中档题三(几何)学生版
2024学年上海市五爱中学高三质量检测试题(三)数学试题
2024学年上海市五爱中学高三质量检测试题(三)数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U =R ,集合{|31}M x x =-<<,{|||1}N x x =,则阴影部分表示的集合是( )A .[1,1]-B .(3,1]-C .(,3)(1,)-∞--+∞D .(3,1)--2.在平面直角坐标系中,若不等式组44021005220x y x y x y -+≤⎧⎪+-≤⎨⎪-+≥⎩所表示的平面区域内存在点()00,x y ,使不等式0010x my ++≤成立,则实数m 的取值范围为( ) A .5(,]2-∞-B .1(,]2-∞-C .[4,)+∞D .(,4]-∞-3.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下: 小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的; 小金说:“兴国之路”不是我制作的,若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是( ) A .小明B .小红C .小金D .小金或小明4.波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (k >0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆2222x y a b+=1(a >b >0),A ,B 为椭圆的长轴端点,C ,D 为椭圆的短轴端点,动点M 满足MA MB=2,△MAB 面积的最大值为8,△MCD 面积的最小值为1,则椭圆的离心率为( ) A.3B.3C.2D.25.已知x ,y 满足不等式组2202100x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则点(),P x y 所在区域的面积是( )A .1B .2C .54 D .45 6.已知正项等比数列{}n a 的前n 项和为2317,,927n S S S ==,则12n a a a 的最小值为( )A .24()27B .34()27C .44()27D .54()277.若[]1,6a ∈,则函数2x a y x+=在区间[)2,+∞内单调递增的概率是( )A .45 B .35 C .25 D .158.已知三棱锥P ﹣ABC 的顶点都在球O 的球面上,PA =PB =,AB =4,CA =CB =,面PAB ⊥面ABC ,则球O 的表面积为( ) A .103πB .256πC .409πD .503π9.已知抛物线2()20C x py p :=>的焦点为1(0)F ,,若抛物线C 上的点A 关于直线22l y x +:=对称的点B 恰好在射线()113y x ≤=上,则直线AF 被C 截得的弦长为( ) A .919B .1009C .1189D .127910.已知函数()cos 221f x x x =++,则下列判断错误的是( ) A .()f x 的最小正周期为π B .()f x 的值域为[1,3]-C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,04π⎛⎫-⎪⎝⎭对称 11.点O 为ABC ∆的三条中线的交点,且OA OB ⊥,2AB =,则AC BC ⋅的值为( ) A .4B .8C .6D .1212.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为 A .171.25cm B .172.75cm C .173.75cmD .175cm二、填空题:本题共4小题,每小题5分,共20分。
专题 平行四边形模块中档大题过关20题(学生版)
平行四边形模块中档题过关30题(学生版)专题简介:本份资料包含平行四边形、矩形、菱形、正方形这四节的主流中档大题,所选题目源自近四年各名校试题中的有代表性的优质试题,把每一个模块中的高频考题按题型进行分类汇编,立意于让学生们用较短的时间刷考试最喜欢考的题、刷最有利于提分的好题,也适合于培训机构老师给学生进行专题复习时使用。
平行四边形一:平行四边形、矩形、菱形的性质汇总平行四边形矩形菱形⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⇔中点为中点为对角线:互相平分邻角互补对角相等角的方向位置关系大小关系边的方向平行四边形BD O AC O 二:平行四边形的判定:两个条件,五种判定方法⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧==⎪⎩⎪⎨⎧OD OB OC OA 分对角线:对角线互相平等角的方向:两组对角相两组对边相等两组对边平行一组对边平行且相等边的方向平行四边形的判定1.(长郡)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数;(2)求证:AE CF =.角=90对角线相等邻边相等对角线垂直2.(2021秋•长沙期中)如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD 交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.3.(2018•吉林模拟)如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.4.(明德)在平行四边形ABCD中,点E,F分别是BC,CD上的点,且DF=CF,连接AE,AF,并延长AF交BC 的延长线于点P.(1)求证:△ADF≌△PCF;(2)若AE=2,AF=4,∠EAF=60∘,求PE的长。
(完整)全等三角形中档题
(完整)全等三角形中档题倍长中线(线段)造全等1、已知:如图,AD是△ABC的中线,BE交AC于E,交AD于F,且 AE=EF,求证:AC=BFC分析:要求证的两条线段AC、BF不在两个全等的三角形中,因此证AC=BF困难,考虑能否通过辅助线把AC、BF转化到同一个三角形中,由AD是中线,常采用中线倍长法,故延长AD到G,使DG=AD,连BG,再通过全等三角形和等线段代换即可证出.2、已知在△ABC中,AD是BC边上的中线,E是AD 上一点,且BE=AC,延长BE交AC于F,求证:AF=EFB提示:倍长AD至G,连接BG,证明ΔBDG≌ΔCDA 三角形BEG是等腰三角形3、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.D CBA4、在△ABC中,AC=5,中线AD=7,则AB边的取值范围是( )A、1<AB<29B、4〈AB〈24C、5<AB〈19D、9<AB<19 5、已知:AD、AE分别是△ABC和△ABD的中线,且BA=BD,求证:AE=21ACCE6、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE。
ED CBA7、已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAECE提示:倍长AE至F,连结DF证明ΔABE≌ΔFDE(SAS)进而证明ΔADF≌ΔADC(SAS)8、如图23,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.⑴求证:BG=CF⑵请你判断BE+CF与EF的大小关系,并说明理由。
4321DEABC ADBCE9、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E,DF 平分ADC ∠交AC 于 F. 求证:EF CF BE >+第 14 题图DF CBEA方法1:在DA 上截取DG=BD ,连结EG 、FG 证明ΔBDE ≌ΔGDE ΔDCF ≌ΔDGF 所以BE=EG 、CF=FG利用三角形两边之和大于第三边 方法2:倍长ED 至H ,连结CH 、FH 证明FH=EF 、CH=BE利用三角形两边之和大于第三边10、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小。
007——微专题七:立体几何选择填空多选题中档题-解析
微专题七:立体几何选择填空多选题中档题一、单选题1.如图,在棱长为2的正方体1111ABCD A B C D -中,M 是11A B 的中点,点P 是侧面11CDD C 上的动点,且MP ∥截面1AB C ,则线段MP 长度的取值范围是( ).A .[2,6]B .[6,22]C .[6,23]D .[6,3]【答案】B 【分析】取CD 的中点为N,1CC 的中点为R,11B C 的中点为H,证明平面MNRH//平面1AB C ,MP ⊂平面MNRH ,线段MP 扫过的图形为MNR ∆,通过证明222MN NR MR =+,说明MRN ∠为直角,得线段MP 长度的取值范围为[],MR MN 即可得解. 【详解】取CD 的中点为N,1CC 的中点为R,11B C 的中点为H,作图如下:由图可知,11//,MB NC MB NC =,所以四边形1MNCB 为平行四边形, 所以1//MN B C ,因为1111//,//MH A C A C AC ,所以//MH AC , 因为1,MNMH M ACB C C ==, 故平面MNRH//平面1AB C ,因为MP ∥截面1AB C ,所以MP ⊂平面MNRH ,线段MP 扫过的图形为MNR ∆,由2AB =知,22,2MN NR ==,在1Rt MC R ∆中,22211MR C R C M =+,即()222156MR =+=,所以6MR =,所以222MN NR MR =+,即MRN ∠为直角,故线段MP 长度的取值范围为[],MR MN ,即6,22⎡⎤⎣⎦,故选:B【点睛】本题考查面面平行的判定定理与性质定理及空间两点间的距离;重点考查转化与化归的思想;属于难度大、抽象型试题.2.在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 平面1D AE ,则1A F 与平面11BCC B 所成角的正切值t 构成的集合是( )A .25|235t t B .25|25t t C .|223t t D .|222t t【答案】D 【分析】为确定F 点位置,先找过1A 与平面1D AE 平行且与平面11B BCC 相交的平面,分别取111,B B B C 的中点,M N ,连接11,,A M MN A N ,可知平面1//A MN 平面1D AE ,故F 在线段MN 上,可知线面角为11A FB ∠,分析其正切值即可求出.【详解】设平面1AD E 与直线BC 交于点G ,连接,AG EG ,则G 为BC 的中点. 分别取111,B B B C 的中点,M N ,连接11,,A M MN A N ,则11//A M D E , ∵1A M平面1D AE ,1D E ⊂平面1D AE ,∴1//A M 平面1D AE ,同理可得//MN 平面1D AE . ∵1,A M MN 是平面1A MN 内的两条相交直线, ∴平面1//A MN 平面1D AE ,且1//A F 平面1D AE , 可得直线1A F ⊂平面1A MN ,即点F 是线段MN 上的动点.设直线1A F 与平面11BCC B 所成角为θ,运动点F 并加以观察,可得:当点F 与点M (或N )重合时,1A F 与平面11BCC B 所成角等于11A MB ,此时所成角θ达到最小值,满足111tan 2A B B Mθ;当点F 与MN 中点重合时,1A F 与平面11BCC B 所成角达到最大值,此时111111tan 2222A B A B B FB M θ,∴1A F 与平面11BCC B 所成角的正切值t 构成的集合为|222t t ,故选D.【点睛】本题主要考查了面面平行的判定与性质,线面角,及线面角正切的最值问题,属于难题.3.如图,PO 是平面α的斜线,O 是斜足,PA α⊥于点A ,BC 是α内过点O 的直线.若POB ∠是锐角,则有( ).A .POC COA ∠>∠B .POA BOA ∠<∠C .POC COA ∠<∠D .POB AOB ∠<∠【答案】C 【解析】【分析】由三余弦定理可得POB AOB ∠>∠,即POC COA ∠<∠,再逐一检验A,B,D 选项即可得解. 【详解】解:由三余弦定理可得:cos cos cos POB POA AOB ∠=∠∠, 又,,POB POA AOB ∠∠∠为锐角,所以cos cos POB AOB ∠<∠, 所以POB AOB ∠>∠,所以POB AOB ππ-∠<-∠, 即POC COA ∠<∠,故C 正确,则选项A 错误, 同理POB AOB ∠>∠,则选项D 错误,又,POA BOA ∠∠大小无法确定,则不能比较大小,即选项B 错误, 故选C.【点睛】本题考查了三余弦定理,属中档题.4.如图,在棱长为2的正方体1111ABCD A B C D -中,,,E F G 分别是棱1,,AB BC CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 不存在公共点,则三角形1PBB 的面积的最小值为A .22B .1C 2D .2【答案】C 【分析】延展平面EFG ,可得截面EFGHOR ,其中H Q R 、、分别是所在棱的中点,可得1//D P 平面EFGHQR ,再证明平面1//D AC 平面EFGHQR ,可知P 在AC 上时,符合题意,从而得到P 与O 重合时三角形1PBB 的面积最小,进而可得结果. 【详解】延展平面EFG ,可得截面EFGHQR ,其中H Q R 、、分别是所在棱的中点, 直线1D P 与平面EFG 不存在公共点,所以1//D P 平面EFGHQR ,由中位线定理可得AC//EF ,EF 在平面EFGHQR 内,AC 在平面EFGHQR 外, 所以AC //平面EFGHQR ,因为1D P 与AC 在平面1D AC 内相交,所以平面1//D AC 平面EFGHQR ,所以P 在AC 上时,直线1D P 与平面EFG 不存在公共点, 因为B O 与AC 垂直,所以P 与O 重合时BP 最小, 此时,三角形1PBB 的面积最小,最小值为12222⨯⨯=,故选C.【点睛】 本题主要考查线面平行的判定定理、面面平行的判定定理,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.5.已知ABC ∆是由具有公共直角边的两块直角三角板(Rt ACD ∆与Rt BCD ∆)组成的三角形,如左下图所示.其中,45,60CAD BCD ∠=∠=.现将Rt ACD ∆沿斜边AC 进行翻折成1D AC ∆(1D 不在平面ABC 上).若,M N 分别为BC 和1BD 的中点,则在ACD ∆翻折过程中,下列命题不正确的是( )A .在线段BD 上存在一定点E ,使得EN 的长度是定值B .点N 在某个球面上运动C .存在某个位置,使得直线1AD 与DM 所成角为60D .对于任意位置,二面角1D AC B --始终大于二面角1D BC A -- 【答案】D 【分析】由题意,可得二面角1D AC B --和二面角1D BC A --有共同的平面角ABC ∠,且另一个面都过点1D ,过点1D 作平面ABC 的垂线,即可得到二面角1D AC B --和二面角1D BC A --的平面角,进而得大小关系即可. 【详解】不妨设1AD =,取AB 中点E ,易知E 落在线段BD 上,且11122EN AD ==, 所以点N 到点E 的距离始终为12,即点N 在以点E 为球心,半径为12的球面上运动, 因此A 、B 选项不正确;对于C 选项,作1//,AP DM AD 可以看成以AC 为轴线,以45为平面角的圆锥的母线,易知1AD 与AP 落在同一个轴截面上时,1PAD ∠ 取得最大值,则1PAD ∠的最大值为60,此时1D 落在平面ABC 上,所以160PAD ∠<,即1AD 与DM 所成的角始终小于60,所以C 选项不正确;对于D 选项,易知二面角1D AC B --为直二面角时,二面角1D AC B --始终大于二面角1D BC A --,当二面角1D AC B --为锐二面角时,如图所示作1D R ⊥平面ABC 与点R ,然后作,RO AC RS BC ⊥⊥分别交,AC BC 于,O S ,则二面角1D AC B --的平面角为1D OR ∠,二面角1D BC A --的平面角为1D SR ∠, 且1111tan ,tan D R D RD OR D SR OR SR∠=∠=,又因为OR SR <,所以11D OR D SR ∠>∠, 所以二面角1D AC B --始终大于二面角1D BC A --,故选D.【点睛】本题主要考查了空间几何体的结构特征,以及空间角的求解,其中解答中正确确定二面角的的平面角和异面直线所成的角是解答的关键,试题综合性强,难度大,属于难题,着重考查了空间想象能力,以及分析问题和解答问题的能力.6.如图,在棱长为1的正方体1111ABCD A B C D -中,点E F 、分别是棱BC ,1CC 的中点,P 是侧面11BCC B 内一点,若1A P //平面AEF ,则线段1A P 长度的取值范围是( )A .325(,)42B .325[,]42C .5[1,]2D .5[0,]2【答案】B 【解析】分析:先判断出点P 的位置,确定使得1A P 取得最大值和最小值时点P 的位置,然后再通过计算可求得线段1A P 长度的取值范围.详解:如下图所示,分别取棱111,BB B C 的中点M 、N ,连MN ,1BC ,∵,,,M N E F 分别为所在棱的中点,则11,MNBC EF BC ,∴MN ∥EF ,又MN ⊄平面AEF ,EF ⊂平面AEF ,∴MN ∥平面AEF .∵11,AA NE AA NE =,∴四边形1AENA 为平行四边形,∴1A N AE ∥,又1A N ⊄平面AEF ,AE ⊂平面AEF , ∴1A N ∥平面AEF ,又1A NMN N =,∴平面1A MN ∥平面AEF .∵P 是侧面11BCC B 内一点,且1A P ∥平面AEF ,∴点P 必在线段MN 上.在11Rt A B M ∆中,2221111151()2A M AB B M ++.同理,在11Rt A B N ∆中,可得15A N =∴1A MN ∆为等腰三角形. 当点P 为MN 中点O 时,1A P MN ⊥,此时1A P 最短;点P 位于M 、N 处时,1A P 最长. ∵2222115232()()244AO A M OM =-=-=,115A M A N ==.∴线段1A P 长度的取值范围是325[,]42.故选B .点睛:本题难度较大,解题时要借助几何图形判断得出使得1A P 取得最值时的点P 的位置,然后再根据勾股定理进行计算. 7.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H .则以下命题中,错误的命题是A .点H 是△A 1BD 的垂心B .AH 垂直平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成角为45°【答案】D 【详解】因为三棱锥A -A 1BD 是正三棱锥,故顶点A 在底面的射影是底面的中心,A 正确;平面A 1BD ∥平面CB 1D 1,而AH 垂直于平面A 1BD ,所以AH 垂直于平面CB 1D 1,B 正确;根据对称性知C 正确,故选D.二、多选题8.如图,在四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,CDE △是正三角形,M 为线段DE 的中点,点N 为底面ABCD 内的动点,则下列结论正确的是( )A .若BC DE ⊥,则平面CDE ⊥平面ABCDB .若BC DE ⊥,则直线EA 与平面ABCD 所成的角的正弦值为64C .若直线BM 和EN 异面,则点N 不可能为底面ABCD 的中心D .若平面CDE ⊥平面ABCD ,且点N 为底面ABCD 的中心,则BM EN = 【答案】ABC 【分析】根据面面垂直的判定,线面夹角的求解办法,以及异面直线的定义,结合面面垂直的性质,对每个选项进行逐一分析,即可容易判断选择.【详解】 ∵BC CD ⊥,BC DE ⊥,CDDE D =,,CD DE ⊂平面CDE ,∴BC ⊥平面CDE ,∵BC ⊂平面ABCD ,∴平面ABCD ⊥平面CDE ,A 项正确;设CD 的中点为F ,连接EF 、AF ,则EF CD ⊥.∵平面ABCD ⊥平面CDE ,平面ABCD 平面CDE CD =,EF ⊂平面CDE ∴EF ⊥平面ABCD ,设EA 与平面ABCD 所成的角为θ,则EAF θ=∠,223EF CE CF =-=,225AF AD FD =+=,2222AE EF AF =+=,则6sin 4EF AE θ==,B 项正确; 连接BD ,易知BM ⊂平面BDE ,由B 、M 、E 确定的面即为平面BDE ,当直线BM 和EN 异面时,若点N 为底面ABCD 的中心,则N BD ∈, 又E ∈平面BDE ,则EN 与BM 共面,矛盾,C 项正确;连接FN ,∵FN ⊂平面ABCD ,EF ⊥平面ABCD ,∴EF FN ⊥, ∵F 、N 分别为CD 、BD 的中点,则112FN BC ==, 又3EF=,故222EN EF FN =+=,227BM BC CM =+=,则BM EN ≠,D 项错误. 故选:ABC . 【点睛】本题综合考查面面垂直的判定以及性质、异面直线的定义、线面夹角的求解,属综合困难题.9.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22AC C .异面直线AD 与1BC 6D .若点E 到平面11ACC AEB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002a A ⎛⎫ ⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,10B b ⎛⎫ ⎪ ⎪⎝⎭,,102a C b ⎛⎫- ⎪⎝⎭,,,所以12a BC b ⎛⎫=- ⎪ ⎪⎝⎭,,,12a AB b ⎛⎫=- ⎪ ⎪⎝⎭,. ∵11BC AB ⊥,∴110BC AB ⋅=,即22202a b ⎫⎛⎫--+=⎪ ⎪⎪⎝⎭⎝⎭,解得2b a =. 