13.1轴对称课件(公开课课件)
合集下载
人教版八年级数学上册课件:13.1 轴对称(共25张PPT)
的形式,逆命题就容易写出.鼓励学生找出原命题的条件和
结论. 原命题的条件是“有一个点是线段垂直平分线上的点”, 结论是“这个点与这条线段两个端点的距离相等”.
此时 , 逆命题就很容易写出来.“如果有一个点与线 段两个端点的距离相等,那么这个点在这条线段的垂直平 分线上.” 写出逆命题后,就想到判断它的真假.如果真,那么 需证明它;如果假 ,那么需用反例说明.请同学们自行在 练习册上完成. 学生给出了如下的四种证法.
M A A′
P
B C C′ B′
N
下图是一个轴对称图形,你能发现什么结论?能说明 理由吗?
l
A B
A′ B′
(一)线段的垂直平分线的性质
教师出示教材第61页探究,让学生测量,思考有什
么发现?
如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点, 分别量一量点 P1 , P2 , P3…到点 A 与点 B 的距离,你有什么 发现? 学生回答,教师小结:线段垂直平分线上的点与这条 线段两个端点的距离相等. 性质的证明:
证得PA=PB. 教师要求学生自己写已知 , 求证,证明过程.学 生证明完后教师板书证明过程供学生对照.
已知:MN⊥AB,垂足为点 C , AC = BC ,点 P 是直线 MN 上任 意一点.求证:PA=PB. 证明:在△APC和△BPC中,
∵PC=PC(公共边),∠PCA=∠PCB(垂直的定义),
如果一个平面图形沿一条直线折叠,直线两旁的 部分能够互相重合,这个图形就叫做轴对称图形,这 条直线就是它的对称轴.这时,我们也说这个图形关
于这条直线(成轴)对称.
猜字游戏: 在艺术字中,有些汉字是轴对称的,你能猜一猜下 列是哪些字的一半吗?
问题2 观察下面每对图形(如图),你能类比前面的 内容概括出它们的共同特征吗?
新人教版八年级数学上册13.1.1轴对称ppt课件
轴对称
形状
是否轴对称图 对称轴的数
形
量(条)
是
2
是 不是
4 -------
是
是
20
1
无数
可编辑课件PPT
轴对称
对称轴问题
(1)有些轴对称图形的对称轴只有一条, 但有的轴对称图形的对称轴却不止一条,有的 轴对称图形的对称轴甚至有无数条。
(2)对称轴通常画成虚线,是直线,不 能画成线段。
21
可编辑课件PPT
形,那么这两个图形关于这条直线_对_称_;如果
把两个成轴对称的图形看成一个图形,那么这个
图形就是__轴__对__称__图__形___.
30
可编辑课件PPT
想一想:0-9十个数字中,哪些是
轴对称图形?(抢答)
01234
56789
31
可编辑课件PPT
猜字游戏: 在艺术字中,有些汉字是轴对称的, 你能猜一猜下列是哪些字的一半吗?
3、(日照·中考)已知以下四个汽车标志图案: 其中是轴对称图形的图案是 (只需填入图案代号).
【解析】根据轴对称的定义可以得出①③是轴对称图形. 答案:①③
39
可编辑课件PPT
通过本课时的学习,需要我们: 1.了解轴对称图形和两个图形关于某直线对称的概念.
2.能识别简单的轴对称图形及其对称轴(直线),能找出 两个图形关于某直线对称的对称点.
28
可编辑课件PPT
想一想
轴对称
轴对称图形
两个图形成轴对称
29
可编辑课件PPT
比较归纳
轴对称
区别 联系
轴对称图形
_一___个图形
两个图形成轴对称
__两___个图形
轴对称(第一课时)(课件)人教版数学八年级上册
课堂小结
定义
1、轴对称图形 2、两个图形成轴对称
轴对称图形
区别和联
系
轴对称图形和两个图形成轴对称
应用
利用轴对称图形和两个图形成轴 对称的定义进行判断
课后作业
1.把一圆形纸片两次对折后,得到右图,然后 沿虚线剪开,得到两部分,其中一部分展开后 的平面图形是( B )
A
B
C
D
课后作业
2.如图,在3×3的正方形网格中,已有两个小正方形被 涂黑,再将图中其余小正方形任意涂黑一个,使整个图案 (包括网格)构成一个轴对称图形,则涂色的方法有( D )
追问: 你能再举出一些两个图形成轴对称的例子吗?
