基于单片机的直流电机PWM调速系统
基于单片机的直流电机调速系统设计
直流电机转速 :
根据基尔霍夫第二定律,得到电枢电压电动势平衡方程式 U=Ea+Ia(Ra+Rc)……………式1
式1中,Ra为电枢回路电阻,电枢回路串联保绕阻与电刷 接触电阻的总和;Rc是外接在电枢回路中的调节电阻
由此可得到直流电机的转速公式为:
n=(Ua-IR)/CeΦ ………………………式2
式2中, Ce为电动势常数, Φ是磁通量。 由1式和2式得
n=Ea/CeΦ ……………………………式3
由式3中可以看出, 对于一个已经制造好的电机, 当励磁电压和 负载转矩恒定时, 它的转速由回在电枢两端的电压Ea决定, 电 枢电压越高, 电机转速就越快, 电枢电压降低到0V时, 电机就 停止转动;改变电枢电压的极性, 电机就反转。
PWM脉宽调速
PWM(脉冲宽度调制)是通过控制固定电压的 直流电源开关频率, 改变负载两端的电压, 从 而达到控制要求的一种电压调整方法。在PWM 驱动控制的调整系统中, 按一个固定的频率 来接通和断开电源, 并且根据需要改变一个 周期内“接通”和“断开”时间的长短。通 过改变直流电机电枢上电压的“占空比”来 达到改变平均电压大小的目的, 从而来控制 电动机的转速。也正因为如此, PWM又被称为 “开关驱动装置”。
, 软件简单。但每个按键需要占用一个输入口线, 在 按键数量较多时, 需要较多的输入口线且电路结构复杂, 故此种键盘适用于按键较少或操作速度较高的场合。
数码管显示部分 本设计使用的是一种比较常用的是四位数码 管, 内部的4个数码管共用a~dp这8根数据线, 为使用提供了方便, 因为里面有4个数码管, 所以它有4个公共端, 加上a~dp, 共有12个引 脚, 下面便是一个共阴的四位数码管的内部 结构图(共阳的与之相反)
基于单片机STC89C52的直流电机PWM调速控制系统
第一章:前言Pwm 电机调速原理对于电机的转速调整,我们是采用脉宽调制(PWM)办法,控制电机的时候,电源并非连续地向电机供电,而是在一个特定的频率下以方波脉冲的形式提供电能。
不同占空比的方波信号能对电机起到调速作用,这是因为电机实际上是一个大电感,它有阻碍输入电流和电压突变的能力,因此脉冲输入信号被平均分配到作用时间上,这样,改变在始能端EN1 和EN2 上输入方波的占空比就能改变加在电机两端的电压大小,从而改变了转速。
此电路中用微处理机来实现脉宽调制,通常的方法有两种:(1)用软件方式来实现,即通过执行软件延时循环程序交替改变端口某个二进制位输出逻辑状态来产生脉宽调制信号,设置不同的延时时间得到不同的占空比。
(2)硬件实验自动产生PWM 信号,不占用CPU 处理的时间。
这就要用到STC89C52的在PWM模式下的计数器1,具体内容可参考相关书籍。
51 单片机PWM 程序产生两个PWM,要求两个PWM 波形占空都为80/256,两个波形之间要错开,不能同时为高电平!高电平之间相差48/256,PWM 这个功能在PIC 单片机上就有,但是如果你就要用51 单片机的话,也是可以的,但是比较的麻烦.可以用定时器T0来控制频率,定时器T1 来控制占空比:大致的的编程思路是这样的:T0 定时器中断是让一个I0口输出高电平,在这个定时器T0的中断当中起动定时器T1,而这个T1 是让IO 口输出低电平,这样改变定时器T0 的初值就可以改变频率,改变定时器T1 的初值就可以改变占空比。
前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过 PWM 方式控制直流电机调速的方法就应运而生。
基于单片机的直流电机调速系统的课程设计
一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。
二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。
但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。
由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。
磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。
电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。
传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。
随着电力电子的发展,出现了许多新的电枢电压控制法。
如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。
调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。
脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。
如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。
平均转速Vd与占空比的函数曲线近似为直线。
基于单片机控制的直流电机调速系统设计
基于单片机控制的直流电机调速系统设计一、引言直流电机在工业自动化领域中广泛应用,其调速系统的设计是实现自动控制的关键。
本文将介绍一种基于单片机控制的直流电机调速系统设计方案,主要包括电机原理、硬件设计、软件设计以及实验结果与分析等内容。
二、电机原理直流电机是一种将直流电能转换为机械能的装置,其原理基于电磁感应和安培定律。
电机由定子和转子两部分组成,定子上绕有恒定电流,产生磁场,而转子上带有电流,与定子的磁场互相作用,产生力矩使电机旋转。
三、硬件设计1.单片机选择在本设计中,选择了一款功能强大、性能稳定的单片机作为控制核心,例如使用ST C89C51单片机。
该单片机具有丰富的GP IO口和定时器/计数器等外设,适合进行电机控制。
2.电机驱动电路设计电机驱动电路主要包括功率电源、运放电路和驱动电路。
其中,功率电源为电机提供稳定的直流电源,运放电路用于信号放大和滤波,驱动电路则根据控制信号控制电机的转速。
3.速度测量电路设计为了实时监测电机的转速,需要设计速度测量电路。
常见的速度测量电路包括光电编码器、霍尔传感器等,通过测量转子上感应物体的变化来获得电机的转速信息。
四、软件设计1.程序框架软件设计的目标是实现对电机转速的控制和监测。
基于单片机的软件设计主要包括主程序的编写、中断服务程序的编写以及定时器的配置等。
2.控制算法常见的直流电机调速算法包括电压调速法、P WM调速法等。
根据实际需求选择合适的算法,并根据测量到的转速信号进行反馈控制,实现对电机转速的精确控制。