因为//DE 平面11ABB A ,则动点E的轨迹的长度等于1BB =.选项B 正确. 对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,()0,0,0D ,1022a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,12a BC ⎛⎫=- ⎪ ⎪⎝⎭,因为2111cos ,6||||a BC DA BC DA BC DA a ⎛⎫- ⎪⋅<>===-,所以异面直线1,BC DA所成角的余弦值为6,选项C 正确.对于选项D ,设点E 在底面ABC 的射影为1E ,作1EF 垂直于AC ,垂足为F ,若点E 到平面11ACC A 的,即有12E F EB =,又因为在1CE F ∆中,112E F E C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD 【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.三、填空题10.如图,正方体1111ABCD A B C D -的棱长为a ,动点P 在对角线1BD 上,过点P 作垂直于1BD 的平面γ,记这样得到的截面多边形(含三角形)的周长为y ,设BP x =,则当323[,]33x a a ∈时,函数()y f x =的值域为______. 【答案】{}32a【分析】 当323,33x a a ⎡⎤∈⎢⎥⎣⎦时,截面多边形是六边形HIJKLM ,利用相似比可知邻边长之和为定值即可得到结果. 【详解】当323,33x a a ⎡⎤∈⎢⎥⎣⎦时,截面多边形是六边形HIJKLM ,设11HI AC =111B I B C =λ,则1IJ B C =111C I B C =1﹣λ, ∴HI +2a ,∴截面六边形的周长为32a ;故答案为{}32a【点睛】本题考查了几何体中动点问题,截面周长问题,考查了空间想象力,属于中档题.11.如图,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD 是平面α内边长为R 的正三角形,线段AC ,AD 分别与球面交于点M 、N ,则三棱锥A BMN -的体积是__________.【答案】38375R 【分析】 2AB R =,BC R =,5AC R =,BCD ∆是平面α内边长为R 的正三角形,ABC AMB ∆∽,45AM AC =,类似有45AN AD =,24()5A BMN AMN A BCD ABCV S V S -∆-∆==,由此能求出三棱锥A BMN -的体积. 【详解】 2AB R =,BC R =,5AC R =,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD ∆是平面α内边长为R 的正三角形, 线段AC ,AD 分别与球面交于点M 、N ,BAM BAC ∴∠=∠,90AMB ABC ∠=∠=︒,ABC AMB ∴∆∆∽,∴AB AC AM AB =,455AM R ∴=, ∴45AM AC =,类似有45AN AD =, ∴2416()525A BMN AMN A BCD ABC V S V S -∆-∆===,∴三棱锥A BMN -的体积: 231613832253475A BMN V R R R -=⨯⨯⨯⨯=.故答案为:38375R .【点睛】本题考查三棱锥的体积的求法,考查球、三棱锥的结构特征等基础知识,考查运算求解能力,是中档题. 12.如图,已知:在ABC 中,3CA CB ==,3AB =,点F 是BC 边上异于点B ,C 的一个动点,EF AB ⊥于点E ,现沿EF 将BEF 折起到PEF 的位置,使PE AC ⊥,则四棱锥P ACFE -的体积的最大值为________.2 过点D 作CD AB ⊥,由EF AB ⊥可知//EF CD ,进而证明PE ⊥平面ABC ,所以PE 为四棱锥P ACFE -的高,设BE PE x ==,通过题设条件分别求出BEF S 和ABC S 的表达式,进而得出ACFE S 四边形的表达式,记四棱锥P ACFE -的体积为(x)V ,由四棱锥的体积公式可得333()418V x x x =-(302x <<),然后利用导数求得(x)V 的最大值即可. 【详解】过点D 作CD AB ⊥,由EF AB ⊥可知//EF CD ,因为EF AB ⊥,所以翻折后PE EF ⊥,所以PE CD ⊥,又PE AC ⊥,AC CD D =,AC ,CD ⊂平面ABC ,所以PE ⊥平面ABC ,所以PE 为四棱锥P ACFE -的高, 因为3CA CB ==3AB =,CD AB ⊥,所以可得:()22223332CD AC AD ⎛⎫=-=-= ⎪⎝⎭ 设BE PE x ==,所以EF BE CD BD =332x =,即3EF x =, 所以2132BEF S BE EF x =⋅=△,又1332ABC S AB CD =⋅=△, 所以2333ACFE S x =四边形,记四棱锥P ACFE -的体积为(x)V , 所以323334133()34618x V x x x x ⎛⎫=⋅⋅=- ⎪ ⎪⎝⎭-(302x <<),2()V x x '=,令()0V x '=可得x =或x =(舍去),所以当0,2x ⎛∈ ⎝⎭时,()0V x '>,()V x '单调递增;当322x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0V x '<,()V x '单调递减,因此当2x =时,(x)V 取得最大值,最大值为24V ⎛= ⎝⎭.故答案为:4. 【点睛】本题考查棱锥体积的求法,考查利用导数研究函数的最值,考查逻辑思维能力和运算求解能力,属于中档题.。
九江市第一中学2024年高三教学质量监测(三)数学试题
九江市第一中学2024年高三教学质量监测(三)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.我国古代数学名著《九章算术》有一问题:“今有鳖臑(b iē naò),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为( )A .90π平方尺B .180π平方尺C .360π平方尺D .13510π平方尺2.已知函数()f x 的定义域为[]0,2,则函数()()282x g x f x =- )A .0,1B .[]0,2 C .[]1,2 D .[]1,3 3.M 、N 是曲线y=πsinx 与曲线y=πcosx 的两个不同的交点,则|MN|的最小值为( )A .πB 2πC 3πD .2π 4.已知函数()(N )k f x k x+=∈,ln 1()1x g x x +=-,若对任意的1c >,存在实数,a b 满足0a b c <<<,使得()()()g a f b g c ==,则k 的最大值是( )A .3B .2C .4D .55.如图,双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别是()()12,0,,0,F c F c -直线2bc y a =与双曲线C 的两条渐近线分别相交于,A B 两点.若12,3BF F π∠=则双曲线C 的离心率为( )A .2B .423C 2D 236.集合{2,1,1},{4,6,8},{|,,}A B M x x a b b B x B =--===+∈∈,则集合M 的真子集的个数是A .1个B .3个C .4个D .7个7. 若数列{}n a 满足115a =且1332n n a a +=-,则使10k k a a +⋅<的k 的值为( )A .21B .22C .23D .248.已知角α的终边与单位圆221x y +=交于点01,3P y ⎛⎫⎪⎝⎭,则cos2α等于( )A .19 B .79- C .23- D .139.已知等比数列{}n a 满足21a =,616a =,等差数列{}n b 中54b a =,n S 为数列{}n b 的前n 项和,则9S =() A .36 B .72 C .36- D .36±10.设函数()()21ln 11f x x x =+-+,则使得()()1f x f >成立的x 的取值范围是( ).A .()1,+∞B .()(),11,-∞-+∞C .()1,1-D .()()1,00,1-11.设2,(10)()[(6)],(10)x x f x f f x x -≥⎧=⎨+<⎩ ,则(5)f =( )A .10B .11C .12D .1312.已知复数11iz i +=-,则z 的虚部是( )A .iB .i -C .1-D .1二、填空题:本题共4小题,每小题5分,共20分。
2024学年湖北宜昌市葛洲坝中学高三下学期尖子生专题训练(三)数学试题试卷
2024学年湖北宜昌市葛洲坝中学高三下学期尖子生专题训练(三)数学试题试卷 考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设双曲线22221x y a b -=(a >0,b >0)的一个焦点为F (c ,0)(c >0),且离心率等于5,若该双曲线的一条渐近线被圆x 2+y 2﹣2cx =0截得的弦长为25,则该双曲线的标准方程为( )A .221205x y -= B .22125100x y -= C .221520x y -= D .221525x y -= 2.若复数z 满足i 2i z -=,则z =( )A .2B .3C .2D .5 3.设全集U =R ,集合{}221|{|}xM x x x N x =≤=,<,则U M N =( ) A .[]0,1 B .(]0,1 C .[)0,1 D .(],1-∞4.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )为( )A .163B .6C .203D .223 5.已知实数ln333,33ln 3(n ),l 3a b c ==+=,则,,a b c 的大小关系是( ) A .c b a <<B .c a b <<C .b a c <<D .a c b << 6.抛物线()220y px p =>的准线与x 轴的交点为点C ,过点C 作直线l 与抛物线交于A 、B 两点,使得A 是BC 的中点,则直线l 的斜率为( )A .13±B .223±C .±1D . 3±7.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是( )A .12B .13 C .23 D .568.陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .()722+πB .()1022+πC .()1042+πD .()1142+π 9.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b10.函数()2sin()f x x ωϕ=+(0,0)ωϕπ><<的部分图像如图所示,若5AB =,点A 的坐标为(1,2)-,若将函数()f x 向右平移(0)m m >个单位后函数图像关于y 轴对称,则m 的最小值为( )A .12B .1C .3πD .2π 11.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向右平移5π6个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位 D .向左平移5π12个长度单位 12.已知将函数()sin()f x x ωϕ=+(06ω<<,22ππϕ-<<)的图象向右平移3π个单位长度后得到函数()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ω的值为( )A .2B .3C .4D .32二、填空题:本题共4小题,每小题5分,共20分。
高三数学立体几何试题答案及解析
高三数学立体几何试题答案及解析1.已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.【答案】B【解析】如图所示,,点P在侧面ABC的射影为O,.∴该三棱锥的体积.故选:B.【考点】由三视图求面积、体积.2.(本小题满分12分)直三棱柱中,,,分别是、的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)证明见解析;(2)存在,点为中点.【解析】(1)先证明AB⊥AC,然后以A为原点建立空间直角坐标系A-xyz,则能写出各点坐标,由共线可得D(λ,0,1),所以,即DF⊥AE;(2)通过计算,面DEF的法向量为可写成,=(3,1+2λ,2(1-λ)),又面ABC的法向量=(0,0,1),令,解出λ的值即可.试题解析:(1)证明:,又,面又面以为原点建立如图所示的空间直角坐标系则,,,,设,且,即:(2)假设存在,设面的法向量为,则即:令由题可知面的法向量平面与平面所成锐二面角的余弦值为即:或(舍)当点为中点时,满足要求.【考点】1、二面角的平面角及求法;2、直线与平面垂直的性质.【方法点晴】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.3.已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为()A.B.C.D.【答案】C【解析】设正四棱锥的高为,则,则,,所以四棱锥的体积,,由得,所以体积函数在区间上单调递增,在区间上单调递减,所以当时,体积有最大值,故选C.【考点】1.多面体体积;2.导数与函数最值.【方法点睛】本题主要考查本题主要考查立体几何中的最值问题,多面体体积公式、导数与函数等知识,属中档题.解决此类问题的两大核心思路:一是将立体问题转化为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,利用导数、基本不等式或配方法求其最值.4.设三棱锥的三条侧棱两两互相垂直,且长度分别为,则其外接球的表面积为()A.B.C.D.【答案】B【解析】由题意可知其外接球的直径,所以外接球的表面积为.【考点】球的表面积公式.5.某几何体的三视图如图所示,则该几何体的体积为.【答案】【解析】该几何体为一个四棱锥,高为,底面为矩形,长宽分别为,因此体积为【考点】三视图6.已知是两条不同的直线,是三个不同的平面,则下列命题中正确的是()A.若B.若C.若D.若【答案】C【解析】垂直于同一平面的两个平面可能平行,也可能相交,所以A选项不正确;两个平面内存在两条平行的直线时,两平面可能相交,也可能平行,所以B选项不正确;,又,,所以C选项正确;若,则或,所以D不正确.故D正确.【考点】1线面位置关系;2面面位置关系.【易错点晴】本题主要考查的是空间点、线、面的位置关系,属于容易题.解题时一定要抓住题目中的重要字眼“真命题”,否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.7.已知直线平面,直线平面,给出下列命题,其中正确的是()①;②;③;④A.②④B.②③④C.①③D.①②③【答案】C【解析】对①,因为直线平面,∥,则,又直线,所以,①对;对②,与的关系是:平行、相交或异面,②错;对③,因为直线平面,∥,所以,又由面面垂直的判定定理得,③对;对④,与可以平行或相交,④错,所以选C.本题可借助于长方体去判定.【考点】1.空间直线、平面的位置关系.【易错点晴】本题主要考查的是空间点、线、面的位置关系,属于中档题.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形或长方体作为载体进行检验,也可作必要的合情推理.8.利用一个球体毛坯切削后得到一个四棱锥P—ABCD,其中底面四边形ABCD是边长为1的正方形,,且,则球体毛坯体积的最小值应为()A.B.C.D.【答案】D【解析】若使得球体毛坯体积最小,则四棱锥各顶点应都在球上,由题意,将四棱锥补成一个长方体,则转化为求长方体外接球体积,长方体体对角线为外接球直径,体对角线长为,所以球的半径为,体积为.【考点】多面体的外接球.9.(2007•山东)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④【答案】D【解析】利用三视图的作图法则,对选项判断,A的三视图相同,圆锥,四棱锥的两个三视图相同,棱台都不相同,推出选项即可.解:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确答案为D.故选D【考点】简单空间图形的三视图.10.如图是某几何体的三视图,其中正视图为正方形,俯视图是腰长为的等腰直角三角形,则该几何体的体积为_________________;表面积为________________.【答案】体积为;表面积为【解析】由题意可知三视图复原的几何体如图为四棱锥,是正方体的一部分,正方体的棱长为2;所以几何体的体积是正方体体积的一半减去,所求几何体的体积为;表面积为【考点】三视图,几何体的体积,表面积11.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为()A.B.C.D.【答案】A【解析】根据该几何体的三视图可知几何体的形状是一个长为,宽为,高为的长方体挖去一个直径为高为的圆柱,该几何体的体积为,选A.【考点】1、三视图;2、组合体的体积.12.如图是一建筑物的三视图(单位:米),现需将其外壁用油漆刷一遍,若每平方米用漆千克,则共需油漆的总量为()A.千克B.千克C.千克D.千克【答案】B【解析】由三视图可知可间房由底部长宽高分别为的长方体与底面半径.母线长分别为圆锥体组合而成,所以其可刷漆的表面积为,则需要漆的总量为千克,故正确选项为B.【考点】空间几何体的表面积.13.若=(2,﹣1,0),=(3,﹣4,7),且(λ+)⊥,则λ的值是()A.0B.1C.﹣2D.2【答案】C【解析】利用(λ+)⊥⇔即可得出.解:∵=λ(2,﹣1,0)+(3,﹣4,7)=(3+2λ,﹣4﹣λ,7),(λ+)⊥,∴,∴2(3+2λ)﹣(﹣4﹣λ)+0=0,解得λ=﹣2.故选C.【考点】向量的数量积判断向量的共线与垂直.14.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.【答案】(Ⅰ)证明见解析(Ⅱ)【解析】(I)由面面垂直的性质定理证出PA⊥平面ABCD,从而得到AB、AD、AP两两垂直,因此以AB、AD、AP为x轴、y轴、z轴,建立坐标系o﹣xyz,得A、D、E、C、P的坐标,进而得到、、的坐标.由数量积的坐标运算公式算出且,从而证出DE⊥AC且DE⊥AP,结合线面垂直判定定理证出ED⊥平面PAC,从而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一个法向量是,算出、夹角的余弦,即可得到直线PE与平面PAC所成的角θ的正弦值,由此建立关于θ的方程并解之即可得到λ=2.利用垂直向量数量积为零的方法,建立方程组算出=(1,﹣1,﹣1)是平面平面PCD的一个法向量,结合平面PAC的法向量,算出、的夹角余弦,再结合图形加以观察即可得到二面角A ﹣PC﹣D的平面角的余弦值.解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.∵ED⊂平面PED∴平面PED⊥平面PAC(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y,z),,由,,得到,令x0=1,可得y=z=﹣1,得=(1,﹣1,﹣1)∴cos<,由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.15.已知正三棱锥的底面边长为,侧棱长为,则正三棱锥的体积为.【答案】【解析】∵正三棱锥的底面边长为,∴底面正三角形的高为,可得底面中心到三角形顶点的距离为,∵正三棱锥侧棱长为,∴正三棱锥的高,所以三棱锥的体积.所以答案应填:.【考点】棱柱、棱锥、棱台的体积.16.在等腰梯形中,,,,是的中点,将梯形绕旋转,得到(如图).(I)求证:;(II)求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(I)由题意容易证明四边形是平行四边形,.又为等腰梯形,,四边形是菱形,可证得,根据面面垂直的性质定理可证得平面,从而证得;(II)易证平面,以为坐标原点,建立空间直角坐标系,分别求出平面的法向量和平面的法向量,根据向量的夹角公式求得二面角的余弦值.试题解析:(I)证明:,是的中点,.又,四边形是平行四边形,.又为等腰梯形,,,四边形是菱形,,,即.平面平面,平面平面,平面.又平面,.(II)解:平面,同理平面.如图建立空间直角坐标系,设,则,,,,则,.设平面的法向量为,.设平面的法向量为,,设二面角的平面角为,,二面角的余弦值为.【考点】空间中垂直关系的证明及空间向量的应用.17.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正(主)视图与侧(左)视图的面积的比为.【答案】【解析】因为三棱锥的主视图与左视图都是三角形, 正视图和侧视图三角形的底边长都是正方体的棱长,高都是到底面的距离(都是正方体的棱长),所以,三棱锥的主视图与左视图的面积相等,即比值为,故答案为.【考点】1、几何体的三视图;2、三角形面积公式.18.如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.B.C.D.【答案】B【解析】如图所示,该几何体是一个底面为平行四边形,高为的棱柱,体积为,故选B.【考点】几何体的体积.19.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形OABC的面积为________.【答案】【解析】因为矩形是水平放置的一个平面图形的直观图,所以根据画直观图的基本原理知原图形是底边长为的平行四边形,其高是,因此面积是,故答案为.【考点】1、画直观图的基本原理;2、平行四边形的面积公式.20.