第一章工程流体力学
工程流体力学第1章 习题解答

第一章习题解答1-1已知液体的容重为7.00kN/m3,求其密度为多少?解:γ=ρg,ρ=γ/g=7000 / 9.807=1-2压缩机压缩空气,压力从98.1kN/m2升高到6×98.1kN/m2,温度从20℃升到78℃。
问空气体积减小了多少?解:p/ρ=RT , p1/(ρ1T1)= p2/(ρ2T2)98.1/(ρ1293)= 6×98.1/(ρ2351)V2/V1=ρ1/ρ2=351/6*293=20% 所以体积减少了80%。
1-3流量为50m3/h,温度为70℃的水流入锅炉,经加热后水温升高到90℃。
水的膨胀系数α=0.000641/K-1。
问从锅炉每小时流出多少的水?解:α=dV/(VdT)dV=αVdT=0.000641*50*(90-70+273)=9.39 m3/h (单位时间内,体积变化就是流量的变化)所以锅炉流出水量为50+9.39=59.39 m3/h。
1-4空气容重γ=11.5N/m3,ν=0.157cm2/s,求它的动力黏度µ。
解:µ=ρν=νγ/g=0.157*10-4*11.5/9.807=1.84*10-5Ns/m21-5图示为一水平方向运动的木板,其速度为1m/s。
平板浮在油面上,δ=10mm,油的µ=0.09807Pa s⋅。
求作用于平板单位面积上的阻力。
解:τ=µdu/dy=µu/δ=0.09807*1/0.01=9.807Pa.1-6一底面积为40cm×50cm,高为1cm的木块,质量为5kg,沿着涂有润滑油的斜面等速向下运动。
已知v=1m/s,δ=1mm,求润滑油的动力黏度。
解:F=mg.5/13=5*9.807*5/13=18.86Nτ=µdu/dy=µv/δ=F/A所以µ=Fδ/(Av)=18.86*0.001/(0.4*0.5*1)=0.0943Pa s⋅1-7一直径d=149.4mm,高度h=150mm,自重为9N的圆柱体在一内径D=150mm的圆管中下滑。
工程流体力学课件-第一章

二、流体力学在石油化工工业中的应用
流体力学是一门重要的工程学科,它的应用几乎遍及国民经济的各个部门, 尤其在石油工程和石油化工工业中,流体力学是其重要的理论核心之一。
在石油工业中 ,用到流体力学原理分析流体在管内的流动规律,压力、阻 力、流速和输量的关系,据此设计管径,校核管材强度,布置管线及选择泵的类 型和大小,设计泵的安装位置等;在校核油罐和其他储液容器的结构强度,估算 容器、油槽车、油罐的装卸时间,解释气蚀、水击等现象 。
实验方法的优点是能直接解决生产中的复杂问题,能发现流动中的新现象。
它的结果往往可作为检验其他方法是否正确的依据。这种方法的缺点是对不同 情况,需作不同的实验,也即所得结果的普适性较差。
3 、数值计算方法
数值计算方法是按照理论分析方法建立数学模型,在此基础上选择合理 的计算方法,如有限差分法、特征线法、有限元法、边界元法、谱方法等,将 方程组离散化,变成代数方程组,编制程序,然后用计算机计算,得到流动问 题的近似解。数值计算方法是理论分析法的延伸和拓展。
两板间流体沿y方向的速度呈线性分布。
上面的现象说明,当流体中发生了层与层之间的相对运动时,速度快的流层对 速度慢的流层产生了一个拉力使它加速,而速度慢的流层对速度快的流层就有 一个阻止它向前运动的阻力,拉力和阻力是大小相等方向相反的一对力,分别 作用在两个流体层的接触面上,这就是流体黏性的表现,这种力称为内摩擦力 或黏性力。
体积弹性模量:在工程上流体的压缩性也常用p的倒数即体积弹性模量来描述
E 1 dp
p dV /V
2.可压缩流动与不可压缩流动
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。
工程流体力学知识点

(3)边界上可有力的作用和能量的交换,但不能有质量的交换。
4
《工程流体力学》------精品学习资料
f = 1 p ρ
该方程的物理意义:当流体处于平衡状态时,作用在单位质量流体上的质量
力与压力的合力相平衡。 其中: 称为哈密顿算子, i j k ,它本身为一个矢量,同时对
x y z
其右边的量具有求导的作用。
4.静力学基本方程式的适用条件及其意义。
牛顿内摩擦定律中的比例系数 μ 称为流体的动力粘度或粘度,它的大小可以
反映流体粘性的大小,其数值等于单位速度梯度引起的粘性切应力的大小。单位
1
《工程流体力学》------精品学习资料
为 Pa·s,常用单位 mPa·s、泊(P)、厘泊(cP),其换算关系: 1 厘泊(1cP)=1 毫帕斯卡·秒(1mPa.s) 100 厘泊(100cP)=1 泊(1P) 1000 毫帕斯卡·秒(1mPa·s)=1 帕斯卡.秒(1Pa·s)
5.膨胀性
指在压力不变的条件下,流体的体积会随着温度的变化而变化的性质。其大
小用体积膨胀系数 βt 表示,即
βt
=
1 V
dV dt
6.粘性
流体所具有的阻碍流体流动,即阻碍流体质点间相对运动的性质称为粘滞性,
简称粘性。
7.牛顿流体和非牛顿流体
符合牛顿内摩擦定律的流体称为牛顿流体,否则称为非牛顿流体。
8.动力粘度
《工程流体力学》------精品学习资料
《工程流体力学》知识点
第一章 流体的物理性质
一、学习引导
1.连续介质假设
流体力学的任务是研究流体的宏观运动规律。在流体力学领域里,一般不考
虑流体的微观结构,而是采用一种简化的模型来代替流体的真实微观结构。按照
工程流体力学

