23.2.6 一元二次方程的解法(6)
23.2一元二次方程解法学案-2021-2022学年华师大版数学九年级上册
23.2 一元二次方程解法第五课时 四种解法的灵活运用一、双基整合 步步为营1、“____”是解一元二次方程的基本指导思想。
2、一元二次方程的基本解法有_______、_______、____________和____________。
3、方程x 2+2x-3=0的解是________________。
4、解下列方程(1)16x 2-25=0 (2)x 2+49=14x (3)x 2+4x-5=0 (4)3x 2-10x+6=0二、铸就能力 拓广探索5、解方程x 2+3x -10=0。
6、已知实数x 满足012)(4)(222=----x x x x ,则代数式12+-x x 的值为___。
7、方程031322=--x x 的根是________________。
8、关于x 的一元二次方程x 2-x +a (1-a )=0有两个不相等的正根,则可取值为 (只要填写一个可能的数值即可).9、在下列方程中,有实数根的是( )A 、2310x x ++=B 1=-C 、2230x x ++=D 、111x x x =-- 三、智能升级 链接中考10、一元二次方程2230x x --=的两个根分别为( ).A 、x l =1,x 2=3B 、x l =1,x 2=-3C 、x 1=-1,x 2=3D 、x I =-1, x 2=-311、等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( )A.8B.10C.8或10D.不能确定12、已知关于x 的方程2210x kx -+=的一个解与方程2141x x+=-的解相同。
①求k 的值;②求方程2210x kx -+=的另一个解。
13、已知:△ABC 的两边AB 、AC 的长是关于x 的一元二次方程x 2-(2k+3)x+k 2+3k+2=0的两个实数根,第三边BC 的长为5. 试问:k 取何值时,△ABC 是以BC 为斜边的直角三角形?第五课时 四种解法的灵活运用参考答案一、双基整合 步步为营1、降次;2、直接开平方法,因式分解法,配方法,公式法;3、-3和1。
23.2 一元二次方程的解法---公式法
当b 2 4ac 0 b b 2 4ac 2 时,方程有 x . b 4ac 0 . 实数根吗 2a 上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法
特别提示:
用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0.
1
1
1
解得
即即
x 2 2 0 4 14 x1 4 x17 2 4 17 x1 , x2 2 4 4 此方程无实数根
3、配方法解一元二次方程的基本 步骤: (1)化1:把二次项系数化为1; (2)移项; (3)配方:方程两边都加上一次 项系数的一半的平方; (4)变形:原方程变形为(x+m) 2=n的形式; (5)开方:如果右边是非负数, 就可以直接开平方求出方程的解, 如果右边是负数,则一元二次方 程无解. (6)求解; (7)定根
17 0 -8
+ 0 -
不等 相等 不存在
请观察上表,综合b2-4ac的符号,提出你的猜想。
2014年深圳市中考试题
7.下列方程中没有实数根的是( ) A、x2+4x=10 B、3x2+8x-3=0 C、x2-2x+3=0 D、(x-2)(x-3)=12 分析:容易看出A、B两个一元二次方程中的二次 项系数和常数项异号,则4ac为负的,b2- 4ac>0; D选项的一元二次方程经变形为x2-5x-6=0,同样可 以看出b2- 4ac>0,所以选C.
m2 2
3 6 2 3 2 3 x D. 2
B.x
4.若使方程(m+1)x
23.2.2一元二次方程的解法(因式分解法)
解方程 : x 2 2 x 3 0得x1 3, x2 1; 而x 2 2 x 3 ( x 3)( x 1); 3 3 而4 x 2 12 x 9 4( x 3 )( x 3 2 解方程 : 4 x 12 x 9 0得x1 , x2 ; 2 2 2 2 4 4 2 2 解方程 : 3x 7 x 4 0得x1 , x2 1; 而3x 7 x 4 3( x )( x 1) 3 3 看出了点什么?有没有规律 ?
9.x1 3, x2 9.
10.x1 3, x2 9.
9.x 2 12 x 27 0; 10 .2( x 3) x 9.
2 2
独立 作业
知识的升华
P46, 习题22.2: 5, 8.
祝你成功!
开启
智慧
二次三项式 ax2+bx+c 的因式分解
我们已经学过一些特殊的二次三项式的分解因式,如: x 2 6 x 9 ( x 3) 2 ; x 2 5x 6 ( x 2)( x 3); 但对于一般的二次三项式ax2+bx+c(a≠o),怎么把它分解因式呢? 4 x 2 12 x 9 ? . 3x 2 7 x 4 ?. 观察下列各式,也许你能发现些什么
解:去分母,得 2( x 3) 3x(3 2 x) 2 x(3x 1),
2
去括号,移项,合并同类项,得 2 x 7 x 6 0,
2
( x 2)( 2 x 3) 0 x 2 0或2 x 3 0
22.2.6一元二次方程的解法 公式法
(2) x²- x=1
用公式法解下列方程:
(1) 2x2 1 2 x (2) 1 a2 1 a 1
24
五、总结提高
1、解一元二次方程有通法——公 式法 2、解一元二次方程各式各法
六、挑战自我
m取什么值时,方程 x2+(2m+1)x+m2-4=0有两 个相等的实数解
1.用公式法解下列一元二次方程 ⑴、x(2x-7)=2x (2)、x²+4x=3
这里的a、b、c 的值分别是什
解: a=1,b=-4,c =-7.
么?
b2 4ac (4)2 41 (7) 16 28 44 0
x b b2 4ac (4) 44 2 11
2a
21
x1 2 11, x2 2 11
友情提示:确定a﹑b﹑c的值时要注意符号;方程的解需化成 最简结果。 当b2-4ac>0时,方程有两个不相等的实数根
当b2 4ac 0时,它的根是 :
x b b2 4ac . b2 4ac 0 . 2a
当b2 4ac 0 时,方程有 实数根吗
上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法
温馨提示:
用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0.
Х= Х1=
=
Х2=0
注:当b2-4ac>0时,方程有两个不相等的实数根
例1.用公式法解方程
(4)4x²+1=-4x 解:移项,得4x²+4x+1=0 a=4,b=4,c=1, b²-4ac=4²-4×4×1=0
X=
=-
23.2.5_一元二次方程的解法(五)应用题1
23.2.5一元二次方程的解法(五)教学目标1、使学生能根据量之间的关系,列出一元二次方程的应用题。
2、提高学生分析问题、解决问题的能力。
3、培养学生数学应用的意识。
研讨过程一、复习旧知,提出问题1、叙述列一元一次方程解应用题的步骤。
2、用多种方法解方程22(31)69x x x -=++二、解决问题请同学们先看看P18页问题1,要想解决§23.1的问题1,首先要解方程2109000x x +-=,同学谁能解这个方程吗? 口答结果:x 1= x 2= ,提问:1、所求1x 、2x 都是所列方程的解吗?2、所求1x 、2x 都符合题意吗?说明了什么问题?我们应把实际问题转化为数学问题来解决,求得的方程的解,不一定是原问题的解答,因此,要注意是检验解是否符合题意。
(作为应用题,还应作答)。
三、例题例1.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长。
分析:设截去正方形的边长x 厘米,底面(图中虚线线部分)长等于 厘米,宽等于 厘米,S 底面= 。
解:设截去正方形的边长为x 厘米,根据题意,得解方程得经检验, 不符合题意,应舍去,符合题意的解是答:截去正方形的边长为 厘米。
合作交流:列一元二次方程解应用题的步骤: 。
三、课堂练习1.学校生物小组有一块长32m ,宽20m 的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为5402m ,小道的宽应是多少?2.用一块长80cm 、宽60cm 的薄钢片,在四个角上截去四个相同的边长为xcm 的小正方形,然后做成底面积为1500cm 的无盖长方体盒子。
为求出x ,根据题意,列方程并整理得( )A 、x 2-70x+825=0B 、x 2+70x-825=0C 、x 2-70x-825=0D 、x 2+70x+825=03.要用一条长为24cm 的铁丝围成一个斜边长为10cm 的直角三角形,则两条直角边的长分别为( )A 、4cm ,8cmB 、6cm ,8cmC 、4cm ,10cmD 、7cm ,7cm课后延伸:(典型习题)1、台门中学为美化校园,准备在长32米,宽20米的长方形场地上,修筑若干条道路,余下部分作草坪,并请全校学生参与图纸设计.现有三位学生各设计了一种方案(图纸如下所示),问三种设计方案中道路的宽分别为多少米?⑴甲方案图纸为图1,设计草坪总面积540平方米.解:设道路宽为x 米,根据题意,得答:本方案的道路宽为 米. ⑵乙方案图纸为图2,设计草坪总面积540平方米.解:设道路宽为x 米,根据题意,得答:本方案的道路宽为 米. ⑶丙方案图纸为图3,设计草坪总面积570平方米.解:设道路宽为x 米,根据题意,得答:本方案的道路宽为 米. 四、小结让学生反思、归纳、总结,应用一元二次方程解实际问题,要认真审题,要分析题意,找出数量关系,列出方程,把实际问题转化为数学问题来解决。
第22章一元二次方程学案
23.1 一元二次方程学案学习目标:1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
课堂研讨:探究新知【例1】小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如果要求长方体的底面积为81cm2,那么剪去的正方形的边长是多少?设剪去的正方形的边长为xcm,你能列出满足条件的方程吗?你是如何建立方程模型的?合作交流动手实验一下,并与同桌交流你的做法和想法。
列出的方程是 .自主学习【做一做】根据题意列出方程:1、一个正方形的面积的2倍等于50,这个正方形的边长是多少?2、一个数比另一个数大3,且这两个数之积为这个数,求这个数。
3、一块面积是150cm2长方形铁片,它的长比宽多5cm,则铁片的长是多少?观察上述四个方程结构特征,类比一元一次方程的定义,自己试着归纳出一元二次方程的定义。
【我学会了】1、只含有个未知数,并且未知数的最高次数是,这样的方程,叫做一元二次方程。
2、一元二次方程的一般形式: ,其中二次项,是一次项,是常数项,二次项系数,一次项系数。
展示反馈【挑战自我】判断下列方程是否为一元二次方程。
【例2】将下列一元二次方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数。
(1)81x(2))242=xx=-x(5)1(3+【挑战自我】1、将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)3x2-x=2;(2)7x-3=2x2;(3)(2x-1)-3x(x-2)=0 (4)2x(x-1)=3(x+5)-4.2、判断下列方程后面所给出的数,那些是方程的解; (1))()(1412+=+x x x ±1 ±2; (2)0822=-+x x ±2, ±43、要使02)1()1(1=+-+++x k xk k 是一元二次方程,则k=_______.4、已知关于x 的一元二次方程043)2(22=-++-m x x m 有一个解是0,求m 的值。
解一元二次方程程序
解一元二次方程程序
解一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为实数且a不等于0。
我们可以使用求根公式来解一元二次方程,
求根公式为x = (-b ± √(b^2 4ac)) / (2a)。
根据求根公式,我
们可以得到方程的两个根。
另一种解法是配方法,即利用完全平方公式将一元二次方程转
化为平方的形式进行求解。
这种方法也是常用的解法之一。
此外,还可以使用因式分解法来解一元二次方程。
将方程因式
分解为两个一次因式的乘积,然后令每个因式等于0,从而得到方
程的解。
除了这些方法,还可以通过图像法来解一元二次方程。
通过绘
制抛物线的图像,我们可以直观地找到方程的解。
总之,解一元二次方程的方法有多种,可以根据具体的情况选
择合适的方法进行求解。
希望以上所述能够帮助你更好地理解如何
解一元二次方程。
《23.21 一元二次方程的解法——直接开平方法》
1.会用直接开平方法解形如 ( x a) b(b 0) 的方程. 2.了解转化、降次思想在解方程中的运用。 合理选择直接开平方法解法较熟练地解一元 二次方程。
2
1.如果
x a(a 0) ,则 x 就叫做a 的
(χ+1)2=4
解: (1)(χ+1)2=4
∴ χ+1=±2 ∴ χ1=1,χ2=-3.