五、实验结果与分析设计完成后,进行实验验证。
通过设置不同的转速需求,观察电机的实际转速与设定转速的误差,并分析误差原因。
同时还可以测试电机在不同负载下的转速性能,以评估系统的稳定性和鲁棒性。
六、总结基于单片机控制的直流电机调速系统设计是实现自动控制的重要应用。
本文介绍了该系统的硬件设计和软件设计方案,并展示了实验结果。
通过系统实现电机转速的精确控制,可以广泛应用于工业自动化领域。
基于单片机的直流电机PWM调速控制系统的设计
基于单片机的直流电机PWM调速控制系统的设计第一章:前言1.1前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。
采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。
而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。
并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。
随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。
1.2本设计任务:任务: 单片机为控制核心的直流电机PWM调速控制系统设计的主要内容以及技术参数:功能主要包括:1)直流电机的正转;2)直流电机的反转;3)直流电机的加速;4)直流电机的减速;5)直流电机的转速在数码管上显示;6)直流电机的启动;7)直流电机的停止;第二章:总体设计方案总体设计方案的硬件部分详细框图如图一所示。
示数码管显PWM单片机按键控制电机驱动基于单片机的直流电机PWM调速控制系统的设计键盘向单片机输入相应控制指令,由单片机通过P1.0与P1.1其中一口输出与转速相应的PWM脉冲,另一口输出低电平,经过信号放大、光耦传递,驱动H型桥式电动机控制电路,实现电动机转向与转速的控制。
基于单片机实现直流电机PWM调速系统毕业设计
畢業設計(論文)基於單片機實現直流電機PWM調速系統系別:電氣與資訊工程系專業班級:電氣自動化06—32(1)班指導教師:董曉紅老師完成日期:2009年6月12日一、題目:基於單片機實現直流電機PWM調速系統二、指導思想和目的:通過畢業設計,培養學生綜合運用所學的知識和技能解決問題的本領,鞏固和加深對所學知識的理解;培養學生調查研究的習慣和工作能力;培養學生建立正確的設計和科學研究的思想,樹立實事求是、嚴肅認真的科學工作態度。
三、設計任務或主要技術指標:利用MCS-51系列單片機,通過PWM方式控制直流電機調速的方法。
採用了專門的晶片組成了PWM信號的發生系統,然後通過放大來驅動電機。
利用直流測速發電機測得電機速度,經過濾波電路得到直流電壓信號,把電壓信號輸入給A/D轉換晶片最後回饋給單片機,在內部進行PI運算,輸出控制量完成閉環控制,實現電機的調速控制。
四、設計進度與要求:1):佈置設計任務,深入瞭解設計內容,搜集參考資料,學習有關內容。
2):學習學校畢業設計的的實際情況,和格式要求。
3):設計網路拓撲結構以及構思設計的基本思路和設計過程。
4):根據根據設計要求和構思思路查找設計內容。
5):根據要求和設計的基本方案對設計要求的材料進行預算。
6):完善設計方案並繪製必須的圖紙草圖,編寫設計說明書。
7):對圖紙進行校正和測繪,畫合格的正式圖紙。
8):總結,熟悉設計內容,準備畢業答辯,完成答辯。
五、主要參考書及參考資料:[1] 王離九,黃錦恩編著,電晶體脈衝直流調速系統,華中理工大學出版社出版[2] 丁元傑主編,上海市教育委員會組編,單片微機原理及應用,機械工業出版社[3] 李榮生主編,電氣傳動控制系統設計指導,機械工業出版社[4] 吳守箴,臧英傑編著,電氣傳動的脈寬調製控制技術,機械工業出版社[5] 陳伯時主編,自動控制系統---電力拖動控制,中央廣播電視大學出版社專業班級:電氣自動化06—32(1)班學生:景天紅指導教師:董曉紅老師教研室主任(簽名):系(部)主任(簽名):年月日新疆工業高等專科學校畢業設計(論文)評定意見書設計(論文)題目:基於單片機實現直流電機PWM調速系統專題:基於單片機實現直流電機PWM調速系統設計者:姓名景天紅專業電氣自動化班級06—32(1)班設計時間:2009年4月20日—2009年6月12日指導教師:姓名職稱單位評閱人:姓名職稱單位評定意見:評定成績:指導教師(簽名):年月日評閱人(簽名):年月日答辯委員會主任(簽名):年月日(上頁背面)畢業設計評定意見參考提綱1.學生完成的工作量與內容是否符合任務書的要求。
单片机课程设计完整版《PWM直流电动机调速控制系统》
单片机原理及应用课程设计报告设计题目:学院:专业:班级:学号:学生姓名:指导教师:年月日目录设计题目 (3)1 设计要求及主要技术指标: (4)1.1 设计要求 (4)1.2 主要技术指标 (5)2 设计过程 (6)2.1 题目分析 (9)2.2 整体构思 (10)2.3 具体实现 (12)3 元件说明及相关计算 (14)3.1 元件说明 (14)3.2 相关计算 (15)4 调试过程 (16)4.1 调试过程 (16)4.2 遇到问题及解决措施 (20)5 心得体会 (21)参考文献 (22)附录一:电路原理图 (23)附录二:程序清单 (24)设计题目:PWM直流电机调速系统本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED液晶显示器、霍尔测速电路以及独立按键组成的电子产品。
电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。
通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。
电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。
关键词:直流电机调速;定时中断;电动机;PWM波形;LED显示器;51单片机1 设计要求及主要技术指标:基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM 调速控制装置。
1.1 设计要求(1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。
(2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。
(3)设计一个4个按键的键盘。
K1:“启动/停止”。
K2:“正转/反转”。
K3:“加速”。
K4:“减速”。
(4)手动控制。
在键盘上设置两个按键----直流电动机加速和直流电动机减速键。
在手动状态下,每按一次键,电动机的转速按照约定的速率改变。