§1.1 流体的定义
一、流体特征(续)
液体与气体的区别 液体的流动性小于气体; 液体具有一定的体积,并取容器的形状; 气体充满任何容器,而无一定体积。
流体的定义
流体是一种受任何微小的剪切力作用时,都 会产生连续变形的物质。 流动性是流体的主要特征。
§1.2 连续介质假说
微观:流体是由大量作无规则热运动的分子所组成, 分子间存有空隙,在空间上是不连续的。
在通常情况下,一个很小的体积内流体的分子数量极多;
例如,在标准状态下,1mm3体积内含有2.69×1016个气体分 子,分子之间在10-6s内碰撞1020次。
宏观:流体力学研究流体的宏观机械运动,研究的是 流体的宏观特性,即大量分子的平均统计特性。 结论:不考虑流体分子间的间隙,把流体视为由无 数连续分布的流体微团组成的连续介质。
1686年牛顿(Newton,I.)发表了名著《自然哲学的数学原理》 对普通流体的黏性性状作了描述,即现代表达为黏性切应力 与速度梯度成正比—牛顿内摩擦定律。为了纪念牛顿,将黏 性切应力与速度梯度成正比的流体称为牛顿流体。 18世纪~ 19世纪,流体力学得到了较大的发展,成为独立的一门学科。 古典流体力学的奠基人是瑞士数学家伯努利(Bernoulli,D.) 和他的亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了 著名的伯努利方程,欧拉于17 55年建立了理想流体运动微分 方程,以后纳维(Navier,C .-L.-M.-H.)和斯托克斯(Stokes, G.G.)建立了黏性流体运动微分方程。拉格朗(Lagrange)、 拉普拉斯(Laplace)和高斯(Gosse)等人,将欧拉和伯努利所 开创的新兴的流体动力学推向完美的分析高度。但当时由于 理论的假设与实际不尽相符或数学上的求解困难,有很多疑 不能从理论上给予解决。
《工程流体力学 》课件

1
动量守恒定律的原理
从动量的守恒角度出发,深刻理解动量守恒定律的实际含义。
2
螺旋桨叶片受力分析方法
通过螺旋桨叶片受力分析的实例,解析动量守恒定律在实际问题中的应用。
3
旋转流体给出经典范例。
能量守恒定律
1 什么是能量守恒定律?
解析能量守恒定律的定义及其基本特性,令人信服地说明其重要性。
第二章:质量守恒定律
详细介绍质量守恒定律的深刻含义和应用范围, 以及流体连续性方程的应用实例。
第四章:能量守恒定律
归纳总结能量守恒定律的核心表述和基本特征, 以及流体能量方程的求解方法。
流体力学基础
1
流体的基本概念
定义流体和非流体的区别,详细介绍流体的基本性质和特征。
2
流场参数
分类介绍各项流场参数的定义、特征和计算方法,重点阐述雷诺数的作用。
概述水力发电站的基本构造和 设备,重点描述流场参数的计 算方法和水力器件的工作原理。
油气管道压力调节方 法
介绍油气管道压力发生变化的 原因和影响,以及调节压力的 方法与流体力学的联系。
结论和要点
结论1
质量守恒定律的意义及其在实际 问题中的应用。
结论2
动量守恒定律的实际含义,以及 其在涡轮和桨叶设计中的应用。
2 如何求解能量守恒定律?
采用实例解析法,将复杂的能量守恒定律应用问题简单化。
3 如何避免能量损失?
从能量损失的根源出发,提出避免能量损失的有效途径。
应用举例
机翼气动力设计
阐述机翼气动力设计的重要性 及其与流体力学的联系,以及 之前学到的动量守恒定律和能 量守恒定律在机翼气动力设计 中的应用。
水力发电站设计
结论3
工程流体力学第一章 流体的物理性质