12(2 x) 9 0
2
解:
(2)移项,得
系数化为1,得:
12(2-χ)2=9 9 3 2 (2 x) 12 4
直接开平方,得
3 3 2 x 4 2
3 x 2 2
3 3 即:x1 2 ,x2 2 2 2
2
平方根
。
2 x 2.如果 a(a 0)
x, 则 =
a
2 x 3.如果 64
x,则 =
8
。
(1). χ2=4
(2). χ2-1=0
对于方程(1),可以这样想:
∵ ∴ 即: χ2=4 χ= 4 χ=±2 根据平方根的定义可知:χ是4的(平方根 ).
这时,我们常用χ1、χ2来表示未知数为χ的一元 二次方程的两个根。 ∴ 方程 χ2=4的两个根为 χ1=2,χ2=-2.
a b
小结中的两类方程为什么要加条件:a≥0,b≥0呢?
课本第37页习题22.2第1题、第2题。
ቤተ መጻሕፍቲ ባይዱ
——整体思想的运用
32x 5 12 22x 5 4
2 2
3(2x 5) 2(2x 5) 4 12
2 2
一元二次方程的解法公式总结
一元二次方程的解法公式总结一元二次方程是中考的重点内容,也是初中数学学习的重点,下面是一元二次方程的解法总结,供大家参考。
一、直接开平方法若x^2=a(a≥0),则x叫做a的平方根,表示x=±√α,这种解一元二次方程的方法叫做直接开平方法。
有一点是需要注意的,就是直接开平方得到的是两个解。
二、配方法将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解的方法。
步骤:①把原方程化为一般形式。
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边。
③方程两边同时加上一次项系数一半的平方。
④把左边配成一个完全平方式,右边化为一个常数。
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
三、因式分解法当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解,这种用分解因式解一元二次方程的方法叫做因式分解法.因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,ab=0,那么a=0或者b=0。
四、图像解法一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。
当△>0时,则该函数与x轴相交(有两个交点)。
当△=0时,则该函数与x轴相切(有且仅有一个交点)。
当△<0时,则该函数与轴x相离(没有交点)。
五、公式法利用求根公式,直接求解。
把一元二次方程的各系数代入求根公式,直接求出方程的解。
一般步骤为:(1)把方程化为一般形式;(2)确定a、b、c的值;(3)计算b-4ac的值;(4)当b-4ac≥0时,把a、b、c及b-4ac的值代入一元二次方程的求根公式,求得方程的根;当b-4ac<0时,方程没有实数根。
需要注意的是:公式法是解一元二次方程的一般方法,又叫万能方法,对于任意一个一元二次方程,只要有解,就一定能用求根公式解出来。
一元二次方程的解法全 ppt课件
x1
2 3
,
x2
1 2
2020/10/22
15
例 解方程x2 4 0。
解: (直接开平方法):
x 4,
x1 2, x2 2.
2020/10/22
16
例2:解方程x2- 4=0. 另解:原方程可变形为
(x+2)(x-2)=0
x+2=0 或 x-2=0
我们观察可以
23
拓展练习1:辨析
(1)、x2 x
解:方程的两边同时除以x,得 x 1.
原方程的解为x 1.
这样解是否正确呢?
方程的两边同时除以同一个不等于零的
2数020/,10/22所得的方程与原方程 同解。
24
2、下面的解法正确吗?如果不正确,错误在 哪?
解方程 (x 5)(x 2) 18
解: 原方程化为
(x 5)(x 2) 3 6 ( )
由x 5 3,得x 8;
由x 2 6,得x 4.
原方程的解为x1 8或x2 4.
2020/10/22
25
拓展练习2:解方程
解下列方程:
(1) (x+1)(x+2)=2
(2) (2a-3)2=(a-2)(3a-4)
(3) 2 y2=3y
2020/10/22
2020/10/22
10
方程 a2 xc0a0一定有解吗?
a 0 x 2 a c;
1当ac0时,方程 x的 根 ac;
2当ac 0时,原方程无实
提问:下列方程有解吗?
( 1 )x 4 2 3 ;(2 3 x 1 ) 2 3 ;
2020/10/22
11
归纳 小结
用直接开平方法可解下列类型 的一元二次方程:
海南省华东师大版九年级数学上同步练习答案
《新课程课堂同步练习册·数学(华东版九年级上)》参考答案 第22章二次根式§22.1 二次根式(一)一、1. D 2. C 3. D 4. C二、1. 12+x 2. x <-7 3. x ≤3 4. 1 5. x ≥2y三、1. x ≥212. x >-13. x =0 §22.1 二次根式(二)一、1. B 2. B 3. D 4. B二、1.(1)3 (2)8 (3)4x 2 2. x -2 3. 42或(-4)2 27)(或27)(- 4. 1 5. 3a三、1. (1) 1.5 (2) 73(3) 25 (4) 20 2. 原式=(x -1)+(3-x )=23. 原式=-a -b +b -a =-2 a §22.2 二次根式的乘除法(一) 一、1. D 2. B二、1. 14,a 15 2. 30 3. 112-=-n n ·1+n (n ≥3,且n 为正整数)三、1. (1)15 (2)32 (3) -108 2. 1021 cm 2§22.2 二次根式的乘除法(二) 一、1. A 2. C 3. B 4. D二、1. 53 b b 2 2. a 32 72 3. 5三、1. (1) 52 (2) 26 (3) 22 (4) b a 234 2. 14cm §22.2 二次根式的乘除法(三)一、1. D 2. A 3. A 4. C二、1.33, 210 2. x =2 3. 6 三、1.(1) 232 (2) 3-22(3) 10 (4) 2 2. 258528=÷nn ,因此是2倍. 3. (1) 不正确,9494)9(4⨯=⨯=-⨯-;(2) 不正确,574251122512425124==+=. §22.3 二次根式的加减法一、1. A 2. C 3. D 4. B二、1. 52 53-(答案不唯一) 2. 1 3. 3<x <334. 10255+5. 33 三、1.(1)34 (2)33(3) 1 (4)3-25 (5)25-23 (6)3a -2 2. 因为25.45232284242324321824≈=⨯=++=++)()(>45所以王师傅的钢材不够用. 3. 2322)26(-=-第23章一元二次方程§23.1 一元二次方程一、1.C 2.A 3. C二、1. ≠1 2. 3y 2-y +3=0,3,-1,3 3.-1三、1. (1) x 2-7x -12=0,二次项系数是1,一次项系数是-7,常数项是-12(2) 6x 2-5x +3=0,二次项系数是6,一次项系数是-5,常数项是3 2. 设长是xm ,根据题意,列出方程x (x -10)=375 3. 设彩纸的宽度为x 米,根据题意得(30+2x )(20+2x )=2×20×30(或2(20+2x )x +2×30x =30×20 或2×30x +2×20x +4x 2=30×20)§23.2 一元二次方程的解法(一)一、1.C 2.D 3.C 4. C 5. C二、1. x =0 2. x 1=0,x 2=2 3. x 1=2,x 2=21- 4. x 1=-22,x 2=22三、1. (1) x 1=-3,x 2=3; (2) x 1=0,x 2=1;(3) x 1=0,x 2=6; (4) x 1=32-, x 2=1 2. 11米 §23.2 一元二次方程的解法(二) 一、1.D 2. D 3. B二、1. x 1=3,x 2=-1 2. x 1=3+3,x 2=3-3; 3.直接开平方法,移项,因式分解,x 1=3,x 2=1 三、1.(1) x 1=3,x 2=0 (2) x 1=3,x 2=-5(3) x 1=-1+22,x 2=-1-22 (4)x 1=27,x 2=452. x=1或x=31-§23.2 一元二次方程的解法(三) 一、1.D 2.A 3. D二、1. 9,3;3191,; 2. 移项,1 3.3或7三、1. (1)x 1=1,x 2=-5;(2) x 1=2135+,x 2=2135-;(3)x 1=7,x 2=-1;(4)x 1=1,x 2=-9.2. x=2175+或x=2175-.3. x 1=242q p p -+-,x 2=242q p p ---.§23.2 一元二次方程的解法(四)华东版九年级数学(上) 第3页一、1.B 2.D 二、1. 3x 2+5x=-2,3,32352-=+x x ,(65)2,222)65(32)65(35+-=++x x ,65+x ,361,x 1=32-,x 2=-12.41,16253. 4 三、1.(1)222±=x ; (2)4173±-=x ; (3)aac b b x 242-±-=. 2. 原式变形为2(x -45)2+87,因为2452)(-x ≥0,且87>0, 所以2x 2-5x -4的值总是正数,当x=45时,代数式2x 2-5x +4最小值是87.§23.2 一元二次方程的解法(五)一、1.A 2.D二、1. x 2+3x -40=0,169,x 1=5,x 2=-8; 2. b 2-4ac >0,两个不相等的;3. x 1=251+- ,x 2=251-- 三、1.-1或-5; 2. 222±=x ; 3. 3102±=x ; 4.2979±-§23.2 一元二次方程的解法(六)一、1.A 2.B 3. D 4. A二、1. 公式法;x 1=0,x 2=-2.5 2. x 1=0,x 2=6 3. 1 4. 2 三、1. x 1=2155+,x 2=2155-; 2. x 1=4+42,x 2=4-42 ;3. y 1=3+6,y 2=3-64. y 1=0,y 2=-21; 5. x 1=21,x 2=-21(提示:提取公因式(2x -1),用因式分解法) 6. x 1=1,x 2=-31§23.2 一元二次方程的解法(七) 一、1.D 2.B二、1. 90 2. 7三、1. 4m ; 2. 道路宽应为1m §23.2 一元二次方程的解法(八)一、1.B 2. B 3.C二、1. 500+500(1+x )+500(1+x )2=2000, 2. 30% 三、1. 20万元; 2. 10% §23.3 实践与探索(一) 一、1.D 2.A二、1. x (60-2x )=450 2. 50 3. 700元( 提示:设这种箱子底部宽为x 米,则长为(x +2)米,依题意得x (x +2)×1=15,解得x 1=-5,(舍),x 2=3.这种箱子底部长为5米、宽为3米.所以要购买矩形铁皮面积为(5+2)×(3+2)=35(米2),做一个这样的箱子要花35×20=700元钱). 三、1. (1)1800 (2)2592 2. 5元3.设道路的宽为xm ,依题意,得(20-x )(32-x )=540 整理,得x 2-52x +100=0解这个方程,得x 1=2,x 2=50(不合题意舍去).答:道路的宽为2m .§23.3 实践与探索(二)一、1.B 2.D二、1. 8, 2. 50+50(1+x )+50(1+x )2=182 三、1.73%; 2. 20%3.(1)(i )设经过x 秒后,△PCQ 的面积等于4厘米2,此时,PC=5-x ,CQ=2x .由题意,得21(5-x )2x=4,整理,得x 2-5x +4=0. 解得x 1=1,x 2=4.当x=4时,2x=8>7,此时点Q 越过A 点,不合题意,舍去. 即经过1秒后,△PCQ 的面积等于4厘米2.(ii )设经过t 秒后PQ 的长度等于5厘米. 由勾股定理,得(5-t )2+(2t )2=52 .整理,得t 2-2t=0. 解得t 1=2,t 2=0(不合题意,舍去). 答:经过2秒后PQ 的长度等于5厘米.(2)设经过m 秒后,四边形ABPQ 的面积等于11厘米2.由题意,得21(5-m ) ×2m=21×5×7-11,整理得m 2-5m +6.5=0,因为15.614)5(422-=⨯⨯--=-ac b <0,所以此方程无实数解. 所以在P 、Q 两点在运动过程中,四边形ABPQ 的面积不能等于11厘米2..§23.3 实践与探索(三)一、1.C 2.A 3. C二、1. 1,-2, 2. 7, 3. 1,2 4.(x -1)(x +3) 三、1.3; 2. 