基于C51单片机的直流电机PWM调速控制(包含原理图及C源代码)
基于C51单片机的直流电机PWM调速控制--SQ这是最近一阶段自己学习所获,现分享与大家。
这里采用A T89C52单片机做主控制芯片,实现两路直流电机的PWM调速控制,另外还可以实现转向、显示运行时间、显示档位等注:考虑小直流电机自身因素,调速范围仅设有四级电路原理图:C语言程序源代码:/******************** 硬件资源分配*********************/数码管:显示电机状态(启停、正反、速度)、运行时间、是否转弯按键:K4 启动/暂停K3 正反转/转弯允许K2 加速/左转/运行时间清零K1 减速/右转/停止定时器:T0 数码管动态显示,输出PWMT1 运行时间记录********************************************************//*******主程序文件PWM.c******/#include <reg52.h>#include "Afx.h"#include "Config.c"#define CIRCLE 5 //脉冲周期//按键定义uchar key,key_tmp=0, _key_tmp=0;//显示定义uchar LedState=0xF0; //LED显示标志,0xF0不显示,Ox00显示uchar code LED_code_d[4]={0xe0,0xd0,0xb0,0x70}; //分别选通1、2、3、4位uchar dispbuf[4]={0,0,0,0}; //待显示数组uchar dispbitcnt=0; //选通、显示的位uchar mstcnt=0;uchar Centi_s=0,Sec=0,Min=0; //分、秒、1%秒//程序运行状态标志bit MotState=0; //电机启停标志bit DirState=0; //方向标志0前,1后uchar State1=-1;uchar State2=-1;uchar State3=0;uchar State4=-1;uchar LSpeed=0;uchar RSpeed=0;//其他uint RunTime=0;uint RTime_cnt=0;uint LWidth;uint RWidth; //脉宽uint Widcnt=1;uint Dispcnt;//函数声明void key_scan(void);void DisBuf(void);void K4(void);void K3(void);void K2(void);void K1(void);void disp( uchar H, uchar n );void main(void){P1|=0xF0;EA=1;ET0=1;ET1=1;TMOD=0x11;TH0=0xFC;TL0=0x66; //T0,1ms定时初值TH1=0xDB;TL1=0xFF; //T1,10ms定时初值TR0=1;Widcnt=1;while(1){key_scan();switch(key){case 0x80: K1(); break;case 0x40: K2(); break;case 0x20: K3(); break;case 0x10: K4(); break;default:break;}key=0;DisBuf();LWidth=LSpeed;RWidth=RSpeed;}}//按键扫描**模拟触发器防抖void key_scan(void){key_tmp=(~P3)&0xf0;if(key_tmp&&!_key_tmp) //有键按下{key=(~P3)&0xf0;}_key_tmp=key_tmp ;}//按键功能处理/逻辑控制void K4(void){if(State4==-1){State4=1;TR1=1;dispbuf[3]=1;LedState=0x00; //打开LEDMotState=1; //打开电机LSpeed=1;RSpeed=1; //初速设为1}else if(State4==1){State4=0;TR1=0;MotState=0; //关闭电机}else if(State4==0){MotState=1;if(State3==0){State4=1;TR1=1;}else if(State3==1){LSpeed=2;RSpeed=2;}}}void K3(void){if(State4==1)DirState=!DirState;if(State4==0){if(State3==0){State3=1; //可以转向标志1可以,0不可以TR1=1;dispbuf[3]=9;MotState=1;LSpeed=2;RSpeed=2;}else if(State3==1){State3=0;TR1=0;dispbuf[3]=0;MotState=0;}}}void K2(void){if(State4==1&&LSpeed<4&&RSpeed<4){LSpeed++;RSpeed++;}else if(State4==0){if(State3==0){//State4=-1;//LedState=0xF0;MotState=0;Sec=0;Min=0;}else if(State3==1&&LSpeed<4&&RSpeed<4){//TurnState=0;LSpeed=2;RSpeed++;}}}void K1(void){if(State4==1&&LSpeed>1&&RSpeed>1){LSpeed--;RSpeed--;}else if(State4==0){if(State3==0){State4=-1;LedState=0xF0;MotState=0;}else if(State3==1&&LSpeed<4&&RSpeed<4){//TurnState=1;LSpeed++;RSpeed=2;}}}//显示预处理void DisBuf(void){if(RTime_cnt==100){Sec++;RTime_cnt=0;}if(Sec==60){Min++;Sec=0;}if(State4==1){dispbuf[0]=Sec%10;dispbuf[1]=Sec/10;dispbuf[2]=Min;if(!DirState) //正转dispbuf[3]=LSpeed;if(DirState) //反转dispbuf[3]=LSpeed+4;}if(State4==0){if(State3==0){dispbuf[0]=Sec%10;dispbuf[1]=Sec/10;dispbuf[2]=Min;dispbuf[3]=0;}if(State3==1){dispbuf[0]=RSpeed;dispbuf[1]=LSpeed;dispbuf[2]=Min;dispbuf[3]=9;}}}//LED驱动void