材料科学基础_第三章_晶体缺陷
材料科学基础-§3-1 点缺陷
![材料科学基础-§3-1 点缺陷](https://img.taocdn.com/s3/m/020c411ba8114431b90dd807.png)
柏氏矢量的守恒性
对一条位错线而言,其伯氏矢量是固定不变的,此即位 错的伯氏矢量的守恒性。 推论: 一条位错线只有一个伯氏矢量。
如果几条位错线在晶体内部相交
(交点称为节点),则指向节点的 各位错的伯氏矢量之和,必然等于 离开节点的各位错柏氏矢量之和 。
b1 b2 b3
三. 晶体中位错的组态和位错密度
材料性能的改善,对于新型材料的设计、研究与开发具有
重要意义。
晶体缺陷按范围分类:
点缺陷(Point Defect): 在三维空间各方向上尺寸 都很小,在原子尺寸大小的晶体缺陷。 线缺陷(Line Defect): 在三维空间的一个方向上 的尺寸很大(晶粒数量级),另外两个方向上的尺寸很 小(原子尺寸大小)的晶体缺陷。其具体形式就是晶体 中的位错(Dislocation)。 面缺陷(Interfacial Defect): 在三维空间的两个方 向上的尺寸很大(晶粒数量级),另外一个方向上的尺 寸很小(原子尺寸大小)的晶体缺陷。
1. 刃型位错:设有一简单立方结构的晶体,在切应力的作 用下发生局部滑移,发生局部滑移后晶体内在垂直方向出 现了一个多余的半原子面,显然在晶格内产生了缺陷,这 就是位错,这种位错在晶体中有一个刀刃状的多余半原子 面,所以称为刃型位错。
通常称晶体上半部多出原子面的位错为正刃型位错, 用符号“┴”表示,反之为负刃型位错,用“┬”表示。
Ev CV A exp( ) kT
在高于 0 K 的任何温度下,晶体最稳定的状态是含 有一定浓度点缺陷状态。此浓度称点缺陷的平衡浓度。
部分金属的空位形成能和500K的空位平衡浓度
金属 空位形成能 (10-8J) 空位 平衡浓度 Pb Al Mg Au Pt Cu W
3_《材料科学基础》第三章_晶体结构缺陷((上)
![3_《材料科学基础》第三章_晶体结构缺陷((上)](https://img.taocdn.com/s3/m/025d96497fd5360cbb1adb31.png)
点缺陷(零维缺陷)--原子尺度的偏离.
按 缺
例:空位、间隙原子、杂质原子等
陷 线缺陷(一维缺陷)--原子行列的偏离.
的
例:位错等
几 何
面缺陷(二维缺陷)--表面、界面处原子排列混乱.
形
例:表面、晶界、堆积层错、镶嵌结构等
态 体缺陷(三维缺陷)--局部的三维空间偏离理想晶体的周期性
例:异相夹杂物、孔洞、亚结构等
1、 固溶体的分类
(1) 按杂质原子的位置分: 置换型固溶体—杂质原子进入晶格中正常结点位置而取代基
质中的原子。例MgO-CoO形成Mg1-xCoxO固溶体。 间隙型固溶体—杂质原子进入晶格中的间隙位置。
有时俩
(2)按杂质原子的固溶度x分: 无限(连续)固溶体—溶质和溶剂任意比例固溶(x=0~1)。
多相系统
均一单相系统
Compounds AmBn
原子间相互反应生成
均一单相系统
结构
各自有各自的结构
A structure
structure
+ B structure
结构与基质相同 A structure
结构既不同于A也不同于B New structure
化学计量 A/B
不定
固溶比例不定
m:n 整数比或接近整数比的一定范围内
四、固溶体Solid solution(杂质缺陷)
1、固溶体的分类 2、置换型固溶体 3、间隙型固溶体 4、形成固溶体后对晶体性质的影响 5、固溶体的研究方法
①固溶体:含有外来杂质原子的单一均匀的晶态固体。 例:MgO晶体中含有FeO杂质 → Mg1-xFexO
基质 溶剂 主晶相
杂质 溶质 掺杂剂
萤石CaF2(F-空位)
材料科学基础第三章晶体缺陷
![材料科学基础第三章晶体缺陷](https://img.taocdn.com/s3/m/64238f084b73f242336c5f7b.png)
够的能量而跳入空位,并占据这个平衡位置,这时在这个原 子的原来位置上,就形成一个空位。这一过程可以看作是空 位向邻近结点的迁移。
在运动过程中,当间隙原子与一个空位相遇时,它将落入
这个空位,而使两者都消失,这一过程称为复合,或湮没。
(a)原来位置;
(b)中间位置;
(c)迁移后位置
图 空位从位置A迁移到B
2 Ar a 3 N A 8.57 (3.294108 )3 6.0231023 x 1 2 Ar 2 92.91 7.1766103 106 7.1766103 7176 .6(个) 所以, 106 个Nb中有7176 .6个空位。
a NA
作业:
二.本章重点及难点 1、点缺陷的形成与平衡浓度 2、位错类型的判断及其特征、伯氏矢量的特征和物理意义 3、位错源、位错的增殖(F-R源、双交滑移机制等)和运动、 交割
4、关于位错的应力场可作为一般了解
5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