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图知几何体是由正方体截取两个角得到,如图所示,故体积为.【考点】三视图.21.如图所示,四棱锥的底面是梯形,且,平面,是中点,.(Ⅰ)求证:平面;(Ⅱ)若,,求直线与平面所成角的大小.【答案】(I)证明见解析;(II).【解析】(I)取的中点,连结,证得,从而证得平面,根据平行四边形的性质,得,即可证明平面;(II)分别以的方向为轴的正方向,建立空间直角坐标系,求解出平面和向量,即可利用向量所成的角,得到直线与平面所成角的大小.试题解析:(Ⅰ)证明:取的中点,连结,如图所示.因为,所以.因为平面,平面,所以.又因为,所以平面.因为点是中点,所以,且.又因为,且,所以,且,所以四边形为平行四边形,所以,所以平面.(Ⅱ)解:设点O,G分别为AD,BC的中点,连结,则,因为平面,平面,所以,所以.因为,由(Ⅰ)知,又因为,所以,所以所以为正三角形,所以,因为平面,平面,所以.又因为,所以平面.故两两垂直,可以点O为原点,分别以的方向为轴的正方向,建立空间直角坐标系,如图所示.,,,所以,,,设平面的法向量,则所以取,则,设与平面所成的角为,则,因为,所以,所以与平面所成角的大小为.【考点】直线与平面垂直的判定与证明;直线与平面所成角的求解.22.如图,在三棱台中,平面平面,,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B-AD-F的平面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)先证,再证,进而可证平面;(Ⅱ)方法一:先找二面角的平面角,再在中计算,即可得二面角的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面和平面的法向量,进而可得二面角的平面角的余弦值.试题解析:(Ⅰ)延长,,相交于一点,如图所示.因为平面平面,且,所以平面,因此.又因为,,,所以为等边三角形,且为的中点,则.所以平面.(Ⅱ)方法一:过点作于Q,连结.因为平面,所以,则平面,所以.所以是二面角的平面角.在中,,,得.在中,,,得.所以二面角的平面角的余弦值为.方法二:如图,延长,,相交于一点,则为等边三角形.取的中点,则,又平面平面,所以,平面.以点为原点,分别以射线,的方向为,的正方向,建立空间直角坐标系.由题意得,,,,,.因此,,,.设平面的法向量为,平面的法向量为.由,得,取;由,得,取.于是,.所以,二面角的平面角的余弦值为.【考点】线面垂直,二面角.【方法点睛】解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.23.直线a、b是异面直线,α、β是平面,若a⊂α,b⊂β,α∩β=c,则下列说法正确的是()A.c至少与a、b中的一条相交B.c至多与a、b中的一条相交C.c与a、b都相交D.c与a、b都不相交【答案】A【解析】利用空间中线线、线面、面面间的位置关系判断求解.解:由直线a、b是异面直线,α、β是平面,若a⊂α,b⊂β,α∩β=c,知:对于B,c可以与a、b都相交,交点为不同点即可,故B不正确;对于C,a∥c,b∩c=A,满足题意,故C不正确;对于D,c与a、b都不相交,则c与a、b都平行,所以a,b平行,与异面矛盾,故D不正确;对于A,由B,C、D的分析,可知A正确故选:A.24.已知某几何体的三视图如图所示,则该几何体的体积等于()A.B.160C.D.【答案】A【解析】由三视图知该几何体是由一个直三棱柱和一个四棱锥组合的组合体,其中直三棱柱的底面为左视图,高为,故体积.四棱锥的底面为边长为的正方形,高为,所以体积,所以该几何体的体积为.故选A.【考点】1、几何体的三视图;2、几何体的体积.【方法点睛】本题主要考查三视图及空间几何体的体积,属于中档题.空间几何体体积问题的常见类型及解题策略:(1)求简单几何体的体积时若所给的几何体为柱体椎体或台体,则可直接利用公式求解;(2)求组合体的体积时若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解. (3)求以三视图为背景的几何体的体积时应先根据三视图得到几何体的直观图,然后根据条件求解.25.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为()A.1.2B.1.6C.1.8D.2.4【答案】B【解析】由题意得,即,解得,故选B.【考点】几何体的三视图及体积.26.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3A.4+B.4+C.6+D.6+【答案】D【解析】由三视图还原原几何体如图,是一个半圆柱与一个直三棱柱的组合体,半圆柱的底面半径为,高为;直三棱柱底面是等腰直角三角形(直角边为),高为.∴.故本题选D.【考点】空间几何体的三视图.27.在正方体中,是的中点,则异面直线与所成角的余弦值等于_______,若正方体边长为1,则四面体的体积为_________.【答案】;【解析】异面直线与所成角为,,.【考点】立体几何中异面直线所成角的余弦值的求法以及三棱锥的体积的求法.28.如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明:;(2)若为棱上一点,满足,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)以点为原点建立空间直角坐标系(如图),求得,,可得,即可证结论;(2)先根据确定的位置,在求出平面的一个法向量,可证平面一个的法向量为,利用空间向量夹角余弦公式即可得结论.试题解析:(1)证明:依题意,以点为原点建立空间直角坐标系(如图),可得,,,.由为棱的中点,得.向量,,故.所以.(2)向量,,,.由点在棱上,设,.故.由,得,因此,,解得.即.设为平面的法向量,则,即.不妨令,可得为平面的一个法向量.取平面的法向量,则.易知,二面角是锐角,所以其余弦值为.【考点】1、空间直线垂直的判定;2、空间向量夹角余弦公式.29.如图,在三棱锥中,底面,且,点是的中点, 交于点.(1)求证:平面;(2)当时, 求三棱锥的体积.【答案】(1)详见解析(2)【解析】(1)证明线面垂直,一般利用线面垂直判定定理,即从线线垂直出发给予证明,而线线垂直的证明与寻找,往往从两个方面,一是利用线面垂直性质定理转化为线线垂直,另一是结合平几条件,如本题利用等腰三角形底边中线性质得(2)求三棱锥体积,关键在于确定高,即线面垂直.由(1)得平面,因此,这样只需在对应三角形中求出对应边即可.试题解析:(1)底面,面,又因为是的中点, 面由已知平面.(2)平面,平面,而,又又平面而.【考点】线面垂直判定与性质定理,三棱锥体积【思想点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.30.过球表面上一点引三条长度相等的弦,且两两夹角都为60°,若球半径为,求弦的长度___________.【答案】【解析】依题意可知,这是一个正四面体的外接球. 若一个正四面体边长为,其外接球半径公式为:,即.【考点】球的内接几何体.【思路点晴】对棱相等的三棱锥,设三对棱长分别为,如下图所示三棱锥,请同学们推导其外接球半径公式,特别地,若一个正四面体边长为,其外接球半径公式为:.设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.2.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.31.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】D【解析】由题意得,根据给定的三视图可知,原几何体表示,左侧是一个底面半径为,高为半个圆锥,几何体的右侧是一个底面为底边为,高为的等腰三角形三棱锥,其中三棱锥的高为,所以几何体的体积为,故选D.【考点】几何体的三视图及体积的计算.32.已知直线与平面平行,是直线上的一定点,平面内的动点满足:与直线成.那么点轨迹是()A.两直线B.椭圆C.双曲线D.抛物线【答案】C【解析】题意画图如下,是直线上的定点,有一平面与直线平行,平面内的动点满足的连线与成角,因为空间中过与成角的直线组成两个相对顶点的圆锥,即为平行于圆锥轴的平面,点可理解为是截面与圆锥侧面的交点,所以点的轨迹为双曲线,故选C.【考点】1、空间点、线、面的位置关系;2、圆锥曲线的定义.33.三棱锥内接于球,,当三棱锥的三个侧面积和最大时,球的体积为.【答案】【解析】由于三角形的面积公式,当时取得最大值,所以当两两垂直时,侧面积和取得最大值.此时,由于三棱锥三条侧棱两两垂直,所以可以补形为正方体,三棱锥的外接球即正方体的外接球,其直径等于正方体的体对角线即,故求的体积为.【考点】几何体的外接球.【思路点晴】设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为: .34.如图,在直三棱柱中,,过的中点作平面的垂线,交平面于,则与平面所成角的正切值为()A.B.C.D.【答案】C【解析】连接,则,由直三棱柱得,因此,因此为的中点,过作于,则为与平面所成角, ,选C.【考点】线面角35.如图,在四棱锥中,底面,底面是直角梯形,(1)在上确定一点,使得平面,并求的值;(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.【答案】(1)(2)【解析】(1)由线面平行的性质定理,可得线线平行,再根据平行得相似,即得比例关系:取。
高三数学立体几何试题答案及解析
高三数学立体几何试题答案及解析1.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】几何体为一个三棱柱,底面为直角三角形,直角边长分别为6,8;三棱柱高为12.得到的最大球为直角三角形的内切球,其半径为,选B.【考点】三视图2.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形,则该几何体的体积等于()A.B.C.D.【答案】A【解析】由三视图知:,,∴.【考点】三视图.3.几何体的三视图如图所示,若从该几何体的实心外接球中挖去该几何体,则剩余几何体的表面积是(注:包括外表面积和内表面积)()A.133B.100C.66D.166【答案】D【解析】由三视图知,该几何体为底面半径为3,搞为8的圆柱.其外接球时半径为5的球.则剩余几何体的表面积是球的表面积与该圆柱表面积的和,即.故选D.【考点】多面体及与其外接球的关系及几何体表面积计算问题.4.(本小题满分12分)如图,已知五面体,其中内接于圆,是圆的直径,四边形为平行四边形,且平面.(1)证明:;(2)若,,且二面角所成角的正切值是,试求该几何体的体积.【答案】(1)见解析;(2)8.【解析】(1)将问题转化为证明平面,再转化为证明(由直径可证)与(由平面可证);(2)考虑建立空间直角坐标系,通过求两个法向量的夹角来确定二面角所成角的正切值,并确定的长,进而可求得几何体的体积.试题解析:(1)证明:是圆的直径,,又平面,又平面,且,平面又平面,(2)设,以所在直线分别为轴,轴,轴,如图所示则,,,由(Ⅰ)可得,平面,平面的一个法向量是设为平面的一个法向量由条件得,,即不妨令,则,,.又二面角所成角的正切值是,,得该几何体的体积是【考点】1、空间直线与直线、直线与平面的垂直的判定与性质;2、二面角;3、空间几何体的体积.【方法点睛】用空间向量处理某些立体几何问题时,除要有应用空间向量的意识外,关键是根据空间图形的特点建立恰当的空间直角坐标系.若坐标系选取不当,计算量就会增大.总之树立用数解形的观念,即用数形结合的思想解决问题,而建立空间直角坐标系通常考虑以特殊点为坐标原点(如中点、正方体的顶点),特殊直线(如有两两垂直的直线)为坐标轴来建立.5.如图,在多面体中,为菱形,,平面,平面,为的中点,若平面.(1)求证:平面;(2)若,求二面角的余弦值.【答案】(1)见解析;(2).【解析】(1)证明线面垂直,只要证明这条直线与平面内两条相交直线垂直即可,取中点,连接,可证,先证,即可证明,即可证明结论成立;(2)建立空间直角坐标系,求出平面与平面的法向量,由空间向量公式直接计算即可.试题解析:(1)取AB的中点M,连结GM,MC,G为BF的中点,所以GM //FA,又EC面ABCD, FA面ABCD,∵CE//AF,∴CE//GM,∵面CEGM面ABCD=CM,EG// 面ABCD,∴EG//CM,∵在正三角形ABC中,CM AB,又AF CM∴EG AB, EG AF,∴EG面ABF.(2)建立如图所示的坐标系,设AB=2,则B()E(0,1,1) F(0,-1,2)=(0,-2,1),=(,-1,-1),=(,1, 1),设平面BEF的法向量=()则令,则,∴=()同理,可求平面DEF的法向量 =(-)设所求二面角的平面角为,则=.【考点】1.线面垂直的判定与性质;2.空间向量的应用.【方法点睛】本题主要考查线面垂直的判定与性质、空间向量的应用,属中档题.解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;求二面角,则通过求两个半平面的法向量的夹角间接求解.此时建立恰当的空间直角坐标系以及正确求出各点的坐标是解题的关键所在.6.三棱锥及其三视图中的正视图和侧视图如下图所示,,则棱的长为.【答案】.【解析】由已知三视图可知,平面,且底面为等腰三角形.在中,,边上的高为,所以.在中,由可得,故应填.【考点】1、三视图.【易错点晴】本题主要考查了空间几何体的三视图及其空间几何体的面积、体积的计算,考查学生空间想象能力和计算能力,属中档题.其解题过程中容易出现以下错误:其一是不能准确利用已知条件的三视图得出原几何体的空间形状,即不能准确找出该几何体中线线关系、线面关系,导致出现错误;其二是计算不仔细,导致结果出现错误.解决这类问题的关键是正确地处理三视图与原几何体之间的关系.7.在三棱锥中,平面为侧棱上的一点,它的正视图和侧视图如图所示,则下列命题正确的是()A.平面且三棱锥的体积为B.平面且三棱锥的体积为C.平面且三棱锥的体积为D.平面且三棱锥的体积为【答案】C【解析】∵平面,∴,又,∴平面,∴,又由三视图可得在中,为的中点,∴平面.又平面.故.故选:C.【考点】1.直线与平面垂直的判定;2.命题的真假判断与应用;3.简单空间图形的三视图.8.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A.B.C.D.【答案】C【解析】题设三视图是下图中几何体的三视图,由三视图中的尺寸,知其体积为,故选C.【考点】三视图与几何体的体积.9.如图,在三棱柱ABC A1B1C1中,D,E分别为A1C1,BB1的中点,B1C⊥AB,侧面BCC1B1为菱形.求证:(Ⅰ)DE∥平面ABC1;(Ⅱ)B1C⊥DE.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)取AA1的中点F,连DF,FE,根据中点易证线线平行,从而平面DEF∥平面ABC1,又因为DE平面DEF,所以B1C⊥DE;(Ⅱ)在菱形中B1C⊥BC1,又B1C⊥AB,易证B1C⊥平面ABC1,再根据面面平行的性质,得:B1C⊥平面DEF,从而证明B1C⊥DE.试题解析:(Ⅰ)如图,取AA1的中点F,连DF,FE.又因为D,E分别为A1C1,BB1的中点,所以DF∥AC1,EF∥AB.因为DF平面ABC1,AC1平面ABC1,故DF∥平面ABC1.同理,EF∥平面ABC1.因为DF,EF为平面DEF内的两条相交直线,所以平面DEF∥平面ABC1.因为DE平面DEF,所以DE∥平面ABC1.(Ⅱ)因为三棱柱ABC A1B1C1的侧面BCC1B1为菱形,故B1C⊥BC1.……9分又B1C⊥AB,且AB,BC1为平面ABC1内的两条相交直线,所以B1C⊥平面ABC1.而平面DEF∥平面ABC1,所以B1C⊥平面DEF,因为DE平面DEF,所以B1C⊥DE.【考点】1、线面平行;2、面面平行;3、线面垂直;4、三角形中位线.【方法点晴】本题主要考查的是线面平行、线线平行、线线垂直和线面垂直,属于中档题.解题时一定要注意得线线平行的常用证明方法,构造中位线和平行四边形是最常用方法.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.10.已知,是两个不同的平面,,是两条不同的直线,则下列正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则【答案】C.【解析】A:或者,异面,故A错误;B:根据面面垂直的判定可知B错误;C:正确;D:或,故D错误,故选C.【考点】空间中直线平面的位置关系.11.已知三条不重合的直线和两个不重合的平面,下列命题正确的是()A.若,,则B.若,,且,则C.若,,则D.若,,且,则【答案】D【解析】A.若,,则,错,有可能;B.若,,且,则,错,有可能;C.若,,则,错,有可能,或异面;D.若,,且,则,正确【考点】空间直线与平面,平面与平面的位置关系12.如图,三角形是边长为4的正三角形,底面,,点是的中点,点在上,且.(1)证明:平面平面;(2)求直线和平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】(1)由底面,可得,又,可证的平面,问题得证;(2)在第一问证明的基础上,应用面面垂直的性质定理容易作出平面的垂线,即得斜线的射影,找出角,解直角三角形可得线面角的正弦.试题解析:(1)证明∵底面,底面,∴,又,,∴平面.又平面,∴平面平面.(2)解:过点作,连结.平面平面,平面平面,平面,∴平面,∴为直线和平面所成角.∵是边长为的正三角形,∴,.又∵,∴,,∴.即直线和平面所成角的正弦值为.【考点】空间垂直关系的应用和证明,直线与平面所成的角.【方法点晴】证明面面垂直只能证明线面垂直,而要证明线面垂直就得证明线线垂直,结合题中已知的垂直条件,分析容易找到哪个平面的垂线,逐步完成证明,组织步骤时一定要思路条理;对于直线与平面所成的角遵循作—证(指)—求—答的解题步骤,应当结合条件和前面证明的结论找到平面的垂线是解题的关键,本题中在第一问证明的基础上有了平面的垂面,利用面面垂直的性质定理过直线上一点作交线的垂线即为平面的垂线,连接垂足和斜足即得射影,找到线面角后解直角三角形得解.13.一个几何体的三视图如图所示,则这个几何体的外接球表面积为()A.B.C.D.【答案】A【解析】几何体为一个三棱锥S-ABC,其中D为AC中点,且SD垂直平面ABC,BD垂直AC,则球心在SD上,设球半径为R,则外接球表面积为,选A.【考点】三视图【方法点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.14.已知正三角形的三个顶点都在半径为的球面上,球心到平面的距离为,点是线段的中点,过点作球的截面,则截面面积的最小值是_________.【答案】【解析】因为过作球的截面,当截面与垂直时,截面圆的半径最小,所以当截面与垂直时,截面圆的面积有最小值.设正三角形的外接圆圆心为,在中,,所以.在中,,所以,所以截面面积为【考点】1、多面体的外接球;2、球的截面圆性质.【方法点睛】“切”“接”问题的处理规律:①“切”的处理:解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决;②“接”的处理:把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.15.(2015•金家庄区校级模拟)如图正方形BCDE的边长为a,已知AB=BC,将△ABE沿BE边折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:①AB与DE所成角的正切值是;②AB∥CE;③VB﹣ACE的体积是a2;④平面ABC⊥平面ADC;⑤直线EA与平面ADB所成角为30°.其中正确的有.(填写你认为正确的序号)【答案】①③④⑤【解析】①由于BC∥DE,则∠ABC(或其补角)为AB与DE所成角;②AB和CE是异面直线;③根据三棱锥的体积公式即可求VB ﹣ACE的体积;④根据面面垂直的判定定理即可证明;⑤根据直线和平面所成角的定义进行求解即可.解:由题意,AB=BC,AE=a,AD⊥平面BCDE,AD=a,AC= a①由于BC∥DE,∴∠ABC(或其补角)为AB与DE所成角∵AB=a,BC=a,AC=a,∴BC⊥AC,∴tan∠ABC=,故①正确;②由图象可知AB与CE是异面直线,故②错误.③VB﹣ACE的体积是S△BCE×AD=×a3=,故③正确;(4)∵AD⊥平面BCDE,BC⊂平面BCDE,∴AD⊥BC,∵BC⊥CD,AD∩CD=D,∴BC⊥平面ADC,∵BC⊂平面ABC,∴平面ABC⊥平面ADC,故④正确;⑤连接CE交BD于F,则EF⊥BD,∵平面ABD⊥平面BDE,∴EF⊥平面ABD,连接F,则∠EAF为直线AE与平面ABD所成角,在△AFE中,EF=,AE=a,∴sin∠EAF==,则∠EAF=30°,故⑤正确,故正确的是①③④⑤故答案为:①③④⑤【考点】命题的真假判断与应用;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.16.已知某几何体的三视图,则该几何体的体积是_______.【答案】.【解析】该几何体是一个四棱锥,底面是边长为2的正方形,高为,所以.【考点】1.空间几何体的表面积与体积;2.空间几何体的三视图与直观图.17.设三棱柱的侧棱垂直于底面,,且三棱柱的所有顶点都在同一球面上,则该球的表面积是.【答案】【解析】由题意可得:把三棱柱补成底面以2为边长的正方形,以为高的长方体,长方体的体对角线就是球的直径,所以,所以该球的表面积是;故填.【考点】空间几何体的表面积.18.某几何体的正视图与侧视图都是等腰梯形,则该几何体可以是下列几何体中的()①三棱台,②四棱台,③五棱台,④圆台.A.①②B.③④C.①③D.②④【答案】D【解析】由题意得,几何体的正视图和侧视图都是等腰梯形,则根据几何体的三视图的规则可知,该几何体可能为四棱台或圆台,故选D.【考点】空间几何体的三视图.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,只是给出了几何体的正视图和侧视图都是等腰梯形,从而可得这个几何体可能是四棱台或圆台.19.