高中数学复习考点知识专题讲解与练习57---古典概型

合集下载

高中 古典概型 知识点+例题+练习

高中 古典概型 知识点+例题+练习

教学过程【训练2】(2014·滨州一模)甲、乙两名考生在填报志愿时都选中
了A,B,C,D四所需要面试的院校,这四所院校的面试安排在同
一时间.因此甲、乙都只能在这四所院校中选择一所做志愿,假设
每位同学选择各个院校是等可能的,试求:
(1)甲、乙选择同一所院校的概率;
(2)院校A,B至少有一所被选择的概率.
1.古典概型计算三步曲
第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;
第三,事件A是什么,它包含的基本事物有多少个.
2.确定基本事件的方法
列举法、列表法、树形图法.





析。

高三数学总复习 古典概型与几何概型 知识讲解 新人教A版

高三数学总复习 古典概型与几何概型 知识讲解 新人教A版

高考总复习:古典概型与几何概型【考纲要求】1、理解古典概型及其概率计算公式;了解随机数的意义,能运用模拟方法估计概率;2、会计算一些随机事件所含的基本事件数及事件发生的概率;了解几何概型的意义。

【知识网络】【考点梳理】知识点一、古典概型1. 定义具有如下两个特点的概率模型称为古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。

2. 古典概型的基本特征(1)有限性:即在一次试验中,可能出现的结果,只有有限个,也就是说,只有有限个不同的基本事件。

(2)等可能性:每个基本事件发生的可能性是均等的。

3.古典概型的概率计算公式由于古典概型中基本事件发生是等可能的,如果一次试验中共有n 种等可能的结果,那么每一个基本事件的概率都是1n。

如果某个事件A 包含m 个基本事件,由于基本事件是互斥的,则事件A 发生的概率为其所含m 个基本事件的概率之和,即nm A P )(。

所以古典概型计算事件A 的概率计算公式为:试验的基本事件总数包含的基本事件数事件A A P =)( 4.求古典概型的概率的一般步骤:(1)算出基本事件的总个数n ;(2)计算事件A 包含的基本事件的个数m ;(3)应用公式()m P A n=求值。

5.古典概型中求基本事件数的方法:(1)穷举法;(2)树形图;(3)排列组合法。

利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏。

知识点二、几何概型1. 定义:事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关。

满足以上条件的试验称为几何概型。

2.几何概型的两个特点:(1)无限性,即在一次试验中基本事件的个数是无限的;(2)等可能性,即每一个基本事件发生的可能性是均等的。

3.几何概型的概率计算公式:随机事件A 的概率可以用“事件A 包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占总面积(体积、长度)”之比来表示。

高考数学复习考点知识讲解课件57 事件的相互独立性、条件概率与全概率公式

高考数学复习考点知识讲解课件57 事件的相互独立性、条件概率与全概率公式

件 B:甲和乙选择的景点不同,则条件概率 P(B|A)=( D )
A.176
B.78
C.37
D.67
பைடு நூலகம்
[解析] 由题意知,事件 A:甲和乙至少一人选择庐山,共有 n(A)=C12·C13+1=7 种 情况,事件 AB:甲和乙选择的景点不同,且至少一人选择庐山,共有 n(AB)=C12·C13=6 种情况,P(B|A)=nnAAB=67.故选 D.
2
— 19 —
(新教材) 高三总复习•数学
— 返回 —
条件概率的 2 种求法 (1)利用定义,分别求 P(A)和 P(AB),得 P(B|A)=PPAAB,这是求条件概率的通法. (2)借助古典概型概率公式,先求事件 A 包含的基本事件数 n(A),再求事件 A 与事件 B 的交事件中包含的基本事件数 n(AB),得 P(B|A)=nnAAB.
满 2 局或 3 局,且在 11 分制比赛中,每局甲获胜的概率为23,乙获胜的概率为13;在“FAST5”
模式,每局比赛双方获胜的概率都为12,每局比赛结果相互独立.
(1)求 4 局比赛决出胜负的概率;
(2)设在 24 分钟内,甲、乙比赛了 3 局,比赛结束时,甲乙总共进行 5 局的概率.
— 13 —
— 4—
(新教材) 高三总复习•数学
— 返回 —
2.条件概率 (1)概念:一般地,设
A,B
为两个随机事件,且
P(A)>0,我们称
P(B|A)=PPAAB

在事件 A 发生的条件下,事件 B 发生的条件概率,简称条件概率.
(2)两个公式
nAB
①利用古典概型,P(B|A)= nA .
②概率的乘法公式:P(AB)= P(A)P(B|A) .

