高考理数考前20天终极冲刺攻略:导数与其他知识的综合问题含答案
高考理科数学考前20天终极冲刺攻略
高考理科数学考前20天终极冲刺攻略高考理科数学是高考中的一门重要科目,也是很多考生的难点科目之一。
在考前的20天里,如何制定一个高效而且科学的复习计划,是每个考生都面临的一个问题。
以下是一份高考理科数学考前20天的终极冲刺攻略,希望对考生有所帮助。
第一天至第五天:复习基础知识在这五天里,主要集中复习高中数学的基础知识,包括几何学、代数学和数学分析等方面的内容。
可以参考高中数学课本进行复习,复习重点要点和难点知识。
第六天至第十一天:强化弱项根据自己平时的学习情况和模拟考试的结果,找出自己的弱项知识点,并重点进行复习和训练。
可以找一些相关的习题进行练习,加深对知识点的理解。
第十二天至第十四天:整体回顾这几天的时间主要用来整体回顾高中阶段学习的数学知识,不仅要回顾知识点,还要注意复习各个知识点之间的联系和应用。
可以通过做一些综合性的题目进行巩固。
第十五天至第十八天:模拟考试在这几天里,可以参加一些模拟考试,模拟真实考试的环境和情境。
通过模拟考试可以帮助考生熟悉考试的流程和规则,同时也可以对自己的水平进行检测和评估。
第十九天:总结反思在接近考试的前一天,可以进行一次总结和反思,回顾自己的复习情况和学习成绩,找出自己的不足和问题所在。
然后针对这些问题制定下一步的学习计划和复习策略。
第二十天:放松和调整状态考试前一天要保持轻松和积极的心态,可以进行一些放松和调整状态的活动,如听音乐、看电影、散步等。
同时还要保证充足的睡眠和合理的饮食,以便保持良好的体力和精神状态。
除了以上的复习计划,还有一些其他的复习技巧和注意事项需要考生注意。
1.制定合理的学习计划:要根据自己的实际情况合理安排复习时间和任务,不要盲目追求进度而忽略质量。
2.多做题和总结:数学是一个需要不断练习和总结的科目,要多做题目并及时总结错题和解题方法,找出自己的不足和需要提高的地方。
3.注意查漏补缺:在复习过程中,要及时查漏补缺,弄清楚自己不会的知识点和题型,多向老师和同学请教。
2020高考冲刺数学总复习压轴解答:函数、不等式与导数的综合问题(附答案及解析)
专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <.方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-.(1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值; (3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈.【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑.方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在012x ⎡⎤∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围.【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥.3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值.5.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围.6.(2020·江西高三)已知函数()()2xf x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值; (2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围.11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈. (1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值.14.(2020·河北高三期末)已知函数()f x 满足:①定义为R ;①2()2()9xx f x f x e e+-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-…成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x x g x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解.15.(2020·湖南高三月考)已知函数2()()af x x ax a R x=+-∈. (1)当1a =且1x >-时,求函数()f x 的单调区间;(2)当21e a e ≥+时,若函数2()()ln g x f x x x =--的两个极值点分别为1x 、2x ,证明12240()()1g x g x e <-<+.16.(2020·江西高三期末)已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+. (1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值.17.(2020·江西高三期末)已知函数()()()2,xf x x m e nxm n R =--∈在1x =处的切线方程为y ex e =-.(1)求,m n 的值;(2)当0x >时,()3f x ax -…恒成立,求整数a 的最大值.18.(2020·河南高三期末)已知函数()()ln 1mxf x x x m=+-+,()1,0x ∈-. (1)若1m =,判断函数()f x 的单调性并说明理由; (2)若2m ≤-,求证:关于x 的不等式()()()21xx m f x e x-+⋅<-在()1,0-上恒成立.19.(2020·江西高三月考)已知函数32()32f x x x x =-+,()g x tx t R =∈,,()xe x xφ=. (1)求函数()()y f x x φ=⋅的单调增区间;(2)令()()()h x f x g x =-,且函数()h x 有三个彼此不相等的零点0m n ,,,其中m n <. ①若12m n =,求函数()h x 在x m =处的切线方程; ①若对[]x m n ∀∈,,()16h x t ≤-恒成立,求实数M 的取值范围.专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【答案】(1)()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2(2)存在,724a ≥ 【解析】(1)当1a =时,21()2ln 3(0)2f x x x x x =+->. 所以2()3f x x x '=+-=232(2)(1)x x x x x x-+--=令()0f x '≥,则01x <≤或2x ≥,令()0f x '<,则12x <<, 所以()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2 (2)存在724a ≥,满足题设,因为函数34()()9g x f x ax x =++=23142ln 229x a x x x +-+所以224()23a g x x x x '=+-+,要使函数()g x 在0,∞(+)上单调递增,224()20,(0,)3a g x x x x x '=+-≥+∈+∞,即3243660x x x a +-+≥,(0,)x ∈+∞⇔324366x x xa +-≥-,(0,)x ∈+∞ 令32436()6x x x h x +-=,(0,)x ∈+∞,则2()21(21)(1)h x x x x x '=+-=-+,所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 在10,2⎛⎫⎪⎝⎭上单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0h x '>,()h x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 所以12x =是()h x 的极小值点,也是最小值点,且17224h ⎛⎫=- ⎪⎝⎭,∴324366x x x+--在(0,)+∞上的最大值为724.所以存在724a ≥,满足题设.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【答案】(1)1a =;(2)证明见解析. 【解析】(1)因为()()ee 10xxf x ax =--≥,且e0x>,所以e 10x ax --≥,构造函数()e 1xu x ax =--,则()'e xu x a =-,又()00u =,若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >, 则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e xxf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()022200000011e1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+<⎪⎝⎭. 方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-. (1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值;(3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈. 【答案】(1)sin1a ≤.(2)max ()(1)0h x h ==.(3)见解析.【解析】(1)由()0f x >,得:sin 0x ax ->,因为01x <<,所以sin xa x<, 令sin ()x g x x=,()2cos sin 'x x xg x x -=, 再令()cos sin m x x x x =-,()'cos sin cos sin 0m x x x x x x x =--=-<, 所以()m x 在()0,1上单调递减, 所以()()0m x m <,所以()'0g x <,则()g x 在()0,1上单调递减, 所以()(1)sin1g x g >=,所以sin1a ≤. (2)当1a =时,()sin f x x x =-, ①()ln 1h x x x =-+,()11'1x h x x x-=-=, 由()'0h x =,得:1x =,当()0,1x ∈时,()'0h x >,()h x 在()0,1上单调递增; 当()1,x ∈+∞时,()'0h x <,()h x 在()1,+∞上单调递减; ①()max (1)0h x h ==.(3)由(2)可知,当()1,x ∈+∞时,()0h x <, 即ln 1x x <-, 令1n x n +=,则11ln1n n n n ++<-,即()1ln 1ln n n n+-<, 分别令1,2,3,,n n =L 得,()11ln 2ln11,ln 3ln 2,,ln 1ln 2n n n-<-<+-<L ,将上述n 个式子相加得:()()*111ln 1121n n N n n+<++++∈-L . 【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 【答案】(1)1;(2)12S S S <<,证明见解析;(3)见解析 【解析】(1)由已知得0a ≤时,不合题意,所以0a >.()ln 11axx x <++恒成立,即()()()1ln 10ax x x x <++>恒成立. 令()()()1ln 1m x x x ax =++-,()()'ln 11m x x a =++-. 当1a ≤时,()m x 在()0,∞+上为增函数,此时()0m x >成立.当1a >时,()m x 在()10,1a e --上为减函数,不合题意,所以1a ≤.令()()ln 1n x ax x x =-+,()1'1n x a x =-+,当1a ≥时,()n x 在()0,∞+上为增函数,此时()0n x >,()ln 1x ax +<恒成立.当01a <<时,()n x 在10,1a ⎛⎫- ⎪⎝⎭上为减函数,不合题意,所以1a ≥.综上得1a =. (2)由(1)知()()ln 101x x x x x <+<>+.令1x i =,得111ln 11i i i⎛⎫<+< ⎪+⎝⎭, 从而11111111ln 112321n i n i n -=⎛⎫+++<+<+++ ⎪-⎝⎭∑L L ,又因为11ln nS dx n x==⎰,则12S S S <<. (3)由已知111232313ni i i i =⎛⎫+- ⎪--⎝⎭∑1111111123323n n ⎛⎫⎛⎫+++⋅⋅⋅+-++++ ⎪ ⎪⎝⎭⎝=⎭L 111123n n n =++⋅⋅⋅+++,因为111ln 11i i i⎛⎫<+< ⎪+⎝⎭,所以 111111ln 1ln 1ln 1123123n n n n n n ⎛⎫⎛⎫⎛⎫+++>++++++ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭L L 31ln1n n +=+, 111123ln ln ln 123131n n n n n n n n n ++⎛⎫⎛⎫⎛⎫+++<+++ ⎪ ⎪ ⎪+++-⎝⎭⎝⎭⎝⎭L L ln 3=.从而131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在0122x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围. 【答案】(1)322ln 220x y +-+=(2)()1,2(3)1,4⎛⎤-∞- ⎥⎝⎦【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=--,化简得:322ln 220x y +-+= ()2对函数求导可得,()()221'0ax ax f x x x-+=>,令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得1211x x ==+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<Q211x ∴=+<()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在1,22⎡⎤+⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+012x ⎡⎤∴∃∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M ∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意①当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<Q若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =Q12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围. 【答案】(1)2y x =-,8833918y e x e =-.(2)8319a e ≤≤.(3)345[,1)(7,5]3a e e e∈⋃. 【解析】(1)设切点为()00,x y ,()()'31xf x e x =+,则切线斜率为()0031x e x +,所以切线方程为()()000031x y y e x x x -=+-,因为切线过()2,0,所以()()()000032312x x ex e x x --=+-,化简得200380x x -=,解得080,3x =. 当00x =时,切线方程为2y x =-, 当083x =时,切线方程为8833918y e x e =-. (2)由题意,对任意x R ∈有()()322xe x a x -≥-恒成立,①当(),2x ∈-∞时,()()323222x x maxe x e x a a x x ⎡⎤--≥⇒≥⎢⎥--⎣⎦,令()()322x e x F x x -=-,则()()()2238'2x e x xF x x -=-,令()'0F x =得0x =,()()max 01F x F ==,故此时1a ≥.①当2x =时,恒成立,故此时a R ∈. ①当()2,x ∈+∞时,()()min323222x x e x e x a a x x ⎡⎤--≤⇒≤⎢⎥--⎣⎦,令()8'03F x x =⇒=,()83min 893F x F e ⎛⎫== ⎪⎝⎭,故此时839a e ≤.综上:8319a e ≤≤.(3)因为()()f x g x <,即()()322xex a x -<-,由(2)知()83,19,a e ⎛⎫∈-∞⋃+∞ ⎪⎝⎭,令()()322x e x F x x -=-,则当(),2x ∈-∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x -<-存在唯一的整数0x 成立,因为()01F =最大,()513F e -=,()11F e =-,所以当53a e<时,至少有两个整数成立, 所以5,13a e ⎡⎫∈⎪⎢⎣⎭. 当()2,x ∈+∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x ->-存在唯一的整数0x 成立,因为83893F e ⎛⎫= ⎪⎝⎭最小,且()337F e =,()445F e =,所以当45a e >时,至少有两个整数成立,所以当37a e ≤时,没有整数成立,所有(347,5a e e ⎤∈⎦.综上:(345,17,53a e e e ⎡⎫⎤∈⋃⎪⎦⎢⎣⎭. 【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <. 【答案】(1)见解析(2)见解析【解析】(1)由题意()f x 的定义域为()0,∞+,且()()()222222x a x a a x ax a f x x a x x x--+--+'=--+==, 当0a =时,()20f x x '=-<; 当0a >时,2a x >时,()0f x '<;02ax <<时,()0f x '>; 当0a <时,x a >-时,()0f x '<;0x a <<-时,()0f x '>;综上所述,当0a =时,()f x 在()0,∞+上为减函数; 当0a >时,()f x 在0,2a ⎛⎫ ⎪⎝⎭上为增函数,在,2a ⎛⎫+∞ ⎪⎝⎭上为减函数; 当0a <时,()f x 在()0,a -上为增函数,在(),a -+∞上为减函数. (2)要证()()f x g x <,即证()21ln 0x x x -+>,当12x =时,不等式显然成立; 当12x >时,即证ln 021x x x +>-;当102x <<时,即证ln 021xx x +<-; 令()ln 21x F x x x =+-,则()()()()()22411112121x x F x x x x x ---'=+=--, 当12x >时,在1,12⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数;在()1,+∞上()0F x '>,()F x 为增函数,①()()min 110F x F ==>,①ln 021xx x +>-.当102x <<时,在10,4⎛⎫ ⎪⎝⎭上()0F x '>,()F x 为增函数;在11,42⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数, ①()max 111ln 0442F x F ⎛⎫==-<⎪⎝⎭,①ln 021x x x +<-, 综上所述,当0x >时,()()f x g x <成立.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥. 【答案】(1)见解析;(2)证明见解析【解析】(1)22121(2)()()a x a x a f x x x a ax+-'=-+= 当0a >时,()0f x x a '>⇒>,()00f x x a '<⇒<<当0a <时,()002f x x a '>⇒<<-,()02f x x a '<⇒>- ①0a >时,()f x 在(0,)a 上递减,在(,)a +∞递增 0a <时,()f x 在(0,2)a -上递增,在(2,)a -+∞递减(2)设1()()()ln 2a F x f x g x x x a=-=++- 则221()(0)a x aF x x x x x-'=-=> Q 0a >,(0,)x a ∴∈时,()0F x '<,()F x 递减(,)x a ∈+∞,()0,F x '>()F x 递增,1()()ln 1F x F a a a∴≥=+-设1()ln 1h x x x =+-,(0)x >,则22111()(0)x h x x x x x-'=-=>1x >时,()0,h x '>时,()h x 递增, 01x <<时,()0h x '<,∴()h x 递减()(1)0h x h ∴≥=,()()0F a h a ∴=≥()0F x ∴≥,即()()f x g x ≥3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.【答案】(①)()11f =-;(①)(①)1; (①)()34 ,2ln31,3⎛⎤-∞-+⋃+∞ ⎥⎝⎦. 【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{0f x x >>'得01x <<,由()0{0f x x <>'得1x >,①()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ①函数()f x 的最大值为(1)1f =-; (2)①()a g x x x=+,①2()1a g x x =-',(①)由(1)知,1x =是函数()f x 的极值点,又①函数()f x 与()ag x x x=+有相同极值点, ①1x =是函数()g x 的极值点,①(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(①)①211()2f e e =--,(1)1f =-,(3)92ln 3f =-+, ①2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,①1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(①)知1()g x x x =+,①21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e 为减函数,在(1,3]上为增函数,①11110(),(1)2,(3)333g e g g e e =+==+=,而11023e e <+<,①1(1)()(3)g g g e <<,①1[,3]x e ∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,①12()()(1)(1)123f x g x f g -≤-=--=-,①312k ≥-+=-,又①1k >,①1k >, ①当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f xg x k -≤-,12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,①121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,①342ln 33k ≤-+,又①1k <, ①342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞. 4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【答案】(1)1a =,0b =;(2)3【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b =(2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11x x m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-. 令()ln 2hx x x =--,则()111x h x x x-'=-=∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<Q ,()422ln20h =-> ()03,4x ∴∃∈,使得()00h x =当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min0ln 11x x g x g x x +∴==-()000ln 20h x x x =--=Q 00ln 2x x ∴=- ()()()()0000min 0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为35.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围. 【答案】(1)y x =-;(2)[2,)+∞【解析】(1)因为1m =,所以()e 21xf x x =--,所以()e 2xf x '=-,则(0)0,(0)1f f '==-,故曲线()y f x =在点(0,(0))f 处的切线方程为y x =-.(2)因为()e 2x f x m x m =--,所以()e 2xf x m '=-,①当2m ≥时,()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,从而()(0)0f x f >=成立,故2m ≥符合题意; ①当02m <<时,令()0f x '<,解得20lnx m <<,即()f x 在20,ln m ⎛⎫ ⎪⎝⎭上单调递减,则2ln(0)0f f m ⎛⎫<= ⎪⎝⎭,故02m <<不符合题意; ①当0m ≤时,0()e 2x f x m '-<=在(0,)+∞上恒成立,即()f x 在(0,)+∞上单调递减,则()(0)0f x f <=,故0m ≤不符合题意.综上,m 的取值范围为[2,)+∞. 6.(2020·江西高三)已知函数()()2x f x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.【答案】(1)单调递增区间为()1,+?,单调递减区间为(),1-∞(2)证明见解析【解析】(1)因为()()2x f x x e =-,所以()()1x f x x e '=-,令()0f x ¢>,解得1x >;令()0f x ¢<,解得1x <.故()f x 的单调递增区间为()1,+?,单调递减区间为(),1-∞.(2)要证()2ln 6xf x x x >-,只需证()ln 32x f x x>-.由(1)可知()()min 1f x f e ==-.令()ln 3(0)2x h x x x =->,则()21ln 2xh x x -'=, 令()21ln 0ln 102xh x x x e x-'=>⇒<⇒<<, 所以当()0,x e ∈时,()0h x '>,()h x 单调递增;当(),x e ∈+∞时,()0h x '<,()h x 单调递减, 则()()max 132h x h e e==-. 因为 2.71828e =⋅⋅⋅,所以 2.75e ->-,所以1133 2.7524e -<-=-, 从而132e e->-,则当0x >时,()()min max f x h x >.故当0x >时,()()f x h x >恒成立,即对任意的()0,x ∈+∞,()2ln 6xf x x x >-.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.【答案】(1)当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减;(2)2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 【解析】(1)()(32)xf x m e x '=--,因为0x =是函数()f x 的一个极值点,则(0)320f m '=-=,所以23m =,则21()ln (0)2h x b x x x =->,当2()b b x h x x x x-'=-=,当0b …时,()0h x '…恒成立,()h x 在(0,)+∞上单调递减,当0b >时,2()000h x b x x '>⇒->⇒<<所以()h x 在上单调递增,在)+∞上单调递减. 综上所述:当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减. (2)()f x 在R 上有且仅有一个零点,即方程2322x x m e -=有唯一的解,令2()2xx g x e=, 可得(2)()0,()2xx x g x g x e -'>=, 由(2)()02xx x g x e -'==, 得0x =或2x =,(1)当0x …时,()0g x '…,所以()g x 在(,0]-∞上单调递减,所以()(0)0g x g =…,所以()g x 的取值范围为[0,)+∞. (2)当02x <<时,()0g x '>,所以()g x 在(0,2)上单调递增, 所以0()(2)g x g <<,即220()g x e<<, 故()g x 的取值范围为220,e ⎛⎫ ⎪⎝⎭. (3)当2x …时,()0g x '…,所以()g x 在[2,)+∞上单调递减, 所以(0)()(2)g g x g <…,即220()g x e <…, 即()g x 的取值范围为220,e ⎛⎤ ⎥⎝⎦. 所以,当320m -=或2232m e ->, 即23m =或22233m e >+时,()f x 在R 上有且只有一个零点,故m 的取值范围为2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.【答案】(1)答案不唯一,具体见解析(2)[1,)+∞ 【解析】(1)()f x 的定义域为(0,)+∞,2'()2af x x=-, ①当0a ≤时,'()0f x <,所以()f x 在(0,)+∞上是减函数,()f x 无极值. ①当0a >时,令'()0f x =,得x a =,在(0,)a 上,'()0f x >,()f x 是增函数;在(,)a +∞上,'()0f x <,()f x 是减函数. 所以()f x 有极大值()2ln 21f a a a a =-+,无极小值.(2)由(1)知,①当0a ≤时,()f x 是减函数,令2a x e =,则0(0,1]x ∈,222220()(2)21(2)320a a f x a a e a e --=-+--=->,不符合题意,①当0a >时,()f x 的最大值为()2ln 21f a a a a =-+, 要使得对任意0x >,2()(1)f x a ≤-恒成立, 即要使不等式22ln 212a a a a -+≤-成立, 则22ln 230a a a a --+≤有解.令2()2ln 23(0)g a a a a a a =--+>,所以'()2ln 2g a a a =-令()'()2ln 2h a g a a a ==-,由22'()0ah a a-==,得1a =. 在(0,1)上,'()0h a >,则()'()h a g a =在(0,1)上是增函数; 在(1,)+∞上,'()0h a <,则()'()h a g a =在(1,)+∞上是减函数. 所以max ()(1)20h a h ==-<,即'()0g a <, 故()g a 在(0,)+∞上是减函数,又(1)0g =,要使()0g a ≤成立,则1a ≥,即a 的取值范围为[1,)+∞. 9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.【答案】(1)增区间为(),2-∞-,()0,∞+,单调减区间为()2,0-;(2)三条切线,理由见解析;(3)0,2⎡+⎣ 【解析】(1)()()()222xxf x x x e x x e '==++,()0f x '>得,2x <-或0x >;()0f x '<得,20x -<<;所以()f x 的单调增区间为(),2-∞-,()0,∞+;单调减区间为()2,0-; (2)过()1,0P 点可做()f x 的三条切线;理由如下:设切点坐标为()0200,x x x e,所以切线斜率()()00002xx x k x e f '=+= 所以过切点的切线方程为:()()002200002x x x e x x e x y x -=+-,切线过()1,0P 点,代入得()()0022*******x x x e x x e x -=+-,化简得(0000x x x x e=,方程有三个解,00x =,0x =0x 所以过()1,0P 点可做()f x 的三条切线. (3)设()()21xg x x e k x -=-,①0k =时,因为20x ≥,0x e >,所以显然20x x e ≥对任意x ∈R 恒成立; ①k 0<时,若0x =,则()()0001f k k =>-=-不成立, 所以k 0<不合题意.①0k >时,1x ≤时,()()210xg x x e k x -=->显然成立,只需考虑1x >时情况;转化为21xx e k x ≥-对任意()1,x ∈+∞恒成立令()21xx e h x x =-(1x >),则()min k h x ≤,()()()(()2222(2)111xx xx x x ex x e x x e h x x x +--'==--,当1x <<时,()0h x '<,()h x 单调减;当x >()0h x '>,()h x 单调增;所以()(min 2h x h==+=所以(2k ≤+综上所述,k 的取值范围(0,2+⎡⎣. 10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值;(2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围. 【答案】(1)13a =,403=-b ;(2)2642ln 2<-m【解析】(1)()()23114310f f x ax x''=--, 因为()f x 在()()1,1f 处的切线方程为100++=x y b ,即10y x b =--,此时切线斜率10k =-,则()3(1)13141010f f a k ''=--==-,解得13a =,所以()()333101114ln 314ln 3103f x x x x x x x ⨯-=--=+-, 所以()31110113114ln13333f =⨯+⨯-=+=,则10103b =--,解得403=-b(2)由(1)知()31314ln 3f x x x x =+-, ()32143143x x f x x x x+-'=+-=, 设函数()()33140g x xx x =+->,则()2330g x x '=+>,所以()g x 在()0,∞+为增函数,因为()20g =,令()0g x <,得02x <<;令()0g x >,得2x >, 所以当02x <<时,()0f x '<;当2x >时,()0f x '>, 所以()()3min 126223214ln 214ln 233f x f ==⨯+⨯-=-, 从而12614ln 233<-m ,即2642ln 2<-m 11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈.(1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析(2)15,2ln 28⎛⎤-∞- ⎥⎝⎦【解析】(1)由()ln 1f x ax x =--,(0,)x ∈+∞, 则11()ax f x a x x'-=-=, 当0a ≤时,则()0f x '≤,故()f x 在(0,)+∞上单调递减;当0a >时,令1()0f x x a'=⇒=, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述:当0a ≤时,()f x 在(0,)+∞上单调递减; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增. (2)①21()ln (1)2g x x x a x =+-+, 21(1)1()(1)x a x g x x a x x-++'=+-+=, 由()0g x '=得2(1)10x a x -++=,①121x x a +=+,121=x x ,①211x x =①32a ≥①111115210x x x x ⎧+≥⎪⎪⎨⎪<<⎪⎩解得1102x <≤.①()()()()222112121211221111ln(1)2ln 22x g x g x x x a x x x x x x ⎛⎫-=+--+-=-- ⎪⎝⎭. 设22111()2ln 022h x x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()2233121()0x h x x x x x '--=--=<,①()h x 在10,2⎛⎤ ⎥⎝⎦上单调递减;当112x =时,min 115()2ln 228h x h ⎛⎫==- ⎪⎝⎭. ①152ln 28k ≤-,即所求k 的取值范围为15,2ln 28⎛⎤-∞- ⎥⎝⎦.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.【答案】(1)证明见解析(2)(i )证明见解析(ii )证明见解析 【解析】(1)由题意知,()1cos 1f x x x x'=+-+,()1,x ∈-+∞, 当()1,0x ∈-时,()1101f x x x x'<+-<<+,所以()f x 在区间()1,0-上单调递减, 当()0,x ∈+∞时,()()g x f x '=,因为()()()22111sin 011g x x x x '=+->>++所以()g x 在区间()0,∞+上单调递增,因此()()00g x g >=,故当()0,x ∈+∞时,()0f x '>,所以()f x 在区间()0,∞+上单调递增, 因此当()1,x ∈-+∞时,()()00f x f ≥=,所以()0f x ≥ (2)(①)()f x 在区间10,2⎛⎫ ⎪⎝⎭上单调递增,()()00f x f >=,因为881288311111C C 147122224e ⎛⎫⎛⎫=+=+++>++=> ⎪ ⎪⎝⎭⎝⎭L , 故83318ln ln ln 022e ⎛⎫-=-< ⎪⎝⎭,所以()1113131131sin ln sin ln 18ln 22826822822f x f π⎛⎫⎛⎫<=+-<+-=+-<⎪ ⎪⎝⎭⎝⎭因此当10,2x ⎛⎫∈ ⎪⎝⎭时,()01f x <<,又因为110,2a ⎛⎫∈ ⎪⎝⎭,所以()()()()()()12110,2n n n a f a ff a f f f a --⎛⎫====∈ ⎪⎝⎭LL L(①)函数()()h x f x x =-(102x <<),则()()11cos 11h x f x x x x''=-=+--+, 令()()x h x ϕ=',则()()0x g x ϕ''=>,所以()x ϕ在区间10,2⎛⎫ ⎪⎝⎭上单调递增;因此()()111217cos 1cos 0222326h x x ϕϕ⎛⎫'=≤=+--=-<⎪⎝⎭, 所以()h x 在区间10,2⎛⎫ ⎪⎝⎭上单调递减,所以()()00h x h <=, 因此()()10n n n n n a a f a a g a +-=-=<, 所以x *∀∈N ,1n n a a +<13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值. 【答案】(1)极小值为1a e-+;无极大值(2)证明过程见解析;(3)2. 【解析】(1)函数()f x 的定义域为0x >,因为()ln f x x x a =+,所以()ln 1f x x =+‘,当1x e >时,()0f x >‘,所以函数()f x 单调递增;当10x e<<时,()0f x <‘,所以函数()f x 单调递减,因此1e是函数()f x 的极小值,故函数()f x 的极值为极小值,值为11()f a e e =-+;无极大值(2)函数()g x 的定义域为0x >,因为()ln ,g x x ax =-所以'1()g x a x=-,因为10a e <<,所以当1x a >时,'()0g x <,因此函数()g x 是递减函数,当10x a<<时,'()0g x >,。