互动新授
A
B C
小试牛刀
1、分别观察以下每组图形,判断它们是否关于某条直线成轴对称?
E
E
E
EE
E
不是
不是
是
E
E
E E E
E
是
不是
是
互动新授 仔细观察,下列两个图形有什么区别?
它们之间有什么联 系和区别呢?
轴对称图形
两个图形成轴对称
总结归纳 轴对称图形和轴对称的区别与联系
A.2种 C.4种
B.3种 D.5种
1条
2条
4条
无数条
互动新授
观察下面每对图形(如图),你能类比前面的内容概括出 它们的共同特征吗?
互动新授 共同特征:每一对图形沿着虚线折叠,左边的图形都能与右
边的图形重合.
结论:把一个图形沿着某一条直线折叠,如果它能够与另一个图形 重合,那么就说这两个图形关于这条直线(成轴)对称,这 条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件
正方形ABCD面积的一半,∵正方形ABCD的边长为4cm, ∴S阴影=42÷2=8(cm2).故选B.
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
当堂练习
1.观察下列各种图形,判断是不是轴对称图形?
√
√
√
√
√
方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
例2 如图,正方形ABCD的边长为4cm,则图中 阴影部分的面积为( B )
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的面积等于
(1)
(2)
思考:如图,△ABC和△A′B′C′关于直线MN对称, 点A′,B′,C′分别是点A,B,C的对称点,线段AA′, BB′,CC′与直线MN有什么关系?
A
AA′⊥MN,
M A′
BB′⊥MN,
B
B′
CC′⊥MN.
C
C′
N
知识要点
线段垂直平分线的定义
M
经过线段中点并且垂直于这条
线段的直线,叫做这条线段的
A
P
垂直平分线.
B
如图,MN⊥AA′, AP=A′P.
C
直线MN是线段AA ′的垂直平分线.
N
图形轴对称的性质
A'
B' C'
如果两个图形关于某条直线对称,那么对称轴是任 何一对对应点所连线段的垂直平分线.
一个轴对称图形的对称轴是否也具有上述性质呢? 请你自己找一些轴对称图形来检验吧!
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
当堂练习
1.观察下列各种图形,判断是不是轴对称图形?
√
√
√
√
√
方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
例2 如图,正方形ABCD的边长为4cm,则图中 阴影部分的面积为( B )
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的面积等于
(1)
(2)
思考:如图,△ABC和△A′B′C′关于直线MN对称, 点A′,B′,C′分别是点A,B,C的对称点,线段AA′, BB′,CC′与直线MN有什么关系?
A
AA′⊥MN,
M A′
BB′⊥MN,
B
B′
CC′⊥MN.
C
C′
N
知识要点
线段垂直平分线的定义
M
经过线段中点并且垂直于这条
线段的直线,叫做这条线段的
A
P
垂直平分线.
B
如图,MN⊥AA′, AP=A′P.
C
直线MN是线段AA ′的垂直平分线.
N
图形轴对称的性质
A'
B' C'
如果两个图形关于某条直线对称,那么对称轴是任 何一对对应点所连线段的垂直平分线.
一个轴对称图形的对称轴是否也具有上述性质呢? 请你自己找一些轴对称图形来检验吧!