在直三棱柱中,,,且异面直线与所成的角等于,设.(1) 求的值;(2) 求三棱锥的体积.【答案】(1); (2)【解析】(1)由BC ∥B 1C 1可得∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,从而∠A 1BC =60°,再由AA 1⊥平面ABC ,AB=AC ,则A 1B=A 1C ,△A 1BC 为等边三角形, 由已知可得,即可求得 (2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积,△的面积, 又可得平面,利用三棱锥的体积公式可求得.试题解析:(1)∵BC ∥B 1C 1,∴∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,即∠A 1BC =60°,又AA 1⊥平面ABC ,AB=AC ,则A 1B=A 1C ,∴△A 1BC 为等边三角形, 由,, ∴; (2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积, 即:, △的面积,又平面,所以,所以.【考点】异面直线所成的角及三棱锥的体积的求法.20. 如图,在四棱锥中,已知棱,,两两垂直,长度分别为1,2,2.若(),且向量与夹角的余弦值为.(1)求的值;(2)求直线与平面所成角的正弦值.【答案】(1);(2).【解析】(1)以为坐标原点,、、分别为、、轴建立空间直角坐标系,写出,的坐标,根据空间向量夹角余弦公式列出关于的方程可求;(2)设岀平面的法向量为,根据,进而得到,从而求出,向量的坐标可以求出,从而可根据向量夹角余弦的公式求出,从而得和平面所成角的正弦值.试题解析:(1)依题意,以为坐标原点,、、分别为、、轴建立空间直角坐标系 ,因为,所以,从而,则由,解得(舍去)或. (2)易得,,设平面的法向量, 则,,即,且,所以,不妨取,则平面的一个法向量,又易得,故,所以直线与平面所成角的正弦值为.考点: 1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦.21.如图,在四棱锥中,平面,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.【答案】(1)详见解析(2)详见解析【解析】(1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与证明,往往需结合平面几何条件,如本题利用三角形中位线性质定理得(2)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明,需多次利用线面垂直的判定与性质定理:先由平行四边形为菱形得,再由平面得,即,从而得平面试题解析:(1)设,连结,因为,为的中点,所以,所以四边形为平行四边形,所以为的中点,所以又因为平面,平面,所以平面.(2)(方法一)因为平面,平面所以,由(1)同理可得,四边形为平行四边形,所以,所以因为,所以平行四边形为菱形,所以,因为平面,平面,所以平面因为平面,所以平面平面.(方法二)连结,因为平面,平面,所以因为,所以,因为平面,平面,所以因为为的中点,所以,由(1),所以又因为为的中点,所以因为,平面,平面所以平面,因为平面,所以平面平面.【考点】线面平行判定定理,面面垂直判定定理22.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A.B.C.D.【答案】A【解析】因为网格纸上小正方形的边长为,有三视图可知,该几何体是下面为底面半径为高为的圆柱体的一半、上面是底面半径为高为的圆锥体的一半,所以体积为,故选A.【考点】1、几何体的三视图;2、圆柱及圆锥的体积公式.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.23.已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,,,则球的体积为()A.B.C.D.【答案】C【解析】因为,,,所以的中点为的外心,连接,则,又和所在的平面互相垂直,所以平面,上的每一点到距离相等,因此正三角形的中心即是外接球球心,其半径也是外接球半径,所以球半径,求体积为,故选C.【考点】1、外接球的性质及勾股定理;2、面面垂直及球的体积公式.【方法点睛】本题主要考查外接球的性质及勾股定理、面面垂直及三棱锥外接球体积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.本题是根据方法④直接找出球心并求出半径进而得到求体积的.24.四棱锥的底面是正方形,,分别是的中点(1)求证:;(2)设与交于点,求点到平面的距离【答案】(1)证明见解析;(2).【解析】(1)要证明线面垂直,一般先证明线线垂直,本题中,由于是中点,因此有,而与垂直,从而与平面垂直,结论得证;(2)要求点到平面的距离,考虑三棱锥,的面积易求(为面积的一半),另外由(1)的结论,此三棱锥以为底时,是高,体积易求,从而所求距离易得.试题解析:(1)证明:连接,由于分别是的中点,所以,又,平面,故,又为正方形,故故,故(2)连接交于点,连接,则交线为,又,故,由于分别是的中点,故为的中点,又,故为三棱锥的高又故,又设点到平面的距离为,,所以【考点】线面垂直的判断,点到平面的距离.25.某几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】C【解析】由题意得,由几何体的三视图,知该几何体是上下底面为梯形的直棱柱,所以该几何体的体积为,故选C.【考点】几何体的三视图及几何体的体积.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,该几何体是上下底面为梯形的直棱柱是解答本题的关键,属于基础题.26.一个几何体的三视图如图,则这个几何体的表面积是()A.B.C.D.【答案】C【解析】由题意得,根据给定的几何体的三视图,可知,原几何体为正方体的一部分,如图所示的红线部分,是一个棱长为的正四面体,所以此几何体的表面积为,故选C.【考点】几何体的三视图与表面积.27.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是______cm3.【答案】80,40【解析】由三视图知该组合体是一个长方体上面放置了一个小正方体,,.【考点】三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.28.如图,在四棱锥中,平面平面,,,,,,.(Ⅰ)求证:平面;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.【答案】(Ⅰ)见解析;(Ⅱ);(Ⅲ)存在,.【解析】(Ⅰ)由面面垂直的性质定理知AB⊥平面,根据线面垂直的性质定理可知,再由线面垂直的判定定理可知平面;(Ⅱ)取的中点,连结,以O为坐标原点建立空间直角坐标系O-xyz,利用向量法可求出直线PB与平面PCD所成角的正弦值;(Ⅲ)假设存在,根据A,P,M三点共线,设,根据BM∥平面PCD,即(为平面PCD的法向量),求出的值,从而求出的值.试题解析:(Ⅰ)因为平面平面,,所以平面.所以.又因为,所以平面.(Ⅱ)取的中点,连结.因为,所以.又因为平面,平面平面,所以平面.因为平面,所以.因为,所以.如图建立空间直角坐标系.由题意得,.设平面的法向量为,则即令,则.所以.又,所以.所以直线与平面所成角的正弦值为.(Ⅲ)设是棱上一点,则存在使得.因此点.因为平面,所以平面当且仅当,即,解得.所以在棱上存在点使得平面,此时.【考点】空间线面垂直的判定定理与性质定理;线面角的计算;空间想象能力,推理论证能力【名师】平面与平面垂直的性质定理的应用:当两个平面垂直时,常作的辅助线是在其中一个平面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.29.如图,在四棱锥中,底面是菱形,,平面,,点分别为和中点.(1)求证:直线平面;(2)求三棱锥的表面积.【答案】(1)证明见解析;(2).【解析】(1)要证线面平行,一般先证线线平行,考虑到,是中点,因此取的中点,可证得且,从而得平行四边形,因此有,最终得线面平行;(2)要求三棱锥的表面积,必须求得它的各个面的面积,由平面,得,三角形和的面积可求,由题设又可证,这样就有,另两个面的面积又可求得.试题解析:(1)证明:作FM∥CD交PC于M.∵点F为PD中点,∴. ∴,∴AEMF为平行四边形,∴AF∥EM,∵,∴直线AF平面PEC.(2)连结可知,,由此;;;;因此三棱锥的表面积.【考点】线面平行的判断,多面体的表面积.30.在棱长为3的正方体中,在线段上,且,为线段上的动点,则三棱锥的体积为()A.1B.C.D.与点的位置有关【答案】B【解析】由于是定值,点到平面的距离是,因此点平面的距离是.所以三棱锥的体积,应选B.【考点】三棱锥体积的运算.31.如图,在多面体中,底面是边长为2的正方形,四边形是矩形,且平面平面,,和分别是和的中点.(1)求证:平面;(2)求.【答案】(1)证明见解析;(2).【解析】(1)运用线面平行的判定定理求证;(2)借助题设条件及转化化归的思想求解即可. 试题解析:(1)证明:设,连接,在中,因为,,所以,又因为平面,平面,所以平面.(2)因为四边形是正方形,所以,又因为平面平面,平面平面,且平面,所以平面,则到平面的距离为的一半,又因为,所以,所以.【考点】直线与平面的位置关系及棱锥公式的运用.32.如图,在三棱柱中,,,,在底面的射影为的中点,是的中点.(1)证明:平面;(2)求二面角的平面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)设为的中点,连接,依题意有,,故平面.根据分析有,故平面;(2)以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,利用向量法求得余弦值为.试题解析:(1)设为的中点,连接.由题意得:平面,所以.因为,所以,,故平面.由分别为的中点,得且,从而且,所以为平行四边形,故,又因为平面,所以平面.(2)方法一:作,且,连结.由,,得,由,,得与全等.由,得,因此为二面角的平面角.由,,,得,,由余弦定理得.方法二:以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,如图所示,由题意知各点坐标如下:,因此,,,设平面的法向量为,平面的法向量为,由,即,可取.由,即,可取,于是.由题意可知,所求二面角的平面角是钝角,故二面角的平面角的余弦值为.【考点】空间向量与立体几何.33.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,从左往右为半个圆锥,一个圆柱,一个半圆,故体积为.【考点】三视图.34.如图,在四棱柱中,底面,为线段上的任意一点(不包括两点),平面与平面交于.(1)证明:;(2)证明:平面.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)要证线线垂直,一般可证线面垂直,观察题中垂直条件,平面,则有,题中又有,从而有平面,因此结论得证;(2)要证线面平行,就是要证线线平行,直线是平面与平面的交线,因此要得平行,就要有线面平行,而这由可得平面,从而,结论得证.试题解析:(1)证明:因为平面,平面,所以.又,所以平面,而平面,所以.(2)在四棱柱中,,平面,平面,所以平面,又平面,平面与平面交于,所以,因为,所以,而平面,平面,所以平面.【考点】线面垂直的判定与性质,线面平行的判定与性质.【名师】证明线面(面面)平行(垂直)时要注意以下几点:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
三角形全等、相似及综合应用模型-2024年中考数学答题技巧与模板构建(学生版)
三角形全等、相似及综合应用模型题型解读|模型构建|通关试练三角形的相关知识是解决后续很多几何问题的基础,所以是中考考试的必考知识点。
在考察题型上,三角形基础知识部分多以选择或者填空题形式,考察其三边关系、内角和/外角和定理、“三线”基本性质等。
特殊三角形的性质与判定也是考查重点,年年都会考查,最为经典的“手拉手”模型就是以等腰三角形为特征总结的,且等腰三角形单独出题的可能性还是比较大。
直角三角形的出题类型可以是选择填空题这类小题,也可以是各类解答题,以及融合在综合压轴题中,作为问题的几何背景进行拓展延伸。
模型01与三角形有关的线段应用高(AD )中线(AD )角平分线(AD )中位线(DE )∠ADB =∠ADC =90°BD =CDS △ABD =S △ADCC ∆ACD -C ∆ABD =AC -AB ∠BAD =∠DAC =12∠BAC AD =DB AE =EC DE =12BC DE ∥BC 模型02与三角形有关的角的应用(1)三角形的内角:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.(2)三角形的外角:(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.模型03三角形全等的判定及应用(1)全等三角形的定义:全等的图形必须满足:(1)形状相同;(2)大小相等能够完全重合的两个三角形叫做全等三角形。
专题四中档大题(三)
中档大题(三)1.(2013·辽宁省五校第一联合体高三年级考试)已知数列{a n }满足:a 1=1,a 2=a (a ≠0),a n +2=p ·a 2n +1a n(其中p 为非零常数,n ∈N *). (1)判断数列{a n +1a n}是不是等比数列; (2)求a n .2.(2013·高考重庆卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,P A =23,BC =CD=2,∠ACB =∠ACD =π3. (1)求证:BD ⊥平面P AC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积.3.(2013·深圳市高三年级第一次调研考试)已知函数f (x )=2sin(πx 6+π3)(0≤x ≤5),点A 、B 分别是函数y =f (x )图象上的最高点和最低点.(1)求点A 、B 的坐标以及OA →·OB →的值;(2)设点A 、B 分别在角α、β的终边上,求tan(α-2β)的值.4.(2013·河南省洛阳市高三年级统一考试)某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数;(2)已知这批产品中每个产品的利润y (单位:元)与产品净重x (单位:克)的关系式为y =⎩⎪⎨⎪⎧ 3,96≤x <985,98≤x <1044,104≤x ≤106,求这批产品平均每个的利润.5.(2013·北京市东城区高三教学统一检测)如图,在菱形ABCD 中,MA ⊥平面ABCD ,且四边形ADNM 是平行四边形.(1)求证:AC ⊥BN ;(2)当点E 在AB 的什么位置时,使得AN ∥平面MEC ,并加以证明.6.(2013·福建省普通高中毕业班质量检查)某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年的SO2的年排放量约为9.3万吨.(1)按原计划,“十二五”期间该城市共排放SO2约多少万吨?(2)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度,在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO2的年排放量每年比上一年减少的百分率为p,为使2020年这一年SO2的年排放量控制在6万吨以内,求p的取值范围.(参考数据:823≈0.950 5,923≈0.955 9)中档大题(三)1.【解】(1)由a n +2=p ·a 2n +1a n ,得a n +2a n +1=p ·a n +1a n . 令c n =a n +1a n,则c 1=a ,c n +1=pc n . ∵a ≠0,∴c 1≠0,c n +1c n=p (非零常数), ∴数列{a n +1a n}是等比数列. (2)∵数列{c n }是首项为a ,公比为p 的等比数列,∴c n =c 1·p n -1=a ·p n -1,即a n +1a n =ap n -1. 当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=(ap n -2)×(ap n -3)×…×(ap 0)×1=a n -1p n 2-3n +22,∵a 1满足上式,∴a n=a n -1p n 2-3n +22,n ∈N *.2.【解】(1)证明:因为BC =CD ,所以△BCD 为等腰三角形.又∠ACB =∠ACD ,所以BD ⊥AC .因为P A ⊥底面ABCD ,所以P A ⊥BD ,从而BD 与平面P AC 内两条相交直线P A ,AC 都垂直,所以BD ⊥平面P AC .(2)三棱锥P -BCD 的底面BCD 的面积S △BCD =12BC ·CD ·sin ∠BCD =12×2×2×sin 2π3= 3. 由P A ⊥底面ABCD ,得V P -BCD =13·S △BCD ·P A =13×3×23=2. 由PF =7FC ,得三棱锥F -BCD 的高为18P A , 故V F -BCD =13·S △BCD ·18P A =13×3×18×23=14, 所以V P -BDF =V P -BCD -V F -BCD =2-14=74. 3.【解】(1)∵0≤x ≤5,∴π3≤πx 6+π3≤7π6, ∴-12≤sin(πx 6+π3)≤1. 当πx 6+π3=π2,即x =1时,sin(πx 6+π3)=1,f (x )取得最大值2; 当πx 6+π3=7π6,即x =5时,sin(πx 6+π3)=-12,f (x )取得最小值-1. 因此,点A 、B 的坐标分别是A (1,2)、B (5,-1).∴OA →·OB →=1×5+2×(-1)=3.(2)∵点A (1,2)、B (5,-1)分别在角α、β的终边上,∴tan α=2,tan β=-15,∵tan 2β=2×(-15)1-(-15)2=-512, ∴tan(α-2β)=2-(-512)1+2·(-512)=292. 4.【解】(1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.设样本容量为n .∵样本中产品净重小于100克的个数是36,∴36n=0.300,∴n =120. ∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.(2)产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100,(0.100+0.150+0.125)×2=0.750,0.075×2=0.150.∴其相应的频数分别为120×0.100=12,120×0.750=90,120×0.150=18.∴这批产品平均每个的利润1120(12×3+90×5+18×4)=4.65(元).5.【解】(1)证明:连接BD ,则AC ⊥BD .由已知得DN ⊥平面ABCD ,因为DN ∩DB =D ,所以AC ⊥平面NDB .又BN ⊂平面NDB ,所以AC ⊥BN .(2)当E 为AB 的中点时,有AN ∥平面MEC .设CM 与BN 交于F ,连接EF .由已知可得四边形BCNM 是平行四边形,F 是BN 的中点,因为E 是AB 的中点,所以AN ∥EF .又EF ⊂平面MEC ,AN ⊄平面MEC ,所以AN ∥平面MEC .6.【解】(1)设“十二五”期间,该城市共排放SO 2约y 万吨,依题意,2011年至2015年SO 2的年排放量构成首项为9.3,公差为-0.3的等差数列,所以y =5×9.3+5×(5-1)2×(-0.3)=43.5(万吨). 所以按原计划“十二五”期间该城市共排放SO 2约43.5万吨.(2)由已知得,2012年的SO 2年排放量为9.3-0.3=9(万吨),所以2012年至2020年SO 2的年排放量构成首项为9,公比为1-p 的等比数列. 由题意得9×(1-p )8<6,由于0<p <1,所以1-p <823, 所以1-p <0.950 5,解得p >4.95%.所以SO 2的年排放量每年减少的百分率p 的取值范围为(4.95%,1).。
2025届成都七中高三模拟考试(三)数学试题试卷
2025届成都七中高三模拟考试(三)数学试题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1 B.2 C.3 D.02.如图,在中,点M是边的中点,将沿着AM翻折成,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的()A.重心B.垂心C.内心D.外心3.定义运算()()a a ba bb a b≤⎧⊕=⎨>⎩,则函数()12xf x=⊕的图象是().A.B.C.D.4.在棱长为a 的正方体1111ABCD A B C D -中,E 、F 、M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 、11A D 上,且11(0)A P AQ m m a ==<<,设平面MEF 平面MPQ l =,则下列结论中不成立的是( )A .//l 平面11BDDB B .l MC ⊥C .当2am =时,平面MPQ MEF ⊥ D .当m 变化时,直线l 的位置不变5.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P Q 、分别为抛物线与圆22(6)1x y -+=上的动点,则PQ 的最小值为( )A 211B .52C .5D .516.在ABC 中,D 为BC 边上的中点,且||1,|2,120AB AC BAC ==∠=︒,则||=AD ( )A .32B .12C .34D 7 7.已知数列{}n a 满足11a =,1n n a a n --=(2n ≥),则数列{}n a 的通项公式n a =( ) A .()112n n + B .()1312n n - C .2n n 1-+ D .222n n -+8.若1(1)z a i =+-(a R ∈),|2|z =a =( )A .0或2B .0C .1或2D .19.已知集合{2,3,4}A =,集合{},2B m m =+,若{2}A B =,则m =( )A .0B .1C .2D .410.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cos cos 4c a B b A -=,则2222a bc-=( ) A .32B .12C .14D .1811.已知向量()1,3a =,b 是单位向量,若3a b -=,则,a b =( ) A .6π B .4π C .3π D .23π12.已知i 是虚数单位,则( ) A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
