汇编3:三角函数(2)
[3]2013年高考理数分类汇编《三角函数》
p
6
,故选 A. )
6.(2013 年全国大纲版)已知函数 f ( x ) = cos x sin 2 x ,下列结论中错误的是( A. y = f ( x ) 的图像关于 ( p , 0 ) 中心对称 C. f ( x ) 的最大值为
B. y = f ( x ) 的图像关于直线 x = D. f ( x ) 既奇函数,又是周期函数
p
2
对称
3 2
【 解 析 】 C ; 对 于 A 选 项 , 因 为 f ( 2p - x ) + f ( x ) = cos ( 2p - x ) sin 2 ( 2p - x ) + cos x sin 2 x = 0 , 故
y = f ( x ) 的图像关于 ( p , 0 ) 对称,故 A 正确;对于 B 选项,同样可验证 f ( p - x ) = f ( x ) ,故 f ( x ) 关
2
p
4
, AB =
2 , BC = 3 ,则 sin ÐBAC = (
)
10 3 10 5 C . D. 5 10 5 2 2 2 【解析】C;由余弦定理得 AC = AB + BC - 2 AB × BC cos ÐABC = 5 ,所以 AC = 5 ,然后由正弦定
B. 理得
é 3 3 ù ,且当 t Î ê -1, ú 3 3 û ë
与 ê
é 3 ù é 3 3 ù 4 3 ,1 , ú 时, y ¢ > 0 ,又 y |t =-1 = 0, y | 3 = ,所以函数 f ( x ) 的最 ú 时, y ¢ < 0 ,当 t Î ê t = 9 ë 3 û ë 3 3 û 3
高考文科数学试题分类汇编3:三角函数
高考文科数学试题分类汇编3:三角函数一、选择题1 .(2013年高考大纲卷(文))已知a 是第二象限角,5sin ,cos 13a a ==则 ( )A .1213-B .513-C .513D .1213【答案】A2 .(2013年高考课标Ⅰ卷(文))函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为【答案】C ;3 .(2013年高考四川卷(文))函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A .2,3π-B .2,6π-C .4,6π-D .4,3π【答案】A4 .(2013年高考湖南(文))在锐角∆ABC 中,角A,B 所对的边长分别为a,b. 若2sinB=3b,则角A 等于______( )A .3πB .4πC .6πD .12π【答案】A5 .(2013年高考福建卷(文))将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是 ( )A .35π B .65π C .2πD .6π【答案】B6 .(2013年高考陕西卷(文))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A7 .(2013年高考辽宁卷(文))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则( )A .6πB .3πC .23πD .56π【答案】A8 .(2013年高考课标Ⅱ卷(文))△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=,C=,则△ABC 的面积为 ( )A .2+2B .+1C .2-2D .-1【答案】B9 .(2013年高考江西卷(文))sincos 2αα==若 ( )A .23-B .13-C .13 D .23【答案】C10.(2013年高考山东卷(文))ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =,则c = ( )A .B .2C D .1【答案】B11.(2013年高考课标Ⅱ卷(文))已知sin2α=,则cos 2(α+)=( )A .B .C .D .【答案】A12.(2013年高考广东卷(文))已知51sin()25πα+=,那么cos α= ( )A .25-B .15-C .15D .25【答案】C13.(2013年高考湖北卷(文))将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 ( )A .π12B .π6C .π3D .5π6【答案】B14.(2013年高考大纲卷(文))若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 ( )A .5B .4C .3D .2【答案】B15.(2013年高考天津卷(文))函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是( )A .1-B .CD .0【答案】B16.(2013年高考安徽(文))设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2,3sin 5sin b c a A B +==,则角C = ( )A .3πB .23πC .34π D .56π 【答案】B17.(2013年高考课标Ⅰ卷(文))已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )A .10B .9C .8D .5【答案】D18.(2013年高考浙江卷(文))函数f(x)=sin xcos x+32cos 2x 的最小正周期和振幅分别是 ( ) A .π,1 B .π,2 C .2π,1D .2π,2【答案】A19.(2013年高考北京卷(文))在△ABC 中,3,5a b ==,1sin 3A =,则sin B = ( )A .15B .59C D .1【答案】B20.(2013年高考山东卷(文))函数x x x y sin cos +=的图象大致为【答案】D 二、填空题21.(2013年高考四川卷(文))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是________.【答案】322.(2013年高考课标Ⅱ卷(文))函数cos(2)()y x ϕπϕπ=+-≤<的图像向右平移2π个单位后,与函数sin(2)3y x π=+的图像重合,则||ϕ=___________.【答案】56π23.(2013年上海高考数学试题(文科))已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c .若2220a ab b c ++-=,则角C 的大小是________(结果用反三角函数值表示).【答案】23π24.(2013年上海高考数学试题(文科))若1cos cos sin sin3x y x y +=,则()cos 22x y -=________.【答案】79-25.(2013年高考课标Ⅰ卷(文))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.【答案】5-;26.(2013年高考江西卷(文))设f(x)=sin3x+cos3x,若对任意实数x 都有|f(x)|≤a,则实数a 的取值范围是_____._____【答案】2a ≥三、解答题27.(2013年高考大纲卷(文))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B(II)若sin sin A C =,求C . 【答案】(Ⅰ)因为()()a b c a b c ac ++-+=,所以222a cb ac +-=-.由余弦定理得,2221cos 22a cb B ac +-==-, 因此,0120B =.(Ⅱ)由(Ⅰ)知060A C +=,所以cos()cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+cos()2sin sin A C A C =++11224=+⨯=故030A C -=或030A C -=-, 因此,015C =或045C =.28.(2013年高考湖南(文))已知函数f(x(1) 求2()3f π的值; (2) 求使 1()4f x <成立的x 的取值集合【答案】解: (1) 41)212cos 232(sin 21)3sin sin 3cos(cos cos )(+⋅+⋅=⋅+⋅⋅=x x x x x x f ππ41)32(.414123sin 21)32(41)62sin(21-==-=+=⇒++=ππππf f x 所以. (2)由(1)知,)2,2()62(0)62sin(4141)62sin(21)(f ππππππk k x x x x -∈+⇒<+⇒<++=.),12,127(.),12,127(Z k k k Z k k k x ∈--∈--∈⇒ππππππππ所以不等式的解集是:29.(2013年高考天津卷(文))在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =, a= 3, 2cos 3B =. (Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值.【答案】30.(2013年高考广东卷(文))已知函数(),12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.【答案】(1)133124f ππππ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,4sin 5θ==-, 1cos cos sin sin 64445f ππππθθθθ⎛⎫⎛⎫⎫∴--=+=- ⎪ ⎪⎪⎝⎭⎝⎭⎭. [来源:12999数学网]31.(2013年高考山东卷(文))设函数2()sin cos (0)f x x x x ωωωω=->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π,(Ⅰ)求ω的值 (Ⅱ)求()f x 在区间3[,]2ππ上的最大值和最小值 【答案】32.(2013年高考浙江卷(文))在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c,且2asinB=3b .(Ⅰ)求角A 的大小;(Ⅱ) 若a=6,b+c=8,求△ABC 的面积.【答案】解:(Ⅰ)由已知得到:2sinsin A B B =,且(0,)sin 0sin 22B B A π∈∴≠∴=,且(0,)23A A ππ∈∴=;(Ⅱ)由(1)知1cos 2A =,由已知得到:222128362()3366433623b c bc b c bc bc bc =+-⨯⇒+-=⇒-=⇒=,所以128232ABCS =⨯⨯=33.(2013年高考福建卷(文))如图,在等腰直角三角形OPQ ∆中,90OPQ ∠=,OP =,点M 在线段PQ 上.(1)若OM =,求PM 的长;(2)若点N 在线段MQ 上,且30MON ∠= ,问:当POM ∠取何值时,OMN ∆的面积最小?并求出面积的最小值.【答案】解:(Ⅰ)在OMP ∆中,45OPM∠=︒,OM =OP =,由余弦定理得,2222cos 45OM OP MP OP MP =+-⨯⨯⨯︒, 得2430MP MP -+=,解得1MP =或3MP =.(Ⅱ)设POM α∠=,060α︒≤≤︒, 在OMP ∆中,由正弦定理,得sin sin OM OPOPM OMP=∠∠, 所以()sin 45sin 45OP OM α︒=︒+,同理()sin 45sin 75OP ON α︒=︒+故1sin 2OMN S OM ON MON ∆=⨯⨯⨯∠ ()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+ ()()1sin 45sin 4530αα=︒+︒++︒=====因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆的面积取到最小值.即230POM ∠=︒时,OMN ∆的面积的最小值为8-.34.(2013年高考陕西卷(文))已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b .(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(Ⅰ) ()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x .最小正周期ππ==22T . 所以),62sin()(π-=x x f 最小正周期为π.(Ⅱ) 上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈. ]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f .所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.35.(2013年高考重庆卷(文))(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c =+. (Ⅰ)求A ;(Ⅱ)设a =S 为△ABC 的面积,求3cos cos S B C +的最大值,并指出此时B 的值.【答案】36.(2013年高考四川卷(文))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A c ---+=-.(Ⅰ)求sin A 的值;(Ⅱ)若a =5b =,求向量BA 在BC方向上的投影.【答案】解:(Ⅰ)由3cos()cos sin()sin()5A B B A B A c ---+=- 得53sin )sin(cos )cos(-=---B B A B B A ,则 53)cos(-=+-B B A ,即 53cos -=A又π<<A 0,则 54sin =A(Ⅱ)由正弦定理,有 Bb A a sin sin =,所以22sin sin ==a A b B , 由题知b a >,则 B A >,故4π=B .根据余弦定理,有 )53(525)24(222-⨯⨯-+=c c ,解得 1=c 或 7-=c (负值舍去),向量BA 在BC =B 22[来源:12999数学网]37.(2013年高考江西卷(文))在△ABC 中,角A,B,C 的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.(1)求证:a,b,c 成等差数列;(2) 若C=23π,求ab的值. 【答案】解:(1)由已知得sinAsinB+sinBsinC+1-2sin 2B=1.故sinAsinB+sinBsinC=2sin 2B因为sinB 不为0,所以sinA+sinC=2sinB 再由正弦定理得a+c=2b,所以a,b,c 成等差数列 (2)由余弦定理知2222cos c a b ac C =+-得2222(2)2cos3b a a b ac π-=+-化简得35a b = 38.(2013年高考湖北卷(文))在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知c o s 23c o s ()A B C -+=.(Ⅰ)求角A 的大小; (Ⅱ)若△ABC 的面积S =5b =,求sin sin B C 的值.【答案】(Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去). 因为0πA <<,所以π3A =.(Ⅱ)由11sin 22S bc A bc ====得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.39.(2013年高考安徽(文))设函数()sin sin()3f x x x π=++.(Ⅰ)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(Ⅱ)不画图,说明函数()y f x =的图像可由sin y x =的图象经过怎样的变化得到.【答案】解:(1)3sincos 3cossin sin )(ππx x x x f ++=x x x x x cos 23sin 23cos 23sin 21sin +=++=)6sin(3)6sin()23()23(22ππ+=++=x x当1)6sin(-=+πx 时,3)(min -=x f ,此时)(,234,2236Z k k x k x ∈+=∴+=+πππππ所以,)(x f 的最小值为3-,此时x 的集合},234|{Z k k x x ∈+=ππ.(2)x y sin =横坐标不变,纵坐标变为原来的3倍,得x y sin 3=; 然后x y sin 3=向左平移6π个单位,得)6sin(3)(π+=x x f 40.(2013年高考北京卷(文))已知函数21(2cos 1)sin 2cos 42f x x x x =-+().(I)求f x ()的最小正周期及最大值;(II)若(,)2παπ∈,且2f α=(),求α的值. 【答案】解:(I)因为21(2cos 1)sin 2cos 42f x x x x =-+()=1cos 2sin 2cos 42x x x +=1(sin 4cos 4)2x x +=)24x π+,所以()f x 的最小正周期为2π,最大值为2.(II)因为2f α=(),所以sin(4)14πα+=. 因为(,)2παπ∈, 所以9174(,)444πππα+∈,所以5442ππα+=,故916πα=. 41.(2013年上海高考数学试题(文科))本题共有2个小题.第1小题满分6分,第2小题满分8分.已知函数()2sin()f x x ω=,其中常数0ω>. (1)令1ω=,判断函数()()()2F x f x f x π=++的奇偶性并说明理由;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再往上平移1个单位,得到函数()y g x =的图像.对任意的a R ∈,求()y g x =在区间[,10]a a π+上零点个数的所有可能值.【答案】法一:解:(1)()2sin 2sin()2sin 2cos )24F x x x x x x ππ=++=+=+ ()F x 是非奇函数非偶函数.∵()0,()44F F ππ-==∴()(),()()4444F F F F ππππ-≠-≠-∴函数()()()2F x f x f x π=++是既不是奇函数也不是偶函数.(2)2ω=时,()2sin 2f x x =,()2sin 2()12sin(2)163g x x x ππ=++=++,其最小正周期T π=由2sin(2)103x π++=,得1sin(2)32x π+=-, ∴2(1),36k x k k Z πππ+=--⋅∈,即(1),2126k k x k Z πππ=--⋅-∈区间[],10a a π+的长度为10个周期,若零点不在区间的端点,则每个周期有2个零点;若零点在区间的端点,则仅在区间左或右端点处得一个区间含3个零点,其它区间仍是2个零点; 故当(1),2126k k a k Z πππ=--⋅-∈时,21个,否则20个. 法二:42.(2013年高考辽宁卷(文))设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)若.a b x =求的值; (II)设函数()(),.f x a b f x =求的最大值 【答案】。
高考复习之三角函数2
各地解析分类汇编:三角函数21【云南省昆明一中2013届高三新课程第一次摸底测试理】在△ABC 中的内角A 、B 、C 所对的边分别为a ,b ,c ,若2cos ,2cos ,b c A c b A ==则△ABC 的形状为 A .直角三角形 B .锐角三角形C .等边三角形D .等腰直角三角形【答案】C 【解析】由正弦定理得sin 2sin cos ,sin 2sin cos ,B C A C B A ==,即s i n ()2s i nc o s A C C A A C A C +==+,即s i n c o s c o s A C A C -=,所以s i n ()0A C A C -==,同理可得A B =,所以三角形为等边三角形,选C.2.【云南省昆明一中2013届高三新课程第一次摸底测试理】函数cos(2)[,]62y x πππ=+-在区间的简图是【答案】B【解析】将cos 2y x =的图象向左平移12π个单位得到函数cos 2()cos(2)126y x x ππ=+=+的图象,选B. 3.【云南省昆明一中2013届高三新课程第一次摸底测试理】化简2sin 44sin ()tan()44αππαα+-则A .sin 2αB .cos2αC .sin αD .cos α【答案】A【解析】224sin ()tan()4cos ()tan()4cos()sin()444444ππππππαααααα+-=--=--2sin(2)2cos 22παα=-=,所以2sin 4sin 42sin 2cos 2sin 22cos 22cos 24sin ()tan()44αααααππαααα===+-,选A.4.【云南省玉溪一中2013届高三第三次月考 理】函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是( ) A.]3,0[πB.]127,12[ππC. ]65,3[ππD.],65[ππ【答案】C【解析】因为2s i n (2)2s i n (2)66y x x ππ=-=--,由3222,262k x k k Zπππππ+≤-≤+∈,解得5,36k x k k Z ππππ+≤≤+∈,即函数的增区间为5[,]36k k k Z ππππ++∈,所以当0k =时,增区间为5[,]36ππ,选C. 5.【云南省玉溪一中2013届高三第四次月考理】已知函数()2sin()f x x ωϕ=+(0,0π)ωϕ><<的图象如图所示,则ω等于( )A .13 B .1 C .32D .2【答案】C 【解析】由图象可知153122888T πππ=-=,所以3T π=,又23T ππω==,所以23ω=,选C. 6.【云南省玉溪一中2013届高三第四次月考理】在ABC ∆中,若coscoscos222a b c AB C ==,则ABC ∆的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】B【解析】由正弦定理可知sin cos ,sin cos ,sin cos ,222A B C A B C ===由sin 2sin cos cos 222A A A A ==,因为cos02A ≠,所以1sin 22A =,因为0A π<<,所以022A π<<,所以26A π=,即3A π=.同理可得,33B C ππ==,所以三角形为等边三角形,选B.7.【云南省玉溪一中2013届高三上学期期中考试理】函数()cos()226y sin x x ππ=++-的最大值为 ( ) A.413B.413 C.213 D.13【答案】C【解析】1()cos()sin 226222y sin x x x x xππ=++-=++1sin 2x x +,===,选C.【解析】sin sin cos ()cos sin cos x x x f x x x x ⎧=⎨⎩,<,,≥,由图象知,函数值域为1⎡-⎢⎣⎦,A 错;当且仅当π2π()4x k k =+∈Z , C 错;最小正周期为2π,D 错.9.【天津市耀华中学2013届高三第一次月考理科】在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,,且1+2cos(B+C)=0,则BC 边上的高等于A -1B +1C 、 【答案】D【解析】由12cos()0B C ++=,得112c o s 0,c o s 2A A -==,所以3A π=。