《轴对称完整》课件
对轴对称的未来展望
轴对称作为数学中的一个基础概念,仍有很大的研究和发展空间。随着数学和其 他学科的发展,轴对称的应用范围也将不断扩大。我们鼓励学生们在未来的学习 和研究中继续关注轴对称,探索它的更多应用和价值。
在《轴对称完整》ppt课件的最后,我们总结了轴对称的基本原理、方法和应用 ,并提出了进一步探索的问题和方向。我们希望学生们能够带着这些问题和思考 ,继续深入探索轴对称的奥秘,为未来的研究和应用打下坚实的基础。
轴对称是数学中的一个重要概念,它描述了一个图形通过某个直线折叠后与自身重合的性质。在《轴对称完整 》ppt课件中,我们深入探讨了轴对称的定义、性质和分类,帮助学生们更好地理解这一概念。
轴对称在几何学中有着广泛的应用,它不仅在平面几何中出现,还涉及到立体几何、解析几何等多个领域。通 过对轴对称的深入理解,学生们可以更好地掌握几何学的基本原理和方法。
05
轴对称的实践应用
在设计中的应用
对称美学的运用
设计作品中,轴对称的运用可以创造出平衡、和谐的感觉。例如,在服装设计中,设计师可以通过轴对称的裁 剪方式,使服装看起来更加优雅、庄重。
产品设计的指导
在产品设计中,轴对称的原理可以帮助设计师更好地布局产品的各个部分,使其更加符合人机工程学,提高使 用体验。
04
轴对称的意义
美学的意义
美学欣赏
轴对称的形状、图案和结 构常常被视为具有美感, 可以给人带来视觉上的享 受和满足感。
艺术创作
艺术家们经常利用轴对称 的原理来创作美丽的艺术 品,如建筑设计、绘画和 雕塑等。
平衡与和谐
轴对称能够给人带来平衡 和和谐的感觉,使整体效 果更加协调和完整。
科学的意义
自然界中的轴对称
课件3:13.1.1 轴对称
通过今天的学习,你有什么收获与体会?
通过这节课的学习,你有什么收获?
第 十 二 章
全
等
三
角
形
• 你能举出日常生活中常见的轴对称图形的例 子吗?
如果想不出,不要紧,可以先 看看我们的周围有没有?再想 一想外面有没有?
请
大
家
再
看
看
左
面
两
组 •请你认真观察哟!
图 形
•每一组里,左边的图形沿直线对折后与右边的图形 重合吗?
结论 把一个图形沿着某一条直线折叠,如果它能 够与另一个图形重合,那么就说这两个图形关 于这条直线对称.
第
十第 三十
13.1.1 轴对称
章一章
轴三
对称角形
— 1—
面对生活中这些美丽的图片, 你是否强烈地感受到美就在我们身边!
这是一种怎样的美呢? 请你谈谈你的感想?
请你想一想:将上图中的每一个图形沿某条直线对折, 直线两旁的部分能完全重合吗? 重合
定义
如果 一个图形
沿一条直线折叠,直
线两旁的部分能够互相重合,那么这个
图形叫做 轴对称图形(axisymmetric figure)
这条直线就是它的对称轴 (axis of symmetric).
剪纸
试一试 你能找出下有的图形的对称轴这么多哇! 以后找对称轴我可得 好好想想呀!
你能找出下图中各图形的对称轴吗?如果能,请 在图上画出来.
这条直线就是对称轴.
你能举出日常生活中常见的 两个图形成轴对称的例子吗?
如果想不出,不要紧,可以先 看看我们的周围有没有?再想 一想外面有没有?
小组讨论:
想一想:轴对称图形和轴对称是不是一回事?它们 有什么相同点与不同点.
轴对称 公开课一等奖课件
13.1 轴对称(1)
八年级 数学
第十三章 轴对称
13.1 轴对称(1)
想一想:一辆汽车的车牌在水中的倒影如 图所示,你能确定该车车牌的号码吗?
13.1 轴对称(1)
本节课你的总结
同学们写一段话:要求写出你的收获、你 认为应该注意的地方、你还想知到的问题等
语文
小魔方站作品 盗版必究
谢谢您下载使用!
0 1 2 3 4
5 6 7 8 9
猜字游戏: 在艺术字中,有些汉字是轴对称的, 你能猜一猜下列是哪些字的一半吗?