disp( uchar H, uchar n ){P1=n;P1|=LedState ;P1|=LED_code_d[H];}//T0中断**显示/方波输出void Time_0() interrupt 1{TH0=0xFC;TL0=0x66;Widcnt++;Dispcnt++;//电机驱动/方波输出if(Widcnt>CIRCLE){Widcnt=1;}if(Widcnt<=LWidth)LMot_P=!DirState&&MotState;elseLMot_P=DirState&&MotState;LMot_M=DirState&&MotState;if(Widcnt<=RWidth)RMot_P=!DirState&&MotState;elseRMot_P=DirState&&MotState;RMot_M=DirState&&MotState;//显示if(Dispcnt==5){disp(dispbitcnt,dispbuf[dispbitcnt]);dispbitcnt++;if(dispbitcnt==4){dispbitcnt=0;}Dispcnt=0;}}//T1中断**运行时间void Time_1() interrupt 3{TH1=0xDB;TL1=0xFF;RTime_cnt++;}/******配置文件Afx.h******/#ifndef _AFX_#define _AFX_typedef unsigned char uchar;typedef unsigned int uint;typedef unsigned long ulong;#endif/******IO配置文件Config.c******/#ifndef _Config_#define _Config_#include "Afx.h"#include <reg52.h>//显示定义sbit led=P3^2;//电机引脚定义sbit LMot_P=P2^2; sbit LMot_M=P2^3; sbit RMot_P=P2^0; sbit RMot_M=P2^1;#endif。
基于单片机的PWM直流电机调速系统设计
基于单片机的 PWM直流电机调速系统设计摘要:本文以单片机STC12C5A60S2为核心,结合L298N专用驱动集成电路,通过产生的PWM波控制电机的转速,采用霍尔传感器检测电机转速并通过液晶显示电机实时转速。
最后采用 Keil和 Proteus对整个系统进行设计、编程以及仿真。
关键词:单片机;PWM调速;液晶显示;霍尔传感器;直流电机。
1.引言目前常用的电动机主要有交流电动机和直流电动机,直流电动机因为具有良好的调速性能,以及良好的起、制动性能而被广泛应用在电力拖动系统中。
而调速性能是指电动机在一定的负载条件下,可以根据实际需要,对电动机的转速进行人为的调节。
直流电动机可以在重负载的情况下,实现无级调速,并且调速范围较宽。
直流电动机转速公式:注:为转速、为电枢电压、为电枢电流、为电枢回路总电阻、为励磁磁通、为由电机结构决定的电动势常数。
通过上式可以看出,电动机转速的调节方法主要有以下三种:改变电枢供电电压;改变励磁磁通;调节电枢回路电阻。
以上三种调速方式,以调节电枢供电电压的方式是最好的,它可以实现宽范围的无极平滑调速。
2.PWM调节上面提到对于直流电动机的调速最好的方式是改变供电电压的方式,改变供电电压可以采用V-M调速系统和直流脉宽调速系统,而直流脉宽调速系统相对V-M调速系统具有开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。
PWM调速的原理就是通过把恒定的直流电压调制成高度一定,宽度可变的脉冲电压序列,进而改变平均输出电压从而达到调节转速的目的,实质就是通过控制功率管如电力MOSFET,IGBT等的开关时间进而改变加在电机上的电压占空比就可以改变电机的平均电压。
功率管输入电压以及电机电枢电压的关系如下。
假设加在电动机两端的电压为,通过控制功率管的通断使得输出电压变成了一系列脉冲电压,其平均值计算公式为:,其中为占空比,通过改变占空比就可以改变的值,进而改变电动机转速。
3.调速系统硬件设计本设计采用单片机STC12C5A60S2产生的PWM脉冲波调节输出电压的大小,系统原理框图如图1所示。
基于PWM控制的直流电机自动调速系统设计
基于PWM控制的直流电机自动调速系统设计一、引言直流电机是工业中最常见的电动机之一,其工作原理简单,结构紧凑,控制方便,广泛应用于各行各业。
为了满足不同工况下的运行需求,需要设计一个自动调速系统来调整直流电机的转速。
本文将基于PWM控制方法设计一个直流电机自动调速系统。
二、系统设计1.系统结构直流电机自动调速系统的基本结构包括传感器、控制器、电源和执行器。
传感器用于检测电机的转速,控制器根据检测到的转速信号进行处理,并通过PWM控制方法调整电机的输入电压,从而实现自动调速。
2.传感器选择直流电机的转速检测一般使用霍尔效应传感器来实现。
霍尔传感器可以直接测量电机转子的位置,并根据位置变化来计算转速。
传感器输出的信号经过放大和处理后,可以作为控制器的输入信号。
3.控制器设计控制器是整个自动调速系统的核心部分。
控制器接收传感器的转速信号,并通过PID算法对电机的转速进行调节。
PID算法是一种经典的控制方法,可以根据当前的偏差、偏差变化率和偏差积分值来计算控制量。
在本系统中,控制器输出的控制量即为PWM信号。
4.PWM控制方法PWM(Pulse Width Modulation)控制方法是一种通过调整脉冲宽度来控制输出电压的方法。
在本系统中,PWM控制方法可以通过改变PWM信号的占空比来调整电机的输入电压。
当需要提高电机转速时,增加PWM信号的占空比;当需要降低电机转速时,减小PWM信号的占空比。
通过反馈控制,控制器可以根据实际转速信号不断调整PWM信号的占空比,从而实现电机的自动调速。
5.电源选择在直流电机自动调速系统中,电源需要提供稳定的直流电压以供电机正常工作。
一般可选择线性稳压器或开关稳压器来提供所需的直流电压。
在选择电源时,需要考虑电机的功率和电源的效率,以确保系统的稳定性和可靠性。
6.执行器选择执行器是将控制信号转换为实际操作的部分。
在直流电机自动调速系统中,执行器可选择光耦隔离器和驱动芯片来实现PWM信号控制。
基于51单片机的直流电机PWM调速控制系统设计
基于51单片机的直流电机PWM调速控制系统设计I摘要本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。
本文中采用了三极管组成了PWM信号的驱动系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。