2023年新高考重难点汇编重难点:三角函数与解三角形(解析版)
新高考中,三角函数与解三角形依然会作为一个重点参与到高考试题中,熟练掌握三角函数的图象与性质、三角恒等变换公式及正、余弦定理,在此基础上掌握一些三角恒变换的技巧,如角的变换,函数名称的变换等,此外,还要注意题目中隐含的各种限制条件,选择合理的解决方法,灵活实现问题的转化。
1、三角函数的图象与性质1、已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin (ωx +φ)或y =A cos (ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2、求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)的形式,再分别应用公式T =2|| ,T =2|| ,T =||求解.3、对于函数y =A sin (ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否为函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.4、若f (x )=A sin (ωx +φ)为偶函数,则φ=k π+2(k Z ),同时当x =0时,f (x )取得最大或最小值.若f (x )=A sin (ωx +φ)为奇函数,则φ=k π(k ∈Z ),同时当x =0时,f (x )=0.2、利用正、余弦定理求边和角的方法(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.重难点02三角函数与解三角形3、求三角形面积的方法:1)若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.热点1、新题型的考查(1)以数学文化和实际为背景的题型;(2)多选题的题型;(3)多条件的解答题题型。
山东省2014届高三理科数学备考之2013届名校解析试题精选分类汇编3三角函数
山东省2014届高三理科数学备考之2013届名校解析试题精选分类汇编3:三角函数一、选择题1 .(山东省潍坊市2013届高三第一次模拟考试理科数学)已知,(0,)2παβ∈,满足tan()4tan αββ+=,则tan α的最大值是( )A .14B .34CD .32【答案】B 由tan()4tan αββ+=tan tan 4tan 1tan tan αββαβ+=-,得23tan tan 14tan βαβ=+,因为(0,)2πβ∈,所以tan 0β>.所以33tan 144tan tan αββ==+,当且仅当14tan tan ββ=,即21tan 4β=,1tan 2β=时,取等号,所以tan α的最大值是34,所以选 B .2 .(山东省潍坊市2013届高三第一次模拟考试理科数学)定义12142334a a a a a a a a =-,若函数sin 2 cos2x () 1 x f x =,则将()f x 的图象向右平移3π个单位所得曲线的一条对称轴的方程是 ( )A .6x π=B .4x π=C .2x π=D .x π=【答案】A 由定义可知,()2cos 22sin(2)6f x x x x π=-=-,将()f x 的图象向右平移3π个单位得到52sin[2()]2sin(2)366y x x πππ=--=-,由52,62x k k Z πππ-=+∈得对称轴为2,32k x k Z ππ=+∈,当1k =-时,对称轴为2326x πππ=-=,选( ) A .3 .(【解析】山东省济宁市2013届高三第一次模拟考试理科数学 )关于函数()=2()f x sin x -cos x cos x 的四个结论:P 1:最大值为;P 2:把函数()21f x x =-的图象向右平移4π个单位后可得到函数2f (x )(sin x cos x )cos x=-的图象;P 3:单调递增区间为[71188k ,k ππππ++],k Z ∈; P 4:图象的对称中心为(128k ,ππ+-),k Z ∈.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】因为2()=22221(2)14f x sin x cos x cos x sin x cos x x π-=--=--,1,所以P 1错误.将()21f x x =-的图象向右平移4π个单位后得到()22(2(2)142f x x x ππ=--=--,所以P 2错误.由222242k x k πππππ-+≤-≤+,解得增区间为388k x k ,k Z ππππ-+≤≤+∈,即3[]88k ,k k Z ππππ-++∈,所以3p 正确.由24x k ,k Z ππ-=∈,得,28k x k Z ππ=+∈,所以此时的对称中心为(1)28k ,ππ+-,所以4p 正确,所以选B . 4 .(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)一已知倾斜角为α的直线l 与直线220x y -+=平行,则tan 2α的值为 ( )A .45B .43C .34 D .23【答案】B【解析】直线的斜率为12,即直线l 的斜率为1tan 2k α==,所以22122tan 142tan 2131tan 31()24ααα⨯====--,选 B .5 .(山东省泰安市2013届高三上学期期末考试数学理)设向量()()cos ,1,2,sin a b αα=-=,若a b ⊥ ,则tan 4πα⎛⎫- ⎪⎝⎭等于( )A .13-B .13C .3-D .3【答案】B【解析】因为a b ⊥ ,所以2cos sin 0a b αα=-=,即tan 2α=.所以tan 1211tan()41tan 123πααα---===++,选 B .6 .(山东省青岛市2013届高三第一次模拟考试理科数学)下列函数中周期为π且为偶函数的是( )A .)22sin(π-=x y B .)22cos(π-=x y C .)2sin(π+=x yD .)2cos(π+=x y【答案】A sin(2)cos 22y x x π=-=-为偶函数,且周期是π,所以选A .7 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)函数()2t a n 22f x x x ππ⎛⎫=-- ⎪⎝⎭在,上的图象大致为( )【答案】C 函数()2tan f x x x =-为奇函数,所以图象关于原点对称,所以排除A,B .当2x π→时,0y <,所以排除D,选C .8 .(山东省潍坊市2013届高三上学期期末考试数学理)已知34(,),cos ,25αππα∈=-则)4tan(απ-等于 ( )A .7B .71C .71- D .7-【答案】B【解析】因为34(,),cos ,25αππα∈=-所以sin 0α<,即33sin tan 54αα=-=,.所以311tan 14tan()341tan 71+4πααα---===+,选 B .9 .(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)函数()sin()f x A x ωϕ=+(其中A >0,ϕ<π2的图象如图所示,为了得到()sin 3g x x =的图象,只需将()f x 的图象( )A .向右平移π4个单位长度 B .向左平移π4个单位长度 C .向右平移π12个单位长度D .向左平移π12个单位长度【答案】C 由图象可知,51,41246T A πππ==-=,即223T ππω==,所以3ω=,所以()sin(3)f x x ϕ=+,又555()sin(3)sin()112124f πππϕϕ=⨯+=+=-,所以532,42k k Z ππϕπ+=+∈,即2,4k k Z πϕπ=+∈,又ϕ<π2,所以4πϕ=,即()sin(3)4f x x π=+.因为()sin 3sin(3)sin[3()]44124g x x x x ππππ==-+=-+,所以只需将()f x 的图象向右平移π12个单位长度,即可得到()sin 3g x x =的图象,选C .10.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,则函数34y f x π⎛⎫=- ⎪⎝⎭是 ( )A .奇函数且图像关于点,02π⎛⎫⎪⎝⎭对称 B .偶函数且图像关于点(),0π对称C .奇函数且图像关于直线2x π=对称 D .偶函数且图像关于点,02π⎛⎫⎪⎝⎭对称 【答案】C当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,即2,42k k Z ππϕπ+=-+∈,即32,4k k Zπϕπ=-+∈,所以()()3si n ()04fx A x A π=->,所以333()sin()sin 444y f x A x A x πππ=-=--=-,所以函数为奇函数且图像关于直线2x π=对称,选 C .11.(山东省烟台市2013届高三3月诊断性测试数学理试题)已知函数221()x f x e-=,若[cos()]12f πθ+=,则θ的值为( )A .4k ππ+B .4k ππ-C .24k ππ+ D .4k ππ-(其中k ∈Z)【答案】C 由221()1x f x e-==,得2210x -=,即22cos ()102πθ+-=,所以c o s 2()c o s (2)c o s 202πθπθθ+=+=-=,所以2,2k k Zπθπ=+∈,即,24k k Z ππθ=+∈,选 C .12.(山东省潍坊市2013届高三第一次模拟考试理科数学)设曲线sin y x =上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为.【答案】C 'cos y x =,即()cos g x x =,所以22()cos yx g x x x ==,为偶函数,图象关于y 轴对称,所以排除A, B .当2cos 0y x x ==,得0x =或,2x k k Z ππ=+∈,即函数过原点,所以选C .13.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)在△ABC 中,内角A .B .C 的对边分别为a 、b 、c,且222222c a b ab =++,则△ABC 是( ) A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【答案】A 【解析】由222222c a b ab =++得,22212a b c ab +-=-,所以222112cos 0224ab a b c C ab ab -+-===-<,所以090180C << ,即三角形为钝角三角形,选( )A .14.(山东省德州市2013届高三3月模拟检测理科数学)函数2cos ()4y x π=+的图象沿x 轴向右平移a 个单位(0)a >,所得图象关于y 轴对称,则a 的最小值为 ( )A .πB .34πC .2πD .4π【答案】D 21cos(2)1sin 2112cos ()sin 242222x x y x x ππ++-=+===-,函数向右平移a 个单位得到函数为1111sin 2()sin(22)2222y x a x a =--=--,要使函数的图象关于y 轴对称,则有2,2a k k Z ππ-=+∈,即,42k a k Z ππ=--∈,所以当1k =-时,得a 的最下值为4π,选 D .15.(山东省泰安市2013届高三上学期期末考试数学理)函数()()sin f x A x ωϕ=+(其中0,2A πϕ><)的图象如图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )A .向右平移6π个长度单位 B .向右平移12π个长度单位 C .向左平移6π个长度单位D .向左平移12π个长度单位【答案】A【解析】由图象可知1A =,741234T πππ=-=,即周期2T ππω==,所以2ω=,所以函数为()()sin 2f x x ϕ=+.又77()sin(2)11212f ππϕ=⨯+=-,即sin()16πϕ+=,所以2,62k k Z ππϕπ+=+∈,即2,3k k Z πϕπ=+∈,因为2πϕ<,所以当0k =时,3πϕ=,所以()sin(2)3f x x π=+.()sin 2sin[2()]63g x x x ππ==-+,所以只需将()f x 的图象向右平移6π,即可得到()sin 2g x x =的图象,所以选( )A .16.(山东省济南市2013届高三上学期期末考试理科数学)将函数 ()sin(2)6f x x π=+的图象向右平移6π个单位后,所得的图象对应的解析式为( )A .y =sin 2xB .y =cos 2xC .y =2sin(2)3x π+D .y =sin(2)6x π-【答案】D【 解析】将函数 ()sin(2)6f x x π=+的图象向右平移6π个单位得到()sin[2()]sin(2)666f x x x πππ=-+=-,选D .17.(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)已知ABC ∆中,三个内角A,B,C的对边分别为a,b,c,若ABC ∆的面积为S,且()222,tan S a b c C =+-则等于( )A .34B .43C .43-D .34-【答案】 C 由()222S a b c =+-得22222S a b ab c =++-,即22212sin 22ab C a b ab c ⨯=++-,所以22si n 2a b C a b a bc-=+-,又222sin 2sin cos 1222a b c ab C ab C C ab ab +--===-,所以s i nc o s 12C C +=,即22cos sin cos 222C C C =,所以tan 22C =,即222tan2242tan 1231tan2C C C ⨯===---,选 C .18.(山东省淄博市2013届高三上学期期末考试数学(理))要得到函数)23sin(-=x y 的图象,只要将函数x y 3sin =的图象 ( )A .向左平移2个单位B .向右平移2个单位C .向左平移32个单位 D .向右平移32个单位 【答案】D【 解析】因为2sin(32)sin 3()3y x x =-=-,所以只需将函数x y 3sin =的图象向右平移32个单位,即可得到)23sin(-=x y 的图象,选 D .19.(山东省泰安市2013届高三上学期期末考试数学理)函数212sin ()4y x π=--是 ( )A .最小正周期为π的偶函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为2π的奇函数【答案】B【解析】212sin ()cos 2()cos(2)sin 2442y x x x x πππ=--=-=-=,所以周期222T πππω===,所以函数为奇函数,所以选 B .20.(山东省临沂市2013届高三5月高考模拟理科数学)已知函数()sin()(0)6f x x ωω=+π>的最小正周期为4π,则 ( )A .函数()f x 的图象关于点(,03π)对称B .函数()f x 的图象关于直线3x =π对称 C .函数()f x 的图象向右平移3π个单位后,图象关于原点对称 D .函数()f x 在区间(0,)π内单调递增【答案】C 因为函数的周期24T ππω==,所以12ω=,所以1()sin()26f x x π=+.当3x π=时,1()sin()sin 32363f ππππ=⨯+==,所以A ,B 错误.将函数()f x 的图象向右平移3π个单位后得到11()sin[()]sin()2362f x x x ππ=-+=,此时为奇函数,所以选 C .21.(山东省淄博市2013届高三上学期期末考试数学(理))已知 ,54cos ,23,-=⎪⎭⎫ ⎝⎛∈αππα则)4tan(απ-等于( )A .7B .71C .71-D .7-【答案】B【 解析】因为 ,54cos ,23,-=⎪⎭⎫ ⎝⎛∈αππα所以3sin 5α=-,3tan 4α=.所以3tantan 1144tan()3471tan tan 144παπαπα---===++,选 B .22.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)已知,135)4sin(-=+πx 则x 2sin 的值等于 ( )A .169120B .169119C .169120-D .119169-【答案】D【解析】因为,135)4sin(-=+πx 所以5cos )13x x +=-,两边平方得125(1sin 2)2169x +=,解得119sin 2169x =-,选 D .23.(2013年临沂市高三教学质量检测考试理科数学)函数f (x )A sin(x )ωϕ=+(其中A>0,2||πϕ<)的部分图象如图所示,为了得到2g(x )cos x =的图象,则只要将f (x )的图象( )A .向左平移12π个单位长度B .向右平移12π个单位长度 C .向左平移6π个单位长度D .向右平移6π个单位长度【答案】A 由图象可知1A =,741234T πππ=-=,所以T π=.又2T ππω==,所以2ω=,即()sin(2)f x x ϕ=+.又777()sin(2)sin()112126f πππϕϕ=⨯+=+=-,所以732,62k k Z ππϕπ+=+∈,即2,3k k Z πϕπ=+∈,所以3πϕ=,即()sin(2)3f x x π=+.因为()cos 2sin(2)sin[2()]2123g x x x x πππ==+=++,所以直线将()f x 向左平移12π个单位长度即可得到()g x 的图象,选 ( )A .24.(【解析】山东省济宁市2013届高三第一次模拟考试理科数学 )现有四个函数:①y x sin x = ②y x cos x = ③y x |cos x|= ④2xy x = 的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .④①②③B .①④③②C .①④②③D .③④②①【答案】C【解析】①为偶函数,②为奇函数,③为奇函数,且当0x >时0y >,④为非奇非偶函数.所以对应的顺序为①④②③,选 C .25.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)一等腰三角形的周长是底边长的5倍,那么顶角的余弦值为 ( )A .518B .34 C D .78【答案】D【解析】设底边长为x ,则两腰长为2x ,则顶角的余弦值222(2)(2)7cos 2228x x x x x θ+-==⨯⨯.选D .26.(山东省青岛即墨市2013届高三上学期期末考试数学(理)试题)函数x xy sin 3+=的图象大致是【答案】C【 解析】函数()sin 3xy f x x ==+为奇函数,所以图象关于原点对称,排除 B .当x →+∞时27.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)在,2ABC AB ∆∠= 中,A=60,且ABC ∆,则BC 的长为 ( )A B .3C D .7【答案】A11sin 6022222S AB AC AC =⨯⋅=⨯⨯=,所以1AC =,所以2222c o s 60B C A B A C A B A C =+-⋅=,,所以BC =,选( )A .28.(山东省青岛即墨市2013届高三上学期期末考试数学(理)试题)已知53)4sin(=+x π,则x 2sin 的值为 ( )A .2524-B .2524 C .257-D .257 【答案】C【 解析】27sin 2sin[2()]cos 2()[12sin ()]424425x x x x ππππ=+-=-+=--+=-,选C .29.(山东省烟台市2013届高三3月诊断性测试数学理试题)若函数f(x)=2sin )0(>ωωx 在区间]4,3[ππ-上单调递增,则ω的最大值等于( )A .32B .23 C .2 D .3 【答案】B 因为函数在[,]44T T-上递增,所以要使函数f(x)=2sin )0(>ωωx 在区间]4,3[ππ-上单调递增,则有34T π-≥-,即43T π≥,所以243T ππω=≥,解得32ω≤,所以ω的最大值等于23,选 B .30.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)若,(,),tan cot ,2παβπαβ∈<且那么必有( )A .2παβ+<B .32αβπ+<C .αβ>D .αβ<【答案】B【解析】因为3cot =tan =tan =tan 222πππββπββ-+--()()(),因为2πβπ<<,所以2πβπ->->-,322ππβπ<-<,而函数tan y x =在(,)2x ππ∈上单调递增,所以由tan cot αβ<,即3tan tan 2παβ<-()可得32παβ<-,即32παβ+<,选 B . 31.(山东省烟台市2013届高三上学期期末考试数学(理)试题)函数()sin()f x A x ωϕ=+(其中A>0,2πϕ<)的图象如图所示,为了得到g(x)=sin2x 的图象,则只需将()f x 的图象( )A .向右平移6π个长度单位 B .向右平移3π个长度单位 C .向左平移6π个长度单位D .向左平移3π个长度单位【答案】A【解析】由图象可知71,41234T A πππ==-=,即T π=,又2T ππω==,所以2ω=,所以()sin(2)f x x ϕ=+,由77()sin(2)11212f ππϕ=⨯+=-,得7in()16πϕ+=-,即73262k ππϕπ+=+,即23k πϕπ=+,因为2πϕ<,所以3πϕ=,所以()sin(2)3f x x π=+.