维纳斯“无臂” 之美更深入人心
处处留心皆学问
2.点缺陷的形成(本征缺陷的形成)
点缺陷形成最重要的环节是原子的振动 原子的热振动
(以一定的频率和振幅作振动)
原子被束缚在它的平衡位置上,但原子却在做着挣脱
束缚的努力
点缺陷形成的驱动力:温度、离子轰击、冷加工
在外界驱动力作用下,哪个原子能够挣脱束缚,脱离
平衡位置是不确定的,宏观上说这是一种几率分布
刃型位错的特点:
1).刃型位错有一个额外的半原子面。其实正、负之分只具 相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界 线。它不一定是直线,也可以是折线或曲线,但它必与滑移 方向相垂直,也垂直于滑移矢量。
材料科学基础第3章
![材料科学基础第3章](https://img.taocdn.com/s3/m/9902c13110661ed9ad51f331.png)
3.2 位错
晶体在结晶时受到杂质、温度变化或振动产
生的应力作用,或由于晶体受到打击、切削、 研磨等机械应力的作用,使晶体内部质点排列 变形,原子行列间相互滑移,即不再符合理想 晶格的有序排列,由此形成的缺陷称位错。
3.2.1 位错的基本类型和特征
刃型位错 螺型位错
刃型位错结构的特点: 1) 刃型位错有一个额外的半原子面。一般把多出的半原子面在滑移面 上边的称为正刃型位错,记为“┻”;而把多出在下边的称为负刃 型位错,记为“┳”。
螺型位错
a. 位错中心附近的原子移动小于一个原子间距的距离。 b. 位错线在滑移面上向左移动了一个原子间距。
c. d. e. 当位错线沿滑移面滑移通过整个晶体时,就会在晶体表面沿柏氏矢 量方向产生宽度为一个柏氏矢量大小的台阶。 螺型位错的运动方向始终垂直位错线并垂直于柏氏矢量。 螺型位错线与柏氏矢量平行,故其滑移不限于单一的滑移面上,所 有包含位错线的晶面都可成为其滑移面。
晶体中的位错环
晶体中的位错网络
3.柏氏矢量的表示法
•柏氏矢量的大小和方向可用与它同向的 晶向指数来表示。
[
a a a [2 2 2 ]
]
a [1 1 1] 2
例如:
在体心立方中, 柏氏矢量等于从体心 立方晶体的原点到体 心的矢量。
b=
a [1 1 1] 2
a •一般立方晶系中柏氏矢量可表示为b= n <u v w>
4)
5)
2.螺型位错
设立方晶体右侧受到切 应力的作用,其右侧上 下两部分晶体沿滑移面 ABCD发生了错动,如图 所示。这时已滑移区和 未滑移区的边界线 bb´(位错线)不是垂直而 是平行于滑移方向。
F
C D
《材料科学基础》 第03章 晶体缺陷
![《材料科学基础》 第03章 晶体缺陷](https://img.taocdn.com/s3/m/479ea6faaef8941ea76e059e.png)
第三节 位错的基本概念
三、位错的运动
刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动。 刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把 半原子面缩短称为正攀移,反之为负攀移。 滑移时不涉及单个原子迁移,即扩散。刃型位错发生正攀 移将有原子多余,大部分是由于晶体中空位运动到位错线上的 结果,从而会造成空位的消失;而负攀移则需要外来原子,无 外来原子将在晶体中产生新的空位。空位的迁移速度随温度的 升高而加快,因此刃型位错的攀移一般发生在温度较高时;另 外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位 的变化往往和刃位错的攀移相关。切应力对刃位错的攀移是无 效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力 有助负攀移),但对攀移的总体作用甚小。
第一节 材料的实际晶体结构
二、晶体中的缺陷概论
晶体缺陷按范围分类:
1. 点缺陷 在三维空间各方向上尺寸都很小,在原 子尺寸大小的晶体缺陷。
2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶 粒数量级),另外两个方向上的尺寸很小(原子尺 寸大小)的晶体缺陷。其具体形式就是晶体中的 位错Dislocation 。
说明:这是一个并不十分准确的定义方法。柏氏矢量的方向与位错线方向的定义有关,应该首 先定义位错线的方向,再依据位错线的方向来定柏氏回路的方向,再确定柏氏矢量的方 向。在专门的位错理论中还会纠正。
第三节 位错的基本概念
二、柏氏矢量
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错) 螺型位错 柏氏矢量与位错线相互平行。(依方向关系可 分左螺和右螺型位错) 混合位错 柏氏矢量与位错线的夹角非0或90度。
