2012-2013北京市各区初三中考一模数学试题重点题(8、12、18、19、20、22、23、24、25)分类汇编
2012年北京初三数学一模试卷中压轴题(六城区)
北京市海淀区区2012年初三一模试卷 数 学 2012. 5一、选择题8.下列图形中,能通过折叠围成一个三棱柱的是( )A.B. C. D.二、填空题12.在平面直角坐标系xOy 中,正方形111A B C O 、2221A B C B 、3332A B C B ,…,按图中所示的方式放置。
点1A 、2A 、3A ,…和1B 、2B 、3B ,…分别在直线y kx b =+和x 轴上。
已知1(1C ,1)-,27(2C ,3)2-,则点3A 的坐标是________;点n A 的坐标是___________________. . 22.小明遇到这样一个问题:如图1,ABO 和CDO BOC 的面积为1,试求以AD ,BC ,OC OD +的长度为三边长的三角形的面积.图1 图2小明是这样思考的,要解决这上问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可。
他利用图形变换解决了这个问题,其解题思路是延长CO 到E ,使OE CO =,连接BE ,可证OBE OAD≌,从而得到BCE即是以AD ,BC ,OC OD +的长度为三边长的三角形(如图2).请你回答:图中BCE 的面积等于_______.请你尝试用平移,旋转,翻折的方法,解决下列问题:如图3,已知ABC,分别以AB ,AC ,BC 为边向外作正方形ABDE 、AGFC 、BCHI ,连接EG ,FH ,ID .(1)在图3中利用图形变换画出并指明以EG 、FH 、ID 的长度为三边长的一个三角形(保留画图痕迹); (2)若ABC 的面积为1,则以EG ,FH ,ID 的长度为三边长的三角形面积等于_______.EOODBA DCBA HGFEDIC BA3图五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程2(31)30m mx x +++=.(1)求证:不论m 为任何实数,此方程总有实数根;(2)若抛物线2(31)3y m x mx +++=与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式; (3)若点1(P x ,1)y 与点1(Q x n +,2)y 在(2)中抛物线上(点P 、Q 不重合),若12y y =,求代数式22114516812n x n x n ++++的值.24.在ABCD中,A DBC ∠=∠,过点D 作DE DF =,且EDF ABD =∠,连接EF ,EC ,N 、P 分别为EC ,BC 的中点,连接NP .(1)如图1,若点E 在DP 上,EF 与DC 交于点M ,试探究线段NP 与线段NM 的数量关系及ABD ∠与MNP ∠满足的等量关系,请直接写出你的结论;(2)如图2,若点M 在线段EF 上,当点M 在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M 的位置,并证明(1)中的结论.图1图2ABCDEFNPP NMFEDBA25.已知抛物线2y x bx c =++的顶点为P ,与y 轴交于点A ,与直线OP 交于点B . (1)如图1,若点P 的横坐标为1,点(3B ,6),试确定抛物线的解析式;(2)在(1)的条件下,若点M 是直线AB 下方抛物线上的一点,且3ABM S = ,求点M 的坐标;(3)如图2,若P 在第一象限,且PA PO =,过点P 作PD x ⊥轴于点D ,将抛物线2y x bx c =++平移,平移后的抛物线经过点A 、D ,该抛物线与x 轴的另一个交点为C ,请探索四边形OABC 的形状,并说明理由.图1图2北京市西城区2012年初三一模试卷 数 学 2012. 5一、选择题(本题共32分,每小题4分)7.由n 个相同的小正方体堆成的几何体,其主视图、俯视图如下所示,则n 的最大值是A .16B .18C .19D .208.对于实数c 、d ,我们可用min{ c ,d }表示c 、d 两数中较小的数,如min{3,1-}=1-.若关于x 的函数y = min{22x ,2()a x t -}的图象关于直线3x =对称,则a 、t 的值可能是A .3,6B .2,6-C .2,6D .2-,6 二、填空题12.如图,直角三角形纸片ABC 中,∠ACB =90°,AC=8,BC =6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别 为D 、E . (1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .22. 阅读下列材料:问题:如图1,在正方形ABCD 内有一点P ,PA =5,PB =2,PC =1,求∠BPC 的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC 绕点B 逆时针旋转90°,得到了△BP ′A (如图2),然后连结PP ′. 请你参考小明同学的思路,解决下列问题: (1) 图2中∠BPC 的度数为 ;(2) 如图3,若在正六边形ABCDEF 内有一点P ,且P A =132,PB =4,PC =2,则∠BPC 的度数为 ,正六边形ABCDEF 的边长为 .五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的一元二次方程210x px q +++=的一个实数根为 2. (1) 用含p 的代数式表示q ;(2) 求证:抛物线2y x px q =++与x 轴有两个交点;(3) 设抛物线21y x px q =++的顶点为M ,与 y 轴的交点为E ,抛物线221y x px q =+++ 顶点为N ,与y 轴的交点为F ,若四边形FEMN 的面积等于2,求p 的值.24.已知:在如图1所示的锐角三角形ABC 中,CH ⊥AB 于点H ,点B 关于直线CH 的对称点为D ,AC 边上一点E 满足∠EDA =∠A ,直线DE 交直线CH 于点F . (1) 求证:BF ∥AC ;(2) 若AC 边的中点为M ,求证:2DF EM =;(3) 当AB =BC 时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE 相等的线段,并证明你的结论.图25.平面直角坐标系xOy 中,抛物线244y ax ax a c =-++与x 轴交于点A 、点B ,与y 轴的正半轴交于点C ,点 A 的坐标为(1, 0),OB =OC ,抛物线的顶点为D . (1) 求此抛物线的解析式;(2) 若此抛物线的对称轴上的点P 满足∠APB =∠ACB ,求点P 的坐标;(3) Q 为线段BD 上一点,点A 关于∠AQB 的平分线的对称点为A ',若2=-QB QA ,求点Q 的坐标和此时△QAA '的面积.北京市东城区2011--2012学年第二学期初三综合练习(一)一、选择题(8. 如图,在正方形ABCD 中,AB =3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度向B 点运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (cm 2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是AB C D 二、填空题12. 如图,正方形ABCD 的边长为10,内部有6个全等的正方形,小正方形的顶点E 、F 、G 、H 分别落在边AD 、AB 、BC 、CD 上,则DE 的长为 .22. 在ABC △中,AB 、BC 、AC小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.(1)请你将ABC △的面积直接填写在横线上__________________; 思维拓展:(2)我们把上述求ABC △面积的方法叫做构图法....若ABC △(0a >),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:(3)若ABC △(0a >),且ABC △的面积为22a ,试运用构图法...在图3的正方形网格(每个小正方形的边长为a )中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上__________________.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程22(41)30x m x m m -+++=. (1)求证:无论m 取何实数时,原方程总有两个实数根;(2)若原方程的两个实数根一个大于2,另一个小于7,求m 的取值范围;(3)抛物线22(41)3y x m x m m =-+++与x 轴交于点A 、B ,与y 轴交于点C ,当m 取(2)中符合题意的最小整数时,将此抛物线向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边界),求n 的取值范围(直接写出答案即可).24. 已知∠ABC =90°,点P 为射线BC 上任意一点(点P 与点B 不重合),分别以AB 、AP 为边在∠ABC 的内部作等边△ABE 和△APQ,连结QE 并延长交BP 于点F .(1)如图1,若AB =32,点A 、E 、P 恰好在一条直线上时,求此时EF 的长(直接写出结果);(2)如图2,当点P 为射线BC 上任意一点时,猜想EF 与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB =32,设BP =x ,以QF 为边的等边三角形的面积y ,求y 关于x 的函数关系式.25. 如图,在平面直角坐标系xOy 中,二次函数2y bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .(1) 求此二次函数解析式;(2) 点D 为点C 关于x 轴的对称点,过点A 作直线l :y x 交BD 于点E ,过点B 作直线BK ∥AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN N M M K ++和的最小值.北京市朝阳区九年级综合练习(一)一、选择题 8.已知关于x 的一元二次方程02=++n mx x 的两个实数根分别为a x =1,b x =2(b a <),则二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是A .a x <B .b x >C .b x a <<D .a x <或b x >二、填空题(第12题) 12.如图,在正方形ABCD 中,AB =1,E 、F 分别是BC 、CD 边上点,(1)若CE =12CB ,CF =12CD ,则图中阴影部分的面积是 ;(2)若CE =1n CB ,CF =1nCD ,则图中阴影部分的面积是 (用含n 的式子表示,n 是正整数). 22. 根据对北京市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y 1(千元)与进货量x (吨)之间的函数kx y =1的图象如图①所示,乙种蔬菜的销售利润y 2(千元)与进货量x (吨)之间的函数bx ax y +=22的图象如图②所示. (1)分别求出y 1、y 2与x 之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t 吨,写出这两种蔬菜所获得的销售利润之和W (千元)与t (吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?图②五、解答题(本题共21分,第23题6分,第24题8分,第25题7分) 23. 阅读下面材料:问题:如图①,在△ABC 中, D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =45°,DC =2.求BD 的长. 小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题 得到解决.(1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =30°,DC =2,求BD 和AB 的长.y (万元)(吨)O y (千元) A图① 图②24. 在平面直角坐标系xOy 中,抛物线23y ax bx =++经过点N (2,-5),过点N 作x 轴的平行线交此抛物线左侧于点M ,MN =6.(1)求此抛物线的解析式;(2)点P (x ,y )为此抛物线上一动点,连接MP 交此抛物线的对称轴于点D ,当△DMN 为直角三角形时,求点P 的坐标; (3)设此抛物线与y 轴交于点C ,在此抛物线上是否存在点Q ,使∠QMN =∠CNM ?若存在,求出点Q 的坐标;若不存在,说明理由.25. 在矩形ABCD 中,点P 在AD 上,AB =2,AP =1,将三角板的直角顶点放在点P 处,三角板的两直角边分别能与AB 、BC 边相交于点E、F ,连接EF .(1)如图,当点E 与点B 重合时,点F 恰好与点C 重合,求此时PC 的长;(2)将三角板从(1)中的位置开始,绕点P 顺时针旋转,当点E 与点A 重合时停止,在这个过程中,请你观察、探究并解答:① ∠PEF 的大小是否发生变化?请说明理由;② 直接写出从开始到停止,线段EF 的中点所经过的路线长.C B AD北京市丰台区2011-2012学年度第二学期初三综合练习(一)8.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点 (点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A .B .C .D .二、填空题(本题共16分,每小题4分)12.在数学校本活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A 出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D ,第二次逆时针方向跳2步到达顶点B ,第三次顺时针方向跳3步到达顶点C ,第四次逆时针方向跳4步到达顶点C ,… ,以此类推,跳动第10次到达的顶点是 ,跳动第2012次到达的顶点是 .22.将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三 角形(不能有重叠和缝隙).小明的做法是:如图1所示,在矩形ABCD 中,分别取AD 、AB 、CD 的中点P 、E 、 F ,并沿直线PE 、PF 剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2). (1)在图3中画出另一种剪拼成等腰三角形的示意图;(2)以矩形ABCD 的顶点B 为原点,BC 所在直线为x 轴建立平面直角坐标系(如图4),矩形ABCD 剪拼后得到等腰三角形△PMN ,点P 在边AD 上(不与点A 、D 重合),点M 、N 在x 轴上(点M 在N 的左边).如果点D 的坐标为(5,8),直线PM 的解析式为=y kx b +,则所有满足条件的k 的值为 .