八年级 数学
第十三章 轴对称
13.1 轴对称(1)
把一圆形纸片两次对折后,得到 右图,然后沿虚线剪开,得到两 部分,其中一部分展开后的平面 图形是( B )
A
B
C
D
八年级 数学
第十三章 轴对称
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方法
前
言
高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
《轴对称》精品课件
转变换的。
旋转变换可以看作是特殊的轴对称变换,即轴对称变换加上一个旋转操 作。
轴对称在解析几何中的应用
解析几何是研究几何图形在坐标系中 的表示和性质的一门学科,轴对称在 解析几何中有着广泛的应用。
在立体解析几何中,轴对称可以将一 个三维图形关于某条直线对称,从而 得到一个新的三维图形。
在平面解析几何中,轴对称可以将一 个平面图形关于某条直线对称,从而 得到一个新的图形。
轴对称在解析几何中可以用于解决一 些几何问题,例如求图形的面积、体 积等。
05
轴对称的习题与解析
基础习题及解析
基础习题1
判断下列图形是否为轴 对称图形,如果是,找
出对称轴。
基础习题2
找出下列图形关于给定 直线对称的点。
基础习题3
判断下列给出的点是否 关于给定直线对称。
基础习题4
找出下列图形的对称中 心。
轴对称在建筑设计中的应用
总结词
建筑设计的基础
详细描述
轴对称是建筑设计的基础之一,它可以增加建筑物的稳定性和美观度。许多著名的建筑物都采用了轴 对称的设计,如埃及的金字塔、中国的故宫等。在现代建筑中,轴对称也被广泛应用,如上海东方明 珠电视塔、广州塔等。
轴对称在建筑设计中的应用
总结词
建筑的功能和结构
轴对称的性质
轴对称图形具有对称性,即图形关于 对称轴对称,其对应点距离对称轴的 距离相等。
轴对称的数学变换
平移变换
将图形沿对称轴平移,使 得对称点重合,形成新的 图形。
旋转变换
将图形绕对称轴旋转180 度,使得对称点重合,形 成新的图形。
镜像变换
将图形关于对称轴进行镜 像反射,使得对称点重合 ,形成新的图形。
旋转变换可以看作是特殊的轴对称变换,即轴对称变换加上一个旋转操 作。
轴对称在解析几何中的应用
解析几何是研究几何图形在坐标系中 的表示和性质的一门学科,轴对称在 解析几何中有着广泛的应用。
在立体解析几何中,轴对称可以将一 个三维图形关于某条直线对称,从而 得到一个新的三维图形。
在平面解析几何中,轴对称可以将一 个平面图形关于某条直线对称,从而 得到一个新的图形。
轴对称在解析几何中可以用于解决一 些几何问题,例如求图形的面积、体 积等。
05
轴对称的习题与解析
基础习题及解析
基础习题1
判断下列图形是否为轴 对称图形,如果是,找
出对称轴。
基础习题2
找出下列图形关于给定 直线对称的点。
基础习题3
判断下列给出的点是否 关于给定直线对称。
基础习题4
找出下列图形的对称中 心。
轴对称在建筑设计中的应用
总结词
建筑设计的基础
详细描述
轴对称是建筑设计的基础之一,它可以增加建筑物的稳定性和美观度。许多著名的建筑物都采用了轴 对称的设计,如埃及的金字塔、中国的故宫等。在现代建筑中,轴对称也被广泛应用,如上海东方明 珠电视塔、广州塔等。
轴对称在建筑设计中的应用
总结词
建筑的功能和结构
轴对称的性质
轴对称图形具有对称性,即图形关于 对称轴对称,其对应点距离对称轴的 距离相等。
轴对称的数学变换
平移变换
将图形沿对称轴平移,使 得对称点重合,形成新的 图形。
旋转变换
将图形绕对称轴旋转180 度,使得对称点重合,形 成新的图形。
镜像变换
将图形关于对称轴进行镜 像反射,使得对称点重合 ,形成新的图形。
13.1.1 轴对称 课件(共23张PPT)
①
②
③
④
⑤
√
√
√
×
√
实战演练
2.下图中,左边图形和右边图形成轴对称的有( ). A.1组 B.2组 C.3组 D.4组
C
①
②
③
实战演练
4.如图,Rt△ABC中,∠ABC=90°,∠C=60°,将其折叠,使点A落在边AB上C′处,折痕为BD,则∠C′DA的度数为_______.