高考数学热点问题专题练习——古典概型知识归纳及例题讲解

高考数学热点问题专题练习——古典概型知识归纳及例题讲解

古典概型一、基础知识:1、基本事件:一次试验中可能出现的每一个不可再分的结果称为一个基本事件。

例如:在扔骰子的试验中,向上的点数1点,2点,……,6点分别构成一个基本事件2、基本事件空间:一次试验,将所有基本事件组成一个集合,称这个集合为该试验的基本事件空间,用Ω表示。

3、基本事件特点:设一次试验中的基本事件为12,,,n A A A(1)基本事件两两互斥(2)此项试验所产生的事件必由基本事件构成,例如在扔骰子的试验中,设i A 为“出现i 点”,事件A 为“点数大于3”,则事件456A A A A =(3)所有基本事件的并事件为必然事件 由加法公式可得:()()()()()1212n n P P A A A P A P A P A Ω==+++因为()1P Ω=,所以()()()121n P A P A P A +++=4、等可能事件:如果一项试验由n 个基本事件组成,而且每个基本事件出现的可能性都是相等的,那么每一个基本事件互为等可能事件。

5、等可能事件的概率:如果一项试验由n 个基本事件组成,且基本事件为等可证明:设基本事件为12,,,n A A A ,可知()()()12n P A P A P A ===()()()121n P A P A P A +++= 6、古典概型的适用条件:(1)试验的所有可能出现的基本事件只有有限多个 (2)每个基本事件出现的可能性相等当满足这两个条件时,事件A 发生的概率就可以用事件A 所包含的基本事件个7、运用古典概型解题的步骤:① 确定基本事件,一般要选择试验中不可再分的结果作为基本事件,一般来说,试验中的具体结果可作为基本事件,例如扔骰子,就以每个具体点数作为基本事件;在排队时就以每种排队情况作为基本事件等,以保证基本事件为等可能事件 ② ()(),n A n Ω可通过计数原理(排列,组合)进行计算③ 要保证A 中所含的基本事件,均在Ω之中,即A 事件应在Ω所包含的基本事件中选择符合条件的 二、典型例题:例1:从16-这6个自然数中随机取三个数,则其中一个数是另外两个数的和的概率为________思路:事件Ω为“6个自然数中取三个”,所以()3620n C Ω==,事件A 为“一个数是另外两个数的和”,不妨设a b c =+,则可根据a 的取值进行分类讨论,列举出可能的情况:{}{}{}{}{}{}3,2,1,4,3,1,5,4,1,5,3,2,6,5,1,6,4,2,所以()6n A =。

古典概型知识点总结

古典概型知识点总结

古典概型知识点总结关键信息项:1、古典概型的定义2、古典概型的特点3、古典概型的概率计算公式4、基本事件的概念5、基本事件的特点6、古典概型的常见例题7、古典概型与其他概率类型的区别11 古典概型的定义古典概型是一种概率模型,它具有以下两个特点:试验中所有可能出现的基本结果是有限的。