32-=q .3. k 的值是1或-2. 当k =1时,方程是一元一次方程,只有-1这一个根;当k =-2时,方程另一个根为-31.第24章图形的相似§24.1 相似的图形1.(2)(3)(4) 2. 略 3. 略 §24.2 相似图形的性质(一)一、1.D 2.C 3. A 4. D二、1. 23, 38 2.22221=(或22221=……等) 3.57三、1. 51 2. 5113. 95§24.2 相似图形的性质(二)一、1.A 2.D 3. C二、1. 1:40 000 2. 5 3.180 4.③⑤ 三、1. ∠β=81°,∠α=83°,x =28.2.(1)由已知,得MN =AB ,MD =21AD =21BC .∵ 矩形DMNC 与矩形ABCD 相似,DM MNAB BC=, ∴21AD 2=AB 2,∴ 由AB =4得,AD =42华东版九年级数学(上) 第5页(2)矩形DMNC 与矩形ABCD的相似比为2DM AB =§24.3 相似三角形(一) 一、1.D 2.B二、1. AB ,BD ,AC 2. 21 3.45 ,31三、1.x =6,y =3.5 2.略 §24.3 相似三角形(二)一、1.B 2.A 3. A 4. B二、1. 310 2. 6 3.答案不唯一(如:∠1=∠B 或∠2=∠C 或AD :AB=AE :AC 等)4.28三、1. 因为∠A =∠E =47°,75==ED AC EF AB ,所以△ABC ∽△EFD . 2.CD=213.(1)① △ABE ∽△GCE ,② △ABE ∽△GDA .① 证明:∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,∴ ∠ABE=∠GCE ,∠BAE=∠CGE ,∴ △ABE ∽△GCE .② 证明:∵ 四边形ABCD 是平行四边形,∴ ∠ABE=∠GDA , AD ∥BE ,∴ ∠E=∠DAG ,∴ △ABE ∽△GDA . (2)32.4.(1)正确的结论有①,②,③; (2)证明第①个结论:∵ MN 是AB 的中垂线,∴DA =DB ,则∠A =∠ABD =36°,又等腰三角形ABC 中AB =AC ,∠A =36°,∴ ∠C =∠ABC =72°,∴ ∠DBC =36°, ∴ BD 是∠ABC 的平分线.§24.3 相似三角形(三)一、1.B 2.D 3. C二、1. 3:2, 3:2, 9:4 2. 18 3.2:5 4. 答案不唯一.(如:△ABC ∽△DAC ,5:4 或△BAD∽△BCA ,3:5 或△ABD ∽△CAD ,3:4) 三、1.(1)31,(2)54cm 2.2. 提示:设正方形的边长为x cm.由PN ∥BC ,得△APN ∽△ABC ,BCPN ADAE =, 1288x x =-, 解得x =4.8cm. 3.(1)8,(2)1:4. §24.3 相似三角形(四) 一、1.B 2.A二、1. 1.75 2. 100 3.10 4.712或2 三、1.过E 作EF ⊥BD ,∵∠AEF =∠CEF ,∴∠AEB =∠CED .又∵∠ABE =∠CDE =90°,∴ △ABE ∽△CDE ,∴DE BECD AB =,即1850.050.16=⨯=⨯=DE CD BE AB (米). 2.(1)△CDP ∽△P AE .证明:∵ 四边形ABCD 是矩形,∴ ∠D=∠A=90°,∴ ∠PCD +∠DPC=90°.又∵ ∠CPE=90°,∴ ∠EP A +∠DPC=90°,∴ ∠PCD=∠EP A . ∴ △CDP ∽△P AE .(2)在Rt △PCD 中,CD=AB=6,由tan ∠PCD =CDPD .∴ PD=CD •tan ∠PCD=6•tan 30°=6×33=23. ∴ AP=AD -PD=11-23.解法1:由△CDP ∽△P AE 知AP CD AE PD =, ∴ AE=233116)3211(32-=-⨯=⋅CD AP PD解法2:由△CDP ∽△P AE 知∠EP A =∠PCD =30°,∴ AE=AP •tan ∠EAP=(11-23)•tan 30°=23311-.(3)假设存在满足条件的点P ,设DP=x ,则AP=11-x由△CDP ∽△P AE 知2=AP CD ,∴ 2116=-x,解得x=8,∴ DP=8.§24.4 中位线(一)一、1.D 2.C 3.C二、1. 26 2. 2.5 3.25 4. 12 三、1.(1)提示:证明四边形ADEF 是平行四边形; (2)AC =AB ; (3)△ABC 是直角三角形(∠BAC =90°);(4)△ABC 是等腰直角三角形(∠BAC =90°,AC =AB ) 2. 提示:∵ DC =AC ,CE ⊥AD ,∴ 点E 是AD 的中点. §24.4 中位线(二) 一、1.D 2.D二、1. 7.5 2. 2 3.15 三、1.ab 21 2.2§24.5 画相似图形一、1.D 2.B二、1. 4,画图略 2. P 3. 略 三、1.略 2.略 §24.6 图形与坐标(一) 一、1.D 2.B 二、1.(-2, 1) 2.(7,4) 三、1.略 2.略 §24.6 图形与坐标(二)一、1.C 2.C 3. C 二、1.(1,2) 2.x 轴,横,纵 3.(-a ,b ) 三、1.略 2.略3.(1)平移,P 1(a -5,b +3).(2)如图所示. A 2(-8,2), B 2(-2,4),C 2(-4,0),P 2(2a -10,2b +6).第25章解直角三角形§25.1 测量 一、1. B 2.C 二、1.30 2.200 三、1.13.5m§25.2 锐角三角函数(一)一、1.C 2.B 3.C 4.A华东版九年级数学(上) 第7页二、1.53 2.21 3.54三、1. sinB =53,cosB =54,tanB =43,cotB =34 2.sinA =55,cosA =552,tanA =21,cotA =2§25.2 锐角三角函数(二)一、1. A . 2. C 3. A 4.A 5.C 6.C 二、1. 1 2. 1 3.70三、1.计算:(1(2)-3 (3)0 (4)-12.(1)在Rt △ADC 中55sin =α, 552cos =α, tan α=21,cot α=2(2)在Rt △ABC 中,BC =AC ·cot α=2×2=4,∴BD =BC -CD =4-1=3. §25.2 用计算器求锐角三角函数(三) 一、1. A 2. B二、1. 0.7344 2. 0.464 3. > 三、1.(1)0.9943 (2)0.4188 (3)1.76172.(1)17°18′ (2)57°38′ (3)78°23′ 3. 6.21§25.3 解直角三角形(一) 一、1.A 2.C二、1. 2.5 3.4. 8三、1.答案不唯一. 2.10 §25.3 解直角三角形(二) 一、1.D 2.B二、1.20sin α 2. 520cos 50°(或520sin 40°) 3.1.66 三、1. 3.93米.2. 作CD ⊥AE 交AB 于D ,则∠CAB =27°,在Rt △ACD 中,CD =AC ·tan ∠CAB =4×0.51=2.04(米) 所以小敏不会有碰头危险,姚明则会有碰头危险.§25.3 解直角三角形(三) 一、1. B 2. B二、12. 2633. 30三、1.15米2.如图,由已知,可得∠ACB =60°,∠ADB =45°. ∴在Rt △ABD 中,BD=AB .又在Rt △ABC 中,tan 60AB BC =,ABBC∴=即BC AB =.BD BC CD =+,AB AB CD ∴=+.∴ CD =AB -33AB =180-180×33=180-603(米). 答:小岛C ,D 间的距离为(180-米.3.有触礁危险.ABC D 60°45°理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD =90°-45°=45°.∴ BD =PD =x .在Rt △P AD 中,∵∠P AD =90°-60°=30°,∴x .x AD 330tan =︒= ∵ AD =AB +BD , ∴ x .x +=123∴ )13(61312+=-=x .∵ ,<18)13(6+∴ 渔船不改变航线继续向东航行,有触礁危险.§25.3 解直角三角形(四)一、1.C 2.A二、1. 30° 2.2+3.34 三、1. 作AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F , 在Rt △ABE 中,tan AE B BE =,∴ tan AE BE B ==6tan55. ∴6221624.4tan55BC BE AD =+=⨯+≈(cm ). 答:燕尾槽的里口宽BC 约为24.4cm .2.如图所示,过点A 、D 分别作BC 的垂线AE 、所以△ABE 、△CDF 均为Rt △, 又因为CD =14,∠DCF =30°, 所以DF =7=AE ,且FC =12.1, 所以BC =7+6+12.1=25.1m . 3.延长CD 交PB 于F ,则DF ⊥PB . ∴ DF =BD ·sin 15°≈50×0.26=13.0. ∴ CE =BF =BD ·cos 15°≈50×0.97=48.5. ∴ AE =CE ·tan 10°≈48.5×0.18=8.73. ∴ AB =AE +CD +DF =8.73+1.5+13 =23.2. 答:树高约为23.2米.3.(1)在Rt △BCD 中,CD =BCsin 12°≈10×0.21=2.1(米) (2)在Rt △BCD 中,BD =BCcos 12°≈10×0.98=9.8(米)在Rt △ACD 中,︒=5tan CD AD ≈09.01.2≈23.33(米),AB =AD -BD ≈23.33-9.8=13.53≈13.5(米) 答:(1)坡高2.1米,(2)斜坡新起点与原起点的距离为13.5米.第26章 随机事件的概率§26.1 概率的预测——什么是概率(一)一、1. D 2. B 3. C 4. A 5. B西 东PA CBN M 60° 45°F华东版九年级数学(上) 第9页二、1. 20,30 2. 0.18 3.124. 0.2 三、1.(1)2583,5839,8396,3964,9641,6417 (2)62. ①—D ②—C ③—A ④—B ⑤—E §26.1 概率的预测——什么是概率(二) 一、1. B 2. C3. C4. A二、1. 25 2. 35 3.(1)14 (2)113 (3)413 4. 1三、1.不公平,红色向上概率对于甲骰子是31,而其他色向上的概率是61 2. 提示:任意将其中6个单个的小扇形涂黑即可.3. 24个球分别为4个红球、8个白球、12个黄球.§26.1 概率的预测——在复杂情况下列举所有机会均等的结果 一、1. A 2. C 二、1.13 2. 34 3. 12 4.(1)32;(2)61;(3)21三、1. 树形图:第一张卡片上的整式 x x -1 2第二张卡片上的整式 x -1 2 x 2 x x -1 所有可能出现的结果 1x x - 2x 1x x - 12x - 2x 21x - 所以P (能组成分式)63==. 2.(1)设绿球的个数为x .由题意,得21212x =++.解得x=1.经检验x=1是所列方程的根,所以绿球有1个. (2)根据题意,画树状图:红2 黄 绿 红1 黄 绿 红1 红2 绿 红1 红2 红1 红2 黄绿开始 第二次摸球 第一次摸球 黄由图知共有12种等可能的结果,即(红1,红2),(红1,黄),(红1,绿),(红2,红1),(红2,黄),(红2,绿),(黄,红1),(黄,红2),(黄,绿), (绿,红1),(绿,红2),(绿,黄),其中两次都摸到红球的结果有两种(红1,红2),(红2,红1)∴ P (两次摸到红球)21126==.由表格知共有12种等可能的结果,其中两次都摸到红球的结果有两种. ∴ P (两次都摸到红球)21126==.3. 这个游戏对小慧有利.每次游戏时,所有可能出现的结果如下:(列表)土口木土 (土,土) (土,口) (土,木) 口 (口,土) (口,口) (口,木) 木(木,土) (木,口) (木,木)(树状图)总共有9种结果,每种结果出现的可能性相同, 其中能组成上下结构的汉字的结果有4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,土口 木 开始 土(土,土) 口(土,口) 木(土,木) 土(口,土) 口(口,口) 木(口,木) 土(木,土)口(木,口) 木(木,木)华东版九年级数学(上) 第11页 (口,木)“呆”或“杏”.()49P =小敏获胜∴,()59P =小慧获胜,∵()P <小敏获胜()P 小慧获胜.∴ 游戏对小慧有利§26.2 模拟实验——用替代物做模拟实验一、1. A 2. C二、1.两张分别标有0、1的纸片 2. 三张纸片进行抽签,两张写“1”一张写“2”.3.合理三、1. 略 2. 14,后者答案不唯一 3. 点数和为偶数与点数和为奇数的机会各占50%,替代物不唯一§26.2 模拟实验——用计算器做模拟实验一、1. B 2. B二、1.1 6 6 2.1 30 13三、1.(1)0.6;(2)0.6;(3)16、242.(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张, 故甲摸出“石头”的概率为31155=. (2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为84147=. (3)若甲先摸,则“锤子”、“石头”、“剪子”、“布”四种卡片都有可能被摸出.若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为71142=; 若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为42147=; 若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为63147=; 若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为514. 故甲先摸出“锤子”获胜的可能性最大.3.(1)填18,0.55 ;(2)画出正确图形;(3)给出猜想的概率的大小为0.55±0.1均为正确.。
