江苏省南通市2010届四星级高中数学高考押题卷(一卷答题纸)
2010年全国高中数学联赛B卷(含详细解答)
2010年全国高中数学联合竞赛一试 试题参考答案及评分标准(B 卷)说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不要增加其他中间档次。
一、填空题(本题满分64分,每小题8分) 1. 函数x x x f 3245)(---=的值域是 ]3,3[-.解:易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,从而可知)(x f 的值域为]3,3[-. 2. 已知函数x x a y sin )3cos (2-=的最小值为3-,则实数a 的取值范围是 1223≤≤-a . 解:令t x =sin ,则原函数化为t a at t g )3()(2-+-=,即t a at t g )3()(3-+-=.由 3)3(3-≥-+-t a at , 0)1(3)1(2≥----t t at ,0)3)1()(1(≥-+--t at t 及01≤-t 知03)1(≤-+-t at 即 3)(2-≥+t t a (1)当1,0-=t 时(1)总成立; 对20,102≤+<≤<t t t ;对041,012<+≤-<<-t t t . 从而可知 1223≤≤-a .3. 双曲线122=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是 9800 .解:由对称性知,只要先考虑x 轴上方的情况,设)99,,2,1( ==k k y 与双曲线右半支于k A ,交直线100=x 于k B ,则线段k k B A 内部的整点的个数为99k -,从而在x 轴上方区域内部整点的个数为991(99)99494851k k =-=⨯=∑.又x 轴上有98个整点,所以所求整点的个数为 98009848512=+⨯.4. 已知}{n a 是公差不为0的等差数列,}{n b 是等比数列,其中3522113,,1,3b a b a b a ====,且存在常数βα,使得对每一个正整数n 都有βα+=n n b a log ,则=+βα3. 解:设}{n a 的公差为}{,n b d 的公比为q ,则 ,3q d =+ (1) 2)43(3q d =+, (2)(1)代入(2)得961292++=+d d d ,求得9,6==q d .从而有 βα+=-+-19log )1(63n n 对一切正整数n 都成立,即 βα+-=-9log )1(36n n 对一切正整数n 都成立. 从而 βαα+-=-=9log 3,69log , 求得 3,33==βα, 333+=+βα. 5. 函数)1,0(23)(2≠>-+=a a a ax f x x在区间]1,1[-∈x 上的最大值为8,则它在这个区间上的最小值是 41-. 解:令,y a x=则原函数化为23)(2-+=y y y g ,)(y g 在3(,+)2-∞上是递增的.当10<<a 时,],[1-∈a a y ,211max 1()32822g y a a a a ---=+-=⇒=⇒=, 所以 412213)21()(2min -=-⨯+=y g ; 当1>a 时,],[1a a y -∈,2823)(2max =⇒=-+=a a a y g ,所以 412232)(12min -=-⨯+=--y g .综上)(x f 在]1,1[-∈x 上的最小值为41-.6. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是1217. 解:同时投掷两颗骰子点数和大于6的概率为1273621=,从而先投掷人的获胜概率为 +⨯+⨯+127)125(127)125(12742 17121442511127=-⨯=.7. 正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin4. 解一:如图,以AB 所在直线为x 轴,线段AB 中点O 为原点,OC 所在直线为y 轴,建立空间直角坐标系.设正三棱柱的棱长为2,则)1,3,0(),2,0,1(),2,0,1(),0,0,1(11P A B B -,从而,)1,3,1(),0,0,2(),1,3,1(),2,0,2(1111--=-=-=-=B A B BA .设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x m =、),,(222z y x =,则⎪⎩⎪⎨⎧=++-=⋅=+-=⋅,03,022111111z y x BP m z x BA ⎪⎩⎪⎨⎧=-+-=⋅=-=⋅,03,022221211z y x B x A B 由此可设 )3,1,0(),1,0,1(==,所以cos m n m n α⋅=⋅,2cos cos αα=⇒=.所以 410sin =α. 解二:如图,PB PA PC PC ==11, .设B A 1与1AB 交于点,O 则1111,,OA OB OA OB A B AB ==⊥ . 11,,PA PB PO AB =⊥因为 所以从而⊥1AB 平面B PA 1 .过O 在平面B PA 1上作P A OE 1⊥,垂足为E . 连结E B 1,则EO B 1∠为二面角11B P A B --的平面角. 设21=AA ,则易求得3,2,5111=====PO O B O A PA PB .在直角O PA 1∆中,OE P A PO O A ⋅=⋅11, 即 56,532=∴⋅=⋅OE OE .又 554562,222111=+=+=∴=OE O B E B O B . 4105542sin sin 111===∠=E B O B EO B α. 8. 方程2010=++z y x 满足z y x ≤≤的正整数解(x ,y ,z )的个数是 336675 .解:首先易知2010=++z y x 的正整数解的个数为 1004200922009⨯=C .把2010=++z y x 满足z y x ≤≤的正整数解分为三类:(1)z y x ,,均相等的正整数解的个数显然为1;(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k . 易知 100420096100331⨯=+⨯+k ,OEPC 1B 1A 1CBA110033*********-⨯-⨯=k200410052006123200910052006-⨯=-⨯+-⨯=, 3356713343351003=-⨯=k . 从而满足z y x ≤≤的正整数解的个数为 33667533567110031=++. 二、解答题(本题满分56分)9.(本小题满分16分)已知函数)0()(23≠+++=a d cx bx ax x f ,当10≤≤x 时,1)(≤'x f ,试求a 的最大值.解一: ,23)(2c bx ax x f ++='由 ⎪⎪⎩⎪⎪⎨⎧++='++='='cb a fc b a f c f 23)1(,43)21(,)0( 得 (4分))21(4)1(2)0(23f f f a '-'+'=. (8分) 所以)21(4)1(2)0(23f f f a '-'+'=)21(4)1(2)0(2f f f '+'+'≤ 8≤, 38≤a . (12分) 又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38.(16分)解二:c bx ax x f ++='23)(2.设1)()(+'=x f x g ,则当10≤≤x 时,2)(0≤≤x g . 设 12-=x z ,则11,21≤≤-+=z z x . 14322343)21()(2++++++=+=c b az b a z a z g z h . (4分)容易知道当11≤≤-z 时,2)(0,2)(0≤-≤≤≤z h z h . (8分) 从而当11≤≤-z 时,22)()(0≤-+≤z h z h ,即 21434302≤++++≤c b a z a ,从而0143≥+++c b a ,2432≤z a, 由 102≤≤z 知38≤a . (12分)又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38.(16分)10.(本小题满分20分)已知抛物线x y 62=上的两个动点1122(,)(,)A x y B x y 和,其中21x x ≠且421=+x x .线段AB 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.解一:设线段AB 的中点为),(00y x M ,则 2,22210210y y y x x x +==+=, 01221221212123666y y y y y y y x x y y k AB =+=--=--=.线段AB 的垂直平分线的方程是 )2(30--=-x y y y . (1) 易知0,5==y x 是(1)的一个解,所以线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.(5分) 由(1)知直线AB 的方程为 )2(300-=-x y y y ,即 2)(300+-=y y y x . (2) (2)代入x y 62=得12)(2002+-=y y y y ,即 012222002=-+-y y y y .(3)依题意,21,y y 是方程(3)的两个实根,且1y 22200044(212)4480y y y ∆=--=-+>,32320<<-y .221221)()(y y x x AB -+-=22120))()3(1(y y y -+= ]4))[(91(2122120y y y y y -++=))122(44)(91(202020--+=y y y)12)(9(322020y y -+=. 定点)0,5(C 到线段AB 的距离 202029)0()25(y y CM h +=-+-==. (10分)220209)12)(9(3121y y y h AB S ABC +⋅-+=⋅=∆ )9)(224)(9(2131202020y y y +-+=3202020)392249(2131y y y ++-++≤7314=.(15分)当且仅当20202249y y -=+,即0y =,A B 或A B -时等号成立. 所以ABC ∆面积的最大值为7314.(20分) 解二:同解一,线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.(5分)设4,,,222121222211=+>==t t t t t x t x ,则161610521222121t t t t S ABC =∆的绝对值, (10分) 2222122112))656665(21(t t t t t t S ABC --+=∆221221)5()(23+-=t t t t )5)(5)(24(23212121++-=t t t t t t3)314(23≤,7314≤∆ABC S , (15分)当且仅当5)(21221+=-t t t t 且42221=+t t ,即,6571-=t 6572+-=t,66((33A B 或A B -时等号成立. 所以ABC ∆面积的最大值是7314. (20分)11.(本小题满分20分)数列{}n a 满足),2,1(1,312211 =+-==+n a a a a a n n n n .求证:n n n a a a 2212312131211-<+++<-- . (1) 证明:由1221+-=+n n n n a a a a 知 111121+-=+n nn a a a ,)11(1111-=-+nn n a a a . (2) 所以 211,111n n n n n n na a aa a a a ++==----即 1111n n n n n a aa a a ++=---. (5分) 从而 n a a a +++ 211133222*********++---++---+---=n n n n a a a a a a a aa a a a 11111112111++++--=---=n n n n a a a a a a .所以(1)等价于n n n n a a 2112312112131211-<--<-++-, 即 nn n n a a 21123131<-<++- . (3) (10分)由311=a 及 1221+-=+n n n n a a a a 知 712=a .当1n =时 ,2216a a -=,11122363<<- ,即1n =时,(3)成立.设)1(≥=k k n 时,(3)成立,即 k k k k a a 21123131<-<++-. 当1+=k n 时,由(2)知kk k k k k k k a a a a a a a 2211111223)1()1(11>->-=-+++++++; (15分)又由(2)及311=a 知 )1(1≥-n a a nn 均为整数, 从而由k k k a a 21131<-++ 有 131211-≤-++k k k a a 即kk a 2131≤+ , 所以122211122333111+<⋅<-⋅=-+++++k k k k k k k k a a a a a ,即(3)对1+=k n 也成立.所以(3)对1≥n 的正整数都成立,即(1)对1≥n 的正整数都成立. (20分)2010年全国高中数学联合竞赛加试 试题参考答案及评分标准(B 卷)说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次。
高三数学模拟考试卷压轴题押题猜题全国高中数学联赛福建赛区预赛试卷参考答案
高三数学模拟考试卷压轴题押题猜题全国高中数学联赛(福建赛区)预赛试卷参考答案(考试时间:9月16日上午8:0010:30)一、选择题(共6小题,每小题6分,满分36分,以下每小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个是正确的,请将正确选项的代号填入题后的括号里,不填、多填或错填均得零分)1.一个直角三角形的两条直角边长为b a ,满足不等式31634192622≤+-++-b b a a ,则这个直角三角形的斜边长为( )A .5B .30C .6D .40 答案:B解:原不等式化为34)32(1)23(22≤+-++-b a , 而3414)32(1)23(22=+≥+-++-b a , 所以32,23==b a .于是,斜边长为30.2.数812934756是一个包含1至9每个数字恰好一次的九位数,它具有如下性质:数字1至6在其中是从小到大排列的,但是数字1至7不是从小到大排列的.这样的九位数共有( )个.A .336B .360C .432D .504 答案:C解:在1,2,3,4,5,6中插入7,有6种放法,然后插入8和9,分别有8种和9种放法,所以,共有432986=⨯⨯个满足性质的九位数.3.一个三角形的最短边长度是1,三个角的正切值都是整数,则该三角形的最长边的长度为( ).A .5102 B .553 C .3 D .2 答案:B解:该三角形不是直角三角形.不妨设C B A ≤≤.则3tan ≤A ,又Z A ∈tan ,所以1tan =A .非直角三角形中,有恒等式C B A C B A tan tan tan tan tan tan =++, 即B tan 、C tan 是方程xy y x =++1的一组正整数解. 所以B tan =2,C tan =3.易解得最长边为553(另外一条边长为5102). 4.正三棱锥底面一个顶点与它所对侧面重心的距离为8,则这个正三棱锥的体积的最大值为( ).A .18B .36C .72D .144 答案:D解:设正三棱锥P -ABC 的底面边长为a ,高为h ,O 为三角形ABC 的中心,G 为侧面PBC 的重心,GH 垂直底面ABC ,垂足为H .则a a AD AH h PO GH 934239898,3131=⋅====, 由222AG GH AH =+得6491271622=+h a ,故276431622⋅=+h a , 由平均不等式得322222238833882764h a a h a a ⋅⋅≥++=⋅,所以,35762≤h a ,于是144123312≤==∆-h a h S V ABC ABC P . 当46=h a 时等号成立.故体积的最大值为144. 5.对每一个正整数k ,设k a k 1211 ++=,则49493212500)99753(a a a a a -++++等于( )A .-1025B .-1225C .-1500D .-2525 答案:B解:49493212500)99753(a a a a a -++++=4925004919931)9997(21)9975(1)9953(a -⨯++⨯++++⨯++++⨯+++ =492222222500491)4950(21)250(1)150(a -⨯-++⨯-+⨯-=4922500)4921()491211(50a -++-+++=1225)4921(-=+++- .6.集合{}7,6,5,4,3,2,1=S 的五元子集共有21个,每个子集的数从小到大排好后,取出中间的数,则所有这些数之和是( )ABCDPH OG ah第4题答题 图A .80B .84C .100D .168 答案:B解:显然中间数只能是3,4,5.以3为中间数的子集有24C 个,以4为中间数的子集有2323C C ⨯个,以5为中间数的子集有24C 个.所以,这些中间数的和为8454324232324=⨯+⨯⨯+⨯C C C C . 另解:对某个子集A ,用8-A 表示A 中每个元素被8减所得的集合,这个集合也是一个满足要求的5元子集.这是一个1-1对应.且这两个集合中中间数之和为8,平均为4.故所有的中间数的和为84421=⨯.二.填空题(共6小题,每小题6分,满分36分.请直接将答案写在题中的横线上)7.函数32)(2+-=x x x f ,若a x f -)(<2恒成立的充分条件是21≤≤x ,则实数a 的取值范围是.答案:1<a <4解:依题意知,21≤≤x 时,a x f -)(<2恒成立.所以21≤≤x 时,-2<a x f -)(<2恒成立,即2)(-x f <a <2)(+x f 恒成立. 由于21≤≤x 时,32)(2+-=x x x f =2)1(2+-x 的最大值为3,最小值为2, 因此,3-2<a <2+2,即1<a <4.8.在直角坐标平面上,正方形ABCD 的顶点A 、C 的坐标分别为(12,19)、(3,22),则顶点B 、D 的坐标分别为.(A 、B 、C 、D 依逆时针顺序排列)答案:(9,25)、(6,16)解:设线段AC 的中点为M ,则点M 的坐标为)241,215(,利用复数知识不难得到顶点B 和D 的坐标分别为(9,25)、(6,16).(或者利用向量知识)9.已知1F 、2F 分别是椭圆19222=+b y x (0<b <3)的左、右焦点.若在椭圆的右准线上存在一点P ,使得线段1PF 的垂直平分线过点2F ,则b 的取值范围是.答案:)6,0(解:线段1PF 的垂直平分线过点2F ,等价于212F F P F =. 设椭圆的右准线cx 9=交x 轴于点K ,则在椭圆的右准线上存在一点P ,使得212F F P F =,等价于212F F K F ≤. 所以c c c29≤-,32≥c . 因此692222≤-=-=c c a b 故b 的取值范围是]6,0(.10.方程10033100=+y x 的正整数解),(y x 有组.答案:4解:由题设可知,10≤x .两边模3,知)3(mod 1≡x ,所以,x =1,4,7,10,对应的y 分别为301,201,101,1.故满足方程的正整数解有4组. 11.设x xx x f +-++=11lg521)(,则不等式⎥⎦⎤⎢⎣⎡-)21(x x f <51的解集为.答案:)4171,21()0,4171(+⋃-解:原不等式即为⎥⎦⎤⎢⎣⎡-)21(x x f <)0(f .因为)(x f 的定义域为(-1,1),且)(x f 为减函数.所以⎪⎩⎪⎨⎧----0)21(1)21(1 x x x x .解得∈x )4171,21()0,4171(+⋃-12.设函数1321)(+--=x x x f ,如果方程a x f =)(恰有两个不同的实数根v u ,,满足102≤-≤v u ,则实数a 的取值范围是.答案:345≤≤-a 解:因为⎪⎪⎩⎪⎪⎨⎧--≤≤----+=.21,4211,251,4)(时当时,当时,当 x x x x x x x f当a >3时,a x f =)(无解;当a =3时,a x f =)(只有一个解.当329≤≤-a 时,直线a y =与4+=x y 和25--x y =有两个交点,故此时a x f =)(有两个不同的解;当a <29-时,直线a y =与4+=x y 和4--=x y 有两个交点,故此时a x f =)(有两个不同的解.对于上述两种情形,分别求出它们的解v u ,,然后解不等式102≤-≤v u ,可得实数a的取值范围是345≤≤-a . 三、解答题:(共4小题,每小题20分,满分80分.要求写出解题过程)13.已知x x x f sin 22sin )(+=,xx x g 413)(+=,若对任意),0(,21∞+∈x x 恒有m x g x f +≥)()(21,试求m 的最大值.解:因为111sin 22sin )(x x x f +=,)1(cos sin 211+=x x[]31121)cos 1)(cos 1(4)(x x x f +-=)cos 1)(cos 1)(cos 1)(cos 33(341111x x x x +++-= 41111)4cos 1cos 1cos 1cos 33(34x x x x ++++++-⨯≤ =427所以233)(1≤x f . 又3413)(222≥+=x x x g , 所以233233=-≤m . 当63,321==x x π时,上述各式的等号成立,所以m 的最大值为23.14.已知1F 、2F 分别是双曲线1322=-y x 的左、右焦点,过1F 斜率为k 的直线1l 交双曲线的左、右两支分别于A 、C 两点,过2F 且与1l 垂直的直线2l 交双曲线的左、右两支分别于D 、B 两点.(1)求k 的取值范围;(2)设点P ),00y x (是直线1l 、2l 的交点为,求证:32020y x +>34; (3)求四边形ABCD 面积的最小值.解:(1)由条件知,1l 、2l 的方程分别为)2(+=x k y 、)2(1--=x ky .由⎩⎨⎧+==-)2(3322x k y y x ,得0344)3(2222=----k x k x k . 由于1l 交双曲线的左、右两支分别于A 、C 两点,所以22334kk x x C A ---=⋅<0,解得2k <3. 由⎪⎩⎪⎨⎧--==-)2(13322x k y y x ,得0344)13(222=--+-k x x k . 由于2l 交双曲线的左、右两支分别于D 、B 两点,所以133422---=⋅k k x x D B <0,解得2k >31.因此,31<2k <3,k 的取值范围是)3,33()33,3(⋃--.(2)由条件知,21PF PF ⊥,点P 在以21F F 为直径的圆上.所以42020=+y x . 因此32020y x +>332020y x +=34. (3)由(1)知,2222222223)1(63344)34(11kk k k k k k x x k AC C A -+=---⨯--⋅+=-⋅+=. 13)1(613344)134()1(1)1(122222222-+=---⨯---⋅-+=-⋅-+=k k k k k k x x k BD D B .∴四边形ABCD 的面积)13)(3()1(18212222--+=⋅=k k k BD AC S .由于)13)(3()1(182222--+=k k k S =18)11313(41181131318222222222=+-++-⨯≥+-⨯+-k k k k k k k k .当且仅当113132222+-=+-k k k k ,即1,12±==k k 时,等号成立. 所以,四边形ABCD 面积的最小值为18.15.如图,在锐角三角形ABC 中,1AA ,1BB 是两条角平分线,I ,O ,H 分别是ABC ∆的内心,外心,垂心,连接HO ,分别交AC ,BC 于点P ,Q .已知C ,1A ,I ,1B 四点共圆.(1)求证:︒=∠60C ;(2)求证:BQ AP PQ +=.证明:(1)因为C ,1A ,I ,1B 四点共圆,所以AIB C ∠-︒=∠180C B A IBC IAB ∠-︒=∠+∠=∠+∠=21902121.所以,︒=∠60C .(2)因为︒=∠-︒=∠120180C AHB , ︒=∠=∠1202ACB AOB , 所以,B O H A ,,,四点共圆, 于是︒=∠-︒=∠=∠30)180(21AOB OBA PHA ,又︒=∠-︒=∠3090C PAH , 所以PHA PAH ∠=∠, 于是PH AP =,同理可得 QH BQ = 故,BQ AP PQ +=16.已知两个整数数列 ,,,210a a a 和 ,,,210b b b 满足 (1)对任意非负整数n ,有第15题答题 图B第15题 图22≤-+n n a a ;(2)对任意非负整数,,n m 有22n m n m b a a +=+证明:数列 ,,,210a a a 中最多只有6个不同的数.证明:首先,一个整数若是4的倍数,则它一定能表示成22)2(n n -+,其中n 是非负整数.事实上,由22)1()1(4--+=k k k 便得.若,,n m (m >n )的奇偶性相同,则22n m -是4的倍数,设22n m -=22)2(k k -+,所以 2222)2(n k k m ++=+ 于是由条件(2)知n k n k k m k m a a b b a a +===+++++2)2(2222,故k k n m a a a a -=-+2 所以,2≤-n m a a于是在 ,,,531a a a 中,任意两项的差的绝对值至多为2,所以,它们最多能取3个不同的值:2,1,++a a a .同样,在 ,,,420a a a 中,任意两项的差的绝对值也至多为2,所以,它们最多能取3个不同的值:2,1,++b b b .综上所述,数列 ,,,210a a a 中最多只有6个不同的数.高考数学(文)一轮:一课双测A+B精练(四十四) 直线、平面垂直的判定与性质1.(·杭州模拟)设a,b,c是三条不同的直线,α,β是两个不同的平面,则a⊥b的一个充分条件是( )A.a⊥c,b⊥cB.α⊥β,a⊂α,b⊂βC.a⊥α,b∥αD.a⊥α,b⊥α2.设α,β,γ是三个不重合的平面,l是直线,给出下列命题①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l∥α;③若l⊥α,l∥β,则α⊥β;④若α∥β,l⊄β,且l∥α,则l∥β.其中正确的命题是( )A.①②B.②③C.②④D.③④3.给出命题:(1)在空间里,垂直于同一平面的两个平面平行;(2)设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;(3)已知α,β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件;(4)a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一个平行.其中正确命题个数是( )A.0B.1C.2D.34.(·济南模拟)如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )A.直线AB上B.直线BC上C.直线AC上D.△ABC内部5.(·曲阜师大附中质检)如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )A.①②B.①②③C.①D.②③6.(·济南名校模拟)如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下面命题正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC7.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)8.(·忻州一中月考)正四棱锥S-ABCD的底面边长为2,高为2,E是BC的中点,动点P在四棱锥的表面上运动,并且总保持PE⊥AC,则动点P的轨迹的长为________.9.(·蚌埠模拟)点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,给出下列四个命题:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的命题序号是________.10.如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.11.