八年级初二数学期末几何中档难度题
八年级期末几何中档题训练(一)【角度类】 1、(18-19新洲)如图,∠ABD ,∠ACD 的角平分线交于点P ,若∠A =50°,∠D =10°,则∠P 的度数为 .2、(18-19江汉)如图,等腰△ABC 中,顶角∠A =45°,点E ,F 是内角∠ABC 与外角∠ACD 三等分线的交 点,连接EF ,则∠BFE = °.3、(18-19硚口)如图,点C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,∠F =40°,∠C =20°,则∠FBA 的度数为( ) A .50° B .6° C .70° D .80°4、(18-19武昌)如图,在△ABC 中,∠A =40°,∠B =90°,线段AC 的垂直平分线MN 与AB 交于点D ,与AC 交于点E ,则∠BCD = 度.5、(18-19蔡甸)如图,已如在锐角△ABC 中,AB 、AC 的中垂线交于点O ,则∠ABO +∠ACB = .PDCBAFEAB C DE ABCD FNMABD E第12题图OABCDE6、(18-19江汉)如图,在△ABC 中,点D 在BC 上,AB =AD =DC ,∠B =72°,那么∠DAC 的大小是( )A .30°B .36°C .18°D .40°7、(18-19东新)如图,点A 为∠MON 的平分线上一点,过A 任作一直线分别与∠MON 的两边交于B ,C 两 点,P 为BC 中点,过P 作BC 的垂线交OA 于点D ,∠BDC =50°,则∠MON = .8、(18-19蔡甸)如图,在△ABC 中,∠B =∠C ,∠1=∠2,∠BAD =40°,求∠EDC 的度数.9、(18-19汉阳)已知△ABC ,AB =AC ,D 为直线BC 上一点,E 为直线AC 上一点,AD =AE ,设∠BAD =α, ∠CDE =β.(1)如图,若点在线段BC 上,点E 在线段AC 上.①如果∠ABC =60°,∠ADE =70°,那么α=________°,β=_______°; ②直接写出此时α,β之间的关系式.(2)是否存在不同于以上②中的α,β间的关系式?若存在,请画出一个..相应图形,并求出这个关系式;若不 存在,说明理由.C DBAPN MOA BCDA BCDE 40°12EDC BA【长度、面积类】 1、(18-19江汉)如图,△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,MN 经过点O ,与AB ,AC 相交于点M ,N ,且MN ∥B C .若AB =7,AC =6,那么△AMN 的周长是 .2、(18-19新洲)如图,已知△ABC 是边长为3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm /s ,当点P 到达点B 时,P 、Q 两点停止运动,则当t = 秒时,△PBQ 是直角三角形.3、(18-19江夏)如图,∠C =90°,AD 平分∠BAC 交BC 于点D ,若BC =5cm ,BD =3cm ,则D 到AB 的距离为 .4、(18-19江夏)如图,等腰直角△ABC 中,∠BAC =90°,AB =AC ,∠ADB =45°.(1)求证:BD ⊥CD ;(2)若BD =6,CD =2,求四边形ABCD 的面积.5、(18-19武昌)如图,△ABC 中,BD 平分∠ABC ,AD 垂直于BD ,△BCD 的面积为58,△ADC 的面积为30,则△ABD 的面积等于 .ON M A BCBAC D BACDABC D6、(18-19洪山)如图,在△ABC 中,∠ACB =2∠B ,∠BAC 的平分线AD 交BC 于D ,过C 作CN ⊥AD 交AD 于H ,交AB 于N .(1) △ANC 的形状是 ;(在“等边三角形”、“等腰三角形”、“直角三角形”、“等腰直角三角形”中填选一个填上去)(2)若AB =10,AC =6,求CD 的长.7、(18-19江汉)如图,OC 平分∠MON ,A 、B 分别为OM 、ON 上的点,且BO >AO ,AC =BC ,求证:∠OAC +∠OBC =180°.8、(18-19蔡甸)在△ABC 中,∠BAC =60°,∠ACB =40°,AP 、BQ 分别是∠BAC 、∠ABC 的平分线,求证:BQ +AQ =AB +BP .NH DCBAA B C O MN AB CPQ【巩固训练】1、如图,△ABC 中,MP 和NQ 分别垂直平分AB 和AC ,若∠P AQ =40°,则∠BAC 的度数是( ) A .140° B .110° C .100° D .70°2、(2015七一中学12月月考)如图,在△ABC 中,∠ACB =100°,点D 、E 在AB 上,且BE =BC ,AD =AC ,则∠DCE 的大小是( ) A .25° B .30° C .35° D .40°3、(2016粮道街中学12月月考)△ABC 中,∠B =∠C ,点D 、E 分别在AC 、AB 上,且AE =BE ,BD =BC =AD ,则∠BDE 的度数为__________.4、(2016江夏区五校12月联考)如图,锐角三角形ABC 中,直线l 为BC 的中垂线,射线BM 为∠ABC 的角平分线,l 与M 相交于P 点,若∠A =60°,∠ACP =24°,则∠ABP 的度数为__________.5、如图,O 为△ABC 的和AB 、BC 边的垂直平分线的交点,连接OA 、OB 和OC ,若∠ACB =α,则∠OAB =__________.6、(2014勤学早期末模拟)如图,点C 与点A 关于y 轴对称,B 是y 轴负半轴上一点,过点C 的直线与直线BA 交于点E ,G 是直线EC 上一点,且BG =BA ,若∠ECA =20°, 则∠ABG 的度数是__________.OCB7、(2015七一中学10月月考)如图,EG、AF、CB三条直线两两相交,AB、DE分别是∠GAD、∠FDC的平分线,若AB=AD=DE,则∠DAC=__________8、如图,在△P AB中,P A=PB,M,N,K分别是P A,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为__________.9、(2015七一中学10月月考)如图,点D为等边三角形ABC外一点,BD=DA,BE=BA,∠DBE=∠DBC,则∠E的度数是__________1、(2015七一中学周练15)如图,MP、NQ分别垂直平分AB、AC,且BC=6 cm,则△APQ的周长为()A.12 cm B.6 cmC.8 cm D.无法确定2、(2016粮道街中学12月月考)如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且∠B =2∠E,AB=3,BE=7,则BC的长是()A.3B.4C.5D.3.53、(2016华一寄10月月考)已知AD为△ABC的内角平分线,AB=7cm,AC=8cm,BC=9cm,则CD的长为__________.4、在△ABC 中,AB =6,AC =8,AD 平分∠BAC ,E 点是AC 中点,BE 交AD 于F ,则BFEF=__________.5、(2016粮道街中学12月月考)如图,在△ABC 中,∠A 、∠B 的角平分线交于点O ,过O 作OP ⊥BC 于P ,OQ ⊥AC 于Q ,OR ⊥AB 于R .AB =7,BC =8,AC =9,则BP +CQ -AR =________6、(2015华一寄10月月考)如图,已知P (3,3),点B 、A 分别在x 轴正半轴和y 轴正半轴上,∠APB =90°,则OA +OB =__________.7、(2015七一中学周练15)如图,四边形ABCD 中,∠A =∠C =90°,AB =AD ,四边形面积为49,则BC +CD =__________8、(2015七一中学周练14)已知△ABC 中,∠BAC =90°,AB =AC =1,BC =2,点D 和点E 分别为边BC 和边AC 上的点.∠ADE =45°,△ADE 为等腰三角形,则AE =_________ 9、(2014勤学早期末模拟)如图,在△ABC 中,∠A =60°,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 交于点H ,若CE =4,BD =5,则DHHB=_________.。
天一大联考高中毕业班阶段性测试(三)数学试题(解析版)
天一大联考高中毕业班阶段性测试(三)数学试题一、单选题1.设集合,,则下列结论正确的是A.B.C.D.【答案】B【解析】利用一元二次不等式的解法求得集合,即可得出集合与集合的关系,从而可得出结论.【详解】,,,故选B.【点睛】集合的基本运算的关注点:(1)看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提;(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决;(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和图.2.复数的共轭复数对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,再利用共轭复数的概念求出复数的共轭复数,进一步求出对应点的坐标得结果. 【详解】,的共轭复数为,对应坐标是在第三象限,故选C.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分. 3.函数的部分图像大致为( )A .B .C .D .【答案】A 【解析】利用,排除选项;利用排除选项,从而可得结果.【详解】,,排除选项;,排除选项,故选A.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.4.若非零向量,a b rr 满足3a b =r ,且()()2a b a b -⊥+r r r r ,则a r 与b r 的夹角的余弦值为( ) A .6 B .33C .6-D .3【答案】D【解析】根据()()2a b a b -⊥+r r r r 可得()()20a b a b -⋅+=r r r r ,代入3a =r 化简求解夹角余弦值即可. 【详解】设a r 与b r的夹角为θ,()()2a b a b -⊥+r r r r Q ,()()2a b a b ∴-⋅+r r r r 222cos 0ab a b θ=-+=r r r r.3a b =r r Q ,222223cos 3b a b a b bθ-∴=-=-=-r r r r r r , 故选:D. 【点睛】本题主要考查了利用数量积的公式与模长求解夹角的问题.属于中档题. 5.执行如图所示的程序框图,则输出的结果为A .4B .5C .6D .7【答案】B【解析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的的值. 【详解】 第一次循环,; 第二次循环,;第三次循环,,退出循环,输出,故选B. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.已知等差数列的前项和为,,为整数,且最大,则公差A .-2B .-3C .-4D .-5【答案】B【解析】利用排除法,令,分别判断出前项和的最大值,即可得结果. 【详解】时,,或最大,故不合题意;时,,最大,故合题意;时,,最大,故不合题意;时,, 或最大,故不合题意,故选B. 【点睛】本题考查了等差数列的通项公式及其前项和公式,以及排除法的应用,属于基础题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性.7.已知直线y=2b 与双曲线22x a -22y b=1(a >0,b >0)的斜率为正的渐近线交于点A ,曲线的左、右焦点分别为F 1、F 2,若21tan AF F 15∠=,则双曲线的离心率为( ) A .4或1611B .1611C .2D .4【答案】D【解析】由题意表示出点A 的坐标,又21tan 15AF F ∠=求出结果 【详解】 由渐近线方程y bx a=与直线2y b =求出点A 的坐标为()2,2a b ,过A 点作AB x ⊥轴于点B ,则22,2AB b BF c a ==-由已知可得212tan 152bAF F c a∠==-22264a 60110116064016411ac c e e e e ∴-+=∴-+=∴==或当1611e =时,1611c a =则20c a -<故舍去,综上4e = 故选D 【点睛】本题考查了求双曲线的离心率问题,在求解过程中一定依据题目已知条件,将其转化为关于离心率的方程,继而求出结果,本题属于中档题 8.如图放置的边长为1的正方形沿轴顺时针滚动一周,设顶点的运动轨迹与轴所围区域为,若在平面区域内任意取一点,则所取的点恰好落在区域内部的概率为A .B .C .D .【答案】C【解析】顶点的运动轨迹,分三部分:前一部分的图象为四分之一圆周,后一部分的图象为四分之一圆周,且半径都是1,中间部分的轨迹为以为半径的四分之一圆周,分别求出与轴围成的面积,求和后利用几何概型概率公式求解即可. 【详解】正方形沿轴顺时针滚动一周,顶点的运动轨迹,分三部分:前一部分的图象为四分之一圆周,后一部分的图象为四分之一圆周,且半径都是1,此时两部分扇形所占面积为,中间部分的轨迹为以为四分之一圆周,与围成的面积为,顶点的运动轨迹与轴所围区域的面积为,平面区域的面积为,所以在平面区域内任意取一点,则所取的点恰好落在区域内部的概率为故选C.【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时, 忽视验证事件是否等可能性导致错误.9.一个几何体的三视图如图所示,该几何体表面上的点在正视图上的对应点为,点,,在俯视图上的对应点为,,,过直线作一平面与直线平行,则该平面截几何体所得截面多边形的周长为A.B.C.D.【答案】A【解析】由三视图还原几何体,可知该几何体是如图所示的四棱锥,设中点为,连接,由线面平行的判定定理可得为所求截面,利用三视图所给数据求出三角形各边长即可得结果.【详解】由三视图可知,该几何体是如图所示的四棱锥,其中平面,底面是直角梯形,,高,设中点为,连接,则是平行四边形,所以平面,平面,所以平面是所求截面,由勾股定理可得,的周长为,故选A.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.10.已知函数()2sin (0)4f x x πωω⎛⎫=-> ⎪⎝⎭的图象的相邻最高点间的距离为π,设()f x 的图象向左平移4π个单位后得到()g x 的图象,则函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域为A .2,2⎡⎤⎣⎦B .2,2⎡⎤-⎣⎦C .[]2,2-D .2,2⎡⎤-⎣⎦【答案】D【解析】由图象的相邻最高点间的距离为π,可求得函数周期,从而确定2ω=,利用三角函数的平移法则可得()g x 的解析式,求得52,444x πππ⎡⎤+∈⎢⎥⎣⎦,利用正弦函数的单调性可得结果. 【详解】Q 函数()2sin (0)4f x x πωω⎛⎫=-> ⎪⎝⎭的图象的相邻最高点间的距离为π,2T ππω∴==,得2ω=,()224f x sin x π⎛⎫=- ⎪⎝⎭向左平移4π可得,()2222444g x sin x sin x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,50,,2,2444x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦Q ,22,142sin x π⎡⎤⎛⎫∴+∈-⎢⎥ ⎪⎝⎭⎣⎦,()2,2g x ⎡⎤∈-⎣⎦,即()g x 的值域为2,2⎡⎤-⎣⎦,故选D.【点睛】本题主要考查三角函数的图象与性质、以及三角函数图象的平移法则,属于中档题. 能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度. 11.已知函数的图象的对称中心为,且的图象在点处的切线过点,则A .1B .2C .3D .4【答案】A 【解析】由函数的图象的对称中心为,可得,求得的值后,利用解方程即可得结果.【详解】 函数的图象的对称中心为,所以, ,即,得,,又的图象在点处的切线过点, ,即,解得,故选A.【点睛】本题主要考查导数的几何意义,以及函数的对称性的应用,属于难题. 函数的对称的性质:(1)若,则的图象关于对称;(2)若,则的图象关于对称.12.已知抛物线2:4C y x =,斜率为k 的直线l 与抛物线C 相交于A ,B 两点,与圆22:(5)9E x y -+=相切于点M ,且M 为线段AB 的中点,则弦长||AB =A .2B .4C .37D .6【答案】C【解析】首先利用点差法求出02ky =,结合圆心和切点的连线与切线垂直可得03x =,通过切点在圆上求出切点坐标,进而可求出直线方程,联立直线与抛物线将韦达定理与弦长公式相结合可得弦长. 【详解】设()11,A x y ,()22,B x y ,()00,M x y , 则21122244y x y x ⎧=⎨=⎩,相减得()()()1212124y y y y x x +-=-,利用点差法可得02ky =,因为直线与圆相切,所以001 5y x k=--,所以03x =,将0x代入圆的方程可得0y =, 不失一般性可取M点坐标为(,则5k =, 故直线l的方程为)3y x =-,即55y x =-,联立24y x y x ⎧=⎪⎨⎪=⎩242410x x -+=,所以126x x +=,1214x x =,由弦长公式得AB == C. 【点睛】本题考查直线与抛物线、圆的位置关系,考查点差法,直线与抛物线的相交时弦长问题,属于中档题.二、填空题13.已知随机变量2(1,)X N σ:,若(01)0.3P X <<=,则(2)P X >=__________. 【答案】0.2【解析】随机变量()21,X N σ~,得到曲线关于1x =称,根据曲线的对称性得到200.501P X P X P X >=<=-<<()()() ,根据概率的性质得到结果. 【详解】随机变量()21,X N σ~,∴曲线关于1x =对称,∴200.5010.2P X P X P X >=<=-<<=()()(),故答案为0.2. 【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题14.已知x ,y 满足约束条件220,220,20,x y x y x y -+≥⎧⎪--≤⎨⎪+-≤⎩则z x y =-的最大值为__________.【答案】2【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求解即可. 【详解】画出220,220,20,x y x y x y -+≥⎧⎪--≤⎨⎪+-≤⎩表示的可行域,如图,由220,20,x y x y --=⎧⎪⎨⎪+-=⎩可得20x y =⎧⎪⎨⎪=⎩, 将z x y =-变形为y x z =-, 平移直线y x z =-,由图可知当直y x z =-经过点()2,0时, 直线在y 轴上的截距z -最小,z 最大, 最大值为202z =-=,故答案为2. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 15.已知数列{}n a 的前n 项和为n S ,12a =,2n n S a λ=-,其中λ为常数,若13n n a b n =-,则数列{}n b 中的项的最小值为__________.【答案】1412-【解析】由12a =求得2,λ=再利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出()12132nnn n a b n ⎛⎫=⇒=- ⎪⎝⎭,根据11n n n n b b b b +-≤⎧⎨≤⎩求得1415n ≤≤从而可得结果. 【详解】12,2n n a S a λ==-Q ,1112S a a λ∴==-, 222,2,22n n S a λλ=-==-,①2n ≥时,1122n n S a --=-,②②-①化为()122n n a a n -=≥, 所以{}n a 是公比为2的等比数列,()11222,132nn nn n a b n -⎛⎫∴=⨯==-⨯ ⎪⎝⎭,由11n n n n b b b b +-≤⎧⎨≤⎩,可得()()()()111113122211131422n n n n n n n n +-⎧⎛⎫⎛⎫-⨯≤-⨯⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪-⨯≤-⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎩, 解得()()()21312141513214n nn n n ⎧-≤-⎪⇒≤≤⎨-≤-⎪⎩, 即{}n b 中的项的最小值为14151412b b ==-,故答案为1412-. 【点睛】本题主要考查递推关系求通项公式,以及等比数列的定义,数列的最小项,属于难题. 