图一 图二 图三图四 备用五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知:关于x 的一元二次方程:22240x mx m -+-=.EPC’A DBCP E FDA P E F DA B C(1)求证:这个方程有两个不相等的实数根;(2)当抛物线2224y x mx m =-+-与x 轴的交点位于原点的两侧,且到原点的距离相等时,求此抛物线的解析式;(3)将(2)中的抛物线在x 轴下方的部分沿x 轴翻折,其余部分保持能够不变,得到图形C 1,将图形C 1向右平移一个单位,得到图形C 2,当直线y=x b +(b <0)与图形C 2恰有两个公共点时,写出b 的取值范围.24.已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .(1)如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是 ; (2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.CB AEMM EABC点A ,与x 轴相交于B 、C 两点(点B 在点C 的左边). (1)求经过A 、B 、C 三点的抛物线的解析式;(2)在(1)中的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的21.如果 存在,请直接写出所有满足条件的M 点的坐标;如果若不存在,请说明理由;(3)如果一个动点D 自点P 出发,先到达y 轴上的某点,再到达x 轴上某点,最后运动到(1)中抛物线的顶点Q 处,求使点D 运动的总路径最短的路径的长..(1)将两端剪掉则可以得到正五边形,若将展开,展开后的平面图形是 ;(2)若原长方形纸条(图①)宽为2cm ,求(1)中展开后平面图形的周长(可以用三角函数表示). 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知:关于x 的方程()()01342=---+m x m x 有两个不相等的实数根.(1)求m 的取值范围;图① 图② 图③图②(2)抛物线C :()()1342-+---=m x m x y 与x 轴交于A 、B 两点.若1-≤m 且直线1l :12--=x my 经过点A ,求抛物线C 的函数解析式;(3)在(2)的条件下,直线1l :12--=x my 绕着点A 旋转得到直线2l :b kx y +=,设直线2l 与y 轴交于点D ,与抛物线C 交于点M (M 不与点A 重合),当23≤AD MA 时,求k 的取值范围.24.(1)如图1,在矩形ABCD 中,AB=2BC ,M 是AB 的中点.直接写出∠BMD 与∠ADM 的倍数关系;(2)如图2,若四边形ABCD 是平行四边形, AB=2BC ,M 是AB 的中点,过C 作CE ⊥AD 与AD 所在直线交于点E .①若∠A 为锐角,则∠BME 与∠AEM 有怎样的倍数关系,并证明你的结论; ②当︒<∠<︒A 0时,上述结论成立;当︒<∠≤︒180A 时,上述结论不成立.M D BA CEADC25.已知二次函数)34()22(22-+++-=m m x m x y 中,m 为不小于0的整数,它的图像与x 轴交于点A 和点B ,点A 在原点左边,点B 在原点右边. (1)求这个二次函数的解析式;(2)点C 是抛物线与y 轴的交点,已知AD=AC (D 在线段AB 上),有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度移动,同时,另一动点Q 从点C 出发,以某一速度沿线段CB 移动,经过t 秒的移动,线段PQ 被CD 垂直平分,求t 的值;(3)在(2)的情况下,求四边形ACQD 的面积.顺义区2012届初三第一次统一练习一、选择题8.如图,在Rt△ABC中,90ACB∠=︒,60A∠=︒,AC=2,D是AB边上一个动点(不与点A、B重合),E是BC边上一点,且30CDE∠=︒.设AD=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是二、填空题12.如图,菱形ABCD中,AB=2 ,∠C=60°,我们把菱形ABCD的对称中心称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O所经过的路径长为;经过18次这样的操作菱形中心O所经过的路径总长为;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为.(结果都保留π)22.问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点D作DF∥AC交BC于点F.请按图示数据填空:四边形DFCE的面积S=,△DBF的面积1S=,△ADE的面积2S=.探究发现(2)在(1)中,若BF a=,FC b=,DG与BC间的距离为h.直接写出2S=(用含S、1S的代数式表示).拓展迁移(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为4、8、1,试利用..(2.)中的结论....求□DEFG的面积,直接写出结果.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程032)1(2=+++-kkxxk.(1)若方程有两个不相等的实数根,求k的取值范围;(2)当方程有两个相等的实数根时,求关于y的方程2(4)10y a k y a+-++=的整数根(a为正整数).OABD24.如图,在平面直角坐标系xOy 中,抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3).(1)求抛物线的解析式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点B ,求平移后抛物线的解析式;(3)在(2)的条件下,记平移后点A 的对应点为A’,点B 的对应点为B’,试问:在平移后的抛物线上是否存在一点P ,使'OA P △的面积与四边形AA ’B ’B 的面积相等,若存在,求出点P 的坐标;若不存在,说明理由.25.问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE 是等边三角形,且点D 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. (1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E 落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.图1D EBCA。
2013年历年北京市初三数学中考一、二模拟题分类汇编:应用题及答案
应用题1.(2013.朝阳一模18)北京地铁6号线正式运营后,家住地铁6号线附近的小李将上班方式由自驾车改为了乘坐地铁,这样他从家到达上班地点的时间缩短了0.3小时.已知他从家到达上班地点,自驾车时要走的路程为17.5千米,而改乘地铁后只需走15千米,并且他自驾车平均每小时走的路程是乘坐地铁平均每小时所走路程的23.小李自驾车从家到达上班地点所用的时间是多少小时?2.(2013.昌平一模18)某学校组织九年级(1)班和(2)班的学生到离校5千米的“农业嘉年华”参观,(1)班学生的行进速度是(2)班学生速度的1.25倍,结果(1)班学生比(2)班学生早到15分钟,求(2)班学生的速度.3.(2013.大兴一模18)列方程或方程组解应用题:为了改善生态环境,防沙造林,某村计划在荒坡上种植480棵树,由于有志愿者的支援,每日比原计划多种13,结果提前4天完成任务,问原计划每天种多少棵树?4.(2013.大兴一模17)列方程或方程组解应用题:小红到离家2100米的学校参加初三联欢会,到学校时发现演出道具忘在家中,此时距联欢会开始还有45分钟,于是她马上步行回家取道具,随后骑自行车返回学校.已知小红骑自行车到学校比她从学校步行到家用时少20分钟,且骑自行车的平均速度是步行平均速度的3倍.初中数学辅(1)小红步行的平均速度(单位:米/分)是多少?(2)小红能否在联欢会开始前赶到学校?(通过计算说明你的理由)5.(2013.丰台一模18)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.6.(2013.海淀一模18)列方程(组)解应用题:雅安地震灾情牵动全国人民的心.某厂计划加工1500顶帐篷支援灾区,加工了300顶帐篷后,由于救灾需要,将工作效率提高到原计划的2倍,结果提前4天完成了任务.求原计划每天加工多少顶帐篷.7.(2013.怀柔一模18)某商店经销一种T恤衫,4月上旬的营业额为2000元,为扩大销售量,4月中旬该商店对这种T恤衫打9折销售(原销售价格的90%),结果销售量增加20件,营业额增加700元.求该种T恤衫4月上旬的销售价格.8.(2013.密云一模18)列方程或方程组解应用题:某服装厂设计了一款新式夏装,想尽快制作8800 件投入市场,服装厂有A、B 两个制衣车间,A 车间每天加工的数量是B车间的1.2 倍,A、B 两车间共同完成一半后,A 车间出现故障停产,剩下全部由B 车间单独完成,结果前后共用20 天完成,求A、B 两车间每天分别能加工多少件.9.(2013.平谷一模18)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)15 20 25 …y(件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.10.(2013.西城一模18)列方程(组)解应用题:某工厂原计划生产2400台空气净化器,由于天气的影响,空气净化器的需求量呈上升趋势,生产任务的数量增加了1200台.工厂在实际生产中,提高了生产效率,每天比原计划多生产10台,实际完成生产任务的天数是原计划天数的1.2倍.求原计划每天生产多少台空气净化器.应用题参考答案1.(2013.朝阳一模18) 解:设小李自驾车从家到达上班地点所用的时间是x 小时. …………………………1分由题意,得 17.51520.33x x =⨯-. ……………………………………………………2分 解方程,得 x =0.7. ………………………………………………………………………3分经检验,x =0.7是原方程的解,且符合题意.……………………………………………4分答:小李自驾车从家到达上班地点所用的时间是0.7小时. ……………………………5分2.(2013.昌平一模18)解:设(2)班学生的速度为x 千米/小时. …………… 1分依题意,得 55151.2560x x -= . ……………………………… 2分 解之,得 x = 4 . ……………………… 3分 经检验:x = 4是原方程的解,且符合实际意义. ………………… 4分 答:(2)班学生的速度为4千米/小时. ……………………………… 5分3.(2013.大兴一模18)解:设原计划每天种x 棵树, …………………1分依题意,得4x )311(480x480=+- . ………………………………………………2分 解得x = 30 . ……………………………………………………………………3分 经检验:x = 30是方程的解. ……………………………………………………4分 答:原计划每天种30棵树. ……………………………………………………5分 (2)小红能否在联欢会开始前赶到学校?(通过计算说明你的理由)4.(2013.大兴一模17)解:(1)设小红步行的平均速度为x 米/分,则骑自行车的平均速度为3x 米/分. ··························· 1分 根据题意得:21002100203x x=+ . ·············· 2分 得 70x = . ····················· 3分 经检验70x =是原方程的解 . ················ 4分 答:小红步行的平均速度是70米/分.(2)根据题意得:21002100404570370+=<⨯ . ∴小红能在联欢会开始前赶到. …………………………………5分5.(2013.丰台一模18)解:设抢修车的速度为x 千米/时,则吉普车的速度为15x 千米/时. -- 1分由题意得, 60151.51515=-x x . 解得,x=20.经检验,x=20.是原方程的解,并且x=20,1.5x=30都符合题意.答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.6.(2013.海淀一模18)解:设原计划每天加工x 顶帐篷. ………………………1分1500300150030042x x---=.………………………3分 解得 150x =. ………………………4分经检验,150x =是原方程的解,且符合题意.答:原计划每天加工150顶帐篷. ………………………5分7.(2013.怀柔一模18)解:设该种T 恤衫4月上旬的销售价为每件x 元,根据题意得…… 1分20002000700200.9x x+=-…………………………………………… 3分 解之得x=50…………………………………………………… 4分经检验x=50是所得方程的解,且符合题意………………………………………… 5分 ∴该种T 恤衫4月上旬的销售价格是每件50元.8.(2013.密云一模18)设B 车间每天生产x 件,则A 车间每天生产1.2X 件,……………1分由题意得44004400201.2x x x +=+………………………………………..2分解得x=320……………………………………………………………...3分经检验x=320是方程的解……………………………………………..4分此时A 车间每天生产320⨯1.2=384件答:A 车间每天生产384件,B 车间每天生产320件……………….5分9.(2013.平谷一模18)解:(1)设此一次函数解析式为.y kx b =+ ………………1分则1525,2020.k b k b +=⎧⎨+=⎩………………………………………………………2分 解得k =-1,b =40.即一次函数解析式为40y x =-+. ………………………………………………3分(2)每日的销售量为304010y =-+= ……………………………. ………….……..4分。
2012北京市各区中考数学一模试卷及答案试题试卷_1 (2)