式中: —流体的密度,kg/m3;
m—流体的质量, V —流体的体积,m3。
Theoretical Mechanics
m V
(1-1)
第一章
流体的主要物理性质
对于各点密度不同的非均质流体,在流体的空间中某点取包含 该点的微小体积 V,该体积内流体的质量m,则该点的密度 m dm 为 lim (1-2)
对应于某流体微元表面,其面积为 作用于该微元表面的表面力为 的表面力,即 : ,其外法线单位向量为 , 。我们常关心单位面积所对应
从普遍意义上讲,表面力 有如下特点: (1) 和作用面不一定垂直;(可分解为正应力和切应力两部 分)。 (2) 和 的方向有关。
Theoretical Mechanics
一、流体与固体的区别:
从力学角度看,固体在确定的剪切力的作用下产生一
定的变形;流体在剪切力作用下产生连续的的变形,即连续 运动。
Theoretical Mechanics
第一章
流体的主要物理性质
流体的定义:流体是一种受到任何微小剪切应力作用时,都能
连续变形的物质。
•
这种连续变形的运动,就是流动。
流体的流动性表现在: 1. 在剪切力持续作用下,流体能产生无限大的变形; 2. 在剪切力停止作用时,流体不作任何恢复变形; 3. 在流体内部压强可向任何方向传递; 4. 任意搅拌的均质流体,不影响其宏观物理性质; 5. 粘性流体在固体壁面满足不滑移条件;
第一章 表1-1
液体种类 (℃) 纯水 海水 20% 盐 水 乙醇(酒精) 苯 四氯化碳 氟 利 昂 -12 甘油 汽油 煤油 原油 润滑油 氢 氧 水银 20 20 20 20 20 20 20 20 20 20 20 20 -257 -195 20
(完整版)流体力学 第一章 流体力学绪论

第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。
流体力学基础 第一节 空气在管道中流动的基本规律

流体力学基础第一节空气在管道中流动的基本规律一、流体力学基础第一节空气在管道中流动的基本规律第一章流体力学基础第一节空气在管道中流动的基本规律工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。
涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。
通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。
由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的基础。
本章中心内容是叙述工程流体力学基本知识,主要是空气的物理性质及运动规律。
一、流体及其空气的物理性质(一) 流体通风除尘与气力输送涉及的流体主要是空气。
流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。
但在流体力学中,一般不考虑流体的微观结构而把它看成是连续的。
这是因为流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分子集团,称每个分子集团为质点,而质点在流体的内部一个紧靠一个,它们之间没有间隙,成为连续体。
实际上质点包含着大量分子,例如在体积为10-15厘米的水滴中包含着3×107个水分子,在体积为1毫米3的空气中有2.7×1016个各种气体的分子。
质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的个别性,按连续质点的概念所得出的结论与试验结果是很符合的。
然而,也不是在所有情况下都可以把流体看成是连续的。
高空中空气分子间的平均距离达几十厘米,这时空气就不能再看成是连续体了。
而我们在通风除尘与气力输送中所接触到的流体均可视为连续体。
所谓连续性的假设,首先意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。
有了这个假设就可以用连续函数来进行流体及运动的研究,并使问题大为简化。
工程流体力学第一章

毛细现象
1 d cos( ) d 2 hg 4 4 cos( ) h gd
h
内聚力: 液体分子间吸引力 附着力: 液体与固体分子间吸引力
思考题
按连续介质的概念,流体质点是指: A、流体的分子; B、流体内的固体颗粒; C、几何的点; D、几何尺寸同流动空间相比是极小量, 又含有大量分子的微元体。 (D)
pz
x
即流体静压强是空 间坐标的连续函数
图1.5.1 流体静压特性
p p( x, y, z )
力在x方向的平衡方程为
1 1 p x dydz p n dA cos( n, x) f x dxdydz 0 2 6
■
1.5.2静止流体的压力分布
p( x, y, z )
A
• 流体质点:
包含有足够多流体分子的微团,在宏观上流体微团的尺 度和流动所涉及的物体的特征长度相比充分的小,小到在 数学上可以作为一个点来处理。而在微观上,微团的尺度 和分子的平均自由行程相比又要足够大。 失效情况: 稀薄气体 程同量级) 激波(厚度与气体分子平均自由
1.2 流体的密度和粘性
■流体的密度
f lim F dF V 0 V dV
f fxi f y j f zk
仅受重力作用流体的质量力
fx 0
质量力的合力
fy 0
f z g
F f ( x, y, z, t )dV
V
1.5 流体静压特性及 静止流体的压力分布
1、流体静力学研究的任务:以压强为中心,主 要阐述流体静压强的特性,静压强的分布规律, 欧拉平衡微分方程,等压面概念,作用在平面 上或曲面上静水总压力的计算方法,以及应用 流体静力学原理来解决潜体与浮体的稳定性问 题等。 2、绝对静止流体: 3、相对静止流体: 4、重点和难点: 等压面的概念、作用在曲面上 的静压力(压力体)
工程流体力学杨树人第1章课件