过饱和空位 晶体中含点缺陷的数目明显超过平衡 值。如高温下停留平衡时晶体中存在一平衡空位, 快速冷却到一较低的温度,晶体中的空位来不及移 出晶体,就会造成晶体中的空位浓度超过这时的平 衡值。过饱和空位的存在是一非平衡状态,有恢复 到平衡态的热力学趋势,在动力学上要到达平衡态 还要一时间过程。
材料科学基础第三章 晶体缺陷
![材料科学基础第三章 晶体缺陷](https://img.taocdn.com/s3/m/51a08e58852458fb770b568f.png)
贵州师范大学
化学与材料科学学院
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
二、点缺陷的产生 1. 平衡点缺陷及其浓度 虽然点缺陷的存在使晶体的内能增高,但 同时也使熵增加,从而使晶体的能量下降。因 此,点缺陷是晶体中热力学平衡的缺陷。 等温等容条件下,点缺陷使晶体的亥姆霍 A U T S 兹自由能变化为:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
三、点缺陷与材料行为 1. 点缺陷的运动 1)空位的运动
2)间隙原子的运动 3)空位片的形成
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
第三章 晶体缺陷
CRYSTAL DEFECTS
点缺陷 位错的基本概念 位错的弹性性质 作用在位错线上的力 实际晶体结构中的位错 晶体中的界面
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
一、点缺陷的类型
点缺陷的类型: (a) Schottky 空位; (b) Frenkel 缺陷; (c) 异类间隙原子; (d) 小置换原子; (e) 大置换原子
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
晶体缺陷【材料科学基础】
![晶体缺陷【材料科学基础】](https://img.taocdn.com/s3/m/ae04506eddccda38376baf33.png)
14
大角度晶界
¾ ¾ 9 9
大角度晶界的结构较复杂,其中原子排列较不规则。 有关大角度晶界的结构,人们曾提出许多模型: 早期:认为晶界是由一层很薄(几个原子间距)的非晶 质组成。 后来: 过渡结构模型:晶界原子分布同时受两相邻晶粒位向的 影响,处于折中位置。 小岛结构模型:晶界中的一部分原子与其相邻两边界的 点阵匹配排列,成为好区;有的部分(岛屿)原子排列 较混乱,成为坏区。好区与坏区交替相间组成晶界。
相界能低(畸变非常小)。
36
半共格相界
定义:两相结构相近而原子 间距相差较大,在相界面上 出现了一些刃位错。(界面 上两相原子部分匹配) 相界能较高(有畸变)。相 界面上的原子共格关系主要 通过一组刃位错调整和维持。
37
半共格相界上位错间距D取决于相界处两相匹配晶 面的错配度(δ) 。 相界两侧原子的不匹配程度
19
晶界的性质
晶界能:形成单位面积晶界时所增加的能量。 ¾ 小角度晶界的晶界能: 小角度晶界的能量主要来自位错能量(形成位错的 能量和将位错排成有关组态所作的功),而位错密 度又决定于晶粒间的位向差,所以,小角度晶界能 也和位向差有关:
20
可见,小角度晶界的界面能随位向差增加而增大。
21
大角度晶界的晶界能: 9 基本恒定,约在0.25~1.0J/m2范围内,与晶粒 之间的位向差无关。 9 晶界能可以界面张力的形式来表现,且可以通过界 面交角的测定求出它的相对值。三个晶粒相交于一 点,界面张力达到平衡时:
9
界面结构:溶质原子在大角度晶界中偏聚严重。
27
¾ ¾ ¾ ¾ ¾
晶界的其它特性: 晶界的扩散激活能约为晶内的一半,晶界处原子的 扩散速度比在晶内快得多。 随温度升高,保温时间延长,晶界发生迁移,晶粒 要长大,晶界平直化;晶界可能熔化(过烧)。 新相易在晶界处优先形核(晶界能量高,原子活动 能力大)。 晶界具有较低的抗腐蚀能力。 晶界阻碍位错运动,使金属具有较高的塑变抗力。
材料科学基础第三章晶体缺陷
![材料科学基础第三章晶体缺陷](https://img.taocdn.com/s3/m/2e6dcdc0915f804d2a16c19d.png)
材料科学基础第三章晶体缺陷
本章要求掌握的主要内容
b. 由于存在着这两个互为矛盾的因素,晶体中的点缺陷在一定温度下有一定的平衡数目,这时点 缺陷的浓度就称为它们在该温度下的热力学平衡浓度。
c. 在一定温度下有一定的热力学平衡浓度,这是点缺 陷区别于其它类型晶体缺陷的重要特点。
图 空位-体系能量曲线
1.形成缺陷带来晶格应变,内能U增加,一个缺陷带来的内能
过饱和点缺陷(如淬火空位、辐照缺陷)还提高了 金属的屈服强度。
例1:Cu晶体的空位形成能Ev为1.44×10-19J/atom, 材料常数A取为1,波尔兹曼常数为k=1.38×10-23J/K, 计算:
1)在500℃下,每立方米Cu中的空位数目; 2)500℃下的平衡空位浓度。 (已知Cu的摩尔质量63.54,500℃ Cu的密度为 8.96×106g/m3)