2020高考冲刺数学总复习压轴解答:函数、不等式与导数的综合问题(附答案及解析)
专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <.方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-.(1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值; (3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈.【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑.方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在012x ⎡⎤∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围.【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥.3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值.5.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围.6.(2020·江西高三)已知函数()()2xf x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值; (2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围.11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈. (1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值.14.(2020·河北高三期末)已知函数()f x 满足:①定义为R ;①2()2()9xx f x f x e e+-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-…成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x x g x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解.15.(2020·湖南高三月考)已知函数2()()af x x ax a R x=+-∈. (1)当1a =且1x >-时,求函数()f x 的单调区间;(2)当21e a e ≥+时,若函数2()()ln g x f x x x =--的两个极值点分别为1x 、2x ,证明12240()()1g x g x e <-<+.16.(2020·江西高三期末)已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+. (1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值.17.(2020·江西高三期末)已知函数()()()2,xf x x m e nxm n R =--∈在1x =处的切线方程为y ex e =-.(1)求,m n 的值;(2)当0x >时,()3f x ax -…恒成立,求整数a 的最大值.18.(2020·河南高三期末)已知函数()()ln 1mxf x x x m=+-+,()1,0x ∈-. (1)若1m =,判断函数()f x 的单调性并说明理由; (2)若2m ≤-,求证:关于x 的不等式()()()21xx m f x e x-+⋅<-在()1,0-上恒成立.19.(2020·江西高三月考)已知函数32()32f x x x x =-+,()g x tx t R =∈,,()xe x xφ=. (1)求函数()()y f x x φ=⋅的单调增区间;(2)令()()()h x f x g x =-,且函数()h x 有三个彼此不相等的零点0m n ,,,其中m n <. ①若12m n =,求函数()h x 在x m =处的切线方程; ①若对[]x m n ∀∈,,()16h x t ≤-恒成立,求实数M 的取值范围.专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【答案】(1)()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2(2)存在,724a ≥ 【解析】(1)当1a =时,21()2ln 3(0)2f x x x x x =+->. 所以2()3f x x x '=+-=232(2)(1)x x x x x x-+--=令()0f x '≥,则01x <≤或2x ≥,令()0f x '<,则12x <<, 所以()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2 (2)存在724a ≥,满足题设,因为函数34()()9g x f x ax x =++=23142ln 229x a x x x +-+所以224()23a g x x x x '=+-+,要使函数()g x 在0,∞(+)上单调递增,224()20,(0,)3a g x x x x x '=+-≥+∈+∞,即3243660x x x a +-+≥,(0,)x ∈+∞⇔324366x x xa +-≥-,(0,)x ∈+∞ 令32436()6x x x h x +-=,(0,)x ∈+∞,则2()21(21)(1)h x x x x x '=+-=-+,所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 在10,2⎛⎫⎪⎝⎭上单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0h x '>,()h x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 所以12x =是()h x 的极小值点,也是最小值点,且17224h ⎛⎫=- ⎪⎝⎭,∴324366x x x+--在(0,)+∞上的最大值为724.所以存在724a ≥,满足题设.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【答案】(1)1a =;(2)证明见解析. 【解析】(1)因为()()ee 10xxf x ax =--≥,且e0x>,所以e 10x ax --≥,构造函数()e 1xu x ax =--,则()'e xu x a =-,又()00u =,若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >, 则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e xxf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()022200000011e1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+<⎪⎝⎭. 方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-. (1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值;(3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈. 【答案】(1)sin1a ≤.(2)max ()(1)0h x h ==.(3)见解析.【解析】(1)由()0f x >,得:sin 0x ax ->,因为01x <<,所以sin xa x<, 令sin ()x g x x=,()2cos sin 'x x xg x x -=, 再令()cos sin m x x x x =-,()'cos sin cos sin 0m x x x x x x x =--=-<, 所以()m x 在()0,1上单调递减, 所以()()0m x m <,所以()'0g x <,则()g x 在()0,1上单调递减, 所以()(1)sin1g x g >=,所以sin1a ≤. (2)当1a =时,()sin f x x x =-, ①()ln 1h x x x =-+,()11'1x h x x x-=-=, 由()'0h x =,得:1x =,当()0,1x ∈时,()'0h x >,()h x 在()0,1上单调递增; 当()1,x ∈+∞时,()'0h x <,()h x 在()1,+∞上单调递减; ①()max (1)0h x h ==.(3)由(2)可知,当()1,x ∈+∞时,()0h x <, 即ln 1x x <-, 令1n x n +=,则11ln1n n n n ++<-,即()1ln 1ln n n n+-<, 分别令1,2,3,,n n =L 得,()11ln 2ln11,ln 3ln 2,,ln 1ln 2n n n-<-<+-<L ,将上述n 个式子相加得:()()*111ln 1121n n N n n+<++++∈-L . 【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 【答案】(1)1;(2)12S S S <<,证明见解析;(3)见解析 【解析】(1)由已知得0a ≤时,不合题意,所以0a >.()ln 11axx x <++恒成立,即()()()1ln 10ax x x x <++>恒成立. 令()()()1ln 1m x x x ax =++-,()()'ln 11m x x a =++-. 当1a ≤时,()m x 在()0,∞+上为增函数,此时()0m x >成立.当1a >时,()m x 在()10,1a e --上为减函数,不合题意,所以1a ≤.令()()ln 1n x ax x x =-+,()1'1n x a x =-+,当1a ≥时,()n x 在()0,∞+上为增函数,此时()0n x >,()ln 1x ax +<恒成立.当01a <<时,()n x 在10,1a ⎛⎫- ⎪⎝⎭上为减函数,不合题意,所以1a ≥.综上得1a =. (2)由(1)知()()ln 101x x x x x <+<>+.令1x i =,得111ln 11i i i⎛⎫<+< ⎪+⎝⎭, 从而11111111ln 112321n i n i n -=⎛⎫+++<+<+++ ⎪-⎝⎭∑L L ,又因为11ln nS dx n x==⎰,则12S S S <<. (3)由已知111232313ni i i i =⎛⎫+- ⎪--⎝⎭∑1111111123323n n ⎛⎫⎛⎫+++⋅⋅⋅+-++++ ⎪ ⎪⎝⎭⎝=⎭L 111123n n n =++⋅⋅⋅+++,因为111ln 11i i i⎛⎫<+< ⎪+⎝⎭,所以 111111ln 1ln 1ln 1123123n n n n n n ⎛⎫⎛⎫⎛⎫+++>++++++ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭L L 31ln1n n +=+, 111123ln ln ln 123131n n n n n n n n n ++⎛⎫⎛⎫⎛⎫+++<+++ ⎪ ⎪ ⎪+++-⎝⎭⎝⎭⎝⎭L L ln 3=.从而131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在0122x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围. 【答案】(1)322ln 220x y +-+=(2)()1,2(3)1,4⎛⎤-∞- ⎥⎝⎦【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=--,化简得:322ln 220x y +-+= ()2对函数求导可得,()()221'0ax ax f x x x-+=>,令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得1211x x ==+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<Q211x ∴=+<()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在1,22⎡⎤+⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+012x ⎡⎤∴∃∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M ∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意①当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<Q若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =Q12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围. 【答案】(1)2y x =-,8833918y e x e =-.(2)8319a e ≤≤.(3)345[,1)(7,5]3a e e e∈⋃. 【解析】(1)设切点为()00,x y ,()()'31xf x e x =+,则切线斜率为()0031x e x +,所以切线方程为()()000031x y y e x x x -=+-,因为切线过()2,0,所以()()()000032312x x ex e x x --=+-,化简得200380x x -=,解得080,3x =. 当00x =时,切线方程为2y x =-, 当083x =时,切线方程为8833918y e x e =-. (2)由题意,对任意x R ∈有()()322xe x a x -≥-恒成立,①当(),2x ∈-∞时,()()323222x x maxe x e x a a x x ⎡⎤--≥⇒≥⎢⎥--⎣⎦,令()()322x e x F x x -=-,则()()()2238'2x e x xF x x -=-,令()'0F x =得0x =,()()max 01F x F ==,故此时1a ≥.①当2x =时,恒成立,故此时a R ∈. ①当()2,x ∈+∞时,()()min323222x x e x e x a a x x ⎡⎤--≤⇒≤⎢⎥--⎣⎦,令()8'03F x x =⇒=,()83min 893F x F e ⎛⎫== ⎪⎝⎭,故此时839a e ≤.综上:8319a e ≤≤.(3)因为()()f x g x <,即()()322xex a x -<-,由(2)知()83,19,a e ⎛⎫∈-∞⋃+∞ ⎪⎝⎭,令()()322x e x F x x -=-,则当(),2x ∈-∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x -<-存在唯一的整数0x 成立,因为()01F =最大,()513F e -=,()11F e =-,所以当53a e<时,至少有两个整数成立, 所以5,13a e ⎡⎫∈⎪⎢⎣⎭. 当()2,x ∈+∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x ->-存在唯一的整数0x 成立,因为83893F e ⎛⎫= ⎪⎝⎭最小,且()337F e =,()445F e =,所以当45a e >时,至少有两个整数成立,所以当37a e ≤时,没有整数成立,所有(347,5a e e ⎤∈⎦.综上:(345,17,53a e e e ⎡⎫⎤∈⋃⎪⎦⎢⎣⎭. 【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <. 【答案】(1)见解析(2)见解析【解析】(1)由题意()f x 的定义域为()0,∞+,且()()()222222x a x a a x ax a f x x a x x x--+--+'=--+==, 当0a =时,()20f x x '=-<; 当0a >时,2a x >时,()0f x '<;02ax <<时,()0f x '>; 当0a <时,x a >-时,()0f x '<;0x a <<-时,()0f x '>;综上所述,当0a =时,()f x 在()0,∞+上为减函数; 当0a >时,()f x 在0,2a ⎛⎫ ⎪⎝⎭上为增函数,在,2a ⎛⎫+∞ ⎪⎝⎭上为减函数; 当0a <时,()f x 在()0,a -上为增函数,在(),a -+∞上为减函数. (2)要证()()f x g x <,即证()21ln 0x x x -+>,当12x =时,不等式显然成立; 当12x >时,即证ln 021x x x +>-;当102x <<时,即证ln 021xx x +<-; 令()ln 21x F x x x =+-,则()()()()()22411112121x x F x x x x x ---'=+=--, 当12x >时,在1,12⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数;在()1,+∞上()0F x '>,()F x 为增函数,①()()min 110F x F ==>,①ln 021xx x +>-.当102x <<时,在10,4⎛⎫ ⎪⎝⎭上()0F x '>,()F x 为增函数;在11,42⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数, ①()max 111ln 0442F x F ⎛⎫==-<⎪⎝⎭,①ln 021x x x +<-, 综上所述,当0x >时,()()f x g x <成立.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥. 【答案】(1)见解析;(2)证明见解析【解析】(1)22121(2)()()a x a x a f x x x a ax+-'=-+= 当0a >时,()0f x x a '>⇒>,()00f x x a '<⇒<<当0a <时,()002f x x a '>⇒<<-,()02f x x a '<⇒>- ①0a >时,()f x 在(0,)a 上递减,在(,)a +∞递增 0a <时,()f x 在(0,2)a -上递增,在(2,)a -+∞递减(2)设1()()()ln 2a F x f x g x x x a=-=++- 则221()(0)a x aF x x x x x-'=-=> Q 0a >,(0,)x a ∴∈时,()0F x '<,()F x 递减(,)x a ∈+∞,()0,F x '>()F x 递增,1()()ln 1F x F a a a∴≥=+-设1()ln 1h x x x =+-,(0)x >,则22111()(0)x h x x x x x-'=-=>1x >时,()0,h x '>时,()h x 递增, 01x <<时,()0h x '<,∴()h x 递减()(1)0h x h ∴≥=,()()0F a h a ∴=≥()0F x ∴≥,即()()f x g x ≥3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.【答案】(①)()11f =-;(①)(①)1; (①)()34 ,2ln31,3⎛⎤-∞-+⋃+∞ ⎥⎝⎦. 【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{0f x x >>'得01x <<,由()0{0f x x <>'得1x >,①()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ①函数()f x 的最大值为(1)1f =-; (2)①()a g x x x=+,①2()1a g x x =-',(①)由(1)知,1x =是函数()f x 的极值点,又①函数()f x 与()ag x x x=+有相同极值点, ①1x =是函数()g x 的极值点,①(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(①)①211()2f e e =--,(1)1f =-,(3)92ln 3f =-+, ①2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,①1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(①)知1()g x x x =+,①21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e 为减函数,在(1,3]上为增函数,①11110(),(1)2,(3)333g e g g e e =+==+=,而11023e e <+<,①1(1)()(3)g g g e <<,①1[,3]x e ∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,①12()()(1)(1)123f x g x f g -≤-=--=-,①312k ≥-+=-,又①1k >,①1k >, ①当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f xg x k -≤-,12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,①121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,①342ln 33k ≤-+,又①1k <, ①342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞. 4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【答案】(1)1a =,0b =;(2)3【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b =(2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11x x m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-. 令()ln 2hx x x =--,则()111x h x x x-'=-=∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<Q ,()422ln20h =-> ()03,4x ∴∃∈,使得()00h x =当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min0ln 11x x g x g x x +∴==-()000ln 20h x x x =--=Q 00ln 2x x ∴=- ()()()()0000min 0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为35.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围. 【答案】(1)y x =-;(2)[2,)+∞【解析】(1)因为1m =,所以()e 21xf x x =--,所以()e 2xf x '=-,则(0)0,(0)1f f '==-,故曲线()y f x =在点(0,(0))f 处的切线方程为y x =-.(2)因为()e 2x f x m x m =--,所以()e 2xf x m '=-,①当2m ≥时,()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,从而()(0)0f x f >=成立,故2m ≥符合题意; ①当02m <<时,令()0f x '<,解得20lnx m <<,即()f x 在20,ln m ⎛⎫ ⎪⎝⎭上单调递减,则2ln(0)0f f m ⎛⎫<= ⎪⎝⎭,故02m <<不符合题意; ①当0m ≤时,0()e 2x f x m '-<=在(0,)+∞上恒成立,即()f x 在(0,)+∞上单调递减,则()(0)0f x f <=,故0m ≤不符合题意.综上,m 的取值范围为[2,)+∞. 6.(2020·江西高三)已知函数()()2x f x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.【答案】(1)单调递增区间为()1,+?,单调递减区间为(),1-∞(2)证明见解析【解析】(1)因为()()2x f x x e =-,所以()()1x f x x e '=-,令()0f x ¢>,解得1x >;令()0f x ¢<,解得1x <.故()f x 的单调递增区间为()1,+?,单调递减区间为(),1-∞.(2)要证()2ln 6xf x x x >-,只需证()ln 32x f x x>-.由(1)可知()()min 1f x f e ==-.令()ln 3(0)2x h x x x =->,则()21ln 2xh x x -'=, 令()21ln 0ln 102xh x x x e x-'=>⇒<⇒<<, 所以当()0,x e ∈时,()0h x '>,()h x 单调递增;当(),x e ∈+∞时,()0h x '<,()h x 单调递减, 则()()max 132h x h e e==-. 因为 2.71828e =⋅⋅⋅,所以 2.75e ->-,所以1133 2.7524e -<-=-, 从而132e e->-,则当0x >时,()()min max f x h x >.故当0x >时,()()f x h x >恒成立,即对任意的()0,x ∈+∞,()2ln 6xf x x x >-.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.【答案】(1)当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减;(2)2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 【解析】(1)()(32)xf x m e x '=--,因为0x =是函数()f x 的一个极值点,则(0)320f m '=-=,所以23m =,则21()ln (0)2h x b x x x =->,当2()b b x h x x x x-'=-=,当0b …时,()0h x '…恒成立,()h x 在(0,)+∞上单调递减,当0b >时,2()000h x b x x '>⇒->⇒<<所以()h x 在上单调递增,在)+∞上单调递减. 综上所述:当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减. (2)()f x 在R 上有且仅有一个零点,即方程2322x x m e -=有唯一的解,令2()2xx g x e=, 可得(2)()0,()2xx x g x g x e -'>=, 由(2)()02xx x g x e -'==, 得0x =或2x =,(1)当0x …时,()0g x '…,所以()g x 在(,0]-∞上单调递减,所以()(0)0g x g =…,所以()g x 的取值范围为[0,)+∞. (2)当02x <<时,()0g x '>,所以()g x 在(0,2)上单调递增, 所以0()(2)g x g <<,即220()g x e<<, 故()g x 的取值范围为220,e ⎛⎫ ⎪⎝⎭. (3)当2x …时,()0g x '…,所以()g x 在[2,)+∞上单调递减, 所以(0)()(2)g g x g <…,即220()g x e <…, 即()g x 的取值范围为220,e ⎛⎤ ⎥⎝⎦. 所以,当320m -=或2232m e ->, 即23m =或22233m e >+时,()f x 在R 上有且只有一个零点,故m 的取值范围为2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.【答案】(1)答案不唯一,具体见解析(2)[1,)+∞ 【解析】(1)()f x 的定义域为(0,)+∞,2'()2af x x=-, ①当0a ≤时,'()0f x <,所以()f x 在(0,)+∞上是减函数,()f x 无极值. ①当0a >时,令'()0f x =,得x a =,在(0,)a 上,'()0f x >,()f x 是增函数;在(,)a +∞上,'()0f x <,()f x 是减函数. 所以()f x 有极大值()2ln 21f a a a a =-+,无极小值.(2)由(1)知,①当0a ≤时,()f x 是减函数,令2a x e =,则0(0,1]x ∈,222220()(2)21(2)320a a f x a a e a e --=-+--=->,不符合题意,①当0a >时,()f x 的最大值为()2ln 21f a a a a =-+, 要使得对任意0x >,2()(1)f x a ≤-恒成立, 即要使不等式22ln 212a a a a -+≤-成立, 则22ln 230a a a a --+≤有解.令2()2ln 23(0)g a a a a a a =--+>,所以'()2ln 2g a a a =-令()'()2ln 2h a g a a a ==-,由22'()0ah a a-==,得1a =. 在(0,1)上,'()0h a >,则()'()h a g a =在(0,1)上是增函数; 在(1,)+∞上,'()0h a <,则()'()h a g a =在(1,)+∞上是减函数. 所以max ()(1)20h a h ==-<,即'()0g a <, 故()g a 在(0,)+∞上是减函数,又(1)0g =,要使()0g a ≤成立,则1a ≥,即a 的取值范围为[1,)+∞. 9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.【答案】(1)增区间为(),2-∞-,()0,∞+,单调减区间为()2,0-;(2)三条切线,理由见解析;(3)0,2⎡+⎣ 【解析】(1)()()()222xxf x x x e x x e '==++,()0f x '>得,2x <-或0x >;()0f x '<得,20x -<<;所以()f x 的单调增区间为(),2-∞-,()0,∞+;单调减区间为()2,0-; (2)过()1,0P 点可做()f x 的三条切线;理由如下:设切点坐标为()0200,x x x e,所以切线斜率()()00002xx x k x e f '=+= 所以过切点的切线方程为:()()002200002x x x e x x e x y x -=+-,切线过()1,0P 点,代入得()()0022*******x x x e x x e x -=+-,化简得(0000x x x x e=,方程有三个解,00x =,0x =0x 所以过()1,0P 点可做()f x 的三条切线. (3)设()()21xg x x e k x -=-,①0k =时,因为20x ≥,0x e >,所以显然20x x e ≥对任意x ∈R 恒成立; ①k 0<时,若0x =,则()()0001f k k =>-=-不成立, 所以k 0<不合题意.