ΔP
pn
=
lim
ΔA→0
ΔA
这里的pn代表作用在以n为法线方向的曲面上的应力。可
将pn分解为法向应力p和切向应力τ,法向分量就是物理学 中的压强,流体力学中称之为压力。
工程流体力学
复习
第一章
需要掌握的基本概念
流体的概念 流体的性质
第一章
1.连续介质假设 认为流体质点(微观上充分大,宏观上充分小的分子团) 连续地充满了流体所在的整个空间,流体质点所具有的宏 观物理量(如质量、速度、压力、温度等)满足一切应该 遵循的物理定律及物理性质,例如牛顿定律、质量、能量 守恒定律、热力学定律,以及扩散、粘性、热传导等输运 性质。 引入连续介质假设的意义 有了连续介质假设,就可以把一个本来是大量的离散分子 或原子的运动问题近似为连续充满整个空间的流体质点的 运动问题。而且每个空间点和每个时刻都有确定的物理量, 它们都是空间坐标和时间的连续函数,从而可以利用数学 分析中连续函数的理论分析流体的流动。
4.膨胀性 在压力不变的条件下,流体的体积会随着温度的变化而变
化的性质。其大小用体积膨胀系数βt表示,即
βt
=
1 V
dV dt
第一章
不可压缩流体与可压缩流体 是指每个质点在运动全过程中密度不变的流体,对于均质 的不可压缩流体,密度时时处处都不变化,即ρ=常数。 液体的压缩性可根据第四章介绍的空间运动连续性方程来 判断。
第一章
8.动力粘度 牛顿内摩擦定律中的比例系数μ称为流体的动力粘度或粘 度,它的大小可以反映流体粘性的大小,其数值等于单位 速度梯度引起的粘性切应力的大小。单位为Pa·s,常用单 位mPa·s、泊(P)、厘泊(cP)
9.运动粘度 流体力学中,将动力粘度与密度的比值称为运动粘度,用 υ来表示。其单位为m2/s,常用单位mm2/s、斯(St)、厘 斯(cSt),其换算关系: 1m2/s=1×106mm2/s 1m2/s=1×104 St 1 St=100 cSt
工程流体第一章

考核方法、学习要求、答疑 考核方法、学习要求、
考核方法: 1. 平时考勤、作业成绩占20%; 考核方法: 平时考勤、作业成绩占20% 2. 期末考试占80%。 期末考试占80% 学习要求: 学习要求: 1. 重点掌握 : 基础流体力学的基本概念 、 基本 重点掌握:基础流体力学的基本概念、 方程、 方程、基本应用 2. 按时 、 独立 、 认真完成作业 。 作业要求画图 , 按时、 独立、 认真完成作业。 作业要求画图, 代入数据。 代入数据。 答疑:1. 随时、随地欢迎同学们交流; 答疑: 随时、随地欢迎同学们交流; 2.主楼F613热工教研室; 主楼F613热工教研室 热工教研室; 3.Tel:61772472(O) Tel:61772472(O) 12 4.Email:lwy@ Email:lwy@.
7
4、我国水利事业的历史: 我国水利事业的历史:
4000多年前的 大禹治水”的故事——顺水之性,治 顺水之性, 4000多年前的 “大禹治水”的故事 顺水之性 水须引导和疏通 秦朝在公元前256 前210年修建了我国历史上的三大 秦朝在公元前256—前210年修建了我国历史上的三大 256 水利工程(都江堰、郑国渠、灵渠) 水利工程(都江堰、郑国渠、灵渠)-明渠水流和堰流 古代的计时工具“铜壶滴漏” 古代的计时工具“铜壶滴漏”——孔口出流 孔口出流 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等 清朝雍正年间,何梦瑶在《算迪》 于过水断面面积乘以断面平均流速的计算方法。 于过水断面面积乘以断面平均流速的计算方法。 隋朝(公元587 610年 587—610 隋朝(公元587 610年)完成的南北大运河 隋朝工匠李春在冀中蛟河修建(公元605—617 隋朝工匠李春在冀中蛟河修建(公元605 617年)的 605 617年 赵州石拱桥——拱背的4个小拱,既减压主拱的负载, 拱背的4 赵州石拱桥 拱背的 个小拱,既减压主拱的负载, 又可宣泄洪水。 又可宣泄洪水。 8
工程流体力学第1章_流体的主要物理性质