顺义区2012届初三第一次统一练习 数学学科参考答案及评分细则二、填空题(本题共16分,每小题4分,)9.4;10.25()x x y -; 11.11.4; 12, 2)π+,π. 三、解答题(本题共30分,每小题5分) 13()12cos303-︒+--1213⎛⎫=+-- ⎪⎝⎭……………………………………………… 4分 113=+ 43= …………………………………………………………………… 5分 14.解: 221x y x y +=⎧⎨-=⎩①②①+②,得 33x =.1x =. …………………………………………………… 2分 把1x =代入①,得 12y +=.1y =. ………………………………………………………… 4分 ∴原方程组的解为 1,1.x y =⎧⎨=⎩ ………………………………………………… 5分15.证明:∵AB=AC ,∴B C ∠=∠. …………………………………………………………… 1分 在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE .……………………………………………………… 3分 ∴ AD=AE . ……………………………………………………………… 4分∴∠ADE =∠AED . ……………………………………………………… 5分16.解:6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭2693x x x x x -+-=÷ …………………………………………………… 2分 2(3)3x xx x -=-3x =- ……………………………………………………………………… 4分当2012x =时,原式=201232009-=.…………………………………… 5分17.解:(1)∵点(4,)A m 在反比例函数4y x=(0x >)的图象上, ∴414m ==. …………………………………………………………… 1分 ∴(4,1)A .将(4,1)A 代入一次函数y x b =-+中,得 5b =.∴一次函数的解析式为5y x =-+. …………………………………… 2分(2)由题意,得 (0,5)B , ∴5OB =.设P 点的横坐标为P x .∵OBP △的面积为5, ∴1552p x ⨯=.…………………………………………………………… 3分 ∴2P x =±.∴点P 的坐标为(2,3)或(-2,7). ………………………………… 5分 18.解:设A 户型的每户窗户改造费用为x 元,则B 户型的每户窗户改造费用为(500)x -元. ……………………………… 1分 根据题意,列方程得5400004800005x x =-. 解得 4500x =.经检验,4500x =是原方程的解,且符合题意.…………………………… 4分 ∴5004000x -=.答:A 户型的每户窗户改造费用为4500元,B 户型的每户窗户改造费用为4000 元.…………………………………… 5分MF EDCBAFE DCO BA四、解答题(本题共20分,每小题5分)19.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin 6023CM CD D ==︒=cos 4cos602DM CD D ==︒=.………………………………… 2分在Rt △ACM中,∵∠MAC=45°, ∴AM CM==∴2AD AM DM =+=.…………………………………… 3分∵EF ⊥AD ,CM ⊥AD , ∴EF ∥CM .∴12EF CM ==在Rt △AEF 中,AF EF ==4分∴22DF AD AF =-=-=.……………………… 5分20.(1)证明:连结OD .∵AB 是⊙O 的直径,∴∠ADB=90°. ……………………………………………………… 1分 ∵∠A=30°, ∴∠ABD=60°.∴∠BDC =1302ABD ∠=︒. ∵OD=OB ,∴△ODB 是等边三角形. ∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°. 即OD ⊥DC .∴CD 是⊙O 的切线.…………………………………………………… 2分(2)解:∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠A =30°. ……………………………………… 3分∴112DE BE BD ===. 在Rt △OEB中,OB=2BE=2,OE ==.………… 4分 ∵OD=OB=2,∠C=∠ABD -∠BDC =30°,∠DOF=30°, ∴CD =tan 30DF OD =︒=∴CF CD DF =-== ……………………………5分21.解:(1)此次共调查了100名学生. …………………………………………………1分(2)填表:…………………………………………………3分(3)补全统计图如下:到校方式条形统计图 到校方式扇形统计图.…………………………………………………………………………5分22.解:(1)四边形DFCE 的面积S = 6 ,△DBF 的面积1S = 6 ,△ADE 的面积2S = 32 . …………………………………… 3分(2)2S = 214S S (用含S 、1S 的代数式表示). ………… 4分 (3)□DEFG 的面积为12. ………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+ ……………………………………………………………… 1分∵方程有两个不相等的实数根, ∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值范围是32k <且1k ≠. …………………………………… 3分 (2)当方程有两个相等的实数根时,△=812k -+=0.∴32k =. ………………………………………………………………… 4分 ∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q =(p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=.不妨设8,8.a m p a m q -+=⎧⎨--=⎩两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2.当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…… 5分 当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 6分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 7分24.解:(1)∵抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3),∴1680,3.m m n n -+=⎧⎨=⎩ ∴3,83.m n ⎧=-⎪⎨⎪=⎩. ∴抛物线的解析式为:233384y x x =--+.………………………… 2分 (2)令3y =,得2333384x x --+=,得10x =,22x =-, ∵抛物线向右平移后仍经过点B ,∴抛物线向右平移2个单位.……… 3分∵233384y x x =--+ 233(21)388x x =-++++2327(1)88x =-++. ………… 4分∴平移后的抛物线解析式为2327(1)88y x =--+. …………………… 5分(3)由抛物线向右平移2个单位,得'(2,0)A -,'(2,3)B .∴四边形AA ’B ’B 为平行四边形,其面积'236AA OB ==⨯=.设P 点的纵坐标为P y ,由'OA P △的面积=6, ∴1'62P OA y =,即1262P y ⨯= ∴6P y =, 6P y =±.………………………………………………… 6分当6P y =时,方程2327(1)688x --+=无实根, 当6P y =-时,方程2327(1)688x --+=-的解为16x =,24x =-.∴点P 的坐标为(6,6)-或(4,6)--.……………………………… 7分25.解:(1)完成画图如图2,由BAC ∠的度数为 60°,点E 落在 AB 的中点处 ,容易得出BE 与DE 之间的数量关系 为 BE=DE ;…………… 3分(2)完成画图如图3.猜想:BE DE =.证明:取AB 的中点F ,连结EF .∵90ACB ∠=︒,30ABC ∠=︒,∴160∠=︒,12CF AF AB ==. ∴△ACF 是等边三角形.∴AC AF =. ① …… 4分∵△ADE 是等边三角形,∴260∠=︒, AD AE =. ②∴12∠=∠. ∴12BAD BAD ∠+∠=∠+∠.即CAD FAE ∠=∠.③ ………………………………………… 5分 由①②③得 △ACD ≌△AFE (SAS ). …………………………… 6分 ∴90ACD AFE ∠=∠=︒. ∵F 是AB 的中点,∴EF 是AB 的垂直平分线.∴BE=AE . ……………………………………………………… 7分 ∵△ADE 是等边三角形, ∴DE=AE .∴BE DE =. …………………………………………………… 8分EAB C (D )图221F EDB C A图3。
2013北京海淀中考一模数学试卷及答案(扫描版)
海淀区九年级第二学期期中测评数学试卷答案及评分参考一、选择题(本题共32分,每小题4分)题号 1 2 3 4 5 6 7 8E D C BA 答 案B A D BC C AD 二、填空题(本题共16分,每小题4分)题 号 9 10 11 12 答 案 2(3)b a b - m ≤94 23-1260︒;2或7 三、解答题(本题共30分,每小题5分)13.计算:011122cos30(31)()8--︒+-- .解:原式3232182=-⨯+- ………………………4分37=-.………………………5分解:由①得 2x >-.………………………2分由②得 1x ≤.………………………4分则不等式组的解集为12≤<-x .………………………5分15.先化简,再求值:4212112--÷⎪⎭⎫ ⎝⎛-+x x x ,其中3=x .解:原式2212421x x x x -+-=⋅-- ………………………2分)1)(1()2(221+--⋅--=x x x x x ………………………3分12+=x . ………………………4分当3=x 时,原式=2112=+x .………………………5分16.证明:AB ∥EC ,∴.A DCE ∠=∠ ………………………1分在△ABC 和△CDE 中,,,,B EDC A DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE .………………………4分∴.BC DE = ………………………5分17.解:(1)∵ 点A (1,)n -在反比例函数x y 2-=的图象上,∴ 2n =. ………………………1分∴ 点A 的坐标为12-(,).∵ 点A 在一次函数y kx k =-的图象上,∴2k k =--.∴1-=k .………………………2分∴ 一次函数的解析式为1+-=x y .………………………3分(2)点P 的坐标为(-3,0)或(1,0).………………………5分(写对一个给1分)18.解:设原计划每天加工x 顶帐篷. ………………………1分1500300150030042x x---=.………………………3分 解得 150x =. ………………………4分经检验,150x =是原方程的解,且符合题意.答:原计划每天加工150顶帐篷. ………………………5分四、解答题(本题共20分,每小题5分)19. 解:过点A 作AF ⊥BD 于F .∵∠CDB =90°,∠1=30°,∴∠2=∠3=60°. ………………………1分在△AFB 中,∠AFB =90°.∵∠4=45°,6AB =,∴AF =BF =3.………………………2分在△AFE 中,∠AFE =90°.∴1,2EF AE ==.………………………3分在△ABD 中,∠DAB =90°. ∴23DB =. ∴31DE DB BF EF =--=-.………………………4分 ∴1133(31)3222ADE S DE AF ∆-=⋅=-⨯=.………………………5分 20.(1)证明:连接OD . ………………………1分∵AB =AC ,∴B C ∠=∠.又∵OB OD =,∴1B ∠=∠.∴1C ∠=∠.∴OD ∥AC .∵DE ⊥AC 于E ,∴DE ⊥OD .∵点D 在⊙O 上,∴DE 与⊙O 相切. ………………………2分(2)解:连接AD .∵AB 为⊙O 的直径,∴∠ADB =90°.∵AB =6,sin B =55, ∴sin AD AB B =⋅=556.………………3分 ∵123290∠+∠=∠+∠=︒,∴13∠=∠.∴ 3.B ∠=∠在△AED 中,∠AED =90°. ∵5sin 35AE AD ∠==, ∴556565555AE AD ==⨯=. ………………………4分 又∵OD ∥AE ,∴△FAE ∽△FOD . ∴FA AE FO OD=. ∵6AB =,∴3OD AO ==. ∴235FA FA =+. ∴2AF =. ………………………5分21.(1)13.………………………1分 (2)∵(3318)80%30++÷=,∴被小博同学抽取的监测点个数为30个. ………………………2分………………………3分(3)设去年同期销售x 万箱烟花爆竹.(135%)37x -=. 解得125613x =.………………………4分∴1212563719201313-=≈. 答:今年比去年同期少销售约20万箱烟花爆竹. ……………………… 5分22.(1)5.………………………2分(2)①如图:(答案不唯一) ………………………4分 ②7215.………………………5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)依题意,可得抛物线的对称轴为212m x m-=-=.………………………1分 ∵抛物线与x 轴交于A 、B 两点,点A 的坐标为(2,0)-,∴点B 的坐标为 (4,0).………………………2分(2)∵点B 在直线 y =12x +4m +n 上, ∴024m n =++①.∵点A 在二次函数2-2y mx mx n =+的图象上,∴044m m n =++②. ………………………3分 由①、②可得12m =,4n =-. ………………………4分 ∴ 抛物线的解析式为y =2142x x --,直线的解析式为y =122x -. ……………5分 (3)-502d <<. ………………………7分 24.(1)2AE =.………………………1分(2)线段AE 、CD 之间的数量关系为2AE CD =.………………………2分 证明:如图1,延长AC 与直线l 交于点G .依题意,可得∠1=∠2.∵∠ACB =90︒,∴∠3=∠4.∴BA BG =.∴CA =CG .………………………3分∵AE ⊥l ,CD ⊥l ,∴CD ∥AE .∴△GCD ∽△GAE .∴ 12CD GC AE GA ==.∴2AE CD =.………………………4分(3)解:当点F 在线段AB 上时,如图2,过点C 作CG ∥l 交AB 于点H ,交AE 于点G .∴∠2=∠HCB .∵∠1=∠2,∴∠1=∠HCB .∴CH BH =.∵∠ACB =90︒,∴∠3+∠1=∠HCB +∠4 =90︒.∴∠3=∠4.∴CH AH BH ==.∵CG ∥l ,∴△FCH ∽△FEB .∴ 56CFCH EF EB ==.设5,6CH x BE x ==,则10AB x =.∴在△AEB 中,∠AEB =90︒,8AE x =.由(2)得,2AE CD =.∵4CD =,∴8AE =.∴1x =.∴10,6,5AB BE CH ===.∵CG ∥l ,∴△AGH ∽△AEB . ∴12HGAHBE AB ==.∴3HG =.………………………5分∴8CG CH HG =+=.∵CG ∥l ,CD ∥AE ,∴四边形CDEG 为平行四边形. 图3 图2∴8DE CG ==.∴2BD DE BE =-=.……………………6分当点F 在线段BA 的延长线上时,如图3,同理可得5CH =,3GH =,6BE =.∴DE =2CG CH HG =-=.∴ 8BD DE BE =+=.∴2BD =或8.……………………7分25.解:(1)()2222y x mx m m x m m =-++=-+ ,……………………1分 ∴顶点坐标为C m ,m ().……………………2分(2)①2y x =+ 与抛物线222y x mx m m =-++交于A 、B 两点, ∴2222x x mx m m +=-++.解方程,得121,2x m x m =-=+.……………………4分 A 点在点B 的左侧,∴(1,1),(2,4).A m m B m m -+++ ∴3 2.AB =……………………5分直线OC 的解析式为y x =,直线AB 的解析式为2y x =+,∴AB ∥OC ,两直线AB 、OC 之间距离h =2. ∴11322322APB S AB h =⋅=⨯⨯= .………………………6分 ②最小值为10. ……………………8分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。