一元二次方程的解法归纳总结
一元二次方程的解法归纳总结一元二次方程的解法是每一个中学生都必须掌握的,共有5种解法,其中直接开平方法、因式分解法、配方法和公式法是教材上重点讲解的四种方法,并没有提到换元法,我们在这次归纳总结中给于详细的讲解.另外,还将介绍某些特殊的一元二次方程的解法.在上面提到的四种解一元二次方程的方法中,直接开平方法是最直接的方法,因式分解法是最简单的方法,配方法是最基本的方法,而公式法是最万能的方法.我们要根据一元二次方程的特点选择合适的解法,如一元二次方程缺少一次项,选择用直接开平方法求解;一元二次方程缺少常数项,选择用因式分解法(缺常选因)求解.一、直接开平方法解形如p x =2(p ≥0)和()c b ax =+2(c ≥0)的一元二次方程,用直接开平方法. 用直接开平方法解一元二次方程的一般步骤:(1)把一元二次方程化为p x =2(p ≥0)或()c b ax =+2(c ≥0)的形式; (2)直接开平方,把方程转化为两个一元一次方程;(3)分别解这两个一元一次方程,得到一元二次方程的两个解.注意:(1)直接开平方法是最直接的解一元二次方程的方法,并不适合所有的一元二次方程的求解;(2)对于一元二次方程p x =2,当0<p 时,方程无解;(3)对于一元二次方程()c b ax =+2: ①当0>c 时,一元二次方程有两个不相等的实数根;②当0=c 时,一元二次方程有两个相等的实数根;③当0<c 时,一元二次方程没有实数根.例1. 解下列方程:(1)022=-x ; (2)081162=-x .分析:观察到两个方程的特点,都可以化为p x =2(p ≥0)的形式,所有选择用直接开平方法求解.当一元二次方程缺少一次项时,考虑使用直接开平方法求解.解:(1)22=x2±=x ∴2,221-==x x ;(2)1681,811622==x x 491681±=±=x ∴49,4921-==x x . 例2. 解下列方程:(1)()0932=--x ; (2)()092122=--x . 分析:观察到两个方程的特点,都可以化为()c b ax =+2(c ≥0)的形式,所有选择用直接开平方法求解.解:(1)()932=-x 33±=-x∴33=-x 或33-=-x∴0,621==x x ;(2)()92122=-x ()4312922==-x ∴23432±=±=-x ∴232=-x 或232-=-x ∴232,23221-=+=x x . 习题1. 下列方程中,不能用直接开平方法求解的是 【 】(A )032=-x (B )()0412=--x (C )022=+x (D )()()2221-=+x 习题2. 若()41222=-+y x ,则=+22y x _________.习题3. 若b a ,为方程()1142=+-x x 的两根,且b a >,则=ba 【 】 (A )5- (B )4- (C )1 (D )3习题4. 解下列方程:(1)()16822=-x ; (2)()642392=-x .习题5. 解下列方程:(1)()09142=--x ; (2)4312=⎪⎭⎫ ⎝⎛-+x x .习题6. 对于实数q p ,,我们用符号{}q p ,min 表示q p ,两数中较小的数,如{}12,1min =.(1){}=--3,2min _________;(2)若(){}1,1min 22=-x x ,则=x _________. 习题7. 已知直角三角形的两边长y x ,满足091622=-+-y x ,求这个直角三角形第三边的长.(注意分类讨论第三边的长)二、因式分解法因式分解法解一元二次方程的一般步骤是:(1)移项 把方程的右边化为0;(2)化积 将方程的左边分解为两个一次因式的乘积;(3)转化 令每个因式等于0,得到两个一元一次方程;(4)求解 解这两个一元一次方程,得到一元二次方程的两个解.例1. 用因式分解法解方程:x x 32=.解:032=-x x()03=-x x∴0=x 或03=-x∴3,021==x x .例2. 用因式分解法解方程:()()01212=---x x x . 解:()()0211=---x x x()()()()011011=+-=---x x x x ∴01=-x 或01=+x∴1,121-==x x .例3. 解方程:121232-=-x x .解:0121232=+-x x()()023044322=-=+-x x x∴221==x x .例4. 解方程:332+=+x x x .解:()0332=+-+x x x()()()()0310131=-+=+-+x x x x x∴01=+x 或03=-x∴3,121=-=x x .因式分解法解高次方程例5. 解方程:()()0131222=---x x . 解:()()031122=---x x()()()()()()022*******=-+-+=--x x x x x x∴01=+x 或01=-x 或02=+x 或02=-x∴2,2,1,14321=-==-=x x x x .例6. 解方程:()()0343222=+-+x x . 解:()()043322=-++x x()()()()()0113013222=-++=-+x x x x x∵032>+x∴()()011=-+x x∴01=+x 或01=-x∴1,121=-=x x .用十字相乘法分解因式解方程对于一元二次方程()002≠=++a c bx ax ,当ac b 42-=∆≥0且∆的值为完全平方数时,可以用十字相乘法分解因式解方程.例7. 解方程:0652=+-x x .分析:()124256452=-=⨯--=∆,其结果为完全平方数,可以使用十字相乘法分解因式. 解:()()032=--x x∴02=-x 或03=-x∴3,221==x x .例8. 解方程:03722=++x x .分析:25244932472=-=⨯⨯-=∆,其结果为完全平方数,可以使用十字相乘法分解因式.解:()()0312=++x x∴012=+x 或03=+x ∴211-=x ,32-=x . 例9. 设方程()012012201420132=-⨯-x x 的较大根为a ,方程020*******=-+x x 的较小根为b ,求b a -的值.解:()012012201420132=-⨯-x x ()()()()()()()0120131011201301201320130112013120132013222222=+-=-+-=-+-=--⨯+-x x x x x x x x x x∴01=-x 或0120132=+x ∴22120131,1-==x x ∵a 是该方程的较大根∴1=a020*******=-+x x()()020121=+-x x∴01=-x 或02012=+x∴2012,121-==x x∵b 是该方程的较小根∴2012-=b∴()201320121=--=-b a .习题1. 方程x x 22=的根是__________.习题2. 方程()022=-+-x x x 的根是__________.习题3. 方程0442=+-x x 的解是__________.习题4. 方程()()232+=-+x x x 的解是__________.习题5. 如果()0211+=--x x x ,那么x 的值为 【 】 (A )2或1- (B )0或1(C )2 (D )1-习题6. 方程()x x x =-2的根是__________.习题7. 已知等腰三角形的腰和底的长分别是一元二次方程0862=+-x x 的根,则该三角形的周长为__________.习题8. 解下列方程:(1)()()x x x -=-2223; (2)()1232+=+x x ;(3)()222344x x x -=+-; (4)2422-=-x x .习题9. 解下列方程:(1)0322=--x x ; (2)0452=+-x x .习题10. 解方程:()()01122122=++++x x .三、配方法解用配方法解一元二次方程02=++c bx ax ()0≠a 共分六步:一移、二化、三配、四开、五转、六解.(1)一移 把常数项移到方程的右边,注意变号;c bx ax -=+2(2)二化 在方程的左右两边同时除以二次项系数a ,化二次项系数为1;ac x a b x -=+2 (3)三配 即配方,把方程的左边配成完全平方的形式,需要在方程的左右两边同时加上一次项系数一半的平方;22222⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛++a b a c a b x a b x 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+ (4)四开 直接开平方; aac b a b x 2422-±=+ (注意:当ac b 42-=∆≥0时方程有实数根) (5)五转 把第(4)步得到的结果转化为两个一元一次方程;a acb a b x 2422-=+或aac b a b x 2422--=+ (6)解 解这两个一元一次方程,得到一元二次方程的两个解.aac b b x a ac b b x 24,242221---=-+-=. 说明:由上面配方的结果可以确定一元二次方程有实数根的条件和求根公式:一元二次方程02=++c bx ax ()0≠a 有实数根的条件是ac b 42-=∆≥0,求根公式为:aac b b x 242-±-=. 例1. 用配方法解方程:0142=--x x .解:142=-x x()5252414422±=-=-+=+-x x x x ∴52=-x 或52-=-x ∴52,5221-=+=x x .例2. 解方程:03232=-+x x .分析:按照用配方法解一元二次方程的一般步骤,在移项之后,要化二次项系数为“1”. 解:3232=+x x910319119132132222=⎪⎭⎫ ⎝⎛++=++=+x x x x x 31031±=+x ∴31031=+x 或31031-=+x ∴31031,3103121--=+-=x x . 例3. 用配方法解关于x 的方程:02=++q px x (q p 42-≥0).解:q px x -=+224244244222222q p p x q p p x p q p px x -±=+-=⎪⎭⎫ ⎝⎛++-=++∴242,24222q p p x q p p x --=+-=+ ∵q p 42-≥0 ∴24,242221q p p x q p p x ---=-+-=. 说明: q p 42-≥0既是二次根式q p 42-有意义的条件,也是一元二次方程02=++q px x 有实数根的前提.因此把q p 42-叫做一元二次方程02=++q px x 的根的判别式.习题1. 用配方法解方程0142=++x x ,配方后的方程是 【 】(A )()322=+x (B )()322=-x (C )()522=-x (D )()522=+x 习题 2. 若方程082=+-m x x 可以通过配方写成()62=-n x 的形式,那么582=++m x x 可以配成 【 】(A )()152=+-n x (B )()12=+n x (C )()1152=+-n x (D )()112=+n x 习题3. 