①0k >时,1x ≤时,()()210xg x x e k x -=->显然成立,只需考虑1x >时情况;转化为21xx e k x ≥-对任意()1,x ∈+∞恒成立令()21xx e h x x =-(1x >),则()min k h x ≤,()()()(()2222(2)111xx xx x x ex x e x x e h x x x +--'==--,当1x <<时,()0h x '<,()h x 单调减;当x >()0h x '>,()h x 单调增;所以()(min 2h x h==+=所以(2k ≤+综上所述,k 的取值范围(0,2+⎡⎣. 10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值;(2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围. 【答案】(1)13a =,403=-b ;(2)2642ln 2<-m【解析】(1)()()23114310f f x ax x''=--, 因为()f x 在()()1,1f 处的切线方程为100++=x y b ,即10y x b =--,此时切线斜率10k =-,则()3(1)13141010f f a k ''=--==-,解得13a =,所以()()333101114ln 314ln 3103f x x x x x x x ⨯-=--=+-, 所以()31110113114ln13333f =⨯+⨯-=+=,则10103b =--,解得403=-b(2)由(1)知()31314ln 3f x x x x =+-, ()32143143x x f x x x x+-'=+-=, 设函数()()33140g x xx x =+->,则()2330g x x '=+>,所以()g x 在()0,∞+为增函数,因为()20g =,令()0g x <,得02x <<;令()0g x >,得2x >, 所以当02x <<时,()0f x '<;当2x >时,()0f x '>, 所以()()3min 126223214ln 214ln 233f x f ==⨯+⨯-=-, 从而12614ln 233<-m ,即2642ln 2<-m 11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈.(1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析(2)15,2ln 28⎛⎤-∞- ⎥⎝⎦【解析】(1)由()ln 1f x ax x =--,(0,)x ∈+∞, 则11()ax f x a x x'-=-=, 当0a ≤时,则()0f x '≤,故()f x 在(0,)+∞上单调递减;当0a >时,令1()0f x x a'=⇒=, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述:当0a ≤时,()f x 在(0,)+∞上单调递减; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增. (2)①21()ln (1)2g x x x a x =+-+, 21(1)1()(1)x a x g x x a x x-++'=+-+=, 由()0g x '=得2(1)10x a x -++=,①121x x a +=+,121=x x ,①211x x =①32a ≥①111115210x x x x ⎧+≥⎪⎪⎨⎪<<⎪⎩解得1102x <≤.①()()()()222112121211221111ln(1)2ln 22x g x g x x x a x x x x x x ⎛⎫-=+--+-=-- ⎪⎝⎭. 设22111()2ln 022h x x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()2233121()0x h x x x x x '--=--=<,①()h x 在10,2⎛⎤ ⎥⎝⎦上单调递减;当112x =时,min 115()2ln 228h x h ⎛⎫==- ⎪⎝⎭. ①152ln 28k ≤-,即所求k 的取值范围为15,2ln 28⎛⎤-∞- ⎥⎝⎦.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.【答案】(1)证明见解析(2)(i )证明见解析(ii )证明见解析 【解析】(1)由题意知,()1cos 1f x x x x'=+-+,()1,x ∈-+∞, 当()1,0x ∈-时,()1101f x x x x'<+-<<+,所以()f x 在区间()1,0-上单调递减, 当()0,x ∈+∞时,()()g x f x '=,因为()()()22111sin 011g x x x x '=+->>++所以()g x 在区间()0,∞+上单调递增,因此()()00g x g >=,故当()0,x ∈+∞时,()0f x '>,所以()f x 在区间()0,∞+上单调递增, 因此当()1,x ∈-+∞时,()()00f x f ≥=,所以()0f x ≥ (2)(①)()f x 在区间10,2⎛⎫ ⎪⎝⎭上单调递增,()()00f x f >=,因为881288311111C C 147122224e ⎛⎫⎛⎫=+=+++>++=> ⎪ ⎪⎝⎭⎝⎭L , 故83318ln ln ln 022e ⎛⎫-=-< ⎪⎝⎭,所以()1113131131sin ln sin ln 18ln 22826822822f x f π⎛⎫⎛⎫<=+-<+-=+-<⎪ ⎪⎝⎭⎝⎭因此当10,2x ⎛⎫∈ ⎪⎝⎭时,()01f x <<,又因为110,2a ⎛⎫∈ ⎪⎝⎭,所以()()()()()()12110,2n n n a f a ff a f f f a --⎛⎫====∈ ⎪⎝⎭LL L(①)函数()()h x f x x =-(102x <<),则()()11cos 11h x f x x x x''=-=+--+, 令()()x h x ϕ=',则()()0x g x ϕ''=>,所以()x ϕ在区间10,2⎛⎫ ⎪⎝⎭上单调递增;因此()()111217cos 1cos 0222326h x x ϕϕ⎛⎫'=≤=+--=-<⎪⎝⎭, 所以()h x 在区间10,2⎛⎫ ⎪⎝⎭上单调递减,所以()()00h x h <=, 因此()()10n n n n n a a f a a g a +-=-=<, 所以x *∀∈N ,1n n a a +<13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值. 【答案】(1)极小值为1a e-+;无极大值(2)证明过程见解析;(3)2. 【解析】(1)函数()f x 的定义域为0x >,因为()ln f x x x a =+,所以()ln 1f x x =+‘,当1x e >时,()0f x >‘,所以函数()f x 单调递增;当10x e<<时,()0f x <‘,所以函数()f x 单调递减,因此1e是函数()f x 的极小值,故函数()f x 的极值为极小值,值为11()f a e e =-+;无极大值(2)函数()g x 的定义域为0x >,因为()ln ,g x x ax =-所以'1()g x a x=-,因为10a e <<,所以当1x a >时,'()0g x <,因此函数()g x 是递减函数,当10x a<<时,'()0g x >,。
2020年高考理数考前20天终极冲刺攻略+推理与证明+Word版含答案
中心考点解读——推理与证明合情推理与演绎推理(I )综合法与剖析法(I)反证法( I )数学概括法( II )1.从考察题型来看,选择题、填空题中要点在于考察推理的应用以及学生联想、归纳、假定、证明的数学应用能力.解答题中要点考察数学概括法.2.从考察内容来看,主要考察概括、类比推理,以及综合函数、导数、不等式、数列等知识考察直接证明和间接证明,要能够对数学结论作简单的证明,并能用数学概括法证明数学识题.3.从考察热门来看,推理是高考命题的热门,以合情推理与演绎推理为主线,考察学生联想、概括、假定、证明的能力,对数学知识、结论掌握的程度.1.合情推理与演绎推理(1)合情推理合情推理分为概括推理与类比推理,概括推理的特色是由特别到一般,由局部到整体 .类比推理的特色是由特别到特别.概括推理的主要考察种类是:与等式、不等式联系,经过察看所给的几个等式或不等式两边式子的特色,发现隐含的规律;与数列联系,先求出几个特别现象,概括所得的结论是属于未知的一般结论,这是一种不完整概括;与图形联系,合理利用给出的特别图形概括推理,得出结论,并可用赋值查验法考证真假.类比推理主要就是找出两类事物之间的相像性或一致性,依据这一特征,用一类事物的性质去推断另一类事物的性质,并得出一个明确的命题或猜想.(2)演绎推理演绎推理的模式:三段论:大前提、小前提、结论.其特色是由一般到特别的推理 .若大前提与小前提都建立,则结论也建立.(3)注意点[KS5UKS5UKS5U]i)在进行类比推理时要尽量从实质上去类比,不要被表面现象诱惑,以防犯机械类比的错误 .ii)合情推理是从已知的结论推断未知的推论,发现与猜想的结论还需要进一步严格证明 .[KS5UKS5U]iii)演绎推理是由一般到特别的推理,它常用来证明数学识题,要注意推理过程的严实性,书写格式的规范性 .2.直接证明与间接证明(1)直接证明:综合法与剖析法综合法:利用已知条件和某些数学定义、公义、定理等,经过一系列的推理论证,最后推导出要证明的结论建立.综合法是由因导果.剖析法:从要证明的结论出发,逐渐追求使它建立的充足条件,直至最后,把要证明的结论归纳为判断一个显然建立的条件(已知条件、定理、定义、公义等)为止 .剖析法是执果索因.综合法与剖析法是两种思路相反的证明方法,剖析法重视于结论供给的信息,综合法例重视于条件供给的信息.要把二者联合起来全方向综合剖析信息,找寻合理的解题思路.没有剖析,就没有综合,剖析是综合的基础,二者相辅相成.要注意剖析法的证明格式:要证明,即证明,即证明,由于,因此结论建立.(2)间接证明反证法:从命题结论的反面出发,经过推理,引出矛盾,进而必定数题的结论.应用反证法解决问题的一般步骤为:第一假定数题的结论不建立,即假定结论的反面建立,而后从假定出发进行正确推理,直到推出矛盾为止,最后由矛盾获得假定不建立,进而必定原命题建立.3.数学概括法(1)数学概括法的基本形式设P(n)是一个与正整数n 相关的命题,假如当*00N )时,P(n)建立;n n (n假定当 n k(k n0 , k N * ) 时, P(n) 建立,由此推理获得当n k1时, P(n)也建立,那么对全部 n n0时 P(n) 建立.(2)需要注意的问题:上述两个步骤缺一不行,第一步是考证命题递推关系的基础,没有第一步,第二步就毫无心义;第二步中在证明“当 n k 1 时命题建立”时,一定利用“当 n k 时命题建立”这一条件 .1.(2017 高考新课标II ,理 7)甲、乙、丙、丁四位同学一同去处老师咨询成语比赛的成绩.老师说:你们四人中有 2 位优异, 2 位优异,我此刻给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我仍是不知道我的成绩.依据以上信息,则A.乙能够知道四人的成绩B.丁能够知道四人的成绩C.乙、丁能够知道对方的成绩D.乙、丁能够知道自己的成绩2.(2016高考新课标II ,理15)有三张卡片,分别写有 1 和2,1 和3,2 和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上同样的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上同样的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.3. (2014 高考新课标 I ,理 14)甲、乙、丙三位同学被问到能否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过 C 城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为 __________.1. 在侦破某一同案件时,警方要从甲、乙、丙、丁四名可疑人员中揪出真实的嫌疑人,现有四条明确的信息:( 1)此案是两人共同作案; ( 2)若甲参加此案,则丙必定没参加; ( 3)若乙参加此案,则丁必定参加; ( 4)若丙没参加此案,则丁也必定没参加.据此能够判断参加此案的两名嫌疑人是A .甲、乙B .乙、丙C .丙、丁D .甲、丁2.对大于 1 的自然数的三次幂能够分解成几个奇数的和,比方 ,依此规律,则的分解和式中必定不含有A . 2069B . 2039C . 2009D .19793.中国有个名句 “运筹决胜之中,决胜千里以外 . ”此中的 “筹 ”取意是指《孙子算经》中记录的算筹 .古代是用算筹来进行计算 .算筹是将几寸长的小竹棍摆在下边长进行运算.算筹的摆放形式有纵横两种形式(以下列图所示).表示一个多位数时, 像阿拉伯计数同样, 把各个数位的数码从左到右摆列.但各位数码的筹式要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示.依此类推 .比如 3266 用算筹表示就是,则8771用算筹可表示为中国古代的算筹数码A .B .C .D .4.设,利用求出数列的前项和,设,类比这类方法能够求得数列的前项和 __________.33 3 n3 n2( n 1)25.用数学概括法证明: 12 3.41.用数学概括法证明1 2 3 L n3n5n3, n N *”,则当n k 1时,应该在n k时对应的等式的“2左侧加上A .k31k3 2 L k 13B .k31k6331k1C.k 1D.22.甲、乙、丙三人代表班级参加校运动会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不一样,现认识到以下状况:(1)甲不是最高的;(2)最高的是没报铅球;( 3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步,能够判断丙参加的比赛项目是 ______________.13. 已知平面三角形和空间四周体有好多相像的性质,请你类比三角形的面积公式S a b c r(此中a、2b、 c 是三角形的三边长,r是三角形内切圆的半径),写出一个对于四面体的与之类似的结论________________________ .真题回首:1.D【分析】由甲的说法可知乙、丙一人优异一人优异,则甲、丁两人一人优异一人优异,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩则知道自己的成绩,即乙、丁能够知道自己的成绩.应选D.【名师点睛】合情推理主要包含概括推理和类比推理.数学研究中,在获得一个新结论前,合情推理能帮助猜想和发现结论,在证明一个数学结论以前,合情推理经常能为证明供给思路与方向.合情推理仅是“符合情理”的推理,它获得的结论不必定正确.而演绎推理获得的结论必定正确(前提和推理形式都正确的前提下).2.1 和 3【分析】由题意剖析可知甲的卡片上的数字为 1 和 3,乙的卡片上的数字为 2 和 3,丙的卡片上的数字为1和2.3.A 【分析】依据题意可将三人可能去过哪些城市的状况列表以下:A 城市B 城市C 城市甲去过没去去过乙去过没去没去丙去过可能可能能够得出结论乙去过的城市为A.名校展望1.【答案】 C 【分析】①若甲、乙参加此案,则与信息(2),( 3),( 4)矛盾,故 A 不正确.②若乙、丙参加此案,则与信息(1),( 3)矛盾,故 B 不正确.③若丙、丁参加此案,则信息所有切合,故C 正确.④若甲、丁参加此案,则与信息(1),( 4)矛盾,故D 不正确.应选 C .2 .【答 案 】 D 【 解 析 】 由 规 律 得 中 有 项 , 而 中 第 一 项 分 别 为,所以中第一项为,因此必定不含有1979,选 D.3.【答案】 C 【分析】由题意,依据古代用算筹来记数的方法,个位,百位,万位上的数用纵式表示,十位,千位,十万位上的数用横式来表示,对比算筹的摆放形式,易知正确答案为C.4.【答案】【分析】类比题中的方法裂项可得:,则数列的前 n 项和.5.【分析】( I )当 n1 时,左侧 1 ,右侧 1 ,因此上式建立;( II )假定当 nk 时等式建立,即 1323 33k 3k 2 (k 1)2 ,那么当 nk 1 时,4132333k3( k 1)3k 2 (k 1)2( k 1)3(k 1)2[k 2( k 1)]44(k 1)2 k 24k 4 ( k 1)2 (k 2) 2(k 1)2[( k 1) 1]2 ,444即当 nk 1 时,命题也建立.综上所述,原命题建立.专家押题1. 【答案】 A 【分析】当 n=k 时,左侧为12 3 Lk 3 ,当 n=k+1 时,左侧为 1 2 3L k 3 k 3 1 k 3 2 Lk31 ,因此左侧增添的项为k 3 1k 32 Lk 13,选 A.31【分析】令 x 0 ,则 a 02532 , 令 x 1 ,则 a 5 a 4 a 3 a 2 a 1 a 0 1 252. 【答案】 1 ,因此a 1 a 2 a 3 a 4a 5132 31 .3. 【答案】 V1 S2 S3 S4 r (此中 S 1, S 2 , S 3 , S 4 是四周体的四个面的面积,r 是四周体的内切球的半S 13径)【分析】由类比推理,得将三角形的三边长类比到四周体的各面面积,三角形的内切圆的半径类比到四周体的内切球的半径,将三角形的面积类比到四周体的体积,即获得V 13S1S2S3S4r(此中S1, S2 , S3, S4是四周体的四个面的面积,r是四周体的内切球的半径).。
2023年高考数学总复习:导数(附答案解析)
2023年高考数学总复习:导数一.选择题(共8小题)1.(2022春•合肥期末)f(x)的导函数f'(x)的图象如图所示,则函数f(x)的图象最有可能的是图中的()A.B.C.D.2.(2022春•东城区期末)已知函数f(x)=x3﹣sin x,若对于任意x1,x2∈R,满足x1+x2=0,且x1≠x2,则一定有()A.f(x1)+f(x2)=0B.f(x1)﹣f(x2)=0C.f(x1)<f(x2)D.f(x1)>f(x2)3.(2022春•揭阳期末)函数f(x)的图象与其在点P处的切线如图所示,则f(1)﹣f'(1)等于()A.﹣2B.0C.2D.44.(2022春•丰台区校级期末)已知f(x)的导数存在,y=f(x)的图象如图所示,则在区间[a,b]上()A.f'(x)的最大值是f'(a),最小值是f'(c)B.f'(x)的最大值是f'(a),最小值是f'(b)C.f'(x)的最大值是f'(c),最小值是f'(b)D.f'(x)的最大值f'(b),最小值是f'(c)5.(2022春•顺义区期末)已知x0(x0≠0)是函数f(x)=x3+ax2+bx+c的极大值点,则下列结论不正确的是()A.∃x∈R,f(x)>f(x0)B.f(x)一定存在极小值点C.若a=0,则﹣x0是函数f(x)的极小值点D.若b=0,则a<06.(2022春•南充期末)若曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+2=0,则()A.a=﹣1,b=﹣2B.a=1,b=2C.a=1,b=﹣2D.a=﹣1,b=2 7.(2022•南京模拟)已知f(x)=(1﹣x)e x﹣1,g(x)=(x+1)2+a,若存在x1,x2∈R,使得f(x2)≥g(x1)成立,则实数a的取值范围为()A.B.C.(0,e)D.8.(2022春•丰台区校级期末)若函数f(x)=xlnx﹣ax+1在[e,+∞)上单调递增,则实数a的取值范围是()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)二.多选题(共4小题)(多选)9.(2022•南京模拟)设函数f(x)=xe x+a+bx,曲线y=f(x)在点(﹣2,f(﹣2))处的切线方程为y=(e﹣1)x﹣4,则()A.f(﹣2)=﹣2e﹣2B.a=2C.a=3D.f(x)在R上单调递增(多选)10.(2022•南京模拟)已知函数f(x)=x2﹣e x+a有两个极值点x1与x2,且x1<x2,则下列结论正确的是()A.a<ln2﹣1B.0<x1<1C.﹣1<f(x1)<0D.(多选)11.(2022春•石家庄期末)已知f(x)=﹣lnx,f(x)在x=x0处取得最大值,则()A.f(x0)<x0B.f(x0)=x0C.f(x0)<D.f(x0)>(多选)12.(2022春•乐昌市校级月考)已知,函数,则下列选项正确的是()A.B.C.D.三.填空题(共4小题)13.(2022春•海南期末)已知函数f(x)=alnx﹣x3,f'(x)为f(x)的导函数,若f'(1)=4,则实数a=.14.(2022春•龙岩期末)已知定义在R上的函数f(x)满足:xf′(x)+f(x)>0,且f (1)=1,则xf(x)>1的解集为.15.(2022春•沈阳期末)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),有如下定义:设f'(x)是函数y=f(x)的导函数,f''(x)是f'(x)的导函数.若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.而某同学探究发现,任何一个三次函数都有“拐点”,且“拐点”恰为该三次函数图象的对称中心.对于函数,依据上述结论,可知f(x)图象的对称中心为,而=.16.(2022春•济南期末)已知函数f(x)=log2(x+1)﹣k2kx+k(k>0),若存在x>0,使得f(x)≥0成立,则k的最大值为.四.解答题(共6小题)17.(2022春•朝阳区期末)已知函数.(Ⅰ)求曲线y=f(x)在点(﹣1,f(﹣1))处的切线方程;(Ⅱ)求函数y=f(x)的单调区间.18.(2022春•达州期末)已知函数.(1)若函数f(x)在x=1处的切线是x+y﹣1=0,求a+b的值;(2)当a=1时,讨论函数f(x)的零点个数.19.(2022春•平谷区期末)已知函数在点(1,f(1))处的切线斜率为﹣6,且当x=2时,f(x)取得极值.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间.20.(2022春•滨海新区校级期末)已知函数f(x)=(x﹣1)e x,g(x)=a+lnx,其中e 是自然对数的底数.(1)若对于任意实数x,不等式f(x)≥k恒成立,求实数k的取值范围;(2)设h(x)=bf(x)﹣g(x)+a,求证:当时,h(x)恰好有2个零点;(3)若曲线y=f(x)在x=1处的切线与曲线y=g(x)也相切.判断函数φ(x)=f (x)+e|g(x)|的单调性.21.(2022春•海淀区校级期末)已知函数f(x)=lnx+ax2﹣(2a+1)x+a+1,其中a∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)设g(x)=f′(x),求函数g(x)在区间[1,2]上的最小值;(Ⅲ)若f(x)在区间[1,2]上的最大值为2ln2﹣1,直接写出a的值.22.(2022春•朝阳区期末)已知函数f(x)=xe x﹣ax(a∈R).(Ⅰ)若y=f(x)在R上是增函数,求实数a的取值范围;(Ⅱ)当a=1时,判断0是否为函数f(x)的极值点,并说明理由;(Ⅲ)若存在三个实数x1<x2<x3,满足f(x1)=f(x2)=f(x3),求实数a的取值范围.2023年高考数学总复习:导数参考答案与试题解析一.选择题(共8小题)1.(2022春•合肥期末)f(x)的导函数f'(x)的图象如图所示,则函数f(x)的图象最有可能的是图中的()A.B.C.D.【考点】利用导数研究函数的单调性;函数的图象与图象的变换.【专题】函数思想;转化法;导数的概念及应用;数学运算.【分析】先根据导函数的图象确定导函数大于0 的范围和小于0的x的范围,进而根据当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减确定原函数的单调增减区间.【解答】解:x<﹣2时,f′(x)<0,则f(x)单减;﹣2<x<0时,f′(x)>0,则f(x)单增;x>0时,f′(x)<0,则f(x)单减.则符合上述条件的只有选项A.故选:A.【点评】本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.重点是理解函数图象及函数的单调性.2.(2022春•东城区期末)已知函数f(x)=x3﹣sin x,若对于任意x1,x2∈R,满足x1+x2=0,且x1≠x2,则一定有()A.f(x1)+f(x2)=0B.f(x1)﹣f(x2)=0C.f(x1)<f(x2)D.f(x1)>f(x2)【考点】利用导数研究函数的单调性.【专题】函数思想;转化法;函数的性质及应用;数学运算.【分析】由题可得函数为奇函数可判断A,利用特值可判断BCD.【解答】解:∵f(x)=x3﹣sin x,∴f(﹣x)=﹣x3+sin x=﹣f(x),函数为奇函数,又x1+x2=0,x1≠x2,∴f(x2)=﹣f(x1),即f(x1)+f(x2)=0,故A正确;当时,,,此时f(x1)﹣f(x2)≠0,f(x1)>f(x2),当时,f(x1)<f(x2),故BCD不合题意.故选:A.【点评】本题考查了函数的单调性,奇偶性问题,考查特殊值法的应用,是基础题.3.(2022春•揭阳期末)函数f(x)的图象与其在点P处的切线如图所示,则f(1)﹣f'(1)等于()A.﹣2B.0C.2D.4【考点】利用导数研究曲线上某点切线方程.【专题】方程思想;数形结合法;导数的概念及应用;数学运算.【分析】由图形求出切线的斜率与方程,可得f′(1)与f(1),则答案可求.【解答】解:由图可知,切线的斜率k=,即f'(1)=﹣2,切线方程为y=﹣2x+4,取x=1,得y=2.∴f(1)=2,则f(1)﹣f'(1)=2﹣(﹣2)=4.故选:D.【点评】本题考查导数的几何意义及应用,考查数形结合思想,是基础题.4.(2022春•丰台区校级期末)已知f(x)的导数存在,y=f(x)的图象如图所示,则在区间[a,b]上()A.f'(x)的最大值是f'(a),最小值是f'(c)B.f'(x)的最大值是f'(a),最小值是f'(b)C.f'(x)的最大值是f'(c),最小值是f'(b)D.f'(x)的最大值f'(b),最小值是f'(c)【考点】利用导数研究函数的单调性.【专题】对应思想;数形结合法;导数的概念及应用;直观想象.【分析】由导数的几何意义,数形结合得答案.【解答】解:由导数的几何意义,即曲线在该点处的切线的斜率可知,f'(a)>0,f'(c)=0,f'(b)<0,且在区间[a,b]上,f′(x)逐渐减小,则在区间[a,b]上,f'(x)的最大值是f'(a),最小值是f'(b).故选:B.【点评】本题考查利用导数研究函数的单调性,考查数形结合思想,是基础题.5.(2022春•顺义区期末)已知x0(x0≠0)是函数f(x)=x3+ax2+bx+c的极大值点,则下列结论不正确的是()A.∃x∈R,f(x)>f(x0)B.f(x)一定存在极小值点C.若a=0,则﹣x0是函数f(x)的极小值点D.若b=0,则a<0【考点】利用导数研究函数的极值.【专题】函数思想;综合法;导数的综合应用;逻辑推理.【分析】根据极大值点概念,直接判断.【解答】解:选项A,∵x→+∞时,f(x)→+∞,∴∃x∈R,f(x)>f(x0),选项A正确;选项B,∵x0(x0≠0)是函数f(x)=x3+ax2+bx+c的极大值点,∴方程f′(x)=3x2+2ax+b =0有两个不等根,∴f(x)一定存在极小值点,选项B正确;选项C,∵a=0,∴方程f′(x)=3x2+b=0有相异两根,﹣x0是f(x)的极小值点,选项C正确;选项D,∵b=0,∴方程f′(x)=3x2+2ax=0两根0或﹣,∴a<0错误,选项D 错误.故选:D.【点评】本题考查了运用导数判断函数的极值点,是中档题.6.(2022春•南充期末)若曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+2=0,则()A.a=﹣1,b=﹣2B.a=1,b=2C.a=1,b=﹣2D.a=﹣1,b=2【考点】利用导数研究曲线上某点切线方程.【专题】方程思想;综合法;导数的概念及应用;数学运算.【分析】求出原函数的导函数,利用函数在x=0处的导数值等于切线的斜率,且切点处的函数值相等列式求得a与b的值.【解答】解:由y=x2+ax+b,得y′=2x+a,∵曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+2=0,∴,即a=1,b=﹣2.故选:C.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查运算求解能力,是基础题.7.(2022•南京模拟)已知f(x)=(1﹣x)e x﹣1,g(x)=(x+1)2+a,若存在x1,x2∈R,使得f(x2)≥g(x1)成立,则实数a的取值范围为()A.B.C.(0,e)D.【考点】利用导数研究函数的最值.【专题】转化思想;分析法;导数的综合应用;数学运算.【分析】原问题等价于f(x)max≥g(x)min,利用导数求得f(x)的最大值,根据二次函数的性质求得g(x)的最小值,代入上述不等式,即可得解.【解答】解:∃x1,x2∈R,使得f(x2)≥g(x1)成立,等价于f(x)max≥g(x)min,因为f(x)=(1﹣x)e x﹣1,所以f′(x)=﹣e x﹣1+(1﹣x)e x﹣1=﹣xe x﹣1,当x<0时,f′(x)>0,f(x)在(﹣∞,0)上单调递增,当x>0时,f′(x)<0,f(x)在(0,+∞)上单调递减,所以f(x)max=f(0)=;因为g(x)min=g(﹣1)=a,所以≥a,即实数a的取值范围是(﹣∞,].故选:B.【点评】本题考查利用导数求函数的最值,理解函数的单调性与导数之间的联系,会将恒成立存在性问题转化为函数的最值问题是解题的关键,考查转化思想,逻辑推理能力和运算能力,属于中档题.8.(2022春•丰台区校级期末)若函数f(x)=xlnx﹣ax+1在[e,+∞)上单调递增,则实数a的取值范围是()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)【考点】利用导数研究函数的单调性.【专题】函数思想;转化法;导数的综合应用;数学运算.【分析】求出原函数的导函数,把问题转化为a≤lnx+1在[e,+∞)上恒成立,由单调性求得lnx+1的最小值,即可得到实数a的取值范围.【解答】解:由f(x)=xlnx﹣ax+1,得f′(x)=lnx+1﹣a,∵函数f(x)=xlnx﹣ax+1在[e,+∞)上单调递增,∴lnx+1﹣a≥0在[e,+∞)上恒成立,即a≤lnx+1在[e,+∞)上恒成立,∵lnx+1在[e,+∞)上单调递增,∴(lnx+1)min=2,可得a≤2.∴实数a的取值范围是(﹣∞,2].故选:B.【点评】本题考查利用导数研究函数的单调性,考查化归与转化思想,考查运算求解能力,是中档题.二.多选题(共4小题)(多选)9.(2022•南京模拟)设函数f(x)=xe x+a+bx,曲线y=f(x)在点(﹣2,f(﹣2))处的切线方程为y=(e﹣1)x﹣4,则()A.f(﹣2)=﹣2e﹣2B.a=2C.a=3D.f(x)在R上单调递增【考点】利用导数研究曲线上某点切线方程.【专题】函数思想;综合法;导数的综合应用;数学运算.【分析】求出函数f(x)的导函数,得到函数在点(﹣2,f(﹣2))处的切线方程,结合题意可得a与b的值,得到函数解析式,然后逐一分析四个选项得答案.【解答】解:由f(x)=xe x+a+bx,得f′(x)=e x+a+xe x+a+b,∵曲线y=f(x)在点(﹣2,f(﹣2))处的切线方程为y=(e﹣1)x﹣4,∴f′(﹣2)=e a﹣2﹣2e a﹣2+b=e﹣1,且﹣2(e﹣1)﹣4=﹣2e a﹣2﹣2b,解得a=2,b=e,∴f(x)=xe x+2+ex,则f(﹣2)=﹣2e0﹣2e=﹣2e﹣2,f′(x)=e2﹣x﹣xe2﹣x+e=(1﹣x+e x﹣1)e2﹣x,令h(x)=1﹣x+e x﹣1,则h′(x)=﹣1+e x﹣1,可得当x∈(﹣∞,1)时,h′(x)<0,h(x)单调递减,当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,∴h(x)≥h(1)=1>0,可得f′(x)>0,则f(x)在R上单调递增,综上可知,ABD正确.故选:ABD.【点评】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用导数求最值,考查运算求解能力,是中档题.(多选)10.(2022•南京模拟)已知函数f(x)=x2﹣e x+a有两个极值点x1与x2,且x1<x2,则下列结论正确的是()A.a<ln2﹣1B.0<x1<1C.﹣1<f(x1)<0D.【考点】利用导数研究函数的极值.【专题】计算题;方程思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】分析可知函数f'(x)有两个异号的正零点,可知直线y=a与函数g(x)=lnx ﹣x+ln2的图象有两个交点,数形结合可判断A选项;利用函数g(x)的单调性可判断B 选项;利用极值点满足的条件结合二次函数的基本性质可判断C选项;利用不等式的性质可判断D选项.【解答】解:因为f(x)=x2﹣e x+a,该函数的定义域为R,f'(x)=2x﹣e x+a,由已知可得,所以,函数f'(x)有两个异号的正零点,由2x=e x+a,其中x>0,可得x+a=ln2+lnx,可得a=lnx﹣x+ln2,构造函数g(x)=lnx﹣x+ln2,其中x>0,.当0<x<1时,g'(x)>0,此时函数g(x)单调递增,当x>1时,g'(x)<0,此时函数g(x)单调递减,所以,函数g(x)的极大值为g(1)=ln2﹣1,如下图所示:当a<ln2﹣1时,直线y=a与函数g(x)的图象有两个交点,即函数f(x)有两个极值点,A对;对于B选项,x1、x2为直线y=a与函数g(x)图象两个交点的横坐标,因为函数g(x)在(0,1)上为增函数,在(1,+∞)上为减函数,且x1<x2,故0<x1<1,x2>1,B对;对于C选项,,C对;对于D选项,因为0<x1<1,,则,因为可得,所以,,D错.故选:ABC.【点评】本题主要考查利用导数研究函数的极值,利用导数研究双变量问题等知识,属于中等题.(多选)11.(2022春•石家庄期末)已知f(x)=﹣lnx,f(x)在x=x0处取得最大值,则()A.f(x0)<x0B.f(x0)=x0C.f(x0)<D.f(x0)>【考点】利用导数研究函数的最值.【分析】,x∈(0,+∞),,令g(x)=1+x﹣xlnx,然后利用导数研究函数的单调性极值与最值,即可得出结论.【解答】解:,x∈(0,+∞),,令g(x)=1+x﹣xlnx,g'(x)=1﹣1﹣lnx=﹣lnx,可得函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.x→0+时,g(x)→1;g(x)max=g(1)=2;g(3)=4﹣3ln3>0,g(4)=5﹣4ln4<0,∴存在唯一x0∈(3,4),满足g(x0)=1+x0﹣x0lnx0=0.使得函数f(x)在(0,x0)单调递增,在(x0,+∞)上单调递减.∴函数f(x)在x=x0处取得极大值即最大值,满足,故选:BC.【点评】本题主要考查利用导数研究函数的单调性,利用导数研究函数的最值等知识,属于中等题.