(·北京海淀二模)如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在AB 上,且OM∥AC.(1)求证:平面MOE∥平面PAC;(2)求证:平面PAC⊥平面PCB.12.(·珠海摸底)如图,在多面体ABCDEF 中,四边形ABCD 是梯形,AB ∥CD ,四边形ACFE 是矩形,平面ACFE ⊥平面ABCD ,AD =DC =CB =AE =a ,∠ACB=π2.(1)求证:BC ⊥平面ACFE ;(2)若M 是棱EF 上一点,AM ∥平面BDF ,求EM 的长.1.如图,在立体图形D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列正确的是( )A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE2.如图所示,b ,c 在平面α内,a ∩c =B ,b ∩c =A ,且a ⊥b ,a ⊥c ,b ⊥c ,若C ∈a ,D ∈b ,则△ACD 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.(·莆田模拟)如图,在三棱锥P -ABC 中,△PAC ,△ABC 分别是以A ,B 为直角顶点的等腰直角三角形,AB =1.(1)现给出三个条件:①PB =3;②PB ⊥BC ;③平面PAB ⊥平面A BC.试从中任意选取一个作为已知条件,并证明:PA ⊥平面ABC ;(2)在(1)的条件下,求三棱锥P -ABC 的体积. [答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(四十四)A级1.C2.D3.B4.A5.选B对于①,∵PA⊥平面ABC,∴PA⊥BC.∵AB为⊙O的直径,∴BC⊥AC.∴BC⊥平面PAC.又PC⊂平面PAC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥PA.∵PA⊂平面PAC,∴OM∥平面PAC;对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.6.选D在平面图形中CD⊥BD,折起后仍有CD⊥BD,由于平面ABD⊥平面BCD,故CD⊥平面ABD,CD⊥AB,又AB⊥AD,故AB⊥平面ADC,所以平面ABC⊥平面ADC.7.解析:由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)8.解析:如图,设AC∩BD=O,连接SO,取CD的中点F,SC的中点G,连接EF,EG,FG,设EF交AC于点H,连接GH,易知AC⊥EF,GH∥SO,∴GH⊥平面ABCD,∴AC⊥GH,∴AC⊥平面EFG,故动点P的轨迹是△EFG,由已知易得EF=2,GE=GF=62,∴△EFG的周长为2+6,故动点P的轨迹长为2+ 6.答案:2+69.解析:连接BD交AC于O,连接DC1交D1C于O1,连接OO1,则OO1∥BC1.∴BC1∥平面AD1C,动点P到平面AD1C的距离不变,∴三棱锥P-AD1C的体积不变.又VP-AD1C=VA-D1PC,∴①正确.∵平面A1C1B∥平面AD1C,A1P⊂平面A1C1B,∴A1P∥平面ACD1,②正确.由于DB不垂直于BC1显然③不正确;由于DB1⊥D1C ,DB1⊥AD1,D1C ∩AD1=D1, ∴DB1⊥平面AD1C.DB1⊂平面PDB1, ∴平面PDB1⊥平面ACD1,④正确. 答案:①②④10.证明:(1)由已知,得MD 是△ABP 的中位线,所以MD ∥AP. 又MD ⊄平面APC ,AP ⊂平面APC , 故MD ∥平面APC.(2)因为△PMB 为正三角形,D 为PB 的中点, 所以MD ⊥PB.所以AP ⊥PB.又AP ⊥PC ,PB ∩PC =P ,所以AP ⊥平面PBC. 因为BC ⊂平面PBC ,所以AP ⊥BC.又BC ⊥AC ,AC ∩AP =A ,所以BC ⊥平面APC. 因为BC ⊂平面ABC ,所以平面ABC ⊥平面APC.11.证明:(1)因为点E 为线段PB 的中点,点O 为线段AB 的中点, 所以OE ∥PA.因为PA ⊂平面PAC ,OE ⊄平面PAC , 所以OE ∥平面PAC. 因为OM ∥AC ,且AC ⊂平面PAC ,OM ⊄平面PAC , 所以OM ∥平面PAC.因为OE ⊂平面MOE ,OM ⊂平面MOE ,OE ∩OM =O , 所以平面MOE ∥平面PAC.(2)因为点C 在以AB 为直径的⊙O 上,所以∠ACB =90°,即BC ⊥AC. 因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA ⊥BC. 因为AC ⊂平面PAC ,PA ⊂平面PAC , PA ∩AC =A , 所以BC ⊥平面PAC. 因为BC ⊂平面PCB , 所以平面PAC ⊥平面PCB.12.解:(1)证明:因为∠ACB =π2,所以BC ⊥AC.又因为BC ⊂平面ABCD ,平面ACFE ∩平面ABCD =AC ,平面ACFE ⊥平面ABCD ,所以BC ⊥平面ACFE.(2)记AC ∩BD =O ,在梯形ABCD 中,因为AD =DC =CB =a ,AB ∥CD ,所以∠ACD =∠CAB=∠DAC.所以π=∠ABC +∠BCD =∠DAB +∠ACD +∠ACB =3∠DAC +π2,所以∠DAC =π6,即∠CBO =π6.又因为∠ACB =π2,CB =a ,所以CO =33a.连接FO ,由AM ∥平面BDF 得AM ∥FO ,因为四边形ACFE 是矩形, 所以EM =CO =33a. B 级1.选C 要判断两个平面的垂直关系,就需固定其中一个平面,找另一个平面内的一条直线与第一个平面垂直.因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE.因为AC 在平面ABC 内,所以平面ABC ⊥平面BDE.又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE.2.解析:选B ∵a ⊥b ,b ⊥c ,a ∩c =B , ∴b ⊥面ABC ,∴AD ⊥AC ,故△ACD 为直角三角形. 3.解:法一:(1)选取条件① 在等腰直角三角形ABC 中, ∵AB =1, ∴BC =1,AC = 2. 又∵PA =AC ,∴PA = 2. ∴在△PAB 中,AB =1,PA = 2. 又∵PB =3, ∴AB2+PA2=PB2.∴∠PAB =90°,即PA ⊥AB. 又∵PA ⊥AC ,AB ∩AC =A , ∴PA ⊥平面ABC.(2)依题意得,由(1)可知PA ⊥平面ABC ,V 三棱锥P -ABC =13PA ·S △ABC =13×2×12×12=26.法二:(1)选取条件② ∵PB ⊥BC ,又AB ⊥BC ,且PB ∩AB =B ,∴BC⊥平面PAB.∵PA⊂平面PAB,∴BC⊥PA.又∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.(2)依题意得,由(1)可知PA⊥平面ABC.∵AB=BC=1,AB⊥BC,∴AC=2,∴PA=2,∴V三棱锥P-ABC=13PA·S△ABC=13×12AB·BC·PA=13×12×1×1×2=26.法三:(1)选取条件③若平面PAB⊥平面ABC,∵平面PAB∩平面ABC=AB,BC⊂平面ABC,BC⊥AB,∴BC⊥平面PAB.∵PA⊂平面PAB,∴BC⊥PA.∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.(2)同法二.高考数学(文)一轮:一课双测A+B精练(四十)空间几何体的结构特征及三视图和直观图1.(·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.②③④B.①②③C.①③④D.①②④2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1B.2C.3D.43.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是( )5.如图△A′B′C′是△ABC的直观图,那么△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形6.(·东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A.2+3B.1+3C.2+23D.4+37.(·昆明一中二模)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为1,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号) 2①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆8.(·安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.9.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.10.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.11.(·银川调研)正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?12.(·四平模拟)已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.1.(·江西八所重点高中模拟)底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A.23B.3C.3D.42.(·深圳模拟)如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=3,且当规定正视方向垂直平面ABCD时,该几何体的侧视图的面积为22.若M,N分别是线段DE,CE上的动点,则AM+MN+NB的最小值为________.3.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.[答题栏]A级1._________2._________3._________4._________5._________6._________B级 1.______2.______ 7.__________8.__________9.__________答案高考数学(文)一轮:一课双测A+B精练(四十)A级1.A2.A3.C4.B5.选B由斜二测画法知B正确.6.选D依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7.解析:如图1所示,直三棱柱ABE-A1B1E1符合题设要求,此时俯视图△A BE是锐角三角形;如图2所示,直三棱柱ABC-A1B1C1符合题设要求,此时俯视图△ABC是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD-A1B1C1D1符合题设要求,此时俯视图(四边形ABCD)是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin60°×2-13×12×2×2sin60°×1=533.答案:5339.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而PA =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2210.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体. 11.解:如图所示,正四棱锥S -ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,OA =SA2-OS2=2,∴AC =4. ∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高, 在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即侧面上的斜高为 5.12.解:(1)三棱锥的直观图如图所示.(2)根据三视图间的关系可得BC =23, ∴侧视图中VA = 42-⎝ ⎛⎭⎪⎫23×32×232 =12=23,∴S △VBC =12×23×23=6. B 级1.选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2.解析:依题意得,点E 到直线AB 的距离等于32-⎝ ⎛⎭⎪⎫222=2,因为该几何体的左(侧)视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB2=AE2+BE2-2AE ·BEcos120°=9,即AB =3,即AM +MN +NB 的最小值为3.答案:33.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE.∵E 为AA1的中点,O 为AC 的中点,∴在△AA1C 中,OE 为△AA1C 的中位线.∴OE ∥A1C.∵OE ⊄平面A1C1C ,A1C ⊂平面A1C1C , ∴OE ∥平面A1C1C.(3)多面体表面共包括10个面,SABCD =a2,SA1B1C1D1=a22, S △ABA1=S △B1BC =S △C 1DC =S △ADD1=a22, S △AA1D1=S △B1A1B =S △C1B1C =S △DC1D1 =12×2a 2×32a 4=3a28, ∴该多面体的表面积S =a2+a22+4×a22+4×3a28=5a2.。
2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷【答案版】
2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={x |x 2+x ﹣6=0},B ={2,3},则A ∩B =( ) A .∅B .{2}C .{3}D .{2,3}2.已知a ∈R ,若(2+i )(1+ai )为纯虚数,则a =( ) A .−12B .12C .﹣2D .23.“a =1”是“函数f(x)=2x−a2x +a是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.学校以“布一室馨香,育满园桃李”为主题开展了系列评比活动,动员师生一起为营造舒心愉悦的学习生活环境奉献智慧.张老师特地培育了一盆绿萝放置在教室内,绿萝底部的盆近似看成一个圆台,圆台的上、下底面半径之比为3:2,母线长为10cm ,其母线与底面所成的角为60°,则这个圆台的体积为( )A .2375√33πcm 3B .4750√33πcm 3C .7125√33πcm 3 D .9500√33πcm 35.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2),现有如下四个命题: 甲:该函数图象的相邻两条对称轴之间的距离为π2;乙:该函数图象可以由y =cos2x −√3sin2x 的图象向右平移π4个单位长度得到;丙:该函数在区间(−π12,π6)上单调递增; 丁:该函数满足f(π3+x)+f(π3−x)=0. 如果只有一个假命题,那么该命题是( )A .甲B .乙C .丙D .丁6.已知奇函数f (x )的图象关于直线x =1对称,当x ∈[0,1]时,f (x )=2x +b ,则f(20232)=( ) A .−1−√2B .1−√2C .√2+1D .√2−17.若sin(α+π6)=35,则sin(2α+5π6)=( ) A .−725B .−1625C .725D .16258.已知函数f (x )=x 3+ax 2+bx +c (a ,b ,c ∈R ),若不等式f (x )<0的解集为{x |x <m +1且x ≠m },则函数f (x )的极小值是( ) A .−14B .0C .−427D .−49二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,M ,N 分别为CC 1,A 1D 1的中点,则( ) A .BM ∥AD 1 B .AM ⊥BDC .B 1M ⊥平面ABND .MN ∥平面A 1BD10.设a >b >0,c ∈R ,则( ) A .a |c |>b |c | B .ba≤b+c 2a+c 2C .a 2−b 2<1a−1bD .a +b <√2(a 2+b 2)11.已知数列{a n }满足a 4=4,a n a n +1=2n (n ∈N *),则( ) A .a 1=1B .数列{a n }为递增数列C .a 1+a 2+…+a 2023=21013﹣3D .1a 1+1a 2+⋯+1a n<312.已知函数f (x )=a 2x ﹣x (a >0,a ≠1),则下列结论中正确的是( ) A .函数f (x )恒有1个极值点B .当a =e 时,曲线y =f (x )恒在曲线y =lnx +2上方C .若函数f (x )有2个零点,则1<a <e 12eD .若过点P (0,t )存在2条直线与曲线y =f (x )相切,则0<t <1 三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a →=(λ,1),b →=(−1,2),若a →与b →共线,则|a →−b →|= . 14.写出一个同时满足下列两个性质的函数:f (x )= . ①f (x 1+x 2)=f (x 1)•f (x 2);②∀x ∈R ,f ′(x )<0.15.咖啡适度饮用可以提神醒脑、消除疲劳,让人精神振奋.冲咖啡对水温也有一定的要求,把物体放在空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,经过t 分钟后物体的温度为θ℃满足θ=θ0+(θ1−θ0)e −0.08t .研究表明,咖啡的最佳饮用口感会出现在65℃.现有一杯85℃的热水用来冲咖啡,经测量室温为25℃,那么为了获得最佳饮用口感,从冲咖啡开始大约需要等待 分钟.(结果保留整数)(参考数据:ln 2≈0.7,ln 3≈1.1,ln 11≈2.4)16.在平面四边形ABCD 中,AB =AD =√2,BC =CD =1,BC ⊥CD ,将四边形沿BD 折起,使A ′C =√3,则四面体A ′﹣BCD 的外接球O 的表面积为 ;若点E 在线段BD 上,且BD =3BE ,过点E 作球O 的截面,则所得的截面中面积最小的圆的半径为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f(x)=(1−2sin 2x)sin2x +12cos4x . (1)求f (x )的最大值及相应x 的取值集合;(2)设函数g (x )=f (ωx )(ω>0),若g (x )在区间 (0,π2) 上有且仅有1个极值点,求ω的取值范围.18.(12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +tan B =−√3cacosB.(1)求角A ;(2)已知a =7,D 是边BC 的中点,且AD ⊥AB ,求AD 的长. 19.(12分)已知数列{a n }中,a 1=1,a n+1n+1−a n n=1n(n+1),n ∈N ∗.(1)求数列{a n }的通项公式; (2)设b n =(﹣1)n﹣14na n a n+1,求数列{b n }的前n 项和S n .20.(12分)已知函数f (x )=ax ﹣a ﹣lnx .(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:当a =1时,f (x )≥0;(3)设m 为整数,若对于∀n ∈N ∗,(1+13)(1+232)(1+2233)⋯(1+2n−13n )<m 成立,求m 的最小值.21.(12分)如图,AB 是半球O 的直径,AB =4,M ,N 是底面半圆弧AB ̂上的两个三等分点,P 是半球面上一点,且∠PON =60°. (1)证明:PB ⊥平面P AM ;(2)若点P 在底面圆内的射影恰在ON 上,求直线PM 与平面P AB 所成角的正弦值.22.(12分)已知函数f(x)=1+lnx.x(1)讨论f(x)的单调性;(2)设a,b为两个不相等的实数,且ae b﹣be a=e a﹣e b,证明:e a+e b>2.2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={x |x 2+x ﹣6=0},B ={2,3},则A ∩B =( ) A .∅B .{2}C .{3}D .{2,3}解:A ={x |x 2+x ﹣6=0}={﹣3,2},故A ∩B ={2}. 故选:B .2.已知a ∈R ,若(2+i )(1+ai )为纯虚数,则a =( ) A .−12B .12C .﹣2D .2解:(2+i )(1+ai )=2﹣a +(1+2a )i , 因为a ∈R ,且(2+i )(1+ai )为纯虚数, 所以{2−a =01+2a ≠0,解得a =2.故选:D .3.“a =1”是“函数f(x)=2x−a2x +a是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:若a =1,则f(x)=2x−12x +1,f(−x)=12x −112x +1=1−2x 1+2x =−2x−12x +1=−f(x),所以f (x )是奇函数; 若函数f(x)=2x−a2x +a在其定义域上为奇函数,可得f(−x)=12x −a 12x +a =1−a⋅2x 1+a⋅2x =−f(x)=−2x −a 2x +a =a−2x2x +a, 解得a =±1,∴a =1是函数f(x)=2x−a2x +a在其定义域上为奇函数的充分不必要条件.故选:A .4.学校以“布一室馨香,育满园桃李”为主题开展了系列评比活动,动员师生一起为营造舒心愉悦的学习生活环境奉献智慧.张老师特地培育了一盆绿萝放置在教室内,绿萝底部的盆近似看成一个圆台,圆台的上、下底面半径之比为3:2,母线长为10cm ,其母线与底面所成的角为60°,则这个圆台的体积为( )A .2375√33πcm 3B .4750√33πcm 3C .7125√33πcm 3 D .9500√33πcm 3解:根据题意,设圆台的上、下底面半径分别为3x ,2x , 因为母线长为10,且母线与底面所成的角为60°, 所以圆台的高为10sin60°=5√3,并且x =10×12=5,所以圆台的上底面半径为3x =15,下底面半径为2x =10,高为5√3. 由此可得圆台的体积为V =13π(152+102+15×10)×5√3=2375√3π3(cm 3). 故选:A .5.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2),现有如下四个命题: 甲:该函数图象的相邻两条对称轴之间的距离为π2;乙:该函数图象可以由y =cos2x −√3sin2x 的图象向右平移π4个单位长度得到;丙:该函数在区间(−π12,π6)上单调递增; 丁:该函数满足f(π3+x)+f(π3−x)=0. 如果只有一个假命题,那么该命题是( ) A .甲B .乙C .丙D .丁 解:对于甲,该f (x )图象的相邻两条对称轴之间的距离为T 2=πω=π2,则f (x )的周期T =π;对于乙,将函数y =cos2x −√3sin2x =2cos(2x +π3)的图象向右平移 π4个单位长度,得到y =2cos[2(x −π4)+π3]=2sin(2x +π3) 的图象;对于丙,函数f(x)在区间(−π12,π6)上单调递增;对于丁,函数f(x)满足f(π3+x)+f(π3−x)=0,即f(x)图象关于(π3,0)对称.因为只有乙的条件最具体,所以从乙入手,若乙正确,此时f(x)的单调递增区间为[−5π12+kπ,π12+kπ](k∈Z),与丙的结论矛盾,根据题设“只有一个命题是假命题”,可知这一个假命题只能是乙或丙,若丙是真命题,则甲、丙、丁三个是真命题,由f(x)图象关于(π3,0)对称,且周期为π,可知:在点(π3,0)的左侧且距离最近的f(x)图象的对称轴为x=π12,而π12∈(−π12,π6),说明f(x)在区间(−π12,π6)上不单调,与丙是真命题矛盾.若乙是真命题,则甲、乙、丁三个都是真命题,此时f(x)=2sin(2x+π3),最小正周期T=π,且图象关于(π3,0)对称,甲、乙、丁之间相符合.综上所述,丙不可能是真命题,即唯一的假命题是丙.故选C.6.已知奇函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,f(x)=2x+b,则f(20232)=()A.−1−√2B.1−√2C.√2+1D.√2−1解:因为f(x)为奇函数,且当x∈[0,1]时,f(x)=2x+b,所以f(0)=1+b=0,解得:b=﹣1,即当x∈[0,1]时,f(x)=2x﹣1,又因为f(x)的图象关于直线x=1对称,所以f(x)=f(2﹣x),且f(x)=﹣f(﹣x)则f(x)=f(2﹣x)=﹣f(x﹣2)=﹣f[2﹣(x﹣2)]=﹣f(4﹣x)=f(x﹣4),即函数f(x)是以4为周期的周期函数,故f(20232)=f(252×4+72)=f(72−4)=f(−12)=−f(12)=1−√2.故选:B.7.若sin(α+π6)=35,则sin(2α+5π6)=()A.−725B.−1625C.725D.1625解:∵sin(α+π6)=35,∴sin(2α+5π6)=sin(2α+π3+π2)=cos(2α+π3)=1−2sin2(α+π6)=1−2×(35)2=725.故选:C.8.已知函数f(x)=x3+ax2+bx+c(a,b,c∈R),若不等式f(x)<0的解集为{x|x<m+1且x≠m},则函数f(x)的极小值是()A.−14B.0C.−427D.−49解:因为不等式f(x)<0的解集为{x|x<m+1且x≠m},所以f(m)=f(m+1)=0,且x=m为f(x)=0的二重根,所以f(x)=(x﹣m)2[x﹣(m+1)],则f′(x)=2(x﹣m)[x﹣(m+1)]+(x﹣m)2=(x﹣m)(3x﹣3m﹣2),则当x>3m+23或x<m时f′(x)>0,当m<x<3m+23时f′(x)<0,所以f(x)在(3m+23,+∞),(﹣∞,m)上单调递增,在(m,3m+23)上单调递减,所以f(x)在x=3m+23处取得极小值,即f(x)极小值=f(3m+23)=(3m+23−m)2[3m+23−(m+1)]=−427.故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD﹣A1B1C1D1中,M,N分别为CC1,A1D1的中点,则()A.BM∥AD1B.AM⊥BDC.B1M⊥平面ABN D.MN∥平面A1BD解:对于选项A:连接BC1,则BC1∥AD1,又BC1∩BM=B,所以BM∥AD1不正确,故选项A不正确;对于选项B:在正方体中,BD⊥AA1,BD⊥AC且AA1∩AC=A,AA1⊂平面AA1C1C,AC⊂平面AA1C1C,所以BD⊥平面AA1C1C,又AM⊂平面AA1C1C,所以AM⊥BD,故选项B正确;对于选项C:在正方体中,AB⊥平面B1BCC1,又B1M⊂平面B1BCC1,所以AB⊥B1M,取B1C1的中点Q,连接BQ,在正方形BCC1B1中(如图),△BB1Q≅△B1C1M,∠BQB1=∠B1MC1,又∠B1MC1+∠MB1C1=90°,所以∠B1QB+∠MB1C1=90°,所以B1M⊥BQ,又在正方体中,AN∥BQ,所以B1M⊥AN,又AN∩AB=A,所以B1M⊥平面ABN,故选项C正确;对于选项D:取A1D的中点E,连接EN,EC,则EN∥AA1,且EN=1AA1,2所以EN∥MC,且EN=MC,故四边形NECM为平行四边形,则MN∥EC,又EC与平面A1BD相交于点E,所以MN不可能与平面A1BD平行,故选项D不正确.故选:BC .10.设a >b >0,c ∈R ,则( ) A .a |c |>b |c | B .ba≤b+c 2a+c 2C .a 2−b 2<1a−1bD .a +b <√2(a 2+b 2)解:选项A .当c =0时,a |c |>b |c |不成立,故选项A 不正确. 选项B .由b+c 2a+c 2−b a=(b+c 2)a−b(a+c 2)a(a+c 2)=c 2(a−b)a(a+c 2)>0,所以ba≤b+c 2a+c 2,故选项B 正确.选项C .由 a 2−b 2−(1a−1b)=(a −b)(a +b)−b−a ab =(a −b)(a +b +1ab)>0, 所以a 2−b 2>1a−1b,故选项C 不正确.选项D .