因为()sin 2sin[2()]63g x x x ππ==-+,所以只需将()f x 的图象向右平移6π个长度单位,即可得到()sin 2g x x =的图象,所以选 ( )A .32.(山东省济南市2013届高三3月高考模拟理科数学)右图是函数sin()()y A x x R ωϕ=+∈在区间5[,]66ππ-上的图象.为了得到这个函数的图象,只需将sin ()y x x R =∈的图象上所有的点( )A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 B .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 D .向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A由图象知1A =,5()66T πππ=--=,2T ππω==,所以2ω=.所以()sin(2)y f x x ϕ==+.由2()06πϕ⨯-+=,得3πϕ=,所以()sin(2)3y f x x π==+.所以为了得到这个函数的图象,只需将sin ()y x x R =∈的图象上所有的点向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变,选 ( )A .33.(山东省潍坊市2013届高三上学期期末考试数学理)函数x x y sin =在[]ππ,-上的图象是【答案】A【解析】函数x x y sin =为偶函数,所以图象关于y 对称,所以排除D .当2x π=时,02y π=>,排除 B .当34x π=时,3sin44422y πππππ===<,排除C,选 ( )A .34.(山东省潍坊市2013届高三上学期期末考试数学理( )A .)要得到函数)23sin(-=x y 的图象,只要将函数x y 3sin =的图象( )A .向左平移2个单位B .向右平移2个单位C .向左平移32个单位 D .向右平移32个单位 【答案】D【解析】因为2sin(32)sin 3()3y x x =-=-,所以只需将函数x y 3sin =的图象向右平移32个单位,即可得到)23sin(-=x y 的图象,选 D .35.(山东省威海市2013届高三上学期期末考试理科数学)函数()sin(2),(||)2f x x πϕϕ=+<向左平移6π个单位后是奇函数,则函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值为 ( )A .B .12-C .12D 【答案】A 函数()sin(2),(||)2f x x πϕϕ=+<向左平移6π个单位后得到函数为()sin[2()]sin(2)663f x x x πππϕϕ+=++=++,因为此时函数为奇函数,所以,3k k Z πϕπ+=∈,所以,3k k Z πϕπ=-+∈.因为||2πϕ<,所以当0k =时,3πϕ=-,所以()sin(2)3f x x π=-.当02x π≤≤,所以22333x πππ-≤-≤,即当233x ππ-=-时,函数()sin(2)3f x x π=-有最小值为sin()3π-=,选 ( )A .二、填空题36.(山东省济南市2013届高三3月高考模拟理科数学)函数sin()(0)2yx πϕϕ=+>的部分图象如图所示,设P 是图象的最高点,,A B 是图象与x轴的交点,则tan APB ∠_______________.【答案】2-函数的最大值是1,周期242T ππ==,则14TAD ==,3,1BD PD ==,则tan 1,tan 3,AD BDAPD BPD PD PD∠==∠==所以tan tan()APB APD BPD ∠=∠+∠tan tan 1321tan tan 113APD BPD APD BPD ∠+∠+===--∠⋅∠-⨯. 37.(山东省青岛即墨市2013届高三上学期期末考试数学(理)试题)已知函数2()2sin ()21,,442f x x x x πππ⎡⎤=+--∈⎢⎥⎣⎦,则)(x f 的最小值为_________.【答案】1【解析】2()2sin ()211cos 2()2144f x x x x x ππ=+-=-+--cos(2)2sin 222sin(2)23x x x x x ππ=-+-==-,因为42x ππ≤≤,所以22633x πππ≤-≤,所以sin sin(2)sin 632x πππ≤-≤,即1sin(2)123x π≤-≤,所以12sin(2)23x π≤-≤,即1()2f x ≤≤,所以)(x f 的最小值为1.38.(山东省枣庄市2013届高三3月模拟考试数学(理)试题)设()y f t =是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24.下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y=f(t)的图象可以近似地看成函数sin()y h A x ωφ=++的图象.最能近似表示表中数据间对应关系的函数是_______.【答案】 5.0 2.5sin6y t π=+由数据可知函数的周期12T =,又212T πω==,所以6πω=.函数的最大值为7.5,最小值为2.5,即7.5, 2.5h A h A +=-=,解得 5.0, 2.5h A ==,所以函数为() 5.0 2.5sin()6y f x t πφ==++,又(3) 5.0 2.5sin(3)7.56y f πφ==+⨯+=,所以sin()cos 12πφφ+==,即2,k k Z φπ=∈,所以最能近似表示表中数据间对应关系的函数是 5.0 2.5sin6y t π=+.39.(山东省临沂市2013届高三5月高考模拟理科数学)若tan()2α-=π,则sin 2α=___________.【答案】45-由tan()2α-=π得tan =2α-,所以22222sin cos 2tan 2(2)4sin 2sin cos 1tan 1(2)5ααααααα⨯-====-+++-. 40.(山东省潍坊市2013届高三第二次模拟考试理科数学)在ABC ∆中,角A,B,C 新对的边分别为a,b,c,若cos cos sin a B b A c C +=,222b c a +-=,则角B=________.【答案】60由222b c a +-=得222cos 2b c a A bc +-===,所以30A = .由正弦定理得sin cos sin cos sin sin A B B A C C +=,即sin()sin sin sin A B C C C +==,解得sin 1C =,所以90C = ,所以60B = .41.(山东省枣庄市2013届高三3月模拟考试数学(理)试题)如图,将边长为1cm 的正方形ABCD 的四边沿BC 所在直线l 向右滚动(无滑动),当正方形滚动一周时,正方形的顶点A 所经过的路线的长度为_______cm.π+AB=1cm,所以AC=AC =滚动一周的路程是:1122244πππ⨯+⨯⨯=+. 42.(山东省潍坊市2013届高三上学期期末考试数学理(A ))已知三角形的一边长为4,所对角为60°,则另两边长之积的最大值等于. 【答案】16【解析】设另两边为,a b ,则由余弦定理可知22242cos 60a b ab =+- ,即2216a b ab =+-,又22162a b ab ab ab ab =+-≥-=,所以16ab ≤,当且仅当4a b ==时取等号,所以最大值为16.43.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)在△ABC 中,角A,B,C 的对边为a,b,c,若45a b B ===︒,则角A=_______.【答案】60或120【解析】由正弦定理可知sin sin a bA B=,2==,所以sin A =,因为a b >,所以45A > ,所以60A = 或120A = .三、解答题44.(山东省济南市2013届高三3月高考模拟理科数学)已知)1,sin 32cos 2(x x m +=,),(cos y x n -=,且m n ⊥.(1)将y 表示为x 的函数)(x f ,并求)(x f 的单调增区间;(2)已知c b a ,,分别为ABC ∆的三个内角C B A ,,对应的边长,若()32A f =,且2=a ,4b c +=,求ABC ∆的面积.【答案】解:(1)由m n ⊥ 得0=⋅n m ,22cos cos 0x x x y ∴+-=即x x x y cos sin 32cos 22+=1)62sin(212sin 32cos ++=++=πx x x∴222,262k x k k Z πππππ-+≤+≤+∈,∴,36k x k k Z ππππ-+≤≤+∈,即增区间为[,],36k k k Z ππππ-++∈(2)因为3)2(=A f ,所以2sin()136A π++=,sin()16A π+=, ∴Z k k A ∈+=+,226πππ因为π<<A 0,所以3π=A由余弦定理得:2222cos a b c bc A =+-,即224b c bc =+- ∴24()3b c bc =+-,因为4b c +=,所以4bc =∴1sin 2ABC S bc A == 45.(山东省潍坊市2013届高三第一次模拟考试理科数学)已知函数2()cossin (0,0)2222x x x f x ωϕωϕωϕπωϕ+++=+><<.其图象的两个相邻对称中心的距离为2π,且过点(,1)3π(I) 函数()f x 的达式;(Ⅱ)在△ABC 中.a 、b 、c 分别是角A 、B 、C 的对边,a =,ABC S ∆=角C 为锐角.且满7()2126C f π-=,求c 的值.【答案】解:(Ⅰ)[]1())1cos()2f x x x w j w j =++-+ π1sin()62x w j =+-+ Q 两个相邻对称中心的距离为π2,则πT =, 2ππ,>0,=2||w w w \=\Q , 又()f x 过点π(,1)3,2ππ1π1sin 1,sin 36222j j 骣骣鼢珑\-++=+=鼢珑鼢珑桫桫即, 1cos 2j \=,πππ10,,()sin(2)2362f x x j j <<\=\=++Q (Ⅱ)πππ117sin sin 21266226C f C C 骣骣鼢珑-=-++=+=鼢珑鼢珑桫桫, 2sin 3C \=,π0,cos 2C C <<\=Q ,又112sin 223ABC a S ab C b D ===?,6b \=,由余弦定理得2222cos 21c a b ab C =+-=,c \=46.(山东省枣庄市2013届高三3月模拟考试数学(理)试题)△ABC 中,角A,B,C 所对的边分别为a,b,c,sin2A=1-cos2A. (1)求角A 的值; (2)若1,4a B π==,求b 的值.【答案】47.(山东省潍坊市2013届高三上学期期末考试数学理(A ))已知函数),0(sin )6cos()6cos()(R x x x x x f ∈>--++=ωωπωπω的最小正周期为π2.(I)求函数)(x f 的对称轴方程;(II)若36)(=θf ,求)23cos(θπ+的值. 【答案】48.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)已知()s i n ,,3,c o s ,, 2.334x x m A A n f x m n f π⎛⎫⎫⎛⎫===⋅=⎪⎪ ⎪⎝⎭⎭⎝⎭且(1)求A 的值; (II)设α、()()30780,,3,3,cos 21725f f πβαπβπαβ⎡⎤⎛⎫∈+=-=-+ ⎪⎢⎥⎣⎦⎝⎭求的值.【答案】由题意得49.(2013年临沂市高三教学质量检测考试理科数学)已知函数22x xf (x )cos=-. (I)若[22]x ,ππ∈-,求函数f (x )的单调减区间; (Ⅱ)在△ABC中,a,b,c分别为角A,B,C的对边,若24233f (A ),sin B C,a π-===求△ABC 的面积.【答案】50.(山东省德州市2013届高三3月模拟检测理科数学)在△ABC 中,角A,B,C 的对边分别为a,b,c,已知角,sin 3sin .3A B C π==(1)求tan C 的值;(2)若a =求△ABC 的面积.【答案】51.(山东省德州市2013届高三上学期期末校际联考数学(理))若函数2()22cos f x x x m =++在区间[0,]2π上的最大值为2,将函数()f x 图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再将图象上所有的点向右平移6π个单位,得到函数()g x 的图象. (1)求函数()f x 解析式;(2)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c,又8(),225g A b π-==,△ABC 的面积等于3,求边长a 的值, 【答案】52.(山东省烟台市2013届高三3月诊断性测试数学理试题)已知平面向量 a=(cos ϕ,sin ϕ),b=(cosx,sinx),c=(sin ϕ,-cos ϕ),其中0<ϕ<π,且函数f(x)=(a·b)cosx+(b·c)sinx 的图像过点(6π,1). (1)求ϕ的值;(2)先将函数y=f(x)的图像向左平移12π个单位,然后将得到函数图像上各点的横坐标变为原来的2倍,纵坐标不变,得到函数y=g(x)的图像,求函数y=g(x)在[0,2π]上的最大值和最小值.【答案】53.(山东省青岛即墨市2013届高三上学期期末考试数学(理)试题)已知ABC ∆的角A 、B 、C,所对的边分别是a 、b 、c,且3π=C ,设向量m (a,b),n (sin B,sin A),p=b-2,a-2)==(.(1)若m //n,求B;(2)若ABC m p,S ∆⊥=求边长c.【答案】证明:(1)B b A a n m sin sin ,//=∴由正弦定理得b a b a ==即22又3π=c3π=∆∴B ABC 为等边三角形由题意可知0)2()2(,0.=-+-=a b b a p m 即ab b a =+∴①由正弦定理和①②得,ab c .sin .213=23sin ,3=∴=C C π4=∴ab ②2412163)(2222=∴=-=-+=-+=∴c ab b a ab b a c54.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)设x x x x f cos sin 32cos 6)(2-=.(Ⅰ)求)(x f 的最小正周期及单调递增区间;(Ⅱ)将函数)(x f 的图象向右平移3π个单位,得)(x g y =的图象,求xx g x F 323)()(-=在4π=x 处的切线方程.【答案】解:(Ⅰ)(1cos 2)()62)326x f x x x π+==++,故f (x )的最小正周期π=T , 由ππππk x k 2622≤+≤+-得f (x )的单调递增区间为()Z k k k ∈--]12,127[ππππ (Ⅱ)由题意:())]32336g x x x ππ=-++=+, xxxx g x F 2sin 323)()(=-=, 2'2sin 2cos 2)(x xx x x F -=,因此切线斜率2'16)4(ππ-==F k ,切点坐标为)4,4(ππ, 故所求切线方程为)4(1642πππ--=-x y ,即08162=-+ππy x55.(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)已知函数()()21cos cos 02f x x x x ωωωω=+-> ,其最小正周期为.2π(I)求()f x 的表达式;(II)将函数()f x 的图象向右平移8π个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()y g x =的图象,若关于x 的方程()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,求实数k 的取值范围.【答案】解:(I)21()cos cos 2f x x x x ωωω=⋅+-cos2112sin(2)2226x x x ωπωω+=+-=+ 由题意知)(x f 的最小正周期2T π=,222T πωπωπ===所以2=ω 所以()sin 46f x x π⎛⎫=+⎪⎝⎭(Ⅱ)将()f x 的图象向右平移个8π个单位后,得到)34sin(π-=x y 的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到)32sin(π-=x y 的图象.所以)32sin()(π-=x x g因为02x π≤≤,所以22333x πππ-≤-≤.()0g x k +=在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,即函数()y g x =与y k =-在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个交点,由正弦函数的图象可知k ≤-<或1k -=所以22k -<≤或1k =-. 56.(山东省临沂市2013届高三5月高考模拟理科数学)在△ABC 中,角A,B,C 的对边分别为a,b,c ,已知4A =π,sin()sin()44b Cc B a ---=ππ. (Ⅰ)求B 和C ;[来源:学科网](Ⅱ)若a =求△ABC 的面积.【答案】解:(Ⅰ)由sin()sin(),44ππ---=C b c B a 用正弦定理得 sin sin()sin sin()sin .44ππ---=C C B B A∴sin )sin )-=C C C B B B 即sin cos cos sin 1,-=C C B B ∴sin() 1.-=C B ∵30,4<<π,C B ∴33,44π<<π--C B ∴2π-=C B . 又4A =π,∴34π+=C B , 解得5,.88ππ==C B(Ⅱ)由(Ⅰ)5,88ππ==C B ,由正弦定理,得sin 54sin .sin 8a B b A ===π ∴△ABC的面积115sin 4sin sin 2288ππ==⨯C S ab5sin sin 8888==ππππ2.4==π57.(山东省泰安市2013届高三上学期期末考试数学理)ABC ∆的内角A 、B 、C 所对的边分别为,,a b c ,且sin sin sin sin a A b B c C B += (I)求角C;(II)cos 4A B π⎛⎫-+⎪⎝⎭的最大值. 【答案】58.(【解析】山东省济宁市2013届高三第一次模拟考试理科数学 )在△ABC 中,已知A=4π,cos B =.(I)求cosC 的值; (Ⅱ)若为AB 的中点,求CD 的长.【答案】解:(Ⅰ)552cos =B 且(0,180)B ∈,∴55cos 1sin 2=-=B B )43cos()cos(cos B B A C -=--=ππ1010552255222sin 43sin cos 43cos-=⋅+⋅-=+=B B ππ (Ⅱ)由(Ⅰ)可得10103)1010(1cos 1sin 22=--=-=C C由正弦定理得sin sin =BCABA C,即101032252AB =,解得6=AB在∆BCD 中,55252323)52(222⨯⨯⨯-+=CD 5=,所以5=CD 59.(山东省青岛市2013届高三第一次模拟考试理科数学)已知函数()sin f x x ω= (0)ω>在区间[0,]3π上单调递增,在区间2[,]33ππ上单调递减;如图,四边形OACB 中,a ,b ,c 为ABC △的内角A B C ,,的对边,且满足ACB AC B cos cos cos 34sin sin sin --=+ω. (Ⅰ)证明:a c b 2=+;(Ⅱ)若c b =,设θ=∠AOB ,(0)θπ<<,22OA OB ==,求四边形OACB 面积的最大值.【答案】解:(Ⅰ)由题意知:243ππω=,解得:32ω=,ACB AC B cos cos -cos -2sin sin sin =+ A C A B A A C A B sin cos -sin cos -sin 2cos sin cos sin =+∴ A A C A C A B A B sin 2sin cos cos sin sin cos cos sin =+++∴A C AB A sin 2)(sin )(sin =+++∴a cb A B C 2sin 2sin sin =+⇒∴=+∴(Ⅱ)因为2b c a b c +==,,所以a b c ==,所以ABC △为等边三角形21sin 2OACB OAB ABC S S S OA OB AB θ∆∆=+=⋅+22sin -2cos )OA OB OA OB θθ=++⋅435cos 3-sin +=θθ2sin (-)3πθ=(0)θπ∈ ,,2--333πππθ∴∈(,),当且仅当-32ππθ=,即56πθ=时取最大值,OACB S 的最大值为2+60.(山东省威海市2013届高三上学期期末考试理科数学)在ABC ∆中,角,,A B C 所对应的边分别为c b a ,,,,A B 为锐角且B A <,sin A =3sin 25B =.(Ⅰ)求角C 的值;(Ⅱ)若1b c +=,求c b a ,,的值.【答案】解:(Ⅰ)∵A 为锐角,sinA =∴cos A ==∵B A <,sin A =<,∴45B <∵3sin 25B =,∴4cos 25B ==∴cosB ==sin B =cos cos()cos cos sin sinC A B A B A B =-+=-+==∴135C =(Ⅱ)由正弦定理sin sin sin a b ck A B C===∴b c k +=+,解得k =∴1,a b c ===61.(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)已知向量,cos ),(sin ,cos ),4444x x x x ==m n 函数()f x =⋅m n . (Ⅰ)求函数()f x 的最小正周期及单调递减区间;(Ⅱ)在锐角ABC 中,,,A B C 的对边分别是,,a b c ,且满足1cos ,2a C c b +=求(2)f B 的取值范围.【答案】62.(山东省济南市2013届高三上学期期末考试理科数学)在ABC ∆中,角C B A ,,的对边分别为.,,c b a 且满足()2cos cos .b c A a C -=(1)求角A 的大小;(2)若2,b c ==,求||AB AC + .【答案】解:(1)由正弦定理可得:2sin cos sin cos cos sin ,B A C A C A =+2sin cos sin()sin B A A C B ∴=+=1sin 0,cos .2B A ≠∴= .3A π∴= 222(2)2cos AB AC AB AC AB AC A +=++7=+AB AC ∴+= 63.(山东省潍坊市2013届高三第二次模拟考试理科数学)已知函数()cos()cos()sin cos 44f x x x x x ππ=+-+.(I)求()f x 的最小正周期和最大值;(Ⅱ)在给出的坐标系中画出函数()y f x =在[]0,π上的图象,并说明()y f x =的图象 是由sin 2y x =的图象怎样变换得到的.【答案】64.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)设函数().,(2cos 1),(cos sin 2),f x a b a x b x x x R ===∈ 其中向量(1)求函数()f x 的单调减区间;(2)若[,0]4x π∈-,求函数()f x 的值域;【答案】65.(山东省烟台市2013届高三上学期期末考试数学(理)试题)已知函数())sin()()2f x x x ππωωω=--->0的图像上两相邻最高点的坐标分别为))4,2,233ππ⎛⎛ ⎝⎝和 (1)求ω的值;(2)在△ABC 中,a,b,c 分别是角A,B,C 的对边,且()2f A =求2b c a-的取值范围. 【答案】。