已知数列前n 项和,求数列通项公式,常用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,将所给条件化为关于前n 项和的递推关系或是关于第n 项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式.16.已知六棱锥P ABCDEF -,底面ABCDEF 为正六边形,点P 在底面的射影为其中心.将该六棱锥沿六条侧棱剪开,使六个侧面和底面展开在同一平面上,若展开后点P 在该平面上对应的六个点全部落在一个半径为5的圆上,则当正六边形ABCDEF 的边长变化时,所得六棱锥体积的最大值为__________.【解析】设六边形的边长为()0x x >,,进而可将体积表示为关于自变量x 的函数,利用导数判断函数的单调性得其最大值即可. 【详解】如图所示,设六边形的边长为()0x x >,故3OG =, 又∵展开后点P 在该平面上对应的六个点全部落在一个半径为5的圆上,∴352PG x =-,故22335255322PO x x x ⎛⎫⎛⎫=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ∴六棱锥的体积2451131562553533222V x x x x =⨯⨯⨯-=- 令()()455530f x x xx =->,∴()()3432053543f x x x xx -='=,当43x ⎛∈ ⎝⎭时,()0f x '>,函数()f x 单调递增,当43x ⎫∈+∞⎪⎪⎝⎭时,()0f x '<,函数()f x 单调递减,故当43x =()f x 取得最大值,即体积最大, 815815. 【点睛】本题考查六棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题17.已知等差数列{}n a 的公差不为零,EF CE AC AB=,且211113a a a =⋅. (1)求使不等式0n a ≥成立的最大自然数n ;(2)求数列11{}n n a a +的前n 项和. 【答案】(1)13;(2)62550nn-.【解析】(1)由125a =,且211113a a a =⋅,列方程求出{}n a 的公差为d ,从而求出{}n a 的通项公式,然后列不等式求解即可;(2)由()()111227225n n a a n n +=-+-+ 1112227225n n ⎛⎫=-- ⎪-+-+⎝⎭,利用裂项相消法可求得数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和. 【详解】(1)设{}n a 的公差为d .由题意,可得()()21111012a d a a d +=+,于是()12250d a d +=.又125a =,0d ≠,所以2d =-. 故227n a n =-+.由2270n -+≥,可得13.5n ≤,所以满足题意的最大自然数n 为13.(2)因为()()111227225n n a a n n +=-+-+ 1112227225n n ⎛⎫=-- ⎪-+-+⎝⎭. 故前n 项和为12231111n n a a a a a a ++++L 1111111225232321227225n n ⎡⎤⎛⎫⎛⎫⎛⎫=--+-++- ⎪ ⎪ ⎪⎢⎥-+-+⎝⎭⎝⎭⎝⎭⎣⎦L111225225n ⎛⎫=-- ⎪-+⎝⎭1150504n =-+- 62550n n =-. 【点睛】本题主要考查等差数列的性质及裂项法求前n 项和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎣⎦;18.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2cos a C c AB b+=,点D 在线段AC 上,且2AD DC =,BC =3BD =. (1)求角B 的大小; (2)求ABC ∆的面积.【答案】(1)3B π=;(2【解析】(1)根据cos cos 2cos a C c AB b+=,利用正弦定理可得sin cos sin cos 2sin cos A C C A B B +=,由两角和的正弦公式结合诱导公式可得sin 2sin cos B B B =,从而得1cos 2B =,进而可得结果;(2)设AB x =,3(0,0)AC z x z =>>,在ABD ∆中,在CBD ∆中,在ABC ∆中,结合cos cos BDA BDC ∠=-∠,利用余弦定理列方程组求得x =面积公式可得结果. 【详解】 (1)根据cos cos 2cos a C c AB b+=可得cos cos 2cos a C c A b B +=,∴sin cos sin cos 2sin cos A C C A B B +=,∴()sin 2sin cos A C B B +=,∴()sin 2sin cos B B B π-=, 即sin 2sin cos B B B =,∴1cos 2B =. 又∵0B π<<,∴3B π=.(2)设AB x =,3(0,0)AC z x z =>>.在ABD ∆中,由余弦定理可得()2292cos 232z x BDA z+-∠=⨯⨯.在CBD ∆中,由余弦定理可得2912cos 23z BDC z+-∠=⨯⨯. 由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠, 即()2229291223223z x z cz+-+-=-⨯⨯⨯⨯, 整理可得22360z x +-=.①在ABC ∆中,由余弦定理可知2212239x x z +-=. 代入①式整理可得243330x x +-=.所以3523x =-. 据此可知ABC ∆的面积()1352323sin 2S B =-⨯ ()39535233322=-=-. 【点睛】本题主要考查正弦定理、余弦定理以及三角形的面积的应用,属于中档题. 本题主要考查余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o等特殊角的三角函数值,以便在解题中直接应用.19.如图,在多面体ABCDEF 中,底面ABCD 是菱形,60DAB ∠=︒,2EA ED AB ===,EF AC P 且12EF AC =.(Ⅰ)求证:AD BE ⊥;(Ⅱ)若平面AED ⊥平面ABCD ,求平面BCF 与平面ABCD 所成的锐二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ5. 【解析】(Ⅰ)取AD 的中点M ,连接EM ,BM ,易得EM AD ⊥,接着通过证明BM AD ⊥来得到AD ⊥平面EMB ,进而可得结论;(Ⅱ)通过面面垂直可得EM ⊥平面ABCD ,进而可建立如图所示的坐标系,求出平面BCF 的法向量,结合平面ABCD 的一个法向量为()0,0,1m =v,进而可求得最后结果.【详解】(Ⅰ)取AD 的中点M ,连接EM ,BM .∵EA ED =,∴EM AD ⊥. ∵底面ABCD 是菱形,60DAB ∠=︒,∴AB AD BD ==,∴BM AD ⊥,∵EM BM M ⋂=,∴AD ⊥平面EMB .∵BE ⊂平面EMB ,∴AD BE ⊥.(Ⅱ)∵EM AD ⊥,平面AED ⊥平面ABCD ,平面AED ⋂平面ABCD AD =,∴EM ⊥平面ABCD .∴可以M 为原点,MA ,MB ,ME 为x 轴,y 轴,z 轴建立空间直角坐标系,则()0,0,0M ,()1,0,0A ,()3,0C -,(3E ,()3,0B .∴(3ME =u u u v ,()2,0,0BC =-u u u v,()3,0AC =-u u u v ,∴13322EF AC u u u v u u u v ⎛⎫==- ⎪ ⎪⎝⎭, ∴3332MF ME EF ⎛=+=- ⎝u u u v u u u v u u u v ,即3332F ⎛- ⎝,∴33,32BF ⎛=- ⎝u u u v .设平面BCF 的一个法向量为(),,n x y z =v ,则3330,220,n BF x y z n BC x ⎧⋅=--+=⎪⎨⎪⋅=-=⎩u u u v v u u u v v 令1z =,则()0,2,1n =v .易知平面ABCD 的一个法向量为()0,0,1m =v.设平面BCF 与平面ABCD 所成的锐二面角为θ,∴5cos 51m n m n v vv vθ⋅===⋅⨯. ∴平面BCF 与平面ABCD 5【点睛】本题主要考查线线垂直的判定,核心内容为“线线垂直”“线面垂直”“面面垂直”之间可以相互转化,空间向量在求二面角中的应用,即二面角的大小与平面的法向量所成角之间相等或互补,主要通过题意或图形确定最后结果,属于中档题.20.为了解使用手机是否对学生的学习有影响,某校随机抽取100名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):(Ⅰ)补充完整所给表格,并根据表格数据计算是否有99.9%的把握认为学生的学习成绩与使用手机有关;(Ⅱ)现从上表不使用手机的学生中按学习成绩是否优秀分层抽样选出6人,再从这6人中随机抽取3人,记这3人中“学习成绩优秀”的人数为X,试求X的分布列与数学期望.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.参考数据:【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)根据题意即可将列联表完成,通过计算2K的值即可得最后结论;(Ⅱ)“学习成绩优秀”的有4人,“学习成绩一般”的有2人,X的所有可能取值为1,2,3,计算出其概率得到分布列,计算出期望.【详解】(Ⅰ)填表如下:由上表得()221001020403040605050K ⨯⨯-⨯=⨯⨯⨯ 16.66710.828≈>.故有99.9%的把握认为学生的学习成绩与是否使用手机有关. (Ⅱ)由题意得,所抽取的6位不使用手机的学生中, “学习成绩优秀”的有406460⨯=人,“学习成绩一般”的有206260⨯=人. X 的所有可能取值为1,2,3.()124236411205C C P X C ====,()2142361232205C C P X C ====,()304236413205C C P X C ====. 所以X 的分布列为:故数学期望为1311232555EX =⨯+⨯+⨯=. 【点睛】本题主要考查独立性检验的应用,离散型随机变量的分布列及其期望,考查了学生的计算能力,属于中档题.21.已知O 为坐标原点,椭圆2222:1(0)x y E a b a b+=>>的焦距为y x =截圆222:O x y a +=与椭圆E 所得的弦长之比为2,圆O 、椭圆E 与y 轴正半轴的交点分别为P ,A .(1)求椭圆E 的标准方程;(2)设点00(,)B x y (00y ≠且01y ≠±)为椭圆E 上一点,点B 关于x 轴的对称点为C ,直线AB ,AC 分别交x 轴于点M ,N ,证明:tan tan OPM ONP ∠=∠. 【答案】(1)2214x y +=;(2)详见解析. 【解析】(1)根据焦距为y x =截圆222:O x y a +=与椭圆E 所得的弦长之比为2,结合性质222a b c =+ ,列出关于a 、b 、c 的方程组,求出a 、b ,即可得结果;(2)由(1)可知,点A 的坐标为()0,1,点P 的坐标为()0,2,由直线AB的方程与直线AC 的方程令0y =,分别求得00,01x M y ⎛⎫ ⎪-⎝⎭,00,01x N y ⎛⎫⎪+⎝⎭,可证明24||OM ON OP ⋅==,即OM OP OPON=,从而可得结论.【详解】(1)根据题意可知c =223a b -=.因为直线y x =截椭圆E,2=,化简得224a b =. 所以21b =,24a =.故椭圆E 的标准方程为2214x y +=.(2)由(1)可知,点A 的坐标为()0,1,点P 的坐标为()0,2. 直线AB 的方程为0011y y x x -=+,令0y =,得00,01x M y ⎛⎫⎪-⎝⎭. 因为点B 关于x 轴的对称点为C ,所以()00,C x y -. 所以直线AC 的方程为011y y x x +=-+. 令0y =,得00,01x N y ⎛⎫⎪+⎝⎭.因为20002000111x x x OM ON y y y ⋅=⋅=-+-, 而点()00,B x y 在椭圆2214x y +=上,所以220014x y +=.即20241x y --,所以24||OM ON OP ⋅==,即OM OP OPON=,所以tan tan OPM ONP ∠=∠.【点睛】本题主要考查椭圆的几何性质、标准方程,直线与椭圆的位置关系,属于难题. 本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+= ()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求. 22.已知函数()ln f x x x =,()1g x x =-. (Ⅰ)求函数()()()f x G xg x =的单调区间; (Ⅱ)设441()()()4H x f x ag x =-的极小值为()a ϕ,当0a >时,求证:114141()()04a a e e a ϕ---≤≤. 【答案】(Ⅰ)()G x 的单调递增区间为(0,1)和(1,)+∞,无单调递减区间;(Ⅱ)见解析.【解析】(Ⅰ)对()G x 求导可得()()21ln 1x xG x x ---'=,设()1ln h x x x =--,对()h x 求导,判断()h x 的符号,进而可得()G x 的单调性;(Ⅱ)对()H x 进行求导,可得()H x 的极小值()4114a a a e ϕ-=-,对()a ϕ求导,易证()104a ϕϕ⎛⎫≤= ⎪⎝⎭,在将114104aa e --≥等价转化为()1ln 4104a a +-≥,令()()1ln 414r a a a =+-,对其求导求其最值即可.【详解】(Ⅰ)因为()ln 1x x G x x =-(0x >且1x ≠),所以()()21ln 1x x G x x ---'=. 设()1ln h x x x =--,则()11h x x'=-. 当1x >时,()110h x x=->',()h x 是增函数,()()10h x h >=,所以()()21ln 01x xG x x --=>-'.故()G x 在()1,∞上为增函数; 当01x <<时,()110h x x=-<',()h x 是减函数,()()10h x h >=,所以()()21ln 01x xG x x --=>-',所以()G x 在()0,1上为增函数.故()G x 的单调递增区间为()0,1和()1,+∞,无单调递减区间. (Ⅱ)由已知可得()()44ln 1H x x x a x =--,则()()34ln 14H x xx a =+-'.令()0H x '=,得1ln 4x a =-,14a x e -=.当140,a x e -⎛⎫∈ ⎪⎝⎭时,()0H x '<,()H x 为减函数;当14,a x e -⎛⎫∈+∞ ⎪⎝⎭时,()0H x '>,()H x 为增函数,所以()H x 的极小值()()414114a a a H e a e ϕ--==-.由()4110a a e ϕ-'=-=,得14a =. 当10,4a ⎛⎫∈ ⎪⎝⎭时,()0a ϕ'>,()a ϕ为增函数; 当1,4a ⎛⎫∈+∞⎪⎝⎭时,()0a ϕ'<,()a ϕ为减函数. 所以()104a ϕϕ⎛⎫≤= ⎪⎝⎭.而()1141414a a a ee ϕ--⎛⎫-- ⎪⎝⎭11414141144a a a a e e e ---⎛⎫=--- ⎪⎝⎭ 11414aa e -=-.下证:0a >时,114104aa e --≥.()111144104ln 44aa a e a e a ---≥⇔≥⇔ ()111ln 41044a a a ≥-⇔+-≥. 令()()1ln 414r a a a =+-,则()22114144a r a a a a -='=-. 当10,4a ⎛⎫∈ ⎪⎝⎭时,()0r a '<,()r a 为减函数; 当1,4a ⎛⎫∈+∞⎪⎝⎭时,()0r a '>,()r a 为增函数. 所以()104r a r ⎛⎫≥= ⎪⎝⎭,即()1ln 4104a a +-≥. 所以114104aa e --≥,即()11414104a a a ee ϕ--⎛⎫--≥ ⎪⎝⎭.所以()1141414a a a e e ϕ--⎛⎫≥- ⎪⎝⎭. 综上所述,要证的不等式成立. 【点睛】本题主要考查了导数与单调性的关系,导数在证明不等式中的应用,解题的关键在于构造函数,属于难题.。
高三数学空间几何体试题
高三数学空间几何体试题1.(3分)(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A.B.C.1D.【答案】C【解析】由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,而球心到小圆圆心的距离为,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABCD的中心与顶点S之间的距离.解:由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为,顶点S在球心距的垂直分的平面上,而顶点S到球心O的距离为1,所以底面ABCD的中心O'与顶点S之间的距离为1故选C点评:本题是基础题,考查球的内接多面体的知识,考查逻辑推理能力,计算能力,转化与划归的思想.2.如图,三棱柱ABC—A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.(1)求证:平面AA1B1B⊥平面BB1C1C;(2)若AB=2,求三棱柱ABC—A1B1C1的体积.【答案】(1)见解析(2)2【解析】(1)由侧面AA1B1B为正方形,知AB⊥BB1.又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,又AB⊂平面AA1B1B,所以平面AA1B1B⊥平面BB1C1C.(2)由题意,CB=CB1,设O是BB1的中点,连接CO,则CO⊥BB1.由(1)知,CO⊥平面AA1B1B,且CO=BC=AB=.连结AB1,则VC—ABB1=S△ABB1·CO=AB2·CO=.因为VB1—ABC=VC—ABB1=VABC—A1B1C1=,故三棱柱ABC—A1B1C1的体积VABC—A1B1C1=2.3.已知四棱锥V-ABCD,底面ABCD是边长为3的正方形,VA⊥平面ABCD,且VA=4,则此四棱锥的侧面中,所有直角三角形的面积的和是________.【答案】27【解析】可证四个侧面都是直角三角形,其面积S=2××3×4+2××3×5=27.4.某几何体的三视图如图所示,则该几何体的体积为( )A.B.C.D.【答案】D【解析】由三视图还原图像,得原图是两个一样的圆锥底面对在一起了,所以.【考点】三视图.5.已知圆柱底面半径为1,高为,是圆柱的一个轴截面.动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线如图所示.现将轴截面绕着轴逆时针旋转后,边与曲线相交于点,设的长度为,则的图象大致为()【答案】A【解析】根据题意,由于圆柱底面半径为1,高为,是圆柱的一个轴截面.动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线,那么可知轴截面绕着轴逆时针旋转后,随着角的增大可知BP的变化时匀速增大的,因此选A.【考点】圆柱的展开图点评:主要是考查了圆柱体侧面展开图的运用,属于基础题。
2023届天津市南开中学高三高考模拟数学试题+答案解析
天津市南开中学2023届高三高考模拟数学试题一、单选题:本题共9小题,每小题5分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知全集,集合,,则( )A. B.C.D.2.函数的部分图象大致为( )A. B.C. D.3.已知a ,,则“”是“函数是奇函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A. 1盏 B. 3盏 C. 5盏 D. 9盏5.设,,,则 ( )A. B.C.D.6.若向量,满足:,,则在上的投影向量为( )A.B.C.D.7.已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为A且离心率为,若双曲线的一条渐近线与直线AM垂直,则双曲线的方程为( )A. B. C. D.8.将函数的图象向右平移个单位后得到函数的图象,若在区间上单调递增,且函数的最大负零点在区间上,则的取值范围是( )A. B. C. D.9.直线l:与x,y轴的交点分别为A,B,直线l与圆O:的交点为C,D,给出下面三个结论:,;,;,其中,所有正确结论的序号是( )A. B. C. D.二、填空题:本题共6小题,每小题5分,共30分。
10.在复平面内,复数与对应的点关于虚轴对称,且,则__________.11.某次体检,7位同学的身高单位:米分别为,,,,,,,则这组数据的第75百分位数是__________米12.的展开式的常数项为_______用数字作答13.海棠同学在参加南开中学陶艺社时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为32厘米的正方体的六个面所截后剩余的部分球心与正方体的中心重合,若其中一个截面圆的周长为厘米,则该球的表面积为__________平方厘米.14.已知,函数若对任意恒成立,则a 的取值范围是__________.15.某校从5名学生中选派3人参加劳动技能大赛.已知这5名学生中有高一年级学生2名,高二年级学生2名,高三年级学生1名,则所选3人分别来自不同年级的概率为__________.记所选3人中高一年级学生的人数为X,则随机变量X的数学期望__________.三、解答题:本题共5小题,共60分。
李正兴高中数学解题方法全书 必做基础题+巩固中档题+挑战压轴题
李正兴高中数学解题方法全书必做基础题+巩固中档题+挑战压轴题【原创实用版2篇】目录(篇1)一、李正兴高中数学解题方法全书(一)必做基础题(二)巩固中档题(三)挑战压轴题二、全书介绍(一)必做基础题(二)巩固中档题(三)挑战压轴题(四)特点与亮点三、如何使用本书(一)解题思路与方法(二)学习方法与技巧正文(篇1)李正兴高中数学解题方法全书是一本非常实用的数学参考书。