1
第1章 流体的主要物理性质
§1.1 流体的概念
1、什么是流体?
凡是没有一定形状、容易流动的物质都称为流体。流体包括液体和气体。
2
第1章 流体的主要物理性质
2、流体的基本特征
与固体相比较: 固体:分子间距小,分子排列紧密,不易变形,体积固定。 从力学性质看:可以承受压力、拉力、切力。 流体:分子间距大,分子排列松散,易变形(受任何微小剪切力作用时, 就要发生连续不断的变形,即流动),易流动性是流体和固体的显著区 别。从力学性质看:可以承受压力,一般不能承受拉力,静止时不受切 力。 液体与气体的不同点: 液体:不容易被压缩,体积较为固定,在容器内有自由表面。 气体:很容易被压缩,体积不固定,无自由表面。
数学表达式:
M MV ,即 水 水 M 水 M 水 V 水 水
3 注意:式中 水、 水 始终为常数,应记住: 水 1000kg m
水 9800N m3
气体的相对密度;在同温同压下,气体的密度与空气的密度之比。
注意:相对密度 是一比值,为无因次量。
粘性:指当流体微团发生相对运动时产生切向阻力的性质。
18
第1章 流体的主要物理性质
(2)粘性产生的原因
粘性内摩擦力实质上是流体微观分子作用的宏观表现。分析其产生的物理原 因,需要从分子微观运动来说明。
粘性产生的原因有两个:
①由于分子间的吸引力(内聚力); ②由于分子不规则运动的动量交换。
对于液体:由于分子间距小,在低速流动时,不规则运动较弱,因此,粘性 力的产生主要取决于分子间的引力。 对于气体:由于分子间距较大,吸引力很小,不规则运动强烈,所以,其粘 性力产生的原因主要取决于分子不规则运动的动量交换。
工程流体力学课后习题讲解

2gH R2
29.80.5 20.9转 / 秒 0.252
n2 602 / 2 199.3转/ 分 200转/ 分
(3)容器静止后,设水面高度h2,那么
R 0
22r 2 2g
2
rdr
R4 4g
22
得 h2 0.5H 0.25米
2-19 25m3卧式圆筒形油罐,长4.15m,内径2.54m,油品相对密度0.70,油面高 度在顶部以上0.20m.求端部圆面积上所受的液体总压力的大小和压力中心位置?
时的 h2,试根据1、2两管的沉没深度H1和H2以及 h1和 ,h2 推求油品重
度的表达式。
解:根据题意和图示可得:
p1 Hg h1 p1 0H1 p2 Hg h2 P2 0H2
Hg h1
0 H1
Hg h2
0H2
Hg (h1 h2 ) 0 (H1 H2 )
解:自由液面方程:
z s
2r2 2g
z
设液面下降为h3,则
h3
(1)
h3 h1 (H z)
H-z 下降部分的体积应等于上升部分的体
积,那么,下降部分的体积为
上升部分的体积:
R 12r 2 0 2g
2 rdr
R4 4g
12
R2
(h1
H
2R2
2g
)
所以
(h1
dV P dpV
d 2
nt 4
PVdp
n 4PV0p t D2
4
4.75
工程流体力学_上册_李玉柱_课后答案第一章

第一章 绪论1-1 空气的密度31.165kg/m ρ=,动力粘度51.8710Pa s μ-=⨯⋅,求它的运动粘度ν。
解:由ρμ=v 得,55231.8710Pa s 1.6110m /s 1.165kg/m v μρ--⨯⋅===⨯ 1-2 水的密度3992.2kg/m ρ=,运动粘度620.66110m /s v -=⨯,求它的动力粘度μ。
解:由ρμ=v 得,3624992.2kg/m 0.66110m /s 6.5610Pa s μρν--==⨯⨯=⨯⋅ 1-3 一平板在油面上作水平运动,如图所示。
已知平板运动速度V =lm/s ,板与固定边界的距离δ=5mm ,油的粘度0.1Pa s μ=⋅,求作用在平板单位面积上的粘滞阻力。
解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度为13d 1m/s 200s d 510mu V y δ--===⨯ 由牛顿内摩擦定律d d u yτμ=,可得作用在平板单位面积上的粘滞阻力为 -1d 0.1Pa s 200s 20Pa d u yτμ==⋅⨯= 1-4 有一个底面积为40cm ×60cm 矩形木板,质量为5kg ,以0.9m/s 的速度沿着与水平面成30倾角的斜面匀速下滑,木板与斜面之间的油层厚度为1mm ,求油的动力粘度。
解:建立如下坐标系,沿斜面向下方向为x 轴的正方向,y 轴垂直于平板表面向下。
设油膜内速度为线性分布,则油膜内的速度梯度为:330.9m /s 0.910110mu y -∂==⨯∂⨯1s - 由牛顿内摩擦定律知,木板下表面处流体所受的切应力为:30.910u yτμμ∂==⨯∂ Pa 木板受到的切应力大小与τ相等,方向相反,则匀速下滑时其受力平衡方程为:30.9100.40.659.8sin 30μ︒⨯⨯⨯=⨯从而可得油的动力粘度:0.1134Pa s μ=⋅1-5 上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩M 的表达式。
1.1流体力学基础知识