另外,本系统中使用了霍尔元件对直流电机的转速进行测量,经过处理后,将测量值送到液晶显示出来。
关键词:PWM信号,霍尔元件,液晶显示,直流电动机II目录目录 (III)1 引言 (1)1.1 课题背景 (1)1.1.2 开发背景 (1)1.1.3 选题意义 (2)1.2 研究方法及调速原理 (2)1.2.1 直流调速系统实现方式 (4)1.2.2 控制程序的设计 (5)2 系统硬件电路的设计 (6)2.1 系统总体设计框图及单片机系统的设计 (6)2.2 STC89C51单片机简介 (6)2.2.1 STC89C51单片机的组成 (6)2.2.2 CPU及部分部件的作用和功能 (6)2.2.3 STC89C51单片机引脚图 (7)2.2.4 STC89C51引脚功能 (7)3 PWM信号发生电路设计 (10)3.1 PWM的基本原理 (10)3.2 系统的硬件电路设计与分析 (10)3.3 H桥的驱动电路设计方案 (11)5 主电路设计 (13)5.1 单片机最小系统 (13)5.2 液晶电路 (13)5.2.1 LCD 1602功能介绍 (14)5.2.2 LCD 1602性能参数 (15)5.2.3 LCD 1602与单片机连接 (17)5.2.4 LCD 1602的显示与控制命令 (18)5.3 按键电路 (19)5.4 霍尔元件电路 (20)III5.4.1 A3144霍尔开关的工作原理及应用说明 (21)5.4.2 霍尔传感器测量原理 (22)6 系统功能调试 (23)总结 (24)致谢 (25)参考文献 (26)IV1 引言1.1 课题背景1.1.2 开发背景在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。
单片机控制PWM的直流电机调速系统的设计
单片机控制PWM的直流电机调速系统的设计PWM(脉宽调制)是一种常用的电压调节技术,可以用来控制直流电机的转速。
在单片机控制PWM的直流电机调速系统中,主要包括硬件设计和软件设计两个方面。
硬件设计方面,需要考虑的主要内容有:电机的选择与驱动、电源电压与电流的设计、速度反馈电路的设计。
首先,需要选择合适的直流电机和驱动器。
选择直流电机时需考虑其功率、转速、扭矩等参数,根据实际需求选择合适的电机。
驱动器可以选择采用集成驱动芯片或者离散元件进行设计,通过PWM信号控制电机的速度。
其次,需要设计合适的电源电压与电流供应。
直流电机通常需要较大的电流来实现工作,因此需要设计合适的电源电流,以及保护电路来防止电流过大烧坏电机和电路。
最后,需要设计速度反馈电路来实现闭环控制。
速度反馈电路可以选择采用编码器等传感器来获得转速信息,然后通过反馈控制实现精确的速度调节。
软件设计方面,需要考虑的主要内容有:PWM输出的控制、速度闭环控制算法的实现。
首先,需要编写代码实现PWM输出的控制。
根据具体的单片机型号和开发环境,使用相关的库函数或者寄存器级的编程来实现PWM信号的频率和占空比调节。
其次,需要实现速度闭环控制算法。
根据速度反馈电路获取的速度信息,通过比较目标速度与实际速度之间的差异,调整PWM信号的占空比来实现精确的速度调节。
常用的速度闭环控制算法有PID控制算法等。
最后,需要优化程序的鲁棒性和稳定性。
通过合理的调节PID参数以及增加滤波、抗干扰等功能,提升系统的性能和稳定性。
在实际的设计过程中,需要根据具体的应用需求和单片机性能等因素,进行合理的选择和调整。
同时,还需要通过实验和调试来验证系统的可靠性和稳定性,不断进行优化和改进,以获得较好的调速效果。
基于单片机AT89S52的直流电机PWM调速控制系统
第一章:前言1.1前言:直流電機的定義:將直流電能轉換成機械能(直流電動機)或將機械能轉換成直流電能(直流發電機)的旋轉電機。
近年來,隨著科技的進步,直流電機得到了越來越廣泛的應用,直流具有優良的調速特性,調速平滑,方便,調速範圍廣,超載能力強,能承受頻繁的衝擊負載,可實現頻繁的無極快速起動、制動和反轉,需要滿足生產過程自動化系統各種不同的特殊要求,從而對直流電機提出了較高的要求,改變電樞回路電阻調速、改變電壓調速等技術已遠遠不能滿足現代科技的要求,這是通過PWM方式控制直流電機調速的方法就應運而生。
採取傳統的調速系統主要有以下的缺陷:模擬電路容易隨時間飄移,會產生一些不必要的熱損耗,以及對雜訊敏感等。
而用PWM技術後,避免上述的缺點,實現了數字式控制模擬信號,可以大幅度減低成本和功耗。
並且PWM調速系統開關頻率較高,僅靠電樞電感的濾波作用就可以獲得平滑的直流電流,低速特性好;同時,開關頻率高,快回應特性好,動態抗干擾能力強,可獲很寬的頻帶;開關元件只需工作在開關狀態,主電路損耗小,裝置的效率高,具有節約空間、經濟好等特點。
隨著我國經濟和文化事業的發展,在很多場合,都要求有直流電機PWM調速系統來進行調速,諸如汽車行業中的各種風扇、刮水器、噴水泵、熄火器、反視鏡、賓館中的自動門、自動門鎖、自動窗簾、自動給水系統、柔巾機、導彈、火炮、人造衛星、太空船、艦艇、飛機、坦克、火箭、雷達、戰車等場合。
1.2本設計任務:任務: 單片機為控制核心的直流電機PWM調速控制系統設計的主要內容以及技術參數:功能主要包括:1)直流電機的正轉;2)直流電機的反轉;3)直流電機的加速;4) 直流電機的減速;5) 直流電機的轉速在數碼管上顯示;6) 直流電機的啟動;7) 直流電機的停止;第二章:總體設計方案總體設計方案的硬體部分詳細框圖如圖一所示。
鍵盤向單片機輸入相應控制指令,由單片機通過P1.0與P1.1其中一口輸出與轉速相應的PWM 脈衝,另一口輸出低電平,經過信號放大、光耦傳遞,驅動H 型橋式電動機控制電路,實現電動機轉向與轉速的控制。
基于51单片机的PWM直流电机调速系统
基于51单片机的PWM直流电机调速系统一、本文概述随着现代工业技术的飞速发展,直流电机调速系统在众多领域如工业自动化、智能家居、航空航天等得到了广泛应用。
在众多调速方案中,基于脉冲宽度调制(PWM)的调速方式以其高效、稳定、易于实现等优点脱颖而出。
本文旨在探讨基于51单片机的PWM直流电机调速系统的设计与实现,以期为相关领域的技术人员提供一种可靠且实用的电机调速方案。
本文将简要介绍PWM调速的基本原理及其在直流电机控制中的应用。
随后,将详细介绍基于51单片机的PWM直流电机调速系统的硬件设计,包括电机选型、驱动电路设计、单片机选型及外围电路设计等。
在软件设计部分,本文将阐述PWM信号的生成方法、电机转速的检测与控制算法的实现。
还将对系统的性能进行测试与分析,以验证其调速效果及稳定性。
本文将总结基于51单片机的PWM直流电机调速系统的优点与不足,并提出改进建议。
希望通过本文的阐述,能为相关领域的研究与应用提供有益参考。