(多选)12.(2022春•乐昌市校级月考)已知,函数,则下列选项正确的是()A.B.C.D.【考点】利用导数研究函数的最值.【专题】整体思想;综合法;导数的综合应用;逻辑推理.【分析】先对函数求导,由导函数,确定函数在的单调性,再结合最大值,最小值即可判断.【解答】解:当时,f'(x)=1﹣sin x>0,此时f(x)在上递增,又,,所以时,恒成立.因此AC错,BD正确.故选:BD.【点评】本题主要考查了导数与单调性及最值的应用,属于中档题.三.填空题(共4小题)13.(2022春•海南期末)已知函数f(x)=alnx﹣x3,f'(x)为f(x)的导函数,若f'(1)=4,则实数a=7.【考点】导数的运算.【专题】计算题;对应思想;定义法;导数的概念及应用;数学运算.【分析】根据导数的公式即可得到结论.【解答】解:∵f(x)=alnx﹣x3,∴,∴f'(1)=a﹣3=4,解得a=7.故答案为:7.【点评】本题主要考查导数的基本运算,比较基础.14.(2022春•龙岩期末)已知定义在R上的函数f(x)满足:xf′(x)+f(x)>0,且f (1)=1,则xf(x)>1的解集为(1,+∞).【考点】利用导数研究函数的单调性.【专题】整体思想;综合法;导数的综合应用;数学运算.【分析】设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,即函数g(x)为R上的增函数,又xf(x)>1等价于g(x)>g(1),然后求解集即可.【解答】解:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,即函数g(x)为R上的增函数,又f(1)=1,即g(1)=1,则xf(x)>1等价于g(x)>g(1),则xf(x)>1的解集为(1,+∞),故答案为:(1,+∞).【点评】本题考查了导数的应用,重点考查了利用导数研究函数的单调性,属基础题.15.(2022春•沈阳期末)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),有如下定义:设f'(x)是函数y=f(x)的导函数,f''(x)是f'(x)的导函数.若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.而某同学探究发现,任何一个三次函数都有“拐点”,且“拐点”恰为该三次函数图象的对称中心.对于函数,依据上述结论,可知f(x)图象的对称中心为(,),而=1011.【考点】利用导数研究函数的极值.【专题】计算题;方程思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】根据题中结论,二次求导后可求得函数的拐点,即函数y=f(x)的对称中心;利用对称性可得所求.【解答】解:因为f'(x)=3x2﹣3x+3,f''(x)=6x﹣3,令f''(x)=6x﹣3=0,得,因为,所以f(x)图象的对称中心为,由对称性可知,所以,故答案为:,1011.【点评】本题主要考查函数的对称性,新定义知识的应用等知识,属于中等题.16.(2022春•济南期末)已知函数f(x)=log2(x+1)﹣k2kx+k(k>0),若存在x>0,使得f(x)≥0成立,则k的最大值为.【考点】利用导数研究函数的最值.【专题】计算题;方程思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】由f(x)≥0,可得,同构函数g (x)=x log2x,结合函数的单调性,转化为的最大值问题.【解答】解:由,可得,即,,构造函数g(x)=x log2x,显然在(1,+∞)上单调递增,∴x+1≥2k(x+1),即,令,即求函数的最大值即可,,∴在(1,e﹣1)上单调递增,在(e﹣1,+∞)上单调递减,∴h(x)的最大值为,∴,即k的最大值为,故答案为:.【点评】本题主要考查利用导数研究函数的性质,利用导数研究不等式能成立问题等知识,属于中等题.四.解答题(共6小题)17.(2022春•朝阳区期末)已知函数.(Ⅰ)求曲线y=f(x)在点(﹣1,f(﹣1))处的切线方程;(Ⅱ)求函数y=f(x)的单调区间.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】对应思想;定义法;导数的综合应用;数学运算.【分析】(Ⅰ)求导,根据导函数在某点处的导数值是切线的斜率即可求解;(Ⅱ)根据导函数的正负即可确定y=f(x)的单调区间.【解答】解:(Ⅰ)由,得,故f'(﹣1)=0,f(﹣1)=2ln2+1,所以切线方程为y=2ln2+1.(Ⅱ)y=f(x)的定义域为(﹣∞,1),由(Ⅰ)知当x<﹣1,f'(x)<0,f(x)单调递减,当,f'(x)>0,f(x)单调递增,当,f'(x)<0,f(x)单调递减,故y=f(x)的单调递增区间为,单调递减区间为.【点评】本题考查了利用导数研究函数的单调性与切线方程,属基础题.18.(2022春•达州期末)已知函数.(1)若函数f(x)在x=1处的切线是x+y﹣1=0,求a+b的值;(2)当a=1时,讨论函数f(x)的零点个数.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;转化思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】(1)通过切点(1,f(1))在切线x+y﹣1=0上,列出方程求解a,b,即可.(2)当a=1时,化简函数的解析式,利用函数的导数,①当﹣2≤b≤2时,②当b<﹣2时,③当b>2时,判断函数的单调性求解函数的最值,推出零点个数即可.【解答】解:(1)∵切点(1,f(1))也在切线x+y﹣1=0上,∴1﹣a+1﹣1=0,即a=1.,f'(1)=1+a﹣b=﹣1,即b=3,∴a+b =4.(2)当a=1时,,∴x>0,.①∵当﹣2≤b≤2时,f'(x)≥0在x∈(0,+∞)上恒成立,∴f(x)在(0,+∞)上单调递增.又f(1)=0,∴f(x)在(0,+∞)上有且只有1个零点.②当b<﹣2时,设x1,x2为方程x2﹣bx+1=0的两根,x1+x2=b<0,x1x2=1>0,即x1<0,x2<0,f'(x)>0在x∈(0,+∞)上恒成立,∴f(x)在(0,+∞)上有且只有1个零点.③当b>2时,设x1,x2(x1<x2)为方程x2﹣bx+1=0的两根,x1+x2=b>0,x1x2=1>0,即0<x1<1<x2,当0<x<x1时,f'(x)>0,当x1<x<x2时,f'(x)<0,当x>x2时,f'(x)>0,∴f(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增.∴f(x1)>f(1)=0>f(x2),∴在b∈(2,+∞)上恒成立,∴f(x)在(0,x1)上有且只有1个零点.∵f(1)=0,∴f(x)在(x1,x2)上有且只有1个零点.∵在b∈(2,+∞)上恒成立,∴f(x)在(x2,+∞)上有且只有1个零点.综上所述,当b≤2时,f(x)在(0,+∞)上有且只有1个零点,当b>2时,f(x)在(0,+∞)上有3个零点.【点评】本题考查函数导数的应用,切线方程的求法,函数的单调性的应用,零点个数的求法,是中档题.19.(2022春•平谷区期末)已知函数在点(1,f(1))处的切线斜率为﹣6,且当x=2时,f(x)取得极值.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;利用导数研究曲线上某点切线方程;函数解析式的求解及常用方法.【专题】函数思想;转化法;导数的概念及应用;数学运算.【分析】(1)求出函数的导数,得到关于a,c的方程组,求出a,c的值,求出函数的解析式即可;(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.【解答】解:(1)∵f(x)=x3+4cx,∴f′(x)=ax2+4c,结合题意得:f′(1)=a+4c=﹣6,f′(2)=4a+4c=0,解得a=2,c=﹣2,∴f(x)=x3﹣8x;(2)由(1)f(x)=x3﹣8x,得f′(x)=2x2﹣8,令f′(x)>0,解得x>2或x<﹣2,令f′(x)<0,解得﹣2<x<2,故f(x)的递增区间是(﹣∞,﹣2),(2,+∞),递减区间是(﹣2,2).【点评】本题考查了函数的单调性,极值问题,考查导数的意义,是基础题.20.(2022春•滨海新区校级期末)已知函数f(x)=(x﹣1)e x,g(x)=a+lnx,其中e 是自然对数的底数.(1)若对于任意实数x,不等式f(x)≥k恒成立,求实数k的取值范围;(2)设h(x)=bf(x)﹣g(x)+a,求证:当时,h(x)恰好有2个零点;(3)若曲线y=f(x)在x=1处的切线与曲线y=g(x)也相切.判断函数φ(x)=f (x)+e|g(x)|的单调性.【考点】利用导数研究函数的最值;利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【专题】函数思想;转化法;导数的综合应用;逻辑推理.【分析】(1)问题转化为只需k≤f(x)min,即可得出答案.(2)根据题意可得h(x)=b(x﹣1)e x﹣lnx,求导得h′(x)=bxe x﹣=,分析h(x)的单调性,再利用零点的存在定理证明函数h(x)的极小值小于0,即h(ln)>0,即可得出答案.(3)利用导数的几何意义求出在x=1处的切线方程,再利用切线与曲线也相切,可求得a的值,进而可得φ(x)的解析式,对绝对是内的数进行分类讨论,再利用导数分别研究分段函数的单调性.【解答】解:(1)f′(x)=e x+(x﹣1)e x=xe x,当x>0时,f′(x)>0,f(x)单调递增,当x<0时,f′(x)<0,f(x)单调递减,所以f(x)min=f(0)=﹣1,所以对于任意实数x,不等式f(x)≥k恒成立,实数k的取值范围为(﹣∞,﹣1].(2)证明:根据题意可得h(x)=bf(x)﹣g(x)+a=b(x﹣1)e x﹣lnx,所以h′(x)=bxe x﹣=,令m(x)=bx2e x﹣1,x>0,所以当0<b<时,m′(x)=(2bx+bx2)e x>0,所以m(x)在(0,+∞)上单调递增,又因为m(1)=be﹣1<0且m(ln)=b(ln)2•﹣1=(ln)2﹣1>0,所以m(x)=0在(0,+∞)上有唯一解,从而h′(x)=0在(0,+∞)上有唯一解,不妨设x0,则1<x0<ln,所以当x∈(0,x0)时,h′(x)=<=0,所以h(x)在(0,x0)上单调递减,当x∈(x0,+∞)时,h′(x)=>=0,所以h(x)在(x0,+∞)上单调递增,所以x0是h(x)的唯一极值点,令t(x)=lnx﹣x+1,所以t′(x)=﹣1=,所以当x>1时,t′(x)<0,t(x)单调递减,从而当x>1时,t(x)<t(1)=0,即lnx<x﹣1,所以h(ln)=b(ln﹣1)e﹣ln(ln)=ln﹣1﹣ln(ln)=﹣t(ln)>0,又因为h(x0)<h(1)=0,所以h(x)在(x0,+∞)上有唯一零点,又因为h(x)在(0,x0)上有唯一零点,为x=1,所以h(x)在(0,+∞)上恰有2个零点.(3)因为f(x)=(x﹣1)e x,所以f′(x)=xe x,所以切线的斜率k=f′(1)=e,因为切点为(1,0),所以切线的方程为y=e(x﹣1),设曲线y=g(x)的切点的坐标为(x1,y1),由g(x)=a+lnx得g′(x)=,所以g′(x1)==e,得x1=,所以切点坐标为(,a﹣1),因为点(,a﹣1)也在直线y=e(x﹣1)上,所以a=2﹣e.所以φ(x)=(x﹣1)e x+e|2﹣e+lnx|,当x≥e e﹣2时,φ(x)=(x﹣1)e x+e(e﹣2+lnx),φ′(x)=xe x+>0恒成立,所以φ(x)在[e e﹣2,+∞)上单调递增,当0<x<e e﹣2时,φ(x)=(x﹣1)e x﹣e(2﹣e+lnx),所以φ′(x)=xe x﹣,因为[φ′(x)]′=(x+1)e x+>0恒成立,所以φ′(x)在(0,e e﹣2)上单调递增,又φ′(1)=0,所以x∈(0,1)时,φ′(x)<0,φ(x)单调递减,x∈(1,e e﹣2)时,φ′(x)>0,φ(x)单调递增,综上所述,函数φ(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).【点评】本题考查导数的综合应用,解题中注意转化思想的应用,属于中档题.21.(2022春•海淀区校级期末)已知函数f(x)=lnx+ax2﹣(2a+1)x+a+1,其中a∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)设g(x)=f′(x),求函数g(x)在区间[1,2]上的最小值;(Ⅲ)若f(x)在区间[1,2]上的最大值为2ln2﹣1,直接写出a的值.【考点】利用导数研究函数的最值.【专题】分类讨论;综合法;导数的综合应用;数学运算.【分析】(Ⅰ)求导后,计算f'(1)和f(1)的值,即可得解;(Ⅱ)求导得g'(x)=﹣+2a,再分a≤0和a>0两种情况,讨论g'(x)与0的大小关系,可得g(x)的单调性,进而知其最小值,其中当a>0时,还需再分三类,结合二次函数的图象与性质,进行讨论;(Ⅲ)先猜测最大值为f(2)=2ln2﹣1,可得a=ln2,再证明当a=ln2时,f(x)在区间[1,2]上的最大值为2ln2﹣1,即可.【解答】解:(Ⅰ)因为f(x)=lnx+ax2﹣(2a+1)x+a+1,所以f'(x)=+2ax﹣(2a+1),所以f'(1)=1+2a﹣(2a+1)=0,而f(1)=ln1+a﹣(2a+1)+a+1=0,所以曲线y=f(x)在点(1,f(1))处的切线方程为y=0.(Ⅱ)g(x)=f′(x)=+2ax﹣(2a+1),所以g'(x)=﹣+2a,当a≤0时,g'(x)<0恒成立,所以g(x)在[1,2]上单调递减,最小值为g(2)=+2a•2﹣(2a+1)=2a﹣;当a>0时,令g'(x)=0,则x=±,若≤1,即a≥时,g(x)在[1,2]上单调递增,所以最小值为g(1)=1+2a•1﹣(2a+1)=0;若1<<2,即<a<时,g(x)在[1,)上单调递减,在(,2]上单调递增,所以最小值为g()=+2a•﹣(2a+1)=2﹣2a﹣1;若≥2,即0<a≤时,g(x)在[1,2]上单调递增,所以最小值为g(2)=2a﹣;综上所述,当a≤时,g(x)的最小值为2a﹣;当<a<时,g(x)的最小值为2﹣2a﹣1;当a≥时,g(x)的最小值为0.(Ⅲ)因为f(1)=0,所以不妨猜测最大值为f(2)=ln2+a﹣1,因为f(x)在区间[1,2]上的最大值为2ln2﹣1,所以a=ln2,下面证明当a=ln2时,f(x)在区间[1,2]上的最大值为2ln2﹣1:因为a=ln2>ln=,所以由(Ⅱ)知,f'(x)=g(x)≥0,即f(x)在[1,2]上单调递增,所以f(x)max=f(2)=ln2+a﹣1=2ln2﹣1,符合猜想,故a=ln2.【点评】本题考查利用导数研究函数的单调性与最值,理解函数的单调性与导数之间的联系,导数的几何意义是解题的关键,考查分类讨论思想,逻辑推理能力和运算能力,属于难题.22.(2022春•朝阳区期末)已知函数f(x)=xe x﹣ax(a∈R).(Ⅰ)若y=f(x)在R上是增函数,求实数a的取值范围;(Ⅱ)当a=1时,判断0是否为函数f(x)的极值点,并说明理由;(Ⅲ)若存在三个实数x1<x2<x3,满足f(x1)=f(x2)=f(x3),求实数a的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【专题】计算题;函数思想;分析法;导数的综合应用;数学运算.【分析】(I)对函数求导,若y=f(x)在R上是增函数,即f′(x)≥0恒成立,得a ≤(1+x)e x,设g(x)=(1+x)e x,求导后利用单调性求得函数的最小值,即可求得结果;(II)对函数二次求导后求得导数的单调性即可判断出结果;(III)若存在三个实数x1<x2<x3,满足f(x1)=f(x2)=f(x3),则函数f(x)存在3个单调区间,结合(I)中函数g(x)的单调性且x→﹣∞时,g(x)→0,利用单调性解得结果.【解答】解:(I)∵f(x)=xe x﹣ax(a∈R),则f′(x)=(1+x)e x﹣a,若y=f(x)在R上是增函数,即f′(x)≥0恒成立,得a≤(1+x)e x,设g(x)=(1+x)e x,g′(x)=(x+2)e x,g′(x)>0得x>﹣2,g′(x)<0得x<﹣2,即g(x)在(﹣∞,﹣2)递减,在(﹣2,+∞)递增,则,故.即a∈[﹣,+∞),(II)当a=1时,f′(x)=(1+x)e x﹣1,f′(x)=(x+2)e x,f′(x)>0得x>﹣2,则f′(x)递增,f′(0)=0,则x∈(﹣2,0)时,f′(x)<0,x∈(0,+∞)时,f′(x)>0,则f(x)在(﹣2,0)上递减,在(0,+∞)上递增,故x=0是函数的极小值点.(III)∵f′(x)=(1+x)e x﹣a,令f′(x)=0,得(1+x)e x=a,由(I)得g(x)=a,又g(x)在(﹣∞,﹣2)递减,在(﹣2,+∞)递增,则,且x→﹣∞时,g(x)→0,g(﹣1)=0,当x<﹣1时,g(x)<0,若存在三个实数x1<x2<x3,满足f(x1)=f(x2)=f(x3),故当g(x)=a有两根x4,x5使得x4<﹣2<x5<﹣1,故x<x4或x>x5时,g(x)>a,此时f(x)递增,x4<x<x5时,g(x)<a,此时f(x)递减,且x→+∞时,f(x)→+∞,则必有f(x)先增后减再增,故必存在x1<x2<x3,满足f(x1)=f(x2)=f(x3),故g(﹣2)<a<0,即.故a∈(﹣,0).【点评】本题考查利用导数研究函数的极值,考查学生的运算能力,属于难题.。
2024数学高考前冲刺题《导数》含答案
黄金冲刺大题05 导数(精选30题)1.(2024·安徽·二模)已知函数2()103(1)ln f x x x f x '=-+.(1)求函数()f x 在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间和极值.2.(2024·江苏南京·二模)已知函数2()e xx ax a f x -+=,其中a ∈R .(1)当0a =时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)当0a >时,若()f x 在区间[0,]a 上的最小值为1e,求a 的值.3.(2024·浙江绍兴·模拟预测)已知()e xf x a x =-,()cosg x x =.(1)讨论()f x 的单调性.(2)若0x ∃使得()()00f x g x =,求参数a 的取值范围.4.(2024·福建漳州·一模)已知函数()ln f x a x x a =-+,R a ∈且0a ≠.(1)证明:曲线()y f x =在点()()1,1f 处的切线方程过坐标原点.(2)讨论函数()f x 的单调性.5.(2024·山东·二模)已知函数()2e ln x f x a x x x =--.(1)当a =()f x 的单调区间;(2)当0a >时,()2f x a ≥-,求a 的取值范围.6.(2024·山东·一模)已知函数21()ln (1)2f x x a x =+-.(1)当12a =-时,求函数()f x 的单调区间;(2)若函数()()21g x f x x =-+有两个极值点12,x x ,且12)3(2()1g x x ag +≥--,求a 的取值范围.7.(2024·湖北·二模)求解下列问题,(1)若1ln kx x -≥恒成立,求实数k 的最小值;(2)已知a ,b 为正实数,[]0,1x ∈,求函数()()11x xg x ax x b a b -=+--⋅的极值.8.(2024·湖北武汉·模拟预测)函数9πππ()tan sin ,()sin cos ,(0,2222n n f x x x x x g x x x x x n +=+--<<=-∈∈N ,.(1)求函数()f x 的极值;(2)若()0g x >恒成立,求n 的最大值.9.(2024·湖北·模拟预测)已知函数()()2ln 1f x ax x x =-++,a ∈R ,(1)若对定义域内任意非零实数1x ,2x ,均有()()12120f x f x x x >,求a ;(2)记1112n t n =++⋅⋅⋅+,证明:()5ln 16n n t n t -<+<.10.(2024·湖南·一模)已知函数()sin cos ,f x x ax x a =-⋅∈R .(1)当1a =时,求函数()f x 在π2x =处的切线方程;(2)π0,2x ⎛⎫∈ ⎪⎝⎭时;(ⅰ)若()sin20f x x +>,求a 的取值范围;(ⅱ)证明:23sin tan x x x ⋅>.11.(2024·全国·模拟预测)已知函数()ln(1)f x x =+(1)求曲线()y f x =在(0,(0))f 处的切线方程;(2)若(1,π)x ∈-,讨论曲线()y f x =与曲线2cos y x =-的交点个数.12.(2024·广东佛山·二模)已知()21e 4e 52x x f x ax =-+--.(1)当3a =时,求()f x 的单调区间;(2)若()f x 有两个极值点1x ,2x ,证明:()()12120f x f x x x +++<.13.(2024·广东广州·模拟预测)已知函数()()e ,xf x x kx k =-∈R .(1)当0k =时,求函数()f x 的极值;(2)若函数()f x 在()0,∞+上仅有两个零点,求实数k 的取值范围.14.(2024·江苏南通·二模)已知函数()ln f x x ax =-,()2g x ax=,0a ≠.(1)求函数()f x 的单调区间;(2)若0a >且()()f x g x ≤恒成立,求a 的最小值.15.(2024·山东济南·二模)已知函数()()()22l ,n 1e x f x ax x g x x ax a =--=-∈R .(1)讨论()f x 的单调性;(2)证明:()()f x g x x +≥.16.(2024·福建·模拟预测)已知函数()ln f x a x bx =-在()()1,1f 处的切线在y 轴上的截距为2-.(1)求a 的值;(2)若()f x 有且仅有两个零点,求b 的取值范围.17.(2024·浙江杭州·二模)已知函数()()()21ln 22f x a x x a =+-∈R .(1)讨论函数()f x 的单调性;(2)若函数()f x 有两个极值点,(ⅰ)求实数a 的取值范围;(ⅱ)证明:函数()f x 有且只有一个零点.18.(2024·河北沧州·模拟预测)已知函数()ln 1f x x ax =-+,a ∈R .(1)讨论()f x 的单调性;(2)若0x ∀>,()2e 2xf x x ax ≤-恒成立,求实数a 的取值范围.19.(2024·广东·二模)已知()()21122ln ,02f x ax a x x a =+-->.(1)求()f x 的单调区间;(2)函数()f x 的图象上是否存在两点()()1122,,,A x y B x y (其中12x x ≠),使得直线AB 与函数()f x 的图象在1202x x x +=处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.20.(2024·广东深圳·二模)已知函数()()1e x f x ax =+,()f x '是()f x 的导函数,且()()2e xf x f x '-=.(1)若曲线()y f x =在0x =处的切线为y kx b =+,求k ,b 的值;(2)在(1)的条件下,证明:()f x kx b ≥+.21.(2024·辽宁·二模)已知函数()2ln f x ax ax x =--.(1)若曲线()y f x =在1x =处的切线方程为2y mx =+,求实数,a m 的值;(2)若对于任意1x ≥,()f x ax a +≥恒成立,求实数a 的取值范围.22.(2024·黑龙江哈尔滨·一模)已知函数()e ,e xxx f x a a =-∈R .(1)当0a =时,求()f x 在1x =处的切线方程;(2)当1a =时,求()f x 的单调区间和极值;(3)若对任意x ∈R ,有()1e xf x -≤恒成立,求a 的取值范围.23.(2024·安徽合肥·二模)已知曲线():e e x xC f x x =-在点()()1,1A f 处的切线为l .(1)求直线l 的方程;(2)证明:除点A 外,曲线C 在直线l 的下方;(3)设()()1212,f x f x t x x ==≠,求证:1221etx x t +<--.24.(2024·江苏扬州·模拟预测)已知函数()()22ln 1f x x ax a =-+∈R .(1)讨论函数()f x 的单调性;(2)若存在正数x ,使()0f x ≥成立,求a 的取值范围;(3)若120x x <<,证明:对任意()0,a ∈+∞,存在唯一的实数()012,x x x ∈,使得()()()21021f x f x f x x x '-=-成立.25.(2024·重庆·模拟预测)已知函数()()()23e ln R ,xf x x a x a x ⎛⎫=-++∈ ⎪⎝⎭(1)若过点()2,0的直线与曲线()y f x =切于点()()1,1f ,求a 的值;(2)若()f x 有唯一零点,求a 的取值范围.26.(2024·江苏南通·模拟预测)设函数()()ln f x x a x x a =--+,R a ∈.(1)若0a =,求函数()f x 的单调区间;(2)若220e a -<<,试判断函数()f x 在区间()22e ,e -内的极值点的个数,并说明理由;(3)求证:对任意的正数a ,都存在实数t ,满足:对任意的()x t t a ∈+,,()1f x a <-.27.(2024·河北保定·二模)已知函数()sin cos f x a x x x =+.(1)若0a =,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()π,πx ∈-,试讨论()f x 的零点个数.28.(2024·河北·二模)已知函数()e xf x =.(1)求曲线()y f x =在0x =处的切线l 与坐标轴围成的三角形的周长;(2)若函数()f x 的图象上任意一点P 关于直线1x =的对称点Q 都在函数()g x 的图象上,且存在[)0,1x ∈,使()()2e f x x m g x -≥+成立,求实数m 的取值范围.29.(2024·河北邯郸·二模)已知函数()()e ,ln x f x mx g x x m x =-=-.(1)是否存在实数m ,使得()f x 和()g x 在()0,∞+上的单调区间相同?若存在,求出m 的取值范围;若不存在,请说明理由.(2)已知12,x x 是()f x 的零点,23,x x 是()g x 的零点.①证明:e m >,②证明:31231e x x x <<.30.(2024·浙江杭州·模拟预测)已知函数()()1122e ,e e e 1xxx x f x m m g x -=+-=++.(1)当0m =时,证明:()e xf x -<;(2)当0x <时,()g x t ≥,求t 的最大值;(3)若()f x 在区间()0,∞+存在零点,求m 的取值范围.黄金冲刺大题05 导数(精选30题)1.(2024·安徽·二模)已知函数2()103(1)ln f x x x f x '=-+.(1)求函数()f x 在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间和极值.【答案】(1)413y x =-;(2)递增区间为(0,2),(3,)+∞,递减区间为()2,3,极大值1612ln 2-+,极小值2112ln 3-+.【分析】(1)求出函数()f x 的导数,赋值求得(1)f ',再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数()f x 的导数,利用导数求出单调区间及极值.【详解】(1)函数2()103(1)ln f x x x f x '=-+,求导得3(1)()210f f x x x''=-+,则(1)83(1)f f ''=-+,解得(1)4f '=,于是2()1012ln f x x x x =-+,(1)9f =-,所以所求切线方程为:94(1)y x +=-,即413y x =-.(2)由(1)知,函数2()1012ln f x x x x =-+,定义域为(0,)+∞,求导得122(2)(3)()210x x f x x x x--'=-+=,当02x <<或3x >时,()0f x '>,当23x <<时,()0f x '<,因此函数()f x 在(0,2),(3,)+∞上单调递增,在(2,3)上单调递减,当2x =时,()f x 取得极大值(2)1612ln 2f =-+,当3x =时,()f x 取得极小值(3)2112ln 3f =-+,所以函数()f x 的递增区间为(0,2),(3,)+∞,递减区间为(2,3),极大值1612ln 2-+,极小值2112ln 3-+.2.(2024·江苏南京·二模)已知函数2()e xx ax af x -+=,其中a ∈R .(1)当0a =时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)当0a >时,若()f x 在区间[0,]a 上的最小值为1e,求a 的值.【答案】(1)e 0x y -=(2)1a =【分析】(1)由0a =,分别求出(1)f 及(1)f ',即可写出切线方程;(2)计算出()f x ',令()0f x '=,解得2x =或x a =,分类讨论a 的范围,得出()f x 的单调性,由()f x 在区间[0,]a 上的最小值为1e,列出方程求解即可.【详解】(1)当0a =时,2()ex x f x =,则1(1)e f =,22()e x x x f x -'=,所以1(1)e f '=,所以曲线()y f x =在(1,(1))f 处的切线方程为:11(1)e ey x -=-,即e 0x y -=.(2)2(2)2(2)()()e e x xx a x a x x a f x -++---'==-,令()0f x '=,解得2x =或x a =,当02a <<时,[0,]x a ∈时,()0f x '≤,则()f x 在[0,]a 上单调递减,所以min ()()f x f a ==1e ea a =,则1a =,符合题意;当2a >时,[0,2]x ∈时,()0f x '≤,则()f x 在[0,2]上单调递减,(2,]x a ∈时,()0f x '>,则()f x 在(2,]a 上单调递增,所以min ()(2)f x f ==241e ea -=,则4e 2a =-<,不合题意;当2a =时,[0,2]x ∈时,()0f x '≤,则()f x 在[0,2]上单调递减,所以min ()(2)f x f ==221e e=≠,不合题意;综上,1a =.3.(2024·浙江绍兴·模拟预测)已知()e xf x a x =-,()cosg x x =.(1)讨论()f x 的单调性.(2)若0x ∃使得()()00f x g x =,求参数a 的取值范围.【答案】(1)当0a ≤时,()f x 在(),-∞+∞上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,在()ln ,a -+∞上单调递增.(2)(],1-∞【分析】(1)对()e xf x a x =-求导数,然后分类讨论即可;(2)直接对1a >和1a ≤分类讨论,即可得到结果.【详解】(1)由()e xf x a x =-,知()e 1x f x a '=-.当0a ≤时,有()e 10110xf x a =-≤-=-<',所以()f x 在(),∞∞-+上单调递减;当0a >时,对ln x a <-有()ln e 1e1110x af x a a --'=-<=-=,对ln x a >-有()ln e 1e1110x af x a a --'=->=-=,所以()f x 在(),ln a ∞--上单调递减,在()ln ,a ∞-+上单调递增.综上,当0a ≤时,()f x 在(),∞∞-+上单调递减;当0a >时,()f x 在(),ln a ∞--上单调递减,在()ln ,a ∞-+上单调递增.(2)当1a >时,由(1)的结论,知()f x 在(),ln a ∞--上单调递减,在()ln ,a ∞-+上单调递增,所以对任意的x 都有()()()ln ln eln 1ln 1ln11cos af x f a a a a xg x -≥-=+=+>+=≥=,故()()f x g x >恒成立,这表明此时条件不满足;当1a ≤时,设()e cos xh x a x x =--,由于()()()()11111e1cos 1ee1e1e 0a a a a h a a a a a a a a a a ----------=++---≥+≥-+=-≥-=,()00e 0cos 010h a a =--=-≤,故由零点存在定理,知一定存在01,0x a ⎡⎤∈--⎣⎦,使得()00h x =,故()()()000000e cos 0xf xg x a x xh x -=--==,从而()()00f x g x =,这表明此时条件满足.综上,a 的取值范围是(],1-∞.4.(2024·福建漳州·一模)已知函数()ln f x a x x a =-+,R a ∈且0a ≠.(1)证明:曲线()y f x =在点()()1,1f 处的切线方程过坐标原点.(2)讨论函数()f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得()f x 在()()1,1f 处的切线方程,从而得证;(2)分类讨论0a <与0a >,利用导数与函数的单调性即可得解.【详解】(1)因为()()ln 0f x a x x a x =-+>,所以()1a a xf x x x'-=-=,则(1)ln111f a a a =-+=-,(1)1f a '=-,所以()f x 在()()1,1f 处的切线方程为:(1)(1)(1)y a a x --=--,当0x =时,(1)(1)(01)(1)y a a a --=--=--,故0y =,所以曲线()y f x =在点()()1,1f 处切线的方程过坐标原点.(2)由(1)得()1a a x f x x x'-=-=,当0a <时,0a x -<,则()0f x '<,故()f x 单调递减;当0a >时,令()0f x '=则x a =,当0x a <<时,()0f x '>,()f x 单调递增;当x a >时,()0f x '<,()f x 单调递减;综上:当0a <时,()f x 在(0,)+∞上单调递减;当0a >时,()f x 在(0,)a 上单调递增,在(,)a +∞上单调递减.5.(2024·山东·二模)已知函数()2e ln xf x a x x x =--.(1)当a =()f x 的单调区间;(2)当0a >时,()2f x a ≥-,求a 的取值范围.【答案】(1)()f x 的减区间为()0,1,增区间为()1,+∞(2)1a ≥【分析】(1)当a =()1e ln ,0xf x x x x x -=-->,求导得()()11e 1x x f x x x-'+=-,令()1e 1x g x x -=-,求()g x '确定()g x 的单调性与取值,从而确定()f x '的零点,得函数的单调区间;(2)求()f x ',确定函数的单调性,从而确定函数()f x 的最值,即可得a 的取值范围.