hf = kω
m
对于层流m=1,对于湍流m=1.75~2.0.很 对于层流m=1,对于湍流m=1.75~2.0.很 显然,湍流状态的损失要大的多,因此在 成本允许的情况下,输送管道要尽量粗一 些,保证以层流的形态进行输送.
(三),影响流动阻力损失大小的 ),影响流动阻力损失大小的 因素
流体的沿程阻力损失跟管道长度成正比; 流体的沿程阻力损失跟管道长度成正比; 管道长度成正比 跟平均流动速度的平方成正比, 跟平均流动速度的平方成正比,跟管径大 小成反比. 小成反比. 流体的局部阻力损失跟平均流动速度的平 流体的局部阻力损失跟平均流动速度的平 方成正比. 方成正比. 显然,流体的流动阻力损失还跟流体本身 显然, 的粘滞性和管道跟局部构件的粗糙程度有 关系. 关系.
2.局部阻力和局部损失 2.局部阻力和局部损失 管道中的弯头,三通,阀件和过流截 面有变化(例如管径突然增大或者缩小) 时的连接件等统称为管道局部构件.流体 流经管道局部构件时,由于构件边壁的阻 碍或扰动作用及流体自身的惯性,将发生 撞击,旋涡等现象,流速的大小和方向会 有急剧的改变,形成较大的流动阻力,称 为局部阻力.局部阻力造成的能量损失比 较集中.为克服局部阻力而消耗的单位重 量流体的机械能,称为局部损失 量流体的机械能,称为局部损失,用hj表示. 局部损失,用h 整个管道的能量损失应该分段计算沿 程损失和局部损失,再进行叠加.
六,泵与风机
有关离心式水泵的结构和工作原理的内容在 高中物理中已经有讲授,这里不在赘述.需 要注意的是离心式泵与风机是中心进入边沿 要注意的是离心式泵与风机是中心进入边沿 流出,离心式水泵开机前要将机壳中注满水. 流出,离心式水泵开机前要将机壳中注满水. 水泵和风机在工程中是一种能量转换装置, 它消耗原动机的能量,提高流体的全压力 它消耗原动机的能量,提高流体的全压力. 全压力. 泵与风机的主要性能参数:流量, 泵与风机的主要性能参数:流量,扬程和压 流量 功率,效率,转速请同学们自行了解. 头,功率,效率,转速请同学们自行了解.
工程流体力学复习_图文

第四章 流体动力学分析基础
4.3流体流动的连续性方程
连续性方程是质量守恒定律在流体力学中的 应用。
流体是连续介质,它在流动时充满整个流场。 当研究流体经过流场中某一任意指定的空间 封闭曲面时,在某一定时间内,如果流出的流 体质量和流入的流体质量不相等,则表明封闭 曲面内流体密度是变化的;如果流体是不可压 缩的,则流出的流体质量必然等于流入的流体 质量。上述结论可以用数学分析表达成方程, 称为连续性方程。
水力半径-有效流通截面积与润湿周长之比 。
当量直径-四倍的水力半径。
平均流速-单位时间内单位流通截面所 通过的流体体积量。
基本概念或结论:
雷诺数是惯性力与粘滞力之比
层流与湍流的本质区别
湍流时,流体质点除了有主运动还存在 随机的脉动。
层流时,流体在管内的速度分布呈抛物状 。
练习题
←B通过控制面的流 出率与流入率之差
I II
第四章 流体动力学分析基础
4.2雷诺运输定理
III
B通过控制面的流出量:
B通过控制面的流入量 :
I II
第四章 流体动力学分析基础
4.2雷诺运输定理
III
B通过控制面的流出率:
B通过控制面的流入率 :
I II
第四章 流体动力学分析基础
4.2雷诺运输定理
4.2雷诺运输定理
雷诺运输方程-揭示系统内流体参数变 化与控制体内流体参数变化之间关系。
系统与控制体的对比与关联
系统 系统
系控统制体 系 统
I II
第四章 流体动力学分析基础
4.2雷诺运输定理
III
系统内与控制体内物理量随时间变化率之关 系的推导 设B为物理量,B的质量变化率为
工程流体力学课后习题讲解