[3]2014年高考理数分类汇编《三角函数》
【 解析 】 p ;由 f ( x ) 在区间 ê
pö 1 æ p 2p ö 7 p æp ö æ 2 ,设函数 f ( x ) 的最 ç ÷= f ç ÷ 知函数 f ( x ) 的对称轴为直线 x = ç + ÷= 2 è 2 3 ø 12 è2ø è 3 ø 1 p p 2 p 7 p p T 小正周期为 T ,所以 T ³ - ,即 T ³ ,所以 - = ,解得 T = p . 2 2 6 3 12 3 4 1 3.(2014 年天津)在 DABC 中,内角 A, B, C 所对的边分别是 a, b, c .已知 b - c = a , 2sin B = 3sin C ,则 4
p
p p æ pö - a Î ç 0, ÷ ,所以 a - b = - a ,即 2 a - b = ,故选 B. 2 2 2 è 2ø
2 cos 3 x 的图像(
)
10.(2014 年浙江)为了得到函数 y = sin 3x + cos 3 x 的图像,可以将函数 y = A.向右平移 个单位
1 2
B. 3.(2014 年湖南) 已知函数 f ( x ) = sin ( x - j ) ,且 ( )
ò
2 x 3
0
f ( x ) dx = 0 ,则函数 f ( x ) 的图象的一条对称轴是
A. x =
5 p 6
B. x =
7 p 12
C. x =
p
3
0
2.(2014 年北京) 设函数 f ( x ) = sin (w x + j ) , A > 0, w > 0 ,若 f ( x ) 在区间 ê , ú 上具有单调性,且 ë6 2û
2022年全国高考数学真题分类汇编:三角函数(附答案解析)
2022年全国高考数学真题分类汇编:三角函数
一.选择题(共8小题)
1.为了得到函数y=2sin3x的图象,只要把函数y=2sin(3x +)图象上所有的点()A .向左平移个单位长度
B
.向右平移个单位长度
C
.向左平移个单位长度
D .向右平移个单位长度
2.已知函数f(x)=cos2x﹣sin2x,则()
A.f(x
)在(﹣,﹣)上单调递减
B.f(x
)在(﹣,)上单调递增
C.f(x)在(0,)上单调递减
D.f(x )在(,)上单调递增
3.已知a =,b=cos,c=4sin,则()
A.c>b>a B.b>a>c C.a>b>c D.a>c>b
4.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如
图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D
在上,CD⊥AB.“会
圆术”给出的弧长的近似值s的计算公式:s=AB +.当OA=2,∠AOB=60°时,s=(
)
A .
B .
C .
D .
第1页(共31页)。
三角函数--2023高考真题分类汇编完整版
三角函数--高考真题汇编第一节三角函数概念、同角三角函数关系式和诱导公式1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023北京卷13)已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p 为假命题的一组,αβ的值为α=;β=.【分析】根据正切函数单调性以及任意角的定义分析求解.【解析】因为()tan f x x =在π0,2⎛⎫⎪⎝⎭上单调递增,若00π02αβ<<<,则00tan tan αβ<,取1020122π,2π,,k k k k ααββ=+=+∈Z ,则()()100200tan tan 2πtan ,tan tan 2πtan k k αααβββ=+==+=,即tan tan αβ<,令12k k >,则()()()()102012002π2π2πk k k k αβαβαβ-=+-+=-+-,因为()1200π2π2π,02k k αβ-≥-<-<,则()()12003π2π02k k αβαβ-=-+->>,即12k k >,则αβ>.不妨取1200ππ1,0,,43k k αβ====,即9ππ,43αβ==满足题意.故答案为:9ππ;43.第二节三角恒等变换1.(2023新高考I 卷6)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64【解析】()222241025x y x x y +--=⇒-+=,所以圆心为()2,0B ,记()0,2A -,设切点为,M N ,如图所示.因为AB =,BM =,故AM =cos cos2AM MAB AB α=∠==,sin 2α=,15sin 2sincos 2224ααα==⨯.故选B.2.(2023新高考I 卷8)已知()1sin 3αβ-=,1cos sin 6αβ=,则()cos 22αβ+=()A.79B.19 C.19-D.79-【解析】()1sin sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,所以1sin cos 2αβ=,所以()112sin sin cos cos sin 263αβαβαβ+=+=+=,()()()2221cos 22cos 212sin 1239αβαβαβ⎛⎫+=+=-+=-⨯= ⎪⎝⎭.故选B.3.(2023新高考II 卷7)已知α为锐角,1cos 4α+=,则sin 2α=()A.38- B.18-+ C.34- D.14-+【解析】21cos 12sin 24αα+=-=,所以2231sin 284α⎫-==⎪⎪⎝⎭,则1sin24α-=或1sin 24α=.因为α为锐角,所以sin02α>,15sin24α-=舍去,得51sin 24α-=.故选D.第三节三角函数的图像与性质1.(2023新高考II 卷16)已知函数()()sin f x x ωϕ=+,如图所示,A ,B 是直线12y =与曲线()y f x =的两个交点,若π=6AB ,则()πf =_______.【解析】sin y x =的图象与直线12y =两个相邻交点的最近距离为2π3,占周期2π的13,所以12ππ36ω⋅=,解得4ω=,所以()()sin 4f x x ϕ=+.再将2π,03⎛⎫⎪⎝⎭代入()()sin 4f x x ϕ=+得ϕ的一个值为2π3-,即()2πsin 43f x x ⎛⎫=- ⎪⎝⎭.所以()2π3πsin 4π32f ⎛⎫=-=- ⎪⎝⎭.2.(2023全国甲卷理科10,文科12)已知()f x 为函数cos 26y x π⎛⎫=+ ⎪⎝⎭向左平移6π个单位所得函数,则()y f x =与1122y x =-交点个数为()A.1B.2C.3D.4【解析】因为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位可得()sin 2.f x x =-而1122y x =-过10,2⎛⎫- ⎪⎝⎭与()1,0两点,分别作出()f x 与1122y x =-的图像如图所示,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,结合图像可知有3个交点.故选C.3.(2023全国乙卷理科6,文科10)已知函数()()sin f x x ωϕ=+在区间2,63ππ⎛⎫⎪⎝⎭单调递增,直线6x π=和23x π=为函数()y f x =的图像的两条对称轴,则512f π⎛⎫-= ⎪⎝⎭()A. B.12-C.12【解析】2222362T T ωωππππ=-=⇒=π=⇒=,所以()()sin 2.f x x ϕ=+又222,32k k ϕππ⋅+=+π∈Z ,则52,6k k ϕπ=-+π∈Z .所以5555sin 22sin 121263f k π⎡ππ⎤π⎛⎫⎛⎫⎛⎫-=⋅--+π=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选D.【评注】本题考查了三角函数图像与性质,当然此题也可以通过画图快速来做,读者可以自行体会.4.(2023全国乙卷理科10)已知等差数列{}n a 的公差为23π,集合{}*cos n S a n =∈N ,若{},S a b =,则ab =()A.1- B.12-C.0D.12【解析】解法一(利用三角函数图像与性质)因为公差为23π,所以只考虑123,,a a a ,即一个周期内的情形即可.依题意,{}{}cos ,n S a a b ==,即S 中只有2个元素,则123cos ,cos ,cos a a a 中必有且仅有2个相等.如图所示,设横坐标为123,,a a a 的点对应图像中123,,A A A 点.①当12cos cos a a =时,且2123a a π-=,所以图像上点的位置必为如图1所示,12,A A 关于x =π对称,且1223A A π=,则1233a ππ=π-=,2433a ππ=π+=,32a =π.所以11122ab ⎛⎫=-⨯=- ⎪⎝⎭.②当13cos cos a a =时,3143a a π-=,所以图像上点的位置必为如图2所示,13,A A 关于x =π对称,且1343A A π=,则133a 2ππ=π-=,3533a 2ππ=π+=,2a =π.所以()11122ab =⨯-=-.综上所述,12ab =-.故选B.解法二(代数法)()()11113n a a n d a n 2π=+-=+-,21cos cos 3a a 2π⎛⎫=+ ⎪⎝⎭,31cos cos 3a a 4π⎛⎫=+ ⎪⎝⎭,由于{}{}*cos ,n S a n a b =∈=N ,故123cos ,cos ,cos a a a 中必有2个相等.①若121111cos cos cos cos 322a a a a a 2π⎛⎫==+=-- ⎪⎝⎭,即113cos 22a a =-,解得11cos 2a =或11cos 2a =-.若11cos 2a =,则1sin a =,3111113cos cos cos 132244a a a a 4π⎛⎫=+=-+=--=- ⎪⎝⎭,若11cos 2a =-,则1sin a =,3111113cos cos cos 13244a a a a 4π⎛⎫=+=-=+= ⎪⎝⎭,故131cos cos 2a a ab ==-.②若131111cos cos cos cos sin 322a a a a a 4π⎛⎫==+=-+ ⎪⎝⎭,得113cos 2a a =,解得11cos 2a =或11cos 2a =-.当11cos 2a =时,1sin a =,21111313cos cos cos 132244a a a a 2π⎛⎫=+=--=--=- ⎪⎝⎭,当11cos 2a =-时,1sin a =213cos 144a =+=,故121cos cos 2a a ab ==-.③若23cos cos a a =,与①类似有121cos cos 2a a ab ==-.综上,故选B.5.(2023北京卷17)已知函数()sin cos cos sin ,0,2f x x x ωϕωϕωϕπ=+><.(1)若()0f =,求ϕ的值;(2)若()f x 在区间2,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,且213f π⎛⎫= ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:3f π⎛⎫= ⎪⎝⎭;条件②:13f π⎛⎫-=- ⎪⎝⎭;条件③:()f x 在,23ππ⎡⎤--⎢⎥⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【分析】(1)把0x =代入()f x 的解析式求出sin ϕ,再由π||2ϕ<即可求出ϕ的值;(2)若选条件①不合题意;若选条件②,先把()f x 的解析式化简,根据() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上的单调性及函数的最值可求出T ,从而求出ω的值;把ω的值代入()f x 的解析式,由π13f ⎛⎫-=- ⎪⎝⎭和π||2ϕ<即可求出ϕ的值;若选条件③:由() f x 的单调性可知() f x 在π3x =-处取得最小值1-,则与条件②所给的条件一样,解法与条件②相同.【解析】(1)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><所以()()3(0)sin 0cos cos 0sin sin 2f ωϕωϕϕ=⋅+⋅==-,因为π||2ϕ<,所以π3ϕ=-.(2)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><,所以()π()sin ,0,||2f x x ωϕωϕ=+><,所以() f x 的最大值为1,最小值为1-.若选条件①:因为()()sin f x x ωϕ=+的最大值为1,最小值为1-,所以π3f ⎛⎫= ⎪⎝⎭无解,故条件①不能使函数()f x 存在;若选条件②:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,且2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭,所以2πππ233T ⎛⎫=--= ⎪⎝⎭,所以2πT =,2π1Tω==,所以()()sin f x x ϕ=+,又因为π13f ⎛⎫-=- ⎪⎝⎭,所以πsin 13ϕ⎛⎫-+=- ⎪⎝⎭,所以ππ2π,32k k ϕ-+=-+∈Z ,所以π2π,6k k ϕ=-+∈Z ,因为||2ϕπ<,所以π6ϕ=-.所以1ω=,π6ϕ=-;若选条件③:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,在ππ,23⎡⎤--⎢⎥⎣⎦上单调递减,所以() f x 在π3x =-处取得最小值1-,即π13f ⎛⎫-=- ⎪⎝⎭.以下与条件②相同.第四节解三角形1.(2023全国甲卷理科16)在ABC △中,2AB =,60BAC ∠=︒,BC =D 为BC 上一点,AD 平分BAC ∠,则AD =.【解析】如图所示,记,,,AB c AC b BC a ===由余弦定理可得22222cos606b b +-⨯⨯⨯︒=,解得1b =(负值舍去).由ABC ABD ACD S S S =+△△△可得,1112sin602sin30sin30222b AD AD b ⨯⨯⨯︒=⨯⨯⨯︒+⨯⨯⨯︒,解得1212bAD b +===+.2.(2023全国甲卷文科17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc .(2)若cos cos 1cos cos a B b A ba Bb A c--=,求ABC △面积.3.(2023全国乙卷理科18)在ABC △中,120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【解析】(1)利用余弦定理可得2222cos 14212cos120527BC AC AB AC AB BAC =+-⋅∠=+-⨯⨯⨯︒=+=.故BC =.又由正弦定理可知sin sin BC ACBAC ABC=∠∠.故sin sin14AC BAC ABC BC ⋅∠∠====.(2)由(1)可知tan ABC ∠=在Rt BAD △中,tan 2AD AB ABC =⋅∠=⨯=故1122255ABD S AB AD =⨯⨯=⨯⨯=△,又11sin 21sin120222ABC S AB AC BAC =⨯⨯⨯∠=⨯⨯⨯︒=△,所以2510ADC ABC ABD S S S =-=-=△△△.5.(2023新高考I 卷17)已知在ABC △中,3A B C +=,()2sin sin A C B -=.(1)求sin A ;(2)设=5AB ,求AB 边上的高.【解析】(1)解法一因为3A B C +=,所以4A B C C ++==π,所以4C π=,2sin()sin()A C A C -=+2sin cos 2cos sin sin cos cos sin A C A C A C A C⇒-=+sin cos 3cos sin A C A C ⇒=tan 3tan 3sin A C A ⇒==⇒=解法二因为3A B C +=,所以4A B C C ++==π,所以4C π=,所以4A B 3π+=,所以4B A 3π=-,故2sin()sin()4AC A 3π-=-,即2sin cos 2cos sin sin cos cos sin 4444A A A A ππ3π3π-=-,得sin 3cos A A =.又22sin cos 1A A +=,()0,A ∈π,得310sin 10A =.(2)若||5AB =.如图所示,设AC 边上的高为BG ,AB 边上的高为CH ,||CH h =,由(1)可得10cos 10A =,||||cos ||102AG AB A AB =⋅==,||||2BG CG ===,所以||AC =,||||2||6||5AC BG CH AB ===.6.(2023新高考II 卷17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知ABC △的面,D 为BC 的中点,且1AD =.(1)若π3ADC ∠=,求tan B ;(2)若228b c +=,求,b c .【解析】(1)依题意,122ADC ABC S S ==△△,133sin 242ADC S AD DC ADC =⋅⋅∠==△,解得2DC =,2BD =.如图所示,过点A 作AE BC ⊥于点E .因为60ADC ∠= ,所以12DE =,32AE =,则15222BE =+=,所以3tan 5AE B BE ==.(2)设AB = c ,AC = b ,由极化恒等式得2214AB AC AD BC ⋅- =,即2114⋅--b c =b c ,化简得()22244⋅-+=-b c =b c ,即cos cos 2BAC bc BAC ⋅⋅∠=∠=-b c =b c ①,又1sin 2ABC S bc BAC =∠=△,即sin bc BAC ∠=.②①得tan BAC ∠=0πBAC <∠<得2π3BAC ∠=,代入①得4bc =,与228b c +=联立可得2b c ==.7.(2023北京卷7)在ABC △中,()()()sin sin sin sin a c A C b A B +-=-,则C ∠=()A.6π B.3π C.32π D.65π【分析】利用正弦定理的边角变换与余弦定理即可得解.【解析】因为()(sin sin )(sin sin )a c A C b A B +-=-,所以由正弦定理得()()()a c a c b a b +-=-,即222a c ab b -=-,则222a b c ab +-=,故2221cos 222a b c ab C ab ab +-===,又0πC <<,所以π3C =.故选B.。
2011年高考数学试题分类汇编3——三角函数
三、三角函数一、选择题1.(重庆理6)若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足22a b 4c +-=(),且C=60°,则ab 的值为A .43 B .8- C . 1 D .23【答案】A2.(浙江理6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则c o s ()2βα+=A .3B .3-C .9D .9-【答案】C3.(天津理6)如图,在△ABC 中,D 是边A C 上的点,且,2,2AB C D AB BC BD===,则sin C 的值为A .3B .6C .3D .6【答案】D4.(四川理6)在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是A .(0,6π]B .[ 6π,π)C .(0,3π]D .[ 3π,π)【答案】C【解析】由题意正弦定理22222222211cos 023b c aa b c bc b c a bc A A bcπ+-≤+-⇒+-≥⇒≥⇒≥⇒<≤5.(山东理6)若函数()sin f x xω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=A .3B .2C .32 D .23【答案】C6.(山东理9)函数2sin 2x y x=-的图象大致是【答案】C7.(全国新课标理5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A ) 45- (B )35- (C ) 35 (D )45【答案】B8.(全国大纲理5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13 B .3 C .6 D .9【答案】C9.(湖北理3)已知函数()cos ,f x x x x R=-∈,若()1f x ≥,则x 的取值范围为A .|,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭B .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ C .5{|,}66x k x k k Z ππππ+≤≤+∈ D .5{|22,}66x k x k k Z ππππ+≤≤+∈【答案】B10.(辽宁理4)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,asinAsinB+bcos2A=a 2,则=ab(A) (B)(C(D【答案】D11.(辽宁理7)设sin 1+=43πθ(),则sin 2θ=(A )79- (B )19-(C )19 (D )79【答案】A12.(福建理3)若tan α=3,则2sin 2cos a α的值等于A .2B .3C .4D .6【答案】D13.(全国新课标理11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则(A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减(C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增【答案】A14.(安徽理9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭(B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭(C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭【答案】C二、填空题15.(上海理6)在相距2千米的A .B 两点处测量目标C ,若0075,60C AB C BA ∠=∠=,则A .C 两点之间的距离是 千米。