把成轴对称的两个图形看成一个整体,它就是一个轴对称图形. 把一个轴对称图形分成两个图形,这两个图形关于这条轴对称.
合作探究
轴对称图形
两个图形成轴对称
图形
区别
联系
一个图形具有的特殊形状
两个全等图形的特殊的位置关系
1.都是沿着某条直线折叠后能重合.
2.可以互相转化.
比一比
合作探究
思考:如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN有什么关系?
A′
B′
C′
N
M
AA′⊥MN,BB′⊥MN,CC′⊥MN.
PA=PA′
QB=QB′
HC=HC′
P
Q
H
对称轴经过对称点所连线段的中点,并且垂直这条线段。
垂直平分线
合作探究
如图,MN⊥AA′,AP=A′P. 直线MN是线段AA′的垂直平分线.
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
√
√
×
√
小试牛刀
2.如图所示的每幅图形中的两个图案是轴对称的吗?如果是,指出它们的对称轴,并找出一对对称点. (1) (2) (3)
②
③
④
⑤
√
√
√
×
√
实战演练
2.下图中,左边图形和右边图形成轴对称的有( ). A.1组 B.2组 C.3组 D.4组
C
①
②
③
实战演练
4.如图,Rt△ABC中,∠ABC=90°,∠C=60°,将其折叠,使点A落在边AB上C′处,折痕为BD,则∠C′DA的度数为_______.
把成轴对称的两个图形看成一个整体,它就是一个轴对称图形. 把一个轴对称图形分成两个图形,这两个图形关于这条轴对称.
合作探究
轴对称图形
两个图形成轴对称
图形
区别
联系
一个图形具有的特殊形状
两个全等图形的特殊的位置关系
1.都是沿着某条直线折叠后能重合.
2.可以互相转化.
比一比
合作探究
思考:如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN有什么关系?
A′
B′
C′
N
M
AA′⊥MN,BB′⊥MN,CC′⊥MN.
PA=PA′
QB=QB′
HC=HC′
P
Q
H
对称轴经过对称点所连线段的中点,并且垂直这条线段。
垂直平分线
合作探究
如图,MN⊥AA′,AP=A′P. 直线MN是线段AA′的垂直平分线.
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
√
√
×
√
小试牛刀
2.如图所示的每幅图形中的两个图案是轴对称的吗?如果是,指出它们的对称轴,并找出一对对称点. (1) (2) (3)
人教版八年级上册数学第十三章课件PPT
的直线就是角的对称轴.
练习3:如图,与图形A成轴对称的是哪个图形? 画出它们的对称轴.
练习4:如图,在Rt△ABC
中,∠C=90°,AD是角平
分线且AD=BD,AC=10.
求AB的长度.
A
提示:过点D作
E
DE⊥AB于E
B
D
C
课堂小结
(1)说一说本节课我们 学习了哪些内容?你有什 么收获?
M
1.垂直平分线的定义:
例2:如图是一颗五角星,你能作出它的所有对称 轴吗?
作法:
A
A’
1.找出 l.
用类似的的方法,就可
l
以作出其他四条对称轴.
你也试一试!
练习1:作出下列图形的一条对称轴,和同学比较 一下,你们作出的对称轴一样吗?
练习2:如图,角是轴对称图形吗?如果是,它的 对称轴是什么?角是轴对称图形,角平分线所在
2.结合教材图13.1-1进一步分析轴对称图形的特点, 以及对称轴的位置.
3.学生举例,试举几个在现实生活中你所见到的轴对称 例子.
4.概念应用:(1)教材第60页练习第1题. (2)补充:判断下面的图形是不是轴对称图形?如果是轴 对称图形,它们的对称轴是什么?