u 0.5m / s
F A
du dy
0.065 3.14 11.96 102
0.5 (12 11.96) 102 / 2
8.55N
第二章 流体静力学
2-1 如图所示的U形管中装有水银和水,试求: (1)A、C两点的绝对压力及表压力个是多少? (2)A、B两点的高度差h为多少? 30cm A 10cm 解:(1) 已知:工程单位制 =1000公斤/米3=10-3公斤/厘米3, 国际单 水
p0 Hg h2 13.6 9800 50 103 Pa
6664Pa
(3)
p0 Hg h2 水h1
Hg h2 13.6 水 50 103 h1 水 水 0.68m 680mm
2-9 图示两水管以U形压力计相连, A、B两点的高度差1m, U形管内装水银, 若读数h=0.50m,求A、B的压差为多少?
dV p =2.41升
dVt =2.5 241升
G=0.1976 700=138Kg(公斤)
1-7 相对密度0.89的石油,温度20℃时的运动粘度为40cSt.求动力粘度为多少?
解:
-4 m2/s d=ρ/ρ水=0.89 ,ν=40cSt=0.4St=0.4 10
=0.4 10-4 890=3.5610-2Pa s
p水 水 z pa Hg h
p水 水 ( z z) pa Hg (h h)
上述两式相减得
水 z Hg h 水 h z Hg
所以,水银柱高度差h变大,增加
水 z Hg
(2)若容器中是空气, γa=11.82N/m3
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F pn lim A0 A
七、 作用在流体表面上的力
2)法向应力和切向应力
F dF p lim n n A0 A dA
△Fp
△F △FT
F dF lim A0 A dA
△A
u 5
G
12Leabharlann mgsin sτ五、流体的粘性 4 粘性流体和理想流体
1)实际流体
具有粘性的流体(μ≠0)。
2)理想流体
忽略粘性的流体(μ=0)。
一种理想的流体模型。
五、流体的粘性 5 牛顿流体和非牛顿流体
1)牛顿流体
符合牛顿内摩擦定律的流体 如水、空气、汽油和水银等
τ
宾汉型塑性流体 假塑性流体 牛顿流体 膨胀性流体
是给水排水系统设计和运行控制的理论基础;
5.城市防洪工程:如堤、坝的作用力与渗流问题、防洪闸坝的过 流能力等; 6.建筑环境与设备工程:如供热、通风与空调设计,以及设备的 选用等; 7.环境工程:水中、大气中污染物的迁移扩散,水厂与污水处理 厂工艺流程设计等。
飞机、火箭、卫星、航天飞机; 轮船、潜艇、汽车、地铁、隧洞; 涡轮机,水轮机,水泵,风扇; 大桥,大坝,高塔,烟囱; 环境污染物的迁移扩散; 人体内的血液流动; 江河湖海水体的流动, 气流的运动, 石油与天然气的输运等等。 都涉及到流体的流动,那么它们是如何运动的, 有着怎样的规律,这就是流体力学所研究的问题。
• 隋朝(公元587—610年)完成的南北大运河。
• 隋朝工匠李春在冀中洨河修建(公元605—617年)的赵州石拱桥——拱 背的4个小拱,既减压主拱的负载,又可宣泄洪水。
常用单位制
分类:
国际单位制(SI)
单位制 国际单位制 基本因次 长度L 时间T 质量M 长度L 物理单位制 时间T 基本单位 米m 秒s 千克 kg 厘米 cm 秒s F=ma 1g.cm/s2=1dgn(达因) 导出单位(量纲) F=ma 1kg.m/s2=1N(牛顿)
物理单位制
工程单位制
质量M
克g
概念: 单位:表示物理量的大小,如小时、分、秒。 因次(量纲):表示物理量的种类,如时间、长度、质量。
§1.1 流体的概念
一、流体的定义
自然界物质存在的主要形态:固态、液态和气态 流体包括液体和气体
具有流动性的物体(即能够流动的物体)
流动性:在微小剪切力作用下会发生连续变形的特性。
研究对象
研究内容
解决工程实 际问题
工程中的三大问题:
a. 流体荷载 (设计管道壁厚) (确定流量) b. 流体的输送能力
c. 流动的形态 (确定能量损耗)
工程流体力学
第一章 流体及其主要物理性质
主 讲:刘恩斌
石油工程学院
工程流体力学的发展简史
•流体力学的萌芽 ——2200年以前希腊学者阿基米德写的“论浮体”。
二、重度
G mg g V V
=
三、流体的压缩性
流体体积随着压力的增大而缩小的性质。
1.压缩系数
单位压力增加所引起的体积相对变化量
p
dV / V dp
(m 2 / N )
2.体积模量
E 1
p
Vdp dV
( N / m2 )
四、流体的膨胀性
流体体积随着温度的增大而增大的性质。 1.体胀系数
3. 土木领域:建筑工程和土建工程中的应用。如坑基排水、路 基排水、地下水渗透、地基抗渗稳定处理、围堰修建、海洋平 台在水中的浮性和抵抗外界扰动的稳定性等;
4.市政工程:如桥涵孔径设计、给水排水、管网计算、 泵站和 水塔的设计、隧洞通风等,特别是给水排水工程中,无论取水
、水处理、输配水都是在水流动过程中实现的。流体力学理论
单位质量的流体所占有的体积,流体密度的倒数。
v
1
单位: m3/kg
混合气体的密度
混合气体的密度按各组分气体所占体积百分数计算。
1a1 2a2 ....... n an i ai