2012届北京市高三一模文科数学分类汇编3:三角函数
2012北京市高三一模数学文分类汇编:三角函数【2012年北京市西城区高三一模文】11. 函数22sin 3cos y x x =+的最小正周期为_____. 【答案】π【解析】函数x x y 2cos 2cos 212+=+=,所以周期为ππ=22。
【2012北京市门头沟区一模文】10. 在ABC ∆中,已知2=a ,3=b ,7=c ,则ABC ∆的面积是 .【答案】233【2012北京市门头沟区一模文】已知31)4tan(=-πα,则α2sin 等于(A)32 (B)31 (C) 54(D)52【答案】C【2012北京市海淀区一模文】(10)若tan 2α=,则sin 2α= .【答案】45【2012北京市房山区一模文】12.已知函数()ϕω+=x x f sin )((ω>0, 20πϕ<<)的图象如图所示,则ω=____,ϕ=___.【答案】2,3π【2012北京市东城区一模文】(6)已知sin(45)10α-=-,且090<<α,则cos α的值为(A )513(B )1213(C ) 35(D )45【答案】D【2012北京市朝阳区一模文】9.若sin 3θ=,(,)2θπ∈π,则tan θ= .【答案】2-【2012北京市石景山区一模文】3.函数1sin()y x π=+-的图象( )A .关于2x π=对称 B .关于y 轴对称 C .关于原点对称 D .关于x π=对称【答案】A【解析】函数x x y sin 1)sin(1+=-+=π的图象关于2π=x 对称,选A.【2012北京市石景山区一模文】15.(本小题满分13分)在A B C ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且C b B c a cos cos )2(=-. (Ⅰ)求角B 的大小; (Ⅱ)若2,4==a A π,求ABC ∆的面积.【答案】解:(Ⅰ)∵ C b B c a cos cos )2(=-,由正弦定理,得∴ C B B C A cos sin cos )sin sin 2(=-. …………2分∴ A C B C B B C B A sin )sin(cos sin cos sin cos sin 2=+=+=,………4分 ∵ ()π,0∈A , ∴0sin ≠A ∴ 21cos =B . 又∵ π<<B 0 , ∴ 3π=B . …………6分(Ⅱ)由正弦定理Bb Aa sin sin =,得622232=⨯=b …………8分,43A B ππ==426sin +=∴C …………11分2334266221s i n 21+=+⨯⨯⨯==∴C ab s . …………13分【2012北京市朝阳区一模文】15. (本题满分13分)已知函数π()cos()4f x x =-.(Ⅰ)若3()5f α=,其中π3π,44α<<求πsin 4α⎛⎫- ⎪⎝⎭的值; (II )设()()2g x f x f x π⎛⎫=⋅+⎪⎝⎭,求函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 【答案】解:(Ⅰ)因为π3()cos()45f αα=-=,且ππ042α<-<, …………1分所以π4sin 45α⎛⎫-= ⎪⎝⎭. .…………5分. (II )()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+=ππsin()cos()44x x +⋅+=1πsin(2)22x +=1cos 22x . .…….…..10分当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦.则当0x =时,()g x 的最大值为12;当π3x =时,()g x 的最小值为14-. ………13分【2012北京市门头沟区一模文】15.(本小题满分13分)已知向量)1,(sin -=x a,)2,cos 3(x b =,函数2)()(b a x f +=.(I )求函数)(x f 的最小正周期; (II )若]2,4[ππ-∈x ,求函数)(x f 的值域.【答案】解:(I )由已知222)21()cos 3(sin )()(+-++=+=x x b a x f ……2分化简,得3)62sin(2)(++=πx x f……4分函数)(x f 的最小正周期ππ==22T ……6分 (II )]2,4[ππ-∈x ,则67623πππ≤+≤-x , ……8分 所以1)62sin(23≤+≤-πx……10分函数)(x f 的值域是]5,33[-……13分【2012年北京市西城区高三一模文】15.(本小题满分13分)在△ABC 中,已知2sin cos sin()B A A C =+. (Ⅰ)求角A ;(Ⅱ)若2B C =,△ABC ,求A B .【答案】(Ⅰ)解:由πA B C ++=,得sin()sin(π)sin A C B B +=-=. ……3分所以原式化为B A B sin cos sin 2=. …………4分 因为(0,π)B ∈,所以 0sin >B , 所以 21cos =A . …………6分因为(0,π)A ∈, 所以 π3A =. …………7分(Ⅱ)解:由余弦定理,得 222222cos BC AB AC AB AC A AB AC AB AC =+-⋅⋅=+-⋅.………9分因为 2B C =,1πsin23A B A C ⋅⋅=所以 228AB AC +=. …………11分因为 4A B A C ⋅=, 所以 2A B =. ………13分【2012北京市海淀区一模文】(15)(本小题满分13分)已知函数()sin sin()3f x x x π=+-.(Ⅰ)求()f x 的单调递增区间;(Ⅱ)在A B C ∆中,角A ,B ,C 的对边分别为,,a b c . 已知()2f A =,a =,试判断A B C ∆的形状.【答案】解:(Ⅰ)()sin sin()3f x x x π=+-1sin sin cos 22x x x =+- ………………………………………2分3sin 22x x =-1cos 22x x ÷÷=-÷÷)6x π=-. ………………………………………4分由22,262k x k k πππππ-<-<+Z ,得:222,33k x k k ππππ-<<+ Z . 所以 ()f x 的单调递增区间为2(2,2)33k k ππππ-+,k ÎZ .………………………………………6分(Ⅱ)因为 ()2f A =,所以 )62A π-=.所以1sin()62A π-=.………………………………………7分因为 0A π<<,所以 5666A πππ-<-<.所以 3A π=. ………………………………………9分因为sin sin a b AB =,a =,所以 1sin 2B =. ………………………………………11分因为 a b >,3A π=,所以 6B π=.所以 2C π=.所以 A B C ∆为直角三角形. ………………………………………13分【2012北京市东城区一模文】(15)(本小题共13分) 已知函数22()(sin2cos2)2sin 2f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若函数()y g x =的图象是由()y f x =的图象向右平移8π个单位长度得到的,当x ∈[0,4π]时,求()y g x =的最大值和最小值.【答案】解:(Ⅰ)因为22()(sin 2cos 2)2sin 2f x x x x =+-sin 4cos 4x x =+)4x π=+, …………6分所以函数()f x 的最小正周期为2π. …………8分(Ⅱ)依题意,()y g x ==[4()8x π-4π+])4x π=-. …………10分 因为04x π≤≤,所以34444x πππ-≤-≤. …………11分当442x ππ-=,即316x π=时,()g x当444x ππ-=-,即0x =时, ()g x 取最小值1-. …………13分【2012北京市房山区一模文】15.(本小题共13分)已知A B C △中,内角C B A ,,的对边分别为c b a ,,,且552cos =A ,10103cos =B .(Ⅰ)求()B A +cos 的值; (Ⅱ)设10=a ,求A B C △的面积.【答案】解:(Ⅰ)∵C B A ,,为ABC ∆的内角,且,552cos =A ,10103cos =B∴555521cos1sin 22=⎪⎪⎭⎫ ⎝⎛--=-=A A1010101031cos1sin 22=⎪⎪⎭⎫⎝⎛-=-=B B ………………………………………4分∴()B A +cos B A B A sin cos cos +=10105510103552⨯-⨯=22=………………………………………7分(Ⅱ)由(I )知,45=+B A∴ 135=C ………………………………………8分 ∵10=a ,由正弦定理Bb Aa sin sin =得555101010sin sin =⨯=⨯=AB a b ……………………………………11分∴ABC S ∆252251021sin 21=⨯⨯⨯==C ab ……………………………………13分【2012北京市丰台区一模文】15.(本小题共13分) 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin cos cos .a B b C c B -= (I )判断△ABC 的形状;(Ⅱ)若()sin cos f x x x =+,求f (A )的最大值.【答案】。
2013年高考数学试题分类汇编——三角函数 2
2013年全国各地高考试题汇编(湖南.文)已知函数()cos cos()3f x x x =⋅-(1)求2()3f π的值(2)求使1()4f x <成立的x 的取值集合 (2013陕西.理)已知向量1(cos ,),,cos2),2x x x x =-=∈a b R ,设函数()·f x =a b . (1) 求()f x 的最小正周期. (2) 求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(2013湖南.理)已知函数()sin()cos()63f x x x ππ=-+-,2()2sin 2xg x =.(1)若α是第一象限角,且()5f α=,求()g α的值; (2)求使()()f x g x ≥成立的x 的取值集合.(2013湖北.文)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (1)求角A 的大小;(2)若△ABC 的面积S =5b =,求sin sinBC 的值.2013江西.理)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知cos (cos )cos 0C A A B += (1) 求角B 的大小;若1a c +=,求b 的取值范围 2013四川.理)在ABC ∆中,角,,A B C 的对边分别c b a 、、,且53)cos(sin )sin(cos 2cos 22-=++---C A B B A B B A (1)求A cos 的值;若5,24==b a ,求向量在方向上的投影。
(2013新课标Ⅱ.理)ABC ∆在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (1)求B ;(2)若2b =,求ABC ∆面积的最大值。
(1)求,a c 的值; (2)求sin()A B -的值.(2013全国卷.文)设ABC ∆的内角,,A B C 的对边分别为,,,()()a b c a b c a b c ac ++-+= (1)求角B (2)若413sin sin -=C A ,求角C (2013江苏卷)已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0. (1)若2||=-b a ,求证:b a ⊥; (2)设)1,0(=c ,若c b a =+,求βα,的值. 2013上海.理)已知函数()2sin (0)f x x ωω=> (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像.区间[,](,,)a b a b R a b ∈<,满足: ()y g x =在[,]a b 上至少含有30个零点.在所有满足上述条件的[,]a b 中,求b a -的最小值.2010年高考三角函数汇编一、选择题(2010上海文数)18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC (A )一定是锐角三角形. (B )一定是直角三角形.(C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形.2010湖南文数)7.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,,则 A.a >b B.a <b C. a =b D.a 与b 的大小关系不能确定(2010浙江理数)(9)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 (A )[]4,2-- (B )[]2,0- (C )[]0,2 (D )[]2,4(2010浙江理数)(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (2010全国卷2理数)(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位(B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位 (2010陕西文数)3.函数f (x )=2sin x cos x 是(A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数(D )最小正周期为π的偶函数(2010辽宁文数)(6)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是 (A )23 (B ) 43 (C ) 32(D ) 3 (2010辽宁理数)(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是 (A )23 (B)43 (C)32(D)3 (2010全国卷2文数)已知2sin 3α=,则cos(2)x α-=(A)B )19-(C )19(D(2010江西理数)7.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ECF ∠=( )A. 1627B. 23C. 3D. 34(2010重庆文数)(6)下列函数中,周期为π,且在[,]42ππ上为减函数的是(A )sin(2)2y x π=+(B )cos(2)2y x π=+(C )sin()2y x π=+(D )cos()2y x π=+ (2010重庆理数)已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则A. ω=1 ϕ= 6πB. ω=1 ϕ=- 6πC. ω=2 ϕ= 6πD. ω=2 ϕ= -6π(2010山东文数)(10)观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=(A )()f x (B)()f x - (C) ()g x (D)()g x - (2010四川理数)(6)将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=-(B )sin(2)5y x π=-(C )1sin()210y x π=- (D )1sin()220y x π=-15、(2010天津文数)(8)5y Asin x x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点(A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变(B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变(D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(2010天津理数)(7)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22a b -,sin C B =,则A= (A )030 (B )060 (C )0120 (D )0150 (2010全国卷1理数)(2)记cos(80)k -︒=,那么tan100︒=(2010湖南理数)6、在△ABC 中,角A ,B ,C 所对的边长分别为a,b,c ,若∠C=120°,c =,则A 、a>bB 、a<bC 、a=bD 、a 与b 的大小关系不能确定 (2010湖北理数)3.在ABC ∆中,a=15,b=10,A=60°,则cos B =A -3 B 3 C -3 D 3(2010浙江理数)(11)函数2()sin(2)4f x x x π=--的最小正周期是__________________ .(2010山东文数)(15) 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,若a =2b =,sin cos B B +则角A 的大小为 .(2010广东理数)11.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若则sinC= . (2010福建理数)14.已知函数f(x)=3sin(x-)(>0)6πωω和g(x)=2cos(2x+)+1ϕ的图象的对称轴完全相同。
2013年全国高考理科数学试题分类汇编3:三角函数
2013年全国高考理科数学试题分类汇编3:三角函数一、选择题1 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34-【答案】C2 .(2013年高考陕西卷(理))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=,则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 【答案】B3 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))在△ABC 中,,3,4AB BC ABC π∠==则sin BAC ∠ =【答案】C4 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 (A) 34π (B) 4π (C)0 (D) 4π-【答案】B5 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠= A.6π B.3π C.23π D.56π【答案】A6 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()=cos sin 2f x x x ,下列结论中错误的是(A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2x π=对称(C)()f x()f x 既奇函数,又是周期函数 【答案】C7 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))函数cos sin y x x x =+的图象大致为【答案】D8 .(2013年高考四川卷(理))函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π【答案】A9 .(2013年上海市春季高考数学试卷(含答案))既是偶函数又在区间(0 )π,上单调递减的函数是( ) (A)sin y x = (B)cos y x = (C)sin 2y x = (D)cos 2y x =【答案】B10.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))04cos50tan 40-= ( )1 【答案】C11.(2013年高考湖南卷(理))在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A 则角等于A.12π B.6π C.4π D.3π 【答案】D12.(2013年高考湖北卷(理))将函数()sin yx x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( )A.12π B.6π C.3π D.56π【答案】B 二、填空题13.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))ABC ∆中,090=∠C ,M 是BC的中点,若31sin =∠BAM ,则=∠BAC sin ________.14.(2013年高考新课标1(理))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______【答案】. 15.