每个基本结果出现的可能性相等。

111 有限性意味着试验的结果是可以一一列举出来的,不是无穷无尽的。

112 等可能性表明每个基本结果发生的概率相同,不存在某些结果更容易发生的情况。

12 古典概型的特点确定性:试验的条件和结果都是明确的。

互斥性:不同的基本事件之间是相互排斥的,不会同时发生。

121 可重复性相同的条件下,重复进行试验,结果具有稳定性。

122 规范性符合概率的基本定义和性质,能够通过计算得出准确的概率值。

13 古典概型的概率计算公式假设试验的基本事件总数为 n,事件 A 包含的基本事件数为 m,则事件 A 发生的概率 P(A) = m / n 。

131 计算步骤确定基本事件的总数 n 。

确定事件 A 包含的基本事件数 m 。

代入公式计算 P(A) 。

132 注意事项计算要准确,避免遗漏或重复计算基本事件。

确保对基本事件的界定清晰无误。

14 基本事件的概念基本事件是试验中不能再分的最简单的随机事件,其他事件可以由基本事件组合而成。

141 基本事件的性质独立性:每个基本事件的发生与否互不影响。

完整性:所有基本事件的集合构成了试验的全部可能结果。

15 基本事件的特点最小性:不能再分解为更小的随机事件。

明确性:能够清晰地定义和区分。

151 基本事件的表示通常用简单的符号或数字来表示。

152 基本事件的数量确定根据试验的具体情况,通过分析得出。

16 古典概型的常见例题掷骰子问题:计算掷出特定点数的概率。

抽奖问题:在有限数量的抽奖券中计算中奖的概率。

摸球问题:从装有不同颜色球的容器中摸出特定颜色球的概率。

161 例题分析详细阐述如何确定基本事件和所求事件包含的基本事件数。

高考数学冲刺古典概型考点全面解析

高考数学冲刺古典概型考点全面解析

高考数学冲刺古典概型考点全面解析高考对于每一位学子来说,都是人生中的一次重要挑战。

而数学作为其中的关键学科,更是备受关注。

在数学的众多考点中,古典概型是一个不容忽视的重要部分。

在高考冲刺阶段,对古典概型进行全面且深入的复习,对于提高数学成绩具有重要意义。

一、古典概型的基本概念古典概型是一种概率模型,具有两个重要特征:有限性和等可能性。

有限性指的是试验中所有可能出现的基本事件只有有限个;等可能性则表示每个基本事件出现的可能性相等。

例如,掷一枚质地均匀的骰子,出现的点数就是一个古典概型问题。

因为骰子的点数只有 1、2、3、4、5、6 这六种可能,且每种点数出现的可能性相同。

二、古典概型的概率计算公式在古典概型中,事件 A 的概率可以通过以下公式计算:P(A) =事件 A 包含的基本事件个数/试验中所有可能的基本事件个数例如,从装有 3 个红球和 2 个白球的口袋中随机取出一个球,求取出红球的概率。

这里试验中所有可能的基本事件个数为 5(3 个红球和2 个白球),取出红球的基本事件个数为 3,所以取出红球的概率为3/5。

三、古典概型的常见题型1、摸球问题这是古典概型中常见的一类问题。

例如,一个袋子里装有 5 个红球和 3 个白球,从中随机摸出 2 个球,求摸出一红一白的概率。

解决这类问题时,首先要确定总的基本事件个数,即从 8 个球中选2 个的组合数。

然后计算摸出一红一白的基本事件个数,可以分两步考虑,先选一个红球,再选一个白球,两者相乘即为摸出一红一白的基本事件个数。

2、掷骰子问题掷骰子问题常常会与其他条件相结合。

比如,同时掷两枚质地均匀的骰子,求点数之和大于 8 的概率。

对于这种问题,需要列出所有可能的基本事件,然后找出点数之和大于 8 的基本事件个数,最后计算概率。

3、抽样问题抽样问题可以分为有放回抽样和无放回抽样。

例如,从 10 件产品中抽取 3 件,有放回抽样和无放回抽样时,抽到特定产品的概率是不同的。

第10章概率专题2 古典概型-新教材高中数学必修(第二册)常考题型专题练习(教育机构专用)

第10章概率专题2 古典概型-新教材高中数学必修(第二册)常考题型专题练习(教育机构专用)
则从五人中选出两人共有以下10 种情况:
a,b,a, x, a, y , a, z , b, x , b, y , b, z , x, y , x, z , y, z 两名组长分别选自 20, 40和 40,60的共有以下 6种情况: a, x,a, y , a, z , b, x , b, y , b, z
B.3
10
5
C.2
D.1
5
5
解析:选 C 若函数 f(x)=(a2-2)ex+b 为减函数,则 a2-2<0,又 a∈{-2,0,1,2,3}, 故只有 a=0,a=1 满足题意,又 b∈{3,5},所以函数 f(x)=(a2-2)ex+b 为减函数的概率是 2×2=2. 5×2 5
2.从分别标有 1,2,…,9 的 9 张卡片中不放回地随机抽取 2 次,每次抽取 1 张,则抽到的 2 张卡片上的数奇偶性不同的概率是( )
5
【答案】(1)3,2,2(2)(i)见解析(ii)
21
【解析】(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为 3∶2∶2,由于采用 分层抽样的方法从中抽取 7 名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取 3 人,2 人,2 人. (Ⅱ)(i)从抽出的 7 名同学中随机抽取 2 名同学的所有可能结果为 {A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B, F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F}, {E,G},{F,G},共 21 种. (ii)由(Ⅰ),不妨设抽出的 7 名同学中,来自甲年级的是 A,B,C,来自乙年级的是 D,
A.
B.

古典概型知识点总结

古典概型知识点总结

古典概型知识点总结古典概型是概率论中的一个重要内容,它是指在相同的条件下,可能的结果均等可能的情况下,通过计算各种结果出现的可能性的概率。

在古典概型中主要涉及排列、组合、二项式定理、排列组合概率等基础知识。

下面就各个知识点做详细介绍。

一、排列排列是指从n个不同元素中取出m个进行排列,如果这m个元素的顺序不同则视为不同的排列。

排列数用P(n,m)表示,表示n中取m的排列数。

公式为P(n,m) = n!/(n-m)!例如,从5个不同的元素中取出3个元素进行排列,那么排列数就是P(5,3) = 5!/(5-3)! = 5*4*3 = 60。