用配方法解方程:(1)012=-+x x ; (2)01632=+-x x ;(3)0652=--x x ; (4)011242=--x x .四、公式法一元二次方程的求根公式一元二次方程02=++c bx ax (0≠a )的求根公式为:aac b b x 242-±-=(ac b 42-≥0) 当042<-ac b 时,一元二次方程无实数根.例1. 证明一元二次方程的求根公式.分析:用配方法可以证明一元二次方程的求根公式.证明:02=++c bx axaac b a b x a ac b a b x ab ac a b x a b x ac x a b x cbx ax 2424424422222222222-±=+-=⎪⎭⎫ ⎝⎛++-=++-=+-=+ ∴a ac b a b x 2422-=+或aac b a b x 2422--=+ ∴aac b b x a ac b b x 24,242221---=-+-= 即一元二次方程02=++c bx ax (0≠a )的根为a ac b b x 242-±-=(ac b 42-≥0). 注意:当ac b 42-≥0时,一元二次方程02=++c bx ax (0≠a )有实数根;当042<-ac b 时,二次根式ac b 42-无意义,方程无实数根.公式法解一元二次方程的一般步骤:用公式法解一元二次方程的一般步骤是:(1)把一元二次方程化为一般形式;(2)确定c b a ,,的值,包括符号;(3)当ac b 42-≥0时,把c b a ,,的值代入求根公式求解;当042<-ac b 时,方程无实数根.例1. 用公式法解方程:0622=-+x x .分析:用公式法解一元二次方程时要先将方程化为一般形式,并正确确定c b a ,,的值,包括符号.解:6,1,2-===c b a∴()496241422=-⨯⨯-=-ac b ∴4714491±-=±-=x ∴2471,2347121-=--==+-=x x . 例2. 解下列方程:(1)242=+x x ; (2)x x x 8110442-=++.解:(1)0242=-+x x()24244422=-⨯-=-ac b ∴6226242244±-=±-=±-=x ∴62,6221--=+-=x x ;(2)091242=++x x014414494412422=-=⨯⨯-=-ac b ∴80128012±-=±-=x ∴2321-==x x . 说明:当042=-ac b 时,一元二次方程02=++c bx ax (0≠a )有两个相等的实数根. 例3. 解方程:0162=+-x x .解:()3243646422=-=--=-ac b ∴22322462326±=±=±=x ∴223,22321-=+=x x .用公式法解一元二次方程获得的启示对于一元二次方程02=++c bx ax (0≠a ),可以用c b a ,,的值确定方程解的情况以及方程的解,并且求根公式里面的二次根式ac b 42-有意义的条件即为方程有解的条件:当ac b 42-≥0时,二次根式ac b 42-,一元二次方程有实数根;当042<-ac b 时,二次根式ac b 42-无意义,一元二次方程无实数根.(1)当042>-ac b 时,一元二次方程有两个不相等的实数根;(2)当042=-ac b 时,方程有两个相等的实数根.把ac b 42-叫做一元二次方程根的判别式,用“∆”表示,所以ac b 42-=∆.在不解方程的前提下,可以由∆的符号确定一元二次方程根的情况.习题1. 解方程:(1)622=-x x ; (2)21342-=--x x x ;(3)0222=+-x x ; (4)()122-=+x x .习题2. 已知a 是一元二次方程0142=+-x x 的两个实数根中较小的根.(1)求201842+-a a 的值; (2)化简并求值:aa a a a a a a 112121222--+---+-.五、换元法解某些高次方程或具有一定结构特点的方程时,我们可以通过整体换元的方法,把方程转化为一元二次方程进行求解,从而达到降次或变复杂为简单的目的.换元法的实质是换元,关键是构造元和设元,体现的是转化化归思想.用换元法解某些高次方程例1. 解方程:03224=--x x .分析:这是一元四次方程,可设y x =2(注意:y ≥0),这样通过换元就把原方程转化为关于 y 的一元二次方程.解:设y x =2,则有:y ≥0∴0322=--y y()()031=-+y y∴01=+y 或03=-y∴3,121=-=y y∵y ≥0∴3=y (1-=y 舍去)∴32=x ∴3,321-==x x .用换元法解具有一定结构特点的方程例2. 解方程:()()022322=+---x x . 分析:注意到该方程中整体()2-x 出现了两次,可整体设元,从结构上简化方程.解:设t x =-2,则有:0232=+-t t()()021=--t t∴01=-t 或02=-t∴2,121==t t∴12=-x 或22=-x∴4,321==x x .例3. 解方程:()()0128222=+---x x x x . 分析:本题中的方程若展开整理,则得到的是一个高次方程,但方程本身具有非常明显的结构特点,可整体换元,不用展开即可得到一个简洁的一元二次方程.解:设y x x =-2,则有:01282=+-y y()()062=--y y∴02=-y 或06=-y∴6,221==y y∴22=-x x 或62=-x x解方程22=-x x 得:2,121=-=x x ;解方程62=-x x 得:3,221=-=x x综上,原方程的解为3,2,2,14321=-==-=x x x x .例4. 解方程:112122=+-+x x x x . 分析:方程中21xx +与12+x x 互为倒数,若设t x x =+21,则t x x 112=+,经过这样的换元,最后可把原方程转化为关于t 的整式方程,且为一元二次方程.解:设t x x =+21,则有:12=-tt 整理得:022=--t t()()021=-+t t∴2,121=-=t t ∴112-=+x x 或212=+x x 由112-=+xx 得:012=++x x ,此时方程无解; 由212=+xx 得:0122=--x x ,解之得:1,2121=-=x x . 综上,原方程的解为1,2121=-=x x .例5. 解方程:01122=+++xx x x .分析:设y x x =+1,则22112222-=-⎪⎭⎫⎝⎛+=+y x x x x .解:01122=+++x x x x02112=-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+x x x x 设y x x =+1,则有:022=-+y y()()021=+-y y∴01=-y 或02=+y∴2,121-==y y ∴11=+x x 或21-=+x x 由11=+x x 得:012=+-x x ,此时方程无解; 由21-=+x x 得:0122=++x x ,解之得:121-==x x .综上,原方程的解为121-==x x .本题变式: 已知实数x 满足01122=+++x x x x ,那么x x 1+的值是【 】 (A )1或2- (B )1-或2 (C )1 (D )2-例6. 已知()()1212222=+++y x y x ,求22y x +的值.分析:整体设元:设m y x =+22,则m ≥0,据此注意根的取舍.解:设m y x =+22,则有:m ≥0∴()121=+m m整理得:0122=-+m m解之得:4,321-==m m∵m ≥0 ∴3=m∴22y x +的值为3.习题1. 解下列方程:(1)()()6222=+++x x x x ; (2)()()061512=+---x x .习题2. 解方程:1222=---xx x x .习题3. 阅读下面的材料,回答问题:解方程04524=+-x x ,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设y x =2,则原方程变形为:0452=+-y y ①解之得:4,121==y y当1=y 时,12=x ,解之得:1±=x ;当4=y 时,42=x ,解之得:2±=x .综上,原方程的解为:2,2,1,14321-==-==x x x x .(1)在由原方程得到方程①的过程中,利用_________法达到_________的目的,体现了数学的转化思想;(2)解方程:()()0124222=-+-+x x x x .特殊一元二次方程的解法举例某些方程的解需采用特殊的处理和方法,下面列举几例.例1. 解方程:()()7751522=++++x x x x .分析:若把该方程展开并整理,会得到一个一元四次方程,这不是我们想看到的结果.可使用换元法解该方程:设t x x =++152,这样就能把原方程转化为关于t 的一元二次方程. 解:设t x x =++152,则原方程可转化为:()76=+t t∴0762=-+t t()()071=+-t t∴01=-t 或07=+t∴7,121-==t t∴1152=++x x 或7152-=++x x由1152=++x x 得:052=+x x ,解之得:5,021-==x x ;由7152-=++x x 得:0852=++x x ,此时方程无解.综上,原方程的解为5,021-==x x .例2. 解方程:022=-+x x .解法1:当x ≥0,原方程可化为:022=-+x x ,解之得:1=x (2-=x 舍去);当0<x 时,原方程可化为:022=--x x ,解之得:1-=x (2=x 舍去).综上所述,原方程的解为1,121-==x x .解法2:原方程可化为:022=-+x x ∴()()021=+-x x ∵02>+x ∴1,01==-x x∴1,121-==x x∴原方程的解为1,121-==x x .解法3:(图象法)原方程可化为:x x =+-22 设x x g x x f =+-=)(,2)(2,在同一平面直角坐标系中画出二者的图象如图所示.∵两个函数的图象有两个交点()1,1-和()1,1 ∴方程x x =+-22有两个实数根,且根为1,121=-=x x∴原方程的解为1,121=-=x x .习题1. 参照例2的解法,解方程:03362=+---x x x .例3. 解方程:()()()()484321=----x x x x .解:()()()()483241=----x x x x∴()()48654522=+-+-x x x x设t x x =+-552,则有:()()4811=+-t t∴49,48122==-t t∴7,721-==t t当7552=+-x x 时,解之得:2335,233521-=+=x x ; 当7552-=+-x x 时,此时方程无解.综上所述,原方程的解为2335,233521-=+=x x . 习题2. 方程027422=-+-x x 的所有根的和为_________.习题3. 已知实数x 满足01122=+++x x x x ,那么x x 1+的值是 【 】 (A )1或2-(B )1-或2 (C )1(D )2-。
一元二次方程的6种解法
一元二次方程的6种解法
一元二次方程的6种解法如下:
1、因式分解法:将一元二次方程化成 ax^2+bx+c=0 的形式,先将两边同乘以a后,即a(x^2+ b/ax + c/a),然后将此形式拆解为(x+())(x+(/))的形式,得到两个一元一次方程,求出x的值,即可求出原方程的解。
2、公式法:用公式法求解一元二次方程,即通过求解公式:x=(-
b±√(b^2-4ac))/2a来求解,此公式中,b和c为方程的系数,a为系数前的系数。
3、图像法:使用图像法求解一元二次方程,即作出ax^2+bx+c=0方程图象,然后根据图象上的交点判断出方程的解。
4、判别式法:此法根据一元二次方程的判别式来求解,即当判别式b^2-4ac>0时,方程有两个不等实根;当判别式b^2-4ac=0时,方程有一个实根;当判别式b^2-4ac<0时,方程没有实根。
5、求根公式法:此法可以用来求解一元二次方程的实根,即用求根公式x1=(-b+ √(b2- 4ac))÷2a和x2=(-b-√(b2- 4ac))÷2a,其中,b 为系数前的系数,a和c分别为方程的系数。
6、特殊值法:此法适用于一元二次方程中特殊的系数或解。
如当
a=0,系数b和c任意时,可将该方程化为一元一次方程,求解即可;当a=b=0时,可直接算出方程的解。
23.2 一元二次方程的解法 课件(华师大版九年级上册) (6)
zxxkw zxxkw 学科网 学科网
回顾与复习 1
你掌握了吗
1、我们已经学过一元二次方程的解法有哪些?