增加为u,所以内能增加
,故内能增加是线性的。
Unu
2.缺陷存在使体系的混乱度增加,引起熵值增加,缺陷存在使 体系排列方式增加,即熵值显著增加。和缺陷数量变化呈非线 性的。
C
n N
A exp( Ev / kT )
n 平衡空位数
N 阵点总数
Ev 每增加一个空位的能量 变化 K 玻尔兹曼常数
A 与振动熵有关的常数
晶体结构的特点是长程有序。结构基元或者构成物体的粒子(原子、离子或分子等)完全按照空间点阵 规则排列的晶体叫理想晶体。 在实际晶体中,粒子的排列不可能这样规则和完整,而是或多或少地存在着偏离理想结构的区域,出 现了不完整性。 把实际晶体中偏离理想点阵结构的区域称为晶体缺陷。 实际晶体中虽然有晶体缺陷存在,但偏离平衡位置很大的粒子数目是很少的,从总的来看,其结构仍 可以认为是接近完整的。
材料科学基础 第三章
![材料科学基础 第三章](https://img.taocdn.com/s3/m/b5ded6305a8102d276a22fbe.png)
山 3.混合位错 3.混合位错 东 科 技 大 学
材 料 学 院
滑移矢量既不垂直于位错线也不平行于位错线—一条曲线
一、位错的基本类型和特征
山 东 科 技 大 学
材 料 学 院
一、位错的基本类型和特征
山 东 科 技 大 学
位错的性质: 位错的性质: (1)形状:不一定是直线,位错及其畸变区是一条管道。 (2)是已滑移区和未滑移区的边界。 (3)不能中断于晶体内部。可在表面露头,或终止于晶界和相界, 或与其它位错相交,或自行封闭成环。
山 东 科 技 大 学
1.线缺陷: 1.线缺陷:在三维空间的一个方向上的尺寸很大(晶粒数量级),另外 线缺陷 两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷。 2.意义: 2.意义:(对材料的力学行为如塑性变形、强度、断裂等起着决定性 意义 的作用,对材料的扩散、相变过程有较大影响。) 3.位错的提出: 3.位错的提出:1926年,弗兰克尔发现理论晶体模型刚性切变强度与与 位错的提出 实测临界切应力的巨大差异(2~4个数量级)。 1934年,泰勒、波朗依、奥罗万几乎同时提出位错的概念。 1939年,柏格斯提出用柏氏矢量表征位错。 1947年,柯垂耳提出溶质原子与位错的交互作用。 1950年,弗兰克和瑞德同时提出位错增殖机制。之后,用TEM直接观察 到了晶体中的位错。
机分布,大量晶粒的综合作用, 整个材料宏观上不出现各向异 性,这个现象称为多晶体的伪 各向同性。
材 料 学 院
维纳斯“无臂”之美深入人 心
晶体缺陷赋予材料丰富内容
第3章 晶体缺陷
山 东 晶体中的缺陷概论 科 (corncob) 技 晶体缺陷:在每个晶粒的内部,原子并不是完全呈现周期性的规 大 则重复的排列。把实际晶体中原子排列与理想晶体的差别称为晶体 学 缺陷。
无机材料科学基础第三章晶体结构缺陷
![无机材料科学基础第三章晶体结构缺陷](https://img.taocdn.com/s3/m/c9bda61704a1b0717ed5dd3e.png)
(4)溶质原子(杂质原子):
LM 表示溶质L占据了M的位置。如:CaNa SX 表示S溶质占据了X位置。 (5)自由电子及电子空穴:
有些情况下,价电子并不一定属于某个特定位置的原子,在光、电、热 的作用下可以在晶体中运动,原固定位置称次自由电子(符号e/ )。同 样可以出现缺少电子,而出现电子空穴(符号h. ),它也不属于某个特定 的原子位置。
(5)热缺陷与晶体的离子导电性
纯净MX晶体:只有本征缺陷(即热缺陷) 能斯特-爱因斯坦(Nernst-Einstein)方程:
n k 2 e 2 z T [a 2cex k E c p ) T a ( 2a ex k E a p )T ]( n k 2 e 2 z T D
式中 D —— 带电粒子在晶体中的扩散系数; n —— 单位体积的电荷载流子数,即单位体 积的缺陷数。 下标c、a —— 阳离子、阴离子
离子晶体中:CaF2型结构。
从形成缺陷的能量来分析——
Schttky缺陷的形成能量小,Frankel 缺陷的 形成能量大,因此对于大多数晶体来说, Schttky 缺陷是主要的。
(4) 点缺陷对结构和性能的影响
• 点缺陷引起晶格畸变(distortion of lattice),能量升 高,结构不稳定,易发生转变。
材料科学基础第3-4章小结及习题课讲解
![材料科学基础第3-4章小结及习题课讲解](https://img.taocdn.com/s3/m/1e6fbb59b7360b4c2e3f64e5.png)
b a u2 v2 w2 n
六方晶系中: b=(a/n)[uvtw]
同一晶体中,柏氏矢量愈大,表明该位错导致点阵畸变愈 严重,它所在处的能量也愈高。
3.2.3 位错的运动
基本形式:滑移和攀移
滑移(slip):三种位错的滑移过程 攀移(climb):在垂直于滑移面方向上运动,
第三章 晶体缺陷
晶体缺陷分类及特征(几何形态、相对于晶体的尺寸、影响范围) :