全书共分为三个部分,分别是必做基础题、巩固中档题和挑战压轴题。
这些题目都是经过精心挑选和设计,适合不同水平和进度的学生。
目录(篇2)1.介绍2.必做基础题3.巩固中档题4.挑战压轴题5.总结正文(篇2)一、介绍李正兴的《高中数学解题方法全书》是一本针对高中数学的学习指南,旨在帮助读者掌握基础数学知识,提高解题能力。
全书分为必做基础题、巩固中档题和挑战压轴题三个部分,难度逐渐提升。
二、必做基础题本书的第一个部分是必做基础题,这些题目是高中数学的基础知识,包括代数、几何、三角函数等。
这些题目旨在帮助读者巩固基础知识,掌握基本的解题技巧。
通过完成这些题目,读者可以建立起对高中数学的基本认识,为后续的学习打下坚实的基础。
三、巩固中档题第二个部分是巩固中档题,这些题目相对于基础题来说难度有所提升,需要读者掌握更多的数学知识,并能够灵活运用。
这些题目涉及到的知识点包括不等式、数列、概率统计等,需要读者深入理解这些知识,并能够解决实际问题。
通过完成这些题目,读者可以进一步提高自己的解题能力,为后续的学习打下更坚实的基础。
四、挑战压轴题第三个部分是挑战压轴题,这些题目是高中数学的难点和重点,需要读者掌握更多的数学知识,并能够灵活运用。
这些题目涉及到的知识点包括解析几何、微积分等,需要读者深入理解这些知识,并能够解决实际问题。
通过完成这些题目,读者可以进一步提高自己的解题能力,为后续的学习打下更坚实的基础。
五、总结《高中数学解题方法全书》是一本很好的学习指南,它可以帮助读者掌握高中数学的基础知识,提高解题能力。
山西省朔州市重点中学2024届高三高考数学试题系列模拟卷(7)
山西省朔州市重点中学2024届高三高考数学试题系列模拟卷(7)注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设x ∈R ,则“327x <”是“||3x <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.棱长为2的正方体1111ABCD A B C D -内有一个内切球O ,过正方体中两条异面直线AB ,11A D 的中点,P Q 作直线,则该直线被球面截在球内的线段的长为( )A .2B 1CD .1 3.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( )A .2B .3C .4D .54.设双曲线22221y x a b-=(0a >,0b >)的一条渐近线与抛物线213y x =+有且只有一个公共点,且椭圆22221x y a b +=的焦距为2,则双曲线的标准方程为( )A .22143x y -= B .22143y x -= C .22123x y -= D .22132y x -= 5.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2π C .76π D .π6.半正多面体(semiregular solid ) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )A .83B .4C .163D .2037.已知等差数列{}n a 中,468a a +=则34567a a a a a ++++=( )A .10B .16C .20D .248.已知非零向量,a b 满足a b λ=,若,a b 夹角的余弦值为1930,且()()23a b a b -⊥+,则实数λ的值为( ) A .49- B .23 C .32或49- D .32 9.若某几何体的三视图如图所示,则该几何体的表面积为( )A .240B .264C .274D .28210.已知i 是虚数单位,则(2)i i +=( )A .12i +B .12i -+C .12i --D .12i -11.定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[﹣3,﹣2]时,f (x )=﹣x ﹣2,则( ) A .66f sin f cos ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭> B .f (sin 3)<f (cos 3) C .4433f sin f cos ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< D .f (2020)>f (2019)12.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1 B .23- C .13- D .34- 二、填空题:本题共4小题,每小题5分,共20分。
(word完整版)三视图中高难度的练习及答案
绝密★启用前2018年11月02日高中数学的高中数学组卷立体几何三视图练习中难度考试范围:xxx;考试时间:100分钟;命题人:xxx题号一总分得分注意事项:1 •答题前填写好自己的姓名、班级、考号等信息2 •请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分•选择题(共15小题)1•一个几何体的三视图如图所示,贝U该几何体的体积为(2•某几何体的三视图如图所示,贝U该几何体的体积为(om也B.116 C. 2 D.6A. B. 16 C. 8 D. 243.已知几何体的三视图如图所示,贝U该几何体是(A.体积为2的三棱锥B.体积为2的四棱锥C.体积为6的三棱锥D.体积为6的四棱锥4.如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=( )A. 40 nB. 41 nC. 42 nD. 48 n5.—个几何体的三视图如图所示,贝U该几何体的体积为(A. 26 .某几何体的三视图如图所示,其中俯视图为扇形,贝U该几何体的体积为题答内线订装在要不请O OABCD- A 1B 1C 1D 1 中,点 M , N , 0, P, R , S 分别为棱 AB, D 1A 1, A 1A 的中点,则六边形 MNOPRS 在正方体各个面上9.已知某几何体的三视图如图所示,贝U 该几何体的体积是( z :J16兀 B. 4吒 c 唇 D. ieK 3 3 g 9 A . 6 6 N B. C. 0 ni Nd D . [ / A . 8.某几何体的三视图如图所示,其中俯视图和左视图中正方形的边长均为 3, 主视图和俯视图中三角形均为等腰直角三角形,则该几何体的体积为 \ 0 A . 16 ( ) B •普 7.如图,在正方体 BC, CC , C i D i , 的投影可能为( C. 8 D . 12O O10.某四棱锥的三视图如图所示(单位: cm ),则该四棱锥的体积(单位:cm 3 )是(11.某几何体的三视图如图所示,贝U 该几何体的侧面积为(A. ; :一B. ; 'I ; . c m+L D . I . ■:13.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图, 则该几何体的体积为( )A . 48 B. 36 C . 24 D . 16A .B ・一C . 4D . 8A . 4+2 :: B. 2+4.: C. 2+2 f 12.如图是一个几何体的三视图,图中每个小正方形边长均为 D . 4+4.:丄,则该几何体的表面积是( i L > X J h h i h i L 」 k1 k Hl 」LF ----------- 亠 / / \ --------/ / \IF亠/ / \ F 1 / / \IF■M■-------- 亠 、■■ ■ 、 ■■------- ■ W ---------■ i F 1r 1 r 1 r i r i f 1 ! 1 F 、 F 1 ■Fr题 答 内 线 订 装 在 要 不 请fl (£j tUE14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为((单位:cm)如图所示,且此多面体的体积V=6cm3,A.-B.…33C-1- D.4C. 41 nD. 31 nB. 3C. 6D. 415.若某多面体的三视图请点击修改第第U卷(非选择题)n卷的文字说明题答内线订装在要不请O OO O 线线O O 订号考订O 级班O 名姓装校学装O O 外内O O2018年11月02日高中数学的高中数学组卷参考答案与试题解析.选择题(共15小题)1•一个几何体的三视图如图所示,贝U 该几何体的体积为(【分析】画出几何体的直观图,根据柱体和椎体的体积公式计算即可.【解答】解:由三视图知几何体的直观图如图所示:个三棱柱去掉一个三棱锥的几何体,v=v 三棱柱—V三棱锥丄一 1*一一【点评】本题考查了由三视图求几何体的体积,解答此类问题关键是判断几何体的形状及数据所对应的几何量.2.某几何体的三视B •—C. 2 D •—图如图所示,贝U该几何体的体积为()】再C. 8D. 24【分析】根据三视图知几何体是三棱锥为棱长为4, 2 2「泊勺长方体的一部分,画出直观图,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.【解答】解:根据三视图知几何体是:三棱锥D- ABC,如图所示,C分别是长方体的底面棱长的中点,三棱锥为棱长为4,2. 2.泊勺长方体的一部分,所以几何体的体积V二:二「- . - -:=8【点评】本题考查由三视图求几何体的条件,在三视图与直观图转化过程中,以一个长方体为载体是很好的方式,使得作图更直观,考查空间想象能力.3.已知几何体的三视图如图所示,贝U该几何体是()【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积即可. 【解答】解:几何体的直观图如图:由题意可得几何体的底面积为:亠-■ =3,2 体积为:V 吉xsx 2=2. 故选:B.【点评】本题考查三视图判断几何体的形状,以及几何体的体积的求法,考 查计算能力.4. 如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图, 则该多面体的外接球的表面积S=(【分析】判断三视图复原的几何体的形状,通过已知的三视图的数据,求出 该多面体的外接球的表面积.【解答】解析:该多面体如图示,外接球的半径为 AG,A .体积为2的三棱锥 C.体积为6的三棱锥B. 体积为2的四棱锥 D.体积为6的四棱锥B. 41 nC. 42 n D . 48 nHA ABC 外接圆的半径,HG=2 HA 丄,2 故R =AG=4+H *=^^,•••该多面体的外接球的表面积 S=4冗R =41 n 【点评】本题考查多面体的外接球的表面积的求法, 考查空间几何体三视图、 多面体的外接球等基础知识,考查空间想象能力、运算求解能力,考查函 数与方程思想,是中档题.5•—个几何体的三视图如图所示,贝U 该几何体的体积为(【分析】由已知的三视图可得:该几何体是一个以正视图为底面的四棱锥, 计算出底面面积和高,代入锥体体积公式,可得答案.【解答】解:由已知的三视图可得:该几何体是一个以正视图为底面的四棱 锥, 棱锥的底面面积S=2X 2=4, 棱锥的高h=1故棱锥的体积V 丄“.二, 故选:D .A . 2B.二 C . 4故选:B .【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是 得到该几何体的形状.6•某几何体的三视图如图所示,其中俯视图为扇形,贝U 该几何体的体积为A.冒B. 4耳C ,M^D .冒33g9【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的 数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底 面圆的半径为2,把数据代入圆锥的体积公式计算.【解答】解:由三视图知几何体是圆锥的一部分,由俯视图与左视图可得:底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,故选:D.•••几何体的体积v=1X 丄 X nX 22x 4=—冗・( )【点评】本题考查了由三视图求几何体的体积,解答的关键是判断几何体的 形状及三视图的数据所对应的几何量.7•如图,在正方体ABC — A i B i C i D i 中,点M , N , O , P , R , S 分别为棱AB,BC, CC , C 1D 1, D 1A 1, A i A 的中点,则六边形 MNOPRS 在正方体各个面上 的投影可能为()【分析】根据题意分别画出六边形 MNOPRS 六个面上的投影即可. 【解答】解:正方体ABCD- A i B i C i D i 中,六边形MNOPRS 前后两个面上的投C .影如图i 所示;在左右两个面上的投影如图在上下两个面上的投影如图3所示; 圜 故选:D.【点评】本题考查了空间几何体三视图的应用问题,是基础题.8.某几何体的三视图如图所示,其中俯视图和左视图中正方形的边长均为 3,主视图和俯视图中三角形均为等腰直角三角形,则该几何体的体积为【分析】画出几何体的直观图,利用三视图的数据求解几何体的体积即可. 【解答】解:由题意可知几何体的直观图如图:右侧是放倒的三棱柱,左侧 是四棱锥,俯视图和左视图中正方形的边长均为 3,主视图和俯视图中三角形均为等腰A . 16( )B 」C. 8 D . 12直角三角形,则该几何体的体积为:=--2 yX3X3X X3X 3X 3故选:B.【点评】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,考查计算能力.9 •已知某几何体的三视图如图所示,贝U该几何体的体积是()A. 48B. 36C. 24D. 16【分析】由已知中的三视图,判断该几何体是一个四棱锥,四棱锥的底面是一个以4和3为边长的长方形,棱柱的高为4,分别求出棱柱和棱锥的体积,进而可得答案.【解答】解:由已知中的该几何体是一个四棱锥的几何体,四棱锥的底面为边长为4和3的长方形,高为4,故V四棱锥—X 4X 3X 4=16.3【点评】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状,并找出棱长、高等关键的数据是解答本题的关键.10.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积(单位:cm3)是(【分析】首先还原几何体,根据图中数据计算几何体体积. 【解答】解:由三视图得到几何体如图:正方体的棱长为 2, 该四棱锥P -ABCD 的体积(单位:cm 3)是 【点评】本题考查了几何体的三视图;要求对应的几何体的体积或者表面积, 关键是正确还原几何体.11.某几何体的三视图如图所示,贝U 该几何体的侧面积为(【分析】首先还原几何体,根据图中数据计算几何体的侧面积.【解答】解:由三视图得到几何体如图:正方体的棱长为 2, 该四棱锥P -ABCD 的侧面积(单位:cm 2)是 yX2X2+-^X2X "心血号 XgX?血=4+4迈; 故选:D.A-1C. 4 D .8A. 4+2 :■:B. 2+4 ■:C. 2+2 :■:D. 4+4*体积为苧2X 2XBa «■(卸個C【点评】本题考查了几何体的三视图;要求对应的几何体的体积或者表面积, 关键是正确还原几何体.12 •如图是一个几何体的三视图,图中每个小正方形边长均为丄,则该几何【分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可. 【解答】解:几何体的三视图可知几何体的直观图如图:卩从底面ABC,P0=2, AB=BC=2 ABCD是正方形,AB丄AC, 则PB=PA= PCD的高为:2 ■:.则该几何体的表面积是-X2X2+2-b2X2-H|-xV5X故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.32B.… D.333【分析】几何体为从正方体中切出来的一个三棱锥.作出直观图代入数值计算即可.【解答】解:由三视图可知几何体为边长为6的正方体中切出的三棱锥P-ABC作出直观图如图所示:正方体的棱长为4, 其中A, B, P分别是正方体棱的中点,则棱锥的底面积S丄XQX 2=42棱锥的高h=4所以棱锥的体积V丄:-•.一 ^一.3 3故选:B.13.如图,网格纸上小正方形的边长为则该几何体的体积为()1,粗线画出的是某几何体的三视图,【点评】本题考查了不规则放置的几何体的三视图和体积计算,以正方体为模型作出直观图是解题关键.14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()A.竽B•警C. 41 n D. 31 n【分析】根据三视图得出空间几何体是镶嵌在正方体中的四棱锥0 - ABCD, 正方体的棱长为4, A, D为棱的中点,利用球的几何性质求解即可.【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥0- ABCD正方体的棱长为4, A,D为棱的中点,根据几何体可以判断:球心应该在过A,D的平行于底面的中截面上,设球心到截面BCO的距离为x,则到AD的距离为:4-x,••• R2=x2+ (2:-:)2, F2=22+ (4-x)2,解得出:x丄,R= 丁 ,该多面体外接球的表面积为:4nR=41n故选:C.【点评】本题综合考查了空间几何体的性质,学生的空间思维能力,构造思 想,关键是镶嵌在常见的几何体中解决.15. 若某多面体的三视图(单位:cm )如图所示,且此多面体的体积 V=6cm 3, 则 a=() 【分析】由三视图可知,几何体为三棱锥,根据公式求解即可.【解答】解:由三视图可知,几何体为三棱锥,高为 2,底边长为a ,底面 高为2, 顶点在底面上的射影是等腰三角形的顶点, 所以 V 丄x a x^x 2X 2=6,解得 a=9.3 2故选:A .【点评】本题考查学生的空间想象能力,由三视图求体积,是基础题.A . 9 B. 3 C. 6 D . 4㈣规图。
高考数学(理)三年真题专题演练—立体几何(解答题)
高考数学三年真题专题演练—立体几何(解答题)1.【2021·全国高考真题】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2)36【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果; (2)先作出二面角平面角,再求得高,最后根据体积公式得结果. 【解析】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD , 因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FMEF F =,所以BC ⊥平面EFM ,即BC ⊥ME则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形因为2DE EA =,1112(1)2233FM BF ∴==+= 从而EF=FM=213AO ∴=AO ⊥平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法. 2.【2021·浙江高考真题】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===,M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值. 【答案】(1)证明见解析;(215【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN 和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠=,由余弦定理可得3DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DM D ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥. (2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD ,因为7AM =,所以22PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(3,2,0),(0,0,22),(3,0,0)A P D -,(0,0,0),(3,1,0)M C -又N 为PC 中点,所以31335,,2,,,22222N AN ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM 所成角的正弦值为5||152sin 6||2725244AN n AN n θ⋅===++‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.3.【2021·全国高考真题(理)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)见解析;(2)112B D =【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案. 【解析】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥ 因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥, 又1BB BF B ⋂=,所以AB ⊥平面11BCC B . 所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥. (2)设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos 2m BA m BAθ⋅===⋅⨯当12a =时,2224a a -+取最小值为272, 此时cos θ=.所以()minsin θ== 此时112B D =. 【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.4.