由[√2(a 2+b 2)]2−(a +b)2=a 2+b 2−2ab =(a −b)2>0,所以a +b <√2(a 2+b 2),故选项D 正确. 故选:BD .11.已知数列{a n }满足a 4=4,a n a n +1=2n (n ∈N *),则( ) A .a 1=1B .数列{a n }为递增数列C .a 1+a 2+…+a 2023=21013﹣3D .1a 1+1a 2+⋯+1a n<3解:依题意,a 4=4,a n a n+1=2n,a n =2na n+1,a n+1=2na n,所以a 3=23a 4=84=2,a 2=22a 3=42=2,a 1=21a 2=22=1,A 选现正确.所以a 3=a 2,所以B 选项错误. 由a n a n+1=2n 得a n+1a n+2=2n+1,两式相除得a n+2a n=2,所以数列{a n }的奇数项是首项为1,公比为2的等比数列;偶数项是首项为2,公比为2的等比数列.a 1+a 2+⋯+a 2023=(a 1+a 3+⋯+a 2023)+(a 2+a 4+⋯+a 2022)=1(1−21012)1−2+2(1−21011)1−2=21012−1+21012−2=21013−3,所以C 选项正确.由上述分析可知,数列{1a n}的奇数项是首项为1,公比为12的等比数列;偶数项是首项为12,公比为12的等比数列. 当n 为偶数时,1a 1+1a 2+⋯+1a n=(1a 1+1a 3+⋯+1a n−1)+(1a 2+1a 4+⋯+1a n),=1(1−12n 2)1−12+12(1−12n 2)1−12=3−32n 2<3;当n 为奇数时,1a 1+1a 2+⋯+1a n =(1a 1+1a 3+⋯+1a n)+(1a 2+1a 4+⋯+1a n−1),=1(1−12n+12)1−12+12(1−12n−12)1−12=3−22n+12−12n−12<3, 综上所述,1a 1+1a 2+⋯+1a n<3,所以D 选项正确.故选:ACD .12.已知函数f (x )=a 2x ﹣x (a >0,a ≠1),则下列结论中正确的是( ) A .函数f (x )恒有1个极值点B .当a =e 时,曲线y =f (x )恒在曲线y =lnx +2上方C .若函数f (x )有2个零点,则1<a <e 12eD .若过点P (0,t )存在2条直线与曲线y =f (x )相切,则0<t <1 解:f (x )=a 2x ﹣x (a >0,a ≠1),f ′(x )=2a 2x lna ﹣1,对于A :因为a 2x >0恒成立,所以当a ∈(0,1)时,f ′(x )<0,此时f (x )单调递减, 所以此时不存在极值点,A 错误;对于B :当a =e 时,f (x )=e 2x ﹣x ,令g (x )=f (x )﹣(lnx +2)=e 2x ﹣x ﹣lnx ﹣2, 下面先证明:e x ≥x +1和lnx ≤x ﹣1,令f 1(x)=e x −x −1,则f 1′(x)=e x −1>0⇒x >0,所以f 1(x )在(﹣∞,0)单调递减,在(0,+∞)单调递增,所以f 1(x )≥f 1(0)=0,所以e x ≥x +1,当且仅当x =0时,取到等号; 令f 2(x )=lnx ﹣x +1,则f 2′(x)=1x −1>0⇒0<x <1, 所以f 2(x )在(0,1)单调递增,在(1,+∞)单调递减,所以f 2(x )≤f 2(1)=0,所以lnx ≤x ﹣1,当且仅当x =1时,取到等号, 由上结论可得:e 2x ≥2x +1,﹣lnx ≥﹣x +1,因为不能同时取等,所以两式相加可得:e 2x ﹣lnx >x +2, 即e 2x ﹣lnx ﹣x ﹣2>0恒成立,即g (x )>0恒成立, 所以y =f (x )恒在曲线y =lnx +2上方,B 正确;对于C :函数f (x )有2个零点等价于方程a 2x ﹣x =0有两个根, 即a 2x =x ⇒lna 2x =lnx ⇒2xlna =lnx ⇒2lna =lnxx有两个根, 令ℎ(x)=lnxx ,则ℎ′(x)=1−lnxx 2<0⇒x >e , 所以h (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,所以ℎ(x)max =ℎ(e)=1e ,当x →0时,h (x )→﹣∞,当x →+∞时,h (x )→0, 所以要使得2lna =lnx x 有两个根,则2lna ∈(0,1e), 所以0<lna <12e⇒1<a <e 12e ,所以C 正确;对于D :设切点坐标为(x 0,a 2x 0−x 0),则k =f ′(x 0)=2a 2x 0lna −1,又因为切线经过点P (0,t ),所以k =a 2x 0−x 0−tx 0, 所以2a2x 0lna −1=a 2x 0−x 0−tx 0,解得t =a 2x 0−a 2x 0lna 2x 0,令m =a 2x 0,则m ∈(0,+∞),所以t =m ﹣mlnm , 因为过点P (0,t )存在2条直线与曲线y =f (x )相切, 所以方程t =m ﹣mlnm 有两个不同的解,令φ(m )=m ﹣mlnm ,则φ′(m )=﹣lnm >0⇒0<m <1, 所以φ(m )在(0,1)上单调递增,在(1,+∞)上单调递减,所以φ(m )max =φ(1)=1,当m →0时,φ(m )→0,当m →+∞时,φ(m )→﹣∞, 所以要使得方程t =m ﹣mlnm 有两个根,则t ∈(0,1),D 正确. 故选:BCD .三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a →=(λ,1),b →=(−1,2),若a →与b →共线,则|a →−b →|=√52. 解:由于a →与b →共线,所以λ×2=1×(−1),λ=−12,a →=(−12,1),a →−b →=(−12,1)−(−1,2)=(12,−1), 所以|a →−b →|=√14+1=√52.故答案为:√52. 14.写出一个同时满足下列两个性质的函数:f (x )= a x (0<a <1)(答案不唯一) . ①f (x 1+x 2)=f (x 1)•f (x 2); ②∀x ∈R ,f ′(x )<0.解:由性质②,f(x)是R上的减函数,且满足性质①f(x1+x2)=f(x1)•f(x2),可以是指数函数,所以函数f(x)=a x(0<a<1)符合题意.故答案为:a x(0<a<1)(答案不唯一).15.咖啡适度饮用可以提神醒脑、消除疲劳,让人精神振奋.冲咖啡对水温也有一定的要求,把物体放在空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,经过t分钟后物体的温度为θ℃满足θ=θ0+(θ1−θ0)e−0.08t.研究表明,咖啡的最佳饮用口感会出现在65℃.现有一杯85℃的热水用来冲咖啡,经测量室温为25℃,那么为了获得最佳饮用口感,从冲咖啡开始大约需要等待5分钟.(结果保留整数)(参考数据:ln2≈0.7,ln3≈1.1,ln11≈2.4)解:由题意得,65=25+(85﹣25)e﹣0.08t,即e−0.08t=2 3,所以−0.08t=ln 23,解得t=−252×(ln2−ln3)≈252×(0.7−1.1)=5,所以大约需要等待5分钟.故答案为:5.16.在平面四边形ABCD中,AB=AD=√2,BC=CD=1,BC⊥CD,将四边形沿BD折起,使A′C=√3,则四面体A′﹣BCD的外接球O的表面积为3π;若点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得的截面中面积最小的圆的半径为23.解:如图所示:因为AB=AD=√2,BC=CD=1,BC⊥CD,所以BE=CE=DE=√22,AE=√AD2−DE2=√(√2)2−(√22)2=√62,且AC⊥BD,点E为△BCD外接圆的圆心,所以四面体A′﹣BCD的外接球的球心O一定在过点E且垂直面BCD的直线上,如图不妨设GE⊥面BCD,A′F⊥面BCD,四面体A′﹣BCD的外接球的半径OE=ℎ,OB=R=√OE2+EB2=√ℎ2+12,FE=x,则由对称性可知点F也在直线CE上且A′F⊥FC,A′F=2OE=2h,由题意A ′E =AE =√62,FC =FE +EC =x +√22,A ′C =√3, 在Rt △A ′FE 中,有A ′F 2+FE 2=A ′E 2,即x 2+(2ℎ)2=32, 在Rt △A ′FC 中,有A ′F 2+FC 2=A ′C 2,即(x +√22)2+(2ℎ)2=3,联立以上两式解得x =√22,ℎ=12, 所以R =√ℎ2+12=√14+12=√32, 从而四面体A ′﹣BCD 的外接球O 的表面积为S =4πR 2=4π×(√32)2=3π;如图所示:由题意将上述第一空中的点E 用现在的点F 来代替,而现在的点E 为线段BD 的靠近点B 的三等分点, 此时过点E 作球O 的截面,若要所得的截面中面积最小,只需截面圆半径最小, 设球心到截面的距离为d ,截面半径为r ,则r =√R 2−d 2, 所以只需球心到截面的距离为d 最大即可,而当且仅当OE 与截面垂直时,球心到截面的距离为d 最大,即d max =OE , 由以上分析可知此时OO 1=FE =FB −BE =12BD −13BD =√26,OF =12,OE =√14+118=√116,R =√32,所以r =r min =√R 2−OE 2=√34−1136=23. 故答案为:3π;23.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f(x)=(1−2sin 2x)sin2x +12cos4x . (1)求f (x )的最大值及相应x 的取值集合;(2)设函数g (x )=f (ωx )(ω>0),若g (x )在区间 (0,π2) 上有且仅有1个极值点,求ω的取值范围.解:(1)f(x)=(1−2sin 2x)sin2x +12cos4x =cos2x sin2x +12cos4x=12(sin4x +cos4x )=√22sin (4x +π4), 当4x +π4=π2+2k π,k ∈Z ,即x =π16+kπ2,k ∈Z 时,函数取得最大值√22,此时{x |x =π16+kπ2,k ∈Z }; (2)因为g (x )=f (ωx )=√22sin (4ωx +π4),ω>0,若g (x )在区间 (0,π2) 上有且仅有1个极值点,则极值点只能为极大值, 根据五点作图法,令4ωx +π4=π2,则x =π16ω, 令4ωx +π4=3π2,则x =5π16ω,所以{π16ω<π25π16ω≥π2ω>0解得18<ω≤58,故ω的范围为(18,58].18.(12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +tan B =−√3cacosB . (1)求角A ;(2)已知a =7,D 是边BC 的中点,且AD ⊥AB ,求AD 的长.解:(1)因为tan A +tan B =−√3cacosB ,所以sinA cosA +sinBcosB =−√3c acosB,由正弦定理得,sinAcosA +sinBcosB =−√3sinCsinAcosB ,因为sinAcosA+sinB cosB=sinAcosB+cosAsinB cosAcosB=sin(A+B)cosAcosB=sinC cosAcosB,所以sinCcosAcosB=−√3sinCsinAcosB,因为0<C <π,所以sin C ≠0, 又cos B ≠0,所以tan A =−√3, 因为0<A <π,所以A =2π3.(2)因为D 是边BC 的中点,所以BD =CD =12BC =72, 因为AD ⊥AB ,所以∠DAC =∠BAC ﹣∠BAD =2π3−π2=π6,在Rt △ABD 中,sin B =AD BD =AD 72=2AD7, 在△ACD 中,由正弦定理知,ADsinC=CD sin∠DAC,所以sin C =ADsin∠DAC CD=AD×1272=AD7, 在△ABC 中,由正弦定理知,bsinB=c sinC=a sin∠BAC=√32=√3,所以b2AD 7=cAD 7=√3,所以b =4AD 3,c =2AD3, 在△ABC 中,由余弦定理得,a 2=b 2+c 2﹣2bc cos A , 所以49=b 2+c 2﹣2bc ×cos 2π3,即b 2+c 2+bc =49, 所以(√3)2+(√3)23×3=49,解得AD =√212.19.(12分)已知数列{a n }中,a 1=1,a n+1n+1−a n n=1n(n+1),n ∈N ∗.(1)求数列{a n }的通项公式; (2)设b n =(﹣1)n ﹣14na n a n+1,求数列{b n }的前n 项和S n .解:(1)因为a n+1n+1−a n n=1n(n+1)⇒a n+1n+1−a n n=1n−1n+1⇒a n+1+1n+1=a n +1n,所以{a n +1n }是常数列,所以a n +1n =a 1+11=2,所以a n =2n ﹣1. (2)b n =(−1)n−14na n a n+1=(−1)n−14n(2n−1)(2n+1)=(−1)n−1(12n−1+12n+1),当n 为偶数时,S n =(1+13)−(13+15)+⋯+(12n−3+12n−1)−(12n−1+12n+1)=1−12n+1=2n2n+1, 当n 为奇数时,S n =(1+13)−(15+12)+⋯−(12n−3+12n−1)+(12n−1+12n+1)=1+12n+1=2n+22n+1,所以S n =2n+1+(−1)n−12n+1.20.(12分)已知函数f (x )=ax ﹣a ﹣lnx .(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:当a =1时,f (x )≥0;(3)设m 为整数,若对于∀n ∈N ∗,(1+13)(1+232)(1+2233)⋯(1+2n−13n )<m 成立,求m 的最小值.解:(1)已知f (x )=ax ﹣a ﹣lnx ,函数定义域为(0,+∞),可得f′(x)=a−1x,此时f′(1)=a﹣1,又f(1)=0,所以曲线y=f(x)在点(1,f(1))处的切线方程为y=(a﹣1)(x﹣1),即(a﹣1)x﹣y﹣a+1=0;(2)证明:当a=1时,f(x)=x﹣1﹣lnx,函数定义域为(0,+∞),可得f′(x)=1−1x=x−1x,当0<x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以当x=1时,函数f(x)取得极小值也是最小值,最小值f(1)=0,故f(x)≥0;(3)由(2)知lnx≤x﹣1,当且仅当x=1时,等号成立,令x=2n−13n+1,此时ln(1+2n−13n)<2n−13n,可得ln(1+13)+ln(1+232)+ln(1+2233)+⋯+ln(1+2n−13n)<13+232+⋯+2n−13n=13(1−2n3n)1−23=1−2n3n<1,即ln[(1+13)(1+232)(1+2233)⋯(1+2n−13n)]<1,所以(1+13)(1+232)(1+2233)⋯(1+2n−13n)<e,当n≥4时,(1+13)(1+232)(1+2233)⋯(1+2n−13n)≥(1+13)(1+232)(1+2233)(1+2334)=12139659049>2,所以对于任意n∈N*,(1+13)(1+232)(1+2233)⋯(1+2n−13n)<m成立时,整数m的最小值为3.21.(12分)如图,AB是半球O的直径,AB=4,M,N是底面半圆弧AB̂上的两个三等分点,P是半球面上一点,且∠PON=60°.(1)证明:PB⊥平面P AM;(2)若点P在底面圆内的射影恰在ON上,求直线PM与平面P AB所成角的正弦值.证明:(1)连接OM ,MN ,BM ,因为M ,N 是底面半圆弧AB ̂上的两个三等分点, 所以有∠MON =∠NOB =60°,又因为OM =ON =OB =2,所以△MON ,△NOB 都为正三角形,所以MN =NB =BO =OM ,即四边形OMNB 是菱形, 记ON 与BM 的交点为Q ,Q 为ON 和BM 的中点, 因为∠PON =60°,OP =ON , 所以三角形OPN 为正三角形, 所以PQ =√3=12BM ,所以PB ⊥PM ,因为P 是半球面上一点,AB 是半球O 的直径,所以PB ⊥P A , 因为PM ∩P A =P ,PM ,P A ⊂平面P AM , 所以PB ⊥平面P AM ;解:(2)因为点P 在底面圆内的射影恰在ON 上,由(1)知Q 为ON 的中点,△OPN 为正三角形,所以PQ ⊥ON , 所以PQ ⊥底面ABM ,因为四边形OMNB 是菱形,所以MB ⊥ON , 即MB 、ON 、PQ 两两互相垂直,以点Q 为坐标原点,QM ,QN ,QP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则O(0,−1,0),M(√3,0,0),B(−√3,0,0),N(0,1,0),A(√3,−2,0),P(0,0,√3), 所以PM →=(√3,0,−√3),OP →=(0,1,√3),OB →=(−√3,1,0),设平面P AB 的一个法向量为m →=(x ,y ,z), 则{m →⋅OP →=0m →⋅OB →=0,所以{y +√3z =0−√3x +y =0, 令x =1,则y =√3,z =﹣1,所以m →=(1,√3,−1), 设直线PM 与平面P AB 的所成角为θ, 所以sinθ=|cos〈PM →,m →〉|=3+36×5=√105,故直线PM 与平面P AB 所成角的正弦值为√105. 22.(12分)已知函数f(x)=1+lnxx. (1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的实数,且ae b ﹣be a =e a ﹣e b ,证明:e a +e b >2. 解:(1)由f(x)=1+lnx x 得,f ′(x)=−lnxx2, 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0. 故f (x )的递增区间为(0,1),递减区间为(1,+∞). (2)将ae b ﹣be a =e a ﹣e b 变形为a+1e a=b+1e b .令e a =m ,e b =n ,则上式变为1+lnm m=1+lnnn,即有f (m )=f (n ),于是命题转换为证明:m +n >2.不妨设m <n ,由(1)知0<m <1,n >1. 要证m +n >2,即证n >2﹣m >1,由于f (x )在(1,+∞)上单调递减,故即证f (n )<f (2﹣m ), 由于f (m )=f (n ),故即证f (m )<f (2﹣m ), 即证f (m )﹣f (2﹣m )<0在0<m <1上恒成立. 令g (x )=f (x )﹣f (2﹣x ),x ∈(0,1),则g ′(x)=f ′(x)+f ′(2−x)=−lnx x 2−ln(2−x)(2−x)2=−(2−x)2lnx+x 2ln(2−x)x 2(2−x)2, =−(4−4x+x 2)lnx+x 2ln(2−x)x 2(2−x)2=−(4−4x)lnx+x 2ln[(2−x)x]x 2(2−x)2≥0,所以g (x )在区间(0,1)内单调递增, 所以g (x )<g (1)=0,即m +n >2成立. 所以e a +e b >2.。
高考数学高三模拟试卷试题压轴押题全国高中数学联赛模拟试题一
高考数学高三模拟试卷试题压轴押题全国高中数学联赛模拟试题(一)第一试一、 选择题:(每小题6分,共36分)1、方程6×(5a2+b2)=5c2满足c≤20的正整数解(a,b,c)的个数是(A )1(B )3(C )4(D )52、函数12-=x x y (x ∈R ,x≠1)的递增区间是(A )x≥2 (B )x≤0或x≥2 (C )x≤0(D )x≤21-或x≥23、过定点P(2,1)作直线l 分别交x 轴正向和y 轴正向于A 、B ,使△AOB (O 为原点)的面积最小,则l 的方程为 (A )x +y -3=0 (B )x +3y -5=0 (C )2x +y -5=0 (D )x +2y -4=04、若方程cos2x +3sin2x =a +1在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的实数解x ,则参数a 的取值范围是(A )0≤a <1 (B )-3≤a <1 (C )a <1 (D )0<a <1 5、数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项是(A )42 (B )45 (C )48 (D )516、在1,2,3,4,5的排列a1,a2,a3,a4,a5中,满足条件a1<a2,a2>a3,a3<a4,a4>a5的排列的个数是 (A )8 (B )10 (C )14 (D )16二、 填空题:(每小题9分,共54分)1、[x]表示不大于x 的最大整数,则方程21×[x2+x]=19x +99的实数解x 是. 2、设a1=1,an+1=2an +n2,则通项公式an =. 3、数799被2550除所得的余数是.4、在△ABC 中,∠A =3π,sinB =135,则cosC =.5、设k 、是实数,使得关于x 的方程x2-(2k +1)x +k2-1=0的两个根为sin 和cos ,则的取值范围是. 6、数()n2245+(n ∈N )的个位数字是.三、 (20分)已知x 、y 、z 都是非负实数,且x +y +z =1.求证:x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)≥0,并确定等号成立的条件.四、 (20分)(1) 求出所有的实数a ,使得关于x 的方程x2+(a +)x +a =0的两根皆为整数. (2) 试求出所有的实数a ,使得关于x 的方程x3+(-a2+2a +2)x -2a2-2a =0有三个整数根.五、 (20分)试求正数r 的最大值,使得点集T ={(x,y)|x 、y ∈R ,且x2+(y -7)2≤r2}一定被包含于另一个点集S ={(x,y)|x 、y ∈R ,且对任何∈R ,都有cos2+xcos +y≥0}之中.第二试一、(50分) 设a 、b 、c ∈R ,b≠ac ,a≠-c ,z 是复数,且z2-(a -c)z -b =0.求证:()12=-+-+bac zc a b a 的充分必要条件是(a -c)2+4b≤0.二、(50分)如图,在△ABC 中,∠ABC 和∠ACB 均是锐角,D 是BC 边上的内点,且AD 平分∠BAC ,过点D 分别向两条直线AB 、AC 作垂线DP 、DQ ,其垂足是P 、Q ,两条直线CP 与BQ 相交与点K .求证: (1) AK ⊥BC ;(2) BCS AQ AP AK ABC△2<=<,其中ABC S △表示△ABC 的面积.三、(50分)给定一个正整数n ,设n 个实数a1,a2,…,an 满足下列n 个方程:∑==+=+ni i n j j j i a 1),,3,2,1(124. 确定和式∑=+=ni ii a S 112的值(写成关于n 的最简式子). 参考答案第一试题号 1 2 3 4 5 6 答案 CCDABD二、填空题: ACBD QK PA BCDMNA 1D 1B 1C 1图11、38181-或381587;2、7×2n1-n2-2n -3;3、343;4、261235-;5、{|=2n +或2n -2π,n ∈Z} ;6、1(n 为偶数);7(n 为奇数). 三、证略,等号成立的条件是31===z y x 或⎪⎩⎪⎨⎧===021z y x 或⎪⎩⎪⎨⎧===021y z x 或⎪⎩⎪⎨⎧===021z z y .四、(1)a 的可能取值有0,-1336,-1936,-1960,-2664,-4000,-2040;(2)a的可能取值有-3,11,-1,9. 五、rmax =24.第二试一、证略(提示:直接解出()2i42⋅---±-=b c a c a z ,通过变形即得充分性成立,然后利用反证法证明必要性).二、证略(提示:用同一法,作出BC 边上的高AR ,利用塞瓦定理证明AR 、BQ 、CP 三线共点,从而AK ⊥BC ;记AR 与PQ 交于点T ,则BCS ABC△2=AR >AT >AQ =AP ,对于AK <AP ,可证∠APK <∠AKP ). 三、()11212++-=n S .全国高中数学联赛模拟试题(二)(命题人:江厚利 审题人:李潜)第一试一、选择题(每小题6分,共36分)1、已知集合()⎭⎬⎫⎩⎨⎧+=--=123,a x y y x A ,()()(){}1511,2=-+-=y a x a y x B .若∅=B A ,则a 的所有取值是(A )-1,1 (B )-1,21(C )±1,2(D )±1,-4,25 2、如图1,已知正方体ABCD -A1B1C1D1,点M 、N 分别在AB1、BC1上,且AM =BN .那么, ①AA1⊥MN ;②A1C1∥MN ;③MN ∥平面A1B1C1D1; ④MN 与A1C1异面.以上4个结论中,不正确的结论的个数为 (A )1 (B )2 (C )3(D )43、用Sn 与an 分别表示区间[)1,0内不含数字9的n 位小数的和与个数.则nnn S a ∞→lim的值为 (A )43(B )45 (C )47(D )49 4、首位数字是1,且恰有两个数字相同的四位数共有(A )216个(B )252个(C )324个(D )432个5、对一切实数x ,所有的二次函数()c bx ax x f ++=2(a <b )的值均为非负实数.则c b a ab ++-的最大值是(A )31 (B )21(C )3(D )26、双曲线12222=-by a x 的一个焦点为F1,顶点为A1、A2,P 是双曲线上任意一点.则分别以线段PF1、A1A2为直径的两圆一定(A )相交(B )相切(C )相离(D )以上情况均有可能二、填空题(每小题9分,共54分)1、已知复数i 21+=z ,()1121i 2i2z z z -++=.若△ABC 的3个内角∠A 、∠B 、∠C依次成等差数列,且2icos2cos 2CA u +=,则2z u +的取值范围是. 2、点P(a,b)在第一象限内,过点P 作一直线l ,分别交x 、y 轴的正半轴于A 、B 两点.那么,PA2+PB2取最小值时,直线l 的斜率为.3、若△ABC 是钝角三角形,则arccos(sinA)+arccos(sinB)+arccos(sinC)的取值范围是.4、在正四面体ABCD 中,点M 、P 分别是AD 、CD 的中点,点N 、Q 分别是△BCD 、△ABC 的中心.则直线MN 于PQ 的夹角的余弦值为.5、在()122++n x 的展开式中,x 的幂指数是整数的各项系数之和是.6、集合A 、B 、C (不必两两相异)的并集A ∪B ∪C ={1,2,3,…,n}.则满足条件的三OBCAD N M 图2元有序集合组(A,B,C)的个数是.三、(20分)设p >0,当p 变化时,Cp :y2=2px 为一族抛物线,直线l 过原点且交Cp 于原点和点Ap .又M 为x 轴上异于原点的任意点,直线MAp 交Cp 于点Ap 和Bp .求证:所有的点Bp 在同一条直线上. 四、(20分)对于公差为d(d≠0)的等差数列{an},求证:数列中不同两项之和仍是这一数列中的一项的充要条件是存在整数m≥-1,使a1=md . 五、(20分)求最大的正数,使得对任意实数a 、b ,均有()222b a b a +λ≤()322b ab a ++.第二试一、(50分)如图2,⊙O 切△ABC 的边AB 于点D ,切边AC 于点C ,M 是边BC 上一点,AM 交CD 于点N .求证:M 是BC 中点的充要条件是ON ⊥BC .二、(50分)求出能表示为()abcc b a n 2++=(a 、b 、c ∈Z+)的所有正整数n .三、(50分)在一个()()1212-⨯-nn(n≥2)的方格表的每个方格内填入1或-1,如果任意一格内的数都等于与它有公共边的那些方格内所填数的乘积,则称这种填法是“成功”的.求“成功”填法的总数.参考答案 第一试题号 1 2 3 4 5 6 答案 DBDDAB二、填空题:1、⎪⎪⎭⎫⎢⎣⎡25,22;2、aab -;3、⎪⎭⎫⎝⎛23,2ππ;4、181;5、21312++n ;6、7n .三、证略. 四、证略.五、427max =λ. 第二试一、证略;二、1,2,3,4,5,6,8,9. 三、1种(每空填1).全国高中数学联赛模拟试题(三)(命题人:吴伟朝)第一试一、选择题:(每小题6分,共36分)1、若集合S ={n|n 是整数,且22n +2整除n +},则S 为(A )空集∅ (B )单元集 (C )二元集 (D )无穷集2、若多项式x2-x +1能除尽另一个多项式x3+x2+ax +b (a 、b 皆为常数).则a+b 等于 (A )0 (B )-1 (C )1 (D )23、设a 是整数,关于x 的方程x2+(a -3)x +a2=0的两个实根为x1、x2,且tan(arctan x1+arctan x2)也是整数.