1. 点缺陷:特征是三维空间的各个方面上尺寸都很小,尺寸
范围约为一个或几个原子尺度,包括空位、间隙原子、杂质 和溶质原子。
2. 线缺陷:特征是在两个方向上尺寸很小,另外一个方面上
很大,如各类位错。
3. 面缺陷:特征是在一个方向上尺寸很小,另外两个方向上
晶界:属于同一固相但位向不同的晶粒之间的界面 称为晶界。
亚晶界:每个晶粒有时又由若干个位向稍有差异的 亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界。
确定晶界位置方法: (1)两晶粒的位向差θ (2)晶界相对于一个点阵某一平面的夹角φ。
晶界分类(按θ的大小): 小角度晶界θ<10º 大角度晶界θ>10º
(3)刃型位错标记 正刃型位错用“⊥”表示,负刃型位错用“┬”表示;其
正负只是相对而言。
(4)刃型位错特征: ① 有一额外的半原子面,分正和负刃型位错;
② 可理解为是已滑移区与未滑移区的边界线,可是直线也 可是折线和曲线,但它们必与滑移方向和滑移矢量垂直;
③ 只能在同时包含有位错线和滑移矢量的滑移平面上滑移; ④ 位错周围点阵发生弹性畸变,有切应变,也有正应变;
表面能(γ):产生单位面积新表面所做的功。 表示法:①γ= dw/ds ②γ= T/L (N/m) ③γ= [被割断的结合键数/形成单位新表面]×[能量/每个键] 影响γ的因素: (1)晶体表面原子排列的致密程度。 (2)晶体表面曲率。 (3)外部介质的性质。 (4)晶体性质。
材料科学基础点缺陷
![材料科学基础点缺陷](https://img.taocdn.com/s3/m/83f720e619e8b8f67c1cb97a.png)
第 三 章
点缺陷的平衡浓度
2 点缺陷的平衡浓度 ( 1 )点缺陷是热力学平衡的缺陷- 在一定温度下, 晶体中总是存在着一定数量的点缺陷(空位),这时体系 的能量最低-具有平衡点缺陷的晶体比理想晶体在热力学 上更为稳定。(原因:晶体中形成点缺陷时,体系内能的 增加将使自由能升高,但体系熵值也增加了,这一因素又 使自由能降低。其结果是在G-n曲线上出现了最低值,对 应的n值即为平衡空位数。) (2)点缺陷的平衡浓度 C=Aexp(-∆Ev/kT)
6
(c) 2003 Brooks/Cole Publishing / Thomson Learning
第三章 晶体结构缺陷
一 点缺陷
第 一 节 点 缺 陷
第 三 章
7
第 三 章
第三章 晶体结构缺陷
一 点缺陷
肖脱基空位 弗兰克尔空位
第 一 节 点 缺 陷
8
第 三 章
点缺陷的形成
构成晶体的所有原子总是以其平衡位置为中心 进行热振动 原子热振动的平均能量与晶体所 处的温度有关,温度越高,平均能量越大。当 温度一定时,原子热振动的平均能量是一定的 但是各原子在同一瞬间的热振动能量并不相同, 面且同一原子在不同瞬间的能量也不相同,也 就是说各原子的能量总是处于不断起伏变化之 中,这种现象称为能量起伏.由于能量起伏, 总有一些原子的能量大到足以克服周围原子对 它的束缚,就有可能迁移到别处,这样在原来 的平衡位置上出现空结点,称为“空位”。
9
其它点缺陷
晶体中的点缺陷除了包括空位、 间隙原子、置换原子外,还包括 由这些基本点缺陷组成的三维方 向上的尺寸都很小的复杂缺陷, 例如空位对或空位片等.
10
点缺陷对晶体结构的影响
空位和间隙原子都将使周围原子间作 用力失去平衡,点阵产生弹性畸变, 形成应力场,引起晶体内能升高。 点缺陷形成能:点缺陷的引入使得晶 体内能升高,这部分增加的能量称为 点缺陷形成能。通常空位引起的晶格 畸变小于间隙原子的晶格畸变,空位 形成能也小于间隙原子形成能。
武汉理工大学考研材料科学基础重点 第3章-晶体结构缺陷
![武汉理工大学考研材料科学基础重点 第3章-晶体结构缺陷](https://img.taocdn.com/s3/m/9ff5eade9ec3d5bbfc0a740d.png)
第二章晶体结构缺陷缺陷的含义:通常把晶体点阵结构中周期性势场的畸变称为晶体的结构缺陷。
理想晶体:质点严格按照空间点阵排列的晶体。
实际晶体:存在着各种各样的结构的不完整性。
本章主要内容:2.1 晶体结构缺陷的类型2.2 点缺陷2.3 线缺陷2.4 面缺陷2.5 固溶体2.6 非化学计量化合物⏹ 2.1 晶体结构缺陷的类型分类方式:几何形态:点缺陷、线缺陷、面缺陷和体缺陷等形成原因:热缺陷、杂质缺陷、非化学计量缺陷、电荷缺陷和辐照缺陷等●一、按缺陷的几何形态分类1. 点缺陷(零维缺陷)缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。
包括:空位:正常结点没有被质点占据,成为空结点间隙质点:质点进入正常晶格的间隙位置,成为间隙质点错位原子或离子杂质质点:指外来质点进入正常结点位置或晶格间隙,形成杂质缺陷双空位等复合体点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。