二、51单片机基础知识51单片机,也被称为8051微控制器,是Intel公司在1980年代初推出的一种8位CISC(复杂指令集计算机)单片机。
尽管Intel公司已经停止生产这种芯片,但由于其架构的通用性和广泛的应用,许多其他公司如Atmel、STC等仍然在生产与8051兼容的单片机。
51单片机的核心部分包括一个8位的CPU,以及4KB的ROM、低128B 的RAM和高位的SFR(特殊功能寄存器)等。
它还包括两个16位的定时/计数器,四个8位的I/O端口,一个全双工的串行通信口,以及一个中断系统。
这些功能使得51单片机在多种嵌入式系统中得到了广泛的应用。
在PWM(脉冲宽度调制)直流电机调速系统中,51单片机的主要作用是生成PWM信号以控制电机的速度。
这通常是通过定时/计数器来实现的。
定时/计数器可以设置一定的时间间隔,然后在这个时间间隔内,CPU可以控制I/O端口产生高电平或低电平,从而形成PWM信号。
基于单片机的PWM直流电机调速系统设计论文(附电路图、程序清单)
图 2.2 直流电机原理图
2.2 直流电机的调速方法
根据直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直 流电动机的调速方法有三种: (1)调节电枢供电电压 U。改变电枢电压主要是从额定电压往下降低电枢电压, 从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调 速的系统来说,这种方法最好。 大容量可调直流电源。 (2)改变电动机主磁通 。改变磁通可以实现无级平滑调速,但只能减弱磁通进 变化时间 变化遇到的时间常数较小,能快速响应,但是需要
第1章 引 1.1 概况
言
现代工业的电力拖动一般都要求局部或全部的自动化,因此必然要与各种控制元 件组成的自动控制系统联系起来,而电力拖动则可视为自动化电力拖动系统的简称。 在这一系统中可对生产机械进行自动控制。 随着近代电力电子技术和计算机技术的发展以及现代控制理论的应用,自动化电 力拖动正朝着计算机控制的生产过程自动化的方向迈进。以达到高速、优质、高效率 地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成 部分。另外,低成本自动化技术与设备的开发,越来越引起国内外的注意。特别对于 小型企业,应用适用技术的设备,不仅有益于获得经济效益,而且能提高生产率、可 靠性与柔性,还有易于应用的优点。自动化的电力拖动系统更是低成本自动化系统的 重要组成部分。 在如今的现实生活中,自动化控制系统已在各行各业得到广泛的应用和发展,其 中自动调速系统的应用则起着尤为重要的作用。虽然直流电机不如交流电机那样结构 简单、价格便宜、制造方便、容易维护,但是它具有良好的起、制动性能,宜于在广 泛的范围内平滑调速,所以直流调速系统至今仍是自动调速系统中的主要形式。现在 电动机的控制从简单走向复杂,并逐渐成熟成为主流。其应用领域极为广泛,例如: 军事和宇航方面的雷达天线、火炮瞄准、惯性导航等的控制;工业方面的数控机床、 工业机器人、印刷机械等设备的控制;计算机外围设备和办公设备中的打印机、传真 机、复印机、扫描仪等的控制;音像设备和家用电器中的录音机、数码相机、洗衣机、 空调等的控制。 随着电力电子技术的发展, 开关速度更快、 控制更容易的全控型功率器件MOSFET 和IGBT成为主流,脉宽调制技术表现出较大的优越性:主电路线路简单,需要用的功 率元件少;开关频率高,电流容易连续,谐波少,电机损耗和发热都较小;低速性能 好,稳速精度高,因而调速范围宽;系统快速响应性能好,动态抗扰能力强;主电路 元件工作在开关状态,导通损耗小,装置效率较高;近年来,微型计算机技术发展速
基于单片机的直流电机PWM调速控制系统设计开题报告
基于单片机的直流电机PWM调速控制系统设计开题报告泰山学院毕业设计开题报告基于单片机的直流电机PWM调速控制系统题目设计学院机械与工程学院年级二〇一一级专业机械设计制造及其自动化姓名学号指导教师签字学生签字2012年 12月 7日题目来源指导教师推荐? 自选, 其它?题目类别基础研究? 应用研究, 其它?一、课题研究的目的和意义在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。
无论是在工农业生产、交通运输、国防、航空航天、医疗卫生、商务与办公设备中,还是在日常生活中的家用电器中,都大量地使用着各种各样的电动机。
以前电动机大多使用由模拟电路组成的控制柜进行控制,现在单片机已经开始取代模拟电路作为电机控制器。
当前电机控制器的发展方向越来越趋于多样化和复杂化,现有的专用集成电路未必能满足苛刻的新产品开发要求,为此可考虑开发电机的新型单片机控制器二、课题的研究现状电动机的控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、电动控制技术、微机应用技术的最新发展成果。
正是这些技术的进步使电机控制技术在近20多年内发生了翻天覆地的变化,其中电动机的控制部分已由模拟控制逐渐让位于以单片机为主的微处理器控制,形成数字和模拟的混合控制系统和纯数字控制的应用,并曾向全数字化控制方向快速发展。
而国外交直流系统数字化已经达到实用阶段。
三、课题研究的主要内容完成单片机的直流电机控制系统总体设计,包括各部分硬件的设计以及相应的驱动程序设计。
通过电平转换使上位机能与单片机进行串口通信,并选用串口大师软件对单片机发送信号。
设计显示电路,使用户可以通过显示屏与控制系统进行交互,实现电机正反转等状态以及速度的实时显示。
四、课题研究的方法根据市场需求和发展趋势,本设计将介绍一种基于AT89S51单片机的直流电机转速控制系统。
首先对直流调速控制电路进行设计来实现对速度的控制、检测、显示;再对直流调速控制主回路进行设计,其采用了三相桥式全控整流电路;然后进行系统的软件设计,本课题采用PID控制算法设计;最后进行系统的抗干扰设计,为了防止从电源系统窜入干扰,本系统供电采用隔离变压器;同时,为了保证信息传输的正确性,在过程通道上采用光祸隔离措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的直流电机PWM调速系统①陈炜炜1,2詹跃东1(1.昆明理工大学信息工程与自动化学院;2.云南电网有限责任公司电力科学研究院研究生工作站)摘要以AT89C52单片机为核心,采用集成芯片L298N及其外部辅助电路构成驱动电路。
通过单片机接口,以PWM控制电机的转速,构建了一个直流电机控制系统。
采用Keil4和Proteus8作为工具软件,对电路系统进行编程、设计和仿真。
由单片机发出PWM调速信号,经L298N驱动模块驱动直流电机,通过改变占空比来实现直流电机的调速控制。