2012年北京市西城区初三一模试卷数学
数学3..的.1.计算:2( )A.-1 B.-3 C.3 D.52.我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A.316710⨯B.416.710⨯C.51.6710⨯D.60.16710⨯3.已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD为( )A.40°B.50°C.60°D.70°4.因式分解()219x--的结果是( )A.()()24x x+-B.()()81x x++C.()()24x x-+D.()()108x x-+5.如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数有( )A.2个B.3个C.4个D.6个6.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是( )A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的7.如图,AB是⊙O的直径,AB=4,AC是弦,AC=AOC为( )A.120°B.130°C.140°D.150°ACBO8.如图,在△ABC中,∠ACB=90°,AC=BC=2.E、F分别是射线AC、CB上的动点,且AE=BF,EF与AB交于点G,EH⊥AB于点H,设AE=x,GH=y,下面能够反映y与x之间函数关系的图象是( )二、填空题(本题共16分,每小题4分)9.函数y=__________.10.如图,点P在双曲线(0)ky kx=≠上,点(12)P',与点P关于y轴对称,则此双曲线的解析式为.11.如图,在平面直角坐标系中,等边三角形ABC的顶点B,C,0),过坐标原点O的一条直线分别与边AB,AC交于点M,N,若OM=MN,则点M的坐标为______________.12.如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n―1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n―1B n―1,A2B1∥A3B2∥A4B3∥…∥A n B n―1,△A1A2B1,△A2A3B2,…,△A n―1A nB n―1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2011的阴影三角形共有__________个.三、解答题(本题共30分,每小题5分)13.计算:1024sin60(-︒-.O1 2 3 4 52),14.(1)解不等式:112x x >+;(2)解方程组20328x y x y -=⎧⎨+=⎩15.已知:如图,A 点坐标为302⎛⎫- ⎪⎝⎭,,B 点坐标为()03,. (1)求过A B ,两点的直线解析式;(2)过B 点作直线BP 与x 轴交于点P ,且使2OP OA =,求ABP ∆的面积.x16.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC=30º,EF ⊥AB ,垂足为F ,连结DF . (1)求证:AC =EF ;(2)求证:四边形ADFE 是平行四边形.17.先化简:2313(1)2349223x x x x ÷⋅++--;若结果等于23,求出相应x 的值.A BCDEF18.在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?四、解答题(本题共20分,每小题5分)19.某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.(1)填表(不需要化简)时间第一个月第二个月清仓时单价(元) 80 ▲40销售量(件) 200 ▲▲(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?20.如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.C'CBM21.如图,已知ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为弧CF 的中点,连接BE 交AC 于点M ,AD 为△ABC 的角平分线,且AD BE ⊥,垂足为点H . (1)求证:AB 是半圆O 的切线;(2)若3AB =,4BC =,求BE 的长.22.已知:如图1,矩形ABCD 中,AB =6,BC =8,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 四条边上的点(且不与各边顶点重合),设m =AB +BC +CD +DA ,探索m 的取值范围. (1)如图2,当E 、F 、G 、H 分别是AB 、BC 、CD 、DA 四边中点时,m =________.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD 为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m 的取值范围.①请在图1中补全小贝同学翻折后的图形;②m 的取值范围是__________.H GF EC DBA 图1图2H GF E CD BA 图3ABDCE FGHA AA五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知一元二次方程x2+ax+a-2=0.(1)求证:不论a为何实数,此方程总有两个不相等的实数根;(2)设a<0,当二次函数y=x2+ax+a-2的图象与x出此二次函数的解析式;(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB,若存在求出P点坐标,若不存在请说明理由.24.如图,在△ABC中,点D是BC上一点,∠B=∠DAC=45°.(1)如图1,当∠C=45°时,请写出图中一对相等的线段;_________________(2)如图2,若BD=2,BA AD的长及△ACD的面积.图1CD BA图2AB D C25.巳知二次函数y =a (x 2-6x +8)(a >0)的图象与x 轴分别交于点A 、B ,与y 轴交于点C .点D 是抛物线的顶点.(1)如图①.连接AC ,将△OAC 沿直线AC 翻折,若点O 的对应点0'恰好落在该抛物线的对称轴上,求实数a 的值;(2)如图②,在正方形EFGH 中,点E 、F 的坐标分别是(4,4)、(4,3),边HG 位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P 是边EH 或边HG 上的任意一点,则四条线段PA 、PB 、PC 、PD 不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P 是边EF 或边FG 上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;(3)如图②,当点P 在抛物线对称轴上时,设点P 的纵坐标l 是大于3的常数,试问:是否存在一个正数a ,使得四条线段PA 、PB 、PC 、PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.2012年北京市西城区初三一模试卷参考答案1.A .2.C .3.C .4.A .5.C .6.A .7.A .8.C .9.x ≥3.10.2y x -=.11.(5 4 ,3 4 )12.12;6.13.解:原式=1412+-=12-.14.(1)解:112x x ->,112x >,所以2x >. (2)21x y =⎧⎨=⎩15.(1)23y x =+;(2)设P 点坐标为()0x ,,依题意得3x =±,所以P 点坐标分别为()()123030P P -,,,. 1132733224ABP S ∆⎛⎫=⨯+⨯= ⎪⎝⎭,213933224ABP S ∆⎛⎫=⨯-⨯= ⎪⎝⎭,所以ABP ∆的面积为274或94. 17.原式=(23)(23)1233)233223x x x x x x +--+⋅⋅⋅+-=23x ;由23x =23,可,解得x.19.(1)80-x ,200+10x ,800-200-(200+10x );(2)根据题意,得80×200+(80-x )(200+10x )+40[800-200-(200+10x )]-50×800=9000.整理,得x 2-20x +100=0,解这个方程得x 1=x 2=10, 当x =10时,80-x =70>50. 答:第二个月的单价应是70元. 20.解:(1)证明:过点D 作DP ⊥BC ,于点P ,过点A 作AQ ⊥BC 于点Q ,PQCMB∵∠C =∠B =60°∴CP =BQ =12AB ,CP +BQ =AB ,又∵ADPQ 是矩形,AD =PQ , 故BC =2AD ,由已知,点M 是BC 的中点, BM =CM =AD =AB =CD ,即△MDC 中,CM =CD ,∠C =60°, 故△MDC 是等边三角形.(2)解:△AEF 的周长存在最小值,理由如下: 连接AM ,由(1)平行四边形ABMD 是菱形, △MAB ,△MAD 和△MC ′D ′是等边三角形,∠BMA =∠BME +∠AME =60°,∠EMF =∠AMF +∠AME =60°, ∴∠BME =∠AMF ,在△BME 与△AMF 中,BM =AM ,∠EBM =∠FAM =60°, ∴△BME ≌△AMF (ASA ),∴BE =AF ,ME =MF ,AE +AF =AE +BE =AB , ∵∠EMF =∠DMC =60°,故△EMF 是等边三角形,EF =MF , ∵MF 的最小值为点M 到AD即EF 的,△AEF 的周长=AE +AF +EF =AB +EF , △AEF 的周长的最小值为2答:存在,△AEF 的周长的最小值为2. 21.(1)连结CE ,过程略;(2)∵3AB =,4BC =.由(1)知,90ABC ∠=,∴5AC =.在ABM △中,AD BM ⊥于H ,AD 平分BAC ∠, ∴3AM AB ==,∴2CM =. 由CME △∽BCE △,得12EC MC EB CB ==. ∴2EB EC =,∴BE =22.(1)20;(2)如图所示(虚线可以不画),20≤m <28.23.解:(1)因为△=a 2-4(a -2)=(a -2)2+4>0,所以不论a 为何实数,此方程总有两个不相等的实数根.(2)设x 1、x 2是y =x 2+ax +a -2=0的两个根,则x 1+x 2=-a ,x 1•x 2=a -2,因两交所以|x 1-x 2|.即:(x 1-x 2)2=13 变形为:(x 1+x 2)-4x 1•x 2=13所以:(-a )2-4(a -2)=13 整理得:(a -5)(a +1)=0解方程得:a =5或-1 又因为:a <0,所以:a =-1所以:此二次函数的解析式为y =x 2-x -3.(3)设点P 的坐标为(x 0,y 0),因为函数图象与x,所以:ABS △PAB =12AB •|y 0|即:|y 0|=3,则y 0=±3当y 0=3时,x 02-x 0-3=3,即(x 0-3)(x 0+2)=0 解此方程得:x 0=-2或3当y 0=-2时,x 02-x 0-3=-3,即x 0(x 0-1)=0 解此方程得:x 0=0或1综上所述,所以存在这样的P 点,P 点坐标是(-2,3),(3,3),(0,-3)或(1,-3).H GFE CDBA24.(1)AB =AC 或AD =BD =CD ;(2)AD1,S △ACD提示:过点A 作AE ⊥BC ,可以求出AD 的长.过D 作平行线或过C 作垂线,可以利用两次相似求面积.ECDB AFABDC25.解:(1)令y =0,由2(68)0a x x -+=解得122,4x x ==;令x =0,解得y =8a .∴点A 、B 、C 的坐标分别是(2,0)、(4,0)、(0,8a ), 该抛物线对称轴为直线x =3. ∴OA =2.如图①,设抛物线对称轴与x 轴交点为M ,则AM =1. 由题意得:2O A OA '==.∴2O A AM '=,∴∠O ′AM =60°.∴OC AO ==,即8a =.∴4a =. (2)若点P 是边EF 或边FG 上的任意一点,结论同样成立.(Ⅰ)如图②,设点P 是边EF 上的任意一点(不与点E 重合),连接PM . ∵点E (4,4)、F (4,3)与点B (4,0)在一直线上,点C 在y 轴上, ∴PB <4,PC ≥4,∴PC >PB . 又PD >PM >PB ,PA >PM >PB , ∴PB ≠PA ,PB ≠PC ,PB ≠PD .∴此时线段PA 、PB 、PC 、PD 不能构成平行四边形. (Ⅱ)设P 是边FG 上的任意一点(不与点G 重合), ∵点F 的坐标是(4,3),点G 的坐标是(5,3).∴FB =3,GB =PB∵PC ≥4,∴PC >PB .GCDB A2012年北京市西城区初三一模试卷数学11 / 11图①(3)存在一个正数a ,使得线段PA 、PB 、PC 能构成一个平行四边形. 如图③,∵点A 、B 时抛物线与x 轴交点,点P 在抛物线对称轴上, ∴PA =PB .∴当PC =PD 时,线段PA 、PB 、PC 能构成一个平行四边形. ∵点C 的坐标是(0,8a ),点D 的坐标是(3,-a ). 点P 的坐标是(3,t ),∴PC 2=32+(t -8a )2,PD 2=(t +a )2.整理得7a 2-2ta +1=0,∴Δ=4t 2-28.∵t 是一个常数且t >3,∴Δ=4t 2-28>0∴方程7a 2-2ta +1=0有两个不相等的实数根2147t t a ±==.显然0a =>,满足题意. ∵当t 是一个大于3的常数,存在一个正数7t a =,使得线段PA 、PB 、PC 能构成一个平行四边(图②)(图③)。
2012-2013学年北京市门头沟区2013年中考一模数学试题(含答案)-推荐下载
4
4
2
则这 20 户家庭该月用水量的众数和中位数分别是( )
A 5,7
.