1、直接开平方法 3、配方法 2、因式分解法 4、公式法
配方法的步骤是什么? 求根公式是怎样的?
x 70 x 825 0 2、解方程:
2
x1 55, x2 15
用公式法解下列方程
x 3x 2 0 2 x 8x 16 0 2 3 y 10 2 y
2
思考:上面的一元二次方程有几个根? 1、方程有两个不相等的实数根 2、方程有两个相等的实数根 3、方程没有实数根
想一想
2
?
ax +bx+c=0的根为什么会有不同的情况呢?会与
什么有关系呢?
2
作 业
学科网
练习2 已知关于x 的一元二次方程 2x
2
(4k 1) x 2k 1 0
2
当k取什么值时:1、方程有两个不相等的实数根 2、方程有两个相等的实数根 3、方程没有实数根
已知一元二次方程证明根的情况 例3:已知关于x 的一元二次方程
x kx k 2 0
2
求证方程必有两不相等的实数根。
• 课堂练习; 2 • 1、对于方程4(m+1)x +2(2m-1)x=1-m
学科网
(m≠-1)
• • • •
(1)方程有两个不相等的实数根,求m的取值范围 (2)方程有两个相等的实数根,Байду номын сангаасm的取值范围 (3)方程没有实数根,求m的取值范围 2 2 2 2 2、已知a+c≠0,a +b =c 求证(a+c)x +2bx+c-a=0 总有 相等的实数根
九年级上学期数学同步练习册答案
三一文库()/初中三年级〔九年级上学期数学同步练习册答案[1]〕参考答案第22章二次根式§22.1 二次根式(一)一、1. D 2. C 3. D 4. C1 2. x<-7 3. x≤3 4. 1 5. x≥2y#二、1. x21 2. x>-1 3. x=0 2§22.1 二次根式(二)三、1. x≥一、1. B 2. B 3. D 4. B)7)#22二、1.(1)3 (2)8 (3)4x2 2. x-2 3. 42或(-4)2 或(4. 15. 3a三、1. (1) 1.5 (2) 3(3) 25 (4) 20 2. 原式=(x-1)+(3-x)=2 73. 原式=-a-b+b-a=-2 a§22.2 二次根式的乘除法(一)一、1. D 2. B1(n≥3,且n为正整数)#1#n#n#1#二、1. ,a 2. 3. n2212三、1. (1)(2)(3) -108 2. cm 32§22.2 二次根式的乘除法(二)一、1. A 2. C 3. B 4. D二、1. 3 2b 2. 2a 2 3. 5三、1. (1) 52 (2) 62 (3) 22 (4) 4a2b 2. cm §22.2 二次根式的乘除法(三)一、1. D 2. A 3. A 4. C, 2. x=2 3. 6 3222三、1.(1) (3) 10 (4) 2 2 (2) 3-32二、1.2,因此是2倍. 55#8#2. 82nn;#4#9##9)#(#4#3. (1) 不正确,2525255###4#(2) 不正确,4121247.§22.3 二次根式的加减法一、1. A 2. C 3. D 4. B35(答案不唯一) 2. 1 3. <x<3#二、1. 22 5. 3#4. 5三、1.(1)43 (2)(3) 1 (4)3-52 (5)52-2 (6)3a-2 345.25>45#2#82#4#42)#32#42#)##2. 因为42所以王师傅的钢材不够用.2#23#2)2#3. (第23章一元二次方程§23.1 一元二次方程一、1.C 2.A 3. C二、1. ≠1 2. 3y2-y+3=0,3,-1,3 3.-1三、1. (1) x2-7x-12=0,二次项系数是1,一次项系数是-7,常数项是-12(2) 6x2-5x+3=0,二次项系数是6,一次项系数是-5,常数项是32. 设长是xm,根据题意,列出方程x(x-10)=3753. 设彩纸的宽度为x米,根据题意得(30+2x)(20+2x)=2#20#30(或2(20+2x)x+2#30x=30#20 或2×30x+2×20x+4x2=30×20)§23.2 一元二次方程的解法(一)一、1.C 2.D 3.C 4. C 5. C4. x1=-22,x2=22 2#1二、1. x=0 2. x1=0,x2=2 3. x1=2,x2=三、1. (1) x1=-,x2=; (2) x1=0,x2=1;#(3) x1=0,x2=6; (4) x1=§23.2 一元二次方程的解法(二)一、1.D 2. D 3. B二、1. x1=3,x2=-1 2. x1=3+3,x2=3-;3.直接开平方法,移项,因式分解,x1=3,x2=1三、1.(1) x1=3,x2=0 (2) x1=3,x2=-5 2, x2=1 2. 11米 3(3) x1=-1+22,x2=-1-22 (4)x1=75,x2= 241 3§23.2 一元二次方程的解法(三)#一、1.D 2.A 3. D 2. x=1或x=1; 2. 移项,1 3.3或7 二、1. 9,3;193;(3)xx1=7,x2=-1; 22#,x2=5#三、1. (1)x1=1,x2=-5;(2)x1=5(4)x1=1,x2=-9.2. x=或x=.3. x1=,x2=. 2222#5#4q5#p2#p#4q#p2#p#§23.2 一元二次方程的解法(四)一、1.B 2.D5,1 ,3336366636#()2,x###()2#x#,(5)2,x2##x#552552二、1. 3x2+5x=-2,3,x2,x2=-1 3#2x1=2. 125,3. 4 416242a# ; (3)x#; (2)x#4ac. 三、1.(1)x#b#b##3#2#22)4884#5752≥0,且7>0, 2. 原式变形为2(x-)2+,因为(2x7所以2x2-5x-4的值总是正数,当x=5时,代数式2x2-5x+4最小值是. 84§23.2 一元二次方程的解法(五)一、1.A 2.D二、1. x2+3x-40=0,169,x1=5,x2=-8; 2. b2-4ac>0,两个不相等的;5 ,x2= 22#1#5#1#3223. x1=#9#; 4.#2#2 ; 3. x#2#三、1.-1或-5; 2. x §23.2 一元二次方程的解法(六)一、1.A 2.B 3. D 4. A二、1. 公式法;x1=0,x2=-2.5 2. x1=0,x2=6 3. 1 4. 2 ; 2. x1=4+42,x2=4-42 ; 22#,x2=5#三、1. x1=53. y1=3+6,y2=3-64. y1=0,y2=-5. x1=1; 2111,x2=-(提示:提取公因式(2x-1),用因式分解法)6. x1=1,x2=- 322§23.2 一元二次方程的解法(七)一、1.D 2.B二、1. 90 2. 7三、1. 4m; 2. 道路宽应为1m§23.2 一元二次方程的解法(八)一、1.B 2. B 3.C二、1. 500+500(1+x)+500(1+x)2=20000, 2. 30%三、1. 20万元; 2. 10%§23.3 实践与探索(一)一、1.D 2.A二、1. x(60-2x)=450 2. 50 3. 700元(提示:设这种箱子底部宽为x米,则长为(x+2)米,依题意得x(x+2)#1=15,(舍),x2=3.这种箱子底部长为5米、宽为3米.所解得x1=-5,以要购买矩形铁皮面积为(5+2)#(3+2)=35(米2),做一个这样的箱子要花35#20=700元钱).三、1. (1)1800 (2)2592 2. 5元3.设道路的宽为xm,依题意,得(20-x)(32-x)=540 整理,得x2-52x+100=0解这个方程,得x1=2,x2=50(不合题意舍去).答:道路的宽为2m.§23.3 实践与探索(二)一、1.B 2.D2二、1. 8, 2. 50+50(1+x)+50(1+x)=182三、1.73%; 2. 20%3.(1)(i)设经过x秒后,△PCQ的面积等于4厘米2,此时,PC=5-x,CQ=2x.1 由题意,得(5-x)2x=4,整理,得x2-5x+4=0. 解得x1=1,x2=4. 2当x=4时,2x=8>7,此时点Q越过A点,不合题意,舍去. 即经过1秒后,△PCQ的面积等于4厘米2.(ii)设经过t秒后PQ的长度等于5厘米. 由勾股定理,得(5-t)2+(2t)2=52 .整理,得t2-2t=0. 解得t1=2,t2=0(不合题意,舍去). 答:经过2秒后PQ的长度等于5厘米.(2)设经过m秒后,四边形ABPQ的面积等于11厘米2. 11由题意,得(5-m) #2m=#5#7-11,整理得m2-5m+6.5=0, 221<0,所以此方程无实数解.##6.5#1#4#5)2#(#4ac#因为b2 所以在P、Q两点在运动过程中,四边形ABPQ的面积不能等于11厘米2..§23.3 实践与探索(三)一、1.C 2.A 3. C二、1. 1,-2, 2. 7, 3. 1,2 4.(x-1)(x+3)2. 3##三、1.3; 2. q3. k的值是1或-2. 当k=1时,方程是一元一次方程,只有-1这一个根;当k=-2时,方程另一个根为-. 13第24章图形的相似§24.1 相似的图形1.(2)(3)(4) 2. 略 3. 略§24.2 相似图形的性质(一)一、1.D 2.C 3. A 4. D2##等) 3. 532222222#2(或1#7二、1. 3, 8 2.1511三、1. 1 2. 3. 595§24.2 相似图形的性质(二)一、1.A 2.D 3. C二、1. 1:40 000 2. 5 3.180 4.③⑤三、1. ∠β=81°,∠α=83°,x=28.112.(1)由已知,得MN=AB,MD=AD=BC. 22MN, ABBC#∵矩形DMNC与矩形ABCD相似,DM∴ 1AD2=AB2,∴由AB=4得,AD=42 2(2)矩形DMNC与矩形ABCD的相似比为§24.3 相似三角形(一)一、1.D 2.BAB三、1.x=6,y=3.5 2.略#二、1. AB,BD,AC 2. 1 3.45 ,1 23DM§24.3 相似三角形(二)一、1.B 2.A 3. A 4. B二、1. 10 2. 6 3.答案不唯一(如:∠1=∠B或∠2=∠C 或AD:AB=AE:AC等) 34.285,所以△ABC∽△EFD. 2.CD=1 2EFED7#AC#三、1. 因为∠A=∠E=47°,AB3.