关键词直流电机控制系统PWM单片机中图分类号TH862文献标识码A文章编号1000-3932(2019)03-0218-05电动机可将机械能转换为电能,应用十分广泛。
在工业生产领域,控制电动机速度的方法有多种,其中模拟法应用最广。
模拟法是通过继电器等电气元件,实现电动机的启动、正反转等控制,对电动机的转速等物理量的控制,在工业调速方面还有待更进一步的研究分析[1]。
调节电动机的转速一直都是工业生产部门和电力系统关注的重点之一,一般采用固定调速或设计控制系统实现电动机调速。
目前,调速系统分为两大类:一是直流电机的控制调速,因其优良的平滑特性、良好的运作和控制,是调速系统的主要形式[2,3];另一类是交流调速系统,但是在理论和实践方面还处于研究分析的起步阶段。
近年来,随着自动控制技术、微电子技术及现代控制理论等的发展,PWM控制技术随之快速发展,其技术研究一直稳步前进。
笔者基于AT89C52单片机,以PWM控制电机转速,构建直流电机控制系统。
1系统组成原理与电路模块设计1.1系统结构与工作原理如图1所示,笔者设计的直流电机调速系统的主体结构主要包括单片机AT89C52、直流电机驱动模块、按键调速模块和LCD显示模块。
单片机发出PWM控制信号,PWM通过集成芯片L298N完成对直流电机速度的控制,通过单片机的计数功能对电机的速度进行采集,之后在LCD 显示[4 6]。
图1直流电机调速系统总体框图1.2PWM生成与调速1.2.1PWM的优点PWM波的形成可以看作是由单片机通过编程输出的,也可以看作是脉宽调制专用芯片的作用。
PWM波对电机的性能要求较高,当频率上升到很高时,如果直流电机驱动的功率太低将无法承载PWM波的运作,而当频率开始下降并降到很低时电动机驱动又出现噪声,所以PWM波的使用频率应该控制在18Hz左右,直流电机才能够以较好的状态运作[2,7,8]。
①基金项目:国家自然科学基金项目(51667012)。
作者简介:陈炜炜(1993-),硕士研究生,从事电力电子技术、高电压防雷技术的研究。
通讯作者:詹跃东(1963-),教授,从事电力电子技术、分布式电源接入技术等的研究,ydzhan@163.com。
PWM之所以被广泛使用,是因为它的两个优点[9,10]:a.无论是处理器发出的信号还是被控制系统获得的信号,都无需进行A/D或D/A转换,以数字形式输入输出。
无论是数字形式的输入信号,还是数字形式的输出信号,都可以降低噪声,保证程序正常运行。
b.PWM对噪声有强大的抵抗力,当模拟信号向数字信号转换时,可以延长距离,使得通信畅通无阻,再经过滤波电路,将高频率脉冲方波过滤后,使得数字信号完好无缺地转换为模拟信号。
1.2.2改变占空比的方法改变PWM脉冲占空比共有3种方法:a.调频。
调节电压,使脉冲电压达到低电平,在此时间段T1内,时间段T1的变化使得PWM脉冲占空比变化,从而电机两端的平均电压也随之变化,达到控制电机速度变化的目的。
b.调宽。
调节电压,使脉冲电压达到高电平,在此时间段T2内,时间段T2的改变使得PWM脉冲占空比变化,从而电机两端的平均电压也将发生变化,达到控制电机速度变化的目的。
c.调宽调频。
调节电压,使得脉冲电压同时处于达到低电平的时间段T1和达到高电平的时间段T2,此时PWM脉冲占空比变化,电机两端的电压也将随之变化,达到控制电机速度变化的目的[11 13]。
1.2.3CD4051模拟通道本设计选用CD4051八选一模拟通道。
CD4051是具有低截止漏电流和低导通阻抗的模拟电子开关。
有8个数字控制的通道。
最大的特点是,低幅值的数字信号可以控制高峰值的模拟信号,例如当一个数字信号的幅值为0 5V 时,它可以控制的模拟信号的幅值范围最高可以达到20V。
CD4051具有3个二进制输入端和INH输入端,当一个3位的二进制信号选用CD4051八选一模拟通道时,经过其中一个通道,可以将输入端连接至输出端。
当INH输入端为1时,所有通道截止。
在整个电源范围内,CD4051这些开关电路的静态功耗极低,与自身所在电路有关,与控制信号的逻辑状态无关。
1.3直流电机调速电路本设计选择L298N芯片作为直流电机驱动芯片。
L298N是一种非反相半桥型电机驱动芯片,双H桥结构,每个H桥可以提供2A的电流,功率部分的供电电压范围是2.5 48.0V,逻辑部分为5V供电,接收5V的TTL电平,内部包含4通道逻辑驱动电路。
无论是两个直流电机还是一个两相步进电机,L298N都可以简单驱动,达到实验所要求的效果。
驱动芯片L298N上共有15个引脚,包括ENA、ENB、IN1 IN4、VCC、GND及OUT1 OUT4等重要驱动引脚。
直流电机旋转的条件是驱动模块ENA和ENB上的TTL电平均为高电平。
直流电机正反转必须具备的条件如下:a.ENA=1,IN1=1INT2=0,电机1正转;b.ENA=1,IN1=0,IN2=1,电机1反转;c.ENB=1,IN1=1,INT4=0,电机2正转;d.ENB=1,IN3=0,IN4=1,电机2反转[14,15]。
2系统软件流程与总电路运用Keil4软件设计系统主程序。
基于AT89C52单片机的直流电机调速系统的主程序如图2所示。
图2直流电机调速系统主程序笔者设计的基于AT89C52单片机的直流电机调速系统的总电路如图3所示。
图3直流电机调速系统的总电路3PWM调速仿真分析采用Proteus软件对系统进行设计并进行仿真调试。
仿真通过PWMREGULATION按键调速改变占空比,设置占空比分别为0%、10%、20%、30%、40%、50%、60%、70%、80%、90%10个挡位,由单片机产生PWM波形通过驱动模块来控制电动机的转动和转速,电动机转速在LCD1602显示屏上实时显示,而脉冲方波则在示波器显示,最后对转速和形成的方波进行分析。
图4为仿真所得不同占空比时的转速。
示波器会出现3种颜色的波纹:黄色波纹(最上面的线)为PWM输出;蓝色波纹(中间的线)为定时器输出1kHz,固定不变;红色波纹(最下方的线)为模拟转速脉冲方波。
可以看出,电机的平均速度会随着占空比的变化而不断变化,脉冲方波的频率和周期也在不断变化。
当保持电机各参数不变时,调节PWM 占空比,占空比越大,电机的平均速度也会随之逐渐变大,电机转速周期会随之变小,转速频率会随之变大;PWM占空比越小,则电机的平均速度也会逐渐变小,电机转速周期随之变大,转速频率随之变小。
4理论验证在一串理想的脉冲周期序列中,占空比是指脉冲信号的通电时间与通电周期之比,也即正脉冲的持续时间与脉冲总周期的比值。
从实验中可以看出,调节占空比可直接改变直流电机的速度。
但从理论上分析,调节占空比为调节执行机构的电压,从而实现对直流电机速度的改变。
当输出指令为高电压时,恒压源与执行机构相连,当输出指令为低电压时,恒压源与执行机构断开。
