ADB 140 .错误的有 A. 0 个 B. 1 个 C. 2 个 D. 3 个 12.如图,平面直角坐标系中, OABC 的顶点 C 3, 4 ,边 OA 落在 x 正半轴上, P 为线段 AC 上一点,过点 PFG ∥ OA 交平行四边形各边如图. 分别作 DE ∥ OC , 若反比例函数 y k 的图象经过点 D , 四边形 BCFG x的面积为 8 ,则 k 的值为 A. 16 B. 20AC. 24yC OC FD. 28D P GBE 1 23DBCADBOEAx(第 9 题图)(第 11 题图)(第 12 题图)y试题卷Ⅱ二、填空题(每小题 4 分,共 24 分)2x 6 13. x 的值为__ ▲___时,分式 无意义. x 1POHx14.正五边形的一个内角是__ ▲___度. (第 15 题图) 60 15.如图 P 12, a 在反比例函数 y 图象上, PH x 轴于 H ,则 tan POH 的值为_▲___. x 16.如图,已知△ ABC 是一个水平放置圆锥的主视图, 3 AB AC 5cm , cos ACB ,则圆锥的侧面积 5 为__ ▲___ cm 2 .B AC17.如图,矩形 ABCD 中, AD 6 ,CD 6 2 2 ,E 为 AD 上一点,且 AE 2 ,点 F ,H 分别在边 AB ,CD 上, 四边形 EFGH 为矩形, 点 G 在矩形 ABCD 的内部, 则当△ BGC 为直角三角形时,AF 的值是__ ▲___. 18.已知抛物线 y 2 x2 bx c 与直线 y 1 只有一个公共点,且经过 A m 1, n 和 B m 3, n ,过点 A , B 分 别作 x 轴的垂线,垂足记为 M , N ,则四边形 AMNB 的周长为__ ▲___.D H G E C(第 16 题图)三、解答题(第 19 题 6 分,第 20、21 题每题 8 分,第 22、23、24 题每题 10 分,第 25 题 12 分,第 26 题 14 分,共 78 分) 19.先化简,后求值: (x2 4 x2 ,其中 x 3 . ) 2 x 2 x 2 x +4x 420.已知关于 x 的方程 x 2 5 x 3a 3 0 (1)若 a 1 ,请你解这个方程; (2)若方程有两个不相等的实数根,求 a 的取值范围.21.在一个箱子里放有 1 个白球和 2 个红球,它们除颜色外其余都相同. (1)判断下列甲乙两人的说法,认为对的在后面括号内答“√”,错的打“×”. 甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件( ( ) ) 乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球 (2)小明说:从箱子里摸出一个球,不放回,再摸出一个球,则“摸出的球中有白球”这一事件的概率为 1 ,你认同吗?请画树状图或列表计算说明. 222.李克强总理连续三年把“全民阅读”写入《政府工作报告》,足以说明阅读的重要性.某校为了解学生最 喜爱的书籍的类型,随机抽取了部分学生进行调查,并绘制了如下的条形统计图(部分信息未给出).已 5 知,这些学生中有 15% 的人喜欢漫画,喜欢小说名著的人数是喜欢童话的 ,请完成下列问题: 7 (1)求本次抽取的学生人数; (2)喜欢小说名著、喜欢童话故事的学生各有多少人?并补全条形统计图; (3)全校共有 2100 名学生,请估计最喜欢“小说名著”的人数有多少?某校各类书籍最喜爱的人数条形统计图 人数24 21 18 15 12 9 6 3 0漫画 小说 名著 杂志 书刊12 9 3历史 文献 童话 故事 类型(第 22 题图)23.如图,⊙ O 中,点 A 为 BC 中点, BD 为直径,过 A 作 AP ∥ BC 交 DB 的延长线于点 P . (1)求证: PA 是⊙ O 的切线; (2)若 BC 4 5 , AB 6 ,求 sin ABD 的值.P B O D A C(第 23 题图)24.张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶 50 千米.假设加 油前、后汽车都以 100 千米/小时的速度匀速行驶,已知油箱中剩余油量 y (升)与行驶时间 t (小时)之 间的关系如图所示. (1)求张师傅加油前油箱剩余油量 y (升)与行驶时间 t (小时)之间的关系式; (2)求出 a 的值; (3)求张师傅途中加油多少升?y/升34 28 2001a5t/小时25.定义:有一个内角为 90 ,且对角线相等的四边形称为准矩形.yAEDA DAFBC(第 25 题)图 1OBxBC图2图3(1)① 如图 1,准矩形 ABCD 中, ABC 90 ,若 AB 2 , BC 3 ,则 BD __ ▲___; ② 如图 2,直角坐标系中, A 0,3 , B 5,0 ,若整点 P 使得四边形 AOBP 是准矩形,则点 P 的坐标是 __ ▲___;(整点指横坐标、纵坐标都为整数的点) (2)如图 3,正方形 ABCD 中,点 E 、 F 分别是边 AD 、 AB 上的点,且 CF BE ,求证:四边形 BCEF 是 准矩形; (3)已知,准矩形 ABCD 中, ABC 90 , BAC 60 , AB 2 ,当△ ADC 为等腰三角形时,请直接写出 这个准矩形的面积是__ ▲___.26.如图,平面直角坐标系中,O 为菱形 ABCD 的对称中心,已知 C 2,0 ,D 0, 1 , N 为线段 CD 上一点(不 与 C 、 D 重合). (1)求以 C 为顶点,且经过点 D 的抛物线解析式; (2)设 N 关于 BD 的对称点为 N1 , N 关于 BC 的对称点为 N 2 ,求证:△ N1 BN2 ∽△ ABC ; (3)求(2)中 N1 N 2 的最小值; (4) 过点 N 作 y 轴的平行线交 (1) 中的抛物线于点 P , 点 Q 为直线 AB 上的一个动点, 且 PQA BAC , 求当 PQ 最小时点 Q 坐标.yB A O N1 D N C N2yB A C O D Nxx海曙区 2016 年初中毕业生模拟考试数 学(答案)一、选择题(每小题 4 分,共 48 分,在每小题给出的四个选项中,只有一个符合题目要求) 题号 答案 1 2 3 4 5 6C7C89101112ADBBBBDABB二、填空题(每小题 4 分,共 24 分) 题号 答案 13 14108155 121615171812或422三、解答题(第 19 题 6 分,第 20、21 题每题 8 分,第 22、23、24 题每题 10 分,第 25 题 12 分,第 26 题 14 分,共 78 分) 19.