(1)①△ABE∽△GCE,②△ABE∽△GDA.①证明:∵四边形ABCD是平行四边形,∴ AB∥DC,∴∠ABE=∠GCE,∠BAE=∠CGE,∴△ABE∽△GCE.②证明:∵四边形ABCD是平行四边形,∴∠ABE=∠GDA,AD∥BE,∴∠E=∠DAG,∴△ABE∽△GDA.(2)2. 34.(1)正确的结论有①,②,③;(2)证明第①个结论:∵ MN是AB的中垂线,∴DA=DB,则∠A=∠ABD=36°,又等腰三角形ABC中AB=AC,∠A=36°,∴∠C=∠ABC=72°,∴∠DBC=36°,∴ BD是∠ABC的平分线.§24.3 相似三角形(三)一、1.B 2.D 3. C二、1. 3:2, 3:2, 9:4 2. 18 3.2:5 4. 答案不唯一.(如:△ABC∽△DAC,5:4或△BAD∽△BCA,3:5 或△ABD∽△CAD,3:4)三、1.(1)1,(2)54cm2. 3PN, ADBC#2. 提示:设正方形的边长为x cm.由PN∥BC,得△APN∽△ABC,AE, 解得x=4.8cm. 812#xx#83.(1)8,(2)1:4.§24.3 相似三角形(四)一、1.B 2.A二、1. 1.75 2. 100 3.10 4. 12或2 7三、1.过E作EF⊥BD,∵∠AEF=∠CEF,∴∠AEB=∠CED.又∵∠ABE=∠CDE=90°,CDDEDE0.50#18(米). ###1.50ABBE∴△ABE∽△CDE,∴,即AB#CD6#BE2.(1)△CDP∽△PAE.证明:∵四边形ABCD是矩形,∴∠D=∠A=90°,∴∠PCD+∠DPC=90°.又∵∠CPE=90°,∴∠EPA+∠DPC=90°,∴∠PCD=∠EPA. ∴△CDP∽△PAE.BR>(2)在Rt△PCD中,CD=AB=6,由tan∠PCD =PD. CD∴ PD=CD#tan∠PCD=6#tan30°=6#=2. ∴ AP=AD-PD=11-2. 32 AEAPCD63 解法2:由△CDP∽△PAE知∠EPA=∠PCD =30°,#113#2)#(11#2#AP#CD,∴ AE=PD#解法1:由△CDP∽△PAE 知PD2. 3#∴ AE=AP#tan∠EAP=(11-2)#tan30°=11(3)假设存在满足条件的点P,设DP=x,则AP=11-xx#2,解得x=8,∴ DP=8. AP11#2,∴ 6#由△CDP∽△PAE 知CD§24.4 中位线(一)一、1.D 2.C 3.C二、1. 26 2. 2.5 3.25 4. 12三、1.(1)提示:证明四边形ADEF是平行四边形;(2)AC=AB;(3)△ABC是直角三角形(∠BAC=90°);(4)△ABC是等腰直角三角形(∠BAC=90°,AC=AB)2. 提示:∵ DC=AC,CE⊥AD,∴点E是AD的中点.§24.4 中位线(二)一、1.D 2.D二、1. 7.5 2. 2 3.15三、1.1ab 2.2 2§24.5 画相似图形一、1.D 2.B二、1. 4,画图略 2. P 3. 略三、1.略 2.略§24.6 图形与坐标(一)一、1.D 2.B二、1.(-2, 1) 2.(7,4)三、1.略 2.略§24.6 图形与坐标(二)一、1.C 2.C 3. C二、1.(1,2) 2.x轴,横,纵 3.(-a,b)三、1.略 2.略3.(1)平移,P1(a -5,b+3).(2)如图所示. A2(-8,2), B2(-2,4),C2(-4,0),P2(2a -10,2b+6).。
23.2.6_一元二次方程的解法(六)应用题2
23.2.6一元二次方程的解法(六)教学目标1、使学生会列出一元二次方程解有关变化率的问题。
2、培养学生分析问题、解决问题的能力,提高数学应用的意识。
研讨过程一、创设问题情境百分数的概念在生活中常常见到,而量的变化率更是经济活动中经常接触,下面,我们就来研究这样的问题。
问题:某商品经两次降价,零售价降为原来的一半,已知两次降价的百分率一样。
求每次降价的百分率。
(精确到0.1%)二、探索解决问题分析:“两次降价的百分率一样”,指的是第一次和第二次降价的百分数是一个相同的值,即两次按同样的百分数减少,而减少的绝对数是不相同的,设每次降价的百分率为x,若原价为a,则第一次降价后的零售价为,又以这个价格为基础,再算第二次降价后的零售价为。
解:设每次降价的百分率为x.根据题意,得解这个方程,得经检验:答:每次降价的百分率为 .三、拓展引申某药品两次升价,零售价升为原来的 1.2倍,已知两次升价的百分率一样,求每次升价的百分率(精确到0.1%)解:每次升价的百分率为x,根据题意,得解这个方程,得经检验:答:每次升价的百分率为。
四、巩固练习1.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.2.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.3.某公司向银行贷款20万元资金, 约定两年到期时一次性还本付息, 年利率是12%,该公司利用这笔贷款经营,两年到期时除还清贷款的本金和利息外,还盈余6. 4万元,若在经营期间每年比上一年资金增长的百分数相同,试求这个百分数.五、小结关于量的变化率问题,不管是增加还是减少,都是变化前的数据为基础,每次按相同的百分数变化,若原始数据为a ,设平均变化率为x ,经第一次变化后数据为(1)a x ±;经第二次变化后数据为2(1)a x ±。
一元二次方程五大解法
一元二次方程五大解法
1、直接开平方法。
对于直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1=x2=a的形式,其他的都是比较简单。
2、配方法。
在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是则利用直接开平方法求解即可,如果不是,原方程就没有实数解。
3、公式法。
公式法是解一元二次方程的根本方法,没有使用条件,因此是必须掌握的。
用公式法的注意事项只有一个就是判断“△”的取值范围,只有当△≥0时,一元二次方程才有实数解。
4、因式分解法。
因式分解,在初二下学期的时候重点讲了,之前也有相关的文章,重要性毋庸置疑,在一元二次方程里,因式分解法用的还是挺多的,难度非常容易调节。
5、图像解法。
一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。
当△>0时,则该函数与x轴相交(有两个交点)。
当△=0时,则该函数与x轴相切(有且仅有一个交点)。
当△<0时,则该函数与轴x相离(没有交点)。
一元二次方程的判别式。
利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况。
一元二次方程ax+bx+c=0(a不等于0)的根与根的判别式有如下关系:△=b2-4ac。
①当△>0时,方程有两个不相等的实数根。
②当△=0时,方程有两个相等的实数根。
③当△<0时,方程无实数根,但有2个共轭复根。
一元二次方程的解法
一元二次方程的解法一元二次方程是许多数学问题中常见的形式,它可以用于解决各种实际问题,如物理学、工程学和经济学等领域。
在本文中,我们将探讨一元二次方程的解法,包括求根公式和配方法等。
一、求根公式对于一元二次方程ax^2 + bx + c = 0,其中a、b、c为实数且a≠0,我们可以利用求根公式来求解它的根。
求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)其中,±表示两个相反的解,√表示求平方根。
我们可以通过以下步骤来应用求根公式解一元二次方程:1. 确定方程的系数:确定方程中a、b、c的值。
2. 计算判别式(D):判别式是指Δ = b^2 - 4ac,它决定了方程的根的性质。
a. 若Δ > 0,方程有两个不相等的实数根。
b. 若Δ = 0,方程有两个相等的实数根。
c. 若Δ < 0,方程没有实数根,但存在两个复数根。
3. 计算根:根据判别式的结果,我们可以使用求根公式计算方程的根。
a. 当Δ > 0时,方程的两个实数根分别为 x1 = (-b + √Δ) / (2a) 和x2 = (-b - √Δ) / (2a)。
b. 当Δ = 0时,方程的重根为 x = -b / (2a)。
c. 当Δ < 0时,方程的两个复数根分别为 x1 = (-b + i√|Δ|) / (2a) 和x2 = (-b - i√|Δ|) / (2a),其中i表示虚数单位。
二、配方法在某些情况下,使用求根公式可能显得复杂且繁琐。
此时,我们可以使用配方法来处理方程。
配方法的步骤如下:1. 将一元二次方程展开,并将其写为完全平方的形式。
a. 对于方程ax^2 + bx + c = 0,我们可以通过将其右侧的常数项c进行分解,使方程化简成平方的形式。
b. 例如,若c = p^2,则方程可以化简为(a的值不为零时):(x +p)^2 = q^2。
c. 这样,我们就得到了一个一次方程,即(x + p)^2 = q^2,可以更轻松地求解。
一元二次方程的解法
一元二次方程的概念解法【知识要点】1.一元二次方程的概念只含有一个未知数,且未知数的最高次数是2的整式方程,叫做一元二次方程。
2.一元二次方程的一般形式02=++c bx ax (0≠a )是一元二次方程的一般形式.3.一元二次方程的解法主要有直接开方法、配方法、公式法、因式分解法.4.解一元二次方程,直接开平方法是一种特殊方法,配方法与求根公式法是一般方法,对于任何一元二次方程都可使用。