则这样的a 的个数是 (A )0 (B )1 (C )2 (D )44、设一个四面体的体积为V1,且它的各条棱的中点构成一个凸多面体,其体积为V2.则12V V 为 (A )21(B )32 (C )常数,但不等于21和32 (D )不确定,其值与四面体的具体形状有关5、在十进制中,若一个至少有两位数字的正整数除了最左边的数字外,其余各个数字都小于其左边的数字时,则称它为递降正整数.所有这样的递降正整数的个数为(A )1001 (B )1010 (C )1011 (D )1013 6、在正方体的8个顶点中,能构成一个直角三角形的3个顶点的直角三点组的个数是(A )36 (B )37 (C )48 (D )49二、填空题:(每小题9分,共54分)1、若直线xcos +ysin =cos2-sin2(0<<)与圆x2+y2=41有公共点,则的取值范围是.2、在平面直角坐标系xOy 中,一个圆经过(0,2)、(3,1),且与x 轴相切.则此圆的半径等于.3、若常数a 使得关于x 的方程lg(x2+20x)-lg(8x -6a -3)=0有惟一解.则a 的取值范围是.4、f(x)=82x +xcosx +cos(2x)(x ∈R)的最小值是.5、若k 是一个正整数,且2k 整除则k 的最大值为.6、设ABCD 为凸四边形,AB =7,BC =4,CD =5,DA =6,其面积S 的取值范围是(a,b] .则a +b =.三、(20分)设椭圆的左右焦点分别为F1、F2,左准线为l ,点P 在椭圆上.作PQ ⊥l ,Q 为垂足.试问:对于什么样的椭圆,才存在这样的点P ,使得PQF1F2为平行四边形?说明理由(答案用关于离心率e 的等式或不等式来表示). 四、(20分)设a0=1,a1=2,an+1=2an1+n ,n =1,2,3,….试求出an 的表达式(答案用有限个关于n 的式子相加的形式表示,且项数与n 无关). 五、(20分)试求出所有的有序整数对(a,b),使得关于x 的方程x4+(2b -a2)x2-2ax +b2-1=0的各个根均是整数.第二试一、(50分)点P 在△ABC 内,且∠BAP =∠CAP ,连结BP 并延长交AC 于点Q .设∠BAC=60°,且PQPC BP 111=+. 求证:P 是△ABC 的内心.二、(50分)设正数a 、b 满足2b a >且使得关于x 的不等式1-x ≥b x a -+1总有实数解.试求f(a,b)=a2-3ab +b2的取值范围. 三、(50分)试求出正整数k 的最小可能值,使得下述命题成立:对于任意的k 个整数a1,a2,…,ak (允许相等),必定存在相应的k 的整数x1,x2,…,xk (也允许相等),且|xi|≤2(i =1,2,…,k),|x1|+|x2|+…+|xk|≠0,使得整除x1a1+x2a2+…+xkak .参考答案 第一试二、填空题:11、⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡65,323,6ππππ ;2、5615±;3、⎪⎭⎫⎝⎛--21,6163;4、-1;5、;6、2102.三、⎪⎭⎫ ⎝⎛∈1,21e .四、a2n =2n+2-2n -3;a2n+1=3×2n+1-2n -4.五、(a,b)=(2l―1,l2―l―1)(∀l ∈Z)第二试 一、证略(提示:将条件变形为PQPCPB PA PA PC =+⋅1,然后应用正弦定理,进行三角变换,得∠BPC =120°,利用同一法即证);二、(-∞,-1). 三、kmin =7.全国高中数学联赛模拟试题(四)(命题人:刘康宁)第一试一、 选择题(每小题6分,共36分):1、函数()aa x x a x f -+-=22是奇函数的充要条件是(A )-1≤a <0或0<a≤1 (B )a≤-1或a≥1 (C )a >0 (D )a <02、已知三点A(-2,1)、B(-3,-2)、C(-1,-3)和动直线l :y =kx .当点A 、B 、C 到直线l 的距离的平方和最小时,下列结论中,正确的是 (A )点A 在直线l 上 (B )点B 在直线l 上 (C )点C 在直线l 上 (C )点A 、B 、C 均不在直线l 上 3、如图,已知正方体ABCDA1B1C1D1,过顶点A1在空间作直线l ,使l 与直线AC 和BC1所成的角都等于60°.这样的直线l 可以做(A )4条 (B )3条(C )2条 (D )1条4、整数的100200C=n 两位质因数的最大值是(A )61(B )67(C )83(D )975、若正整数a 使得函数()ax x x f y 213-+==的最大值也是整数,则这个最大值等于 (A )3 (B )4 (C )7 (D )86、在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,12,14,16,17,….则在这个红色子数列中,由1开始的第个数是 (A )3844 (B )3943 (C )3945 (D )4006二、 填空题(每小题9分,共54分):1、在复平面上,Rt △ABC 的顶点A 、B 、C 分别对应于复数z +1、2z +1、(z +1)2,A 为直角顶点,且|z|=2.设集合M ={m|zm ∈R ,m ∈N+},P ={x|x =m 21,m ∈M}.则集合P 所有元素之和等于.2、函数f(x)=|sinx|+sin42x +|cosx|的最大值与最小值之差等于.3、关于x 的不等式的解集是一些区间的并集,且这些区间的长度的和小于4,则实数a 的取值范围是.4、银行计划将某项资金的40%给项目M 投资一年,其余的60%给项目N .预计项目M 有可能获得19%到24%的年利润,N 有可能获得29%到34%的年利润.年终银行必须回笼资金,同时按一定的回扣率支付给储户.为使银行的年利润不少于给M 、N 总投资的10%而不大于总投资的15%,则给储户的回扣率的最小值是.5、已知点(a,b)在曲线arcsinx =arccosy 上运动,且椭圆ax2+by2=1在圆x2+y2=32的外部(包括二者相切的情形).那么,arcsinb 的取值范围是.6、同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a ,球的半径为R .设两个正三棱锥的侧面与底面所成的角分别为、,则tan(+)的值是.三、 (20分)△ABC 的三边长a 、b 、c (a≤b≤c )同时满足下列三个条件 (i )a 、b 、c 均为整数;(ii )a 、b 、c 依次成等比数列; (iii )a 与c 中至少有一个等于100.求出(a,b,c)的所有可能的解.四、 (20分)在三棱锥DABC 中,AD =a ,BD =b ,AB =CD =c ,且∠DAB +∠BAC +∠DAC =180°,∠DBA +∠ABC +∠DBC =180°.求异面直线AD 与BC 所成的角.五、 (20分)设正系数一元二次方程ax2+bx +c =0有实根.证明:(1) max{a,b,c}≥94(a +b +c);(2) min{a,b,c}≤41(a +b +c).第二试一、(50分)已知△ABC 的外角∠EAC 平分线与△ABC 的外接圆交于D ,以CD 为直径的圆分别交BC 、CA 于点P 、Q .求证:线段PQ 平分△ABC 的周长.二、(50分)已知x0=1,x1=3,xn+1=6xn -xn1(n ∈N+). 求证:数列{xn}中无完全平方数.三、(50分)有名运动员,号码依次为1,2,3,…,.从中选出若干名运动员参加仪仗队,但要使剩下的运动员中没有一个人的号码数等于另外两人的号码数的乘积.那么被选为仪仗队的运动员至少能有多少人?给出你的选取方案,并简述理由.参考答案 第一试二、填空题: 1、71;2、2;3、[1,3];4、10%;5、⎥⎦⎤⎝⎛⎪⎭⎫⎢⎣⎡3,44,6ππππ ;6、aR334-. 三、可能解为(100,100,100),(100,110,121),(100,120,144),(100,130,169),(100,140,196),(100,150,225),(100,160,256),(49,70,100),(64,80,100),(81,90,100),(100,100,100). 四、222arccosac b -.五(1)证略(提示:令a +b +c =t ,分b≥t 94和b <t 94讨论); (2)证略(提示:分a≤t 41和a >t 41讨论); 第二试一、证略;二、证略(提示:易由特征根法得xn =()()⎥⎦⎤⎢⎣⎡-++nn22322321,设yn =()()⎥⎦⎤⎢⎣⎡--+nn223223221,于是1222=-n n y x,原结论等价于方程x4-2y2=1无整数解,由数论只是可证).三、43.全国高中数学联赛模拟试题(五)(命题人:罗增儒)第一试一、 选择题:(每小题6分,共36分)1、空间中n (n≥3)个平面,其中任意三个平面无公垂面.那么,下面四个结论(1) 没有任何两个平面互相平行;(2) 没有任何三个平面相交于一条直线; (3) 平面间的任意两条交线都不平行;(4) 平面间的每一条交线均与n2个平面相交. 其中,正确的个数为(A )1 (B )2 (C )3 (D )42、若函数y=f(x)在[a,b]上的一段图像可以近似地看作直线段,则当c ∈(a,b)时,f(c)的近似值可表示为(A )()()2b f a f +(B )⎪⎭⎫⎝⎛+2b a f (C )()()()()()a b b f a c a f c b --+-(D )()()()[]a f b f ab ac a f ----3、设a >b >c ,a+b+c=1,且a2+b2+c2=1,则(A )a+b >1 (B )a+b=1 (C )a+b <1 (D )不能确定,与a 、b 的具体取值有关4、设椭圆12222=+b y a x 的离心率23=e ,已知点⎪⎭⎫⎝⎛23,0P 到椭圆上的点的最远距离是47,则短半轴之长b= (A )161 (B )81(C )41(D )21 5、S={1,2,…,},A 是S 的三元子集,满足:A 中的所有元素可以组成等差数列.那么,这样的三元子集A 的个数是(A )32003C(B )2100221001C C + (C )2100221001A A +(D )32003A6、长方体ABCDA1B1C1D1,AC1为体对角线.现以A 为球心,AB 、AD 、AA1、AC1为半径作四个同心球,其体积依次为V1、V2、V3、V4,则有(A )V4<V1+V2+V3 (B )V4=V1+V2+V3(C )V4>V1+V2+V3 (D )不能确定,与长方体的棱长有关二、 填空题:(每小题9分,共54分)1、已知k ==βαβαcos cos sin sin 33,则k 的取值范围为. 2、等差数列{an}的首项a1=8,且存在惟一的k 使得点(k,ak)在圆x2+y2=102上,则这样的等差数列共有个.3、在四面体PABC 中,PA=PB=a ,PC=AB=BC=CA=b ,且a <b ,则ba的取值范围为.4、动点A 对应的复数为z=4(cos +isin ),定点B 对应的复数为2,点C 为线段AB 的中点,过点C 作AB 的垂线交OA 与D ,则D 所在的轨迹方程为.5、∑=200313k k被8所除得的余数为.6、圆周上有100个等分点,以这些点为顶点组成的钝角三角形的个数为.三、 (20分)已知抛物线y2=2px(p >0)的一条长为l 的弦AB .求AB 中点M 到y 轴的最短距离,并求出此时点M 的坐标.四、 (20分)单位正方体ABCDA1B1C1D1中,正方形ABCD 的中心为点M ,正方形A1B1C1D1的中心为点N ,连AN 、B1M . (1)求证:AN 、B1M 为异面直线; (2)求出AN 与B1M 的夹角.五、 (20分)对正实数a 、b 、c .求证:cabc b ac b a bc a 888222+++++≥9. 第二试一、 (50分)设ABCD 是面积为2的长方形,P 为边CD 上的一点,Q 为△PAB 的内切圆与边AB 的切点.乘积PA·PB 的值随着长方形ABCD 及点P 的变化而变化,当PA·PB 取最小值时, (1)证明:AB≥2BC ; (2)求AQ·BQ 的值.二、 (50分)给定由正整数组成的数列⎩⎨⎧+===++nn n a a a a a 12212,1(n≥1). (1)求证:数列相邻项组成的无穷个整点(a1,a2),(a3,a4),…,(a2k1,a2k),…均在曲线x2+xyy2+1=0上.(2)若设f(x)=xn+xn1anxan1,g(x)=x2x1,证明:g(x)整除f(x).三、 (50分)我们称A1,A2,…,An 为集合A 的一个n 分划,如果 (1)A A A A n = 21; (2)∅≠j i A A ,1≤i <j≤n .求最小正整数m ,使得对A ={1,2,…,m}的任意一个13分划A1,A2,…,A13,一定存在某个集合Ai(1≤i≤13),在Ai 中有两个元素a 、b 满足b <a≤89b . 参考答案 第一试二、填空题:1、⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝⎛--1,2121,1;2、17;3、⎪⎭⎫ ⎝⎛-1,32;4、()134122=+-y x ;5、4;6、117600.三、⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--≥-⎪⎪⎭⎫⎝⎛<<2222,2,2,20,8,20,8p pl p l M p l p l p l M p l pl .四、(1)证略;(2)32arccos .五、证略.第二试一、(1)证略(提示:用面积法,得PA·PB 最小值为2,此时∠APB =90°);(2)AQ·BQ=1.二、证略(提示:用数学归纳法).三、m=117.全国高中数学联赛模拟试题(六) (命题人:秦永 苟春鹏)第一试一、 选择题:(每小题6分,共36分)1、在复平面上,非零复数z1、z2在以i 对应的点为圆心,1为半径的圆上,21z z ⋅的实部为零,argz1=6π,则z2= (A )i 2323+-(B )i 2323- (C )i 2323+-(D )i 2323- 2、已知函数()⎪⎭⎫ ⎝⎛+-=21log 2x ax x f a 在[1,2]上恒正,则实数a 的取值范围是(A )⎪⎭⎫⎝⎛85,21(B )⎪⎭⎫⎝⎛+∞,23 (C )⎪⎭⎫ ⎝⎛+∞⎪⎭⎫⎝⎛,2385,21(D )⎪⎭⎫⎝⎛+∞,21 3、已知双曲线过点M(2,4),N(4,4),它的一个焦点为F1(1,0),则另一个焦点F2的轨迹方程是(A )()()116425122=-+-y x (y≠0)或x=1(y≠0)(B )()()125416122=-+-y x (x≠0)或x=1(y≠0)(C )()()116125422=-+-y x (y≠0)或y=1(x≠0)(D )()()125116422=-+-y x (x≠0)或y=1(x≠0)4、已知正实数a 、b 满足a+b=1,则b a M 2112+++=的整数部分是(A )1 (B )2 (C )3 (D )45、一条笔直的大街宽是40米,一条人行道穿过这条大街,并与大街成某一角度,人行道的宽度是15米,长度是50米,则人行道间的距离是 (A )9米 (B )10米 (C )12米 (D )15米 6、一条铁路原有m 个车站,为适应客运需要新增加n 个车站(n >1),则客运车票增加了58种(注:从甲站到乙站需要两种不同的车票),那么原有车站的个数是 (A )12 (B )13 (C )14 (D )15二、 填空题:(每小题6分,共36分)1、长方形ABCD 的长AB 是宽BC 的32倍,把它折成无底的正三棱柱,使AD 与BC 重合折痕线EF 、GH 分别交原对角线AC 于M 、N ,则折后截面AMN 与底面AFH 所成的角是.2、在△ABC 中,a 、b 、c 是角A 、B 、C 的对边,且满足a2+b2=2c2,则角C 的最大值是.3、从盛满a 升(a >1)纯酒精的容器里倒出1升,然后填满水,再倒出1升混合溶液后又用水填满,如此继续下去.则第n 次操作后溶液的浓度是.4、已知函数f(x)与g(x)的定义域均为非负实数集,对任意x≥0,规定f(x)*g(x)=min{f(x),g(x)}.若f(x)=3x ,g(x)=52+x ,则f(x)*g(x)的最大值为.5、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有不同的取法.6、若实数a >0,则满足a5a3+a=2的a 值属于区间:①()63,0;②()663,2;③()+∞,36;④()32,0.其中正确的是.三、 (20分)求证:经过正方体中心的任一截面的面积不小于正方体的一个侧面的面积四、 (20分)直线Ax+Bx+C=0(A·B·C≠0)与椭圆b2x2+a2y2=a2b2相交于P 、Q 两点,O为坐标原点,且OP ⊥OQ .求证:2222222BA b a C b a ++=. 五、 (20分)某新建商场建有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品的总金额)为60万元,根据经验,各部商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润如表2.商场将计划日营业额分配给三个经营部,同时适当安排各部的营业员人数,若商场预计每日的总利润为c (万元)且满足19≤c≤19.7,又已知商场分配给经营部的日营业额均为正整数万元,问这个商场怎样分配日营业额给三个部?各部分别安排多少名售货员?表1 各部每1万元营业额所需人数表部门 人数 百货部 5 服装部 4家电部2部门 利润 百货部 0.3万元 服装部 0.5万元 家电部0.2万元第二试一、 (50分)矩形ABCD 的边AD=·AB ,以AB 为直径在矩形之外作半圆,在半圆上任取不同于A 、B 的一点P ,连PC 、PD 交AB 于E 、F ,若AE2+BF2=AB2,试求正实数的值.二、 (50分)若ai ∈R+(i=1,2,…,n ),∑==ni iaS 1,且2≤n ∈N .求证:∑=-nk kk a S a 13≥∑=-n k k a n 1211. 三、 (50分)无穷数列{cn}可由如下法则定义:cn+1=|1|12cn||,而0≤c1≤1.(1)证明:仅当c1是有理数时,数列自某一项开始成为周期数列.(2)存在多少个不同的c1值,使得数列自某项之后以T 为周期(对于每个T=2,3,…)?参考答案 第一试题号 1 2 3 4 5 6 答案 ACABCC二、填空题:1、6π; 2、3π;3、na ⎪⎭⎫ ⎝⎛-11;4、132-;5、2500;6、③④. 三、证略. 四、证略.五、8,23,29或10,20,30(万元),对应40,92,58或50,80,60(人).第二试一、22=λ; 二、证略.三、 (1)证略. (2)无穷个.全国高中数学联赛模拟试题(七)(选题人:李潜)第一试一、选择题:(每小题6分,共36分)7、 a 、b 是异面直线,直线c 与a 所成的角等于c 与b 所成的角,则这样的直线c 有(A )1条 (B )2条 (C )3条 (D )无数条8、 已知f(x)是R 上的奇函数,g(x)是R 上的偶函数,若f(x)g(x)=x2+2x+3,则f(x)+g(x)=(A )x2+2x3 (B )x2+2x3 (C )x22x+3 (D )x22x+39、已知△ABC ,O 为△ABC 内一点,∠AOB=∠BOC=∠COA=32π,则使AB+BC+CA≥m(AO+BO+CO)成立的m 的最大值是 (A )2(B )35(C )3(D )23 10、 设x=0.820.5,y=sin1,z=log37则x 、y 、z 的大小关系是(A )x <y <z (B )y <z <x (C )z <x <y (D )z <y <x11、整数⎥⎦⎤⎢⎣⎡+31010951995的末尾两位数字是(A )10 (B )01 (C )00 (D )20 12、 设(a,b)表示两自然数a 、b 的最大公约数.设(a,b)=1,则(a2+b2,a3+b3)为(A )1 (B )2 (C )1或2 (D )可能大于2二、填空题:(每小题9分,共54分)1、若f(x)=x10+2x92x82x7+x6+3x2+6x+1,则f(21)=.2、设F1、F2是双曲线x2y2=4的两个焦点,P 是双曲线上任意一点,从F1引∠F1PF2平分线的垂线,垂足为M ,则点M 的轨迹方程是. 3、给定数列{xn},x1=1,且nn n x x x -+=+3131,则x1999x601=.4、正方体ABCDA1B1C1D1的棱长为1,E 是CD 中点,F 是BB1中点,则四面体AD1EF 的体积是.5、在坐标平面上,由条件⎪⎩⎪⎨⎧+-≤--≥321x y x y 所限定的平面区域的面积是.6、12个朋友每周聚餐一次,每周他们分成三组,每组4人,不同组坐不同的桌子.若要求这些朋友中任意两个人至少有一次同坐一张桌子,则至少需要周.三、(20分)已知椭圆12222=+by a x 过定点A(1,0),且焦点在x 轴上,椭圆与曲线|y|=x 的交点为B 、C .现有以A 为焦点,过B 、C 且开口向左的抛物线,抛物线的顶点坐标M(m,0).当椭圆的离心率e 满足1322<<e ,求实数m 的取值范围. 四、(20分)a 、b 、c 均为实数,a≠b ,b≠c ,c≠a .证明:23≤ac c b b a b a c a c b c b a -+-+--++-++-+222<2. 五、(20分) 已知f(x)=ax4+bx3+cx2+dx ,满足 (i )a 、b 、c 、d 均大于0;(ii )对于任一个x ∈{2,1,0,1,2},f(x)为整数; (iii )f(1)=1,f(5)=70.试说明,对于每个整数x ,f(x)是否为整数.第二试一、(50分)设K 为△ABC 的内心,点C1、B1分别为边AB 、AC 的中点,直线AC 与C1K 交于点B2,直线AB 于B1K 交于点C2.若△AB2C2于△ABC 的面积相等,试求∠CAB .二、(50分)设5sini 5cosππ+=w ,f(x)=(xw)(xw3)(xw7)(xw9).求证:f(x)为一整系数多项式,且f(x)不能分解为两个至少为一次的整系数多项式之积.三、(50分)在圆上有21个点.求在以这些点为端点组成的所有的弧中,不超过120°的弧的条数的最小值.参考答案 第一试二、填空题:1、4;2、x2+y2=4;3、0;4、245;5、16;6、5.三、⎪⎪⎭⎫⎝⎛+423,1. 四、证略.五、是.第二试一、60°; 二、证略. 三、100.全国高中数学联赛模拟试题(八)(选题人:李潜)第一试一、选择题:(每小题6分,共36分)1、设logab 是一个整数,且2log log 1log a b bb a a>>,给出下列四个结论 ①21a b b>>;②logab+logba=0; ③0<a <b <1;④ab1=0. 其中正确结论的个数是 (A )1 (B )2(C )3(D )42、若△ABC 的三边长a 、b 、c 满足⎩⎨⎧=+-+=---03220222c b a c b a a ,则它的最大内角度数是(A )150°(B )120°(C )90°(D )60°3、定长为l (a b l 22>)的线段AB 的两端点都在双曲线12222=-by a x (a >0,b >0),则AB 中点M 的横坐标的最小值为 (A )222ba al + (B )222ba l a ++(C )()2222ba a l a +- (D )()2222ba a l a ++4、在复平面上,曲线z4+z=1与圆|z|=1的交点个数为(A )0 (B )1 (C )2(D )35、设E={(x,y)|0≤x≤2,0≤y≤2}、F={(x,y)|x≤10,y≥2,y≤x4}是直角坐标平面上的两个点集,则集合G=()()⎭⎬⎫⎩⎨⎧∈∈⎪⎭⎫⎝⎛++F y x E y x y y x x 22112121,,,2,2所组成的图形面积是(A )6 (B )2 (C )6.5 (D )76、正方形纸片ABCD ,沿对角线AC 对折,使D 在面ABC 外,这时DB 与面ABC所成的角一定不等于 (A )30° (B )45° (C )60° (D )90°二、填空题:(每小题9分,共54分)1、已知24πα=,则αααααααααααcos sin cos 2cos sin 2cos 3cos sin 3cos 4cos sin +++的值等于.2、2004321132112111+++++++++++=. 3、在Rt △ABC 中,AB =AC ,以C 为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB 内,且椭圆过A 、B 点,则这个椭圆的离心率等于.4、从{1,2,3,…,20}中选出三个数,使得没有两个数相邻,有种不同的选法.5、设a 、b 均为正数,且存在复数z 满足⎪⎩⎪⎨⎧≤+=⋅+1iz b a z z z ,则ab 的最大值等于.6、使不等式137158<+<k n n 对惟一的一个整数k 成立的最大正整数n 为.三、(20分)已知实数x 、y 满足x2+y2≤5.求f(x,y)=3|x+y|+|4y+9|+|7y3x18|的最大值与最小值.四、(20分)经过点M(2,1)作抛物线y2=x 的四条弦PiQi(i=1,2,3,4),且P1、P2、P3、P4四点的纵坐标依次成等差数列.求证:44332211MQ M P MQ M P MQ MP MQ M P ->-. 五、(20分)n 为正整数,r >0为实数.证明:方程xn+1+rxnrn+1=0没有模为r 的复数根.第二试一、(50分)设C(I)是以△ABC 的内心I 为圆心的一个圆,点D 、E 、F 分别是从I 出发垂直于边BC 、CA 和AB 的直线C(I)的交点.求证:AD 、BE 和CF 三线共点.二、(50分) 非负实数x 、y 、z 满足x2+y2+z2=1.求证:1≤xyzzx y yz x +++++111≤2.三、(50分)对由n 个A ,n 个B 和n 个C 排成的行,在其下面重新定义一行(比上面一行少一个字母),若其头上的两个字母不同,则在该位置写上第三个字母;若相同,则写上该字母.对新得到的行重复上面的操作,直到变为一个字母为止.下面给出了n=2的一个例子. A C B C B A B A A A C C A A B B A C C B A求所有的正整数n ,使得对任意的初始排列,经上述操作后,所得的大三角形的三个顶点上的字母要么全相同,要么两两不同.参考答案 第一试二、填空题:1、33; 2、20054008; 3、36-; 4、816;5、81;6、112.三、最大值5627+,最小值10327-. 四、证略. 五、证略.第二试一、证略; 二、证略. 三、 n=1.全国高中数学联赛模拟试题(九)(命题人:葛军)第一试一、选择题:(每小题6分,共36分)1、已知n 、s 是整数.若不论n 是什么整数,方程x28nx+7s=0没有整数解,则所有这样的数s 的集合是 (A )奇数集 (B )所有形如6k+1的数集 (C )偶数集 (D )所有形如4k+3的数集2、某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱.为满足上述要求,至少应该有货物的箱数是(A )16966 (B )16975 (C )16984(D )170093、非常数数列{ai}满足02121=+-++i i i i a a a a ,且11-+≠i i a a ,i=0,1,2,…,n .对于给定的自然数n ,a1=an+1=1,则∑-=1n i ia等于(A )2(B )1(C )1(D )04、已知、是方程ax2+bx+c=0(a 、b 、c 为实数)的两根,且是虚数,βα2是实数,则∑=⎪⎪⎭⎫⎝⎛59851k kβα的值是(A )1 (B )2 (C )0(D )3i5、已知a+b+c=abc ,()()()()()()abb a ac c a bc c b A 222222111111--+--+--=,则A的值是 (A )3(B )3(C )4(D )46、对xi ∈{1,2,…,n},i=1,2,…,n ,有()211+=∑=n n x ni i ,x1x2…xn=n !,使x1,x2,…,xn ,一定是1,2,…,n 的一个排列的最大数n 是 (A )4 (B )6 (C )8 (D )9二、填空题:(每小题9分,共54分)1、设点P 是凸多边形A1A2…An 内一点,点P 到直线A1A2的距离为h1,到直线A2A3的距离为h2,…,到直线An1An 的距离为hn1,到直线AnA1的距离为hn .若存在点P 使nn h a h a h a +++ 2211(ai=AiAi+1,i=1,2,…,n1,an=AnA1)取得最小值,则此凸多边形一定符合条件.2、已知a 为自然数,存在一个以a 为首项系数的二次整数系数的多项式,它有两个小于1的不同正根.