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图ABC ∆中,已知点D 在BC边上,AD ⊥AC,sin 3BAC AB AD ∠===则BD 的长为_______________16.(2013年上海市春季高考数学试卷(含答案))函数2sin y x =的最小正周期是_____________【答案】2π17.(2013年高考四川卷(理))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.18.(2013年高考上海卷(理))若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y +=【答案】2sin()3x y +=. 19.(2013年高考上海卷(理))已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)【答案】1arccos3C π=- 20.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知α是第三象限角,1sin 3a =-,则cot a =____________.【答案】21.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))函数)42sin(3π+=x y 的最小正周期为___________.【答案】π22.(2013年上海市春季高考数学试卷(含答案))在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若5 8 60a b B === ,,,则b=_______【答案】723.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设ABC ∆的内角,,A B C 所对边的长分别为,,a b c .若2b c a +=,则3sin 5sin ,A B =则角C =_____.【答案】π3224.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=________.【答案】5-25.(2013年高考江西卷(理))函数2sin2y x x =+的最小正周期为T 为_________.【答案】π26.(2013年上海市春季高考数学试卷(含答案))函数4sin 3cos y x x =+的最大值是_______________ 【答案】5 三、解答题27.(2013年高考北京卷(理))在△ABC 中,a =3,b B =2∠A .(I)求cos A 的值; (II)求c 的值.【答案】解:(I)因为a =3,b =2,∠B =2∠A . 所以在△ABC 中,由正弦定理得3sin sin 2A A=.所以2sin cos sin A A A =.故cos A =.(II)由(I)知cos A =,所以s i n A ==.又因为∠B=2∠A,所以21c o s 2c o s 13B A =-=.所以sin B ==.在△ABC 中,sin sin()sin cos cos sin C A B A B A B =+=+=所以sin 5sin a Cc A==.28.(2013年高考陕西卷(理))已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】解:(Ⅰ) ()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x .最小正周期ππ==22T . 所以),62sin()(π-=x x f 最小正周期为π.(Ⅱ) 上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈.]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f . 所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.29.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在ABC 中,内角,,A B C 的对边分别是,,a b c ,且222a b c +=.(1)求C ; (2)设()()2cos cos cos cos 5cos 5A B A B ααα++==,求tan α的值. 【答案】由题意得30.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期; (Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】31.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))设向量)(),sin,cos,sinx,0,.2a x xb x xπ⎡⎤==∈⎢⎥⎣⎦(I)若.a b x=求的值;(II)设函数()(),.f x a b f x= 求的最大值【答案】[来源: ] 32.(2013年高考上海卷(理))(6分+8分)已知函数()2sin()f x xω=,其中常数0ω>;(1)若()y f x=在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x=的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x=的图像,区间[,]a b(,ab R∈且a b<)满足:()y g x=在[,]a b上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a-的最小值.【答案】(1)因为0ω>,根据题意有34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩(2) ()2sin(2)f x x=,()2sin(2())12sin(2)163g x x xππ=++=++1()0sin(2)323g x x x kπππ=⇒+=-⇒=-或7,12x k k Zππ=-∈,即()g x的零点相离间隔依次为3π和23π,故若()y g x=在[,]a b上至少含有30个零点,则b a-的最小值为2431415333πππ⨯+⨯=.33.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=. (I)求B(II)若sin sin A C =,求C . 【答案】34.(2013年高考四川卷(理))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-. (Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC方向上的投影.【答案】解:()I 由()()232coscos sin sin cos 25A B B A B B A C ---++=-,得 ()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦, 即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-()II 由3cos ,05A A π=-<<,得4sin 5A =,由正弦定理,有sin sin a b A B =,所以,sin sin 2b A B a ==. 由题知a b >,则A B >,故4B π=.根据余弦定理,有(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去).故向量BA 在BC方向上的投影为cos 2BA B =35.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.【答案】解:(Ⅰ)由余弦定理2222cos b a c ac B =+-,得()222(1cos )b ac ac B =+-+,又6a c +=,2b =,7cos 9B =,所以9ac =,解得3a =,3c =.(Ⅱ)在△ABC 中,sin B ==,由正弦定理得sin sin a B A b ==,因为a c =,所以A 为锐角,所以1cos 3A ==因此sin()sin cos cos sin 27A B A B A B -=-=.36.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知函数()4cos sin (0)4f x x x πϖϖϖ⎛⎫=⋅+> ⎪⎝⎭的最小正周期为π.(Ⅰ)求ϖ的值; (Ⅱ)讨论()f x 在区间[]0,2上的单调性.【答案】解: (Ⅰ)2)42sin(2)12cos 2(sin 2)cos (sin cos 22++=++=+⇒πωωωωωωx x x x x x122=⇒=⇒ωπωπ.所以1,2)42sin(2)(=++=ωπx x f (Ⅱ) ;解得,令时,当8242]4,4[)42(]2,0[ππππππππ==++∈+∈x x x x所以.]28[]8,0[)(上单调递减,上单调递增;在在πππx f y =37.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像.(1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点.【答案】解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω=又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 2x <<,10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞ 当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯= 综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点38.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.已知(cos ,sin )(cos ,sin )a b ααββ= =,,παβ<<<0.[来源:](1)若||a b -= 求证:a b ⊥ ;(2)设(0,1)c =,若a b c += ,求βα,的值.【答案】解:(1)∵2||=- ∴2||2=- 即()22222=+-=-,又∵1sin cos ||2222=+==αα,1sin cos ||2222=+==ββ∴222=-∴0=∴⊥(2)∵)1,0()sin sin ,cos (cos =++=+βαβα ∴⎩⎨⎧=+=+1sin sin 0cos cos βαβα即⎩⎨⎧-=-=βαβαsin 1sin cos cos两边分别平方再相加得:βsin 221-= ∴21sin =β ∴21sin =α ∵παβ<<<0 ∴πβπα61,65==39.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫-⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.【答案】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+⎪⎝⎭cos 2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭. 40.(2013年高考湖南卷(理))已知函数2()sin()cos().()2sin 632xf x x xg x ππ=-+-=.(I)若α是第一象限角,且()f α=求()g α的值; (II)求使()()f x g x ≥成立的x 的取值集合.【答案】解: (I)533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f . 51cos 12sin 2)(,54cos )2,0(,53sin 2=-===⇒∈=⇒ααααπααg 且(II)21)6sin(cos 21sin 23cos 1sin 3)()(≥+=+⇒-≥⇒≥πx x x x x x g x fZ k k k x k k x ∈+∈⇒++∈+⇒],322,2[]652,62[6ππππππππ41.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲.乙两位游客从A 处下山,甲沿AC 匀速步行,速度为min /50m .在甲出发min 2后,乙从A 乘缆车到B ,在B 处停留min 1后,再从匀速步行到C .假设缆车匀速直线运动的速度为min /130m ,山路AC 长为m 1260,经测量,1312cos =A ,53cos =C . (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【答案】解:(1)∵1312cos =A ,53cos =C ∴),(、20π∈C A ∴135sin =A ,54sin =C∴[]6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(π 根据sinB sinC AC AB =得m C ACAB 1040sin sinB== (2)设乙出发t 分钟后,甲.乙距离为d,则1312)50100(1302)50100()130(222⨯+⨯⨯-++=t t t t d ∴)507037(20022+-=t t d∵13010400≤≤t 即80≤≤t ∴3735=t 时,即乙出发3735分钟后,乙在缆车上与甲的距离最短.(3)由正弦定理sinBsinA ACBC =得50013565631260sin sinB ===A AC BC (m) 乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C 设乙的步行速度为V min /m ,则350710500≤-v ∴3507105003≤-≤-v ∴14625431250≤≤v ∴为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎥⎦⎤⎢⎣⎡14625,431250范围内 CBA法二:解:(1)如图作BD ⊥CA 于点D , 设BD =20k ,则DC =25k ,AD =48k , AB =52k ,由AC =63k =1260m, 知:AB =52k =1040m.(2)设乙出发x 分钟后到达点M , 此时甲到达N 点,如图所示. 则:AM =130x ,AN =50(x +2),由余弦定理得:MN 2=AM 2+AN 2-2 AM ·AN cos A =7400 x 2-14000 x +10000, 其中0≤x ≤8,当x =3537 (min)时,MN 最小,此时乙在缆车上与甲的距离最短.(3)由(1)知:BC =500m,甲到C 用时:126050 =1265(min).若甲等乙3分钟,则乙到C 用时:1265 +3=1415 (min),在BC 上用时:865 (min) .此时乙的速度最小,且为:500÷865 =125043m/min.若乙等甲3分钟,则乙到C 用时:1265 -3=1115 (min),在BC 上用时:565 (min) .此时乙的速度最大,且为:500÷565 =62514 m/min.故乙步行的速度应控制在[125043 ,62514]范围内.42.(2013年高考湖北卷(理))在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c .已知()cos 23cos 1A B C -+=.(I)求角A 的大小;(II)若ABC ∆的面积S =5b =,求sin sin B C 的值.【答案】解:(I)由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒(II)1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A == 25sin sin 47bc B C R ∴== 43.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))△ABC 在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+.CBADMN(Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值.【答案】44.(2013年高考新课标1(理))如图,在△ABC中,∠ABC=90°,AB= 3 ,BC=1,P 为△ABC内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA【答案】(Ⅰ)由已知得,∠PBC=o 60,∴∠PBA=30o ,在△PBA 中,由余弦定理得2PA =o 1132cos3042+-=74;(Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA 中,由正弦定理得,o sin sin(30)αα=-,化简得4sin αα=, ∴tan α,∴tan PBA ∠. 45.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第一小题满分4分,第二小题满分9分.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记1n n n P AP θ+∠=,n N *∈. (1)若31arctan3θ=,求点A 的坐标; (2)若点A的坐标为(0,求n θ的最大值及相应n 的值.[解](1) (2)【答案】[解](1)设(0 )A t ,,根据题意,12n n x -=.由31arctan 3θ=,知31tan 3θ=,而3443343223443()4tan tan()321x x t x x t t t OAP OAP x x t x x t t tθ--=∠-∠===+⋅++⋅, 所以241323t t =+,解得4t =或8t =. 故点A 的坐标为(0 4),或(0 8),. (2)由题意,点n P 的坐标为1(20)n -,,1tan n n OAP -∠=. 111212tan tan()1n n n n n n n OAP OAP θ--+-=∠-∠===.因为2n n≥,所以tan 4n θ≤=,当且仅当2nn=,即4n =时等号成立. 易知0 tan 2n y x πθ<<=,在(0 )2π,上为增函数,因此,当4n =时,n θ最大,其最大值为. 46.(2013年高考江西卷(理))在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-sinA)cosB=0.(1) 求角B 的大小;若a+c=1,求b 的取值范围【答案】解:(1)由已知得cos()cos cos cos 0A B A B A B -++=即有sin sin cos 0A B A B =因为sin 0A ≠,所以sin 0B B =,又cos 0B ≠,所以tan B =又0B π<<,所以3B π=. (2)由余弦定理,有2222cos b a c ac B =+-.因为11,cos 2a c B +==,有22113()24b a =-+. 又01a <<,于是有2114b ≤<,即有112b ≤<.。
上海市2021年高三数学一模汇编——三角函数(含答案)