【详解】(1)当a =()1e ln ,0xf x x x x x -=-->,则()()()11111e 1e 1x x x f x x x x x--+=+--=-',设()1e1x g x x -=-,则()()11e 0x g x x -+'=>恒成立,又()01e 10g =-=,所以当()0,1x ∈时,()0f x '<,()f x 单调递减,当()1,x ∈+∞时,()0f x ¢>,()f x 单调递增,所以()f x 的减区间为()0,1,增区间为()1,+∞;(2)()()()22111e 1e 1xx x f x a x a x x x'+=+--=-,设()2e 1xh x a x =-,则()()21e 0x h x a x =+>,所以()h x 在()0,∞+上单调递增,又()010h =-<,2121e 10a h a ⎛⎫=-> ⎪⎝⎭,所以存在0210,x a ⎛⎫∈ ⎪⎝⎭,使得()00h x =,即020e 10x a x -=,当()00,x x ∈时,()0f x '<,()f x 单调递减,当()0,x x ∈+∞时,()0f x ¢>,()f x 单调递增,当0x x =时,()f x 取得极小值,也是最小值,所以()()()00200000e ln 1ln e 12ln x x f x f x a x x x x a ≥=--=-=+,所以12ln 2a a +≥-,即2ln 10a a +-≥,设()2ln 1F a a a =+-,易知()F a 单调递增,且()10F =,所以()()1F a F ≥,解得1a ≥,综上,1a ≥.6.(2024·山东·一模)已知函数21()ln (1)2f x x a x =+-.(1)当12a =-时,求函数()f x 的单调区间;(2)若函数()()21g x f x x =-+有两个极值点12,x x ,且12)3(2()1g x x ag +≥--,求a 的取值范围.【答案】(1)增区间(0,2),减区间(2,)+∞(2)[1,)+∞【分析】(1)将12a =-代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入12)3(2()1g x x ag +≥--,构造函数,求导,研究函数性质进而求出a 的取值范围.【详解】(1)当12a =-时,21()ln (1)4f x x x =--,0x >,则11(2)(1)()(1)22x x f x x x x-+'=--=-,当(0,2)x ∈,()0f x '>,()f x 单调递增,当(2,)x ∈+∞,()0f x '<,()f x 单调递减,所以()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞;(2)21()()21ln (1)212g x f x x x a x x =-+=+--+,所以21(2)1()(1)2ax a x g x a x x x-++'=+--=,设2()(2)1x ax a x ϕ=-++,令()0x ϕ=,由于()g x 有两个极值点12,x x ,所以221212Δ(2)4402010a a a a x x a x x a ⎧⎪=+-=+>⎪+⎪+=>⎨⎪⎪=>⎪⎩,解得0a >.由122a x x a ++=,121=x x a,得()()()()221211122211ln 121ln 12122g x g x x a x x x a x x +=+--+++--+()()()()212121212121ln 222222x x a x x x x x x x x ⎡⎤=++--++-++⎣⎦2112222ln 22222a a a a a a a a a ⎡⎤+++⎛⎫=+--⋅+-⋅+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦123ln1122a a a a=+--≥--,即11ln 02a a a ⎛⎫--≤ ⎪⎝⎭,令11()ln 2m a a a a ⎛⎫=-- ⎪⎝⎭,则222111(1)()0222a m a a a a -'=--=-≤,所以()m a 在(0,)+∞上单调递减,且(1)0m =,所以1a ≥,故a 的取值范围是[1,)+∞.7.(2024·湖北·二模)求解下列问题,(1)若1ln kx x -≥恒成立,求实数k 的最小值;(2)已知a ,b 为正实数,[]0,1x ∈,求函数()()11x xg x ax x b a b -=+--⋅的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分0k ≤和0k >讨论,确定单调性,进而得最值;(2)先发现()()010g g ==,当a b =时,()0g x =,当01x <<,a b ¹时,取at b=,()1x L x tx x t =+--,求导,研究单调性,进而求出最值得答案.【详解】(1)记()()1ln 0f x kx x x =-->,则需使()0f x ≥恒成立,()()10f x k x x∴=->',当0k ≤时,()0f x '<恒成立,则()f x 在(0,)+∞上单调递减,且在1x >时,()0f x <,不符合题意,舍去;当0k >时.令()0f x '=,解得1x k=,则()f x 在10,k ⎛⎫ ⎪⎝⎭上单调递减,在1,k ∞⎛⎫+ ⎪⎝⎭上单调递增,所以()min 11ln ln f x f k k k ⎛⎫==-= ⎪⎝⎭,要使1ln kx x -≥恒成立,只要ln 0k ≥即可,解得1k ≥,所以k 的最小值为1;(2)1()(1)x x g x ax x b a b -=+--⋅,[0,1]x ∈,0a >,0b >,易知()()010g g ==,当a b =时,()0g x ax a ax a =+--=,此时函数无极值;当01x <<,a b ¹时,()(1)(1xx a a a g x ax x b b b x x b b b ⎡⎤⎛⎫=+--⋅=+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,取at b=,0t >,1t ≠,()1x L x tx x t =+--,0t >,1t ≠,()0,1x ∈,则()1ln xL x t t t =--',当1t >时,由()0L x '≥得1lnln ln t t x t-≤,由(1)知1ln t t -≥,当1t >时,11ln t t->,因为1ln x x -≥,所以111ln x x-≥,所以1ln 1x x ≥-,即0x >,当1t >时,1ln 1t t >-,所以1ln t t t->,则1ln ln 0ln t t t ->>,所以1lnln 1ln t t t-<,即()L x 在1ln ln 0,ln t t t -⎛⎫ ⎪ ⎪ ⎪⎝⎭上单调递增,在1ln ln ,1ln t t t -⎛⎫ ⎪ ⎪ ⎪⎝⎭单调递减.所以函数()1ln ln ln t t g x g t -⎛⎫⎪= ⎪ ⎪⎝⎭极大,a t b =,a b ¹,当01t <<时,同理有()1lnln 0,1ln t t t-∈,由()0L x '≥得1lnln ln t t x t-≤,即()x 在1ln ln 0,ln t t t -⎛⎫ ⎪ ⎪ ⎪⎝⎭上单调递增,在1ln ln ,1ln t t t -⎛⎫⎪⎪ ⎪⎝⎭上单调递减.所以函数()1ln ln ln t t g x g t -⎛⎫⎪= ⎪ ⎪⎝⎭极大,a t b =,a b ¹,综上可知,当a b =时,函数()g x 没有极值;当a b ¹时,函数()g x 有唯一的极大值1ln ln ln t t g t -⎛⎫⎪⎪ ⎪⎝⎭,其中at b=,没有极小值.【点睛】关键点点睛:取at b=,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8.(2024·湖北武汉·模拟预测)函数9πππ()tan sin ,()sin cos ,(0,2222n n f x x x x x g x x x x x n +=+--<<=-∈∈N ,.(1)求函数()f x 的极值;(2)若()0g x >恒成立,求n 的最大值.【答案】(1)极小值为π()3f =π()3f -=;(2)3.【分析】(1)判断函数()f x 为奇函数,利用导数求出()f x 在区间π(0,2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当1n =时,()0g x >恒成立,当1n >时,等价变形不等式并构造函数1sin π(),02cos nx F x x x x=-<<,利用导数并按导数为负为正确定n的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数9ππ()tan sin 222f x x x x x =+--<<,,9()tan()sin()()()2f x x x x f x -=-+---=-,即函数()f x 为奇函数,其图象关于原点对称,当π02x <<时,sin 9()sin cos 2x f x x x x =+-,求导得:3222192cos 9cos 2()cos cos 22cos x x f x x x x -+'=+-==,由于cos (0,1)x ∈,由()0f x '>,得10cos 2x <<,解得ππ32x <<,由()0f x '<,得1cos 12x <<,解得π03x <<,即()f x 在(0,π3)上单调递减,在ππ(,)32上单调递增,因此函数()f x 在π(0,)2上有极小值π()3f =从而()f x 在ππ(,)22-上的极小值为π()3f =π()3f -=.(2)当1n =时,()0g x >恒成立,即sin cos 0x x x ->恒成立,亦即tan x x >恒成立,令π()tan ,(0,)2h x x x x =-∈,求导得222211cos ()1tan 0cos cos xh x x x x -'=-==>,则函数()h x 在π(0,2上为增函数,有()(0)0h x h >=,因此tan 0x x ->恒成立;当1n >时,()0g x >x >恒成立,令1sin π(),02cos nx F x x x x=-<<,求导得:1111122211cos cos cos (sin )sin cossin cos ()11cos cos n n nn nnn nx x x x x x x xn nF x xx+--⋅-⋅⋅-⋅+⋅⋅'=-=-11222221111111cos sin coscos (1cos )coscos 1cos cos cos n n nnn n n n n nn x x x x x x x n n n nxxx+++++-+⋅-----=-==令1211()coscos n nn G x x x n n +-=--,求导得则111()cos (sin )2cos (sin )n n n G x x x x x n n+-'=⋅--⋅⋅-11sin 221[(22)cos (1)cos ]sin (cos cos )22n n x n n n x n x x x x n n n -+=--+=⋅--11221sin cos (cos )22n n n n n x x x n n --+=⋅⋅--,由π1,(0,)2n x >∈,得122sin cos 0n n x x n-⋅⋅>,当1122n n +≥-时,即3n ≤时,()0'<G x ,则函数()G x 在π(0,)2上单调递减,则有()(0)0G x G <=,即()0F x '<,因此函数()F x 在π(0,)2上单调递减,有()(0)0F x F <=,即()0g x >,当1122n n +<-时,即3n >时,存在一个0π(0,2x ∈,使得101cos 22n n n x n -+=-,且当0(0,)x x ∈时,()0G x '>,即()G x 在0(0,)x 上单调递增,且()(0)0G x G >=,则()0F x '>,于是()F x 在0(0,)x 上单调递增,因此()(0)0F x F >=x <,与()0g x >矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9.(2024·湖北·模拟预测)已知函数()()2ln 1f x ax x x =-++,a ∈R ,(1)若对定义域内任意非零实数1x ,2x ,均有()()12120f x f x x x >,求a ;(2)记1112n t n =++⋅⋅⋅+,证明:()5ln 16n n t n t -<+<.【答案】(1)12a =(2)证明见解析【分析】(1)求导可得() 00f '=,再分0a ≤与0a >两种情况分析原函数的单调性,当0a >时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,21111ln 12n n n n ⎛⎫-<+< ⎪⎝⎭,再累加结合放缩方法证明即可.【详解】(1)()f x 的定义域为()1,-+∞,且()00f =;()112122111x f x ax ax x a x x x ⎛⎫'=-+=-=- ⎪+++⎝⎭,因此() 00f '=;i.0a ≤时,1201a x -<+,则此时令()0f x ¢>有()1,0x ∈-,令()0f x '<有()0,x ∈+∞,则()f x 在()1,0-上单调递增,()0,∞+上单调递减,又()00f =,于是()0f x ≤,此时令120x x <,有()()12120f x f x x x <,不符合题意;ii.0a >时,()f x '有零点0和0112x a=-,若00x <,即12a >,此时令()0f x '<有()0,0x x ∈,()f x 在()0,0x 上单调递减,又()00f =,则()00f x >,令1>0x ,02x x =,有()()12120f x f x x x <,不符合题意;若00x >,即102a <<,此时令()0f x '<有()00,x x ∈,()f x 在()00,x 上单调递减,又()00f =,则()00f x <,令12010,x x x -<<=,有()()12120f x f x x x <,不符合题意;若00x =,即12a =,此时()201x f x x +'=>,()f x 在()1,-+∞上单调递增,又()00f =,则0x >时()0f x >,0x <时()0f x <;则0x ≠时()0f x x>,也即对120x x ≠,()()12120f x f x x x >,综上,12a =(2)证:由(1)问的结论可知,0a =时,()()ln 10f x x x =-++≤;且12a =时0x >,()()21ln 102f x x x x =-++>; 则0x >时,()21ln 12x x x x -<+<,令1x n =,有21111ln 12n n n n ⎛⎫-<+< ⎪⎝⎭,即()2111ln 1ln 2n n n n n-<+-<,于是()()2111ln ln 11121n n n n n -<--<---11ln212-<<将上述n 个式子相加,()221111ln 122n n t n t n ⎛⎫-++⋅⋅⋅+<+< ⎪⎝⎭;欲证()5ln 16n n t n t -<+<,只需证2251111622n n t t n ⎛⎫-<-++⋅⋅⋅+ ⎪⎝⎭,只需证22115123n ++⋅⋅⋅+<;因为2221441124412121n n n n n ⎛⎫=<=- ⎪--+⎝⎭,所以22111111115251122355721213213n n n n ⎛⎫++⋅⋅⋅+<+-+-+⋅⋅⋅+-=-< ⎪-++⎝⎭,得证:于是得证()5ln 16n n t n t -<+<.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10.(2024·湖南·一模)已知函数()sin cos ,f x x ax x a =-⋅∈R .(1)当1a =时,求函数()f x 在π2x =处的切线方程;(2)π0,2x ⎛⎫∈ ⎪⎝⎭时;(ⅰ)若()sin20f x x +>,求a 的取值范围;(ⅱ)证明:23sin tan x x x ⋅>.【答案】(1)2ππ220.2x y -+-=(2)(ⅰ)3a ≤(ⅱ)证明见解析【分析】(1)令1a =时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设π()2sin tan ,(0,),2g x x x ax x =+-∈由()0g x '>得3a ≤,再证明此时满足()0g x >.(ⅱ)根据(ⅰ)结论判断出()23sin tan F x x x x =⋅-在π(0,)2上单调递增,()(0)0,F x F ∴>=即23sin tan .x x x >【详解】(1)当1a =时,()sin cos ,()cos (cos sin )sin ,f x x x x f x x x x x x x '=-⋅=--⋅=⋅πππ(,() 1.222f f '==所以切线方程为:ππ1(),22y x -=-即2ππ220.2x y -+-=(2)(ⅰ)()sin 2sin cos sin 20,f x x x ax x x +=-⋅+>即πtan 2sin 0,(0,2x ax x x -+>∈,设π()2sin tan ,(0,),2g x x x ax x =+-∈322211()2cos (2cos cos 1).cos cos g x x a x a x x x'=+-=-+又(0)0,(0)3,(0)30g g a g a ''==-∴=-≥ 是()0g x >的一个必要条件,即 3.a ≤下证3a ≤时,满足π()2sin tan 0,(0,2g x x x ax x =+->∈又3221()(2cos 3cos 1)cos g x x x x'≥-+,设322()231,(0,1),()666(1)0,t t t t h t t t t t '=-+∈=-=-<()h t 在(0,1)上单调递减,所以()(1)0h t h >=,又π(0,(0,1),()0,2x x g x '∈∈∴>即()g x 在π(0,)2单调递增.π(0,)2x ∴∈时,()(0)0g x g >=;下面证明3a >时不满足π()2sin tan 0,(0,),2g x x x ax x =+->∈,21()2cos cos g x x a x'=+-,令21()()2cos cos h x g x x a x'==+-,则332sin 1()2sin 2sin 1cos cos x h x x x x x ⎛⎫'=-+=- ⎪⎝⎭,3π10,,sin 0,102cos x x x ⎛⎫∈∴>-> ⎪⎝⎭,∴()0,()()h x h x g x ''>∴=在π0,2⎛⎫⎪⎝⎭为增函数,令0x满足00π0,,cos 2x x ⎛⎫∈= ⎪⎝⎭,则()0002012cos 2cos 0cos g x x a x a a x '=+-=+->,又(0)30,g a '=-<∴()100,x x ∃∈,使得()10g x '=,当()10,x x ∈时,()1()0g x g x ''<=,∴此时()g x 在()10,x 为减函数,∴当()10,x x ∈时,()(0)0g x g <=,∴3a >时,不满足()0g x ≥恒成立.综上3a ≤.(ⅱ)设23π()sin tan ,(0,),2F x x x x x =⋅-∈2222221()2sin cos tan sin 32sin tan 3cos F x x x x x x x x x x '=⋅⋅+⋅-=+-222222(sin )(tan )2(2sin tan )23.x x x x x x x x x x =-+-++---由(ⅰ)知22sin tan 3,()002360,x x x F x x x x '+>∴>++⋅-=,()F x 在π(0,)2上单调递增,()(0)0,F x F ∴>=即23sin tan .x x x >【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11.(2024·全国·模拟预测)已知函数()ln(1)f x x =+(1)求曲线()y f x =在(0,(0))f 处的切线方程;(2)若(1,π)x ∈-,讨论曲线()y f x =与曲线2cos y x =-的交点个数.【答案】(1)312y x =-;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,()()3211121f x x x '=+++,故()302f '=,而()01f =-,故所求切线方程为312y x +=,即312y x =-.(2)令()ln 12cos x x +=-,故()ln 12cos 0x x ++=,令()()ln 12cos g x x x =++()()32112sin 112g x x x x -=++'-+,令()()()32112sin 112h x g x x x x -==-++'+,()()()522132cos 141h x x x x -=---++'.①当π1,2x ⎛⎤∈- ⎥⎝⎦时,()()522cos 0,10,10x x x -≥+>+>,()()0,h x h x ∴∴'<在π1,2⎛⎤- ⎥⎝⎦上为减函数,即()g x '在π1,2⎛⎤- ⎥⎝⎦上为减函数,又()()32111111010,12sin122sin1120222222g g -=+>=-+⋅'<-⋅+<-'⨯=,()'∴g x 在()0,1上有唯一的零点,设为0x ,即()()00001g x x ='<<.()g x ∴在()01,x -上为增函数,在0π,2x ⎛⎫⎪⎝⎭上为减函数.又()πππ0210,ln 12cos 444g g ⎛⎫⎛⎫⎛⎫=->-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭πππln 10,ln 10422g ⎛⎫⎛⎫⎛⎫=-<=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()g x ∴在()01,x -上有且只有一个零点,在0π,2x ⎛⎤⎥⎝⎦上无零点;②当π5π,26x ⎛⎤∈ ⎥⎝⎦时,()()()3211110,12g x x g x x -<-++<+'单调递减,又12π5π5π5π0,ln 11ln402666g g -⎛⎫⎛⎫⎛⎫⎛⎫>=++<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()g x ∴在π5π,26⎛⎤⎥⎝⎦内恰有一零点;③当5π,π6x ⎛⎫∈ ⎪⎝⎭时,()()()522132cos 141h x x x x -=---++'为增函数,()5225π135π1106465π1+6h x h -⎛⎫⎛⎫∴==-+-⋅+> ⎪ ⎪⎝⎭⎝⎭⎛⎫⎝'⎪⎭,()'∴g x 单调递增,又()5ππ0,06g g ⎛⎫>< ⎪⎝'⎭',所以存在唯一()005π,π,06x g x '⎛⎫∈=⎪⎝⎭,当05π,6x x ⎛⎫∈ ⎪⎝⎭时,()()0,g x g x '<递减;当()0,πx x ∈时,()()0,g x g x '>递增,()()5πmax ,π06g x g g ⎧⎫⎛⎫≤<⎨⎬ ⎪⎝⎭⎩⎭,()g x ∴在5π,π6⎛⎫⎪⎝⎭内无零点.综上所述,曲线()y f x =与曲线2cos y x =-的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12.(2024·广东佛山·二模)已知()21e 4e 52x xf x ax =-+--.(1)当3a =时,求()f x 的单调区间;(2)若()f x 有两个极值点1x ,2x ,证明:()()12120f x f x x x +++<.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令e x t =,11e x t =,22e xt =,可得1t 、2t 是方程240t t a -+=的两个正根,借助韦达定理可得124t t +=,12t t a =,即可用1t 、2t 表示()()1212f x f x x x +++,进而用a 表示()()1212f x f x x x +++,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当3a =时,()21e 4e 352x xf x x =-+--,()()()2e 4e 3e 1e 3x x x x f x =-+-=---',则当()()e 0,13,x∞∈⋃+,即()(),0ln 3,x ∞∞∈-⋃+时,()0f x '<,当()e 1,3x∈,即()0,ln 3x ∈时,()0f x '>,故()f x 的单调递减区间为(),0∞-、()ln 3,∞+,单调递增区间为()0,ln 3;(2)()2e 4e x x f x a -+'=-,令e x t =,即()24f x t t a '=-+-,令11e x t =,22e xt =,则1t 、2t 是方程240t t a -+=的两个正根,则()2Δ441640a a =--=->,即4a <,有124t t +=,120t t a =>,即04a <<,则()()1122221212121211e 4e 5e 4e 522x x x xf x f x x x ax ax x x +++=-+---+--++()()()()22121212141ln ln 102t t t t a t t =-+++--+-()()()2121212121241ln 102t t t t t t a t t ⎡⎤=-+-++---⎣⎦()()1162161ln 102a a a =--+---()1ln 2a a a =---,要证()()12120f x f x x x +++<,即证()()1ln 2004a a a a ---<<<,令()()()1ln 204g x x x x x =---<<,则()111ln ln x g x x x x x-⎛⎫=-+='- ⎪⎝⎭,令()()1ln 04h x x x x=-<<,则()2110h x x x '=--<,则()g x '在()0,4上单调递减,又()11ln111g =-=',()12ln 202g =-<',故存在()01,2x ∈,使()0001ln 0g x x x =-=',即001ln x x =,则当()00,x x ∈时,()0g x '>,当()0,4x x ∈时,()0g x '<,故()g x 在()00,x 上单调递增,()g x 在()0,4x 上单调递减,则()()()()000000000111ln 2123g x g x x x x x x x x x ≤=---=--⨯-=+-,又()01,2x ∈,则00152,2x x ⎛⎫+∈ ⎪⎝⎭,故()000130g x x x =+-<,即()0g x <,即()()12120f x f x x x +++<.【点睛】关键点点睛:本题关键点在于借助换元法,令e x t =,11e x t =,22e xt =,从而可结合韦达定理得1t 、2t 的关系,即可用a 表示()()1212f x f x x x +++,构造相关函数后借助导数研究其最大值即可得.13.(2024·广东广州·模拟预测)已知函数()()e ,xf x x kx k =-∈R .(1)当0k =时,求函数()f x 的极值;(2)若函数()f x 在()0,∞+上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为1e-,无极大值(2)()e,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为()e xg x kx =-在()0,∞+上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当0k =时,()e (xf x x x =∈R ),所以()()1e x f x x ='+,令()0f x '=,则=1x -,x(),1∞--1-()1,∞-+()f x '-+()f x 单调递减极小值单调递增所以()1min 1()1e ef x f -=-=-=-,所以()f x 的极小值为1e-,无极大值.(2)函数()()e xf x x kx =-在()0,∞+上仅有两个零点,令()e xg x kx =-,则问题等价于()g x 在()0,∞+上仅有两个零点,易知()e xg x k '=-,因为()0,x ∞∈+,所以e 1x >.①当(],1k ∈-∞时,()0g x '>在()0,∞+上恒成立,所以()g x 在()0,∞+上单调递增,所以()()01g x g >=,所以()g x 在()0,∞+上没有零点,不符合题意;②当()1,k ∞∈+时,令()0g x '=,得ln x k =,所以在()0,ln k 上,()0g x '<,在()ln ,k ∞+上,()0g x '>,所以()g x 在()0,ln k 上单调递减,在(ln ,)+∞k 上单调递增,所以()g x 的最小值为()ln ln g k k k k =-⋅.因为()g x 在()0,∞+上有两个零点,所以()ln ln 0g k k k k =-⋅<,所以e k >.因为()()()222010,ln ln 2ln g g kkk k k k k =>=-⋅=-,令()2ln h x x x =-,则()221x h x x x'-=-=,所以在()0,2上,()0h x '<,在()2,∞+上,()0h x '>,所以()h x 在()0,2上单调递减,在()2,∞+上单调递增,所以()222ln2lne ln40h x ≥-=->,所以()()2ln 2ln 0g k k k k =->,所以当e k >时,()g x 在()0,ln k 和(ln ,)+∞k 内各有一个零点,即当e k >时,()g x 在()0,∞+上仅有两个零点.综上,实数k 的取值范围是()e,∞+.【点睛】方法点睛:求解函数单调区间的步骤:(1)确定()f x 的定义域.(2)计算导数()f x '.(3)求出()0f x '=的根.(4)用()0f x '=的根将()f x 的定义域分成若干个区间,判断这若干个区间内()f x '的符号,进而确定()f x 的单调区间.()0f x '>,则()f x 在对应区间上单调递增,对应区间为增区间;()0f x '<,则()f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14.(2024·江苏南通·二模)已知函数()ln f x x ax =-,()2g x ax=,0a ≠.(1)求函数()f x 的单调区间;(2)若0a >且()()f x g x ≤恒成立,求a 的最小值.【答案】(1)答案见解析(2)32e .【分析】(1)求导后,利用导数与函数单调性的关系,对0a >与0a <分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)()11axf x a x x'-=-=(0a ≠),当0a <时,由于0x >,所以()0f x '>恒成立,从而()f x 在()0,∞+上递增;当0a >时,10x a<<,()0f x '>;1x a >,()0f x '<,从而()f x 在10,a ⎛⎫ ⎪⎝⎭上递增,在1,a ∞⎛⎫+ ⎪⎝⎭递减;综上,当0a <时,()f x 的单调递增区间为()0,+∞,没有单调递减区间;当0a >时,()f x 的单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ∞⎛⎫+ ⎪⎝⎭.(2)令()()()2ln h x f x g x x ax ax =-=--,要使()()f x g x ≤恒成立,只要使()0h x ≤恒成立,也只要使()max 0h x ≤.()()()221212ax ax h x a x ax ax -+-=-+=',由于0a >,0x >,所以10ax +>恒成立,当20x a <<时,()0h x '>,当2x a<<+∞时,()0h x '<,所以()max 22ln 30h x h a a ⎛⎫==-≤ ⎪⎝⎭,解得:32e a ≥,所以a 的最小值为32e.15.(2024·山东济南·二模)已知函数()()()22l ,n 1e x f x ax x g x x ax a =--=-∈R .(1)讨论()f x 的单调性;(2)证明:()()f x g x x +≥.【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得()221ax f x x='-,分0a ≤和0a >两种情况,结合导函数的符号判断原函数单调性;(2)构建()()(),0F x f x g x x x =+->,()1e ,0xh x x x =->,根据单调性以及零点存在性定理分析()h x 的零点和符号,进而可得()F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:()f x 的定义域为()0,∞+,()21212ax f x ax x x ='-=-,当0a ≤时,则2210ax -<在()0,∞+上恒成立,可知()f x 在()0,∞+上单调递减;当0a >时,令()0f x '>,解得x >()0f x '<,解得0x <<可知()f x 在⎛ ⎝上单调递减,在∞⎫+⎪⎪⎭上单调递增;综上所述:当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x在⎛ ⎝上单调递减,在∞⎫+⎪⎪⎭上单调递增.(2)构建()()()e ln 1,0xF x f x g x x x x x x =+-=--->,则()()()111e 11e xx F x x x x x ⎛⎫=+--=+- ⎝'⎪⎭,由0x >可知10x +>,构建()1e ,0xh x x x=->,因为1e ,xy y x==-在()0,∞+上单调递增,则()h x 在()0,∞+上单调递增,且()120,1e 102h h ⎛⎫==- ⎪⎝⎭,可知()h x 在()0,∞+上存在唯一零点01,12x ⎛⎫∈ ⎪⎝⎭,当00x x <<,则()0h x <,即()0F x '<;当0x x >,则()0h x >,即()0F x '>;可知()F x 在()00,x 上单调递减,在()0,x ∞+上单调递增,则()()00000e ln 1xF x F x x x x ≥=---,又因为001e 0x x -=,则00001e ,e x x x x -==,01,12x ⎛⎫∈ ⎪⎝⎭,可得()000001ln e 10x F x x x x -=⨯---=,即()0F x ≥,所以()()f x g x x +≥.16.(2024·福建·模拟预测)已知函数()ln f x a x bx =-在()()1,1f 处的切线在y 轴上的截距为2-.(1)求a 的值;(2)若()f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)20,e b ⎛⎫∈ ⎪⎝⎭【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将()f x 有且仅有两个零点转化为方程2ln xb x=有两个根,构造对应函数。
2019年高考理数考前20天终极冲刺攻略: 导数及其简单应用 含答案
4.(2018高考新课标Ⅱ,理12)设函数 是奇函数 的导函数,.
5.(2018高考新课标II,理16)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=.
6.(2018高考新课标III,理15)已知f(x)为偶函数,当 时, ,则曲线y=f(x)在点(1,−3)处的切线方程是_______________.
真题回顾:
1.A【解析】由题可得 ,因为 ,所以 , ,故 ,令 ,解得 或 ,
所以 在 上单调递增,在 上单调递减,所以 的极小值为 ,故选A.
2.C【解析】函数 的零点满足 ,设 ,则 ,当 时, ;当 时, ,函数 单调递减;当 时, ,函数 单调递增,当 时,函数 取得最小值,为 .
设 ,当 时,函数 取得最小值,为 ,若 ,函数 与函数 没有交点;若 ,当 时,函数 和 有一个交点,即 ,解得 .故选C.
C. , D.
5.已知对任意的 ,不等式 恒成立(其中 是自然对数的底数),则实数 的取值范围是
A. B.
C. D.
6.曲线 在点 处的切线方程为__________.
1.设实数 ,若对任意的 ,不等式 恒成立,则 的最小值为
A. B. C. D.
2.已知函数 ,若对任意的 ,恒有 成立,则实数 的取值范围是.