二、组合组合是指从n个不同元素中取出m个进行组合,不考虑元素的排列顺序。

组合数用C(n,m)表示,表示n中取m的组合数。

公式为C(n,m) = n!/(m!*(n-m)!)例如,从5个不同的元素中取出3个元素进行组合,那么组合数就是C(5,3) = 5!/(3!*(5-3)!) = 10。

三、二项式定理二项式定理是代数中一个重要的定理,它包括二项式系数的公式以及二项式的展开式。

二项式系数的公式为C(n,m) = n!/(m!*(n-m)!)二项式展开式为(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... + C(n,n)*a^0*b^n例如,(a+b)^3 = C(3,0)*a^3*b^0 + C(3,1)*a^2*b^1 + C(3,2)*a^1*b^2 + C(3,3)*a^0*b^3 = a^3 + 3*a^2*b + 3*a*b^2 + b^3。

四、排列组合概率排列组合概率是指在进行某种排列或组合的情况下,发生一定事件的概率。

在排列组合概率中,一般会出现某个事件的发生总数以及排列或组合的总数,然后通过计算得出该事件的概率。

例如,从一副扑克牌中随机取5张牌,计算得到顺子的概率。

我们可以计算出顺子的排列数,即5个元素的排列数P(5,5)=5!=120,然后计算出总的排列数,即从52张牌中取5张的排列数P(52,5)=52!/(52-5)!=2,598,960,最后通过计算得出顺子的概率为120/2,598,960≈0.000046。

古典概型知识点总结

古典概型知识点总结

古典概型知识点总结在概率论中,古典概型是一个基础且重要的概念。

它为我们理解和解决许多概率问题提供了简单而直观的方法。

接下来,让我们一起深入探讨古典概型的相关知识点。

一、古典概型的定义古典概型是指试验中所有可能出现的基本事件是有限的,并且每个基本事件出现的可能性相等的概率模型。

例如,掷一枚均匀的硬币,出现正面和反面就是两个基本事件,且它们出现的可能性相等,这就是一个古典概型的例子。

二、古典概型的概率计算公式如果一个古典概型中,一共有 n 个基本事件,事件 A 包含的基本事件数为 m,那么事件 A 发生的概率 P(A) = m / n 。

这个公式是古典概型计算概率的核心,通过确定基本事件总数和事件 A 包含的基本事件数,就可以计算出事件 A 的概率。

三、古典概型的特点1、有限性:试验中所有可能出现的基本事件是有限的。

2、等可能性:每个基本事件出现的可能性相等。

这两个特点是判断一个概率模型是否为古典概型的关键。

四、计算古典概型概率的步骤1、确定试验的基本事件总数 n 。

2、确定所求事件 A 包含的基本事件数 m 。

3、代入公式 P(A) = m / n 计算概率。

例如,一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

基本事件总数 n = 8 (5 个红球+ 3 个白球),事件“取出红球”包含的基本事件数 m = 5 ,所以取出红球的概率 P =5 / 8 。

五、古典概型的常见题型1、摸球问题比如,一个袋子里有若干个不同颜色的球,从中摸出特定颜色球的概率。

2、掷骰子问题计算掷出特定点数或特定点数组合的概率。

3、抽奖问题在抽奖活动中,计算中奖的概率。

4、排列组合问题与古典概型的结合通过排列组合的方法确定基本事件总数和事件包含的基本事件数。

六、古典概型的应用1、决策分析在面临不确定性的决策时,可以通过计算不同结果的概率来辅助决策。

2、风险评估评估某些事件发生的可能性和风险程度。

高中数学古典概型知识点总结

高中数学古典概型知识点总结

高中数学古典概型知识点总结高中数学中的古典概型是指基于样本空间,利用等可能性原理计算事件发生概率的方法。

以下是一些关键的知识点总结:1. 样本空间:在进行古典概型的计算时,首先要确定问题的样本空间。

样本空间是指所有可能的结果组成的集合。

2. 事件:在样本空间中,可以定义各种事件,也就是对应某个或某些结果的子集。

常见的事件有简单事件(只包含一个结果)和复合事件(包含多个结果)。

3. 等可能性原理:古典概型的核心思想是等可能性原理,即各个结果发生的概率是相等的。

根据等可能性原理,可以得出事件发生的概率。

4. 计算概率:根据等可能性原理,可以使用计数方法来计算事件发生的概率。

例如,若样本空间中有n个等可能结果,而事件A 包含m个结果,则事件A发生的概率为P(A) = m/n。

5. 排列与组合:在古典概型的计算中,经常需要使用排列与组合的概念。

排列是指从n个元素中选取r个元素并按照一定顺序排列,而组合是指从n个元素中选取r个元素,不考虑顺序。

排列与组合的计算公式如下:- 排列:P(n,r) = n! / (n-r)!- 组合:C(n,r) = n! / (r!(n-r)!)6. 互斥事件与对立事件:互斥事件指两个或多个事件不可能同时发生,而对立事件指两个事件中只有一个会发生。