据此可得:占空比=理想电压标准电压ˑ100%。
直流电机各参数的计算式如下:a.据基尔霍夫电压定律可知,电阻、电感和感应电动势的压降之和等于电源电压,据此列出VCR方程,即ua-uq=iaRa+Lad iad t,其中ia是电枢电流,La是电枢电感,Ra是电枢电阻,ua是电枢输入电压,uq是感应电动势;b.从转矩-电流曲线的线性估算可得电机电磁转矩Tg=iaKt,其中Kt是电机的转矩常数;图4仿真结果c.根据感应电动势电压与转子转速成正比,可得感应电动势uq=Kgdθd t,其中Kg是感应电动势常数,θ为电机输出的转角;d.根据牛顿第二定律可得电机电磁转矩Tg=jd2θd t2+Bdθd t,其中j是转动惯量,B是粘性阻尼系数;e.根据直流电机转速公式,可知电机的转速n=U-iaRa-Lad iad tKgφ,其中U是标准电枢电压,φ是励磁磁通。
根据仿真中对电机的参数设计,对直流电机进行参数假定:Ra=86Ω,La=20mH,φ=0.05,Tg =0.3N·m,Kt=0.05N·m/A,Kg=0.05V/krpm。
根据仿真中的参数设计,假设直流电源电压V= 12V,并对电机参数进行计算。
根据计算数据,绘制占空比与电枢电压关系曲线(图5)和占空比与转速关系曲线(图6)。
图5占空比与电枢电压关系曲线图6占空比与转速关系曲线通过电机频率与速度的关系,可得n=60fp。
其中,f是电机的转速频率,p是电机旋转磁场的极对数,通过对实验参数的分析,这里p取1。
当p不变时,电机的转速和频率成正比;电机的转速越大,频率也越大;电机的转速越小,频率也越小。
通过以上理论分析可知,当保持直流电机参数相同时,调整直流电机的占空比,占空比越大,直流电机的电枢电压会随之增大,直流电机的平均速度也越大,电机的转速频率也越大,电机的转速周期会变小;占空比越小,直流电机的电枢电压也会随之减小,直流电机的平均速度也越小,电机的转速频率也越小,电机的转速周期会变大。
可以看出,以上仿真结果与理论分析的结论是一致的,证实了笔者所提方案的可行性与正确性。
5结束语以直流电机控制系统为研究对象,基于单片机AT89C52、L298N驱动模块和LCD1602显示模块,构建直流电机调速控制系统,对直流电机的转动和转速进行有效的控制和调节。
电路系统实现了对电机转动的简单控制以及对转速的动态实时调节和显示,具有操作简单、灵活、安全、可靠且易维护等特点,便于工程师及时掌握系统的运行状况。
参考文献[1]俞跃华.直流电机调速系统[J].电子制作,2010,(11):19 20.[2]纪志成,沈艳霞,姜建国.一种新型的无刷直流电机调速系统的模糊PI智能控制[J].电机与控制学报,2003,7(3):248 254.[3]杨彬,江建中.永磁无刷直流电机调速系统的仿真[J].上海大学学报(自然科学版),2001,7(6):520526.[4]梁亦铂,王正茂,何涛.全数字直流电机调速系统的原理及数学模型[J].中小型电机,2001,28(6):1720.[5]高国强,林成武,王凤翔.基于ML4425芯片的永磁无刷直流电机调速系统[J].沈阳工业大学学报,2000,22(3):210 213.[6]焦玉朋.基于51单片机的PWM直流电机调速系统[D].呼和浩特:内蒙古大学,2013.[7]张立勋,沈锦华,路敦民,等.AVR单片机实现的直流电机PWM调速控制器[J].机械与电子,2004,(4):29 32.[8]王苏.直流电机PWM调速研究及单片机控制实现[J].机电工程技术,2008,37(11):82 84.[9]孙宣,王东.经济型直流电机PWM闭环调速系统设计[J].现代电子技术,2001,(11):75 76.[10]张晓青.直流电动机数字PWM调速系统设计[J].北京机械工业学院学报,2000,15(4):44 48.[11]潘雷雷,李国丽,胡存刚.新型占空比直接控制的光伏MPPT研究[J].电气传动,2011,41(7):2529.[12]徐艳平,钟彦儒.基于占空比控制的永磁同步电机新型直接转矩控制策略[J].电工技术学报,2009,24(10):27 32.[13]魏欣,陈大跃,赵春宇.一种基于占空比控制技术的异步电机直接转矩控制方案[J].中国电机工程学报,2005,25(14):93 97.[14]茹占军,谢家兴.基于AT89S52单片机直流电机调速系统的设计[J].软件导刊,2010,9(8):106107.[15]杨春旭,林若波,彭燕标.基于PWM控制的直流电机调速系统的设计[J].齐齐哈尔大学学报(自然科学版),2011,27(3):10 13.(收稿日期:2018-06-24,修回日期:2019-02-15)Design of MCU-based PWM SpeedRegulation System for DC MotorCHEN Wei-wei1,2,ZHAN Yue-dong1(1.Faculty of Information Engineering and Automation,Kunming University of Science and Technology;2.Electric PowerResearch Institute Postgraduate Workstation,Yunnan Power Grid Limited Liability Corporation)Abstract Taking a AT89C52MCU as core and adopting L298N integrated IC and its external auxiliary circuit to constitute drive circuit were implemented,including making use of MCU interface and employing PWM to control DC motor's revolving speed to establish a DC motor control system and adopting utility software like Keil4and Proteus8to program,design and to simulate the circuit system.The AT89C52MCU gives out PWM speed regulation signals and drives DC motor through the L298N drive module and completes speed control of the DC motor by changing the duty ratio.Key words DC motor control system,PWM,SCM。