那么,a 的最小值是.3、已知()2cos 22sin 2,22++++=θθθa a a a a F ,a 、∈R ,a≠0.那么,对于任意的a 、,F(a,)的最大值和最小值分别是.4、已知t >0,关于x 的方程为22=-+x t x ,则这个方程有相异实根的个数情况是.5、已知集合{1,2,3,…,3n1,3n},可以分为n 个互不相交的三元组{x,y,z},其中x+y=3z ,则满足上述要求的两个最小的正整数n 是.6、任给一个自然数k ,一定存在整数n ,使得xn+x+1被xk+x+1整除,则这样的有序实数对(n,k)是(对于给定的k ).三、(20分)过正方体的某条对角线的截面面积为S ,试求最小最大S S 之值.四、(20分)数列{an}定义如下:a1=3,an=13-n a (n≥2).试求an (n≥2)的末位数.五、(20分) 已知a 、b 、c ∈R+,且a+b+c=1.证明:2713≤a2+b2+c2+4abc <1. 第二试一、(50分)已知△ABC 中,内心为I ,外接圆为⊙O ,点B 关于⊙O 的对径点为K ,在AB 的延长线上取点N ,CB 的延长线上取M ,使得MC=NA=s ,s 为△ABC 的半周长.证明:IK ⊥MN .二、(50分)M 是平面上所有点(x,y)的集合,其中x 、y 均是整数,且1≤x≤12,1≤y≤13.证明:不少于49个点的M 的每一个子集,必包含一个矩形的4个顶点,且此矩形的边平行于坐标轴.三、(50分)实系数多项式f(x)=x3+ax2+bx+c 满足b <0,ab=9c .试判别此多项式是否有三个不同的实根,说明理由.参考答案 第一试二、填空题: 1、该凸多边形存在内切圆; 2、5;3、32+,32-;4、9;5、5,8;6、(k,k)或(3m+2,2)(m ∈N+). 三、332. 四、7. 五、证略.第二试一、证略;二、证略. 三、 有.全国高中数学联赛模拟试题(十)(命题人:杨建忠 审题人:李潜)第一试一、选择题:(每小题6分,共36分)1、设集合M={2,0,1},N={1,2,3,4,5},映射f :M→N 使对任意的x ∈M ,都有x+f(x)+xf(x)是奇数,则这样的映射f 的个数是 (A )45 (B )27 (C )15 (D )112、已知sin2=a ,cos2=b ,0<<4π,给出⎪⎭⎫ ⎝⎛+4tan πθ值的五个答案:①a b-1; ②b a-1;③ab+1; ④ba+1; ⑤11-++-b a b a . 其中正确的是:(A )①②⑤ (B )②③④ (C )①④⑤ (D )③④⑤3、若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是 (A )64 (B )66 (C )68 (D )704、递增数列1,3,4,9,10,12,13,…,由一些正整数组成,它们或者是3的幂,或者是若干个3的幂之和,则此数列的第100项为 (A )729 (B )972 (C )243 (D )9815、14951C C C C +++++m n n n n (其中⎥⎦⎤⎢⎣⎡-=41n m ,[x]表示不超过x 的最大整数)的值为 (A )4cos2πn n(B )4sin2πn n(C )⎪⎭⎫ ⎝⎛+-4cos 22211πn nn (D )⎪⎭⎫ ⎝⎛+-4sin 22211πn nn 6、一个五位的自然数abcde 称为“凸”数,当且仅当它满足a <b <c ,c >d >e (如12430,13531等),则在所有的五位数中“凸”数的个数是(A )8568 (B )2142 (C )2139(D )1134二、填空题:(每小题9分,共54分)1、过椭圆12322=+y x 上任意一点P ,作椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ=PH (≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是.2、已知异面直线a 、b 所成的角为60°,过空间一点P 作与a 、b 都成角(0<<90°)的直线l ,则这样的直线l 的条数是f()=.3、不等式()92211422+<+-x xx 的解集为.4、设复数z 满足条件|zi|=1,且z≠0,z≠2i ,又复数使得i2i 2-⋅-z zωω为实数,则复数2的辐角主值的取值范围是.5、设a1,a2,…,a 均为正实数,且21212121200221=++++++a a a ,则a1a2…a 的最小值是.6、在一个由十进制数字组成的数码中,如果它含有偶数个数字8,则称它为“优选”数码(如12883,787480889等),否则称它为“非优选”数码(如2348756,958288等),则长度不超过n (n 为自然数)的所有“优选”数码的个数之和为.三、(20分)已知数列{an}是首项为2,公比为21的等比数列,且前n 项和为Sn .(1) 用Sn 表示Sn+1; (2) 是否存在自然数c 和k ,使得cS cS k k --+1>2成立. 四、(20分)设异面直线a 、b 成60°角,它们的公垂线段为EF ,且|EF|=2,线段AB 的长为4,两端点A 、B 分别在a 、b 上移动.求线段AB 中点P 的轨迹方程.五、(20分)已知定义在R+上的函数f(x)满足(i )对于任意a 、b ∈R+,有f(ab)=f(a)+f(b); (ii )当x >1时,f(x)<0; (iii )f(3)=1.现有两个集合A 、B ,其中集合A={(p,q)|f(p2+1)f(5q)2>0,p 、q ∈R+},集合B={(p,q)|f(q p )+21=0,p 、q ∈R+}.试问是否存在p 、q ,使∅≠B A ,说明理由.第二试一、(50分)如图,AM 、AN 是⊙O 的切线,M 、N 是切点,L 是劣弧MN 上异于M 、N 的点,过点A 平行于MN 的直线分别交ML 、NL 于点Q 、P .若POQ O S S △⊙32π=,求证:∠POQ=60°.二、(50分)已知数列a1=20,a2=30,an+2=3an+1an (n≥1).求所有的正整数n ,使得1+5anan+1是完全平方数.三、(50分)设M 为坐标平面上坐标为(p·,7p·)的点,其中p 为素数.求满足下列条件的直角三角形的个数:(1) 三角形的三个顶点都是整点,而且M 是直角顶点; (2) 三角形的内心是坐标原点.参考答案 第一试二、填空题:1、⎪⎪⎭⎫⎢⎣⎡1,33; 2、()⎪⎪⎪⎩⎪⎪⎪⎨⎧︒<<︒︒=︒<<︒︒=︒<<︒=900,460,36030,230,1300,0ααααααf ;3、⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡-845,00,21 ;4、⎪⎭⎫⎢⎣⎡-ππ,34arctan;5、4002;6、⎪⎪⎭⎫⎝⎛-+++63142789102111n n . 三、(1)2211+=+n n S S ;(2)不存在.四、1922=+y x . 五、不存在.第二试PQ。
2023-2024学年江苏省南通市高一(上)期末数学试卷【答案版】
2023-2024学年江苏省南通市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若扇形的圆心角为2rad,半径为1,则该扇形的面积为()A.12B.1C.2D.42.已知全集U=R,集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则集合A∩(∁U B)=()A.{x|﹣1≤x≤3}B.{x|x≤3或x≥4}C.{x|﹣2≤x<﹣1}D.{x|﹣2≤x<4}3.函数f(x)=4x+9x+1,x∈(﹣1,+∞)的最小值为()A.6B.8C.10D.124.若角θ的终边经过点P(1,3),则sinθcosθ+cos2θ=()A.−65B.−25C.25D.655.函数f(x)=2log3x+2x﹣5的零点所在区间是()A.(0,1)B.(1,32)C.(32,2)D.(2,3)6.设函数f(x)=sin(ωx+π4)(ω>0)的最小正周期为T.若2π<T<3π,且对任意x∈R,f(x)+f(π3)≥0恒成立,则ω=()A.23B.34C.45D.567.已知函数f(x)的定义域为R,y=2f(x)﹣sin x是偶函数,y=f(x)﹣cos x是奇函数,则[f(x)]2+[f(π2+x)]2=()A.5B.2C.32D.548.已知函数f(x)=lg|x|﹣cos x,记a=f(log0.51.5),b=f(1.50.5),c=f(sin(1﹣π)),则()A.a<b<c B.a<c<b C.c<b<a D.c<a<b二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.下列各式中,计算结果为1的是()A.sin75°cos15°+cos75°sin15°B.cos222.5°﹣sin222.5°C.√3−tan15°1+√3tan15°D.tan22.5°1−tan222.5°10.若a>b>0,c>d>0,则()A .a ﹣c >b ﹣dB .a (a +c )>b (b +d )C .d a+d<c b+cD .b+d b+c<a+d a+c11.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =x −23B .y =2|x |+1C .y =x 2﹣x ﹣2D .y =2x ﹣2﹣x12.如图,弹簧挂着的小球做上下振动,小球的最高点与最低点间的距离为10(单位:cm ),它在t (单位:s )时相对于平衡位置(静止时的位置)的高度hcm 由关系式ℎ=Asin(πt +π4)确定,其中A >0,t ≥0.则下列说法正确的是( )A .小球在往复振动一次的过程中,从最高点运动至最低点用时2sB .小球在往复振动一次的过程中,经过的路程为20cmC .小球从初始位置开始振动,重新回到初始位置时所用的最短时间为12sD .小球从初始位置开始振动,若经过最高点和最低点的次数均为10次,则所用时间的范围是[2014,2114)三、填空题:本题共4小题,每小题5分,共20分。
2022年江苏省高考数学押题试卷及答案解析
2022年江苏省高考数学押题试卷本试卷满分150分。
考试用时120分钟。
注意事项:1. 答卷前,考生务必将自己的市(县、区)、学校、班级、姓名、考场号、座位号和考生号填写在答题卡上。
将条形码横贴在每张答题卡右上角“条形码粘贴处”。
2. 作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新答案; 不准使用铅笔和涂改液。
不按以上要求作答无效。
4. 考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、单选题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x|x+1x−4≤0},B ={x |﹣1<x <3},则A ∩(∁R B )=( ) A .{x |3≤x ≤4或x =﹣1} B .{x |3≤x ≤4} C .{x |3≤x <4或x =﹣1}D .{x |3≤x <4}2.已知复数z 满足(3+i )•z =1+7i ,则|z ﹣3i |=( ) A .√2B .2√2C .√17D .√263.设0<a <b ,则下列不等式中正确的是( ) A .a <b <√ab <a+b2 B .a <√ab <a+b2<bC .a <√ab <b <a+b2D .√ab <a <a+b2<b 4.古希腊数学家阿基米德在《论球和圆柱》中,运用穷竭法证明了与球的面积和体积相关的公式.其中包括他最得意的发现﹣“圆柱容球”.设圆柱的高为2,且圆柱以球的大圆(球大圆为过球心的平面和球面的交线)为底,以球的直径为高.则球的表面积与圆柱的体积之比为( ) A .4:3 B .3:2C .2:1D .8:35.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过F 作x 轴的垂线交椭圆C 于A ,B 两点,若△OAB 是直角三角形(O 为坐标原点),则C 的离心率为( ) A .√5−2B .√3−1C .√5−12D .√3−126.已知(1+x )+2(1+x )2+3(1+x )3+⋯+10(1+x )10=a 0+a 1x +a 2x 2+⋯+a 10x 10,则a 7=( )A .9C 113B .283C 113C .293C 113D .10C 1137.在新的高考改革方案中规定:每位考生的高考成绩是按照3(语文、数学、英语)+2(物理、历史)选1+4(化学、生物、地理、政治)选2的模式设置的,则在选考的科目中甲、乙两位同学恰有两科相同的概率为( ) A .14B .13C .512D .128.设函数f (x )=x sin x +cos x ,则下列四个结论中正确的是( ) ①函数f (x )是偶函数;②曲线y =f (x )在x =0处的切线方程为y =1; ③当x ∈[π2,2π]时,f (x )单调递减;④关于x 的方程x sin x +cos x =a 在x ∈[0,2π]只有两个实根,则实数a 的取值范围为[−3π2,π2]. A .①② B .①②④ C .①③④ D .③④二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列说法中正确的是( ) A .AB →+BA →=0→B .若|a →|=|b →|且a →∥b →,则a →=b →C .若a →、b →非零向量且|a →+b →|=|a →−b →|,则a →⊥b →D .若a →∥b →,则有且只有一个实数λ,使得b →=λa →10.下列说法正确的有( )A .X ~B (n ,13),且D (X )=2,则n =6B .设有一个回归方程y =3﹣5x ,变量x 增加1个单位时,y 平均减少5个单位C .线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱D .在某项测量中,测盘结果ξ服从正态分布N (1,σ2)(σ>0),则P (ξ≤1)=0.5 11.已知抛物线x 2=12y 的焦点为F ,M (x 1,y 1),N (x 2,y 2)是抛物线上两点,则下列结论正确的是( )A .点F 的坐标为(18,0)B .若直线MN 过点F ,则x 1x 2=−116 C .若MF →=λNF →,则|MN |的最小值为12D .若|MF |+|NF |=32,则线段MN 的中点P 到x 轴的距离为5812.如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,O 为正方体的中心,M 为DD 1的中点,F 为侧面正方形AA 1D 1D 内一动点,且满足B 1F ∥平面BC 1M ,则( )A .若P 为正方体表面上一点,则满足△OP A 的面积为√22的点有12个 B .动点F 的轨迹是一条线段C .三棱锥F ﹣BC 1M 的体积是随点F 的运动而变化的D .若过A ,M ,C 1三点作正方体的截面Ω,Q 为截面Ω上一点,则线段A 1Q 长度的取值范围为[2√63,2√2] 三、填空题:本大题共4小题,每小题5分,共20分.13.已知数列{a n }为等差数列,数列{a n }的前5项和S 5=20,a 5=6,则a 10= . 14.函数f(x)=x +2x+1的图象在x =1处的切线方程为 . 15.已知a →,b →,c →是三个不同的非零向量,若|a →|=|c →|且cos <a →,b →>=cos <c →,b →>,则称c →是a →关于b →的对称向量.已知向量a →=(2,3),b →=(1,2),则a →关于b →的对称向量为 .(填坐标形式).16.已知点P 是曲线x 2=4y 上任意一点,过点P 向x 轴引垂线,垂足为H ,点Q 是曲线y =lnx 上任意一点,则|PH |+|PQ |的最小值为 .四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知{a n}为正项等比数列,且a1,2a3+2a5,a3成等差数列(1)求数列{a n}的公比;(2)若对任意n∈N*,a1+a2+…+a n<a12恒成立,求a1的最小值.18.(12分)某商场举办了一场赢取吉祥物挂件的“双人对战”游戏,游戏规则如下:参与对战的双方每次从装有3个白球和2个黑球(这5个球的大小、质量均相同,仅颜色不同)的盒子中轮流不放回地摸出1球,摸到最后1个黑球或能判断出哪一方获得最后1个黑球时游戏结束,得到最后1个黑球的一方获胜.设游戏结束时对战双方摸球的总次数为X.(1)求随机变量X的概率分布;(2)求先摸球的一方获胜的概率,并判断这场游戏是否公平.19.(12分)如图,已知OA=10,点B是以O为圆心,5为半径的半圆上一动点.(1)当∠AOB=120°时,求线段AB的值;(2)若△ABC为正三角形,求四边形OACB面积的最大值.20.(12分)如图,在圆锥OO'中,AB为底面圆的直径,C,D为底面圆上两点,且四边形ACO′D为平行四边形,过点O′作EF∥CD,点P为线段OB上一点,且满足OP=2PB.(1)证明:CD⊥平面AOB;(2)若圆锥OO′的侧面积为底面积的2倍,求二面角B﹣PF﹣E的余弦值.21.(12分)已知椭圆C :x 24+y 2=1.(1)若P (x 0,y 0)在椭圆C 上,证明:直线x 0x 4+y 0y =1与椭圆C 相切;(2)如图,A ,B 分别为椭圆C 上位于第一、二象限内的动点,且以A ,B 为切点的椭圆C 的切线与x 轴围成△DEF .求S △DEF 的最小值.22.(12分)已知函数f(x)=2lnx+1−ax,a∈R.(1)讨论函数f(x)的单调性;(2)设函数g(x)=(x﹣a)2lnx,若a≥﹣2,且对任意的实数x∈[1,e],不等式g(x)≤4e2恒成立(e自然对数的底数),求实数a的取值范围.2022年江苏省高考数学押题试卷参考答案与试题解析一、单选题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x|x+1x−4≤0},B ={x |﹣1<x <3},则A ∩(∁R B )=( ) A .{x |3≤x ≤4或x =﹣1} B .{x |3≤x ≤4} C .{x |3≤x <4或x =﹣1}D .{x |3≤x <4}解:因为A ={x|x+1x−4≤0}={x |﹣1≤x <4},B ={x |﹣1<x <3}, 所以∁R B ={x |x ≤﹣1或x ≥3}, 则A ∩(∁R B )={x |3≤x <4或x =1}. 故选:C .2.已知复数z 满足(3+i )•z =1+7i ,则|z ﹣3i |=( ) A .√2B .2√2C .√17D .√26解:∵(3+i )•z =1+7i , ∴z =1+7i 3+i =(1+7i)(3−i)(3+i)(3−i)=10+20i10=1+2i , ∴z =1﹣2i ,∴|z ﹣3i |=|1﹣2i ﹣3i |=|1﹣5i |=√26, 故选:D .3.设0<a <b ,则下列不等式中正确的是( ) A .a <b <√ab <a+b2 B .a <√ab <a+b2<bC .a <√ab <b <a+b2D .√ab <a <a+b2<b 解:取a =1且b =4,计算可得√ab =2,a+b2=52,选项A 、C 、D 均矛盾,B 符合题意, 故选:B .4.古希腊数学家阿基米德在《论球和圆柱》中,运用穷竭法证明了与球的面积和体积相关的公式.其中包括他最得意的发现﹣“圆柱容球”.设圆柱的高为2,且圆柱以球的大圆(球大圆为过球心的平面和球面的交线)为底,以球的直径为高.则球的表面积与圆柱的体积之比为( ) A .4:3B .3:2C .2:1D .8:3解:作轴截面如图,可知圆柱的底面半径为1,高为2,球的半径为1. 则球的表面积为S =4π×12=4π, 圆柱的体积为V =π×12×2=2π. ∴球的表面积与圆柱的体积之比为4π2π=2.∴球的表面积与圆柱的体积之比为2:1. 故选:C . 5.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过F 作x 轴的垂线交椭圆C 于A ,B 两点,若△OAB 是直角三角形(O 为坐标原点),则C 的离心率为( ) A .√5−2 B .√3−1 C .√5−12D .√3−12解:椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过F 作x 轴的垂线交椭圆C 于A ,B两点,若△OAB 是直角三角形(O 为坐标原点), 可得b 2a=c ,即a 2﹣c 2=ac ,e ∈(0,1)可得e 2+e ﹣1=0,解得e =√5−12.故选:C .6.已知(1+x )+2(1+x )2+3(1+x )3+⋯+10(1+x )10=a 0+a 1x +a 2x 2+⋯+a 10x 10,则a 7=( )A .9C 113B .283C 113C .293C 113D .10C 113解:因为x 7的系数a 7=7C 77+8C 87+9C 97+10C 107=7+64+324+1200=1595,而293C 113=293×11×10×93×2×1=1595.故选:C .7.在新的高考改革方案中规定:每位考生的高考成绩是按照3(语文、数学、英语)+2(物理、历史)选1+4(化学、生物、地理、政治)选2的模式设置的,则在选考的科目中甲、乙两位同学恰有两科相同的概率为( ) A .14B .13C .512D .12解:在选考的科目中甲、乙两位同学选考的基本事件总数n =C 21C 42•C 21C 42=144,其中甲、乙两位同学恰有两科相同包含的基本事件个数:m =C 21C 42⋅C 11C 21C 21+C 21C 42⋅C 11C 22=60,∴在选考的科目中甲、乙两位同学恰有两科相同的概率为: P =mn =60144=512. 故选:C .8.设函数f (x )=x sin x +cos x ,则下列四个结论中正确的是( ) ①函数f (x )是偶函数;②曲线y =f (x )在x =0处的切线方程为y =1; ③当x ∈[π2,2π]时,f (x )单调递减;④关于x 的方程x sin x +cos x =a 在x ∈[0,2π]只有两个实根,则实数a 的取值范围为[−3π2,π2]. A .①② B .①②④ C .①③④ D .③④解:对①,因为x ∈R ,f (﹣x )=f (x ),所以f (x )为偶函数,所以①正确;对②,f '(x )=sin x +x cos x ﹣sin x =x cos x ,f '(0)=0,f (0)=1,故曲线f (x )在x =0处的切线方程为y =1,所以②正确;对③,x ∈[π2,3π2]时,f '(x )≤0,f (x )单调递减,所以③错误; 对④,x 0 (0,π2) π2(π2,3π2) 3π2(3π2,2π)2π f '(x ) 0 + 0﹣ 0 + 2π f (x )1↗π2↘−3π2↗1由上表当x ∈[0,2π]时,f (x )只有两个实根,则a ∈(−3π2,1)∪(1,π2),所以④错误. 故选:A .二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列说法中正确的是( ) A .AB →+BA →=0→B .若|a →|=|b →|且a →∥b →,则a →=b →C .若a →、b →非零向量且|a →+b →|=|a →−b →|,则a →⊥b →D .若a →∥b →,则有且只有一个实数λ,使得b →=λa →解:由AB →,BA →互为相反向量,则AB →+BA →=0→,故A 正确; 由|a →|=|b →|且a →∥b →,可得a →=b →或a →=−b →,故B 错误;由a →、b →非零向量且|a →+b →|=|a →−b →|,两边平方可得a →2+2a →•b →+b →2=a →2﹣2a →•b →+b →2,即a →•b →=0,所以a →⊥b →,故C 正确;若a →∥b →且a →≠0→,则有且只有一个实数λ,使得b →=λa →,故D 错误. 故选:AC .10.下列说法正确的有( )A .X ~B (n ,13),且D (X )=2,则n =6B .设有一个回归方程y =3﹣5x ,变量x 增加1个单位时,y 平均减少5个单位C .线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱D .在某项测量中,测盘结果ξ服从正态分布N (1,σ2)(σ>0),则P (ξ≤1)=0.5 解:对于选项A :X ~B (n ,13),D (X )=13×23n =2,则n =9.故错误. 对于选项B :若有一个回归方程y =3﹣5x ,变量x 增加1个单位时,故y =3﹣5(x +1)=3﹣5x ﹣5.故y 平均减少5个单位,正确.对于选项C :线性相关系数|r |越大,两个变量的线性相关性越强;反之,线性相关系数|r |越接近于0,两个变量的线性相关性越弱,错误.对于选项D :在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0),由于正态曲线关于x =1对称,则P (ξ≤1)=0.5,正确. 故选:BD .11.已知抛物线x 2=12y 的焦点为F ,M (x 1,y 1),N (x 2,y 2)是抛物线上两点,则下列结论正确的是( ) A .点F 的坐标为(18,0)B .若直线MN 过点F ,则x 1x 2=−116 C .若MF →=λNF →,则|MN |的最小值为12D .若|MF |+|NF |=32,则线段MN 的中点P 到x 轴的距离为58解:抛物线x 2=12y 的焦点为F (0,18),所以A 不正确;根据抛物线的性质可得:MN 过F 时,则x 1x 2=−116,所以B 正确; 若MF →=λNF →,则|MN |的最小值为抛物线的通径长,为2p =12,所以C 正确; 抛物线x 2=12y 的焦点为F (0,18),准线方程为y =−18,过点M 、N 、P 分别作准线的垂线MM ′,NN ′,PP ′, 则|MM ′|=|MF |,|NN ′|=|NF |,|MM ′|+|NN ′|=|MF |+|NF |=32, 所以|PP ′|=|MM′|+|NN′|2=34,所以线段MN 的中的P 到x 轴的距离为|PP ′|−18=34−18=58,所以D 正确; 故选:BCD .12.如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,O 为正方体的中心,M 为DD 1的中点,F 为侧面正方形AA 1D 1D 内一动点,且满足B 1F ∥平面BC 1M ,则( )A .若P 为正方体表面上一点,则满足△OP A 的面积为√22的点有12个 B .动点F 的轨迹是一条线段C .三棱锥F ﹣BC 1M 的体积是随点F 的运动而变化的D .若过A ,M ,C 1三点作正方体的截面Ω,Q 为截面Ω上一点,则线段A 1Q 长度的取值范围为[2√63,2√2] 解:设O ′为底面正方形的中心,连接AO ,AO ′,OO ′,则AO ′=12AC =√2,OO ′=12AA 1=1,∴△OO ′A 的面积为12AO ′•OO ′=√22,所以在底面ABCD 上点P 与点O ′必重合.同理正方形BAA 1B 1的中心,正方形DCC 1D 1的中心都满足, 又当点P 为各正方体各条棱的中点时也满足△OP A 的面积为√22,故A 不正确; 如图,分别取AA 1,A 1D 1的中点H ,G 连接B 1G ,GH ,HB 1,AD 1,因为B 1H ∥C 1M ,GH ∥BC 1,B 1H ⊂平面BGH ,C 1M ⊂平面BC 1M ,GH ⊂平面BGH ,BC 1⊂平面BC 1M ,BC 1∩C 1M =C 1,所以平面B 1GH ∥平面BC 1M ,而B 1F ∥平面BC 1M ,所以⊂平面B 1GH ,所以点F 轨迹为线段GH ,故B 正确;由选项B可知,点F的轨迹为线段GH,因为GH∥平面BC1M,则点F到平面BC1M的距离为定值,又△BC1M的面积为定值,从而可得三棱锥F﹣BC1M的体积是定值,故C不正确;如图,设截面Ω与平面BAA1B1交于AN,N在BB1上,因为截面Ω∩平面DAA1D1=AM,平面DAA1D1∥平面CBB1C1,所以AM∥NC1,同理可证AN∥MC1,所以截面AMC1N为平行四边形,所以点N为BB1中点,在四棱锥A1﹣AMC1N中,侧棱A1C1最长,且A1C1=2√2,设四棱锥A1﹣AMC1N的高为h,因为AM=MC1=√5,所以四边形AMC1N为菱形,所以△AMC1的边AC1上的高为面对角线的一半,即为√2,又AC1=2√3,则S△AMC1=12×2√3×√2=√6,V C1−AA1M=13S△AA1M•D1C1=13×12×2×2×2=43,所以V A1−AMC1=13S△AMC1וh=√63h=V C1−AA1M=43,解得h=2√63,综上,可知线段A1Q长度的取值范围为[2√63,2√2],故D正确.故选:BD.