2. 线缺陷(一维缺陷)位错指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短,如各种位错。
线缺陷的产生及运动与材料的韧性、脆性密切相关。
3.面缺陷面缺陷又称为二维缺陷,是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维方向上很小。
如晶界、表面、堆积层错、镶嵌结构等。
面缺陷的取向及分布与材料的断裂韧性有关。
4.体缺陷体缺陷亦称为三维缺陷,是指在局部的三维空间偏离理想晶体的周期性、规则性排列而产生的缺陷。
如第二相粒子团、空位团等。
体缺陷与物系的分相、偏聚等过程有关。
●二、按缺陷产生的原因分类1. 热缺陷定义:热缺陷亦称为本征缺陷,是指由热起伏的原因所产生的空位或间隙质点(原子或离子)。
类型:弗仑克尔缺陷和肖特基缺陷。
弗伦克尔缺陷是质点离开正常格点后进入到晶格间隙位置,其特征是空位和间隙质点成对出现。
肖特基缺陷是质点由表面位置迁移到新表面位置,在晶体表面形成新的一层,同时在晶体内部留下空位。
814材料科学基础-第三章 晶体缺陷知识点讲解
![814材料科学基础-第三章 晶体缺陷知识点讲解](https://img.taocdn.com/s3/m/503a0497581b6bd97e19ea6a.png)
北京科技大学材料科学与工程专业814 材料科学基础主讲人:薛老师第三章晶体缺陷本章主要内容与要求:内容:(1)点缺陷;(2)线缺陷;(3)面缺陷要求:(1)熟悉三种缺陷的概念、特点;(2)掌握点缺陷中空位浓度的计算;(3)掌握线缺陷中位错的运动,增殖;(4)熟悉各种面缺陷。
知识点1 缺陷定义:实际晶体中原子的排列不可能那样规则、完整,常常存在各种偏离理想结构的情况,这种情况我们就称为晶体缺陷。
作用:晶体缺陷对晶体的性能,特别是对那些结构敏感的性能,如屈服强度、断裂强度、塑性等有很大的影响。
根据几何特征,可以分为:点缺陷、线缺陷、面缺陷三类。
知识点2 点缺陷定义:点缺陷是最简单的一种晶体缺陷,主要是结点上或者邻近的微观区域内偏离晶体的正常结构排列的一种缺陷。
主要包括:空位、间隙原子、杂质或溶质原子。
空位:当某一原子具有足够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作用,跳离原来的位置,使阵点中形成空结点,这种空的结点就是空位。
间隙原子:在晶格非结点的位置,往往是间隙,此时在间隙的位置出现了多余的原子,这种多余的原子就是间隙原子。
离开平衡位置的原子有三个去处:(1)肖脱基缺陷:迁移到表面—在内部形成空位(2)弗兰克尔缺陷:原子迁移到间隙中,在晶体中形成数目相等的空位-间隙原子;(3)跑到其他空位,使空位消失。
知识点3 空位平衡浓度空位形成能Ev:在晶体内取出一个原子放在晶体表面上所需要的能量。
通常材料的熔点越高,结合能越大,空位的形成能也越大。
间隙原子会使周围点阵产生弹性畸变,而且畸变程度要比空位引起的畸变大得多,也会改变其周围电子能量,因此,它的形成能大,在晶体中浓度一般很低。
空位的形成过程原子的热振动克服约束,迁移到新的位置成为空位、间隙原子引起局部点阵畸变少部分原子获得足够高的能量结果晶体中点缺陷的存在:(1)一方面造成点阵畸变,使晶体内能升高,降低了晶体热力学的稳定性;(2)另一方面,由于原子排列顺序的混乱程度,并改变了其周围原子的振动频率,引起熵值的增大,这又增加了热力学的稳定性。
材料科学基础——晶体缺陷1
![材料科学基础——晶体缺陷1](https://img.taocdn.com/s3/m/10a1d1fc6394dd88d0d233d4b14e852458fb39d8.png)
z 30年代,在研究晶体滑移时,发现理论屈 服强度和实际强度间有巨大差异,为了解 释这种差异,人们设想晶体中存在某种缺 陷。形变就在这局部缺陷处发生。
z 晶体结构——规则的完整排列是主要的, 非完整的是次要的。
z 晶体力学性能——晶体的非完整性是主要 的,完整性处于次要地位。
z 混合位错的滑移矢量不平行也不垂直位 错线,而是与位错线成任意角度。
螺型位错示意图
(a) 螺位错
(b) 位错线周围原子螺型排列
混合位错
螺型位错的特征
9螺型位错没有额外的半原子面,原子错排是轴 对称的。 9位错线与滑移矢量平行,是直线,位错线的移 动方向与晶体滑移方向垂直。 9滑移面不唯一。 9只有平行于位错线的切应变,无正应变。 9是几个原子宽度的线缺陷。
点缺陷的浓度
C=Aexp(-NoEo/KN0T) =Aexp(-Qf/RT)
z Qf=N0E0——形成空位的激活能,即形成1mol空位 所需要的功,单位为J/mol
z R=kN0——气体常数 ,为8.31J/mol.K z A=exp(S0/k)由振动熵决定的系数,1~10
点缺陷周围的畸变:
往晶体中引入一个空位或一个间隙原子,它们周 围原子离开它们的平衡位置,造成晶格畸变,使 晶体总自由能降低。在无表面应力的均匀的各向 同性弹性体中引入一个强度为C的膨胀中心时, 体积变化△υ为