在古典概型中,可以利用互斥事件和对立事件的概念来计算复杂事件的概率。

7. 概率的性质:概率具有一些重要的性质,包括非负性(概率不会小于0)、正则性(全样本空间的概率为1)、可加性(若事件A 与事件B互斥,则它们的概率之和等于各自的概率和)等。

以上是高中数学中古典概型的一些关键知识点总结。

通过掌握这些知识点,可以更好地理解和应用古典概型方法进行概率计算。

高考数学知识点之古典概型定义及计算

高考数学知识点之古典概型定义及计算

高考数学知识点之古典概型定义及计算
古典概率通常又叫事前概率,是指当随机事件中各种可能发生的结果及其出现的次数都可以由演绎或外推法得知,下面小编给大家介绍高考数学知识点之古典概型定义及计算,赶紧来看看吧!
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件。

等可能基本事件:
若在一次试验中,每个基本事件发生的可能*都相同,则称这些基本事件为等可能基本事件。

古典概型:
如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
如果一次试验的等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为。

古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件A所包含的结果数m;
(4)用公式求出概率并下结论。

求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。

高中数学古典概型讲解

高中数学古典概型讲解

高中数学古典概型讲解一、教学任务及对象1、教学任务本节课的教学任务是对高中数学中的古典概型进行详细讲解。

古典概型是概率论中的一个基础概念,它涉及到随机现象中的等可能性和排列组合的应用。

通过本节课的学习,学生应能够理解古典概型的定义,掌握其基本的计算方法,并能够运用这些知识解决实际问题。

2、教学对象教学对象是高中二年级的学生,他们在之前的学习中已经接触过概率的基本概念,如事件的独立性、条件概率等,并对排列组合有了初步的了解。

这个年龄段的学生逻辑思维能力强,但可能对抽象概念的理解和运用上还存在一定难度。

因此,教学过程中需要结合具体实例,以直观和逻辑并重的方式引导学生理解和掌握古典概型的相关内容。

同时,考虑到学生的个体差异,教学中将采用不同难度的问题设计,以适应不同层次学生的学习需求。

二、教学目标1、知识与技能(1)理解古典概型的定义,掌握古典概型的特征和判断方法;(2)掌握排列组合在古典概型中的应用,能够运用排列组合知识解决实际问题;(3)学会运用古典概型的计算方法,准确计算随机事件的概率;(4)能够将实际问题转化为古典概型问题,从而解决实际问题。

2、过程与方法(1)通过实例分析,培养学生观察、思考、抽象和概括的能力;(2)采用小组合作、讨论交流等形式,提高学生解决问题的能力和团队协作能力;(3)引导学生运用数学思维和方法,培养其逻辑推理和批判性思维;(4)通过问题解决,培养学生运用数学知识解决实际问题的能力。

3、情感,态度与价值观(1)激发学生学习数学的兴趣,增强学生对数学学科的价值认识;(2)培养学生面对问题时积极、主动、探究的态度,使其具备克服困难的信心和决心;(3)通过数学知识的学习,引导学生认识到事物发展中的规律性和不确定性,培养其严谨、理性的思维品质;(4)教育学生遵守社会公德,尊重事实,遵循规则,树立正确的价值观。

在教学过程中,注重将知识与技能、过程与方法、情感,态度与价值观三者有机结合,使学生在掌握古典概型知识的同时,提高解决问题的能力,培养良好的思维品质和价值观。

古典概型、几何概型知识点和练习

古典概型、几何概型知识点和练习

知识点一:变量间的相关系数1.两变量之间的关系(1)相关关系——非确定性关系(2)函数关系——确定性关系2.回归直线方程:∧∧∧+=axby⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∧∧====∧∑∑∑∑xbyax nxy x nyxxxyyxxbniiniiiniiniii,)())((1221121例题分析例1:某种产品的广告费x(单位:百万元)与销售额y(单位:百万元)之间有一组对应数据如下表所示,变量y和x具有线性相关关系:x(百万元) 2 4 5 6 8y(百万元)30 40 60 50 70(1)画出销售额与广告费之间的散点图;(2)求出回归直线方程。

针对练习1、对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图左;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图右. 由这两个散点图可以判断( )(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关 2.在下列各图中,每个图的两个变量具有相关关系的图是( )(1) (2) (3) (4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3) 3. 下表是某小卖部一周卖出热茶的杯数与当天气温的对比表: 气温/℃ 18 13 10 4 -1 杯数 24 34 39 51 63若热茶杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( )A. 6y x =+B. 42y x =+C. 260y x =-+D. 378y x =-+知识点二:概率一、随机事件概率:事件:随机事件:可能发生也可能不发生的事件。