上海市2021年高三数学一模汇编:三角函数长宁19.(本题满分14分,第1小题满分6分,第2小题满分8分)某公共场所计划用固定高度的板材将一块如图所示的四边形区域ABCD 沿边界围成一个封闭的留观区. 经测量,边界AB 与AD 的长度都是20米,60BAD ∠=︒,120BCD ∠=︒.(1)若105ADC ∠=︒,求BC 的长(结果精确到米);(2)求围成该区域至多需要多少米长度的板材(不计损耗,结果精确到米).杨浦18.(本题满分14分,第1小题满分6分,第2小题满分8分)设常数k ∈R , 2()cos 3sin cos f x k x x x =+, x ∈R . (1)若()f x 是奇函数, 求实数k 的值;(2)设1k =, ABC △中, 内角C B A ,,的对边分别为c b a ,,. 若()1f A =, 7a =, 3b =,求ABC △的面积S .19. (本题满分14分,第(1)小题6分,第(2)小题8分)进博会期间,有一个边长80m 的正方形展厅OABC , 由于疫情,展厅被分割成如图所示的相互封闭的几个部分,已划出以O 为圆心,60m 为半径的扇形ODE 作为展厅,现要在余下的地块中划出一块矩形的产品说明会场地PGBF ,矩形有两条边分别落在边AB 和BC 上,设∠POA=α51212ππα⎛⎫≤≤ ⎪⎝⎭. (1)用α表示矩形PGBF 的面积,并求出当矩形PGBF 为正方形时的面积(精确到21m ); (2)当α取何值时,矩形PGBF 的面积S PGBF 最大?并求出最大面积(精确到21m ).松江18.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分已知函数2()cos cos 1f x x x x =++.(1)求()f x 的最小正周期和值域;(2)若对任意的x R ∈,2()()20f x k f x -⋅-≤恒成立,求实数k 的取值范围.19.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分.如图,矩形ABCD 是某个历史文物展览厅的俯视图,点E 在AB 上,在梯形DEBC 区域内部展示文物,DE 是玻璃幕墙,游客只能在△ADE 区域内参观.在AE 上点P 处安装一可旋转的监控摄像头,MPN ∠为监控角,其中M 、N 在线段DE (含端点)上,且点M 在点N 的右下方.经测量得知:6AD =米,6AE =米,2AP =米,4MPN π∠=.记EPM θ∠=(弧度),监控摄像头的可视区域△PMN 的面积为S 平方米. (1)分别求线段PM 、PN 关于θ的函数关系式,并写出θ的取值范围; (2)求S 的最小值.普陀区17.(本题满分14分,第1小题满分6分,第2小题满分8分)设a 为常数,函数1)22cos(2sin )(+-+=x x a x f π(R ∈x ) (1)设3=a ,求函数)(x f y =的单调递增区间及频率f ;(2)若函数)(x f y =为偶函数,求此函数的值域.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数()sin()6f x x πω=+(0)ω>的最小正周期为π.(1)求ω与()f x 的单调递增区间;(2)在ABC ∆中,若()12Af =,求sin sin B C +的取值范围.闵行18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数2()cos 222x x xf x =+ (1)求函数在区间[]0,π上的值域;(2)若方程(0)f x ωω>在区间[]0,π上至少有两个不同的解,求ω的取值范围.()f x14.(本题满分16分;第1小题7分,第2小题9分)如图所示,在河对岸有两座垂直于地面的高塔CD 和EF .张明在只有量角器(可以测量从测量人出发的两条射线的夹角)和直尺(可测量步行可抵达的两点之间的直线距离)的条件下,为了计算塔CD 的高度,他在点A 测得点D 的仰角为 30, 75=∠CAB ,又选择了相距100米的B 点,测得 60=∠ABC . (1)请你根据张明的测量数据求出塔CD 高度;(2)在完成(1)的任务后,张明测得 90=∠BAE ,并且又选择性地测量了两个角的大小(设为α、β).据此,他计算出了两塔顶之间的距离DF . 请问:①张明又测量了哪两个角?(写出一种测量方案即可)②他是如何用α、β表示出DF 的?(写出过程和结论)金山17.(本题满分14分,第1小题满分7分,第2小题满分7分)已知a 、b 、c 是ABC △中A ∠、B ∠、C ∠的对边,34=a ,6=b ,31cos -=A . (1) 求c ;(2) 求B 2cos 的值.嘉定18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数)(cos )(x x f ω= (0>ω)的最小正周期为π.(1)求ω的值及函数)()4π(3)(x f x f x g --=,⎥⎦⎤⎢⎣⎡∈2π,0x 的值域; (2)在ABC △中,内角A 、B 、C 所对边的长分别为a 、b 、c ,若⎪⎭⎫ ⎝⎛∈2π,0A , 21)(-=A f ,ABC △的面积为33,2=-c b ,求a 的值.黄浦18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 在ABC ∆中,内角A B C 、、所对的边分别为a b c 、、,若A 为钝角,且2sin 0a B =.(1) 求角A 的大小;(2) 记B x =,求函数()cos cos()3f x x x π=++的值域.虹口18.(本题满分14分.第(1)小题7分,第(2)小题7分.)已知函数)1()1()1()(22-+-++=a x a x a x f ,其中R a ∈. (1)当)(x f 是奇函数时,求实数a 的值;(2)当函数)(x f 在),2[+∞上单调递增时,求实数a 的取值范围.奉贤区19、在①3=ac ;②3sin =A c ;③三边成等比数列.这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求解此三角形的边长和角的大小;若问题中的三角形不存在,请说明理由.问题:是否存在ABC ∆,它的内角A 、B 、C 的对边分别为a 、b 、c ,且B A sin 3sin =,6π=C ,______________.注:如果选择多个条件分别解答,按第一个解答计分.崇明18.(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分)已知函数21()sin 22f x x x =.(1)求函数()y f x =的最小正周期;(2)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若锐角A 满足()f A =,6C π=, 2c =,求ABC △的面积.宝山1. (本题满分14分)本题共有2个小题,第1题满分6分,第2题满分8分.设函数f (x )=sin(ωx +φ)(ω>0,-π2<φ<π2)最小正周期为2π,且f (x )的图象过坐标原点.(1)求ω、φ的值;(2)在△ABC 中,若+=2 f (A )▪f (B )▪f (C )+,且三边a 、b 、c 所对的角依次为A 、B 、C .试求b ·f (B +C )c 的值.答案长宁区19.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)连接BD ,由题意ABD ∆是等边三角形,所以20BD =又因为105ADC ∠=,所以45DBC ∠= …………2分 在BCD ∆中,sin sin BC BDBDC C=∠∠, …………4分 得BC=3620≈16(米) …………6分 (2)设θ=∠ADC , 则3BDC πθ∠=-,23CBD πθ∠=-, 在BCD ∆中,sin sin sin CD BC BDCBD BDC C==∠∠∠,所以3BC πθ⎛⎫=- ⎪⎝⎭,23DC πθ⎛⎫=- ⎪⎝⎭…………4分 所需板材的长度=40+⎪⎭⎫ ⎝⎛-3sin 3340πθ+⎪⎭⎫⎝⎛-θπ32sin 3340=θsin 334040+, …………6分 答:当2ADC π∠=时,所需板材最长为334040+≈73(米). …………8分杨浦18(本题满分14分,第1小题满分6分,第2小题满分8分)(1) 解: 由题意()00==k f (2分)检验: ()cos =f x x x 对任意x ∈R 都有()()()cos =cos =()-=----f x x x x x f x (5分)∴()f x 是奇函数 ∴0k =.(6分)(2)解: 2()cos cos 1f A A A A ==, 整理得π1sin 262A ⎛⎫+= ⎪⎝⎭,(8分)A 是三角形的内角∴π3A =(10分) 由余弦定理222cos 2b c a A bc +-=, 即219726c c+-=整理得2320c c -+=,解得1c =或2c =(12分)1sin 24==S bc A ,或2.(14分)徐汇19.(本题满分14分,第1小题满分6分,第2小题满分8分)【解】(1)S =(80-60cos α)(80-60sin α),51212ππα⎛⎫≤≤ ⎪⎝⎭,-----------------3分当矩形PGBF 为正方形时,4πα=,此时S PGBF =(280-≈1412(2m )-------6分(2)S =3600sin αcos α-4800(sin α+cos α)+6400=1800sin2α-48002sin(α+4π)+6400 =-1800cos(2α+2π)-48002sin(α+4π)+6400=3600 sin 2(α+4π)-48002sin(α+4π)+4600,51212ππα⎛⎫≤≤ ⎪⎝⎭-----------10分记t =sin(α+4π)∈[2,1],则236004600S t =-+对称轴为t =322,∵1-322<322∴t 即∴α=12π或512π时, max 1421S ≈(2m )------------------------------------------------------14分(注意:若令sin cos t αα=+,则相应给分)松江18.已知2()cos cos 1f x x x x =++(1)求()f x 的最小正周期和值域;(2)若对任意的x R ∈,2()()20f x k f x -⋅-≤恒成立,求k 的取值范围.解:(1)2()cos cos 1f x x x x =++cos21133212cos2sin(2)2222262x x x x x π+=++=++=++ ………3分 ∴()f x 的为最小正周期22T ππ==, ………5分 值域为 15()[,]22f x ∈ ……………7分 (2)记()f x t = ,则15[,]22t ∈ ,…………………8分由2()()20f x k f x -⋅-≤恒成立,知220t kt --≤恒成立, 即22kt t ≥-恒成立,∵0t > ∴ 222t k t t t -≥=- ……………11分 ∵ 2()g t t t =- 在15[,]22t ∈时单调递增max 55417()()22510g t g ==-=∴k 的取值范围是1710k ≥……………14分青浦19.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分.解:(1)在∆PME 中,EPM θ∠=,PE =AE -AP =4米,4PEM π∠=,34PME πθ∠=-, 由正弦定理得sin sin PM PEPEM PME=∠∠,所以sin 43sin sin cos sin()4PE PEM PM PME πθθθ⨯∠===∠+-, 同理在∆PNE 中,由正弦定理得sin sin PN PEPEN PNE=∠∠,所以sin sin cos sin()2PE PEN PN PNE πθθ⨯∠===∠-, 当M 与E 重合时,0θ=;当N 与D 重合时,tan 3APD ∠=,即arctan3APD ∠=,π3ππtan 3tan 344arc arc θ=--=-,所以3π0tan 34arc θ≤≤-;(2)∆PMN 的面积S 1sin 2PM PN MPN =⨯⨯∠24cos sin cos θθθ=+ 41cos 21sin 222θθ=++88sin 2cos 2)4πθθθ==++1++1, 因为3π0tan 34arc θ≤≤-,所以当242ππθ+=即30,tan 384atc ππθ⎡⎤=∈-⎢⎥⎣⎦时, S1)= 所以可视区域∆PMN面积的最小值为1)平方米.普陀17. (本题满分14分,第1小题满分6分,第2小题满分8分)【解】(1)当3=a 时,1)62sin(212cos 2sin 3)(++=++=πx x x x f ……2分由226222πππππ+≤+≤-k x k ,得63ππππ+≤≤-k x k ,所以此函数的单调递增区间为⎥⎦⎤⎢⎣⎡+-6,3ππππk k ,Z k ∈. ……4分 频率f ππ122==.……6分 (2)定义域R =D ,因为函数)(x f y =为偶函数,所以对于任意的R ∈x ,均有)()(x f x f =-成立.……7分即=+-+-1)2cos()2sin(x x a 12cos 2sin ++x x a ……9分也即02sin 2=x a 对于任意实数x 均成立,只有0=a .……11分 此时12cos )(+=x x f ,因为12cos 1≤≤-x ,……12分 所以22cos 10≤+≤x ,故此函数的值域为]2,0[.……14分浦东18.解:(1) 2ω=()f x 的单调递增区间:222262k x k πππππ-≤+≤+即36k x k ππππ-≤≤+()f x 的单调递增区间,36k k ππππ⎡⎤-+⎢⎥⎣⎦k Z ∈(2)()sin(2)6f x x π=+,由()12A f =,sin()16A π+=,(0,)A π∈,3A π=由A B C π++=,23B C π+=,23B C π=-23sin sin sin()sin sin )326B C C C C C C ππ+=-+=+=+ 250,3666C C ππππ<<∴<+<,1sin()126C π<+≤ sin sin B C +的取值范围为⎝ 闵行18.[解](1)()f x x x =+, ………………………2分所以()2sin()4f x x π=+, ………………………4分因为函数在0,4π⎡⎤⎢⎥⎣⎦上是增函数,在,4ππ⎡⎤⎢⎥⎣⎦上是减函数, 所以当4x π=时,()f x 的最大值为2,当x π=时,()f x的最小值为.所以函数的值域为]2,2[-. ………………………6分 (2)()2sin()(0)4f x x πωωω=+>………………………8分由(f x ω得sin()=42x πω+ 所以2=2=2()4343x k x k k ππππωπωπ++++∈Z 或…………………10分 所以225==()1212k k x x k ππππωωωωω++∈Z 或.由于方程(0)f x ωω>在区间[]0,π上至少有两个不同的解, 所以只需[]5,0,1212πππωω∈, ………………………12分 解得512ω≥,所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭. ………………………14分 静安14.解:(1)在ABC ∆中,45180=∠-∠-=∠CBA CAB ACB ,(1分)由正弦定理,有ACBABCBA AC ∠=∠sin sin ,(3分) ()f x所以,65045sin 60sin 100=⨯=AC 米.(2分) DAC AC CD ∠=tan25030tan 650=⋅= 米.(1分)(2)由(1)有2100=AD 米. 测得α=∠ABF ,β=∠DAF .(2分) 由已知,有EF AB ⊥,AE AB ⊥, 所以,AEF AB 平面⊥,得AF AB ⊥.所以,ααtan 100tan ==AB AF .(2分) 在ADF ∆中,由余弦定理,有=DF βcos 222AF AD AF AD ⋅-+(3分)βααcos tan 22tan 21002-+=米.(2分) 【另解1】测得α=∠ABF ,β=∠DBF .解得,αsec 100=BF ,)13(50+=BC ,32650+=BD .在BDF ∆中,由余弦定理,有DF βααcos sec 3264sec 4326502+-++=米.(同样给分) 【另解2】测得α=∠ABE ,β=∠EAF .(2分) 由已知,有EF AB ⊥,AE AB ⊥, 所以,AEF AB 平面⊥,得AF AB ⊥. 所以,αtan 100=AE .(2分) 在ACE ∆中,由余弦定理,有EC 15cos tan 61000015000tan 100002αα-+=米.(2分) βαtan tan 100=EF 米. (1分) 截取CDEG =,则,=DF 22EC FG +ααβαtan )326(6tan 4)2tan tan 2(5022+-++-=米. (2分) 【另解3】测得α=∠ABE ,β=∠EBF .(2分)由已知,有EF AB ⊥,AE AB ⊥, 所以,AEF AB 平面⊥,得AF AB ⊥. 解得,αsec 100=BE .(2分) 在ACE ∆中,由余弦定理,有EC 15cos tan 61000015000tan 100002αα-+=米. (2分) βαtan sec 100=EF 米. (1分)截取CDEG =,则,=DF 22EC FG +ααβαtan )326(6tan 4)2tan sec 2(5022+-++-=米. (2分)金山17.解:(1) 在ABC △中,由余弦定理得,A bc c b a cos 2222-+=,………………………………2分即)31(6236482-⨯⨯⨯-+=c c , ………………………………………………………………4分整理,得01242=-+c c ,…………………………………………………………………………6分解得2=c ; …………………………………………………………………………………………7分 (2)在ABC△中,由余弦定理得,acb c a B 2cos 222-+=,……………………………………9分得33cos =B ,……………………………………………………………………………………11分311cos 22cos 2-=-=B B . ……………………………………………………………………14分嘉定18、(1)因为函数)(cos )(x x f ω=的最小正周期为π,由 π||π2==ωT ,2||=ω, 又因为0>ω,所以2=ω. 此时x x f 2cos )(=,则得 x x x g 2cos 4π2cos 3)(-⎪⎭⎫⎝⎛-=,即 x x x g 2cos 2sin 3)(-=,即)6π2sin(2)(-=x x g .当⎥⎦⎤⎢⎣⎡∈2π,0x 时,⎥⎦⎤⎢⎣⎡-∈-65π,6π6π2x ,[]2,1)6π2sin(2-∈-x , 所以所求函数的值域为[]2,1-.(2)由题意得 212cos -=A . 因为⎪⎭⎫ ⎝⎛∈2π,0A ,则得 ()π,02∈A ,所以 32π2=A ,解得 3π=A . 因为ABC △的面积为33,则得 33sin 21=A bc ,即 333πsin 21=bc , 即 12=bc .又因为 2=-c b ,由余弦定理,得 bc c b A bc c b a -+=-+=2222cos 2bc c b +-=2)(41222=+=,所以 4=a .黄浦18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.解 (1)ABC ∆的内角A B C 、、所对的边分别为a b c 、、,2sin 0a B =,∴ 根据正弦定理:2sin sin sin a b cR A B C===,2sin 0a B =可化为22sin sin 2sin 0(0,sin 0)R A B R B B B π⋅=<<≠.∴ sin A =A 为钝角,即2A ππ<<,34A π∴=. (2)B x =,A BC π++=,344C x x πππ∴=--=-,且04x π<<. ∴()cos cos()3f x x x π=++1cos cos 2x x x =+sin()3x π=-.又04x π<<,可得1263x πππ<-<.考察函数sin y x =的图像,可知sin sin()123x ππ<-<.3sin()1232x ππ<-<. 所以函数()f x的值域是3,)122π. (写成3)2也可以) 虹口19、(14分)解:(1)由条件,得505303PA PB ==, 15,9PA PB ==,……2分 则222159165cos 215927APB +-∠==⨯⨯ ,所以5arccos 27APB ∠=; (6)(2)由条件①,得505303PA PB ==,可设5,3PA t PB t ==,其中28t <<……8分22222(5)(3)1617128cos 25315t t t APB t t t +--∠==⨯⨯ , sin APB ∠=……10分 则=∆PAB S 11165322h t t ⨯⨯=⨯⨯=900)34(440961088162224+--=-+-t t t当t =,PA PB ==时,h 取得最大值15千米. …………13分 即当PA =千米,PB =.…………14分奉贤居民生活区 北崇明18.解:(1)1cos2)()sin 2sin(2)2232x f x x x π+=-=--...........................4分所以函数()y f x =的最小正周期2||T ππω==...........................6分(2)由()f A =1sin(2)=32A π- 因为(0,)2A π∈,所以22(,)333A πππ-∈-,所以2=36A ππ-,4A π=...........................3分所以22224cos 24b c a b A bc b +--===b =...........................6分所以1sin 12ABCSbc A ==...........................8分 宝山19.(本题满分14分)本题共有2个小题,第1题满分6分,第2题满分8分.解:(1)依题意,可得 2π ω=2π,所以ω=1,故f (x )=sin(x +φ),因为f (x )的图象过坐标原点,所以f (0)=0,即 sin φ=0,注意到-π2<φ<π2,因此,φ=0.(2) 由(1)得f (x )=sin x ,故由已知,可得2sin 2B +3sin 2C =2sin A ▪sin B ▪sin C +sin 2A ,利用正、余弦定理,并整理得sin A -cos A =b 2+2c 22bc ,因为 b 2+2c 22bc ≥2,所以 sin A -cos A ≥2,又sin A -cos A =≤2,所以sin A -cos A =2,且b =2c ,A =3π4, 故b ·f (B +C )c =2c ·sin(B +C )c=2sin A =1.。
2023年高考真题分类汇编---三角函数