B 7,7
.
5
3
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2013北京市平谷区初三中考一模数学试题2012-2013北京市平谷区初三中考一模数学试题
一、选择题(本题共32分,每小题4分) 在下列各题的四个备选答案中,只有一个是正确的. 1. −3 的倒数是 A.3 B. −3 C.
1 3
D. −
1 3
2.最新统计,中国注册志愿者总数已超 30 000 000 人,30 000 000 用科学记数法表示为 A. 3 × 10 7 B. 3 × 10 6 C. 30 × 10 6 D. 3 × 105
y = x + 2 的直角距离.
五、解答题(本题共 22 分,第 23 题 7 分,第 24 题 7 分,第 25 题 8 分) 23. 已知关于 m 的一元二次方程 2 x + mx − 1 =0. (1)判定方程根的情况; (2)设 m 为整数,方程的两个根都大于 −1 且小于 的值.
C
2
3 ,当方程的两个根均为有理数时,求 m 2
y C
k (k≠0) x
A O
1
B x
3 的值为正数,那么 x 的取值范围是_____________. x −1
. O
10.分解因式: a 3 − 4ab 2 = __________
A 11.如图,⊙O 的半径 OA=6,弦 AB=8,P 为 AB 上一动点,则点 P 到 P B 圆心 O 的最短距离为 . 12.如图 1、图 2、图 3,在 △ ABC 中,分别以 AB、AC 为边,向 △ ABC 外作正三角形, 正四边形, 正五边形, BE、CD 相交于点 O . 如图 4, AB、AD 是以 AB 为边向 △ ABC 外 所作正 n 边形的一组邻边; AC、AE 是以 AC 为边向 △ ABC 外所作正 n (n 为正整数)边形 的一组邻边. BE、CD 的延长相交于点 O .图 1 中 ∠BOC = 图 4 中 ∠BOC =
2013北京中考数学一模24题
∠B 60 .
(1)点 E 到 BC 的距离为 设 EP x . ①点 N 在线段 AD 上时(如图 2) , △P M N 若不存在,请说明理由. 的形状是否发生改变?若不变,求出 △PMN 的周长;若改变,请说明理由; ②当点 N 在线段 DC 上时(如图 3) ,是否存在点 P,使 △PMN 为等腰三角形?若存在,请求出所有满足要求的 x 的值; ; (2)点 P 为线段 EF 上的一个动点,过 P 作 PM EF 交 BC 于点 M,过 M 作 MN ∥ AB 交折线 ADC 于点 N,连结 PN,
初三数学
page
3
of 15
小马成群 4. (2013 东城区一模)问题 1:如图 1,在等腰梯形 ABCD 中,AD∥BC,AB=BC=CD,点 M,N 分别在 AD,CD 上, 若∠MBN=
1 ∠ABC,试探究线段 MN,AM,CN 有怎样的数量关系?请直接写出你的猜想,不用证明; 2
问题 2:如图 2,在四边形 ABCD 中,AB=BC,∠ABC+∠ADC=180°,点 M,N 分别在 DA,CD 的延长线上,若 ∠MBN=
A 逆时针旋转 60 得到点 Q ,是否存在点 P , 使得以 A 、C 、Q 、 D 为顶点的四边形是梯形,若存在,请指出点 P 的位置,并求出 PC 的长;若不存在,请说明理由.
A D B C
B P C A D
B1
图 24-1 图 24-2
初三数学
page
11
of 15
小马成群 12.(2013 顺义区一模)如图 1,将三角板放在正方形
m cos n sin ,直接写出∠APB 的度数.
初三数学
page
14
北京市顺义区2013年中考一模数学试题及答案
C
,
2
DD C 2 D C1
A1 B
图
三、解答题(本题共 30 分,每小题 5 分) 13.计算: . (1)1 4sin 60 ( 3.14)0 12
3
14.解不等式组
3x 1 2(x
x
2
3
≥1,
1),
并把解集在数轴上表
示出来.
15.已知:如图,CA 平分 BCD , 点 E 在 D
DEC
……………………………………
……… 4 分
∴
A D
…………………………
…………………5 分
16
.
解
:
原
式
=( 3 a 3 ) a 3 ………………………2 (a 3)(a 3) (a 3)(a 3) a2
分
=a
a 3
(a 3)(a 3) a2
…………………………… 3 分
=1 a(a 3)
EG
25 . 如 图 , 已 知 抛 物 线 y ax2 bx 3与 y 轴 交 于 点 A ,
y
E A
B O
D
C x
F
且经过 B(1,0)、C(5,8) 两点,点 D 是抛物线顶点, E 是 对称轴与直线 AC 的交点, F 与 E 关于点 D 对称. (1)求抛物线的解析式; (2)求证: AFE CFE ; (3)在抛物线的对称轴上是否存在点 P ,使 AFP 与 FDC 相似.若有,请求出所有符合条件的点 P 的坐标;若没有,请说明理由.
20 户?
20 x 25 25 x 30
4
n
2
22 . 如 图 1 , 在 四 边 形
0. ABCD 中 , AB CD , E、F 分 别
北京市朝阳区2012-2013学年度第一学期期末统一考试九年级数学模拟试题
北京市朝阳区2012-2013学年度第一学期期末统一考试九年级数学模拟试题一、填空题(每题2分,共28分)1、分解因式:=--1222x x 。
2、方程122-=-x x 的解是 。
3、方程02222=---x x x x的根是 。
4、某品牌衬衫计划两月里降低售价36%,则平均每月打 折。
5、点P 是线段AB 的黄金分割点,且AP >BP ,AB =251+,则AP = 。
6、如图,△ABC 中,AB =7,AD =4,∠B =∠ACD ,则AC =________。
7、为测楼房BC 的高,在距楼房30米的A 处,测得楼顶B 的仰角为α, 则楼房BC 的高为 米。
8、以原点O 为圆心,3为半径作圆,则点Q ()6,2-与这个圆的位置关系 。
9、己知两圆的半径为6cm 和3cm ,圆心距为2cm ,这两个圆的位置关系是 。
10、己知两圆相切,这两圆共有 条公切线。
11、己知△ABC 的周长为28cm ,内切圆半径为2cm ,则△ABC 12.如图,Rt ΔABC 中,∠C=900,AC = 6,BC = 8,CD 为直径的⊙O 与AB 则⊙O 的半径是 。
13、请设计一个二元二次方程组,使得这个二元二次方程组的解是⎩⎨⎧==32y x 和 ⎩⎨⎧-=-=23y x试写出符合要求的方程组 。
14、在△ABC 中,∠C=90°,AC=1,BC=2,△ABC 绕着点B 旋转后, 点C 落在AB 边上的点C ’,点A 落在点A ’,那么tg ∠AA ’C’的值为 . 二、多项选择题(每题3分,共12分)15、下列方程中,无实数根的方程是…………………( )A 、B 、C 、012=--xxx ; D 、x x -=+216.如图:在△ABC 中,点D 、G 分别在BC 、AB 边上,AD 与CG 相交H ,如果DA=DB ,GB=GC ,CB011=++x 231=+xxAD 平分∠BAC ,那么下列三角形中与△ABC 相似的是…( ) A 、△ABD ; B 、△ACD ; C 、△AGH ; D 、△CDH . 17、在△ABC 中,∠A=90°,AD 是BC 上的高,若BC=1,∠B=β,则下列结论正确的是………………………….( )(A )βcos =AC ; (B )β2cos =BD ; (C )ββsin cos ⋅=AD ; (D )β2sin =CD . 18、下列直线中,可以判定为圆的切线的是…………………………( ) A .过圆的半径外端的直线; B .垂直于圆的半径的直线; C .与圆仅有一个公共点的直线; D .与圆心距离等于半径的直线。
2012年北京中考一模试题分类8和12题
2012年北京市中考数学一模分类汇编——选择、填空压轴题选择压轴题(一)几何图形与函数图象1.(平谷)如图,正方形ABCD 的边长为1,E 、F 、G 、H 分别为各边上的点,且AE =BF =CG =DH ,设小正方形EFGH 的面积为S ,AE 为x ,则S 关于x 的函数图象大致是2.(东城、门头沟)如图,在正方形ABCD 中,AB =3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度向B 点运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (2cm ),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是A B C D3.(房山)如图,梯形ABCD 中,AB ∥CD ,∠A =30°,∠B =60°,AD =32,CD =2,点P 是线段AB 上一个动点,过点P 作PQ ⊥AB 于P ,交其它边于Q ,设BP 为x ,△BPQ 的面积为y ,则下列图象中,能表示y 与x xy 6312Oxy 6312O Bxy 6312O x y 6312O C D4.(丰台)如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交EP C’A DB CAB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是5.(昌平)如图,已知□ABCD 中,AB =4,AD =2,E 是AB 边上的一动点(与点A 、B 不重合),设AE =x ,DE 的延长线交CB 的延长线于点F ,设BF =y ,则下列图象能正确反映y 与x 的函数关系的是6.(通州)如图,在平行四边形ABCD 中,AC = 4,BD = 6,P是BD 上的任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E ,F .设BP=x ,EF=y ,则能大致反映y 与x 之间关系的图象为( )A B C D 7.(怀柔)如图,在矩形ABCD 中, AB =4,BC =6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q .BP =x ,CQ=y ,那么y 与x 之间的函数图象大致是8.(顺义)如图,在Rt △ABC 中,90ACB ∠=︒,60A ∠=︒,AC =2, D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上 一点,且30CDE ∠=︒.设AD=x , BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是EDBC A FE D C BA DC B A“两个面中的粗线画入图⑵中,画法正确的是(三)其他问题一元二次方程的两个实数根分别为a x =1,14(朝阳)已知关于的b x =2(b a <),则二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是 A .a x < B .b x > C .b x a << D .a x <或b x > 15.(燕山) 如图,任意四边形ABCD 中,AC 和BD 相交于 点O ,把△AOB 、△AOD 、△COD 、△BOC 的面积 分别记作S 1 、S 2 、S 3 、S 4,则下列各式成立的是A .S 1 + S 3 = S 2+S 4B .S 3-S 2 = S 4-S 1C .S 1·S 4= S 2·S 3D .S 1·S 3 = S 2·S 4填空压轴题(一)几何计算1.(昌平)己知□ABCD 中,AD =6,点E 在直线AD 上,且DE =3,连结BE 与对角线AC 相交于点M ,则MCAM= . 2.(东城)如图,正方形ABCD 的边长为10,内部有6个全等的正方形,小正方形的顶点E 、F 、G 、H 分别落在边AD 、AB 、BC 、CD 上,则DE 的长为 . 3.(燕山)图中的抛物线是函数y=x 2+1的图象, 把这条抛物线沿射线y =x (x≤0)的方向平移2个单位,其函数解析式变为_________;若把抛物线 y=x 2+1沿射线 y =21x-1( x≥0)方向平移5个 单位,其函数解析式则变为_________.4.(平谷)abc 是一个三位的自然数,已知195abc ab a --=,这个三位数是________;聪明的小亮在解决这种问题时,采取列成连减竖式的方法(见右图)确定要求的自然数,请你仿照小亮的作法,解决这种问题.如果abcd 是一个四位的自然数,且 2993abcd abc ab a ---=。
2013北京中考数学一模12题
D
C
A(P)
B
12. (2013 东城区一模)在平面直角坐标系中,正方形 ABCD 的位置如右图所示,点 A 的坐标为(1,0) ,点 D 的坐标为 (0,2) .延长 CB 交 x 轴于点 A1,作正方形 A1B1C1C;延长 C1B1 交 x 轴于点 A2,作正方形 A2B2C2C1,…按这样的规律 进行下去,第 2013 个正方形的面积为 .