核心考点解读——导数及其简单应用(选择题、填空题)
导数与函数的单调性(I)
导数与函数的极值(II)
导数与函数的最值(II)
1.涉及本单元的题目一般以选择题、填空题的形式考查导数的几何意义,定积分,定积分的几何意义,利用图象判断函数的极值点,利用导数研究函数的单调性、极值、最值等.
导数综合问题--2024届新高考满分突破压轴大题(解析版)
导数综合问题压轴秘籍1.导函数与原函数的关系f (x)>0,k>0,f(x)单调递增,f (x)<0,k<0,f(x)单调递减2.极值(1)极值的定义f(x)在x=x0处先↗后↘,f(x)在x=x0处取得极大值f(x)在x=x0处先↘后↗,f(x)在x=x0处取得极小值3.两招破解不等式的恒成立问题(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min.(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.4.常用函数不等式:①e x≥x+1,其加强不等式e x≥12x2+x+1;②e x≥ex,其加强不等式e x≥ex+(x-1)2.③e x−1≥x,ln x≤x−1,ln(x+1)≤x放缩1−1x<12x−1x<x−1x<ln x<2(x−1)x+1<−12x2+2x−32<x−1(0<x<1)1−1x <−12x2+2x−32<2(x−1)x+1<ln x<x−1x<12x−1x<x−1(1<x<2)−1 2x2+2x−32<1−1x<2(x−1)x+1<ln x<x−1x<12x−1x<x−1(x>2)x+1<e x<11−x (x<1),11−x<x+1<e x(x>1)5.利用导数证明不等式问题:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)转化为证不等式h(x)>0(或h(x)<0),进而转化为证明h(x)min>0(h(x)max>0),因此只需在所给区间内判断h (x)的符号,从而得到函数h(x)的单调性,并求出函数h(x)的最小值即可.6.证明极值点偏移的相关问题,一般有以下几种方法:(1)证明x 1+x 2<2a (或x 1+x 2>2a ):①首先构造函数g x =f x -f 2a -x ,求导,确定函数y =f x 和函数y =g x 的单调性;②确定两个零点x 1<a <x 2,且f x 1 =f x 2 ,由函数值g x 1 与g a 的大小关系,得g x 1 =f x 1 -f 2a -x 1 =f x 2 -f 2a -x 1 与零进行大小比较;③再由函数y =f x 在区间a ,+∞ 上的单调性得到x 2与2a -x 1的大小,从而证明相应问题;(2)证明x 1x 2<a 2(或x 1x 2>a 2)(x 1、x 2都为正数):①首先构造函数g x =f x -f a 2x ,求导,确定函数y =f x 和函数y =g x 的单调性;②确定两个零点x 1<a <x 2,且f x 1 =f x 2 ,由函数值g x 1 与g a 的大小关系,得g x 1 =f x 1 -f a 2x 1 =f x 2 -f a 2x 1与零进行大小比较;③再由函数y =f x 在区间a ,+∞ 上的单调性得到x 2与a 2x 1的大小,从而证明相应问题;(3)应用对数平均不等式x 1x 2<x 1-x 2ln x 1-ln x 2<x 1+x22证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到x 1-x 2ln x 1-ln x 2;③利用对数平均不等式来证明相应的问题.题型训练一、问答题7(2023·吉林·统考一模)已知函数f x =-2x +ln x .(1)求曲线y =f x 在1,f 1 处的切线方程;(2)若对∀x ∈0,+∞ ,f x ≤ax 2-2x 恒成立.求实数a 的取值范围.【答案】(1)x +y +1=0(2)12e ,+∞ 【分析】(1)求函数切线在某点处的切线方程时该点即为切点,在切点处导函数的值就是切线斜率,根据斜截式求切线方程;(2)解决恒成立问题时,可以利用分离变量法,将参数移到不等式的一边,构造出一个新的函数后,求出函数的最值,即可求得参数的范围;还可以将所有的式子放在不等式的一边,即:ax 2-ln x ≥0,同样构造函数g x =ax 2-ln x (x >0),只需求出g x 的最小值,过程中需要对a 进行分类讨论;还可将两个基本初等函数放在不等式的两边,即:ax 2≥ln x ,构造出两个函数g x =ax 2,h x =ln x ,结合两个函数图象,得到何时符合题意.【详解】(1)解:f x =-2+1x(x >0),所求切线斜率为f 1 =-1,切点为1,-2 ,故所求切线方程为y--2=-x-1,即x+y+1=0.(2)方法一:分离变量由f x ≤ax2-2x得a≥ln xx2在0,+∞恒成立,令g x =ln xx2(x>0),则a≥g(x)max,g x =1-2ln xx3,当g x =0时,x=e,即:g e=0,当0<x<e时,g x >0;当x>e时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故当x=e时,g x 取最大值为12e,故a≥12e,即a的取值范围是12e,+∞.方法二:分类讨论由f x ≤ax2-2x得ax2-ln x≥0在0,+∞恒成立,令g x =ax2-ln x(x>0),则g x =2ax-1x=2ax2-1x,①当a≤0时,g x ≤0恒成立,g x 在0,+∞上单调递减,又g1 =a≤0,故当x>1时,g x <0,不合题意;②当a>0时,令g x =0得x=12a,令g x >0得x>12a,令g x <0得0<x<12a,故g x 在0,1 2a上单调递减,g x 在12a,+∞上单调递增,故当x=12a时,g x 取最小值g12a=12-ln12a≥0,故a≥12e,即a的取值范围是12e,+∞,综上所述,a的取值范围是12e,+∞.方法三:数形结合由f x ≤ax2-2x得ax2≥ln x在0,+∞恒成立,令g x =ax2,h x =ln x,则当x>0时,g x ≥hx 恒成立,g x =2ax,h x =1x,若a≤0,当x>1时,ax2≤0,ln x>0,∴g x <h x ,不合题意;若a>0,∵g x ≥h x ,∴曲线y=g x 与曲线y=h x 有且只有一个公共点,且在该公共点处的切线相同.设切点坐标为x0,y0,则y0=ax20=ln x02ax0=1x0,解得x0=ea=12e,故当a≥12e时,g x ≥h x ,即a的取值范围是12e,+∞.8(2023·云南红河·统考一模)已知函数f(x)=mx-ln x-1(m∈R).(1)讨论函数f(x)的单调性;(2)若关于x的不等式e x-1+a ln x-(a+1)x+a≥0恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)(-∞,0]【分析】(1)先求得f x ,然后对m进行分类讨论,从而求得f x 的单调区间.(2)将要证明的不等式转化为e ln x-a ln x≤e x-1-a(x-1),然后利用构造函数法,结合导数证得不等式成立.【详解】(1)由题可知,f(x)的定义域为(0,+∞),f (x)=m-1x =mx-1x当m≤0时,mx-1<0在(0,+∞)上恒成立,所以f (x)<0在(0,+∞)上恒成立,即f(x)在(0,+∞)单调递减当m>0时,令f (x)>0解得x>1m,令f(x)<0解得0<x<1m,所以f(x)在0,1 m上单调递减,在1m,+∞上单调递增.(2)由e x-1+a ln x-(a+1)x+a≥0,得x-a ln x≤e x-1-a(x-1),即e ln x-a ln x≤e x-1-a(x-1)令g(x)=e x-ax则原不等式等价于g(ln x)≤g(x-1)由(1)得,当m=1时f(x)≥f(1)=0所以ln x≤x-1在(0,+∞)上恒成立.若g(ln x)≤g(x-1)在(0,+∞)上恒成立,则需g(x)=e x-ax在R上单调递增.所以g (x)=e x-a≥0在R上恒成立,即a≤e x在上R恒成立,则a≤0,所以实数a的取值范围是(-∞,0].【点睛】求解函数单调区间的步骤:(1)确定f x 的定义域;(2)计算导数f x ;(3)求出f x =0的根;(4)用f x =0的根将f x 的定义域分成若干个区间,考查这若干个区间内f x 的符号,进而确定f x 的单调区间:f x >0,则f x 在对应区间上是增函数,对应区间为增区间;f x <0,则f x 在对应区间上是减函数,对应区间为减区间.如果导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.9(2023·全国·模拟预测)已知函数f x =2e x-x.(1)求f x 的最值;(2)若方程f x =ae x-ae2x有两个不同的解,求实数a的取值范围.【答案】(1)答案见解析(2)4ln2e ,+∞【分析】(1)首先对f x 求导,利用导数研究函数f x 的单调性,可得函数f x 的最值;(2)构造函数g x =f x -ae x -ae 2x ,先将方程有两个不同的解的问题转化为函数g x 有两个不同的零点问题.再对a 进行分类讨论,根据函数单调性结合零点存在定理求解.【详解】(1)由题意可得:f x =2e x -1,令f x =0,得x =-ln2,当x ∈-∞,-ln2 时,f x <0,f x 单调递减;当x ∈-ln2,+∞ 时,f x >0,f x 单调递增.所以f x 的最小值为f -ln2 =1+ln2,无最大值.(2)令g x =f x -ae x -ae 2x =ae 2x +2-a e x -x ,则g x =2ae 2x +2-a e x -1=ae x +1 2e x -1 ,若方程f x =ae x -ae 2x 有两个不同的解,则g x 有两个不同的零点.(ⅰ)若a ≥0,则ae x +1>0,由g x =0得x =-ln2.当x ∈-∞,-ln2 时,g x <0,当x ∈-ln2,+∞ 时,g x >0,所以g x 在-∞,-ln2 上单调递减,在-ln2,+∞ 上单调递增,所以g x 的最小值为g -ln2 =ln2e -14a .①当a ∈0,4ln2e 时,ln2e -14a >0,即g -ln2 >0,故g x 没有零点,不满足题意;②当a =4ln2e 时,g -ln2 =0,g x 只有一个零点,不满足题意;③当a ∈4ln2e ,+∞ 时,ln2e -14a <0,即g -ln2 <0,当x <0时,ae 2x >0,0<e x <1,又因为2-a <0,故g x >2-a -x ,所以g 2-a >0,又2-a <-ln2,故g x 在2-a ,-ln2 上有一个零点.设h x =e x -x x >0 ,则h x =e x -1>0,h x 单调递增,所以h x >0,故当x >0时,g x >ae 2x +2-a e x -e x =e x ae x +1-a >e x ax +1-a ,又1-1a >0,所以g 1-1a >0,因此g x 在-ln2,1-1a上有一个零点,所以当a >4ln2e 时,g x 有两个不同的零点,满足题意;(ⅱ)若a <0,则由g x =0得x 1=-ln2,x 2=-ln -a .①当-2<a <0时,x 1<x 2,当x ∈-∞,-ln2 时,g x <0;当x ∈-ln2,-ln -a 时,g x >0;当x ∈-ln -a ,+∞ 时,gx <0.所以g x 在-∞,-ln2 和-ln -a ,+∞ 上单调递减,在-ln2,-ln -a 上单调递增.又g -ln2 =ln2e -14a >0,所以g x 至多有一个零点,不满足题意;②当a =-2时,x 1=x 2,则g x ≤0,所以g x 单调递减,至多有一个零点,不满足题意;③当a <-2时,x 1>x 2,当x ∈-∞,-ln -a 时,g x <0;当x ∈-ln -a ,-ln2 时,g x >0;当x ∈-ln2,+∞ 时,g x <0.所以g x 在-∞,-ln -a 和-ln2,+∞ 上单调递减,在-ln -a ,-ln2 上单调递增,又g -ln -a =1-1a+ln -a >0,所以g x 至多有一个零点,不满足题意;综上,实数a 的取值范围为4ln2e ,+∞ .【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法(1)直接法:直接根据题设条件对参数进行分类讨论,通过研究函数的零点情况来确定参数的取值范围.(2)分离参数法:将参数分离,转化成求函数值域的问题.(3)数形结合法:先对解析式变形,将函数的零点问题转化为两函数图象的交点问题,再在同一平面直角坐标系中画出函数的图象,然后数形结合求解.10(2023·浙江金华·校联考模拟预测)已知f (x )=ax 2-ax -1x-ln x +e 1-x (a >0).(1)若当x =1时函数f x 取到极值,求a 的值;(2)讨论函数f x 在区间(1,+∞)上的零点个数.【答案】(1)1(2)答案见解析【分析】(1)求得f (x )=2ax -a +1x2-1x -e 1-x ,由f (1)=0,得到a =1,进而结合函数极值点的定义,即可求解;(2)当a ≥1时,求得f (x )=ax 2-ax -1x -ln x +e 1-x ≥x 2-x -1x -ln x +e 1-x ,令h (x )=x 2-x -1x-ln x +e 1-x ,利用导数的h x 单调性,结合f (x )>0,得到f x 在区间(1,+∞)上没有零点;当0<a <1时,求得f(x )=2ax -a +1x2-1x -e 1-x ,令n x =f (x ),求得n (x )>(x -2)e x -1+x 3x 3⋅e x -1,令φ(x )=(x -2)e x -1+x 3,利用导数求得f (x )在(1,+∞)单调递增.,结合f (1)<0,f 1+1a>0,得出函数f x 的单调区间,由f (1)=0,得出f x 在1,x 1 没有零点,在由f 1+1a>0,得到存在唯一x 2,使得f x 2 =0,即可得到答案.【详解】(1)解:函数f (x )=ax 2-ax -1x -ln x +e 1-x ,可得f (x )=2ax -a +1x2-1x -e 1-x因为x =1时函数f x 取到极值,可得f (1)=0,解得a =1,当a =1时,可得f (x )=2x -1+1x2-1x -e 1-x ,令m (x )=f (x )=2x -1+1x2-1x -e 1-x ,可得m (x )=2-2x 3+1x 2+e 1-x>2-2x 3+1x2=2x 3+x -2x 3,令λ(x )=2x 3+x -2,可得λ (x )=6x 2+1>0,所以λ(x )单调递增,又因为λ78=55256>0,所以在区间78,+∞ 上m (x )>0,即f (x )单调递增,所以x =1是f (x )的变号零点,所以当x =1时函数f x 取到极值.(2)解:当a ≥1时,因为x 2-x >0,所以f (x )=ax 2-ax -1x -ln x +e 1-x ≥x 2-x -1x -ln x +e 1-x ,令h (x )=x 2-x -1x -ln x +e 1-x ,则h (x )=2x -1+1x 2-1x -e 1-x >2x -2+1x 2-1x =(x -1)2-1x2>0,所以h x 在(1,+∞)单调递增,则f (x )≥h (x )>h (1)=0,所以,当a ≥1时,f x 在区间(1,+∞)上没有零点.当0<a <1时,可得f (x )=2ax -a +1x2-1x -e 1-x ,令n x =f (x )=2ax -a +1x2-1x -e 1-x ,可得n(x )=2a -2x 3+1x 2+e 1-x >-2x 3+1x2+e 1-x=(x -2)e x -1+x 3x 3⋅e x -1,令φ(x )=(x -2)e x -1+x 3,则φ (x )=(x -1)e x -1+3x 2>0,所以φx 在(1,+∞)单调递增,φ(x )>φ(1)=0,则n (x )>0,所以f (x )在(1,+∞)单调递增.因为f(1)=a -1<0,f1+1a =a +2+11+1a2-11+1a-e -1a>a +2-1-1>0,当x →+∞时,f (x )→+∞,所以存在x 1∈1,1+1a使得f x 1 =0.则f (x )在1,x 1 单调递减,在x 1,+∞ 单调递增,又因为f (1)=0,所以当x ∈1,x 1 时,f (x )<0,故f x 在1,x 1 没有零点,因为在x 1,+∞ 单调递增,且f x 1 <f (1)=0,而ln x ≤x -1,e 1-x >0,1x<1,所以f (x )=ax 2-ax -1x-ln x +e 1-x >ax 2-ax -1-(x -1),则f 1+1a >a 1+1a 2-(a +1)1+1a=0,所以存在唯一x 2∈x 1,1+1a,使得f x 2 =0,故f x 在x 1,+∞ 存在唯一零点x 2,因此当0<a <1时,f x 在(1,+∞)存在唯一零点,综上所述,当a ≥1时,f x 在区间(1,+∞)上没有零点;当0<a <1时,f x 在(1,+∞)存在唯一零点.【点睛】方法技巧:已知函数零点(方程根)的个数,求参数的取值范围问题的三种常用方法:1、直接法,直接根据题设条件构建关于参数的不等式(组),再通过解不等式(组)确定参数的取值范围2、分离参数法,先分离参数,将问题转化成求函数值域问题加以解决;3、数形结合法,先对解析式变形,在同一平面直角坐标系中作出函数的图象,然后数形结合求解.结论拓展:与e x 和ln x 相关的常见同构模型①ae a ≤b ln b ⇔e a ln e a ≤b ln b ,构造函数f x =x ln x 或g x =xe x ;②e a a <b ln b ⇔e a ln e a<b ln b ,构造函数f x =x ln x 或g x =e x x ;③e a ±a >b ±ln b ⇔e a ±ln e a >b ±ln b ,构造函数f x =x ±ln x 或g x =e x ±x .11(2022·江苏南通·模拟预测)已知函数f x =x -a e x -x 2.(1)若a =1,x ∈0,1 ,求函数f x 的最值;(2)若a ∈Z ,函数f x 在x ∈0,+∞) 上是增函数,求a 的最大整数值.【答案】(1)最小值为-1-ln2-1 2,最大值为-1(2)0【分析】(1)求导分析函数的单调性与最值即可;(2)将题意转化为f x ≥0在x ∈0,+∞) 上恒成立,参变分离可得1-a ≥2xe x-x ,x ∈0,+∞ ,设g x =2x ex-x ,求导后根据零点存在性定理可得0,12 上有极大值点,设为x 0,再根据x 0满足的方程代入g x ,结合x 0的取值范围分析最大值的范围即可.【详解】(1)若a =1,则函数f x =x -1 e x -x 2,f x =e x +x -1 e x -2x =x e x -2 .令f x =0,则x =0或x =ln2,由于x ∈0,1 ,因而当x ∈0,ln2 时.f x <0,f x 单调递减,当x ∈ln2,1 时.f x >0,f x 单调递增,所以f x 的最小值为f ln2 =-1-ln2-1 2,最大值为f 0 =f 1 =-1(2)f x =e x +x -a e x -2x =x +1-a e x -2x ,由f x 在x ∈0,+∞) 上是增函数,得f x ≥0在x ∈0,+∞ )上恒成立,即x +1-a e x -2x ≥0,x ∈0,+∞ ,分离参数得1-a ≥2xe x-x ,x ∈0,+∞ 设g x =2x e x -x ,则g x =2-2x e x -1=2-2x -e x e x,g x =0,即2-2x -e x =0设h x =2-2x -e x ,由于h 0 =1>0,h 12=1-e <0,因而方程2-2x -e x =0在0,12上有解,设为x 0,则e x=2-2x 0,且当x ∈0,x 0 时,g x >0,当x ∈x 0,+∞ 时,g x <0,所以g x 的最大值为g x 0 =2x 0ex 0-x 0=x 01-x 0-x 0=x 201-x 0.因而1-a ≥x 201-x 0,即a ≤1+x 20x 0-1=3+1x 0-1+x 0-1,又x 0∈0,12 ,x 0-1∈-1,-12 ,又3+1x 0-1+x 0-1∈12,1所以a 的最大整数值为0.【点睛】方法点睛:(1)函数在区间上单调递增或单调递减,转化为导函数在区间上非负或非正恒成立;(2)恒成立问题可考虑参变分离,再构造函数分析最值;(3)极值点不能求解则设隐零点x 0,将x 0满足的等式条件化简代入原函数,再根据x 0的区间可求出极值的范围.12(2023·江苏徐州·校考模拟预测)已知函数f (x )=-2x 3+mx 2,m ∈R ,且g (x )=|f (x )|在x ∈(0,2)上的极大值为1.(1)求实数m 的值;(2)若b =f (a ),c =f (b ),a =f (c ),求a ,b ,c 的值.【答案】(1)m =3(2)a =b =c =0,或a =b =c =12,或a =b =c =1【分析】(1)由题意得到g x 的表达式,对m ≤0,m ≥4和0<m <4这三种情况进行逐一分析,结合导数得到g x 的单调性和最值,进而可得实数m 的取值范围;(2)作出满足条件的函数图象,对a <0,a =0,0<a <12,a =12,12<a <1,a =1,1<a ≤32和a >32这八种情况进行分析,结合题意进行判断即可.【详解】(1)g (x )=x 2|2x -m |,0≤x ≤2,①m ≤0时,g (x )=2x 3-mx 2,∴g (x )=6x 2-2mx ≥0,无极值.②m ≥4时,g (x )=-2x 3+mx 2,∴g (x )=2x (m -3x ),当m 3≥2,即m ≥6时,g (x )≥0,无极大值;当4≤m <6时,x <m 3时,g (x )>0;m3<x <2时,g (x )<0,∴g (x )在x =m 3处取极大值,即g m 3 =m 327=1,∴m =3,舍去.③0<m <4时,g x =-2x 3+mx 2,0≤x ≤m 22x 3-mx 2,m 2<x ≤2 ,∴gx =2x m -3x ,0≤x ≤m22x 3x -m ,m 2<x ≤2,0<x <m 3时,g (x )>0;m 3<x <m 2时,g (x )<0;m 2<x <2时,g (x )>0.∴g (x )在x =m 3处取极大值m 327=1,∴m =3符合题意.综上,m =3.(2)由(1)可知,f (x )=-2x 3+3x 2,f (x )=-6x 2+6x =6x -x +1 ,令f x >0可得-1<x <0,令f x <0可得x >1或x <0,如图所示.①当a <0时,b =f (a )>0,当0<b ≤32时,0<c =f (b )≤1,则a =f (c )>0,矛盾;当b >32时,c =f (b )<0,∴a =f (c )>0,矛盾.②当a =0时,符合题意.③当0<a <12时,0<x <12时,f (x )<x ,∴0<b =f (a )<a <12,则0<c =f (b )<b <12,0<a =f (c )<c <12,∴a <c <b <a ,矛盾.④当a =12时,符合题意.⑤当12<a <1时,12<x <1时,f (x )>x ,∴1>b =f (a )>a >12,则1>c =f (b )>b >12,1>a =f (c )>c >12,∴a >c >b >a ,矛盾.⑥当a =1时,符合题意.⑦当1<a ≤32时,0≤b =f (a )<1,则0≤c =f (b )<1,∴a =f (c )<1,与a >1矛盾.⑧当a >32时,b =f (a )<0,c =f (b )>0,∴a =f (c )≤1,与a >32矛盾.综上,a =b =c =0,或a =b =c =12,或a =b =c =1.【点睛】关键点睛:本题第二问的关键点在于作出满足条件的函数图象,对a <0,a =0,0<a <12,a =12,12<a <1,a =1,1<a ≤32和a >32这八种情况进行分析,结合题意进行判断即可.13(2023·安徽·校联考模拟预测)已知函数f x =ae x -e -x ,(a ∈R ).(1)若f x 为偶函数,求此时f x 在点0,f 0 处的切线方程;(2)设函数g (x )=f (x )-(a +1)x ,且存在x 1,x 2分别为g (x )的极大值点和极小值点.(ⅰ)求实数a 的取值范围;(ⅱ)若a ∈(0,1),且g x 1 +kg x 2 >0,求实数k 的取值范围.【答案】(1)y +2=0(2)(i )(0,1)∪(1,+∞);(ii )(-∞,-1]【分析】(1)根据偶函数的定义,求出a 的值,然后利用导数求切线方程.(2)(ⅰ)对g (x )进行求导,将g (x )既存在极大值,又存在极小值转化成g (x )=0必有两个不等的实数根,利用导数得到g (x )的单调性和极值,进而即可求解;(ⅱ)对g (x )进行求导,利用导数分析g (x )的极值,将g x 1 +kg x 2 >0恒成立转化成ln a <1-1k⋅a -1a +1,构造函数,利用导数分类讨论求解即【详解】(1)f (x )为偶函数,有f (-x )=ae -x -e x =f (x )=ae x -e -x ,则a =-1,所以f (x )=-e x -e -x ,f (x )=-e x +e -x 所以f (0)=-2,f (0)=0所以f (x )在点(0,f (0))处的切线方程为y +2=0.(2)(ⅰ)g (x )=f (x )-(a +1)x =ae x -e -x -(a +1)x ,g(x )=ae x+e -x-(a +1)=ae 2x -(a +1)e x +1e x =ae x -1 e x-1e x,因为函数g (x )既存在极大值,又存在极小值,则g (x )=0必有两个不等的实根,则a >0,令g (x )=0可得x =0或x =-ln a ,所以-ln a ≠0,解得a >0且a ≠1.令m =min 0,-ln a ,n =max 0,-ln a ,则有:x(-∞,m )m(m ,n )n(n ,+∞)g (x )+0-0+g (x )↗极大值↘极小值↗可知g (x )分别在x =m 和x =n 取得极大值和极小值,符合题意.综上,实数a 的取值范围是(0,1)∪(1,+∞).(ⅱ)由a ∈(0,1),可得-ln a >0,所以x 1=0,x 2=-ln a ,g x 1 =a -1,g x 2 =1-a +(a +1)ln a 且有g x 2 <g x 1 <0,由题意可得a -1+k 1-a +(a +1)ln a >0对∀a ∈(0,1)恒成立,由于此时g x 2 <g x 1 <0,则k <0,所以k a +1 ln a >k -1 a -1 ,则ln a <1-1k ⋅a -1a +1,令h (x )=ln x -1-1k ⋅x -1x +1,其中0<x <1,则h(x )=1x -1-1k ⋅2(x +1)2=(x +1)2-2x 1-1k x (x +1)2=x 2+2k x +1x (x +1)2,令x 2+2k x +1=0,则Δ=4k 2-4=41-k 2k 2.①当Δ≤0,即k ≤-1时,h (x )≥0,h (x )在(0,1)上是严格增函数,所以h (x )<h (1)=0,即ln a <1-1k ⋅a -1a +1,符合题意;(2)当Δ>0,即-1<k <0时,设方程x 2+2k x +1=0的两根分别为x 3,x 4且x 3<x 4,则x3+x 4=-2k>0,x 3x 4=1,则0<x 3<1<x 4,则当x 3<x <1时,h (x )<0,则h (x )在x 3,1 上单调递减,所以当x 3<x <1时,h (x )>h (1)=0,即ln a >1-1k ⋅a -1a +1,不合题意.综上所述,k 的取值范围是(-∞,-1].【点睛】关键点点睛:本题(ⅱ)关键是将g x 1 +kg x 2 >0恒成立转化成ln a <1-1k ⋅a -1a +1,构造函数,利用导数分类讨论求解即可.14(2023上·广东深圳·高三深圳中学校考阶段练习)已知函数f x =x -m ln x -n ,其中m ,n∈R .(1)若m =n =1,求f x 在x =1处的切线方程;(2)已知不等式f x ≥x 恒成立,当nm取最大值时,求m 的值.【答案】(1)y =-1(2)m =e【分析】(1)根据切点和斜率求得切线方程.(2)构造函数g x =f x -x ,利用导数研究g x 的最小值,由此列不等式来求得nm的最大值,以及此时的m 的值.【详解】(1)当m =n =1时,f x =x -1 ln x -1,因为f x =ln x +x -1x,所以f 1 =0,又f 1 =-1,故f x 在x =1处的切线方程为y =-1;(2)显然m ≠0,若m <0,当x →0+时,x -m ln x -n →-∞,而x >0,矛盾,所以m >0,令g x =f x -x =x -m ln x -x -n ,则g x ≥0恒成立,即g (x )min ≥0.由于g x =ln x -m x ,ln x -m x =1x +mx2>0,则g x =ln x -mx在正实数集上是增函数,g 1 =-m <0,x →+∞时g x →+∞,故存在x 0>1,使得g x 0 =0,且在0,x 0 上g x <0,g (x )单减,在x 0,+∞ 上g x >0,g x 单增,且m =x 0ln x 0,故g (x )min =g x 0 =x 0ln x 0-m ln x 0-x 0-n ≥0,所以n ≤x 0ln x 0-m ln x 0-x 0=x 0ln x 0-x 0ln x 0 2-x 0,所以n m ≤x 0ln x 0-x 0ln x 0 2-x 0x 0ln x 0=1-ln x 0+1ln x 0≤-1,等号当且仅当ln x 0=1即x 0=e 时取得,此时m =x 0ln x 0=e ln e =e.故当n m取最大值时,m =e.15(2023·广东韶关·统考一模)已知函数f x =e x ,g x =2x .(1)若f x 在x =0处的切线与g x 的图象切于点P ,求P 的坐标;(2)若函数F x =f ax x 2-a +2a的极小值小于零,求实数a 的取值范围.【答案】(1)1,2 (2)(-∞,-2)∪(0,+∞)【分析】(1)由导数的几何意义可解;(2)求导得F x =ae ax x -1 x +a +2a,对a 进行分类讨论即可.【详解】(1)f x =e x .所以f x =e x 即切线斜率为k =e 0=1,又g x =2x ,所以g x =1x,令g x =1解得x =1,则g 1 =2,故点P 坐标为1,2 .(2)F x =f ax x 2-a +2a =e ax x 2-a +2a,因为F x =e ax ax 2+2x -a +2 =ae ax x -1 x +a +2a,令F x =0得x 1=-a +2a ,x 2=1,①当a >0,x 1=-a +2a <0由x 的变化可得x -∞,-a +2a-a +2a-a +2a,1 11,+∞F x +-0+F x单调递增极大值单调递减极小值单调递增F (1)极小值=e a -2a<0符合题意;②当-1<a <0,x 1=-a +2a >1由x 的变化可得x -∞,111,-a +2a-a +2a-a +2a,+∞ F x -0+-F x单调递减极小值单调递增极大值单调递减F (1)极小值=e a -2a>0不符合题意;③当a =1,F x ≤0,F x 单调递减,没极值点;④当a <-1,x 1=-a +2a <1由x 的变化可得x -∞,-a +2a-a +2a-a +2a,1 11,+∞F x -+0-F x单调递减极小值单调递增极大值单调递减F -a +2a 极小值=e x -a +2a -a +2a 2-a +2a<0,解得a<-2;综上所述,a∈(-∞,-2)∪(0,+∞).【点睛】关键点睛:本题主要考查导数的几何意义以及利用导数研究函数的极值,注意分类讨论思想的应用,本题难点在于a的范围的划分,属于常考题型.16(2023·湖北黄冈·统考模拟预测)已知函数f(x)=a ln x-2x+12x2.(1)讨论函数f x 的极值点个数;(2)若不等式f(x)≤x e x+12x-a-2-1恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)a=1【分析】(1)根据函数极值的定义,结合一元二次方程根的判别式分类讨论进行求解即可;(2)利用换元法构造函数,根据导数的性质进行求解即可.【详解】(1)∵f (x)=x2-2x+ax,x>0,.