(二)两个图形关于某条直线对称 1.观察教材中的图13.1-3,思考:图中的每对图形有什 么共同的特点? 2.两个图形成轴对称的定义. 观察右图:
的直线垂直平分线段AB.其中正确的C个数有( )
A.1个 B.2个 C.3个 D.4个
4如图,若AC=12,BC=7,AB的垂直平 分线交AB于E,交AC于D,求△BCD的周 长。
解:∵ED是线段AB的垂直平分线
E
∴ BD=AD
∵ C△BCD=BD+DC+BC
练习3:如图,与图形A成轴对称的是哪个图形? 画出它们的对称轴.
练习4:如图,在Rt△ABC
中,∠C=90°,AD是角平
分线且AD=BD,AC=10.
求AB的长度.
A
提示:过点D作
E
DE⊥AB于E
B
D
C
课堂小结
(1)说一说本节课我们 学习了哪些内容?你有什 么收获?
M
1.垂直平分线的定义:
例2:如图是一颗五角星,你能作出它的所有对称 轴吗?
作法:
A
A’
1.找出 l.
用类似的的方法,就可
l
以作出其他四条对称轴.
你也试一试!
练习1:作出下列图形的一条对称轴,和同学比较 一下,你们作出的对称轴一样吗?
练习2:如图,角是轴对称图形吗?如果是,它的 对称轴是什么?角是轴对称图形,角平分线所在
2.结合教材图13.1-1进一步分析轴对称图形的特点, 以及对称轴的位置.
3.学生举例,试举几个在现实生活中你所见到的轴对称 例子.
4.概念应用:(1)教材第60页练习第1题. (2)补充:判断下面的图形是不是轴对称图形?如果是轴 对称图形,它们的对称轴是什么?
(二)两个图形关于某条直线对称 1.观察教材中的图13.1-3,思考:图中的每对图形有什 么共同的特点? 2.两个图形成轴对称的定义. 观察右图:
的直线垂直平分线段AB.其中正确的C个数有( )
A.1个 B.2个 C.3个 D.4个
4如图,若AC=12,BC=7,AB的垂直平 分线交AB于E,交AC于D,求△BCD的周 长。
解:∵ED是线段AB的垂直平分线
E
∴ BD=AD
∵ C△BCD=BD+DC+BC
《轴对称》第一课时PPT课件人教版数学八年级上册
平面几何中常见的轴对称图形及它们的对称轴
课堂导入
对称现象无处不在,从自然景观到艺术作品,从建筑 物到交通标志,甚至日常生活用品,都可以找到对称 的例子,对称给我们带来美的感受!
你还能举出生活中见到的对称现象吗?
新知探究 知识点1 轴对称图形
仔细观察,你能从这些图片中发现什么共同特点吗?
以上图形沿着一条直线翻折后,直线两旁的部分能 够完全重合.
轴对称图形 定义: 如果一个平面图形沿一 条直线折叠,直线两旁的部分 能够互相重合,这个图形就叫 做轴对称图形,这条直线就是 它的对称轴.这时,我们也说这 个图形关于这条直线(成轴) 对称.
轴对称图形
(1)轴对称图形是对一个图形而言的,它是一个 图形自身的对称特征,它被对称轴分成的两部分 能够互相重合. (2)一个轴对称图形的对称轴可以有一条,也可 以有多条.
1.(2020·重庆中考)下列图形是轴对称图形的是( A ) 轴是_____________________
轴分成两个图形,这两个图形关于这条轴对称.
(2)一个轴对称图形的对称轴可以有一条,也可以有多条.
(1)轴对称图形是对一个图形而言的,它是一个图形自身的对称特征,它被对称轴分成的两部分能够互相重合.
2.完成下列填空: (1)成轴对称的两个图形的对应角_相__等_,对应边相__等__. (2)在“线段、钝角、长方形、等边三角形”这四个图 形中,是轴对称图形的有_4__个,其中对称轴最多的是 _等__边__三__角__形_,线段的对称轴是_经__过__线__段__中__点__且__垂__直__于__ _线_段__的__直__线___. (3)成轴对称的两个图形_是__全等形;把一个轴对称 图形沿着对称轴分成两个图形,这两个图形_是__全等形. (填“是”或“否”)
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是
是
不是
不是
是
轴对称
接下来我们来探讨有关 对称轴条数的问题 ?