三、填空题:本大题共4小题,每小题5分,共20分.13.已知数列{a n}为等差数列,数列{a n}的前5项和S5=20,a5=6,则a10=11.解:∵{a n}为等差数列,∴S5=5a3=20,∴a3=4,∵a5=6,a3=4,∴2d =a 5﹣a 3=6﹣4=2,即d =1, ∴a 10=a 5+5d =6+5=11. 故答案为:11. 14.函数f(x)=x +2x+1的图象在x =1处的切线方程为 x ﹣2y +3=0 . 解:函数f(x)=x +2x+1,可得f ′(x )=1−2(x+1)2, f ′(1)=1−24=12,f (1)=1+1=2,所以函数f(x)=x +2x+1的图象在x =1处的切线方程为:y ﹣2=12(x ﹣1),即x ﹣2y +3=0.故答案为:x ﹣2y +3=0.15.已知a →,b →,c →是三个不同的非零向量,若|a →|=|c →|且cos <a →,b →>=cos <c →,b →>,则称c →是a →关于b →的对称向量.已知向量a →=(2,3),b →=(1,2),则a →关于b →的对称向量为(65,175) .(填坐标形式). 解:设c →=(x ,y ),因为|a →|=|c →|,所以x 2+y 2=13①, 因为cos <a →,b →>=cos <c →,b →>,所以a →⋅b→|a →|⋅|b →|=c →⋅b→|c →|⋅|b →|,因为|a →|=|c →|,所以a →•b →=c →•b →,即2+6=x +2y ②, 由①②解得,{x =65y =175或{x =2y =3, 所以a →关于b →的对称向量为(65,175).故答案为:(65,175).16.已知点P 是曲线x 2=4y 上任意一点,过点P 向x 轴引垂线,垂足为H ,点Q 是曲线y =lnx 上任意一点,则|PH |+|PQ |的最小值为 √2−1 . 解:由抛物线的方程可得准线方程为:y =﹣1,焦点F (0,1),由题意及抛物线的性质可得|PH |=|PF |﹣1, |PH |+|PQ |=|PF |+|PQ |﹣1≥|QF |﹣1,即求|QF |的最小值,设Q (x ,lnx ),则|QF |2=x 2+(lnx ﹣1)2=ln 2x ﹣2lnx +x 2+1, 设函数f (x )=ln 2x ﹣2lnx +x 2+1,则f ′(x )=2lnxx −2x +2x =1x (2x 2+2lnx −2), 令g (x )=2x 2+2lnx ﹣2,则g ′(x )=4x +2x >0,g (x )在(0,+∞)上单调递增, 又g (1)=0,∴f (x )在(0,1)上单调递减,在(1,+∞)单调递增, ∴f (x )min =f (1)=2,∴|QF |的最小值为√2,则|PH |+|PQ |的最小值为√2−1. 故答案为:√2−1.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)已知{a n }为正项等比数列,且a 1,2a 3+2a 5,a 3成等差数列 (1)求数列{a n }的公比;(2)若对任意n ∈N *,a 1+a 2+…+a n <a 12恒成立,求a 1的最小值. 解:(1)设正项等比数列{a n }的公比为q ,q >0, 由a 1,2a 3+2a 5,a 3成等差数列, 可得4(a 3+a 5)=a 1+a 3, 即为4q 2(a 1+a 3)=a 1+a 3, 解得q =12(负的舍去);(2)对任意n ∈N *,a 1+a 2+…+a n <a 12恒成立, 即为a 1(1−12n )1−12<a 12,即a 1>2(1−12n ),由12n>0,可得2(1−12n )<2, 可得a 1≥2,所以a 1的最小值为2.18.(12分)某商场举办了一场赢取吉祥物挂件的“双人对战”游戏,游戏规则如下:参与对战的双方每次从装有3个白球和2个黑球(这5个球的大小、质量均相同,仅颜色不同)的盒子中轮流不放回地摸出1球,摸到最后1个黑球或能判断出哪一方获得最后1个黑球时游戏结束,得到最后1个黑球的一方获胜.设游戏结束时对战双方摸球的总次数为X .(1)求随机变量X 的概率分布;(2)求先摸球的一方获胜的概率,并判断这场游戏是否公平. 解:(1)由题可得X 的所有可能取值为2,3,4, P (X =2)=25×14=110, P (X =3)=25×34×13+35×24×13+35×24×13=310, P (X =4)=1﹣P (X =2)﹣P (X =3)=35, ∴X 的分布列为: X 2 34P11031035(2)先摸球的一方获胜,包含以下几种情况:双方共摸3次球,出现白黑黑,黑白黑,白白白这三种情况,即P (X =3)=310, 双方共摸球4次球,出现的恰好是三白一黑且前三次必定出现一次黑球的情形, 概率为P =25×34×23×12+35×24×23×12+35×24×23×12=310, ∴先摸球一的方获胜的概率为310+310=35,∵35>12,∴这场游戏不公平.19.(12分)如图,已知OA =10,点B 是以O 为圆心,5为半径的半圆上一动点. (1)当∠AOB =120°时,求线段AB 的值;(2)若△ABC 为正三角形,求四边形OACB 面积的最大值.解:(1)在△AOB中,由余弦定理得:AB2=OA2+OB2﹣2OA⋅OB⋅cos∠AOB=102+52−2×10×5×cos120°=100+25−100×(−12)=175,所以AB=5√7;(2)设∠AOB=α,所以AB2=OA2+OB2﹣2⋅OA⋅OB⋅cosα=125﹣100cosα,则S四边形OACB=S△OAB+S△ABC=12OA⋅OB•sinα+√34AB2=12×10×5sinα+√34(125﹣100cosα)=25sinα﹣25√3cosα+125√34=50(12sinα−√32cosα)+125√34=50sin(α−π3)+125√34,所以当α=5π6时,四边形OACB的面积取得最大值为50+125√34.20.(12分)如图,在圆锥OO'中,AB为底面圆的直径,C,D为底面圆上两点,且四边形ACO′D为平行四边形,过点O′作EF∥CD,点P为线段OB上一点,且满足OP=2PB.(1)证明:CD⊥平面AOB;(2)若圆锥OO′的侧面积为底面积的2倍,求二面角B﹣PF﹣E的余弦值.解:(1)证明:在圆锥OO'中,OO'⊥底面圆O',∵CD⊂底面圆O',∴OO'⊥CD,∵四边形ACO′D为平行四边形,O′A,O′D都是底面圆O'的半径,∴四边形ACO′D是菱形,∴O′A⊥CD,∵O′A∩OO′=O,∴CD⊥平面AOB.(2)在圆锥OO ′中,OO ′⊥平面ABC ,又AB ,EF ⊂平面ABC ,∴OO ′⊥AB ,OO ′⊥EF ,以点O ′为坐标原点,O ′F 为x 轴,O ′B 为y 轴,O ′O 为z 轴,建立空间直角坐标系,设圆锥OO ′的底面半径为r ,母线长为R , 由S 底=πr 2,S 侧=12×2π×R =πRr , 由题意S 侧=2S 底,即πRr =2πr 2,∴R =2r , 不妨令r =3,则R =6,∴B (0,3,0),E (﹣3,0,0),F (3,0,0),P (0,2,√3), ∴BP →=(0,﹣1,√3),PF →=(3,﹣2,−√3),EF →=(6,0,0), 设平面BPF 的法向量m →=(x ,y ,z ), 则{BP →⋅m →=−y +√3z =0PF →⋅m →=3x −2y −√3z =0,取z =1,得m →=(√3,√3,1), 设平面EPF 的法向量为n →=(a ,b ,c ), 则{EF →⋅n →=6a =0PF →⋅n →=3a −2b −√3c =0,取b =√3,得n →=(0,√3,﹣2), 设二面角B ﹣PF ﹣E 的大小为θ,则|cos θ|=|cos <m →,n →>|=|m →⋅n →||m →|⋅|n →|=1√7⋅√7=17,∴二面角B ﹣PF ﹣E 的余弦值为17.21.(12分)已知椭圆C :x 24+y 2=1.(1)若P (x 0,y 0)在椭圆C 上,证明:直线x 0x 4+y 0y =1与椭圆C 相切;(2)如图,A ,B 分别为椭圆C 上位于第一、二象限内的动点,且以A ,B 为切点的椭圆C 的切线与x 轴围成△DEF .求S △DEF 的最小值.证明:(1)联立方程{x 0x4+y 0y =1x 2+4y 2=4,消去y 可得x 2y 02+4(1−xx04)2=4y 02,结合x 024+y 02=1整理得:x 2−2xx 0+4−4y 02=0,∵Δ=4x 02+16y 02−16=0, ∴直线x 0x 4+y 0y =1与椭圆C 相切.解:(2)设直线AB :y =kx +m ,A (x 1,y 1),B (x 2,y 2), 由(1)可知,直线DA :x 1x 4+y 1y =1,直线DB :x 2x 4+y 2y =1,∴E(4x 2,0),F(4x 1,0), 由{x 1x4+y 1y =1x 2x 4+y 2y =1可得:y 0=x 2−x 1x 2y 1−x 1y 2,∴S △DEF =12×x 2−x 1x 2y 1−x 1y 2×(4x 1−4x 2)=2(x 1−x 2)2x 1x 2(x 2y 1−x 1y 2)=2(x 2−x 1)mx 1x 2,联立方程{y =kx +m x 2+4y 2=4,消去y 得(1+4k 2)x 2+8kmx +4m 2﹣4=0, ∴{x 1+x 2=−8km1+4k2x 1x 2=4(m 2−1)1+4k2,且Δ=16(4k 2+1﹣m 2)>0,即4k 2+1>m 2, ∴S2△DEF=4(x 1−x 2)2m 2(x 1x 2)2=4(4k 2+1−m 2)m 2(1−m 2)≥4(1−m 2)m 2(1−m 2)2=4m 2(1−m 2)≥16, ∴S △DEF ≥4,当k =0,m =√2时,等号成立,即S △DEF 的最小值为4.22.(12分)已知函数f(x)=2lnx +1−a x,a ∈R . (1)讨论函数f (x )的单调性;(2)设函数g (x )=(x ﹣a )2lnx ,若a ≥﹣2,且对任意的实数x ∈[1,e ],不等式g (x )≤4e 2恒成立(e 自然对数的底数),求实数a 的取值范围. 【解答】解:(1)f ′(x )=2x +a x 2=2x+ax2,x ∈(0,+∞). ①当a ≥0时,f '(x )>0,f (x )在(0,+∞)上单调增, ②当a <0时,令f '(x )=0,得x =−a2,列表如下:x (0,−a2)−a2 (−a2,+∞)f '(x ) ﹣ 0 + f (x )递减极小值递增综上所述,当a ≥0时,f (x )在(0,+∞)上单调增; 当a <0时,f (x )在(0,−a 2)递减,在(−a 2,+∞)递增; (2)g ′(x )=(x ﹣a )(2lnx +1−a x)=(x ﹣a )f (x ). 因为对任意的x ∈[1,e ],g (x )≤4e 2恒成立, 所以{g(1)=0≤4e 2g(e)=(e −a)2≤4e 2,解得﹣e ≤a ≤3e ;①当﹣2≤a ≤1时,x ﹣a ≥0,当且仅当a =x =1时,取等号. 由(1)知,f (x )在[1,e ]上单调增,所以f (x )≥f (1)=1﹣a ≥0. 所以g '(x )≥0,当且仅当a =x =1时,取等号,所以g (x )在[1,e ]上单调增,则[g (x )]max =g (e )≤4e 2, 解得﹣e ≤a ≤3e ,此时,﹣2≤a ≤1; ②若1<a ≤3e ,则f (x )在[1,e ]上单调增, 且{f(1)=1−a <0f(e)=3−a e≥0,又f (a )=2lna >0, 所以存在x 0∈(1,a ),且x 0∈(1,e ],使得f (x 0)=0, 所以g '(x )=0的解为x 0和a ,列表如下:x(1,x 0)x 0(x 0,a )a(a ,+∞)g'(x)+0﹣0+ g(x)↗极大值↘极小值↗所以g(x0)=(x0﹣a)2lnx0≤4e2,即x02ln3x0≤e2,又x0≤e,所以x02ln3x0≤e2恒成立.此时,1<a≤3e.综上所述,实数a的取值范围为[﹣2,3e].。
2024-2025学年江苏省南通市高三(上)调研数学试卷(9月份)(含答案)
2024-2025学年江苏省南通市高三(上)调研数学试卷(9月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A,B,若A={−1,1},A∪B={−1,0,1},则一定有( )A. A⊆BB. B⊆AC. A∩B=⌀D. 0∈B2.已知命题p:∀x∈R,|x+1|>1,命题q:∃x>0,x3=x,则( )A. p和q都是真命题B. ¬p和q都是真命题C. p和¬q都是真命题D. ¬p和¬q都是真命题3.函数f(x)=(e x+e−x)sinx−2x在区间[−2,2]的大致图象为( )A. B. C. D.4.设α是空间中的一个平面,l,m,n是三条不同的直线,则( )A. 若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥αB. 若l//m,m//n,l⊥α,则n⊥αC. 若l//m,m⊥α,n⊥α,则l⊥nD. 若m⊂α,n⊥α,l⊥n,则l//m5.在正三棱台ABC−A1B1C1中,AB=4,A1B1=2,A1A与平面ABC所成角为π4,则该三棱台的体积为( )A. 523B. 283C. 143D. 736.设a=2π,b=log2π,c=π,则( )A. c<b<aB. b>c>aC. a>c>bD. a>b>c7.若函数f(x)={log2(x+1),−1<x≤3x+ax,x>3,在(−1,+∞)上单调递增,则a的取值范围是( )A. [−3,9]B. [−3,+∞)C. [0,9]D. (−∞,9]8.设函数f(x)=(x2+ax+b)lnx,若f(x)≥0,则a的最小值为( )A. −2B. −1C. 2D. 1二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.下列函数中最小值为4的是( )A. y=lnx+4lnxB. y=2x+22−xC. y=4|sinx|+1|sinx|D. y=x2+5x2+110.定义在R上的偶函数f(x),满足f(x+2)−f(x)=f(1),则( )A. f(1)=0B. f(1−x)+f(1+x)=0C. f(1+2x)=f(1−2x)D. ∑20i=1f(i)=1011.在正方体ABCD−A1B1C1D1中,M,N分别为AC,A1B的中点,则( )A. MN//平面ADD1A1B. MN⊥AC1C. 直线MN与平面AA1C1C所成角为π4D. 平面MND1经过棱A1B1的三等分点三、填空题:本题共3小题,每小题5分,共15分。
2010年普通高等学校招生全国统一考试数学(江苏卷)(附答案,完全word版)
2010年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题参考公式:锥体的体积公式:13V Sh =锥体,其中S 是锥体的底面面积,h 是高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.设集合{1,1,3}A =-,{}4,22++=a a B ,{}3=⋂B A ,则实数a 的值为____▲____.1.【答案】1.【命题意图】本题考查交集的定义,对求得的集合中的元素要进行检验. 【解析】由题意得1,32==+a a .又由342=+a 不符合题意.经检验得1=a . 2.设复数z 满足(23)64z i i -=+(i 为虚数单位),则z 的模为____▲____. 2.【答案】2.【命题意图】本题考查复数有关运算及复数模的计算. 【解析】由i i z 46)32(+=-得,2)32)(32()32)(46(3246i i i i i i i z =+-++=-+=即2,2=∴=z i z . 3.盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色不同的概率是_ ▲__.3.【答案】21. 【命题意图】本题考查古典概型知识. 【解析】31.62p == 4.某棉纺厂为了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标).所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有_ ▲__ 根棉花纤维的长度小于20mm. 4.【答案】30.【命题意图】本题考查概率统计中频率分布直方图的有关运用,注意纵坐标是频率/组距.【解析】由频率分布直方图得棉花纤维长度小于mm 20的根数为(0.01+0.01+0.04)301005=⨯⨯. 5.设函数()()xxf x x e ae -=+(x ∈R )是偶函数,则实数a 的值为____▲____. 5.【答案】1-.【命题意图】本题考查函数的奇偶性.【解析】设R x ae e x g xx∈+=-,)(,由题意分析)(x g 应为奇函数(奇函数⨯奇函数=偶函数), 又R x ∈ ,0)0(=∴g ,则,01=+a 所以1-=a .6.在平面直角坐标系xOy 中,已知双曲线221412x y -=上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为____▲____.6.【答案】4.【命题意图】本题考查求曲线上点的坐标、双曲线的焦点坐标、两点间距离公式的运用. 【解析】由题意得点15,3(±M ),双曲线的右焦点的坐标为(4,0),2MF 22)015()43(-±+-==4.或用第二定义:2MFe d==,2d =,4MF =. 7.右图是一个算法流程图,则输出的S 的值是____▲____.7.【答案】63.【命题意图】本题考查算法流程图,由流程图得出S 的关系式,比较得出S 的值. 【解析】由流程图得12345122222S =+++++=1+2+48+16+32=6333≥,即.63=S8.函数2(0)y x x =>的图象在点2(,)k k a a 处的切线与x 轴的交点的横坐标为1k a +,其中k ∈N *.若116a =,则123a a a ++的值是____▲____.8.【答案】21.【命题意图】考查函数的切线方程、数列的通项.【解析】在点2(,)k k a a 处的切线方程为22(),k k k y a a x a -=-当0y =时,解得2ka x =,所以 1135,1641212kk a a a a a +=++=++=. 9.在平面直角坐标系xOy 中,已知圆224x y +=上有且只有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是____▲____. 9.【答案】(13,13)-.【命题意图】本题考查直线与圆的位置关系.【解析】如图,圆422=+y x 的半径为2,圆上有且仅有四个点到直线的距离为1,问题转化为原点(0,0)到直线于1,即1313,13,151222<<-∴<<+c c c .10.设定义在区间(0,)2π上的函数y=6cosx 的图象与y=5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y=sinx 的图像交于点P 2,则线段P 1P 2的长为____▲____. 10.【答案】.32【命题意图】本题考查三角函数问题,由图象相交,即三角函数值相等,建立关系式,求出,32sin =x 结合图象,0=数形结合分析P 1P 2的值.【解析】由题意得x x tan 5cos 6=,即x x xxx sin 5cos 6,cos sin 5cos 62==, 226(1sin )5sin ,6sin 5sin 60x x x x -=+-=得,32sin =x 结合图象分析得32sin 21==P P x .11.已知函数21,0,()1,0,x x f x x ⎧+≥=⎨<⎩则满足不等式2(1)(2)f x f x ->的x 的取值范围是____▲____.11.【答案】).12,1(--【命题意图】本题考查分段函数的单调性.【解析】2212,10,x x x ⎧->⎪⎨->⎪⎩解得11x -<<-,所以x 的取值范围是).12,1(-- 12.设x,y 为实数,满足3≤2xy ≤8,4≤2x y≤9,则34x y 的最大值是____▲____.12.【答案】27.【命题意图】考查不等式的基本性质,等价转化思想.【解析】22()[16,81]x y ∈,2111[,]83xy ∈,322421()[2,27]x x y y xy =⋅∈,43yx 的最大值是27.13.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若6cos b a C a b +=,则tan tan tan tan C CA B+的值是 ▲ . 【答案】4.【解析】考查三角函数知识,三角形中的正、余弦定理的应用,等价转化思想. (方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性. 当A=B 或a=b 时满足题意,此时有1cos 3C =,21cos 1tan 21cos 2C C C -==+,tan 22C =.等腰三角形中,1tan tan tan 2A B C===,tan tan tan tan C CA B+=4. (方法二)226cos 6cos b a C ab C a b a b +=⇒=+,2222222236,22a b c c ab a b a b ab +-⋅=++=.2tan tan sin cos sin sin cos sin sin()1sin tan tan cos sin sin cos sin sin cos sin sin C C C B A B A C A B CA B C A B C A B C A B+++=⋅=⋅=⋅, 由正弦定理,得上式22222214113cos ()662c c c c C ab a b =⋅===+⋅. 14.将边长为1m 的正三角形薄铁皮沿一条平行于某边的直线剪成两块,其中一块是梯形,记2(s =梯形的周长)梯形的面积,则s 的最小值是____▲____.【答案. 【解析】考查函数中的建模应用,等价转化思想. 设剪成的小正三角形的边长为x,则222(3)(01)122x s x x -==<<-. (方法一)利用导数求函数最小值.22(3)()1x S x x -=-,2222(26)(1)(3)(2)()(1)x x x x S x x -⋅---⋅-'=-222(31)(3)(1)x x x ---=- 1()0,01,3S x x x '=<<=.当1(0,]3x ∈时,()0,S x '<递减;当1[,1)3x ∈时,()0,S x '>递增.故当13x =时,S取最小值3.(方法二)利用函数的方法求最小值.令1113,(2,3),(,)32x t t t -=∈∈,则222186681t S t t t t==-+--+-.故当131,83x t ==时,S. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平面直角坐标系xOy 中,已知点(1,2)A --,(2,3)B ,(2,1).C -- (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(t -)·=0,求t 的值.【解析】本小题主要考查平面向量的几何意义、线性运算、数量积,考查运算求解能力.满分14分. 解:(1)由题设知(3,5)AB =,(1,1)AC =-,则(2,6)A B A C+=,(4,4).AB AC -=所以||AB AC +=,||AB AC -= 故所求的两条对角线长分别为42,210.(2)由题设知 (2,1)OC =--,(32,5).AB tOC t t -=++由()0AB tOC OC -=,得(32,5)(2,1)0t t ++--=, 从而511t =-,所以11.5t =- 16.(本小题满分14分)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900. (1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.【解析】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.满分14分.解:(1)因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC. 由∠BCD=900,得BC ⊥DC.又PD DC D ⋂=,PD ⊂平面PCD ,DC ⊂平面PCD , 所以BC ⊥平面PCD.因为PC ⊂平面PCD ,所以PC ⊥BC. (2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF.则易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 由(1)知BC ⊥平面PCD ,所以平面PBC ⊥平面PCD.因为PD=DC ,PF=FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F.易知又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍,故点A 到平面PBC . (方法二)连结AC.设点A 到平面PBC 的距离h. 因为AB ∥DC ,∠BCD=900,所以∠ABC=900. 从而由AB=2,BC=1,得ABC ∆的面积1ABC S ∆=.由PD ⊥平面ABCD 及PD=1,得三棱锥P ABC -的体积11.33ABC V S PD ∆== 因为PD ⊥平面ABCD ,DC ⊂平面ABCD ,所以PD ⊥DC.又PD=DC=1,所以PC ==由PC ⊥BC ,BC=1,得PBC ∆的面积PBC S ∆=由11213323PBC V S h h ∆===,得h =因此,点A 到平面PBC . 17.(本小题满分14分)某兴趣小组要测量电视塔AE 的高度H(单位:m).如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=α,∠ADE=β.(1)该小组已测得一组α,β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125m ,试问d 为多少时,αβ-最大?【解析】本小题主要考查解三角形、基本不等式、导数等基础知识,考查数学建模能力、抽象概括能力和解决实际问题的能力.满分14分. 解:(1)由tan HAB α=,tan h BD β=,tan H AD β=及AB BD AD +=,得tan tan tan H h H αββ+=, 解得tan 4 1.24124tan tan 1.24 1.20h H αβα⨯===--.因此,算出的电视塔的高度H 是124m. (2)由题设知d AB =,得tan .H dα= 由tan tan H h AB AD BD ββ=-=-,得tan H hdβ-=,所以tan tan tan()()1tan tan h H H h d dαβαβαβ--==≤-+⋅+,当且仅当()H H h d d-=,即d ==.所以当d =tan()αβ-最大. 因为02πβα<<<,则02παβ<-<,所以当d =时,αβ-最大.故所求的d是18.(本小题满分16分)在平面直角坐标系xOy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F.设过点T (m t ,)的直线TA 、TB 与此椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y . (1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解析】本小题主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.满分16分.解:由题设得(3,0)A -,(3,0)B ,(2,0).F(1)设点(,)P x y ,则222(2)PF x y =-+,222(3).PB x y =-+ 由422=-PB PF ,得2222(2)(3)4x y x y -+---=,化简得92x =. 故所求点P 的轨迹为直线92x =. (2)由12x =,2211195x y +=及10y >,得153y =,则点5(2,)3M , 从而直线AM 的方程为113y x =+; 由213x =,2222195x y +=及20y <,得2109y =-,则点110(,)39N -, 从而直线BN 的方程为5562y x =-. 由11,355,62y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得7,10.3x y =⎧⎪⎨=⎪⎩所以点T 的坐标为10(7,)3.