而螺型位错线与柏氏矢量平行。 3. 刃型位错线不一定是直线,可以是折线或曲线;而
螺型位错线一定是直线。 4. 刃位错的滑移面只有一个,而螺位错的滑移面不是
唯一的。 5. 刃位错周围的点阵发生弹性畸变,既有切应变,又
有正应变;而螺位错只有切应变而无正应变。 相同点:二者都是线缺陷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矢量与张量表示的力矢量
两刃位错间作用力的讨论(一)
稳定 介稳 吸引 介稳 介稳 排斥 排斥 稳定 介稳 吸引 同号位错 吸引 吸引 介稳 排斥 异号位错
位错的线张力
• 线张力: 为了降低能量,位错自发变直,缩短长度的趋势 T=dE/dl T= Gb2 (=0.5~1.0) * 组态力 趋向于能量较低的状态,没有施力者 * 线张力的意义: a. 使位错线缩短变直 b. 晶体中位错呈三维网状分布
端点固定的位错在剪应力作用下的平衡形态
d T Gb 2 bds 2T sin b 或 2 r 2r
1 切开 插入 b
直角坐标 圆柱坐标
2
刃型位错应力场的特点
同时存正、切应力分量, 正比于Gb 各应变、应力只是(x, y)的函数,平面应变 多余半原子面所在平面为对称平面 Gb 1 滑移面上无正应力、切应力达最大值 ) x 2 (1 上压下拉 Anywhere xx yy 特征分界线 x = +-y, xy, yy 在其两侧变号, 其上则为零 注意:前述为无限长直位错在无限 大均匀各向同性介质中的应力场 • • • • • • •
单晶体理论强度的计算(一)
h a/2
x
(b)
a
x
x
(c)
x (a)
a/2
x m sin 2 a
(d)
单晶体理论强度的计算(二)
x x m sin 2 m 2 a a x 0
x G G h G a m ah 2 h
混合位错
混合位错:滑移矢量既不平行业不垂直于位错线, 而是与位 错线相交成任意角度。 一般混合位错为曲线形式, 故每一点的滑移矢量 式相同的, 但其与位错线的交角却不同。
各种位错的柏氏矢量
柏氏矢量的物理意义
1。反映位错周围点阵畸变的总积累(包括强度 和取向) 2。 该矢量的方向表示位错运动导致晶体滑移 的方向, 而该矢量的模表示畸变的程度称为位 错的强度。 (strength of dislocation)
作用在位错上的力
• 位错运动方向⊥位错线 =〉 假想力作用于位错上 • 虚功原理:=〉
滑移力:
Fd=b
:作用在滑移面上、指向柏氏矢量b的剪应力 * 永远⊥位错线
攀移力:Fy = -xxb
⊥位错线,也⊥ b(刃位错或刃型分量)
矢量与张量表示的力矢量
位错间的作用力
• 通过彼此的应力场实现: F1->2 = 1->2b2 • 两平行螺位错间的作用力: Fr = Gb1b2/r 圆周对称应力场 -〉圆周对称作用力 同号相斥,异号相吸 • 两平行刃位错间的作用力:
应力:yz = yz = Gyz = Gb/2r, 虎克定律;其余分量为 零
螺型位错的应力场的特点
• 只有切应力分量,无体积变化 • 应变、应力场为轴对称 • 1/r 规律;r->0, 应力无穷大,不合实际 情况,不适合中心严重畸变区。此规律适 用于所有位错!
刃型位错的应力场
连续介质模型: 1。切开,插入半原子面大小的弹性介质 2。中空圆柱,径向平移
柏氏矢量的守恒性
柏氏矢量的守恒性:与柏氏回路起点的选择无关, 也与回路的具体途径无 关 1。一根位错线具有唯一的柏氏矢量, 其各处的柏氏矢量都相同, 且当位错 运动时 , 其柏氏矢量也不变。 2。位错的连续性:位错线只能终止在晶体表面或界面上, 而不能中止于晶 体内部;在晶体内部它只能形成封闭的环线或与其他位错相交于结点上。
课程安排
点缺陷 课 程 安 排 (第1周) (第2周)
位错几何 (第1、2周) 位错力学
位错运动、实际晶体中的位错(第3、4周) 表面与界面 (第4、5周) 课堂讨论 (第5周)
点缺陷
• 点缺陷:空位、间隙原子、溶质原子、和杂质原子、 +复合体(如:空位对、空位-溶质原子 对)
点缺陷的形成
(The production of point defects)
位错的高分辨图像
位错的明场像原理
典型的位错明场像照片
位错特性: 滑移面上已滑动区域与未滑动区域的边界
晶体局部滑动的推进=位错运动 运动前方:未滑动区域 运动后方:已滑动区域 边界:位错所在位置,位 错线 两个几何参量(矢量)表 征位错的几何特征:线缺陷 (不考虑位错核心结构)
位错线方向矢量(切矢量) 滑移矢量(柏氏矢量)
第三章 晶体缺陷
Imperfections (defects) in Crystals
“It is the defects that makes materials so interesting, just like the human being.”
“Defects are at the heart of materials science.”