确定性事件: 必然事件(概率为1)和不可能事件(概率为0) (1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()nmA P ≈说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一② 不可能事件和确定事件可以看成随机事件的极端情况③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果⑤ 概率是频率的稳定值,频率是概率的近似值二、概率的基本性质: 基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件; (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用 ③如果事件()()()B P A P B A P B A +=+:,则有互斥和(概率加法公式)互斥事件:不能同时发生的两个事件称为互斥事件对立事件:两个互斥事件中必有一个发生,则称两个事件为对立事件,事件A 的对立事件记为:A互斥事件和对立事件的区别:① 若, B , , B , 中最多有一个发生则为互斥事件A A 可能都不发生,但不可能同时发生 ,从集合的关来看两个事件互斥,即指两个事件的集合的交集是空集② 对立事件是指的两个事件,而且必须有一个发生,而互斥事件可能指的很多事件,但最多只有一个发生,可能都不发生 ③ 对立事件一定是互斥事件 ④ 从集合论来看:表示互斥事件和对立事件的集合的交集都是空集,但两个对立事件的并集是全集 ,而两个互斥事件的并集不一定是全集⑤ 两个对立事件的概率之和一定是1 ,而两个互斥事件的概率之和小于或者等于1 ⑥ 若事件B A ,是互斥事件,则有()()()B P A P B A P +=+⑦一般地,如果 n A A A ,...,,21 两两互斥,则有()()()()n n A P A P A P A A A P +++=+++......2121 ⑧()()A P A P -=1三、概率的概型:古典概型:① 所有基本事件有限个;②每个基本事件发生的可能性都相等满足这两个条件的概率模型成为古典概型。

高考数学一轮单元复习 第57讲 古典概型课件

高考数学一轮单元复习 第57讲 古典概型课件

h
22
第57讲│要点探究
【点评】本题实质相当于“36个球中有9个红球、6个 黑球,从中任取两个球,第一问就是求这两个球恰有一 个黑球的概率,第二问就是求红球数与黑球数相等的概 率”.将一个随机事件拆成若干个互斥事件的和,根据互 斥事件的概率加法公式求这个随机事件的概率是解答概 率试题的一个重要技巧,高考也很重视对这种分类整合 思想的考查,在分拆时要注意各个事件不能有重复部分, 即各个事件的交集为空集,也不要有遗漏,即各个事件 的和要等于所分拆的随机事件,即各个事件的并集要等 于所分拆的随机事件.
h
6
第57讲│要点探究
假设 5 号签为中奖签,甲先抽到中奖签的概率为15;乙接 着抽,其抽中 5 号签的概率为45×14=15.
【点评】 弄清每一个试验的意义及每个基本事件 的含义是解决问题的前提,正确把握各个事件的相互 关系是解决问题的重要方面,判断一次试验中的基本 事件,一定要从其可能性入手,加以区分.而一个试 验是否是古典概型要看其是否满足有限性和等可能 性.
h
25
第57讲│规律总结
规律总结
1.解题时务必注意试验的结果是否“等可能”,否则就 不是古典概型,若是古典概型,则基本事件的个数和事件 发生的总数的求法要一致,若无序则都无序,若有序则都 有序,分子和分母的标准要相同.
h
3
第57讲│知识梳理
任何两个基本事件是互斥的;二是任何事件都可以表示成基本 事件的和.
在一些实际问题中,只要每次试验只有一个基本事件出 现,基本事件的个数有限,并且它们的发生是等可能的,就是 一个古典概型.
h
4

例 1 判断下列命题正确与否:(1)掷两枚硬币,可能出
A1,A2,A1,B1,A1,B2,A1,B3,A1,C1,A1,C2;

高二数学古典概型知识点-word文档资料

高二数学古典概型知识点-word文档资料

2019学年高二数学古典概型知识点古典概型是一种概率模型,是概率论中最直观和最简单的模型,小编准备了高二数学古典概型知识点,具体请看以下内容。

知识点总结本节主要包括古典概型的特征、古典概型的概率计算公式等主要知识点。

其中主要是理解和掌握古典概型的概率计算公式,这个并不难。

1、古典概型(1)定义:如果试验中所有可能出现的基本事件只有有限个,并且每个基本事件出现的可能性相等,则称此概率为古典概型。

(2)特点:①试验结果的有限性②所有结果的等可能性(3)古典概型的解题步骤;①求出试验的总的基本事件数 ;②求出事件A所包含的基本事件数 ;2、基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。