BOC
(用含 n 的式子表示) .
初三数学
page
3
of 4
小马成群 12.(2013 石景山区一模)将全体正整数排成一个三角形数阵: 按照以上排列的规律,第 5 行从左到右的第 3 个数为_______;第 n 行( n ≥3)从左到右的第 3 个数为 . (用含 1 2 4 7 8 5 3 6 9 10
第 1 个等式:a1 请解答下列问题: (1)按以上规律列出第 5 个等式:a5 = (2)求 a1 + a2 + a3 + a4 + … + a100 的值为 = .:学_科_网 ;
12.(2013 平谷区一模)如图 1、图 2、图 3,在 △ABC 中,分别以 形,正五边形, BE、CD 相交于点
AB、AC 为边,向 △ABC 外作正三角形,正四边 AB、AD 是以 AB 为边向 △ABC 外所作正 n 边形的一组邻边; AC、AE 是以 AC 为边向 △ABC 外所作正 n (n 为正整数)边形的一组邻边. BE、CD 的延长相交于点 O .图 1 中
O .如图
4, ;图 4 中 BOC
y C D B O A
12. (2013 海淀区一模)如图 1 所示,圆上均匀分布着 11 个点
x
北京市中考数学一模试卷及答案(word解析版)
北京市龙文教育2013年中考数学一模试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)(2010•石景山区一模)据新华社报道:2010年我国粮食产量将达到540 000 000吨,用科学记数法表示这个粮食产量为()吨A.54×107B.5.4×108C.54×108D.0.54×109考点:科学记数法—表示较大的数.专题:应用题.分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.解答:解:确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于540 000 000有9位,所以可以确定n=9﹣1=8.所以540 000 000=5.4×108.故选B.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.2.(4分)若一个正多边形的一个内角是144°,则这个多边形的边数为()A.12 B.11 C.10 D.9考点:多边形内角与外角.专题:计算题.分析:设这个正多边形的边数为n,根据n边形的内角和为(n﹣2)×180°得到(n﹣2)×180°=144°×n,然后解方程即可.解答:解:设这个正多边形的边数为n,∴(n﹣2)×180°=144°×n,∴n=10.故选C.点评:本题考查了多边形内角与外角:n边形的内角和为(n﹣2)×180°;n边形的外角和为360°.3.(4分)(2010•石景山区一模)已知:如图,在平行四边形ABCD中,AB=4,AD=7,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF的长为()A.6B.5C.4D.3考点:平行四边形的性质.分析:平行四边形的对边相等且平行,利用平行四边形的性质以及平行线的基本性质求解.解答:解:∵平行四边形ABCD∴AB∥CD∴∠ABE=∠CFE∵∠ABC的平分线交AD于点E∴∠ABE=∠CBF∴∠CBF=∠CFB∴CF=CB=7∴DF=CF﹣CD=7﹣4=3故选D.点评:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.4.(4分)如图,已知平行四边形ABCD中,AB=3,AD=2,∠B=150°,则平行四边形ABCD的面积为()A.2B.3C.D.6考点:平行四边形的性质;含30度角的直角三角形.分析:由平行四边形的性质可得∠A=30°,过点D作AE⊥AB于点E,在Rt△ADE中可求出DE,继而求出平行四边形ABCD的面积.解答:解:∵四边形ABCD是平行四边形,∠B=150°,∴∠A=30°,过点D作AE⊥AB于点E,,在Rt△ADE中,可得DE=AD=1,则S四边形ABCD=AB×DE=3.故选B.点评:本题考查了平行四边形的性质,属于基础题,解答本题的关键是求出平行四边形ABCD的高,难度一般,5.(4分)抛掷两枚质地均匀的硬币,两枚硬币落地后,正面都朝上的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.解答:解:∵抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,∴正面都朝上的概率是:.故选C.点评:此题考查了列举法求概率的知识.此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比.6.(4分)(2010•无锡)某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数C.平均数D.极差考点:统计量的选择.专题:应用题;压轴题.分析:由于有13名同学参加百米竞赛,要取前6名参加决赛,故应考虑中位数的大小.解答:解:共有13名学生参加竞赛,取前6名,所以小梅需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小梅知道这组数据的中位数,才能知道自己是否进入决赛.故选A.点评:学会运用中位数的意义解决实际问题.7.(4分)由n个相同的小正方体堆成的几何体,其主视图、俯视图如图所示,则n的最大值是()A.16 B.18 C.19 D.20考点:由三视图判断几何体.分析:根据主视图、俯视图是分别从物体正面和上面看,所得到的图形即可求出答案.解答:解:由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n的最大值是:3×2+3×2+3×2=18,故选:B.点评:此题主要考查了由三视图判断几何体,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.8.(4分)(2011•威海)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm 的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题;动点型.分析:当点N在AD上时,易得S△AMN的关系式;当点N在CD上时,高不变,但底边在增大,所以S△AMN的面积关系式为一个一次函数;当N在BC上时,表示出S△AMN的关系式,根据开口方向判断出相应的图象即可.解答:解:当点N在AD上时,即0≤x≤1,S△AMN=×x×3x=x2,点N在CD上时,即1≤x≤2,S△AMN=×x×3=x,y随x的增大而增大,所以排除A、D;当N在BC上时,即2≤x≤3,S△AMN=×x×(9﹣3x)=﹣x2+x,开口方向向下.故选B.点评:考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.二、填空题(本题共16分,每小题4分)9.(4分)(2013•菏泽)分解因式:3a2﹣12ab+12b2=3(a﹣2b)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案.解答:解:3a2﹣12ab+12b2=3(a2﹣4ab+4b2)=3(a﹣2b)2.故答案为:3(a﹣2b)2.点评:本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.10.(4分)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,若x2>x1>1,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)考点:二次函数图象上点的坐标特征.分析:先根据函数解析式确定出对称轴为直线x=1,再根据二次函数图象上的点,x<1时,y随x的增大而减小解答.解答:解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2,∴二次函数图象的对称轴为直线x=1,∵x2>x1>1,∴y1<y2.故答案为:<.点评:本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,求出对称轴解析式是解题的关键.11.(4分)(2010•石景山区一模)已知:如图,一个玻璃材质的长方体,其中AB=8,BC=4,BF=6,在顶点E处有一块爆米花残渣,一只蚂蚁从侧面BCSF的中心沿长方体表面爬行到点E,则此蚂蚁爬行的最短距离为.考点:平面展开-最短路径问题.分析:要求蚂蚁爬行的最短距离,需要将空间图形转化为平面图形,即将E、O(设面BCSF的中心为点O)所在的两个面展开,但展开图并非只有一种,而是有二种,需要利用“两点之间,线段最短”,来一一求出线段EO的长度,然后比较两种情况的结果,找出最短路径.解答:解:设面BCSF的中心为点O,根据题意,最短路径有下列两种情况:①如图1,沿SF把长方体的侧表面展开,蚂蚁爬行的最短距离==5.②沿BF把长方体的侧表面展开,蚂蚁爬行的最短距离==.∵5>.故此蚂蚁爬行的最短距离为.点评:本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.12.(4分)如图所示,在△ABC中,BC=6,E,F分别是AB,AC的中点,点P在射线EF上,BP交CE 于D,点Q在CE上且BQ平分∠CBP,设BP=y,PE=x.当CQ=CE时,y与x之间的函数关系式是y=﹣x+6;当CQ=CE(n为不小于2的常数)时,y与x之间的函数关系式是y=﹣x+6(n﹣1).考点:相似三角形的判定与性质.专题:压轴题.分析:采用一般到特殊的方法.解答中首先给出一般性结论的证明,即当EQ=kCQ(k>0)时,y与x满足的函数关系式为:y=6k﹣x;然后将该关系式应用到本题中求解.在解题过程中,充分利用了相似三角形比例线段之间的关系.另外,利用角平分线上的点到角两边的距离相等的性质得出了一个重要结论④,该结论在解题过程中发挥了重要作用.解答:解:如右图,过Q点作QM⊥BC于点M,作QN⊥BP于点N.设CQ=a,DE=b,BD=c,则DP=y﹣c;不妨设EQ=kCQ=ka(k>0),则DQ=ka﹣b,CD=(k+1)a﹣b.∵BQ平分∠CBP,∴QM=QN.∴==,又∵=,∴=,即=①∵EP∥BC,∴=,即=②∵EP∥BC,∴=,即=③将①②③式联立,解得:y=6k﹣x ④当CQ=CE时,k=1,故y与x之间的函数关系式为:y=6﹣x;当CQ=CE(n为不小于2的常数)时,k=n﹣1,由④式可知,y与x之间的函数关系式为:y=6(n﹣1)﹣x.故答案为y=﹣x+6;y=﹣x+6(n﹣1).点评:本题综合考查了相似三角形线段之间的比例关系、角平分线的性质等重要知识点,难度较大.在解题过程中,涉及到数目较多的线段和较为复杂的运算,注意不要出错.本题采用了从一般到特殊的解题思想,简化了解答过程;同学们亦可尝试从特殊到一般的解题思路,即当CQ=CE时,CQ=CE 时分别探究y与x的函数关系式,然后推广到当CQ=CE(n为不小于2的常数)时的一般情况.三、解答题(本题共30分,每小题5分)13.(5分)(2012•丰台区一模)计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据负整数指数幂、零指数幂的意义和cos30°=得到原式=+2×+1﹣2,然后合并同类二次根式即可.解答:解:原式=+2×+1﹣2=++1﹣2=﹣.点评:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行实数的加减运算.也考查了负整数指数幂、零指数幂的意义以及特殊角的三角函数值.14.(5分)(2012•丰台区一模)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集,再求其公共解.解答:解:,由①得x>﹣2,由②得,5﹣2x+2>1,解得x<3,所以,原不等式组的解集为﹣2<x<3.