解题的关键是要根据方程系数的特点及方程的不同形式,选择适当的方法,使解法简捷.【经典例题】例1. 判断下列方程是不是一元二次方程:(1)12=-y x (2)1142=+x (3)01=-xy (4)322=+x x (5)()112=+-k x a (a 、k 是常数) (6)()()()()1121122-+-=++-x x x x x x 例2.用直接开方法解下列方程:(1)0822=-x(2)036)5(2=--x (3)8)4)(4(=+-x x例3 用配方法解下列方程:(1)01662=--x x(2)0122=-+x x (3)1522-=x x例4 用公式法解下列方程:(1)01322=+-x x (2)03322=+-x x (3)01532=-+y y例5 用因式分解法解下列方程:(1)02522=+-x x(2)9)7)(3(-=+-x x (3)015)12(8)12(2=++-+y y例6 用恰当的方法解下列方程:(1))12()24(2+=+x x x(2)032)23(2=--+x x例7 解关于x 的一元二次方程:(1)086)3(222=+-+--m m x m x(2))1(023)1(2≠=----m m x x m【经典练习】一、选择题1.下列方程是一元二次方程的是( ).A .123=-y x B. 01352=++-x xC .314=-x x D. 02=++c bx ax2.关于x 的方程0232=+-x ax 是一元二次方程,则( ).A .0>a B. 0≠C C. 1=a D. 0≥a3.一元二次方程012=-x 的根为( ).A .1=x B. 1=x C. 11=x D. 2=x4.已知1=x 是一元二次方程0122=+-mx x 的一个解,则m 的值是( )A .1 B. 0 C. 0或1 D. 0或-15.下列方程:①32=x ②x x =1 ③522=+y x ④72=+y x⑤()32122+-=+x x x 中,一元二次方程有( ).A .1个 B. 2个 C. 3个 D. 4个6.用配方法解关于x 的一元二次方程02=++q px x 时,此方程可变形为(). A .44222qp p x -=⎪⎭⎫ ⎝⎛+ B. 44222p q p x -=⎪⎭⎫ ⎝⎛+C .44222qp p x -=⎪⎭⎫ ⎝⎛- D. 44222p q p x -=⎪⎭⎫ ⎝⎛-7.解方程()()x x 51152-=-,较简便的解法应适用( ).A .公式法 B. 因式分解法 C. 配方法 D. 直接开方法二、填空题1.方程()166=+x x 的解为 .2.方程01242=--x x 的解为 .3.已知方程0142=--x x 的两根21,x x ,则=+21x x ;=⋅21x x .4.已知方程()0312=+-+x m x 的一根为-1,则另一根为 ,m .5.请写出一个根为1=x ,另一个根满足11<<-x 的一元二次方程 .6.已知方程0132=-+x x 的两根β,∂那么ρβ∂+∂= . 7.方程:()()()0321=-+-x x x 的根是 .三、解答题1.用适当的方法解方程.(1)()91242=+x (2)122=+x x (3)018322=--x x (4)()()1312-=-x x x2.用配方法证明:代数式132+--x x 的值不大于1213.3.若131+++-=x x y ,你能说明3≥y 吗.4.用适当的方法解下列一元二次方程.(1)()()22313-=+x (2)()x x x 2213⋅=-(3)0242=--x x(4)()162121=+⎪⎭⎫ ⎝⎛-x x5.阅读材料,并解答后面的问题:材料:在解方程()()04151222=+---x x 时,我们将12-x 视为一个整体,然后设y x =-12,这样,原方程可化为0452=+-y y ①;解①得4,121==y y .当1=y 时,即12-x =1,解得5±=x 综合得:原方程的解是:5,5,2,2432-==-==x x x x .解答下列问题:(1)填空:在由原方程得到方程①的过程中,利用 方法,达到降次的目的,体现了 的数学思想.(2)应用上述解题方法解方程0624=--y y .课 后 作 业1.用恰当的方法解方程(1)()()4613+=++x x x(2)()052522=++-x x(3)()()2465-=-+x x .(4).0632=-x x .(5)06)12(5)12(2=+---t t(6))1(0)2(222-≠=++-+k x x k x x2.用配方法证明:342422++++y x y x 的值不小于1.。
23.2一元二次方程的解法(李万青)导学案
23.2一元二次方程的解法(5)学习目标:1、使学生能根据量之间的关系,列出一元二次方程的应用题。
2、提高学生分析问题、解决问题的能力。
3、培养学生数学应用的意识。
学习重难点:认真审题,分析题中数量关系,适当设未知数,寻找等量关系,列出方程是本节课的重点,也是难点。
教材分析:列一元二次方程解应用题的学习是列一元一次方程解应用题知识的延续与深化。
教材联系生活实际,创设学生熟悉的情景,注重引导学生对实际问题中数量关系的分析和应用。
本节根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.学情分析:学生学完了一元二次方程的解法,通过本节课的学习,引导学生联系实际,进一步经历“问题情境---建立模型---求解---解释与应用”的过程,获得更多运用数学知识分析和解决实际问题的经验,提高分析问题和解决问题的能力。
学法指导:素质教育和新的教改精神的根本是增强学生学习的自主性和学生的参与意识,使每一个学生想学、爱学、会学。
因此要充分考虑到学生心理特点和思维特点,充分发挥情感因素,使学生完全参与到整个教学中来。
⑴在复习引入时要注意每个学生的反映,对预备知识掌握比较好的学生要用适当的方式给予表扬,掌握差一些的学生要给予鼓励和适当的指导,使每一个学生愉快的进入下一个环节。
⑵学生自主学习时段,要注意学生的反馈情况,根据学生的反馈情况和学生的层次采取适当的方式对需要帮助的学生给予帮助,中上等的学生可以启发,中等的学生可以与他探讨,偏后的学生可以帮他分析。
学习准备:课本、导学案学习过程:一、课前预习:1、叙述列一元一次方程解应用题的步骤。
2、一元二次方程有哪些解法3、用多种方法解方程22-=++x x x(31)69二、课上探究:自主探究:绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?解:设宽为x米,可列出方程解出方程:合作交流:列一元二次方程解应用题的步骤:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作 业:第39面第16题。
没有实数根
x 4x 4 0
2
有两个相等的实数根
动脑筋
关于x 的方程m2x2+(2m+1)x+1=0 有两个不相 1 且 m0 等的实数根,则m_________________ 4 2
( b -4ac=4m+1 )
变题1:关于x 的方程m2x2+(2m+1)x+1=0 有 1 两个相等的实数根,则m___________________
b b 4ac 2 X (b 4ac 0) 2a
2
一元二次方程根的判别式
b 4ac
2
一元二次方程的根的情况 1、方程有两个不相等的实数根 2 2、方程有两个相等的实数根 2 3、方程没有实数根 2
b 4ac 0
b 4ac 0
b 4ac 0
4
变题2:关于x 的方程m2x2+(2m+1)x+1=0 没 1 有实数根,则m___________________
4
变题3:关于x 的方程m2x2+(2m+1)x+1=0 有 1 且 m0 两实数根,则m___________________
4
已知方程及其根的情况,求字母的取值范围
解下列方程:
x 3 x 2 0 x 8 x 16 0 2 3 y 10 2 y
2
2
思考:上面的一元二次方程有几个根? 1、方程有两个不相等的实数根 2、方程有两个相等的实数根 3、方程+bx+c=0的根为什么会有不同的情况呢?
会与什么有关系呢?
你掌握了吗 1、我们已经学过一元二次方程的解法有 哪些?
回顾与复习 1
1、直接开平方法 2、因式分解法 3、配方法 4、公式法
配方法的步骤是什么? 求根公式是怎样的?
2、解方程:
x 2 2x 2 0
2
回顾与复习 3
一般地,对于一元二次方程
2
当b 4ac 0时, 它的根是 :
2
一元二次方程根的判别式
• • • • • •
小结:方程ax2 +bx+c=0 (a≠0) 1、△=b -4ac叫一元二次方程的判别式 2 当△>0时方程有两个不相等的实数根 当△=0时方程有两个相等的实数根 △<0时方程无实数根 2、能灵活运用△讨论方程根的情况或知道根的情 况,能正确运用△具备的条件解出待定系数的值 • 3、能正确运用△的符号证明方程何时有不相等的 实数根,何时有相等的实数根,何时没有实数根 的问题
例一:不解方程,判断一元二次方程的 根的情况
2 x 3x 4 0
2
有两个不相等 实数根 有两个相等 的实数根 没有实数根
4 y 9 12 y
2
5( x 1) 7 x 0
2
练习1 不解方程,判断下列一元二次方 程的根的情况
2x 6x 3
2
有两个不相等实数根
3 x ( x 2) 7
2
ax2+bx+c=0(a≠0)
上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法
b b 4ac 2 x . b 4ac 0 . 2a
老师提示: 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0.
件时,方程的两根为互为相反数?
2、m取什么值时,方程 x2+(2m+1)x+m2-4=0有两个相等的实
数解
• 课堂练习; • 1、对于方程4(m+1)x +2(2m-1)x=1-m (m
≠-1) (1)方程有两个不相等的实数根,求m的取 值范围 2 2 的取值 (2)方程有两个相等的实数根,求 m 2 2 范围 (3)方程没有实数根,求m的取值范围 2、已知a+c≠0,a +b =c 求证(a+c)x +2bx+c-a=0总有相等的实数根
例题2 已知关于x 的一元二次方程
x (2k 1) x k 2k 3
2 2
当k取什么值时: 1、方程有两个不相等的实数根 2、方程有两个相等的实数根 3、方程没有实数根
4、方程有两个实数根
练习2
已知关于x 的一元二次方程
2 x (4k 1) x 2k 1 0
2 2
当k取什么值时: 1、方程有两个不相等的实数根 2、方程有两个相等的实数根 3、方程没有实数根
已知一元二次方程证明根的情况
例3:已知关于x 的一元二次方程 2
x kx k 2 0
求证方程必有两不相等的实数 根。
思考题:
1、关于x的一元二次方程ax2+bx+c=0 (a≠0)。 当a,b,c 满足什么条