【2021·全国高考真题(理)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(1)2;(2)7014【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【解析】(1)PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a =,故2BC a ==; (2)设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP =-,由11110220m AM x y m APz ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取1x =,可得()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =--,由222220220n BM x n BP y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3cos ,147m n m n m n⋅<>===⨯⋅,所以,270sin ,1cos,14m n m n <>=-<>=, 因此,二面角A PM B --【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.5.【2021·北京高考真题】已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --5111A M A B 的值.【答案】(1)证明见解析;(2)11112A M AB =. 【分析】(1)首先将平面CDE 进行扩展,然后结合所得的平面与直线11BC 的交点即可证得题中的结论;(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数λ的值.【解析】(1)如图所示,取11B C 的中点'F ,连结,','DE EF F C , 由于1111ABCD A B C D -为正方体,,'E F 为中点,故'EF CD , 从而,',,E F C D 四点共面,即平面CDE 即平面'CDEF , 据此可得:直线11B C 交平面CDE 于点'F ,当直线与平面相交时只有唯一的交点,故点F 与点'F 重合, 即点F 为11B C 中点.(2)以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴正方形,建立空间直角坐标系D xyz -,不妨设正方体的棱长为2,设()11101A MA B λλ=≤≤, 则:()()()()2,2,2,0,2,0,1,2,2,1,0,2M C F E λ,从而:()()()2,22,2,1,0,2,0,2,0MC CF FE λ=---==-, 设平面MCF 的法向量为:()111,,m x y z =,则:()111112222020m MC x y z m CF x z λ⎧⋅=-+--=⎪⎨⋅=+=⎪⎩, 令11z =-可得:12,,11m λ⎛⎫=- ⎪-⎝⎭,设平面CFE 的法向量为:()222,,n x y z =,则:2222020n FE y n CF x z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令11z =-可得:()2,0,1n =-,从而:215,5,51m n m n λ⎛⎫⋅==+= ⎪-⎝⎭, 则:2,155155cos 3m n m n m nλ⋅⎛⎫+⨯ ⎪-⎝⎭===⨯,整理可得:()2114λ-=,故12λ=(32λ=舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.6.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【解析】(1)设DO a =,由题设可得63,,PO AO AB a ===, 2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以312(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即20231022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(2)=m . 由(1)知2AP =是平面PCB 的一个法向量,记AP =n , 则25cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为255. 【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.7.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM 3 连接NP ,则四边形AONP 为平行四边形,故23231(,0)3PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设(,0,0)Q a ,则22123234(),(4())33NQ a B a a =----, 故21123223210(,,4()),||3333B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,210||B E B E B E B E ⋅-===⋅n n n |n |.所以直线B 1E 与平面A 1AMN 10.8.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n . 因为1212127cos ,||||7⋅〈〉==-⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.9.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题. 10.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,1222BC CD CO ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH ==, 所以3sin 3OH OCH OC ∠==, 因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-.设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC 所成角的正弦值为33. 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题. 11.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,|A CA C CA ⋅〈〉==n n n 30sin ,CA 〈〉=n .所以,二面角1B B E D --30(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 所成角的正弦值为33. 12.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(210【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=DC,可得B1C=A1D,故ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(13,2)A M =--,1(1,0,2)A N =--,(0,3,0)MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以32040x y z z ⎧-+-=⎪⎨-=⎪⎩,.可取3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n 所以3020q p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉===⨯‖m n m n m n , 所以二面角1A MA N --10【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.13.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值. 【答案】(1)证明见解析;(2)32. 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为32. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.14.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH =3.以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,03CG =(1,03),AC =(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即30,20.x z x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,3又平面BCGE 的法向量可取为m =(0,1,0), 所以3cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.15.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(23;(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2). 因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P 为锐角,所以其余弦值为33.(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n . 所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.16.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>,则()1,2,F h .(1)依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m . 由题意,有224||1cos ,||||3432h h -⋅〈〉===+m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF的长为87.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.17.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC −A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,22EF =,(BC =-. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC A C --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。
专题 反比例函数选填中档题-k的几何意义(学生版)
专题18反比例函数选填中档题——k 的几何意义题型一由面积求反比例函数中k 的值1.如图,四边形OABC 和四边形BDEF 都是正方形,反比例函数k y x =在第一象限的图象经过点E ,若两正方形的面积差为12,则k 的值为()A .12B .6C .12-D .82.如图,AB x ⊥轴,B 为垂足,双曲线(0)k y x x=>与AOB ∆的两条边OA ,AB 分别相交于C ,D 两点,OC CA =,ACD ∆的面积为3,则k 等于()A .2B .3C .4D .63.如图,已知点A 在反比例函数(0)k y x x=<上,作Rt ABC ∆,点D 是斜边AC 的中点,连接DB 并延长交y 轴于点E ,若BCE ∆的面积为12,则k 的值为.4.如图,在平面直角坐标系中,OABC 的顶点A ,B 在第一象限内,顶点C 在y 轴上,经过点A 的反比例函数(0)k y x x =>的图象交BC 于点D .若2CD BD =,OABC 的面积为15,则k 的值为.5.如图,平行于y 轴的直线与函数1(0)k y x x =>和22(0)y x x =>的图象分别交于A 、B 两点,OA 交双曲线22y x =于点C ,连接CD ,若OCD ∆的面积为2,则k =.6.如图,矩形OABC 的面积为10,双曲线(0)k y x x=>与AB 、BC 分别交于点D 、E .若2AD BD =,则k 的值为.7.如图,在平面直角坐标系xOy 中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数(0)k y x x=>分别与边AB 、边BC 相交于点E 、点F ,且点E 、点F 分别为AB 、BC 边的中点,连接EF .若BEF ∆的面积为3,则k 的值是.8.如图,反比例函数(0,0)k y k x x=<<的图象与矩形ABCD 的边AB ,AD 分别交于点G ,H ,点G 与点B 关于x 轴对称,点H 与点D 关于y 轴对称.若AGH ∆的面积为2,矩形ABCD 的面积为17,则k 的值为.9.如图.在平面直角坐标系中,AOB ∆的面积为278,BA 垂直x 轴于点A ,OB 与双曲线k y x=相交于点C ,且:1:2BC OC =.则k 的值为()A .3-B .94-C .3D .9210.如图,矩形ABCD 的顶点A 和对称中心在反比例函数(0,0)k y k x x=≠>的图象上,若矩形ABCD 的面积为10,则k 的值为()A .10B .43C .32D .511.如图,点A 在双曲线k y x =的第一象限的那一支上,AB 垂直于y 轴与点B ,点C 在x 轴正半轴上,且2OC AB =,点E 在线段AC 上,且3AE EC =,点D 为OB 的中点,若ADE ∆的面积为3,则k 的值为.12.如图,点A 是第一象限内双曲线(0)m y m x =>上一点,过点A 作//AB x 轴,交双曲线(0)n y n x =<于点B ,作//AC y 轴,交双曲线(0)n y n x =<于点C ,连接BC .若ABC ∆的面积为92,则m ,n 的值不可能是()A .19m =,89n =-B .14m =,54n =-C .1m =,2n =-D .4m =,2n =-13.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 落在坐标轴上,反比例函数(0)k y x x =>的图象分别交BC ,OB 于点D ,E ,且54BD CD =,若15AOE S ∆=,则k 的值为.14.如图,在平面直角坐标系中,O 为坐标原点,MN 垂直于x 轴,以MN 为对称轴作ODE ∆的轴对称图形,对称轴MN 与线段DE 相交于点F ,点D 的对应点B 恰好落在(0,0)k y k x x=≠<的双曲线上,点O 、E 的对应点分别是点C 、A .若点A 为OE 的中点,且1AEF S ∆=,则k 的值为.题型二由反比例函数中k 的值求面积15.如图,正比例函数y x =-与反比例函数2y x=-的图象相交于A 、B 两点,分别过A 、B 两点作y 轴的垂线,垂足分别为C 、D ,连接AD ,BC ,则四边形ACBD 的面积为()A .2B .4C .6D .816.如图,在平面直角坐标系中,函数y kx =与3y x =-的图象交于A ,B 两点,过A 作y 轴的垂线,交函数5(0)y x x =>的图象于点C ,连接BC ,则ABC ∆的面积为.17.如图,两个反比例函数4y x =和2y x=在第一象限内的图象分别是1C 和2C ,设点P 在1C 上,PA x ⊥轴于点A ,交2C 于点B ,则POB ∆的面积为()A .1B .2C .4D .无法计算18.如图,A 、B 是反比例函数2y x=的图象上关于原点O 对称的任意两点,过点A 作AC x ⊥轴于点C ,连接BC ,则ABC ∆的面积为()A .1B .2C .3D .419.如图,在平面直角坐标系xOy 中,已知函数13(0)y x x =>和21(0)y x x =-<,点M 为y 轴正半轴上一点,N 为x 轴上一点,过M 作y 轴的垂线分别交1y ,2y 的图象于A ,B 两点,连接AN ,BN ,则ABN ∆的面积为.20.如图,函数1y x =和3y x=-的图象分别是1C 和2C .点P 在1C 上,PC x ⊥轴,垂足为点C ,与2C 相交于点A ,PD y ⊥轴,垂足为点D ,与2C 相交于点B ,则PAB ∆的面积为.21.如图,点A 是反比例函数6(0)y x x=-<的图象上的一点,过点A 作ABCD ,使点B 、C 在x 轴上,点D 在y 轴上,则ABCD 的面积为.22.如图,两个反比例函数1y x =和2y x=-的图象分别是1l 和2l .设点P 在1l 上,PC x ⊥轴,垂足为C ,交2l 于点A ,PD y ⊥轴,垂足为D ,交2l 于点B ,则PAB ∆的面积为.23.如图,已知两个反比例函数11:C y x =和21:3C y x=在第一象限内的图象,设点P 在1C 上,PC x ⊥轴于点C ,交2C 于点A ,PD y ⊥轴于点D ,交2C 于点B ,则四边形PAOB 的面积为.24.已知反比例函数8y x =和3y x =在第一象限内的图象如图所示,则AMN ∆的面积为.25.如图,已知三角形OAB 的顶点B 在x 轴的负半轴上,AB OB ⊥,点A 的坐标为(4,2)-,双曲线(0)k y k x=<的一支经过OA 边的中点C ,且与AB 相交于点D .(1)求此双曲线的函数表达式;(2)连接OD ,求AOD ∆的面积.26.如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数12y x =和24y x=的图象交于点B 和点A .若点C 是y 轴上任意一点,连接AC 、BC ,则ABC ∆的面积为.27.如图,函数1(0)y x x =>和3(0)y x x=>的图象分别是1l 和2l .设点P 在2l 上,//PA y 轴交1l 于点A ,//PB x 轴,交1l 于点B ,PAB ∆的面积为()A .12B .23C .13D .3428.如图,在反比例函数4y x=的图象上有一点A 向x 轴作垂线交x 轴于点C ,B 为线段AC 的中点,又D 点在x 轴上,且3OD OC =,则OBD ∆的面积为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C
D E F
H 如东中学高三数学中档题专题训练三
班级 姓名
1.抛物线2
4y mx =(0)m >的焦点到双曲线
22
1169
x y -=的一条渐近线的距离为3,则此抛物线的方程为 .
2. 圆柱形容器内盛有高度为3cm 的水,若放入三个相同的珠(球的半么与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是____cm.
3.已知有公共焦点的椭圆与双曲线中心在原点,焦点在x 轴上,左、右焦点分别为1F ,2F ,且它们在第一象限的交点为P ,△12PF F 是以1PF 为底边的等腰三角形.若1PF =10,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是 .
4.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,EF ∥AB,EF ⊥FB,∠BFC=90°,BF=FC,H 为BC 的中点, (Ⅰ)求证:FH ∥平面EDB; (Ⅱ)求证:AC ⊥平面EDB;
(Ⅲ)求四面体B —DEF 的体积。
5.在平面直角坐标系xOy 中,已知直线l
:-y +3
+=0和圆1C :2x +2y +8x +F =0.若直线l 被圆1C
截得的弦长为. (1)求圆1C 的方程;
(2)设圆1C 和x 轴相交于A ,B 两点,点P 为圆1C 上不同于A ,B 的任意一点,直线PA ,PB 交y 轴于M ,N 两点.当点P 变化时,以MN 为直径的圆2C 是否经过圆1C 内一定点?请证明你的结论;
(3)若△RST 的顶点R 在直线x =-1上,点S ,T 在圆1C 上,且直线RS 过圆心1C , ∠SRT =30︒,求点R 的纵坐标的范围.
6.已知圆O 的方程为2
2
16x y +=,圆O 交x 轴于,A B 两点(如图),以AB 为长轴的椭圆E 的右焦点为F ,右准线与x 轴交于点K ,点M 在椭圆E 上,且
1
,2
O M K M
M F O K k k ⊥⋅
=- (1) 求椭圆E 的方程;
(2) 设Q 是椭圆E 上任意一点(E 的顶点除外),P 是圆
O 上一点,且满足0PQ OA ⋅=
,过P 的圆O 的切线PT 交x
轴于点T ,求证:OQ TQ k k ⋅为定值;
B
Y
X
K M
A O
F
7.如图,F 是椭圆()0122
22>>=+b a b
y a x 的一个焦点,B
A ,是椭圆的两个顶点,椭圆的离心率为
2
1
,点C 在x 轴上,F C B BF BC ,,,⊥三点确定的圆M 恰好与直线
033:1=++y x l 相切.
(1) 求椭圆的方程;
(2) 过点A 的直线2l 与圆M 交与Q P ,两点,且
2-=⋅,求直线2l 的方程。
8.已知直线220x y -+=经过椭圆22
22:1(0)x y C a b a b
+=>>
的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 为椭 圆C 上位于x 轴上方的动点,直线,,AS BS 与直线10:3
l x = 分别交于,M N 两点。
(I )求椭圆C 的方程;
(Ⅱ)求线段MN 的长度的最小值;
(Ⅲ)当线段MN 的长度最小时,在椭圆C 上是否存在这
样的点T ,使得TSB ∆的面积为
1
5
?若存在,确定点T 的个数,若不存在,说明理由。