常见考法本节在段考中,一般以选择题、填空题和解答题的形式考查古典概型的特征、古典概型的概率计算公式等知识点,属于中档题。

在高考中多融合在离散型随机变量的分布列中考查古典概型的概率计算公式,属于中档题,先求出各个基本量再代入即可解答。

误区提醒在求试验的基本事件时,有时容易计算出错。

基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。

【典型例题】例1 如图,四边形ABCD被两条对角线分成四个小三角形,若每个小三角形用4种不同颜色中的任一种涂染,求出现相邻三角形均不同色的概率.解:若不考虑相邻三角形不同色的要求,则有44=256(种)涂法,下面求相邻三角形不同色的涂法种数:①若△AOB与△COD同色,它们共有4种涂法,对每一种涂法,△BOC与△AOD各有3种涂法,所以此时共有433=36(种)涂法.②若△AOB与△COD不同色,它们共有43=12(种)涂法,对每一种涂法△BOC与△AOD各有2种涂法,所以此时有4322=48(种)涂法.故相邻三角形均不同色的概率例2 盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取2次,每次只取1只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各1只;(3)取到的2只中至少有1只正品.解:从6只灯泡中有放回地任取2次,每次只取1只,共有62=36(种)不同取法.高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学古典概型知识点,希望大家喜欢。

高中数学一对一辅导——古典概型高考高频考点解析,经典版!

高中数学一对一辅导——古典概型高考高频考点解析,经典版!

高中数学一对一辅导——古典概型高考高频考点解析,经典
版!
首先看一下,古典概型基本知识点的总结:
1.基本事件的特点
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
2.古典概型
(1)特点
①试验中所有可能出现的基本事件只有有限个,即有限性.
②每个基本事件发生的可能性相等,即等可能性.
(2)概率公式
P(A)=基本事件的总数(A包含的基本事件的个数).
还有古典概型容易出现的两个易错点,一定需要注意:
1.辨明两个易误点
(1)在计算古典概型中基本事件数和事件发生数时,易忽视他们是否是等可能的.
(2)概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.
2.古典概型中基本事件的求法
(1)枚举法:适合给定的基本事件个数较少且易一一列举出的.
(2)树状图法:适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时,(x,y)可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2),(2,1)相同.
今天就学习到这里啦,如果喜欢也欢迎收藏或者转发给更多人哦,期待留言一起讨论。

高中数学必修三知识讲解,巩固练习(复习补习,期末复习资料):17【基础】古典概型

高中数学必修三知识讲解,巩固练习(复习补习,期末复习资料):17【基础】古典概型

古典概型【学习目标】1.正确理解古典概型的特点;2.掌握古典概型的概率计算公式;3.了解整数型随机数的产生与随机模拟实验.【要点梳理】要点一、古典概型1.基本事件:试验结果中不能再分的最简单的随机事件称为基本事件.基本事件的特点:(1)每个基本事件的发生都是等可能的.(2)因为试验结果是有限个,所以基本事件也只有有限个.(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.(4)基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.2.古典概型的定义:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.3.计算古典概型的概率的基本步骤为:(1)计算所求事件A所包含的基本事件个数m;(2)计算基本事件的总数n;(3)应用公式()mP An=计算概率.4.古典概型的概率公式:()AP A=包含的基本事件的个数基本事件的总数.应用公式的关键在于准确计算事件A所包含的基本事件的个数和基本事件的总数.要点诠释:古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求AC>BC 的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.要点二、随机数的产生1.随机数的产生方法:一般用试验的方法,如把数字标在小球上,搅拌均匀,用统计中的抽签法等抽样方法,可以产生某个范围内的随机数.在计算器或计算机中可以应用随机函数产生某个范围的伪随机数,当作随机数来应用.2.随机模拟法(蒙特卡罗法):用计算机或计算器模拟试验的方法,具体步骤如下:(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN=作为所求概率的近似值.要点诠释:1.对于抽签法等抽样方法试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.2.随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数.3.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中.【典型例题】类型一:等可能事件概念的理解例1.判断下列说法是否正确,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