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(5分)(2012•丰台区一模)已知x2+3x﹣1=0,求代数式的值.考点:分式的化简求值.专题:计算题.分析:先把分子和分母因式分解得到原式=•﹣,然后约分后进行通分得到,再变形x2+3x﹣1=0得到x2+3x=1,最后整体代入计算即可.解答:解:原式=•﹣====,∵x2+3x﹣1=0,∴x2+3x=1,∴原式=﹣=﹣1.点评:本题考查了分式的化简求值:先进行分式的乘除运算(把分子或分母因式分解,约分),再进行分式的加减运算(即通分),然后把字母的值代入(或整体代入)进行计算.16.(5分)(2012•丰台区一模)已知:如图,AB∥CD,AB=CD,点E、F在线段AD上,且AF=DE.求证:BE=CF.考点:全等三角形的判定与性质.专题:证明题.分析:由于AF=DE,根据等式性质可得AE=DF,再根据AB∥CD,易得∠A=∠D,而AB=CD,根据SAS 可证△ABE≌△DCF,于是BE=CF.解答:证明:∵AF=DE,∴AF﹣EF=DE﹣EF,即AE=DF,∵AB∥CD,∴∠A=∠D,在△ABE和△DCF中,,∴△ABE≌△DCF,∴BE=CF.点评:本题考查了全等三角形的判定和性质,解题的关键是找出SAS的三个条件,证明△ABE≌△DCF.17.(5分)(2013•静海县一模)某采摘农场计划种植A、B两种草莓共6亩,根据表格信息,解答下列问题:A B项目品种年亩产(单位:千克)1200 200060 40采摘价格(单位:元/千克)(1)若该农场每年草莓全部被采摘的总收入为460000元,那么A、B两种草莓各种多少亩?(2)若要求种植A种草莓的亩数不少于种植B种草莓的一半,那么种植A种草莓多少亩时,可使该农场每年草莓全部被采摘的总收入最多?考点:一次函数的应用.分析:(1)根据等量关系:总收入=A地的亩数×年亩产量×采摘价格+B地的亩数×年亩产量×采摘价格,列方程求解.(2)这是一道只有一个函数关系式的求最值问题,根据题意确定自变量的取值范围,由函数y随x 的变化求出最大利润.解答:解:(1)设该农场种植A种草莓x亩,B种草莓(6﹣x)亩(1分)依题意,得:60×1200x+40×2000(6﹣x)=460000(2分)解得:x=2.5,则6﹣x=3.5(3分)(2)由x≥(6﹣x),解得x≥2设农场每年草莓全部被采摘的收入为y元,则:y=60×1200x+40×2000(6﹣x)=﹣8000x+480000(4分)∴当x=2时,y有最大值为464000(5分)答:(1)A种草莓种植2.5亩,B种草莓种植3.5亩(2)若种植A种草莓的亩数不少于种植B种草莓的一半,那么种植A种草莓2亩时,可使农场每年草莓全部被采摘的总收入最多.点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.18.(5分)如图,梯形ABCD中,AD∥BC,∠A=90°,BC=2,∠ABD=15°,∠C=60°.(1)求∠BDC的度数;(2)求AB的长.考点:梯形;解直角三角形.专题:压轴题.分析:(1)由梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,可求得∠ABC与∠ADC的度数,然后在Rt△ABD中,利用直角三角形的性质,求得∠ADB的度数,继而求得∠BDC的度数;(2)首先过点B作BE⊥CD于点E,DF⊥BC于点F,在Rt△BCE中,由BC=2,∠C=60°,利用三角函数的知识即可求得BE,CE的长,又由∠BDC=45°,求得CE的长,继而求得DF的长,又由AD∥BC,∠A=90°,DF⊥BC,求得AB=DF.解答:解:(1)∵梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,∴∠ABC=90°,∠ADC=180°﹣∠C=120°.在Rt△ABD中,∵∠A=90°,∠ABD=15°,∴∠ADB=75°.∴∠BDC=∠ADC﹣∠ADB=45°.(2)过点B作BE⊥CD于点E,DF⊥BC于点F,在Rt△BCE中,∵BC=2,∠C=60°,∴BE=BC•sinC=,CE=BC•cosC=1.∵∠BDC=45°,∴DE=BE=.∴CD=DE+CE=+1.∵BC•DF=CD•BE,∴DF=.∵AD∥BC,∠A=90°,DF⊥BC,∴AB=DF=.点评:此题考查了直角梯形的性质、直角三角形的性质以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.四、解答题(本题共20分,每小题5分)19.(5分)已知:如图,BD是半圆O的直径,A是BD延长线上的一点,BC⊥AE,交AE的延长线于点C,交半圆O于点E,且E为的中点.(1)求证:AC是半圆O的切线;(2)若AD=6,AE=6,求BC的长.考点:切线的判定;勾股定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)要证AC是⊙O的切线,只要连接OE,再证DE⊥AC即可.(2)根据勾股定理和相似三角形的性质即可求出BC的长.解答:(1)证明:连接OE.∵E为的中点,∴=.∴∠OBE=∠CBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠CBE∴OE∥BC∵BC⊥AC,∴∠C=90°∴∠AEO=∠C=90°,即OE⊥AC又∵OE为半圆O的半径,∴AC是半圆O的切线.(2分)(2)解:设半圆O的半径为x∵OE⊥AC,∴(x+6)2﹣(6)2=x2∴x=3(3分)∴AB=AD+OD+OB=12∵OE∥BC,∴△AOE∽△ABC(4分)∴=即=∴BC=4.(5分)点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.20.(5分)(2011•扬州)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有50人,抽测成绩的众数是5次;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?考点:条形统计图;用样本估计总体;扇形统计图;众数.专题:压轴题;图表型.分析:(1)用4次的人数除以所占百分比即可得到总人数,人数最多的次数即为该组数据的众数;(2)用总人数减去其他各组的人数即可得到成绩为5次的人数;(3)用总人数乘以达标率即可得到达标人数.解答:解:(1)从条形统计图和扇形统计图可知,达到4次的占总人数的20%,∴总人数为:10÷20%=50人,众数为5次;(2)如图.(3)∵被调查的50人中有36人达标,∴350名九年级男生中估计有350×=252人.点评:题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体21.(5分)(2011•东城区一模)在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y=的图象交于A(1,6),B(a,3)两点.(1)求k1,k2的值;(2)如图,点D在x轴上,在梯形OBCD中,BC∥OD,OB=DC,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为18时,求PE:PC的值.考点:反比例函数与一次函数的交点问题;待定系数法求反比例函数解析式;梯形.专题:常规题型.分析:(1)首先根据一次函数y=k1x+b与反比例函数y=的图象交于A(1,6),B(a,3)两点等条件,把A点坐标代入反比例函数的解析式中,求得k2的值,知道反比例函数的解析式后把B点代入求出a的值,最后求出一次函数解析式的k1的值,(2)设点P的坐标为(m,n),易得C(m,3),CE=3,BC=m﹣2,OD=m+2,利用梯形的面积是12列方程,可求得m的值,从而求得点P的坐标,根据线段的长度关系可知PC=2PE.解答:解:(1)∵一次函数y=k1x+b与反比例函数y=的图象交于A(1,6),B(a,3)两点,∴k2=6,又∵B(a,3)在反比例函数的图象上,即a=2,又知A(1,6),B(2,3)在一次函数的图象上,∴,解得k1=﹣3;(2)当S梯形OBCD=18时,PC=2PE.设点P的坐标为(m,n),∵BC∥OD,CE⊥OD,BO=CD,B(2,3),∴C(m,3),CE=3,BC=m﹣2,OD=m+2.∴S梯形OBCD=,即18=.∴m=6,又∵mn=6.∴n=1,即PE=CE.∴PC=2PE,∴PE:PC=1:2.点评:本题主要考查反比例函数与一次函数的交点问题的知识点,此题综合考查了反比例函数与一次函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点的特点和利用待定系数法求函数解析式的方法.要灵活的利用梯形的面积公式来求得相关的线段的长度,从而确定关键点的坐标是解22.(5分)(2012•朝阳区一模)阅读下面材料:问题:如图①,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决.(1)请你回答:图中BD的长为2;(2)参考小明的思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的长.考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理.专题:压轴题.分析:(1)把△ADC沿AC翻折,得△AEC,连接DE,可得△ADC≌△AEC,又∠DCA=45°,即可得△CDE 是等腰直角三角形,利用勾股定理即可求出BD的长;(2)同理把△ADC沿AC翻折,得△AEC,连接DE,可得△ADC≌△AEC,又由∠BAD=∠C=2∠DAC=30°,DC=2,易证得△CDE为等边三角形,则DE的长,然后在AE上截取AF=AB,连接DF,可证得△ABD≌△AFD,即可得BD=DF,然后由角的关系,求得∠DFE=∠DEF=75°,根据等边对等角的性质,即可得BD=DE,即可求得BD的长;再作BG⊥AD 于点G,可得△BDG是等腰直角三角形,即可求得BG的长,又由∠BAD=30°,即可求得AB的长.解答:解:(1)把△ADC沿AC翻折,得△AEC,连接DE,∴△ADC≌△AEC,∴∠DCA=∠ECA,DC=EC,∠DAC=∠CAE,∵∠BAD=∠C=2∠DAC=45°,∠DAE=∠DAC+∠CAE=2∠DAC,∴∠ECD=∠ECA+∠DCA=90°,∠BAD=∠DAE,∴DE==2,∵∠ADB=∠DAC+∠ACD=22.5°+45°=67.5°,∴∠ADE=180°﹣∠ADB﹣∠EDC=180°﹣67.5°﹣45°=67.5°,∴∠ADB=∠ADE,在△BAD和△EAD中,∵,∴△BAD≌△EAD(ASA),∴BD=DE=2;…(2分)(2)把△ADC沿AC翻折,得△AEC,连接DE,∴△ADC≌△AEC,∴∠DAC=∠EAC,∠DCA=∠ECA,DC=EC,∵∠BAD=∠BCA=2∠DAC=30°,∴∠BAD=∠DAE=30°,∠DCE=60°,∴△CDE为等边三角形,…(3分)∵AD是公共边,∴△ABD≌△AFD,∴BD=DF,在△ABD中,∠ADB=∠DAC+∠DCA=45°,∴∠ADE=∠AED=75°,∠ABD=105°,∴∠AFD=105°,∴∠DFE=75°,∴∠DFE=∠DEF,∴DF=DE,∴BD=DC=2,…(4分)作BG⊥AD于点G,∴在Rt△BDG中,BG=BD•sin∠ADB=2×=,…(5分)∴在Rt△ABG中,AB=2BG=2.…(6分)故答案为:2.点评:此题考查了折叠的性质、等腰直角三角形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质等知识.此题综合性较强,难度较大,解题的关键是根据题意作出辅助线;注意数形结合思想的应用.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)已知,二次函数y=ax2+bx的图象如图所示.(1)若二次函数的对称轴方程为x=1,求二次函数的解析式;(2)已知一次函数y=kx+n,点P(m,0)是x轴上的一个动点.