令g(x)=x2-2x+a,方程x2-2x+a=0的判别式为Δ=4-4a,①:当Δ≤0即a≥1时,f x ≥0,f x 单调递增,无极值点;②:当Δ>0即a<1时,函数g x 有两个零点x1=1-1-a,x2=1+1-a,(i)当a≤0时.x1≤0,x2>1,当x∈0,x2时f x <0,f x 单调递减,当x∈(x2,+∞)时f x >0,f x 单调递增,f x 有一个极小值点;(ii)当0<a<1时0<x1<1,x2>1,当x∈0,x1与(x2,+∞)时f x >0,f x 单调递增,当x∈x1,x2时f x <0,f x 单调递减,f x 有两个极值点.综上:当a≥1时f x 无极值点;当0<a<1时f x 有两个极值点;当a≤0时f x 有一个极小值点.(2)不等式f(x)≤x e x-2x+12x2恒成立,即a ln x+x≤xe x-1.∴xe x-a ln xe x-1≥0,令xe x=t,t>0,∴t-a ln t-1≥0.令h t =t-a ln t-1,h (t)=t-at,则需h t =t-a ln t-1≥0,当a≤0时,h t ≥0,h t 单调递增,又h1 =0,∴t∈0,1时h t <0,不合题意,∴a>0.当0<t<a时,h t 单调递减,当t>a时h t 单调递增,h(t)min=h(a)=a-a ln a-1.而h1 =0,∴h a =a-a ln a-1≤0,又由h t =t-a ln t-1≥0可得h a =a-a ln a-1≥0,所以需h a =a-a ln a-1=0,令m x =x-x ln x-1,m x =-ln x,当x∈0,1时m x 单调递增,当x∈(1,+∞)时m x 单调递减,∴m (x )max =m (1)=0,∴a =1.【点睛】关键点睛:本题的关键是根据换元法把a ln x +x ≤xe x -1变形为t -a ln t -1≥0.17(2023·山东潍坊·统考模拟预测)已知函数f (x )=mx -1+ln (x +1),m ∈R .(1)若函数f x 图象上存在关于原点对称的两点,求m 的取值范围;(2)当s >t >1时,(2s -2t )k s +t -2+f (t -2)+m s -3<f (s -2)+m t -3恒成立,求正实数k 的最大值.【答案】(1)-12e≤m ≤0(2)1【分析】(1)问题可转化f -x +f x =0有解,得到ln 1-x 2 =m x +1-m x -1=-2x 2-1m ,构造函数g (t )=12t ln t (0<t ≤1),求导讨论单调性,利用数形结合,找到y =m 与曲线在0,1 的有交点时m 的范围;(2)恒成立问题,把不等式变形成2k s -1t -1-1 s -1t -1+1<lns -1t -1,设s -1t -1=a (a >1),构造函数h (a )=2k (a -1)a +1-ln a (a >1),转化成零点的问题,再利用单调性求解.【详解】(1)要使函数f x 图象上存在关于原点对称的两点,则f -x +f x =0有解,则ln (-x +1)+m -x -1+ln (x +1)+mx -1=0,即ln 1-x 2 =m x +1-m x -1=-2x 2-1m ,令t =1-x 2,则0<t ≤1,设g (t )=12t ln t (0<t ≤1)g (t )=12(1+ln t )=0得t =1e,当0<t <1e时,g t <0,g t 单调递减,当1e<t ≤1时,g t >0,g t 单调递增,所以g (t )min =g 1e =-12e,g 1 =0,所以-12e≤m ≤0;(2)由题意知(2s -2t )k s +t -2+ln (t -1)+m t -3+m s -3<ln (s -1)+m s -3+mt -3,则(2s -2t )k s +t -2<ln (s -1)-ln (t -1),则2k [(s -1)-(t -1)](s -1)+(t -1)<ln s -1t -1,2k s -1t -1-1 s -1t -1+1<ln s -1t -1,设s -1t -1=a (a >1),则2k (a -1)a +1<ln a ,即2k (a -1)a +1-ln a <0,设h (a )=2k (a -1)a +1-ln a (a >1),h(a )=4k (a +1)2-1a =4ka -(a +1)2a (a +1)2=-a 2+(4k -2)a -1a (a +1)2,且h 1 =0,当h (1)=-1+4k -2-14=4k -44>0,即k >1时,易知方程-a 2+4k -2 a -1=0有一根a 1大于1,另一根a 2小于1,所以h a 在1,a 1 上单调递增,故有h a >h 1 =0不合题意,舍去, 当0<k ≤1时,有4ka -a +1 2≤4a -a +1 2=-a -1 2<0,所以h a ≤0,从而h a 在(1,+∞)上单调递减,故当a >1时,恒有h a <h 1 =0符合题意,所以正实数k 的取值范围为0<k ≤1,因此k 的最大值为1.【点睛】方法点睛:本题考查利用导数讨论方程根的个数问题.问题一可转化f -x +f x =0有解,得到ln 1-x 2 =m x +1-m x -1=-2x 2-1m ,构造函数g (t )=12t ln t (0<t ≤1),求导讨论单调性,利用数形结合,找到y =m 与曲线在0,1 的有交点时m 的范围;问题二转化成恒成立问题,把不等式变形成2k s -1t -1-1 s -1t -1+1<lns -1t -1,设s -1t -1=a (a >1),构造函数h (a )=2k (a -1)a +1-ln a (a >1),转化成零点的问题,再利用单调性求解.18(2023·河北保定·统考二模)已知函数f x =x 2e x +m ,m ∈R .(1)当m =-1时,求f x 在点A 1,e -1 处的切线方程.(2)若g x =f xx-ln x -1的图象恒在x 轴上方,求实数m 的取值范围.【答案】(1)3e -2 x -y -2e +1=0(2)m ≥-1【分析】(1)由题意,将m =-1代入函数f x 的解析式中,对函数f x 进行求导,得到f 1 和f 1 ,代入切线方程中即可求解;(2)将函数g x 的图像恒在x 轴上方,转化成m >ln x +1x -e x 恒成立,构造函数φx =ln x +1x-e x ,此时问题转化成函数最值问题,对函数φx 进行求导,利用导数的几何意义以及零点存在性定理进行求解即可.【详解】(1)∵f x =x 2e x -1∴f x =x 2+2x e x -2x∴f 1 =3e-2.又∵f1 =e-1∴f x 在点A1,e-1处的切线方程为3e-2x-y-2e+1=0(2)g x =f xx-ln x-1的图像恒在x轴上方,等价于x e x+m-ln x-1>0恒成立即m>ln x+1x-e x恒成立,令φx =ln x+1x-e x,则φ x =-ln xx2-e x=-ln x+x2e xx2令g x =-ln x+e x x2,则g x =-1x+x2e x+2xe x<0所以g x 在0,+∞上单调递减又g12>0,g1 <0,所以在0,+∞上存在唯一的x0使g x0=0当x∈0,x0时φ x >0,φx 单调递增,当x∈x0,+∞时φ x <0,φx 单调递减.故φx 的最大值为φx0=ln x0+1x0-e x0又1nx0+e x0x02=0,故x0e x0=-ln x0x0,两边取对数得ln x0+x0=ln-ln x0+-ln x0又h x =x+ln x在定义域内单调递增,所以x0=-ln x0,故e x0=1 x0所以φx0=ln x0+1x0-e x0=ln x0x0+1x0-1x0=-1所以m≥-1.【点睛】方法点睛:含参不等式恒成立求参数值(取值范围)常用的方法:(1)直接法:直接求导确定函数的单调性得到最值,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.19(2023下·福建宁德·高三统考阶段练习)已知函数f(x)=e x+2ax-1,其中a为实数,e为自然对数底数,e=2.71828⋯.(1)已知函数x∈R,f(x)≥0,求实数a取值的集合;(2)已知函数F(x)=f(x)-ax2有两个不同极值点x1、x2,证明2a(x1+x2)>3x1x2【答案】(1)-1 2(2)证明见解析【分析】(1)求出f(x)的导数,对实数a分类讨论求出f(x)的最小值,解不等式f(x)min≥0即可求解;(2)由函数F(x)=f(x)-ax2有两个不同极值点x1、x2,可求出a的取值范围,由已知得e x2e x1=x2-1x1-1,取对数得x2-x1=ln x2-1-ln x1-1,通过换元x1-1=t1,x2-1=t2,构造函数u t =t-ln t,讨论函数u t =t-ln t的单调性,确定t1,t2的不等关系,再转化为x1、x2的关系即可证明.【详解】(1)由f (x )=e x +2ax -1,得f (x )=e x +2a ,当a ≥0时,因为f (-1)=1e-1-2a <0,不合题意;当a <0时,当x ∈-∞,ln (-2a ) 时,f (x )<0,f (x )单调递减,当x ∈ln (-2a ),+∞ 时,f (x )>0,f (x )单调递增,所以f (x )min =f ln (-2a ) =-2a +2a ln (-2a )-1,要f (x )≥0,只需f (x )min =-2a +2a ln (-2a )-1≥0,令g (x )=x -x ln x -1,则g (x )=-ln x ,当x ∈(0,1)时,g (x )>0,g (x )单调递增;当x ∈(1,+∞)时,g (x )<0,g (x )单调递减;所以g (x )≤g (1)=0,则由g (-2a )=-2a +2a ln (-2a )-1≥0得-2a =1所以a =-12,故实数a 取值的集合-12 (2)由已知F x =e x -ax 2+2ax -1,则F x =e x -2ax +2a ,因为函数F x 有两个不同的极值点x 1、x 2,所以F x 有两个不同零点,若a ≤0时,则F x 在R 上单调递增,F x 在R 上至多一个零点,与已知矛盾,舍去;当a >0时,由e x -2ax +2a =0,得12a =x -1e x,令φx =x -1e x ,所以φx=2-x e x,当x ∈-∞,2 时,φ x >0,φx 单调递增;当x ∈2,+∞ 时,φ x <0,φx 单调递减.所以φx max =φ2 =1e2,且当x <1时,φx <0,当x >1时,φx >0,如下图所示:由图可知,当0<12a <1e2时,即当a >e 22时,直线y =12a 与函数φx 的图象有两个交点,不妨设这两个交点的横坐标分别为x 1、x 2,且x 1<x 2,且当x <x 1或x >x 2时,12a >x -1e x,则F x =2ae x 12a -x -1e x>0,当x1<x<x2时,12a <x-1e x,则F x =2ae x12a-x-1e x<0.综上所述,当a>e22时,函数F x 有两个极值点;设x1<x2,则1<x1<2<x2,因为φ(x1)=φ(x2)=0,所以e x1=2ax1-2a,e x2=2ax2-2a,则e x2e x1=x2-1x1-1,取对数得x2-x1=ln(x2-1)-ln(x1-1),令x1-1=t1,x2-1=t2,则t2-t1=ln t2-ln t1,即t2-ln t2=t1-ln t1(0<t1<1<t2),令u(t)=t-ln t,则u(t1)=u(t2),因为u (t)=t-1t,所以u(t)=t-ln t在(0,1)上单调递减,在(1,+∞)上单调递增,令v(t)=u(t)-u1t=t-1t-2ln t,则v (t)=(t-1)2t2≥0,v(t)在(0,+∞)上单调递增,又v(1)=0,所以当t∈(0,1)时,v(t)<v(1)=0,即u(t)<u1t ,因为t2>1,2-t1>1,u(t)=t-ln t在(1,+∞)上单调递增,所以t2<1t1,所以x2-1<1x1-1,即x1x2<x1+x2,所以x1x2<x1+x2<2312e2(x1+x2)<23a(x1+x2),故3x1x2<2a(x1+x2)成立.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.20(2023·广东·统考二模)已知a∈R,函数f x =x-1ln1-x-x-a cos x,f x 为f x 的导函数.(1)当a=0时,求函数f x 的单调区间;(2)讨论f x 在区间0,1上的零点个数;(3)比较110cos110与ln109的大小,并说明理由.【答案】(1)f x 的单调递增区间为-∞,0,单调递减区间为0,1(2)答案见解析(3)110cos110<ln109,理由见解析【分析】(1)求导可得f x =ln1-x(x<1),根据f x >0和f x <0即可求解;(2)令g x =f x ,则g x =a1-xcos x-11-x,x∈0,1.易知当a≤1时g x <0,从而g x 单调递减;当a >1时令h x =a 1-x cos x -1,利用导数讨论函数h (x )的单调性,根据零点的存在性定理分析函数g x 的单调性可得g x <0,即可得出零点的个数;(3)由(2)可得当a ≤1时ln 1-x +a sin x <0在0,1 上恒成立.利用导数讨论函数m x =x -tan x 的性质可得x cos x <sin x ,结合sin x <ln 11-x 得x cos x <ln 11-x,x ∈0,1 ,即可证明.【详解】(1)当a =0时,f x =x -1 ln 1-x -x ,其定义域为-∞,1 ,f x =ln 1-x ,令f x =ln 1-x =0,得x =0.当x ∈-∞,0 时,f x >0,故f x 在-∞,0 上单调递增;当x ∈0,1 时,f x <0,故f x 在0,1 上单调递减.因此,函数f x 的单调递增区间为-∞,0 ,单调递减区间为0,1 .(2)令g x =f x =ln 1-x +a sin x ,则g x =-11-x +a cos x =a 1-x cos x -11-x,x ∈0,1 .因为x ∈0,1 ,则1-x ∈0,1 ,cos x ∈0,1 ,则1-x cos x ∈0,1 .当a ≤1时,则a 1-x cos x -1<0,故g x <0,从而g x 在0,1 上单调递减;而g 0 =0,故当x ∈0,1 时,g x <g 0 =0,故g x 在区间0,1 上无零点;即f x 在区间0,1 上无零点;当a >1时,令h x =a 1-x cos x -1,则h x =-a cos x +1-x sin x ,因为x ∈0,1 ,则cos x +1-x sin x >0,从而h x <0,即h x 在0,1 上单调递减;而h 0 =a -1>0,h 1 =-1<0,因此存在唯一的x 0∈0,1 ,使得h x 0 =0,并且当x ∈0,x 0 时,h x >0;当x ∈x 0,1 时,h x <0.即当x ∈0,x 0 时,g x >0,当x ∈x 0,1 时,g x <0.故当x ∈0,x 0 时,g x 单调递增,当x ∈x 0,1 时,g x 单调递减.而g 0 =0,故g x 0 >0;取N =1-e -2a ∈0,1 ,当x >N 时,g x =ln 1-x +a sin x <a +ln e -2a =a -2a =-a <0,所以存在唯一的m ∈x 0,1 ,使得g m =0,即f x 在区间0,1 上有唯一零点.综上所述,当a >1时,f x 在0,1 上有唯一的零点;当a ≤1时,f x 在0,1 上没有零点.(3)110cos 110<ln 109理由如下:[解法一]由(2)可得,当a ≤1时,ln 1-x +a sin x <0在0,1 上恒成立.即当a =1时,sin x <ln 11-x ,x ∈0,1 .以下证明不等式:当x ∈0,π2时,有x <tan x .令m x =x-tan x,则m x =1-1cos2x<0,故m x 在0,π2上单调递减,则m x <m0 =0,即x<tan x,x∈0,π2,即有x cos x<sin x,而sin x<ln11-x,故x cos x<ln11-x,x∈0,1.取x=110,则有110cos110<ln109.[解法二]显然cos110∈0,1,故110cos110<110,以下证明不等式:当x∈-1,+∞时,有ln1+x≤x.令p x =ln1+x-x,则令p x =11+x-1=-x1+x=0,得x=0.故当x∈-1,0时,p x >0,从而p x 在-1,0上单调递增;当x∈0,+∞时,p x <0,从而p x 在0,+∞上单调递减.故x=0是p x =ln1+x-x的极大值点,并且是最大值点,故p x ≤p0 =0,即ln1+x≤x,x∈-1,+∞.取x=-110,则ln910<-110,故ln109>110,故110cos110<110<ln109,从而110cos110<ln109.【点睛】方点点睛:利用导数研究函数零点问题,不论哪种方法,其核心步骤都是构造函数.利用已知的函数或已知条件将问题转化,重新构造函数模型,通过导数研究函数模型的单调性、极值或最值等达到解决问题的目的.二、证明题21(2023·福建·校联考模拟预测)设函数f x =2x-2x-a ln x(a∈R).(1)讨论f x 的单调性;(2)若f x 有两个极值点x1,x2,记过点A x1,f x1,B x2,f x2的直线的斜率为k,若x2∈1,e,证明:2-4e-1<k<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)求出直线的斜率k,得k=4-2x1x2+1x1x2-1lnx1x2,令t=x1x2,t∈1e,1,要证:2-4e-1<k<0,即证ln t<2t-1t+1和ln t>e+1e-1⋅t-1t+1,求出函数的导数,根据函数的单调性证明即可.【详解】(1)f x =2+2x2-ax=2x2-ax+2x2,令g x =2x2-ax+2,Δ=a2-16.①当-4≤a≤4时,Δ≤0,f x ≥0,f x 在0,+∞单调递增:②当a<-4时,Δ>0,g x =0的两根都小于0,f x 在0,+∞上大于0,所以f x 在0,+∞单调递增;③当a>4时,由g x =0,解得x1=a-a2-164,x2=a+a2-164,x∈0,x1∪x2,+∞,g x >0,f x >0,f x 在0,x1,x2,+∞上单调递增:x∈x1,x2,g x <0,f x <0,f x 在x1,x2上单调递减.(2)证明:由(1)知当a>4时,f x 有两个极值点x1,x2,且满足x1+x2=a2,x1x2=1.f x1-f x2=2x1-x2-21x1-1x2-a ln x1-ln x2=4x1-x2-a ln x1-ln x2,k=f x1-f x2x1-x2=4-aln x1-ln x2x1-x2=4-2x1+x2x1-x2ln x1-ln x2=4-2x1x2+1x1x2-1lnx1x2.令t=x1x2=1x22∈1e,1,则k=4-2t+1t-1ln t.(ⅰ)要证k<0,即证ln t<2t-1 t+1.令h t =ln t-2t-1t+1,则ht =1t-4t+12=t2-2t+1t+12>0,所以h t 在1e,1上单调递增.又h1 =0,所以h t <0,即ln t<2t-1t+1,∴k<0.(ⅱ)要证k>2-4e-1,即证ln t>e+1e-1⋅t-1t+1.令F t =ln t-e+1e-1⋅t-1t+1,Ft =1t-e+1e-12t+12=t2-4e-1t+1t t+12,记G t =t2-4e-1t+1,则G1e=e3-e2-3e-1e2e-1>0,G1 =2e-6e-1<0,则G t 在1e,1有唯一实根t0,故F t 在1e,t0上单调递增,在t0,1单调递减,又F1e=F1 =0,所以当1e<t<1时,F t >F1e =0,∴ln t>e+1e-1⋅t-1t+1,即k>2-4e-1.由(ⅰ)(ⅱ),证得2-4e-1<k<0.【点睛】思路点睛:根据函数极值点个数求参数相关问题时,一般需要先对函数求导,根据导函数对应的方程,确定极值点与参数之间关系,再由消元法将问题转化为参数与其中一个极值点之间的关系式,根据极值点的范围,构造新的函数,利用导数的方法判定新函数的单调性,进而即可求解.。
完整版)导数的综合大题及其分类
完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。
命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。
这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。
题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。
1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。
如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。
2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。
3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。
在极值和区间端点函数值中最大的为最大值,最小的为最小值。
例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。
x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。
审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。
规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。
则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。
2020年高考理科数学-考前20天终极冲刺攻略 (一)含答案解析
目录/ contents 6月14日集合与常用逻辑用语 (01)6月15日函数的概念、性质、图象(基本初等函数) (12)6月16日导数及其简单应用(选择题、填空题) (28)6月17日导数与其他知识的综合问题(解答题) (40)6月18日三角函数的图象与性质、三角恒等变换 (55)6月19日解三角形 (69)6月20日平面向量 (82)时间:6月14日今日心情:核心考点解读——集合与常用逻辑用语考纲解读里的I,II的含义如下:I:对所列知识要知道其内容及含义,并能在有关问题中识别和直接使用,即了解和认识.II:对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用,即理解和应用.(以下同)合的元素个数为n ,则其子集、真子集、非空子集的个数分别为2,21,22n n n --.(3)交集:{}|A B x x A x B =∈∈I 且,取两个集合的公共元素组成集合; 并集:{}|A B x x A x B =∈∈U 或,取两个集合所有元素组成集合; 补集:{}|U A x x U x A =∈∉或ð,取全集中不属于集合A 的元素组成集合.注意集合的运算顺序,如()U A B U ð表示先计算A 的补集,再进行并集计算;()U A B U ð则表示先进行A 与B 的并集计算,再进行补集计算. 2.四种命题及其关系(1)能够根据给定命题写出其逆命题、否命题和逆否命题; (2)知道四种命题的互为关系:(3)能判断命题的真假,知道原命题与逆否命题的真假相同,原命题与逆命题、否命题的真假不相关. 3.充分条件、必要条件掌握判断充分条件、必要条件的方法:(1)定义法:寻找,p q 之间的推理关系,即对“若p 则q ”的真假进行判断,获得结论;(2)集合法:借助集合间的基本关系进行充分性与必要性的判断; (3)等价法:借助原命题与逆否命题的真假等价性进行判断. 4.简单逻辑联结词与全称量词、特称量词(1)知道“或”、“且”、“非”,并能区分简单命题与复杂命题; (2)能够利用真值表判断命题的真假;1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}M N x x =-<<I . 故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分. 2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞I .故选A .【名师点睛】本题考点为集合的运算,为基础题目.3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =IA .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-I . 故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.(2018新课标全国Ⅰ理科)已知集合{}220A x x x =-->,则A =R ð A .{}12x x -<<B .{}12x x -≤≤ C .}{}{|1|2x x x x <->UD .}{}{|1|2x x x x ≤-≥U 【答案】B【解析】解不等式x 2−x −2>0得x <−1或x >2,所以A ={x|x <−1或x >2},所以可以求得{}|12A x x =-≤≤R ð,故选B .【名师点睛】该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.5.(2018新课标全国Ⅲ理科)已知集合{}|10A x x =-≥,{}012B =,,,则A B =I A .{}0 B .{}1C .{}12,D .{}012,,【答案】C【解析】易得集合{|1}A x x =≥,所以{}1,2A B =I ,故选C .【名师点睛】该题考查的是有关一元一次不等式的解法,及集合的交集的求解问题,在解题的过程中,需要明确一元一次不等式的解集的形式以及交集中元素的特征,从而求得结果. 6.(2018新课标全国Ⅱ理科)已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【答案】A【解析】∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z,∴x =−1,0,1,当x =−1时,y =−1,0,1;当x =0时,y =−1,0,1;当x =−1时,y =−1,0,1,所以共有9个元素,选A .7.(2017新课标全国Ⅰ理科)已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<I I{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<U U ,故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 8.(2017新课标全国Ⅱ理科)设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B =I ,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C【解析】由{}1A B =I 得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =,故选C .【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性.9.(2017新课标全国Ⅲ理科)已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点,22⎛ ⎝⎭,22⎛-- ⎝⎭,则A B I 中有2个元素.故选B . 【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 10.(2018天津理科)设x ∈R ,则“11||22x -<”是“31x <”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】绝对值不等式|x −12|<12 ⇔ −12<x −12<12 ⇔ 0<x <1,由x 3<1 ⇔ x <1.据此可知|x −12|<12是x 3<1的充分而不必要条件.故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.11.(2017新课标全国Ⅰ理科)设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p p B .14,p p C .23,p pD .24,p p【答案】B【解析】令i(,)z a b a b =+∈R ,则由2211i i a b z a b a b -==∈++R 得0b =,所以z ∈R ,故1p 正确;当i z =时,因为22i 1z ==-∈R ,而i z =∉R 知,故2p 不正确; 当12i z z ==时,满足121z z ⋅=-∈R ,但12z z ≠,故3p 不正确; 对于4p ,因为实数的共轭复数是它本身,也属于实数,故4p 正确, 故选B .【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.12.(2017北京理科)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒,那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件,故选A.13.(2018北京理科)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 【答案】y =sin x (答案不唯一)【解析】令()(]0,04,0,2x f x x x =⎧⎪=⎨-∈⎪⎩,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.【名师点睛】要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值0x ,使()0p x 不成立即可.通常举分段函数.14.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B I ð= A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-I ð. 故选A.【名师点睛】注意理解补集、交集的运算.15.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果.16.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB u u u r与AC uuu r 的夹角为锐角”是“||||AB AC BC +>u u u r u u u r u u u r”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB u u u v +AC u u uv |>|BC uuu r|⇔|AB u u u v +AC u u u v |>|AC u u u v -AB u u u v|⇔|AB u u u v +AC u u uv |2>|AC u u u v -AB u u u v |2AB u u ur ⇔·AC u u u v >0AB u u u r ⇔与AC u u u v 的夹角为锐角,故“AB u u u v 与AC u u u v 的夹角为锐角”是“|AB u u u v +AC u u uv |>|BC uuu r |”的充分必要条件.故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.1.(2020届山东省淄博市高三网考数学试题)命题“”的否定是 A . B . C .D .2.(天津市南开翔宇学校2020届高三下学期第八次统练数学试题)记全集U =R ,集合A ={x|x 2≥16},集合B ={x|2x ≥2},则(∁U A)∩B = A .[4,+∞)B .(1,4]C .[1,4)D .(1,4)3.(河南省郑州市重点高中2019-2020学年高三考试)设集合,,则集合可以为 A . B . C .D .4.(河北省正定中学(实验中学)2019-2020学年高三第二学期第三次质检)已知向量=(1,2),=(x 2+1,﹣x ),则“x =1”是“⊥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.(山东省德州市2019-2020学年高三上学期期末数学试题) “,”为真命题的充分必要条件是( ) A .B .C .D .6.