()
1/8
[答案] (1)× (2)√ (3)×
2.(教材改编)从 1,2,3,4,5 中随机取出三个不同的数,则其和为偶数的基本
事件个数为( )
A.4
B.5
C.6
D.7
C [任取三个数和为偶数共有:(1,2,3),(1,2,5),(1,3,4),(1,4,5),(2,3,5),
(3,4,5)共 6 个,选 C.]
63 故所求概率 P=16=8. [规律方法] 求古典概型概率的步骤 (1)判断本试验的结果是否为等可能事件,设出所求事件 A; (2)分别求出基本事件的总数 n 与所求事件 A 中所包含的基本事件个数 m;
(3)利用公式
,求出事件 A 的概率.
(1)(2016·全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两
31 A3},{A2,A3},共 3 个,则所求事件的概率为 P=15=5.
②从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件
3/8
有:{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1}, {A3,B2},{A3,B3},共 9 个.
的概率为( )
1
1
3
2
A.10
B.5
C.10
D.5
(2)袋中有形状、大小都相同的 4 个球,其中 1 个白球,1 个红球,2 个黄球,
从中一次随机摸出 2 个球,则这 2 个球颜色不同的概率为________.
5 (1)D (2)6 [(1)从 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张的情况
如图:
基本事件总数为 25,第一张卡片上的数大于第二张卡片上的数的事件数为 10,
10 2 ∴所求概率 P=25=5. 故选 D. (2)设取出的 2 个球颜色不同为事件 A,基本事件有:(白,红),(白,黄),(白,
5 黄),(红,黄),(红,黄),(黄,黄),共 6 种,事件 A 包含 5 种,故 P(A)=6.]
的概率. [解] (1)基本事件数仍为 6.设标号和为奇数为事件 A,则 A 包含的基本事件
为(1,2),(1,4),(2,3),(3,4),共 4 种, 42
所以 P(A)=6=3. (2)基本事件为(白,白),(白,红),(白,黄),(白,黄),(红,红),(红,白), (红,黄),(红,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),(黄,黄),(黄, 白),(黄,红),(黄,黄),共 16 种,其中颜色相同的有 6 种,
(1)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三
个结果是等可能事件.
()
(2)从-3,-2,-1,0,1,2 中任取一数,取到的数小于 0 与不小于 0 的可能
性相同.
()
(3)利用古典概型的概率可求“在边长为 2 的正方形内任取一点,这点到正
方形中心距离小于或等于 1”的概率.
(3)某旅游爱好者计划从 3 个亚洲国家 A1,A2,A3 和 3 个欧洲国家 B1,B2, B3 中选择 2 个国家去旅游.
①若从这 6 个国家中任选 2 个,求这 2 个国家都是亚洲国家的概率; ②若从亚洲国家和欧洲国家中各任选 1 个,求这 2 个国家包括 A1 但不包括 B1 的概率. [解] ①由题意知,从 6 个国家中任选两个国家,其一切可能的结果组成的 基本事件有:{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A1,B3},{A2,A3}, {A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{B1,B2},{B1, B3},{B2,B3},共 15 个. 所选两个国家都是亚洲国家的事件所包含的基本事件有:{A1,A2},{A1,
3.(教材改编)袋中装有 6 个白球,5 个黄球,4 个红球,从中任取一球,则
取到白球的概率为( )
2
4
A.5
B.15
3
2
C.5
D.3
A [从袋中任取一球,有 15 种取法,其中取到白球的取法有 6 种,则所求 62
概率为 P=15=5.]
4.(教材改编)一个口袋内装有 2 个白球和 3 个黑球,则在先摸出 1 个白球
2 3 [从甲、乙、丙 3 人中随机选派 2 人参加某项活动,有甲乙,甲丙,乙丙
2 三种可能,则甲被选中的概率为3.]
古典概型的概率计算 【例 1】 (1)(2017·全国卷Ⅱ)从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1
2/8
张,放回后再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数
位,只记得第一位是 M,I,N 中的一个字母,第二位是 1,2,3,4,5 中的一个数字,
后放回的条件下,再摸出 1 个白球的概率是________.
2 5 [先摸出 1 个白球后放回,再摸出 1 个白球的概率,实质上就是第二次摸
2 到白球的概率,因为袋内装有 2 个白球和 3 个黑球,因此概率为5.]
5.现从甲、乙、丙 3 人中随机选派 2 人参加某项活动,则甲被选中的概率
为________.
高中数学复习考点知识专题讲解与练习
57 古典概型
[考纲传真] 1.理解古典概型及其概率计算公式.2.会计算一些随机事件所包 含的基本事件数及事件发生的概率.
1.基本事件的特点 (1)任何两个基本事件是互斥的. (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 (1)
A包含的基本事件的个数
(2)概率计算公式:P(A)=
.
基本事件的总数
[常用结论]
确定基本事件个数的三种方法
(1)列举法:此法适合基本事件较少的古典概型.
(2)列表法(坐标法):此法适合多个元素中选定两个元素的试验.
(3)树状图法:适合有顺序的问题及较复杂问题中基本事件个数的探求.
[误的打“×”)
包括 A1 但不包括 B1 的事件所包含的基本事件有:{A1,B2},{A1,B3},共 2
2 个,则所求事件的概率为 P=9. [拓展探究] (1)本例(2)中,若将 4 个球改为颜色相同,标号分别为 1,2,3,4
的四个小球,从中一次取两球,求标号和为奇数的概率. (2)本例(2)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同
相关文档
最新文档