第二部分 位错概念与位错几何
位错举例:刃位错与螺位错
刃位错
螺位错
位错概念的提出(一)
材料科学中的有关晶体的核心概念之一; 《材料科学基础》中最难懂的概念。
假说:1934年 证实:上世纪50年代,电镜实验观察 缘起:单晶体理论强度(滑移的临界剪切应 力)与实验值有巨大差距 理论值:c=10-2~10-1G 实验值:c=10-8~10-4 G
位错=> 变能 (E= Ec + Es ≈ Es) Ec:位错中心应变能(占总的10%) Es:位错应力场引起的弹性应变能 位错的应变能 = 制造单位位错所作的功 根据位错切移模型和弹性理论可求得
z x z x
位错的应变能 Strain Energy 此增量称为位错的应 点阵畸变 => 能量的增高,
混合位错角度因素:
1 1 cos 2
螺 K=1 刃 K=1- n
位错应变能的特点
1)应变能与b2 成正比, 故具有最小b的位错最稳定b, 大的位错有可能分解为b小的位错, 以降低系统能量。 2)应变能随R↑而↑, 故在位错具有长程应力场,其中 的长程应变能起主导作用, 位错中心区能量较小, 可忽 略不计。 3)Es螺/Es刃= 1- 常用金属材料约为 1/3, 故Es螺/Es 刃=2/3 4)位错的能量还与位错线的形状及长度有关, 两点之 间以直线为最短, 位错总有被拉直的趋势, 产生一线张 力。 5)位错的存在→ 体系内能↑, 晶体的熵值↑ 可忽略 因此位错的存在使晶体处于高能的不稳定状态, 可见位 错是热力学不稳定的晶体缺陷。
• 空位形成能:Ev
原子-〉晶体表面 =电子能+畸变能
平衡浓度:
热力学稳定的缺陷: 产生与消亡达致平衡
• 空位迁移频率:
Em : 空位迁移能
Sm: 空位迁移熵
点缺陷浓度及对性能的影响
*过饱和空位:
高温淬火、冷加工、辐照
*点缺陷对性能的影响
1。电阻增大 2。提高机械性能 3。有利于原子扩散 4。体积膨胀,密度减小
柏氏矢量的表示法
• 柏氏矢量的大小和方向可用它在晶轴上的分量------点阵矢量, 来表示 • 在立方晶体中, 可用于相同的晶向指数来表示:
位错强度
a 2 b u v 2 w2 n
位错合并
第三部分 位错力学
位错的应力场:应力张量
• 应力张量:二阶张量 xx xy xz or yx yy yz zx zy zz
柏氏矢量的确定 Burgers Vector
柏氏回路将位错正方向与滑移矢量(柏氏矢量)的正 向关联起来!
1。首先选定位错的正向 ; 2。然后绕位错线周围作右旋(RH)闭合回路-------柏氏回路; 在不含有位错的完整晶体中作同样步数的路径, 3。由终点向始点引一矢量, 即为此位错线的柏氏矢量, 记为 b
***
* 畸变区是狭长的管道, 故位错可看成是线缺陷。
螺型位错的图像
螺型位错的特征
特征: 1)无额外半原子面, 原子错排是轴对称的 2)位错线与柏氏矢量平行,且为直线 3)凡是以螺型位错线为晶带轴的晶带 由所有晶面都可以为滑移面。 4)螺型位错线的运动方向与柏氏矢量 相垂直 5) 分左螺旋位错 left-handed screw 符合左手法则 右 right-handed screw 右 6)螺型位错也是包含几个原子宽度的 线缺陷
G m 0.1G 2
计算中的假设
• 1。完整晶体,没有缺陷 • 2。整体滑动 • 3。正弦曲线(0.01-0.1G)
问题出在假设1和2上!应是局部滑移!
日常生活和大自然的启示=〉
有缺陷晶体的局部滑动
小宝移大毯!
毛毛虫的蠕动
存在着某种缺陷---位错(dislocation) 位错的运动(逐步传递)=>晶体的逐步滑移
T
二阶张量 矢量
应力二阶张量 的意义
力
矢量
n
失量与张量的坐标转换
3’ 3 P(P’) 2’ 1’ 2’ 3’ 1 1’ 夹角余弦矩阵 1 2 L11 L21 L31 2 L12 L22 L32 3 L13 L23 L33
矢量: Pi’ = Lij*Pj, j=1,2,3 张量: IJ’ = LIi*LJj*ij; i,j=1,2,3
FS/RH 规则
刃型位错
特征:
edge dislocation
其形状类似于在晶体中插入一把刀刃而得名。
***
称为位错
1)有一额外原子面, 额外半原子面刃口处的原子列
*** 2)位错线垂直于滑移矢量,位错线与滑移矢量构成的
面是滑移面, 刃位错的滑移面是唯一的。 3) 半原子面在上,正刃型位错 ┻ ; 在下, 负刃 型位错 ┳ 4)刃位错的位错线不一定是直线, 可以是 折线, 也可以是曲线, 但位错线必与滑移矢量垂直。 5)刃型位错周围的晶体产生畸变,上压, 下拉, 半 原子面是对称的, 位错线附近畸变大, 远处畸变小。 6)位错周围的畸变区一般只有几个原子宽(一般点阵 畸变程度大于其正常原子间距的1/4的区域宽度, 定义为位错宽 度, 约2~5个原子间距。)