(3)由题设知,直线AT 的方程为(3)12m y x =+,直线BT 的方程为(3)6my x =-. 点11(,)M x y 满足112211(3),121,95m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩得 22111(3)(3)(3)9125x x x m -++=-,因为13x ≠-,则211339125x x m -+=-,解得212240380m x m -=+,从而124080my m=+. 点22(,)N x y 满足2222222(3),61,953,m y x x y x ⎧=-⎪⎪⎪+=⎨⎪≠⎪⎪⎩解得22236020m x m -=+,222020m y m -=+.若12x x =,则由222224033608020m m m m--=++及0m >,得m = 此时直线MN 的方程为1x =,过点(1,0).D若12x x ≠,则m ≠MD 的斜率2222401080240340180MDmm m k m m m +==---+, 直线ND 的斜率222220102036040120NDmm m k m mm -+==---+,得MD ND k k =,所以直线MN 过D 点. 因此,直线MN 必过x 轴上的点(1,0). 19.(本小题满分16分)设各项均为正数的数列{}n a 的前n 项和为n S .已知3122a a a +=,数列{}nS 是公差为d 的等差数列.(1)求数列{}n a 的通项公式(用d n ,表示);(2)设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立,求证:c 的最大值为29. 【解析】本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力.满分16分. 解:(1(1)(1)n d n d =-=-,则当2n ≥时,221232.n n n a S S d d n -=-=-=+由2132a a a =+,得2212(2)23d a d =++.d = 故当2n ≥时,222.n a nd d =-又21a d =,所以数列{}n a 的通项公式为2(21)n a n d =-. (2d =(1)n d =-,得0d >,22n S n d =.于是,对满足题设的k n m ,,,m n ≠,有2222222()99()222m n k m n S S m n d d d k S ++=+>==.所以c 的最大值max 92c ≥.另一方面,任取实数92a >.设k 为偶数,令331,122m k n k =+=-,则k n m ,,符合条件,且22222222331()((1)(1))(94).222m n S S d m n d k k d k +=+=++-=+于是,只要22942k ak +<,即当k >时,就有22122m n k S S d ak aS +<⋅=.所以满足条件的92c ≤,从而max 92c ≤. 因此c 的最大值为92. 20.(本小题满分16分)设)(x f 是定义在区间),1(+∞上的函数,其导函数为)('x f .如果存在实数a 和函数)(x h ,其中)(x h 对任意的),1(+∞∈x 都有)(x h >0,使得)1)(()('2+-=ax x x h x f ,则称函数)(x f 具有性质)(a P . (1)设函数2()ln (1)1b f x x x x +=+>+,其中b 为实数. (i)求证:函数)(x f 具有性质)(b P ;(ii)求函数)(x f 的单调区间.(2)已知函数)(x g 具有性质)2(P .给定1212,(1,),,x x x x ∈+∞<设m 为实数,21)1(x m mx -+=α,21)1(mx x m +-=β,且1,1>>βα,若|)()(βαg g -|<|)()(21x g x g -|,求m 的取值范围.【解析】本小题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.满分16分.解:(1)(i)由2()ln 1b f x x x +=++,得'()f x 221.(1)x bx x x -+=+ 因为1x >时,21()0(1)h x x x =>+,所以函数)(x f 具有性质)(b P . (ii)当2b ≤时,由1x >得222121(1)0x bx x x x -+≥-+=->, 所以)('x f 0>,从而函数)(x f 在区间),1(+∞上单调递增.当2b >时,解方程210x bx -+=得12b x -=,22b x +=因为12b x -=21b=<<,212b x +=>, 所以当2(1,)x x ∈时,)('x f 0<;当2(,)x x ∈+∞时,)('x f 0>;当2x x =时,)('x f =0. 从而函数)(x f 在区间2(1,)x 上单调递减,在区间2(,)x +∞上单调递增. 综上所述,当2b ≤时,函数)(x f 的单调增区间为),1(+∞;当2b >时,函数)(x f 的单调减区间为,单调增区间为)+∞. (2)(方法一)由题意,得22'()()(21)()(1)g x h x x x h x x =-+=-. 又)(x h 对任意的),1(+∞∈x 都有)(x h >0,所以对任意的),1(+∞∈x 都有()0g x '>,()g x 在(1,)+∞上递增.当1m =时,1x α=,2x β=,不合题意.1212,(21)()x x m x x αβαβ+=+-=--. 当1,12m m >≠时,αβ<,且112212(1)(1),(1)(1)x m x m x x m x m x αβ-=-+--=-+-, 221212()()(1)()0x x m x x αβ∴--=---<,12x x αβ∴<<<或12x x αβ<<<,若12x x αβ<<<,则12()()()()f f x f x f αβ<<<,12|()()||()()|g g g x g x αβ∴->-,不合题意. 12x x αβ∴<<<,即112122(1),(1),x mx m x m x mx x <+-⎧⎨-+<⎩解得1m <,11.2m ∴<<当12m =时,αβ=,120|()()||()()|g g g x g x αβ=-<-,符合题意. 当12m <时,αβ>,且212112(),()x m x x x m x x αβ-=--=--,同理有12x x βα<<<,112122(1),(1),x m x mx mx m x x <-+⎧⎨+-<⎩解得0m >,10.2m ∴<<综合以上讨论,得所求的m 的取值范围是(0,1).(方法二)由题设知,()g x 的导函数2'()()(21)g x h x x x =-+,其中函数()0h x >对于任意的),1(+∞∈x 都成立,所以,当1x >时,2'()()(1)0g x h x x =->,从而()g x 在区间),1(+∞上单调递增. ①当(0,1)m ∈时,有12111(1)(1)mx m x mx m x x α=+->+-=,222(1)mx m x x α<+-=,得12(,)x x α∈,同理可得12(,)x x β∈,所以由()g x 的单调性知()g α,()g β12((),())g x g x ∈,从而有|)()(βαg g -|<|)()(21x g x g -|,符合题设.②当0m ≤时,12222(1)(1)mx m x mx m x x α=+-≥+-=,12111(1)(1)m x mx m x mx x β=-+≤-+=,于是由1,1αβ>>及()g x 的单调性知12()()()()g g x g x g βα≤<≤,所以|)()(βαg g -|≥|)()(21x g x g -|,与题设不符.③当1m ≥时,同理可得12,x x αβ≤≥,进而得|)()(βαg g -|≥|)()(21x g x g -|,与题设不符. 因此,综合①、②、③得所求的m 的取值范围为(0,1).数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲(本小题满分10分)如图,AB 是圆O 的直径,D 为圆O 上一点,过D 作圆O 的切线交AB 的延长线于点C.若DA=DC ,求证:AB=2BC.【解析】本题主要考查三角形、圆的有关知识,考查推理论证能力.满分10分.证明:(方法一)连OD ,则OD ⊥DC.又OA=OD ,DA=DC ,所以∠DAO=∠ODA=∠DCO ,∠DOC=∠DAO+∠ODA=2∠DCO ,所以∠DCO=300,所以OC=2OD ,即OB=BC=OD=OA ,所以AB=2BC.(方法二)连结OD 、BD.因为AB 是圆O 的直径,所以∠ADB=900,AB=2OB.因为DC 是圆O 的切线,所以∠CDO=900.又因为DA=DC ,所以∠A=∠C ,于是△ADB ≌△CDO ,从而AB=CO.即2OB=OB+BC ,得OB=BC.故AB=2BC.B.选修4-2:矩阵与变换(本小题满分10分)在平面直角坐标系xOy 中,已知点(0,0),(2,0),(2,1)A B C --.设k 为非零实数,矩阵M =⎥⎦⎤⎢⎣⎡100k ,N =⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 的面积的2倍,求k 的值.【解析】本题主要考查图形在矩阵对应的变换下的变化特点,考查运算求解能力.满分10分. 解:由题设得0010011010k k MN ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.由0001000k ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,0201002k -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,021012k k -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 可知1(0,0)A ,1(0,2)B -,1(,2)C k -.计算得△ABC 的面积是1,△A 1B 1C 1的面积是||k ,则由题设知||212k =⨯=.所以k 的值为2-或2.C.选修4-4:参数方程与极坐标(本小题满分10分)在极坐标系中,已知圆2cos ρθ=与直线3cos 4sin 0a ρθρθ++=相切,求实数a 的值.【解析】本题主要考查曲线的极坐标方程等基础知识,考查转化问题的能力.满分10分.解:将极坐标方程化为直角坐标方程,得圆的方程为22222,(1)1x y x x y +=-+=即,直线的方程为340x y a ++=.由题设知,圆心(1,0)到直线的距离为11,=解得8a =-,或2a =. 故a 的值为8-或2.D.选修4-5:不等式选讲(本小题满分10分)设a ,b 是非负实数,求证:3322)a b a b +≥+.【解析】本题主要考查证明不等式的基本方法,考查推理论证的能力.满分10分.证明:由a ,b 是非负实数,作差得3322)a b a b a b ++=+55]=-.当a b ≥≥55≥,得55]0-≥;当a b <<55<,得55]0->.所以3322)a b a b +≥+.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各件产品相互独立.(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列;(2)求生产4件甲产品所获得的利润不少于10万元的概率.【解析】本题主要考查概率的有关知识,考查运算求解的能力.满分10分.解:(1)由题设知,X 的可能取值为10,5,2,-3,且P (X=10)=0.8×0.9=0.72, P (X=5)=0.2×0.9=0.18,P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02.由此得X 的分布列为:(2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件.由题设知4(4)10n n --≥,解得145n ≥, 又n N ∈,得3n =,或4n =. 所以3344440.80.20.80.8192P C C =+=. 故所求概率为0.8192. 23.(本小题满分10分)已知△ABC 的三边长都是有理数.(1)求证:cos A 是有理数; (2)求证:对任意正整数n ,cos nA 是有理数.【解析】本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力.满分10分.证法一:(1)由AB 、BC 、AC 为有理数及余弦定理知222cos 2AB AC BC A AB BC+-=是有理数. (2)①当1n =时,由(1)知cos A 是有理数.当2n =时,∵2cos22cos 1A A =-,因为cos A 是有理数,∴cos2A 也是有理数;②假设当(2)n k k ≤≥时,结论成立,即coskA 、cos(1)k A -均是有理数.当1n k =+时,cos(1)cos cos sin sin k A kA A kA A +=-,1cos(1)cos cos [cos()cos()]2k A kA A kA A kA A +=---+, 11cos(1)cos cos cos(1)cos(1)22k A kA A k A k A +=--++, 解得cos(1)2cos cos cos(1)k A kA A k A +=--. ∵cos A ,cos kA ,cos(1)k A -均是有理数,∴2cos cos cos(1)kA A k A --是有理数,∴cos(1)k A +是有理数.即当1n k =+时,结论成立.综上所述,对于任意正整数n ,cos nA 也是有理数.证法二:(1)由AB 、BC 、AC 为有理数及余弦定理知222cos 2AB AC BC A AB BC+-=是有理数. (2)用数学归纳法证明cos nA 和sin sin A nA 都是有理数.①当1n =时,由(1)知cos A 是有理数,从而有2sin sin 1cos A A A =-也是有理数.②假设当(1)n k k =≥时,cos kA 和sin sin A kA 都是有理数.当1n k =+时,由cos(1)cos cos sin sin k A kA A A kA +=-,sin sin(1)sin (sin cos cos sin )A k A A A kA A kA +=+(sin sin )cos (sin sin )cos A A kA A kA A =+,及①和归纳假设,知cos(1)k A +与sin sin(1)A k A +都是有理数.即当1n k =+时,结论成立.综合①、②可知,对任意正整数n ,cos nA 也是有理数.。
2010年江苏高考数学试题(含答案详解
2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。
一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应的位.......置上...1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____. [解析] 考查集合的运算推理。
3∈B, a+2=3, a=1.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____. [解析] 考查复数运算、模的性质。
z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。
3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.[解析]考查古典概型知识。
3162p ==4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。
[解析]考查频率分布直方图的知识。
注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
江苏省南通市2024-2025学年高二上学期10月调研测试 数学含答案
2024-2025(上)十月份调研测试高二数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上指定位置上,在其他位置作答一律无效.3.本卷满分为150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.过原点且与直线210x y +-=垂直的直线方程为()A.2y x =B.2y x =-C.12y x =D.12y x =-2.已知直线1:210l x ay +-=和直线2:(31)10l a x ay --+=,则“16a =”是“12l l ∥”的()A.充分且不必要条件B.必要且不充分条件C.充要条件D.既不充分也不必要条件3.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,且23OM OA = ,点N 为BC 中点,则MN等于()A.111222a b c +-B.211322a b c -++C.221332a b c +-D.221332a b c +- 4.已知空间向量()1,2,0,(0,1,1),(2,3,)a b c m ==-= ,若,,a b c共面,则实数m =()A.1B.2C.3D.45.直线l 按向量(3,1)a =-平移后得直线l ',则直线l 与l '之间的距离的最大值为()A.1B.3C.D.106.已知两点(1,3)A -,(2,1)B -,若沿y 轴将坐标平面折成直二面角,则折叠后A ,B 两点间的距离是()A.3B.5C.D.7.在棱长均为1的三棱柱111ABC A B C -中,11π3A AB A AC ∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为()A.6B.6C.63D.38.已知P ,Q 是直线:10l x y -+=上两动点,且||PQ ,点(4,6)A -,(0,6)B ,则||||||AP PQ QB ++的最小值为()A.10B.10C.D.12二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在空间直角坐标系O xyz -中,下列结论正确的是()A.点(1,2,3)A 关于原点O 的对称点的坐标为1,2)3(,---B.点(1,2,3)A 关于x 轴的对称点的坐标为(1,2,3)-C.点(1,2,3)A 关于xOz 平面对称的点的坐标为(1,2,3)-D.两点(1,2,3)A ,(3,2,1)B 间的距离为10.已知直线:20l x -=,则()A.l 的倾斜角为π6B.l 与两坐标轴围成的三角形面积为233C.原点O 到l 的距离为1D.原点O 关于l 的对称点为(11.在棱长为1的正方体1111ABCD A B C D -中,动点P 满足1AP AC AD λμ=+,其中(0,1)λ∈,(0,1)μ∈,则()A.1AP B D⊥B .平面11A BC ∥平面ACPC.当1λμ+=时,点P 的轨迹长度为1D.存在点P ,使得12DP =三、填空题:本大题共3小题,每小题5分,共15分.12.直线:20l y -+=与y 轴交于点A ,将l 绕点A 顺时针旋转15 得到直线m ,则直线m 的一般式方程为______.13.在空间直角坐标系中,()()()0000u x x v y y w z z -+-+-=表示经过点()000,,x y z ,且法向量为(),,u v w 的平面的方程,则点()1,1,3P 到平面()()()121220x y z --++-=的距离为______.14.已知点()2,0A -,()2,0B ,()0,2C ,直线()0y ax b a =+>将ABC V 分割为面积相等的两部分,则b 的取值范围是______.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.在ABC V 中,已知点()1,1A -,()3,0C ,AB 边的中点在y 轴上,BC 边上的高所在直线方程为4370x y --=.(1)求线段AB 的中点坐标;(2)求ABC V 的面积.16.在棱长为4的正方体1111ABCD A B C D -中,点P 在棱1CC 上,且14CC CP =.(1)求点P 到平面1ABD 的距离;(2)求二面角1P AD B --的正弦值.17.在直角坐标平面xOy 中,已知直线:20l kx y k -++=交x 轴负半轴于点A ,交y 轴正半轴于点B ,记AOB V 的面积为S .(1)求直线l 经过的定点P 的坐标;(2)证明:2S >;(3)是否存在直线l ,使得||||||OA OB AB ⋅=,若存在,求直线l 的方程;若不存在,说明理由.18.在三棱柱111ABC A B C -中,12AA =,1A C ⊥底面ABC ,90ACB ∠=︒,1A 到平面11BCC B 的距离为1.(1)求证:1AC A C =;(2)求异面直线1AA 与BC 的距离;(3)若直线1AA 与1BB 距离为2,求1AB 与平面11BCC B 所成角的正弦值.19.如图,平行六面体1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,12AA =,11C CB C CD ∠=∠,145C CA ︒∠=.(1)求证:四边形11BB D D 为矩形;(2)求平面ABCD 与平面1111D C B A 间的距离;(3)求二面角1B AA D --的正弦值.2024-2025(上)十月份调研测试高二数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上指定位置上,在其他位置作答一律无效.3.本卷满分为150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】A【5题答案】【答案】C【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ACD【10题答案】【答案】BCD 【11题答案】【答案】AB三、填空题:本大题共3小题,每小题5分,共15分.【12题答案】【答案】20x y -+=【13题答案】【答案】23【14题答案】【答案】()2四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)()0,1(2)5【16题答案】【答案】(1)2(2)34141【17题答案】【答案】(1)(1,2)-(2)证明见解析(3)存在,250x y -+=【18题答案】【答案】(1)证明见解析(2)1(3)1313【19题答案】【答案】(1)证明见解析(2(3)3。
从简单情形开始——谈2010年江苏高考数学试题“压轴题”的解题策略
①若 0 b m都是正数 , 0>6 则 ,, 且 , a+m<T a.
o 十 HL o
②若 Ⅱ 6 m都是正数 , Ⅱ<b 则 ,, 且 ,
的理念 , 比较 容 易算 出 :
(, 1
+∞ ) l , < 2设 m 为 实 数 , =m l 1一m) , x +( 2卢=( 1一
(
4 ( 0" m』 m,  ̄ Ⅳ
-m 2 0' m ,  ̄ 『 .
> 1 > 1 , ,若 { ( )一 ( < g g 卢)
式所表现 出来 的惰 性就 会造成 学生 认知 结构 的简单 化 : 只 有 知 识 点 的堆 积 , 缺 少 知 识 点 的 联 系 , 有 感 性 的 片 面 、 而 只 零星 、 局部 的知识 , 而没有全面 的 、 完整 的知识体 系 , 终形 最
③若 o 6 m都 是正数 , 。<6n<m, 0 t ,, 且 , 则
l L
<0 ’
.
④若 0 b m都是正数 , 。<6 n< 则 一 ,, 且 , m, 0
,
>0 一
, n
.
总之 , 适当进行这方面的训练 , 可使学 生加深对 知识 的 理 解 , 宽基 础 , 跃 发 散 思 维 , 不 仅 能 帮 助 学 生 掌 握 基 拓 活 这 本 的思 想 方 法 , 且 能 有 效 地 提 高 学 生 的应 变 能 力 . 而 四、 破常规 。 打 弱化 思维 定 式 法 国生物学家 贝尔 纳说过 : 碍学 习 的最 大障碍 并不 妨
高考数学模拟试题含答题卡及答案
高考数学模拟试题一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.i 是虚数单位,若集合{1,0,1}S =-,则下面正确的是( )A .i S ∈B .2i S ∈C .3i S ∈D .2S i∈ 2.若函数)(x f y =是偶函数,其图像与x 轴有四个交点,则方程0)(=x f 的所有实数根的和为 ( ) A .0B .1 C.2D .43.设点M 是线段BC 的中点,点A 在直线BC 外,216BC =, AB AC AB AC +=-,则AM =( )A .8B . 4 C.2D .14. 已知三个平面γβα,,,若γβ⊥,且γα与相交但不垂直,则( )A .存在a α⊂,a γ⊥B .存在a α⊂,α∥γC .任意β⊂b ,b γ⊥D .任意β⊂b ,b ∥γ5.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC 是( ) A .一定是锐角三角形. B .一定是直角三角形.C .一定是钝角三角形.D .可能是锐角三角形,也可能是钝角三角形. 6.已知函数1(0,1)xy aa a -=>≠的图象恒过定点A ,若点A 在直线10(0,0)mx ny m n +-=>>上,则14m n+的最小值为( )A .8B .9C .4D .67. .若θ是三角形的一个内角,且1sin cos 2θθ+=,则曲线22sin cos 1x y θθ+=是( ) A. 焦点在x 轴上的椭圆 B. 焦点在x 轴上的双曲线C. .焦点在y 轴上的椭圆D. 焦点在y 轴上的双曲线 8.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为A9.(理)若实数a,b满足0,0,a b≥≥且0ab=,则称a与b互补,记(,),a b a bϕ=-,那么(),0a bϕ=是a与b互补的A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.即不充分也不必要的条件(文)对于非零向量0+=“”a b是“a∥b”的A. 充分必要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件10.设函数)(xf是定义在R上的函数,且[])(1)(1)2(xfxfxf+=-+,又1(1)2f=,则(2013)f等于()A.3 B.-12 C.2 D.-2二、填空题( 11—14题为必做题,15题为选做题;每小题5分,满分25分.)11.设数列{a n},{b n}都是等差数列,若11a b+=7,33a b+ =21,则55a b+=___________ 12. 执行如图所示的程序框图,则输出的S值是___________13.(理)若9()axx-的展开式中3x的系数是84-,则a=.(文).将一个总数为A、B、C三层,其个体数之比为5:3:2。
江苏省南通中学2023-2024学年高一上学期期中 数学试题(含解析)
(1)求函数 y f x 的解析式,并写出函数 y f x 图象恒过的定点;
(2)若
f
x
3 a2
5
,求
x
的取值范围.
21.已知二次函数 f x x2 ax ba,b R .
(1)若 f 2 0 ,且对于 x R , f 1 x f 1 x 恒成立,求 a , b 的值;
v0 1 2 3
Q 0 0.7 1.6 3.3
为描述该超级块艇每小时航行费用 Q 与速度 v 的关系,现有以下两种函数模型供选择:
Q av3 bv2 cv, Q 0.5v a .
(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式; (2)该超级快艇应以多大速度航行才能使 AB 段的航行费用最少?并求出期少航行费用.
C.若 a b 0 ,则 a2 ab b2
D.若
a
b
0
,则
1 a
1 b
11.已知 f x 是 R 上的偶函数,且在0, 上是单调减函数,则满足不等式
f 2t 1 f t 2 的所有整数 t 的值为( )
A. 2
B. 1
C.0
D.1
12.已知 f x 、 g x 都是定义在 R 上的函数,且 f x 为奇函数, g x 的图像关于直
所以若要 7 m 5 2m ,则 m Î [- 1, 2],
63
也即函数 f x 的值域为 R 时,
则实数 m 的取值范围为: m Î [- 1, 2],
故选:D.