i 1
n
式中:1, 2,… n ——各组分气体的密度
a1, a2,… an——各组分气体所占的体积百分数
《工程流体力学》
西南石油大学石油工程学院
考核办法: 考试 70% 作业 20% 考勤 10% 纪律:关闭手机、保持安静
一、课程的性质与目的
性质:石工、储运、土木、水利、建环、环境类专业的 一门必修的专业基础课程。 目的:学习专业理论,培养工程应用能力。 地位:前修课程:高等数学、物理学、理论力学、材料 力学;后续课程:水文学、土力学、水力学、工程地质 等。并直接服务于工程应用。
dM dV
M V
常见流体的密度:
水——1000 kg/m3 空气——1.23 kg/m3 水银——136000 kg/m3
单位:kg/m3
相对密度
流体的密度与4oC时水的密度的比值。 f d w
式中,f ——流体的密度(kg/m3) w——4oC时水的密度(kg/m3)
比容
2)非牛顿流体
不符合牛顿内摩擦定律的流体
0 τ
o
du dy
如泥浆、血浆、新拌水泥砂浆、新拌混凝土等。
六、表面张力
1 表面张力现象
水滴悬在水龙头出口而不滴落; 细管中的液体自动上升或下降一个高度(毛细管现象); 铁针浮在液面上而不下沉。
2 表面张力σ(N/m) 液体表面由于分子引力大于斥力而在表层沿表面方向产生的拉
单位温度增加所引起的体积相对变化量
dV / V dt
t
(1 / K )
五、流体的粘性
1. 粘性的定义
流体内部各流体微团之
间发生相对运动时,流体 内部会产生摩擦力阻力
(即粘性力)的性质。
五、流体的粘性
2.牛顿内摩擦定律
五、流体的粘性
2.牛顿内摩擦定律
(1) 牛顿平板实验
y U
dy
当h和U不是很大时,两平板间 沿y方向的流速呈线性分布
当温度升高时,液体的粘度减小,气体的粘度增大 压力对流体粘度的影响不大,一般忽略不计
例1:一底面积为0.4×0.45 m2,高为0.01 m的木块,质量为5 kg,沿着涂有润滑油的斜面向下作等速运动,如图所示,已 知木块运动速度u =1 m/s,油层厚度 = 0.1 mm,由木块所带 动的油层的运动速度呈直线分布,求油的粘度。
五、流体的粘性
3.粘度
流体粘性大小的度量,由流体流
h dy
y U u+du u
动的内聚力和分子的动量交换引起。
(a)动力粘度
y
o
du / dy
单位Pa·s或N·s/m2
物理单位制中,1P(泊)=0.1Pa·s,1P=100cP (b)运动粘度
/
单位m2/s
物理单位,St(斯)(cm2/s)=10-4m2/s,1St=100cSt
u U U y 或 du dy h h
1 运动较慢的流体层在较快 的流体层带动下才运动; 2 快层受到慢层的阻碍,不 能运动得更快; 3 相邻流体层发生相对运动, 产生切力和阻力,构成了内 摩擦力。
u+du u
h y
o
五、流体的粘性
(2) 牛顿内摩擦定律
du 实验表明,对于大多数流体,存在 T A dy
因此,以分子为对象研究流体运动规律极其复杂。
在实际工程中,所研究的流体的空间尺度远比分子尺寸大 得多,而且要解决的问题也不是流体微观运动特性,而是 流体宏观运动特性,即大量分子运动的统计平均特性。
欧拉提出了连续介质假说: 流体所占有的空间连续而无空隙地充满着流体质点
采用流体连续介质假设的优点
y
单位面积上的剪切力:
dy
U u+du u
du dy
牛顿内摩擦定律表明:
h y
o
⑴粘性切应力与速度梯度成正比; (2)比例系数称动力粘度,简称粘度。
(3)粘性切应力与角变形速率成正比;
五、流体的粘性
(2) 牛顿内摩擦定律
dudt A dy d a B b
C
D
dudt tgd d dy d du dt dy
力, 单位长度上的这种拉力称为表面张力。
3 毛细现象
内聚力:液体分子间相互制约,形成一体的吸引力称为内聚力。 附着力:当液体同固体壁面接触时,液体分子和固体分子之间的 吸引力称为附着力。 毛细管中液体的上升或下降
1 2 d cos( ) d hg 4 4 cos( ) h gd
• 1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立
了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时 提出了速度势的概念。
• 1781年拉格朗日首先引进了流函数的概念。
• 1823年法国工程师Navier,1845年英国数学家、物理学家Stokes提出了著 名的N-S方程。 • 1876年雷诺发现了流体流动的两种流体:层流和紊流。
五、流体的粘性
3.粘度
(3) 粘度的影响因素 温度对流体粘度的影响很大
液体:分子内聚力是产生粘度的主要因素。
粘度 液体 气体
o
温度↑→分子间距↑→分子吸引力↓→内摩擦力↓→粘度↓ 气体:分子热运动引起的动量交换是产生粘度的主要因素。 温度↑→分子热运动↑→动量交换↑→内摩擦力↑→粘度↑
气体 温度
七、 作用在流体上的力
两类作用在流体上的力:表面力和质量力 1 质量力
作用在每个流体微团上的力,其大小与流体质量成正比。
f Xi Yj Zk
例如:重力、惯性力、磁力
七、 作用在流体上的力
2、表面力:作用在流体表面,与表面积成比的力 1)应力