2023年高考真题分类汇编---三角函数1.(2023新课标全国Ⅰ卷)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+= ( ) A .79B .19 C .19-D .79-解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=, 所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=.选:B 2.(2023新课标全国Ⅱ卷)已知α锐角,1cos 4α=,则sin 2α= ( ).ABCD解:因为2cos 12sin 2αα=-=,而α为锐角,解得:sin 2α=14==. 选:D .3.(2023全国乙卷)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A .B .12-C .12D 解:因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增, 所以2πππ2362T =-=,且0ω>,则πT =,2π2w T ==, 当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈, 则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5πsin 123f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,选:D .4.(2023全国甲卷)函数()y f x =的图象由函数πcos 26y x ⎛⎫=+⎪⎝⎭的图象向左平移π6个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为 ( ) A .1B .2C .3D .4解:因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭; 当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.选:C . 5.(2023新课标全国Ⅰ卷)已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.解:因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根, 令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,答案为:[2,3).6.(2023新课标全国Ⅱ卷)已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线()y f x =的两个交点,若π6AB =,则()πf =______.解:设1211,,,22A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由π6AB =可得21π6x x -=, 由1sin 2x =可知,π2π6x k =+或5π2π6x k =+,Z k ∈,由图可知, ()215π2ππ663x x ωϕωϕ+-+=-=,即()212π3x x ω-=,4ω∴=. 因为28ππsin 033f ϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以8ππ3k ϕ+=,即8ππ3k ϕ=-+,Z k ∈.所以82()sin 4ππsin 4ππ33f x x k x k ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭, 所以()2sin 4π3f x x ⎛⎫=-⎪⎝⎭或()2sin 4π3f x x ⎛⎫=-- ⎪⎝⎭,又因为()00f <,所以2()sin 4π3f x x ⎛⎫=-⎪⎝⎭,()2πsin 4ππ3f ⎛⎫∴=-= ⎪⎝⎭. 7. (2023北京卷)设函数π()sin cos cos sin 0,||2f x x x ωϕωϕωϕ⎛⎫=+><⎪⎝⎭.(1)若(0)2f =-,求ϕ的值. (2)已知()f x 在区间π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,2π13f ⎛⎫= ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:π3f ⎛⎫=⎪⎝⎭条件②:π13f ⎛⎫-=- ⎪⎝⎭; 条件③:()f x 区间ππ,23⎡⎤--⎢⎥⎣⎦上单调递减.解:(1)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><所以()()(0)sin 0cos cos 0sin sin f ωϕωϕϕ=⋅+⋅==,因为π||2ϕ<,所以π3ϕ=-.(2)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><, 所以()π()sin ,0,||2f x x ωϕωϕ=+><,所以() f x 的最大值为1,最小值为1-.若选条件①:因为()()sin f x x ωϕ=+的最大值为1,最小值为1-,所以π3f ⎛⎫= ⎪⎝⎭不能使函数()f x 存在;若选条件②:因为() f x 在π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,且2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭所以2πππ233T ⎛⎫=--= ⎪⎝⎭,所以2πT =,2π1Tω==,所以()()sin f x x ϕ=+, 又因为π13f ⎛⎫-=- ⎪⎝⎭,所以πsin 13ϕ⎛⎫-+=- ⎪⎝⎭,所以ππ2π,Z 32k k ϕ-+=-+∈,所以π2π,Z 6k k ϕ=-+∈,因为||2ϕπ<,所以π6ϕ=-.所以1ω=,π6ϕ=-;若选条件③:因为() f x 在π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,在ππ,23⎡⎤--⎢⎥⎣⎦上单调递减, 所以() f x 在π3x =-处取得最小值1-,即π13f ⎛⎫-=- ⎪⎝⎭.以下与条件②相同.。
高考复习文科数学之三角函数(2)
各地解析分类汇编:三角函数(2)1【山东省烟台市莱州一中20l3届高三第二次质量检测 (文)】已知点P ()tan ,cos αα在第三象限,则角α的终边在 A.第一象限 B.第二象限C.第三象限D.第四象限【答案】B【解析】因为点P 在第三象限,所以tan 0cos 0αα<⎧⎨<⎩,所以α在第二象限,选B.2 【山东省烟台市莱州一中20l3届高三第二次质量检测 (文)】已知cos 21,054x x π=⎛⎫+ ⎪⎝⎭<x <π,则tan x 为 A.43-B.34-C.2D.2-【答案】A【解析】22cos 2cos sin 1cos sin cos sin 54x x x x x x x x π-==+=-⎛⎫+ ⎪⎝⎭,所以21(c o s si n )12s i n c o s25x x x x +=+=,即12sin cos 025x x =-<,所以cos 0,sin 0x x <>,所以2x ππ<<,所以cos sin 0x x -<,所以249(cos sin )12sin cos =25x x x x -=-,所以7cos sin 5x x -=-,解得3cos 5x =-,4sin 5x =,所以4tan 3x =-,选A.3【山东省烟台市莱州一中20l3届高三第二次质量检测 (文)】在ABC ∆中,解A 、B 、C 的对边分别为a 、b 、c ,若()222tan a c b B +-=,则角B 的值是A.6πB.3π或23πC.6π或56πD.3π【答案】B【解析】由()222tan a c bB +-=得,222a c b +-=根据余弦定理得222cos 2a c b B ac +-=,所以222cos 2a c b B ac +-==,即t a n c o s B B =,即sin B =3B π=或23B π=,选B.4【云南师大附中2013届高三高考适应性月考卷(三)文】对于函数11()(sin cos )|cos sin |22f x x x x x =+--,则下列说法正确的是A .该函数的值域是[]1,1-B .当且仅当22()2k x k k Z πππ<<+∈时,()0f x >C .当且仅当2()2x k k Z ππ=+∈时,该函数取得最大值1D .该函数是以π为最小正周期的周期函数 【答案】B【解析】sin ,sin cos ,()cos ,sin cos ,x x x f x x x x <⎧=⎨⎩≥由图象知,函数值域为1⎡-⎢⎣⎦,A 错;当且仅当π2π()4x k k =+∈Z,C 错;最小正周期为2π,D 错.故选B . 5【山东省烟台市莱州一中20l3届高三第二次质量检测 (文)】.将函数sin 3y x π⎛⎫=- ⎪⎝⎭的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移3π个单位,则所得函数图象对应的解析式为 A.1sin 23y x π⎛⎫=-⎪⎝⎭B.sin 26y x π⎛⎫=-⎪⎝⎭C.1sin2y x =D.1sin 26y x π⎛⎫=-⎪⎝⎭【答案】D【解析】将函数sin 3y x π⎛⎫=- ⎪⎝⎭的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到1s i n ()23y x π=-,再将所得图象向左平移3π个单位,得到11sin[()]sin()23326y x x πππ=+-=-,选D.6 【山东省烟台市2013届高三上学期期中考试文】函数x y sin =的定义域为],[b a ,值域为]21,1[-,则a b -的最大值与最小值之差等于A. π4B. 38πC. π2D. 34π【答案】C【解析】由正弦函数的图象知32)2(6)(m in πππ=--=-a b ,,3465613)(m ax πππ=-=-a b 所以和为π2.故选C.7 【山东省实验中学2013届高三第一次诊断性测试 文】在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且222222c a b ab =++,则△ABC 是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【答案】A 【解析】由222222c a b ab=++得,22212a b c a b +-=-,所以222112c o s 0224ab a b c C ab ab -+-===-<,所以090180C << ,即三角形为钝角三角形,选A.8【山东省潍坊市四县一区2013届高三11月联考(文)】将函数x y 2sin =的图象向右平移4π个单位,再向上平移1个单位,所得函数图象对应的解析式为 A.1)42sin(+-=πx y B.x y 2cos 2=C.x y 2sin 2= D.x y 2cos -= 【答案】C【解析】函数x y 2sin =的图象向右平移4π个单位得到s i n 2()s i n (2)c o s 242y x x x ππ=-=-=-,再向上平移1个单位,所得函数图象对应的解析式为22cos 21(12sin )12sin y x x x =-+=--+=,选C.9 【山东省潍坊市四县一区2013届高三11月联考(文)】ABC ∆的三个内角A ,B ,C 所对的边分别为a A b B A a c b a 3cos sin sin ,,,2=+,则=abA.2B.3C.22D.32【答案】B【解析】根据正弦定理可知222sin sin cos sin cos a A B b A b A b A b +=+=,即b =,所以ba= B. 10【山东省实验中学2013届高三第一次诊断性测试 文】将函数sin y x =的图象向左平移(02)ϕϕπ≤<个单位后,得到函数sin()6y x π=-的图象,则ϕ等于A .6π B .56π C .76π D .116π【答案】D【解析】将函数sin y x =的图象向左平移(02)ϕϕπ≤<个单位后,得到函数sin()6y x π=-的图象,即将sin()6y x π=-向右平移(02)ϕϕπ≤<,得到sin()sin 6y x x πϕ=--=,所以26k πϕπ+=,所以2,6k k Z πϕπ=-∈,又02ϕπ≤<,定义当1k =时,11266ππϕπ=-=,选D. 11【山东省实验中学2013届高三第二次诊断性测试数学文】已知53)4cos(=-x π,则x 2s i n = A.2518 B.257 C.-257 D.2516- 【答案】C【解析】因为2s i n 2c o s (2)c o s 2()2c o s (244x x x x πππ=-=-=--,所以23187s i n 22()1152525x =⨯-=-=-,选C.12 【山东省实验中学2013届高三第二次诊断性测试数学文】已知21)4tan(-=+πα,且παπ<<2,则)4sin(cos 22sin 2πααα--等于A.552 B.1053- C.552- D.10103- 【答案】C【解析】22sin22cossin()4αααπα--,由21)4tan(-=+πα得tan11=1tan2αα+--,解得tan=3α-,因为παπ<<2,所以解得cos=α,所以2sin22cos(105sin()4αααπα----,选C.13 【山东省师大附中2013届高三上学期期中考试数学文】为得到函数cos2y x=的图象,只需将函数sin2y x=的图象A.向左平移2π个长度单位 B.向右平移2π个长度单位C.向左平移4π个长度单位 D.向右平移4π个长度单位【答案】C【解析】因为sin2cos(2)cos(2)cos2()224y x x x xπππ==-=-=-,所以为了得到函数cos2y x=的图象,只需将函数sin2y x=的图象向左平移4π个单位,选C.14 【山东省师大附中2013届高三上学期期中考试数学文】在ABC∆中,c o s c o s c o s s i n s i n c o s s i nA B A B A B A B⋅+⋅++⋅=,则ABC∆是A.等边三角形B.等腰非等边的锐角三角形C.非等腰的直角三角形D.等腰直角三角形【答案】D【解析】由cos cos cos sin sin cos sin sin2A B A B A B A B⋅+⋅++⋅=得cos()sin()2A B A B-++=,因为1c o s()1,1s i n(A B A B-≤-≤-≤+≤,所以必有c o s()1A B-=且sin()1A B+=,所以A B=且2A Bπ+=,所以2Cπ=,即ABC∆是等腰直角三角形,选D.15 【山东省烟台市莱州一中20l3届高三第二次质量检测(文)】函数()()2sinf x xωϕ=+的图像,其部分图像如图所示,则()0f=_________.【答案】【解析】由图象可知3133244T πππ=-=,所以周期2T π=,又22T ππω==,所以1ω=。
2013年高考解析分类汇编(文数)3:三角函数
2013年高考解析分类汇编3:三角函数一、选择题1 .(2013年高考大纲卷(文2))已知a 是第二象限角,5sin ,cos 13a a ==则 ( )A .1213-B .513-C .513D .1213【答案】A【解析】因为135sin =α,α为第二象限角,所以1312cos -=α.故选A.2 .(2013年高考课标Ⅰ卷(文9))函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为【答案】C ;【解析】函数()(1cos )sin f x x x =-为奇函数,所以图象关于原点对称,所以排除B.02x π<<时,()0f x >,排除A. ()(1cos)sin1222f πππ=-=,排除D,选C.3 .(2013年高考四川卷(文6))函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A .2,3π-B .2,6π-C .4,6π-D .4,3π 【答案】A【解析】43129312543ππππ==+=T ,所以π=T ,所以πωπ=2,2=ω,)42sin(2)(+=x x f ,所以πϕπk =+-⨯)3(2,所以32ππϕ+=k ,又22πϕπ<<-,所以3πϕ-=,选A.4 .(2013年高考湖南(文5))在锐角ABC ∆中,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于A .3π B .4π C .6π D .12π【答案】A【解析】本题考查正弦定理的应用。
由正弦定理得得2sin sin A B B =,即sin A =,以为三角形为锐角ABC ∆,所以3A π=,选A.5 .(2013年高考福建卷(文))将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是 ( )A .35π B .65π C .2πD .6π【答案】B【解析】本题考查的三角函数的图像的平移.把)23,0(P 代入)22)(2sin()(πθπθ<<-+=x x f ,解得3πθ=,所以)232sin()(ϕπ-+=x x g ,把)23,0(P 代入得,πϕk =或6ππϕ-=k ,观察选项,故选B6 .(2013年高考陕西卷(文9))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 ( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A【解析】因为cos cos sin b C c B a A +=,所以A A B C C B sin sin cos sin cos sin =+ 又A C B B C C B sin )sin(cos sin cos sin =+=+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
ABCDB分析:由 得 ,即 ,因为 ,所以 ,又因为 , ,所以在 中,由正弦定理得: ,解得 ,又 ,所以 ,所以 .
6.C分析:由图像可知 代入 得
7.B8. D9.D10.ACBDBD16. B
二、填空题17. 18.②③④19. 20.21.
所以sinB-cosB=,即sin(B-)=
因为-<B-<,所以B-=,即B=
28.解:第一步:在 中,利用正弦定理, ,解得 ;
第二步:在 中,同理可得 ;
第三步:在 中,利用余弦定理,
(代入角的测量值即可,不要求整理,但如果学生没有代入,扣2分)
29.解: (I)设 则由
中,由正弦定理得 同理得
A. B. C. D.
13.(河南省高考适应性考试)已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a-c)·(b一c)=0,
则|c|的最大值是( )
A.1B. C.2D.
14.(河南省高考适应性考试)已知△ABC中,C=45°,则sin2A=sin2B一 sinAsinB=( )
A. B. C. D.
3.(河北省部分重点中学协作体第一次模拟)将函数 的图象先向左平移 ,然后将得图象上所有点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应函数解析式为( )
A. B. C. D.
4.(河北省邯郸市2013届高三下学期第一次(3月)模拟考试数学(理)试题)函数f(x)=
(其中A>0, )的图象如图所示,为了得到g(x=cos2x的图象,则只需将f(x)的图象( )
15.(河南省高考适应性)若 ,则tan =( )
A . B. C. D.
16.(洛阳市二练考试)已知函数 的图象关于直线 对称,
且 ,则 的最小值是( )
A.1B.2C.3D.4
二、填空题
17.(保定市第一次模拟)在△ABC中,三边a、b、c成等差数列,且B= ,则|cosA一cosC|的值为____
21.(河南省六市联合考试)在△ABC中,A=30°,AB=4,满足此条件的△ABC有两解,则BC边长度的
取值范围为____________.
三、解答题
22.(河北省部分重点中学协作体) ( )
(I)求函数 的值域;
(II)若对任意的 ,函数 , 的图象与直线 有且仅有两个不同的
交点,试确定 的值(不必证明),并求函数 的单调增区间
A.向右平移 个单位长度B.向右平移 个单位长度
C.向左平移 个单位长度D.向左平移 个单位长度
5.(衡水中学第六次模拟)在 中,若 , , ,则角 的大小为( )
A. B. C. D.
6.(衡水中学第六次模拟)函数 ( ) 的部分图像如图所示,如果 ,且 ,则 ( )A.Fra bibliotekB. C. D.1
7.(石家庄市第二次质检)在ΔABC中,sinA.sinB.sinC成等比数列,且c=2a,则cosB的值为( )
29.(武邑中学第一次模拟)在 中,点 是 的中点, 的三边长是连续的三个正整数,且
.
(1)判断 的形状;(2)求 的余弦值.
30.(河南省六市联合考)函数f(x)=sin(ωx+ )(ω>0,0< <π=在一个周期上的一系列对应值如表:
x
…
0
…
y
…
0
1
0
-1
0
…
(Ⅰ)求f(x)的解析式;
(Ⅱ)若在△ABC中,AC=2,BC=3,f(A)=- (A为锐角),求△ABC的面积.
28.(石家庄市第一次模拟)如图,有两座建筑物AB和CD都在河的对岸(不知道它们的高度,且不能到达对岸),某人想测量两座建筑物尖顶A、C之间的距离,但只有卷尺和测角仪两种工具.若此人在地面上选一条基线EF,用卷尺测得EF的长度为a,并用测角仪测量了一些角度: , ,
, , 请你用文字和公式写出计算A、C之间距离的步骤和结果.
10.(河北省武邑中学第一次模拟)已知函数f(x)=e ,若 ,则 的值为( )
A. B. C. D. (其中k∈Z)
11.(唐山第一次模拟)函数 的图象如图所示,为了得到函数
的图象,只需将y=f(x)的图象( )
A.向左平移 个单位B.向右平移 个单位
C.向左平移 个单位D.向心平移 .个单位
12.(河南省高考适应性考试)函数 ,如果存在实数x1, 使得对任意的实数x,都有 成立,则 的最小值为( )
23.(邯郸市3月模拟)已ΔABC的内角A,B,C对的边分别为a,b,c = (2a,C -26) , = (cosC,l),
且 丄 .
(I)求角A的大小;(II)若a = 1,求b +c的取值范围.
24.(衡水中学第六次模拟)在 中, .
(1)求角A的大小;(2)若 ,试判断 的形状.
25.(大城一中3月月考)在锐角△ABC中, a、b、c分别为角A、B、C所对的边,且
(1)确定角C的大小; (2)若 ,且△ABC 的面积为 ,求a+b的值.
26.(石家庄市第二次质检)已知函数
(I)求函数f(x)的最小正周期;(II)求函数f(x)在区间 上的最大值和最小值.
27.(唐山市第二次模拟)△ABC的内角A,B,C的对边分别为a,b,c,已知ac=b2-a2,A= ,求B
又△ 的面积为
26.解:(Ⅰ)因为y 所以 的最小正周期为
(Ⅱ)因为
于是,当 时, 取得最大值1;
当 取得最小值—2
27.解:由余弦定理得,a2-b2=c2-2bccosA,将已知条件代入上式,得ac=bc-c2,则b-c=a,
再由正弦定理,sinB-sinC=sin又sinC=sin(-B)=cosB+sinB,
即
当 时, 与 的三边长是连续三个正整数矛盾,
, 是等腰三角形
(II)地直角三角形AMC中,设两直角边分别为 由 得n=4,
由余弦定理或二倍角公式得 或
30.
31.
32.
A. B. C. D.
8.(石家庄市第一次模拟)若函数 满足f(1)=0,则( )
A.f(x-2)—定是奇函数B.f(x+1)—定是偶函数
C.f(x+3)一定是偶函数D.f(x-3)一定是奇函数
9.(唐山市第二次模拟)已知函数 在 时有极大值,且 为奇函数,
则 的一组可能值依次为( )
A. B. C. D.
三、解答题
22.
23.解:(I)由 ⊥ ,得 ,再由正弦定理得:
又 所以
又
(II)由正弦定理得
故b+c的取值范围为(1,2]
24.解析:(1) ,所以 ,得到
(2)∵ ∵ ∴ ,
即 ,得到 ,
为等边三角形
25.解:(1)由 得 sinA=2sinC sinA =2 sinC C= -(2)由(1)知sinC=
新课标全国统考区试题精选(理科)汇编3:三角函数(2)
一、选择题
1.(保定市第一次模拟)设函数 的部分图象如右图所示,
则函数f(x)的表达式为( )
A. B.
C. D.
2.(保定市安新县第一中学4月模拟)在△ABC中, ,则△ABC的形状为( )
A.正三角形B.直角三角形
C.等腰三角形D.等腰三角形或直角三角形
31.(开封市第二次质检)已知函数 的最小正周期为
(I)求 值及f(x)的单调递增区间 ;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,已知 ,求角C的大小.
32.(焦作市第一次模拟)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且c=2bsinC.
(1)求B的大小;
(2)求sinA+cosC的取值范围.
18.(保定市安新县第一中学4月模拟)关于 有以下命题,其中正确的命题是____.
①若 则 ;
② 图象与 图 象相同;
③ 在区间 上是减函数;④ 图象关于点 对称.
19.(河北省部分重点中学协作体第一次模拟)已知 , ,
则求 =_______________
20.(唐山市第一次模拟)ΔABC中,a,b,c成等差数列,且最大角是最小角的2倍,则cos A+cosC=_____.