8.A
【分析】先根据题意得到
1 y
1 x
2
,从而得到
y
1 y
2010高考全国新课标卷数学(含解析)
AB2 +AC2 -BC2 1 = , ∠ BAC =60 ° 2AB ⋅ AC 2
三,解答题:解答应写出文字说明,正明过程和演算步骤 (17) (本小题满分 12 分) 设数列 {an } 满足 a1 = 2, an +1 − an = 3i 2 (1) 求数列 {an } 的通项公式;
2 n −1
而 a1 = 2, 所以数列{ an }的通项公式为 an = 22 n −1 。 (Ⅱ)由 bn = nan = n ⋅ 22 n −1 知
Sn = 1⋅ 2 + 2 ⋅ 23 + 3 ⋅ 25 + ⋯ + n ⋅ 2 2 n −1
从而
①
22 ⋅ S n = 1 ⋅ 23 + 2 ⋅ 25 + 3 ⋅ 27 + ⋯ + n ⋅ 22 n +1
(2) 令 bn = nan ,求数列的前 n 项和 Sn
解: (Ⅰ)由已知,当 n≥1 时,
an+1 = [(an+1 − an ) + (an − an−1 ) + ⋯ + (a2 − a1 )] + a1
= 3(22 n −1 + 22 n −3 + ⋯ + 2) + 2
= 22(n +1)−1 。
x
1 t
利用复合命题真值表,显然 p1 ∨ p2 , p1 ∧ ( − p2 ) 为真命题,选 C 命题意图:复合命题真假判断为背景考察函数的单调性 (6)某种种子每粒发芽的概率都为 0.9,现播种了 1000 粒,对于没有发芽的种子,每粒需再
- 2 -
补种 2 粒,补种的种子数记为 X,则 X 的数学期望为 (A)100 (B)200 (C)300 (D)400
江苏省南通市2023-2024学年高三第一次调研测试数学(解析版)
南通市2024届高三第一次调研测试数学2024.01.24注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上指定位置上,在其他位置作答一律无效。
3.本卷满分为150分,考试时间为120分钟。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|-2<x<3},B={0,1,2,3},则A∩B=A.{-2,-1} B.{0,1} C.{0,1,2} D.{0,1,2,3}2.已知z+z=8,z-z=6i,则z z=A.25 B.16 C.9 D.53.若向量a=(λ,4),b=(2,μ),则“λμ=8”是“a∥b”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设{a n}为等比数列,a2=2a4+3a6,则a4-a7 a2-a5=A.19B.13C.3 D.95.从正方体的八个顶点中选择四个顶点构成空间四面体,则该四面体不可能A.每个面都是等边三角形B.每个面都是直角三角形C.有一个面是等边三角形,另外三个面都是直角三角形D.有两个面是等边三角形,另外两个面是直角三角形6.已知直线y=x-1与抛物线C:x2=2py(p>0)相切于M点,则M到C的焦点距离为A.1 B.2 C.3 D.4直线与抛物线相切,则4p2-8p=0,7.已知函数f(x)及其导函数f′(x)的定义域均为(0,+∞),若xf′(x)<2f(x),则A.4e2f(2)<16f(e)<e2f(4) B.e2f(4)<4e2f(2)<16f(e)C.e2f(4)<16f(e)<4e2f(2) D.16f(e)<e2f(4)<4e2f(2)8.某中学开展劳动实习,学生制作一个矩形框架的工艺品.要求将一个边长分别为10cm 和20cm的矩形零件的四个顶点分别焊接在矩形框架的四条边上,则矩形框架周长的最小值为A.202cm B.305cm C.405cm D.602cm二、选择题:本题共4小题,每小题5分,共20分。
2010届江苏四星级名校高考语文经典模拟试卷
2010届江苏四星级名校高考语文经典模拟试卷(五)班级_________考试号_________姓名__________得分__________一、语言文字运用(18分)1.下列词语中加点的字,每对读音都不相同的一组是()(3分)A.栖.息/ 栖栖..不安蹊.跷/独辟蹊.径稽.首/稽.订辞章B.标识./.博闻强识.纰缪./未雨绸缪.泌.阳/分泌.汁液C.秘.鲁 /口授秘.诀强.嘴/性格倔强.抹.脸/拐弯抹.角D.勒.索/勒.紧点儿涤纶./羽扇纶.巾经络./.络.绎不绝2.下列各句中,加点的成语使用恰当的一句是()(3分)A.政府救助的第一批活动板房安装完毕,一部分都江堰灾民已迁入新居,他们安土..重迁..,开始新的生活。
B.傍晚的大山空无一人,非常寂静,余震不时地发生,空谷足音....也格外地响,更增添了几分恐怖。
C.为了安置纷至沓来....的志愿者,镇政府拨给了志愿者三顶帐篷,可是,充满爱心的志愿者们却又把帐篷全部送给了灾民。
D. 预计2008年奥运会期间,将会有数千万人聚集到北京,那个时候的北京,一定是浩如烟海....了。
3.下列各句中,没有语病的一句是()(3分)A.北京奥运会共进行了28个大项、302个小项的比赛,刷新了38个世界纪录,再创历史新高。
B.中国载人航天工程有关负责人日前接受本台记者采访时表示,我国将于今年10月份实施神舟七号载人航天飞行任务,实现航天员首次空间出舱活动。
C.据调查,当今中国,数以亿计的青少年正在通过电视、电影以及网络游戏等来认识生活,在其中形成有关善恶对错的世界观、人生观和价值观,确认和思考自己与这个社会的关系。
D.质量执法大队的小王,对某企业送检的一批奶制品,未按该分管局长的意见,加盖“合格”签章,以至受到停职检查的处分。
4.依照下列句子,从“丰富”“高贵”中选择一个话题,写一句话。
(3分)示例:看到医院拒收付不起昂贵医疗费的危急病人,看到商人出售假药和伪劣食品,我为人心的冷漠感到震惊,于是我怀念善良..。
江苏省南通市2024-2025学年高三上学期10月调研考试 数学含答案
2024/2025学年度高三第一次调研测试数学(答案在最后)2025.09一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“N x ∀∈,20x >”的否定为()A.N x ∀∈,20x ≤B.N x ∃∈,20x ≤C.N x ∃∈,20x > D.N x ∀∈,20x <2.已知集合{}2,Z A x x x =<∈,(){}2ln 3B x y x x ==-,则A B = ()A.{}02x x << B.{}23x x -<< C.{1}D.{0,1,2}3.已知点(3,4)P -是角α终边上一点,则cos2α=()A.725B.725-C.2425D.2425-4.已知函数()1,121,12xa x f x x x⎧⎛⎫+≤⎪ ⎪⎪⎝⎭=⎨⎪>⎪⎩在R 上单调递减,则实数a 的取值范围为()A.0a < B.12a >-C.102a -<< D.102a ≤<5.已知函数()f x 部分图象如图所示,则其解析式可能为()A.()()2ee xxf x x-=- B.()2()ee xxf x x-=+C.()()e exxf x x -=- D.()()e exxf x x -=+6.过点(3,1)作曲线ln(1)y x =-的切线,则这样的切线共有()A.0条B.1条C.2条D.3条7.锐角α、β满足sin cos()sin βαβα=+,若1tan 2α=,则cos()αβ+=()A.12B.2C.2D.2-8.若函数())2sin 20f x x x ωωω=->在π0,2⎛⎫⎪⎝⎭上只有一个零点,则ω的取值范围为()A.14,33⎛⎤ ⎥⎝⎦B.14,33⎡⎫⎪⎢⎣⎭C.17,66⎛⎤⎥⎝⎦D.17,66⎡⎫⎪⎢⎣⎭二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知011a b <<-<,则()A .01b << B.a b> C.1a b -< D.14ab <10.已知1x ,2x ,3x 是函数32()1f x x a x =-+的三个零点(0a >,123x x x <<),则()A.32a >B.120x x <<C .()()13f x f x ''= D.()()()1231110f x f x f x ''++='11.若定义在R 上的函数()f x 的图象关于点(2,2)成中心对称,且(1)f x +是偶函数,则()A.()f x 图象关于0x =轴对称B.(2)2f x +-为奇函数C.(2)()f x f x += D.20()42i f i ==∑三、填空题:本题共3小题,每小题5分,共15分.12.若函数()2sin cos 2x af x x +=-是奇函数,则π2f ⎛⎫= ⎪⎝⎭______.13.“1x y <<”是“ln ln x x y y <”的________条件.(选填“充分不必要、必要不充分、充要、既不充分也不必要”)14.班上共有45名学生,其中40人会打乒乓球,30人会骑自行车,25人会打羽毛球,则三个运动项目都会的同学至少有________人.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.已知α、β为锐角,sin 10α=,1tan 3β=.(1)求tan 2α的值;(2)求2αβ+的大小.16.已知函数()e e 22x x f x x -=--+.(e 2.71828=⋅⋅⋅)(1)判断函数()2y f x =-的奇偶性并证明,据此说明()f x 图象的对称性;(2)若任意(1,)x ∈+∞,(ln )()4f m x f x +>,求实数m 的取值范围.17.若函数()()πcos 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭图象的相邻对称轴距离为π2,且π162f ⎛⎫=- ⎪⎝⎭.(1)求()f x 的解析式;(2)将()f x 的图象向右平移5π12个单位,再将所得图象上每个点的横坐标变为原来的2倍(纵坐标不变)得到函数=的图象.当∈0,π时,求不等式()24g x g x ⎛⎫≤+ ⎪⎝⎭π的解.18.绿色、环保是新时代健康生活的理念,某一运动场馆投放空气净化剂净化场馆,已知每瓶空气净化剂含量为a ,投放后该空气净化剂以每小时10%的速度减少,根据经验,当场馆内空气净化剂含量不低于3a 时有净化效果,且至少需要持续净化12小时才能达到净化目的.现有9瓶该空气净化剂.(1)如果一次性投放该空气净化剂9瓶,能否达到净化的目的?如果能,说明理由;如果不能,最多可净化多长时间?(精确到0.1小时)(2)如果9瓶空气净化剂分两次投放,在第一次投放后间隔6小时进行第二次投放,为达到净化目的,试给出两次投放的所有可能方案?(每次投放的瓶数为整数,投放用时忽略不计)(参考数据:lg 30.477≈,60.90.53≈).19.已知函数2()2ln 1f x x ax =-+,0a ≥.(1)若()f x 的最大值为0,求a 的值;(2)若存在(,)k m n ∈,使得()()()()f n f m f k n m '-=-,则称k 为()f x 在区间(,)m n 上的“巧点”.(ⅰ)当0a =时,若1为()f x 在区间(,)m n 上的“巧点””,证明:2m n +>;(ⅱ)求证:任意0a >,()f x 在区间(,)m n 上存在唯一“巧点”k .2024/2025学年度高三第一次调研测试数学2025.09一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】B【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ACD【10题答案】【答案】ABD【11题答案】【答案】BD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】1-【13题答案】【答案】充分不必要【14题答案】【答案】5四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)724(2)π4.【16题答案】【答案】(1)奇函数,理由见解析,()f x 图像关于(0,2)中心对称(2)e m >-.【17题答案】【答案】(1)()πcos 23f x x ⎛⎫=+ ⎪⎝⎭(2)11π012x <≤【18题答案】【答案】(1)不能达到净化目的,最多可净化10.4小时;(2)第一次投放6瓶,第二次投放3瓶;或在第一次投放7瓶,第二次投放2瓶.【19题答案】【答案】(1)1a =(2)(ⅰ)证明见解析;(ⅱ)证明见解析。
(南通密卷)高三数学综合测试卷三 人教版
(南通密卷)高三数学综合测试卷三 人教版一、选择题:每小题5分,共12小题,共60分.在每小题的四个选项中,只有一项是符合要求的.1. 已知集合},032|{},,0{2Z x x x x N a M ∈<--==,若∅≠N M ,则a 的值为( ) A .1 B .2 C .1或2 D .不为零的任意实数 2. 下列函数中周期是2的函数是( )A .1cos 22-=x y π B .x x y ππ2cos 2sin += C .)32tan(ππ+=x y D .sin cos y x x ππ= 3. 下列命题中正确的是( )A .若直线l ∥平面M ,则直线l 的垂线必平行于平面M ;B .若直线l 与平面M 相交,则有且只有一个平面经过l 且与平面M 垂直;C .若直线⊂b a ,平面M ,b a ,相交,且直线l ⊥a ,l ⊥b ,则l ⊥M ;D .若直线a ∥平面M ,直线b ⊥a ,则b ⊥M .4. 已知8)(xax -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和为( )A .82B .83C .1或83D .1或825. 若函数c bx x x f ++=2)(的图象的顶点在第四象限,则函数)(/x f 的图象是( )A B C D 6. 已知实数a 满足21<<a .命题P :函数)2(log ax y a -=在区间[0,1]上是减函数. 命题Q :1||<x 是a x <的充分不必要条件.则( )A .“P 或Q ”为真命题;B .“P 且Q ”为假命题;C .“┐P 且Q ”为真命题;D .“┐P 或┐Q ”为真命题 7. 已知两个点M (--5,0)和N (5,0),若直线上存在点P ,使|PM|--|PN|=6,则称该直线为“B 型直线”.给出下列直线①1+=x y ;②2=y ;③x y 34=;④12+=x y .其中为“B 型直线”的是( )A .①③B .①②C .③④D .①④8. 在数列{n a }中,21=a ,2)1(1++=+n n a n na (*N n ∈),则10a 为( )A .34B .36C .38D .400 0 0 y yyy9. 已知点B )0,2(,点O 为坐标原点,点A 在圆1)2()2(22=-+-y x 上,则向量OB OA 与的夹角θ的最大值与最小值分别为( )A .0,4πB .4,125ππ C .12,125ππ D .125,2ππ 10.设函数)(x f 为定义域在R 上的以3为周期的奇函数,若132)2(,1)1(+-=>a a f f ,则( ) A .32<a B .132-≠<a a 且 C .132-<>a a 或 D .321<<-a11.某商场宣传在“五一黄金周”期间对顾客购物实行一定的优惠,商场规定:①如一次性购物不超过200元,不予以折扣;②如一次性购物超过200元但不超过500元的,按标价给予九折优惠;③如一次性购物超过500元的,其中500元给予9折优惠,超过500元的部分给予八五折优惠.某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款( )A .608元B .574.1元C .582.6元D .456.8元 12.已知直线1=+by ax (b a ,不全为0)与圆5022=+y x 的公共点,且公共点的横、纵坐标均为整数,那么这样的直线共有( )A .66条B .72条C .74条D .78条二、填空题:每小题4分,共4小题,共计16分.将答案填在题中的横线上.13.已知函数)(x f 是R 上的减函数,A (0,--3),B (--2,3)是其图象上的两点,那么不等式3|)2(|≥-x f 的解集是______________.14.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率是______.15.双曲线)1(122>=-n y nx 的两个焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=22+n ,则⊿PF 1F 2的面积为____________.16.有一个正四棱锥,它的底面边长和侧棱长均为a ,现在要用一张正方形的包装纸将它完全包住.(不能裁剪纸,但可以折叠)那么包装纸的最小边长应为__________________. 三、解答题:共6大题,共计74分,解答应写出文字说明、证明过程或演算步骤. 17.本题满分12分)已知在⊿ABC 中,角A 、B 、C 的对边为,,,c b a ,向量))sin(,2cos2(B A Cm +-=, ))sin(2,2(cos B A Cn +=,m ⊥n .(1)求角C . (2)若22221c b a +=,试求)sin(B A -的值.18.(本题满分12分)粒子A 位于数轴0=x 处,粒子B 位于2=x 处,这两粒子每隔1秒向左或向右移动一个单位,设向右移动的概率为32,向左移的概率为31. (1)求第三秒时,粒子A 在点1=x 处的概率.(2)求第2秒时,粒子A 、B 同在点2=x 处的概率.19.(本题满分12分)已知正四棱柱ABCD-A 1B 1C 1D 1中,底面边长AB=2, 侧棱BB 1=4,过点B 作B 1C 的垂线交侧棱CC 1于点E , 交B 1C 于点F ,(1)求证:A 1C ⊥平面BED ;(2)求A 1B 与平面BDE 所成角的正弦值. 20.(本题满分12分)已知函数x xax f 22)(-=. (1)将函数)(x f y =的图象向右平移两个单位,得到函数)(x g y =,求)(x g y =的解析式.(2)函数)(x h y =与函数)(x g y =的图象关于直线1=y 对称,求)(x h y =的解析式; (3)设)()(1)(x h x f ax F +=,)(x F 的最小值是m ,且72+>m .求实数a 的取值范围.ABCDA 1B 1C 1D 1E F21.(本题满分12分)自点A (0,-1)向抛物线C :2x y =作切线AB ,切点为B ,且B 在第一象限,再过线段AB 的中点M 作直线l 与抛物线C 交于不同的两点E 、F .直线AF 、AE 分别交抛物线C 于P 、Q 两点. (1)求切线AB 的方程及切点B 的坐标. (2)证明)(R AB PQ ∈=λλ.22.(本题满分14分)由原点O 向三次曲线 )0(323≠-=a ax x y引切线,切点为P 1),(11y x (O ,P 1两点不重合),再由P 1引此 曲线的切线,切于点P 2),(22y x (P 1,P 2不重合),如此继续下 去,得到点列:)},({n n n y x P . (1)求1x ;(2)求n x 与1+n x 满足的关系式;(3)若0>a ,试判断n x 与a 的大小关系,并说明理由.xyPABMFQ E[参考答案]一、选择题(每小题5分,共12小题,共60分)题号123456789101112答案 D C C C A A B C C D C B二、填空题(每小题4分,共4小题,共计16分)13.),2[]0,(+∞-∞ 14.0.8 15.1 16.a 226+ 三、解答题:(共6大题,共计74分) 14.(本题满分12分)解:(1)由0=⋅nm 得0)(sin 22cos 222=+-B A C0)cos 1(2cos 12=--+C C01cos cos 22=-+C C 即21cos ,1cos =-=C C 因为π<<C0,所以060=C .(2)因为bca cb R b ac b c a R a A B B A B A 2222cos sin cos sin )sin(222222-+⋅--+⋅=-=-43sin 21444)(2222====-=C R c cR c cR b a .(因为22221c b a=-) 15.(本题满分12分)解:(1)依题意有粒子A 有以下三种走法:右右左,右右左、左右右,其概率为9431)32(2231=⋅=C P .(2)粒子A 只能为:右右走法,其概率为94)32()(2==A P ,粒子B 有两种走法:右左、左右,其概率为943132)(12=⨯⨯=C B P ,则粒子A 、B 同在2=x 处的概率是8116)()(2==B P A P P .16.(本题满分12分)解法一(1)证明:连AC 交DB 于点O ,由正四棱柱性质可知AA 1⊥底面ABCD ,AC ⊥BD ,∴A 1C ⊥BD ,又∵A 1B 1⊥侧面BC 1且BC 1⊥BE ∴A 1C ⊥BE , 又∵BD ∩BE=B ,∴A 1C ⊥平面BDE .(2)设A 1C 交平面BDE 于点K ,连结BK ,则∠A 1BK 为A 1B 与平面BDE 所成的角在侧面BC 1中,BE ⊥B 1C ∴⊿BCE ∽⊿B 1BC ∴1BB BCBC CE = 又BC=2,BB 1=4,∴CE=1.连OE ,则OE 为平面ACC 1A 1与平面BDE 的交线,∴OE ∩A 1C=K 在Rt ⊿ECO 中,22221===AB AC CO,∴322=+=EC CO OE 又CO EC CK OE ⋅=⋅ ∵36=CK又621=C A ,∴36536621=-=K A在Rt ⊿A 1BK 中,630sin 111==B A K A BK A ,即为A 1B 与平面BDE 所成的角的正弦值.解法二:(1)以D 为原点,DA 、DC 、DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系xyz D -.D (0,0,0), A (2,0,0),B (2,2,0),C (0,2,0) A 1(2,0,4),B 1(2,2,4),C 1(0,2,4),D 1(0,0,4), 设点E (0,2,t ) ∵BE ⊥B 1C ,∴04041=-+=⋅t C B BE 1=t ,∴E (0,2,1)又)1,0,2(-=BE ,)4,2,2(1--=C A ,)0,2,2(=BD∴0044040411=++-=⋅=-+=⋅DB C A BE C A 且∴A 1C ⊥DB ,且A 1C ⊥BE ,∴A 1C ⊥平面BDE . (2)设A 1C ∩平面BDE=K则),22,2()1,2,0()0,2,2(n n m m n m DE n DB m DK+=+=+=∴)2,22,2(n n m m K +∴)4,22,22(1-+-=n n m m K A由K A 1⊥ DB 得0)22(2)22(21=++-=•n m m DB K A∴012=-+n m ,…………① 同理有K A 1DE 得04)22(21=-++=⋅n n m DE K A…②454=-+n m由①②联立,解得32,61==n m ∴)310,35,35(1--=K A∴365||1=K A ,又易知52||1=B A∴630||sin111==B A K A BK A ,即所求角的正弦值为630.20.(本题满分12分)解:(1)易得2222)(---=x x a x g .(2)设P ),(y x 为)(x h y =的图像上任一点,点P 关于直线1=y 的对称点为)2,(y x Q -∵点)2,(y x Q -在)(x g y =的图像上,∴2222)(2---==-x x a x g y ,即得22222)(--+-=x x ax h . (3)22222)22(1)()(1)(--+-+-=+=x x x x a aa x h x f a x F2214244+-+⋅-=xx a a a 下面求)(x F 的最小值.①当⎪⎩⎪⎨⎧>->-014044a a a,即441<<a 时2)14)(4(24)14)(4(2)(+--=+--≥aa a a a a x F由722)14)(4()]([min+>+--=a a a x F ,得0)2)(12(<--a a ,所以221<<a .②当⎪⎩⎪⎨⎧≤-≥-014044a a a即410≤<a 时)(x F 在R 上是增函数,无最小值,与m x F =min )]([不符.③当⎪⎩⎪⎨⎧≥-≤-014044a a a即4≥a 时,)(x F 在R 上是减函数,无最小值,与m x F =min )]([不符.④当⎪⎩⎪⎨⎧<-<-014044a a a即0<a 时,2)(<x F ,与最小值72+>m 不符.综上所述,所求a 的取值范围是221<<a . 21.(本题满分12分)解:(1)设切线AB 的方程为1-=kx y ,代入2x y =得012=+-kx x ,由042=-=∆k 得2=k ,AB 的方程为12-=x y ,易得切点B (1,1). (2)线段AB 的中点M )0,21(,设过点M 的直线l 的方程为)21(-=x k y ,与2x y =交于),(),,(222211x x F x x E由021)21(22=+-⎪⎩⎪⎨⎧=-=k kx x x y x k y 得,有k x x k x x 21,2121==+.再设P ),(233x x ,Q ),(244x x ,要证)(R AB PQ ∈=λλ,只要PQ ∥AB ,证2==AB PQ k k 即可. 由43342324x x x x x x k PQ+=--=. ∵A 、P 、F 三点共线,有AF APk k =,∴22232311x x x x +=+ 32232232x x x x x x +=+,∴0)1)((3232=--x x x x ,又32x x ≠∴132=x x同理由A 、E 、Q 三点共线得141=x x∴2211121211243==+=+=+=k kx x x x x x x x k PQ所以PQ ∥AB ,有)(R AB PQ ∈=λλ.22.(本题满分14分)解:(1)由)0(323≠-=a ax x y 得ax x y 632/-=过曲线上的点P 1),(11y x 的切线L 1的方程为))(63()3(11212131x x ax x ax x y --=--又∵切线L 1过原点O ,有))(63()3(11212131x ax x ax x --=--化得231ax =.(2)过曲线上的点),(111+++n n n y x P 处的切线1+n L 方程为))(63()3(11212131+++++--=--n n n n n x x ax x ax x y1+n L 过点),(n n n y x P 得))(63(331121213123+++++--=+--n n n n n n n n x x ax x ax x ax x由于1+≠n n x x ,分解因式并约简,得1211211263)(3+++++-=+-++n n n n n n n n ax x x x a x x x x∴0)(3212112=---++++n n n n n nx x a x x x x0)(3)2)((111=--+-+++n n n n n n x x a x x x x∴a x x n n321=++.(3)由(2)得:23211a x x n n +-=+,∴)(211a x a x n n --=-+ 故有数列}{a x n -是首项为21a a x =-,公比为21-的等比数列.∴1)21(2--=-n n a a x ,∴a x nn ])21(1[--=∵0>a,∴当n 为偶数时,a x n <;当n 为奇数时a x n >.。