(1)原式 x2 4 x 2 x 2 x 2 2……………………………………2 分 x 2 x 2x2x2 x2 1 5x2 x 22………………………………3 分…………………………………………4 分 ………………………………6 分 ………………………………1 分 ………………………………2 分 ………………………………4 分当 x 3 时,原式 20.(1)当 a 1 时, x2 5x 6 0 x 2 x 3 0∴ x1 2 , x2 3 (2)∵方程有两个不相等的实数根∴ 5 4 3a 3 0 13 a 122………………………………6 分 ………………………………8 分 …………………………………………4 分 …………………………………………5 分21.(1)√;× (2)不认同.第一次 第二次 白 红1 红2 红1 红2 白 红2 白 红1………………………………………………7 分2 1 3 2∴ P (摸出的球中有白球) 22.(1) 9 15% 60 人 (2) 60 9 12 36 人 5 小说: 36 15 人 12 童话: 36 7 21 人 12………………………………8 分 ……………………………………2 分 ………………………………3 分 ………………………………4 分 ………………………………5 分某校各类书籍最喜爱的人数条形统计图 人数24 21 18 15 12 9 6 3 0漫画 小说 名著 杂志 书刊21 15 12 9 3历史 文献 童话 故事 类型…………………………7 分(3) 2100 15 525 人 60……………………………………10 分23.(1)连结 AO ,交 BC 于点 E . ∵点 A 是 BC 的中点 ∴ AO BC 又∵ AP ∥ BC ∴ AP AO ∴ AP 是⊙ O 的切线 (2)∵ AO BC , BC 4 5 ∴ BE 1 BC 2 5 2BE 5 AB 3P B O A C……………………2 分 ……………………4 分 …………5 分ED…………………………6 分又∵ AB 6 ∴ sin BAO ∵ OA OB …………………………8 分∴ ABD BAO ∴ sin ABD sin BAO 5 3…………………………9 分 …………………………10 分 …………………………1 分24. (1)设加油前函数解析式为 y kt b k 0 把 0,28 和 1, 20 代入,b 28 得 k b 20 k 8 ∴ b 28…………………………3 分 ………………………………4 分∴ y 8t 28(2)当 y 0 时, 8t 28 0t 7 2………………………………6 分 ……………………………………7 分∴a7 50 3 2 100(3)设途中加油 x 升,则 500 28 x 34 8 100x 46……………………………………9 分 ……………………………………10 分 ………………2 分 ………………4 分F 1 B 2 A E D∴张师傅途中加油 46 升 25.(1)① 13 ② 5,3 , 3,5 (2)∵四边形 ABCD 是正方形 ∴ AB BCA ABC 903 C∴ 1 2 90 ∵ BE CF ∴ 2 3 90 ∴ 1 3 ∴△ ABE ≌△ BCF ∴ BE CF ∴四边形 BCEF 是准矩形 (3) 15 3 , 39 3 , 2 15 参考:DD A………………………………6 分 ………………………………7 分 ………………………………8 分 ………12 分(答对一个给 1 分,答对两个给 2 分)AA60°EDBG CBCBFCH当 AC AD BD 时,S 15 3当 AC CD BD 时,S 39 32当 AD CD 时,S 2 1526.(1)由已知,设抛物线解析式为 y a x 2 1 把 D 0, 1 代入,得 a 4 ∴y1 2 x 2 4………………………………2 分…………………………………………3 分(2)连结 BN . ∵ N1 , N 2 是 N 的对称点 ∴ BN1 BN2 BNyB A 4 12 3 O N1 D N N2 C 1 2 , 3 4∴ N1 BN2 2DBC ∵四边形 ABCD 是菱形 ∴ AB BC , ABC 2DBC AB BC ∴ ABC N1 BN2 , BN1 BN 2 ∴△ ABC ∽△ N1 BN2 (3)∵点 N 是 CD 上的动点 ∴当 BN CD 时, BN 最短 ∵ C 2,0 , D 0, 1 ∴ CD 5 ∴ BNmin BD CO 4 5 CD 5 4 5 5…………4 分 …………5 分x………………………………6 分………………………………8 分∴ BN1min BNmin ∵△ ABC ∽△ N1 BN2 AB AC ∴ BN1 N1 N 2N1 N2min 16 5…………………………………10 分(4)过点 P 作 PE x 轴,交 AB 于点 E . ∵ PQA BAC ∴ PQ1 ∥ AC ∵菱形 ABCD 中, C 2,0 , D 0, 1 ∴ A 2,0 , B 0,1 1 ∴ lAB : y x 1 2A 6 Q1 D 5yE B 7Q2O P NCx1 2 1 不妨设 P m, m 2 ,则 E m, m 1 4 2 1 1 ∴ PE m2 m 2 4 2∴当 m 1 时, PEmin 7 4PE 7 tan EQ1 P 2………………………………12 分此时, PQ1 最小,最小值为 显然 PQ1 PQ2 7 2………………………………14 分。