若在(1)的条件下,过点P垂直于x 轴的直线交这个一次函数的图象于点M,交二次函数y=ax2+bx的图象于点N.若只有当1<m<时,点M 位于点N的上方,求这个一次函数的解析式;(3)若一元二次方程ax2+bx+q=0有实数根,请你构造恰当的函数,根据图象直接写出q的最大值.考点:二次函数综合题.得出抛物线的解析式;(2)根据题意可判断出一次函数的图象与二次函数的图象交点的横坐标分别为1和,代入二次函数解析式可求出交点坐标,代入一次函数解析式可得出k与n的值,继而得出一次函数解析式.(3)先根据抛物线的开口向上可知a>0,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2+bx+q=0有实数根可得到关于q的不等式,求出q的取值范围即可.解答:解:(1)由二次函数的图象可知:二次函数的顶点坐标为(1,﹣3),∵二次函数的对称轴方程为x=1,∴二次函数与x轴的交点坐标为(0,0),(2,0),于是得到方程组,解得:,故二次函数的解析式为y=3x2﹣6x.(2)由(1)得二次函数解析式为y=3x2﹣6x.依题意可知,一次函数的图象与二次函数的图象交点的横坐标分别为1和,由此可得交点坐标为(1,﹣3)和,将交点坐标分别代入一次函数解析式y=kx+n中,得,解得:,故一次函数的解析式为y=2x﹣5.(3)一元二次方程ax2+bx+q=0有实数根,可以理解为y=ax2+bx 和y=﹣q有交点,可见,﹣q≥﹣3,解得:q≤3,故q的最大值为3.点评:本题考查了二次函数与一次函数的综合,第一问是常见的问题,利用待定系数法可以解决,第二问的关键是确定交点的坐标,第三问的关键是数形结合,难度较大.24.(7分)(2011•海淀区一模)在Rt△ABC中,∠ACB=90°,tan∠BAC=.点D在边AC上(不与A,C 重合),连接BD,F为BD中点.(1)若过点D作DE⊥AB于E,连接CF、EF、CE,如图1.设CF=kEF,则k=1;(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE﹣DE=2CF;(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF考点:相似三角形的判定与性质;旋转的性质;锐角三角函数的定义.专题:计算题;压轴题.分析:(1)由F为BD中点,DE⊥AB,根据直角三角形斜边上的中线等于斜边的一半,即可得到CF=EF;(2)过点C作CE的垂线交BD于点G,设BD与AC的交点为Q.由tan∠BAC=,得到.证明△BCG∽△ACE,得到.得到GB=DE,得到F是EG中点.于是,即可得到BE﹣DE=EG=2CF;(3)分类讨论:当AD=时,取AB的中点M,连接MF和CM,tan∠BAC=,且BC=6,计算出AC=12,AB=.M为AB中点,则CM=,FM==2.当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=;当AD=时,取AB的中点M,连接MF和CM,类似于情况1,可知CF的最大值为.即可得到线段CF长度的最大值.解答:解:(1)∵F为BD中点,DE⊥AB,∴CF=BD,EF=BD,∴CF=EF,∴k=1;故答案为1.(2)如图,过点C作CE的垂线交BD于点G,设BD与AC的交点为Q.由题意,tan∠BAC=,∴.∵D、E、B三点共线,∴AE⊥DB.∵∠BQC=∠AQD,∠ACB=90°,∴∠ECA=∠BCG.∴△BCG∽△ACE.∴∴GB=DE.∵F是BD中点,∴F是EG中点.在Rt△ECG中,,∴BE﹣DE=EG=2CF;(3)情况1:如图,当AD=时,取AB的中点M,连接MF和CM,∵∠ACB=90°,tan∠BAC=,且BC=6,∴AC=12,AB=.∵M为AB中点,∴CM=,∵AD=,∴AD=4.∵M为AB中点,F为BD中点,∴FM==2.如图:∴当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=.情况2:如图,当AD=时,取AB的中点M,连接MF和CM,类似于情况1,可知CF的最大值为.综合情况1与情况2,可知当点D在靠近点C的三等分点时,线段CF的长度取得最大值为.点评:本题考查了三角形相似的判定与性质.也考查了旋转的性质和三角函数的定义以及直角三角形斜边上的中线等于斜边的一半.25.(8分)如图,在平面直角坐标系xOy中,二次函数的图象与x轴交于A(﹣1,0)、B(3,0)两点,顶点为C.(1)求此二次函数解析式;(2)点D为点C关于x轴的对称点,过点A作直线l:交BD于点E,过点B作直线BK∥AD交直线l于K点.问:在四边形ABKD的内部是否存在点P,使得它到四边形ABKD四边的距离都相等?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M、N分别为直线AD和直线l上的两个动点,连结DN、NM、MK,求DN+NM+MK 和的最小值.考点:二次函数综合题.专题:压轴题.分析:(1)将点A、B两点的坐标代入y=x2+bx+c,运用待定系数法即可求出二次函数的解析式;(2)先用配方法求出抛物线的顶点C的坐标为(1,),根据关于x轴对称的两点横坐标相同,纵坐标互为相反数得出点D的坐标为(1,),运用待定系数法求得直线AD的解析式为y=x+,由BK∥AD,可设直线BK的解析式为y=x+m,将B(3,0)代入,得到直线BK 的解析式为y=x﹣3,联立直线l与直线BK的解析式,求得它们的交点K的坐标为(5,),易求AB=BK=KD=DA=4,则四边形ABKD是菱形,由菱形的中心到四边的距离相等,得出点P与点E重合时,即是满足题意的点,根据中点坐标公式求出E点坐标为(2,);角平分线及轴对称的性质得出KF=KQ=PQ=2,则MB+MK的最小值是BP,即BP的长是DN+NM+MK的最小值,然后在Rt△BKP中,由勾股定理得出BP=8,即DN+NM+MK的最小值为8.解答:解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(﹣1,0)、B(3,0)两点,∴,解得,∴二次函数解析式为y=x2﹣x﹣;(2)∵y=x2﹣x﹣=(x2﹣2x)﹣=(x﹣1)2﹣2,∴顶点C的坐标为(1,),∵点D为点C关于x轴的对称点,∴点D的坐标为(1,).易求直线AD的解析式为y=x+,∵BK∥AD,∴可设直线BK的解析式为y=x+m,将B(3,0)代入,得3+m=0,解得m=﹣3,∴直线BK的解析式为y=x﹣3.由,解得,∴交点K的坐标为(5,).∵A(﹣1,0)、B(3,0),K(5,),D(1,),∴AB=BK=KD=DA=4,∴四边形ABKD是菱形.∵菱形的中心到四边的距离相等,∴点P与点E重合时,即是满足题意的点,坐标为(2,);(3)∵点D、B关于直线AK对称,∴DN+MN的最小值是MB.过K作KF⊥x轴于F点.过点K作直线AD的对称点P,连接KP,交直线AD于点Q,∴KP⊥AD.∵AK是∠DAB的角平分线,∴KF=KQ=PQ=2,∴MB+MK的最小值是BP.即BP的长是DN+NM+MK的最小值.∵BK∥AD,∴∠BKP=90°.在Rt△BKP中,由勾股定理得BP=8.∴DN+NM+MK的最小值为8.。
北京西城区初三数学一模试题及答案
7.个相同的小正n 的最大值是16 18 C . 19北京市西城区2012年初三一模试卷2012. 5考 生 须 知 1 .本试卷共5页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2 .在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3 .试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5 .考试结束,将本试卷、答题卡和草稿纸一并交回。
、选择题(本题共 32分,每小题4分) 下面各题均有四个选项,其中只有一个是符合题意的.正五边形各内角的度数为锻炼时间不低于 9小时的有14人 1.-6的相反数是B . -6D.-62.国家体育场 鸟巢”建筑面积达258 000平方米,258 000用科学记数法表示应为 C . 2.58 X 05 D . 258 XI03A. 2.58 衬4B . 25.8 沐04.5.A . 72 °B . 108 °C . 抛掷两枚质地120 °D . 144 ° 正面都朝上的概率是 如图,过O O 上一点C 作O O 的切线,交 延长线于点D.若/ D=40°则/ A 的度数为O O 直径AB 的 A . 20 ° 25° C . 30°40 °某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时 所示的折线统计图,下列 说法中错.误的是 A . ),并绘制了如图C . 众数是9中位数是9平均数是9俯视图如下所示,则&对于实数c 、d ,我们可用 min{ c , d }表示c 、d 两数中较小的数,如 min{3 , -1}= -1.若关于x 的函数y = min{ 2x 2,a(x_t)2}的图象关于直线x =3对称,则a 、t 的值可能是 A . 3,6B . 2, -6C . 2, 6D . -2 , 6、填空题(本题共16分,每小题4分)9. 函数y = x 2中,自变量x 的取值范围是 _________________2 210. 分解因式:3a -12ab 12b = _______________ .11. 如图,正方形 ABCD 的面积为3,点E 是DC 边上一点,DE=1 , 将线段AE 绕点A 旋转,使点E 落在直线BC 上,落点记为F , 贝U FC 的长为 _______ . 12.如图,直角三角形纸片 A BC 中,/ ACB=90 °AC= 8, BC=6 .折叠该纸片使点 B 与点C 重合,折痕与 AB 、BC 的交点分别 为D 、E. (1) DE 的长为 ________________ ; (2)将折叠后的图形沿直线三、解答题(本题共 30分,每小题5分) 13. 计算:2』—3tan30°+(1 ―*'。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市2013年中考数学一模分类
几何综合代数综合代几综合操作实验题圆直线形计算函数中等题填空选择压轴题几何综合
海淀24.在△ABC中,∠ACB=90?.经过点B的直线l(l不与直线AB重合)与直线BC的夹角等于?ABC,分别过点C、点A作直线l的垂线,垂足分别为点D、点E.(1)若?ABC?45?,CD=1(如图),则AE的长为;(2)写出线段AE、CD之间的数量关系,并加以证明;(3)若直线CE、AB交于点F,
CF5
?,CD=4,求BD的长. EF6
1∠ABC,21∠ABC2
东城24. 问题1:如图1,在等腰梯形ABCD中,AD∥BC,AB=BC=CD,点M,N分别在AD,CD 上,若∠MBN=
试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想,不用证明;
问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD的延长线上,若∠MBN=
仍然成立,请你进一步探究线段MN,AM,CN又有怎样的数量关系?写出你的猜想,并给予证明.
昌平24.在△ABC中,AB=4,BC=6,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,连接AA1,CC1.若△CBC1的面积为3,求△ABA1的面积;
(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应点是点P1,直接写出线段EP1长度的最大值与最小值.
C1
A
A
A1
图1
C
B
图2
C1
A图3
朝阳24.在Rt△ABC中,∠A=90°,D、E分别为AB、AC上的点.
(1)如图1,CE=AB,BD=AE,过点C作CF∥EB,且CF=EB,连接DF交EB
于点G,连接BF,请你直接写出
值;
EB
的DC
1。