轴对称
动手画一画
1条
轴对称
2条
轴对称
4条
轴对称
无数条
轴对称
对称轴问题
(1)有些轴对称图形的对称轴只有一条, 但有的轴对称图形的对称轴却不止一条,有的 轴对称图形的对称轴甚至有无数条。 (2)对称轴的方向不仅仅是垂直的,有可能 是水平的或倾斜的
区别
____ 一 个图形
1.沿一条直线折叠,直线两旁的部分能够_
互相重合 _______ ___.
联系 对称轴 2.都有__ ________.
3.如果把一个轴对称图形沿对称轴分成两个图
对称 形,那么这两个图形关于这条直线___;如果
把两个成轴对称的图形看成一个图形,那么这个
轴对称图形 . 图形就是_____________
作业布置:
1、利用对称美设计图形,并说 明你的设计意图。 2、课本60页,练习的第一、二 题。
轴对称
感谢各位领导、 老师光临指导! 谢谢!
LOGO
第十三章:13.1.1轴对称(第一课时)
团益学校
吴红梅
轴对称
1.请同学们准备一张纸 2.首先对折纸
3.展开你的想象力,在纸上画出你想 要画的图案
4.然后沿线条剪下 5.把纸张展开 6.欣赏你的杰作,并向同学们展示你 的作品
轴对称
要 仔 细 观 察 哦!
你发现以上图案有 什么特点?
定义 轴对称
(3)对称轴通常画成虚线,是直线,不能
画成线段。
轴对称
好,大家来玩一玩推理游戏
猜字游戏
轴 对 称
2、在艺术字中,有些汉字是轴对称的,你能猜
一猜下列是哪些字的一半吗?
轴对称
找一找
你能举出日常生活中常见 的轴对称图形的例子吗?
在我们的生活中,对现象无处不在
交通
标志
轴对称
轴对称
轴对称
观察下面的图形,你能发现它们有 什么共同的特征吗?
轴 对 称 这节课我们认识了生活中的许多轴对称 图形,它们不但体现了一种对称美,还有一定 的科学道理,你知道吗?
---表盘的对称保证了走时的均匀性。
---飞机的对称使飞机能够在空中保持平衡。 ---人眼睛的对称使人观察物体能够更加准确全面。 ---双耳的对称能使听到的声音具有较强的立体感。
……
轴 对 称
轴对称
对称点
A A′
B
B′
C
C′
轴对称
定义
一个图形 沿着某一条直线折叠,如果 1.把_______ 重合 那么就说这 它能够与另一个 _____图形____, 关于这条直线对称 或者说这两 两个图形______________ 个图形成轴对称。 对称轴 2.同样,我们把这条直线叫做______. 对称点 3.折叠后重合的点是对应点,叫做______.
轴对称 练习 :下列给出的每幅图形中的两个图案是轴 对称吗?如果是,试着找出它们的对称轴。
喜喜 FF
(A) (B) (C) (D)
轴对称
MT7936
对称轴
轴对称
分组讨论:轴对称图形和两个图形成 轴对称的区别与联系
轴对称图形 两个图形成轴对称
比较归纳
轴对称
轴对称图形 两个图形成轴对称 两 _个图形 ____
一个平面图形 __沿一条直线折叠,直线两旁的部分能够 如果__________ 轴对称图形 这条直线就是它 互相重合 这个图形叫做______________. _____________, 对称轴 的__________.
轴对称图形
对称轴
练一练 轴对称
下面的图形是轴对称图形吗?如果是,你能找出对称轴吗?
Company Logo
1、 下列轴对称图形中,对称轴最多的是( B )
A
B
C
D
2、下图是由小正方形组成的“L”形图。请你用三种方法分 别在下图中添画一个小正方形使它成为轴对称图形。
1、轴对称图形和成轴对称的两个图形 的概念。 2、能识别简单的轴对称图形及其对称 轴(直线),能找出两个图形关于某 直线对称的对称点。 3、了解轴对称图形与两个图形关于 某直线对称的区别和联系。