(河北省衡水中学2019-2020学年度高三年级下学期一调考试)已知全集U =R ,A ={x |x 2﹣3x ﹣4>0},B ={x |﹣2≤x ≤2},则如图所示的阴影部分所表示的集合为( )A .{x |﹣2≤x <4}B .{x |x ≤2或x ≥4}C .{x |﹣2≤x ≤﹣1}D .{x |﹣1≤x ≤2}000(0,),ln 1x x x ∃∈+∞=-(0,),ln 1x x x ∀∈+∞≠-(0,),ln 1x x x ∀∉+∞=-000(0,),ln 1x x x ∃∈+∞≠-000(0,),ln 1x x x ∃∉+∞=-2{|4}A x x =>{|2}A B x x =<-I B {|3}x x <{|31}x x -<<{|3}x x >-{|1}<x x a b a b []1,2x ∀∈210ax +≤1a ≤-14a -≤2a ≤-0a≤1.已知全集U ={x ∈N|0≤x ≤4},集合A ={−1,2,3},B ={2,3},则= A .{0,4} B .{0,1,4} C .{1,4}D .{0,1}2.已知直线l 1:ax +2y +2=0, l 2:x +(a −1)y −1=0,则"a =2"是"l 1//l 2"的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知集合{}| 1 A x x =<,{}|e 1 x B x =<,则 A .{}| 1 A B x x =<I B .{}| e A B x x =<U C .A B =R R U ðD .{}()|01A B x x =<<R I ð4.已知集合{}2230,A x x x =+-≤{}2B =<,则A B =IA .{}31x x -≤≤B .{}01x x ≤≤ C .{}31x x -≤<D .{}10x x -≤≤名校预测 1.【答案】A【解析】由特称命题的否定为全称命题可知,所求命题的否定为,故选A. 2.【答案】C【解析】∵全集U =R ,集合A ={x|x 2≥16}={x|x ≥4或x ≤−4},集合B ={x|2x ≥2}={x|x ≥1},∴C U A ={x|−4<x <4},∴(∁U A)∩B ={x|1≤x <4}=[1,4).故选C . 3.【答案】D【解析】因为,可以依次验证选项,得到当时,.故答案为:D .【点睛】这个题目考查了集合的交集运算,属于基础题目.()U A B Ið(0,),ln 1x x x ∀∈+∞≠-{|22}A x x x =<->或{|1}B x x =<{|2}A B x x ⋂=<-4.【答案】C【解析】∵,∴,解得,∴“x =1”是“⊥”的充要条件.故选:C . 5.【答案】A【解析】“,”为真命题,对任意的恒成立, 由于函数在区间上单调递增,则,.故选:A. 【点睛】本题考查利用全称命题的真假求参数的取值范围,灵活利用参变量分离法求解是解题的关键,考查运算求解能力,属于中等题. 6.【答案】D【解析】阴影部分所表示的集合为B ∩∁U A ,∵A ={x |x 2﹣3x ﹣4>0}={x |x <﹣1,或x >4},U =R ,∴∁U A ={x |﹣1≤x ≤4}, 又∵B ={x |﹣2≤x ≤2},∴B ∩∁U A ={x |﹣1≤x ≤2},故选:D . 专家押题 1.【答案】B【解析】因为U ={x ∈N |0≤x ≤4}={0,1,2,3,4},A ∩B ={−1,2,3}∩{2,3}={2,3}, 所以= {0,1,4}.选B . 2.【答案】A【解析】l 1//l 2⇒a (a −1)−2×1=0,解得:a =−1或a =2,∴由a =2可得l 1//l 2,而l 1//l 2还可能a =−1,由此可知:“a =2”是“l 1//l 2”的充分不必要条件.故选A. 3.【答案】C【解析】∵集合{}|e 1 x B x =<,∴{}|0 B x x =<.∵集合{}| 1 A x x =<,∴{}|0 A B x x =<I ,{}| 1 A B x x =<U ,A B =R R U ð,()A B =∅RI ð.故选C .4.【答案】B【解析】因为{}{}31,04A x x B x x =-≤≤=≤<,所以A B =I {}01x x ≤≤.故选B.⊥a b 2120x x +-=1x =a b Q []1,2x ∀∈210ax +≤21a x∴≤-[]1,2x ∈21y x=-[]1,2min 1y =-1a ∴≤-()U A B I ð时间:6月15日今日心情:核心考点解读——函数的概念、性质、图象(基本初等函数)1.涉及本单元知识的考题,大多以选择题、填空题的形式出现,可易可难,预测今年高考仍然会出2-3个小题.2.函数的概念及其表示:考查函数的概念、定义域和值域,函数的解析表示法,其中常以分段函数为载体考查函数、方程、不等式等知识的综合.3.函数的性质:考查单调性,可以从函数图象、单调性定义、导数来理解;考查奇偶性,可以从图象和定义入手,尤其要注意抽象函数奇偶性的判断;对称性和周期性结合,用以考查函数值重复出现的特征以及求解析式.4.基本初等函数:比较大小,基本初等函数的图象和性质,基本初等函数的综合应用,其中常以分段函数为载体考查函数、方程、不等式等知识的综合.1.【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小. 2.【2019年高考全国Ⅱ卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ; 由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ;因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确. 故选C .【名师点睛】本题主要考查对数函数的性质、指数函数的性质、幂函数的性质及绝对值的意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断. 3.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称. 又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象.故选D . 【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.4.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .2sin cos ++x xx x【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .【名师点睛】本题通过判断函数的奇偶性,排除错误选项,通过计算特殊函数值,作出选择.本题注重基础知识、基本计算能力的考查.5.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD【答案】D 【解析】由rRα=,得r R α=, 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得α=所以.r R α==故选D. 【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形易出错.6.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)【答案】C【解析】()f x Q 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.7.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-.∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-, 如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.【名师点睛】本题考查了函数与方程,二次函数.解题的关键是能够得到(2,3]x ∈时函数的解析式,并求出函数值为89-时对应的自变量的值.8.(2018年高考新课标II 卷理科)函数()2e e x xf x x --=的图像大致为A .B .C .D .【答案】B【解析】()()()2e e 0,x xx f x f x f x x--≠-==-∴Q 为奇函数,舍去A, ()11e e 0f -=->∴Q 舍去D;()()()()()()243e e e e 22e 2e 2,0xx x x x x x xx x f x x f x xx---+---+''+==∴>>Q ,,所以舍去C ;因此选B.【名师点睛】有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 9.(2018年高考新课标III 卷理科)函数422y x x =-++的图像大致为A .B .C .D .【答案】D【解析】函数过定点()0,2,排除A ,B ,求得函数的导数()32()42221f x x x x x '=-+=--, 由()0f x '>得()22210x x -<,得x <0x <<C ,故选D. 【名师点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.10.(2018年高考新课标I 卷理科)设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x =D .y x =【答案】D【解析】因为函数()f x 是奇函数,所以10a -=,解得1a =, 所以()3f x x x =+,()231f x x '=+,所以()()01,00f f '==,所以曲线()y f x =在点()0,0处的切线方程为()()00y f f x '-=,化简可得y x =, 故选D .【名师点睛】该题考查的是函数的奇偶性以及有关曲线()y f x =在某个点()()00,x f x 处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论:多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得()f x ',借助于导数的几何意义,结合直线方程的点斜式求得结果.11.(2018年高考新课标II 卷理科)已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f ++()50f ++=LA .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(),-∞+∞的奇函数,且()()11f x f x -=+, 所以()()()()()113114f x f x f x f x f x T +=--∴+=-+=-∴=,,,因此()()()()()()()()()()1235012123412f f f f f f f f f f ⎡⎤++++=+++++⎣⎦L , 因为()()()()3142f f f f =-=-,,所以()()()()12340f f f f +++=, 因为()()200f f ==,从而()()()()()1235012f f f f f ++++==L ,故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12.(2018年高考新课标Ⅲ卷理科)设0.2log 0.3a =,2log 0.3b =,则 A .0a b ab +<< B .0ab a b <+< C .0a b ab +<<D .0ab a b <<+【答案】B【解析】0.22log 0.3,log 0.3a b ==Q ,0.30.311log 0.2,log 2a b ∴==,0.311log 0.4a b∴+=,1101a b ∴<+<,即01a bab+<<,又0,0a b ><Q ,0ab ∴<,∴0ab a b <+<,故选B . 13.(2017新课标全国Ⅰ理科)设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【解析】令235(1)x y zk k ===>,则2log x k =,3log y k =,5log z k =∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D . 【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.14.(2017新课标全国Ⅰ理科)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤的x 的取值范围为[1,3],选D .【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立.15.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________. 【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=,所以3a -=,即3a =-.16.(2017新课标全国Ⅲ理科)设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是 . 【答案】1(,)4-+∞【解析】由题意得:当12x >时,12221x x-+>恒成立,即12x >;当102x <≤时,12112x x +-+>恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即104x -<≤.综上,x 的取值范围是1(,)4-+∞.1.(2020届河南省郑州市高三第二次质量预测数学试题)设函数定义域为,函数的定义域为,则 A . B .C .D .2.(2020届黑龙江省大庆实验中学高三下学期第二次“战疫”线上测试数学试题)函数在的图象大致为A .B .C .D .3.(天津市南开翔宇学校2020届高三下学期第八次统练数学试题)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为 A .a <c <b B .a <b <cC .b <c <aD .c <a <b4.(2020届山东省淄博市高三网考数学试题)已知函数.若存在个零点,则的取值范围是 A . B .C .D .5.(河北省衡水中学2019-2020学年度高三年级下学期一调考试试卷)已知a >1,设函数f (x )=a x +x ﹣2的零点为m ,g (x )=log a x +x ﹣2的零点为n ,则1m +1n 的取值范围是y =的A ln(3)y x =-B A B =I (,3)-∞(8,3)--{3}[3,3)-23sin ()1x xf x x -=+[]-,ππ0()ln 0x e x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++()g x 2a [1,0)-[1,)-+∞[0,)+∞[1,)+∞A .(2,+∞)B .(72,+∞)C .(4,+∞)D .(92,+∞)6.(河北省衡水中学2019-2020学年度高三年级下学期一调考试试卷)f (x )是定义域为R 的偶函数,对∀x ∈R ,都有f (x +4)=f (﹣x ),当0≤x ≤2时,f(x)={2x −1,0≤x <1,log 2x +1,1≤x ≤2,则f(−92)+f(21)= .1.已知函数,且,则a 的取值范围为 A .B .C .D . 2.函数的图象大致为 A . B . C . D .3.已知f (x )为定义在R 上的偶函数,且f (x +2)=f (x ),当x ∈[0,1]时,f (x )=2x +1,记a =f (log 0.56),b =f (log 27),c =f (8),则a,b,c 的大小关系为 A .a <b <c B .a <c <b C .c <b <aD .c <a <b名校预测 1.【答案】D【解析】由题意,对于函数,,解得,即;()1ln1xf x x x++-=()()10f a f a ++>11,2⎛⎫--⎪⎝⎭1,02⎛⎫-⎪⎝⎭1,12⎛⎫-⎪⎝⎭1,2⎛⎫-+∞ ⎪⎝⎭()1ln 2sin 1x f x x x -⎛⎫=+⎪+⎝⎭y =290x -≥33x -≤≤[]3,3A =-对于函数,,解得,即, 所以.故选:D. 2.【答案】C 【解析】因,所以函数为奇函数,故排除A ,B,由于 ,排除D 故选C. 3.【答案】A【解析】由题意,可知: a =log 52<1, b =log 0.50.2=log 1215=log 2−15−1=log 25>log 24=2.c =0.50.2<1,∴b 最大,a 、c 都小于1.∵a =log 52=1log 25,c =0.50.2=(12)15=√125=√25.而log 25>log 24=2>√25,∴1log 25<√25∴a <c ,∴a <c <b .故选A .4.【答案】B【解析】函数存在 2个零点,即关于的方程有2 个不同的实根,即函数的图像与直线有2个交点,做出直线与函数的图像,如图所示,由图可知,,解得。
2023年高考数学考前20天终极冲刺之函数的应用
2023年高考数学考前20天终极冲刺之函数的应用一.选择题(共8小题)1.(2023•陕西模拟)已知偶函数f(x)满足f(x)=f(8﹣x),且当x∈(0,4]时,,关于x的不等式f2(x)+af(x)>0在[﹣20,20]上有且只有30个整数解,则实数a的取值范围是()A.B.C.D.2.(2023•大通县二模)已知实数a≠1,函数若f(1﹣a)=f(a ﹣1),则a的值为()A.B.C.D.3.(2022秋•烟台期末)函数的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.(2022秋•安阳期末)已知函数的图像与直线y=k﹣x有3个不同的交点,则实数k的取值范围是()A.B.(0,+∞)C.D.(0,2] 5.(2022秋•宜丰县校级期末)已知函数f(x)=a x﹣ax(a>1),且f(x)在[1,2]有两个零点,则a的取值范围为()A.(1,2]B.(1,e)C.[2,e)D.(e,e2] 6.(2022秋•大荔县期末)函数f(x)=lnx+2x﹣8的零点一定位于下列哪个区间()A.(1,2)B.(2,3)C.(3,4)D.(5,6)7.(2022秋•宣城期末)方程的根所在的区间是()(参考数据ln2≈0.69,ln3≈1.10)A.(1,2)B.(2,e)C.(e,3)D.(3,4)8.(2022秋•雅安期末)通过实验数据可知,某液体的蒸发速度y(单位:升/小时)与液体所处环境的温度x(单位:°C)近似地满足函数关系y=e ax+b(e为自然对数的底数,a,b为常数).若该液体在10°C的蒸发速度是0.2升/小时,在20°C的蒸发速度是0.4升/小时,则该液体在30℃的蒸发速度为()A.0.5升/小时B.0.6升/小时C.0.7升/小时D.0.8升/小时二.多选题(共4小题)(多选)9.(2022秋•十堰期末)某城市有一个面积为1km2的矩形广场,该广场为黄金矩形(它的宽与长的比为),在中央设计一个矩形草坪,四周是等宽的步行道,能否设计恰当的步行道宽度使矩形草坪为黄金矩形?下列选项不正确的是()A.步行道的宽度为m B.步行道的宽度为mC.步行道的宽度为5m D.草坪不可能为黄金矩形(多选)10.(2022秋•庆阳期末)现代研究结果显示,饮茶温度最好不要超过60℃.一杯茶泡好后置于室内,1分钟、2分钟后测得这杯茶的温度分别为80℃,65℃,给出两个茶温T(单位:℃)关于茶泡好后置于室内时间t(单位:分钟,t∈N)的函数模型:①;②.根据所给的数据,下列结论中正确的是()(参考数据:lg2≈0.30,lg3≈0.48)A.选择函数模型①B.选择函数模型②C.该杯茶泡好后到饮用至少需要等待2分钟D.该杯茶泡好后到饮用至少需要等待2.5分钟(多选)11.(2022秋•德州期末)牛顿曾提出了物体在常温环境下温度变化的冷却模型:若物体初始温度是θ0(单位:℃),环境温度是θ1(单位:℃),其中θ0>θ1、则经过t分钟后物体的温度θ将满足θ=f(t)=θ1+(θ0﹣θ1)•e﹣kt(k∈R且k>0).现有一杯100℃的热红茶置于10℃的房间里,根据这一模型研究红茶冷却情况,下列结论正确的是()(参考数值ln2≈0.7,ln3≈1.1)A.若f(3)=40℃,则f(6)=20℃B.若,则红茶下降到55℃所需时间大约为6分钟C.5分钟后物体的温度是40℃,k约为0.22D.红茶温度从80℃下降到60°C所需的时间比从60℃下降到40℃所需的时间多(多选)12.(2022秋•庐江县期末)已知函数f(x)=x﹣1,g(x)=.记max(a,b)=,则下列关于函数F(x)=max{f(x),g(x)}(x≠0)的说法正确的是()A.当x∈(0,2)时,F(x)=x﹣1B.函数F(x)的最小值为﹣2C.函数F(x)在(﹣1,0)上单调递增D.若关于x的方程F(x)=m恰有两个不相等的实数根,则﹣2<m<﹣1或m>1三.填空题(共5小题)13.(2022秋•遂宁期末)某商场以每件30元的价格购进一种商品,根据销售经验,这种商品每天的销量m(件)与售价x(元)满足一次函数m=100﹣2x,若要每天获得最大的销售利润,则每件商品的售价应定为元.14.(2022秋•遂宁期末)已知函数若f(x)恰有2个零点,则实数a的取值范围是.15.(2023春•城区校级月考)已知函数f(x)=,若关于x的方程f(x)=a有3个不同实根,则实数a取值范围为.16.(2022秋•沧州期末)若正实数x0是关于x的方程e x+x=ax+lnax的根,则=.17.(2022秋•武陵区校级期末)已知函数,若f(x)﹣m=0有两个实根x1,x2(x1<x2),则的取值范围为.四.解答题(共5小题)18.(2022秋•沧州期末)已知函数,其中a∈R.(1)若f(1)<3,求实数a的取值范围;(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],试讨论函数g(x)的零点个数.19.(2022秋•衢州期末)已知函数.(1)若,判断f(x)的零点个数,并说明理由;(2)记,求证:对任意x∈[0,1],均有﹣M≤f(x)≤M.20.(2022秋•济宁期末)流行性感冒简称流感,是流感病毒引起的急性呼吸道感染,也是一种传染性强、传播速度快的疾病.了解引起流感的某些细菌、病毒的生存条件、繁殖习性等对于预防流感的传播有极其重要的意义,某科研团队在培养基中放入一定是某种细菌进行研究.经过2分钟菌落的覆盖面积为48mm2,经过3分钟覆盖面积为64mm2,后期其蔓延速度越来越快;菌落的覆盖面积y(单位:mm2)与经过时间x(单位:min)的关系现有三个函数模型:①y=ka x(k>0,a>1),②y=log b x(b>1),③(p>0)可供选择.(参考数据:lg2≈0.301,lg3≈0.477)(1)选出你认为符合实际的函数模型,说明理由,并求出该模型的解析式;(2)在理想状态下,至少经过多少分钟培养基中菌落的覆盖面积能超过300mm2?(结果保留到整数)21.(2022秋•商丘期末)如图,四边形ABCD是一块长方形绿地,AB=3km,AD=2km,EF是一条直路,交BC于点E,交AB于点F,且BE=AF=1km.现在该绿地上建一个标志性建筑物,使建筑物的中心到D,E,F三个点的距离相等.以点B为坐标原点,直线BC,BA分别为x,y轴建立如图所示的直角坐标系.(1)求出建筑物的中心的坐标;(2)由建筑物的中心到直路EF要开通一条路,已知路的造价为100万元/km,求开通的这条路的最低造价.附:.22.(2022秋•安庆期末)2022年11月20日,备受全球球迷关注的第22届世界杯足球赛如期开幕,全球32支参赛队伍,将在64场比赛中争夺世界足球的最高荣誉大力神杯!某体育用品商店借此良机展开促销活动,据统计,该店每天的销售收入不低于2万元时,其纯利润y(单位:万元)随销售收入x(单位:万元)的变化情况如下表所示:x(万元)235y(万元)(1)根据表中数据,分别用模型y=log a(x+m)+b(a>0且a≠1)与建立y关于x的函数解析式;(2)已知当x=9时,y=3.3,你认为(1)中哪个函数模型更合理?请说明理由.(参考数据:)2023年高考数学考前20天终极冲刺之函数的应用参考答案与试题解析一.选择题(共8小题)1.(2023•陕西模拟)已知偶函数f(x)满足f(x)=f(8﹣x),且当x∈(0,4]时,,关于x的不等式f2(x)+af(x)>0在[﹣20,20]上有且只有30个整数解,则实数a的取值范围是()A.B.C.D.【考点】函数的零点与方程根的关系.【专题】计算题;转化思想;综合法;函数的性质及应用;数学运算.【分析】根据条件可得出函数周期为8,再由题意可确定半周期x∈(0,4]上有3个整数解,利用导数研究函数的单调性,根据1,2,3为不等式整数解列出不等式求解即可.【解答】解:∵f(x)=f(8﹣x),∴f(﹣x)=f(8+x),又函数为偶函数,∴f(x)=f(8+x),即函数周期为T=8,因为不等式f2(x)+af(x)>0在[﹣20,20]上有且只有30个整数解,所以不等式在(0,4]上恰有3个整数解,又,可知时,f'(x)>0,时,f'(x)<0,所以f(x)在上递增,在上递减,,所以1,2,3满足不等式,故a<0,且需解得.故选:D.【点评】本题主要考查函数的零点与方程根的关系,考查运算求解能力,属于中档题.2.(2023•大通县二模)已知实数a≠1,函数若f(1﹣a)=f(a﹣1),则a的值为()A.B.C.D.【考点】分段函数的应用;函数的值.【专题】计算题;分类讨论;综合法;函数的性质及应用;数学运算.【分析】根据分段函数的解析式,结合分段条件分a<1和a>1两种情况讨论,即可求解.【解答】解:由题意,函数,当a<1时,由f(1﹣a)=f(a﹣1)可得41﹣a=21,即22﹣2a=21,解得;当a>1时,由f(1﹣a)=f(a﹣1)可得4a﹣1=2a﹣(1﹣a),即22a﹣2=22a﹣1,此时方程无解,综上可得,实数a的值为.故选:A.【点评】本题主要考查分段函数及其应用,考查分类讨论思想与运算求解能力,属于基础题.3.(2022秋•烟台期末)函数的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数零点的判定定理.【专题】计算题;函数思想;综合法;函数的性质及应用;数学运算.【分析】根据零点存在性定理f(a)f(b)<0,在(0,+∞)为单调递减函数,结合f(2)>0,f(3)<0即可求解.【解答】解:依题意,函数的定义域为(0,+∞),而在(0,+∞)为单调递减函数,y=﹣lnx在(0,+∞)为单调递减函数,因为e3>4,所以,即,所以,,所以f(2)⋅f(3)<0,所以由零点存在性定理可知,函数在区间(2,3)有零点.故选:C.【点评】本题考查了函数零点的判定定理,考查运算求解能力,属于中档题.4.(2022秋•安阳期末)已知函数的图像与直线y=k﹣x有3个不同的交点,则实数k的取值范围是()A.B.(0,+∞)C.D.(0,2]【考点】函数的零点与方程根的关系.【专题】计算题;数形结合;分类讨论;数形结合法;函数的性质及应用;数学运算.【分析】作函数f(x)的大致图像(实线),平移直线y=k﹣x,数形结合得出实数k的取值范围.【解答】解:如图,作函数f(x)的大致图像(实线),平移直线y=k﹣x,由k﹣x=x2+2x+2可得,x2+3x+2﹣k=0,,故当时,直线与曲线y=x2+2x+2(x≤0)相切;当k=0时,直线y=﹣x经过点(0,0),且与曲线y=x2+2x+2(x≤0)有2个不同的交点;当k=2时,直线y=2﹣x经过点(0,2),且与f(x)的图像有3个不同的交点.由图分析可知,当k∈(0,2]时,f(x)的图像与直线y=k﹣x有3个不同的交点.故选:D.【点评】本题主要考查函数的零点与方程根的关系,考查数形结合思想与分类讨论思想的应用,考查运算求解能力,属于中档题.5.(2022秋•宜丰县校级期末)已知函数f(x)=a x﹣ax(a>1),且f(x)在[1,2]有两个零点,则a的取值范围为()A.(1,2]B.(1,e)C.[2,e)D.(e,e2]【考点】函数的零点与方程根的关系;函数零点的判定定理.【专题】计算题;转化思想;综合法;函数的性质及应用;导数的综合应用;数学运算.【分析】根据给定条件,利用零点的意义等价转化,构造函数g(x)=xlna﹣lnx﹣lna,再借助导数探讨函数g(x)在[1,2]有两个零点作答.【解答】解:a>1,x∈[1,2],由f(x)=0得,a x=ax,则xlna=lnx+lna,令g(x)=xlna﹣lnx﹣lna,依题意,函数g(x)在[1,2]有两个零点,显然g(1)=0,而在[1,2]上单调递增,则有,当lna﹣1≥0或,即a≥e或时,g(x)在[1,2]上单调递增或单调递减,即有函数g(x)在[1,2]只有一个零点1,因此,此时当时,g'(x)<0,当时,g'(x)>0,函数g(x)在上单调递减,在单调递增,则,要函数g(x)在[1,2]有两个零点,当且仅当g(x)在上有一个零点,即有g(2)=lna﹣ln2≥0,解得a≥2,所以2≤a<e,即a的取值范围是[2,e).故选:C.【点评】本题主要考查函数的零点与方程根的关系,考查导数的应用,考查运算求解能力,属于中档题.6.(2022秋•大荔县期末)函数f(x)=lnx+2x﹣8的零点一定位于下列哪个区间()A.(1,2)B.(2,3)C.(3,4)D.(5,6)【考点】函数零点的判定定理;二分法的定义与应用.【专题】函数思想;综合法;函数的性质及应用;数学运算.【分析】利用零点存在定理直接判断.【解答】连接:由题意可知,f(3)=ln3﹣2<0,f(4)=ln4>0,故f(3)⋅f(4)<0,又因函数f(x)=lnx+2x﹣8在(0,+∞)上单调递增,所以函数f(x)=lnx+2x﹣8的零点一定位于区间(3,4).故选:C.【点评】本题主要考查函数零点存在性定理的应用,考查运算求解能力,属于基础题.7.(2022秋•宣城期末)方程的根所在的区间是()(参考数据ln2≈0.69,ln3≈1.10)A.(1,2)B.(2,e)C.(e,3)D.(3,4)【考点】函数零点的判定定理.【专题】计算题;函数思想;综合法;函数的性质及应用;数学运算.【分析】由可得x+lnx﹣e=0,利用零点存在定理可得出结论.【解答】解:对于方程,有x>0,可得x+lnx﹣e=0,令f(x)=x+lnx﹣e,其中x>0,因为函数y=x﹣e、y=lnx在(0,+∞)上为增函数,故函数f(x)在(0,+∞)上为增函数,因为f(1)=1﹣e<0,f(2)=2+ln2﹣e<0,f(e)=1>0,由零点存在定理可知,函数f(x)的零点在区间(2,e)内.故选:B.【点评】本题主要考查函数零点存在性定理的应用,考查运算求解能力,属于基础题.8.(2022秋•雅安期末)通过实验数据可知,某液体的蒸发速度y(单位:升/小时)与液体所处环境的温度x(单位:°C)近似地满足函数关系y=e ax+b(e为自然对数的底数,a,b为常数).若该液体在10°C的蒸发速度是0.2升/小时,在20°C的蒸发速度是0.4升/小时,则该液体在30℃的蒸发速度为()A.0.5升/小时B.0.6升/小时C.0.7升/小时D.0.8升/小时【考点】根据实际问题选择函数类型.【专题】计算题;函数思想;综合法;函数的性质及应用;数学运算.【分析】由题意可得,求出a,b,再将x=30代入即可得解.【解答】解:由题意得,两式相除得e10a=2,所以e b=0.1,当x=30时,e30a+b=(e10a)3⋅e b=0.8,所以该液体在30°C的蒸发速度为0.8升/小时.故选:D.【点评】本题主要考查函数在实际问题中的应用,考查运算求解能力,属于基础题.二.多选题(共4小题)(多选)9.(2022秋•十堰期末)某城市有一个面积为1km2的矩形广场,该广场为黄金矩形(它的宽与长的比为),在中央设计一个矩形草坪,四周是等宽的步行道,能否设计恰当的步行道宽度使矩形草坪为黄金矩形?下列选项不正确的是()A.步行道的宽度为m B.步行道的宽度为mC.步行道的宽度为5m D.草坪不可能为黄金矩形【考点】根据实际问题选择函数类型;基本不等式及其应用.【专题】计算题;转化思想;综合法;不等式的解法及应用;数学运算.【分析】设广场的宽为m,则长为am,步行道的宽度为zm,根据黄金矩形的比例关系列出方程,求出z=0,从而得到D正确,ABC错误.【解答】解:设该广场的宽为m,则长为am,所以,设步行道的宽度为zm,使得草坪为黄金矩形,由于,则,解得:z=0,故草坪不可能为黄金矩形,D正确,ABC错误.故选:ABC.【点评】本题主要考查基本不等式的应用,考查运算求解能力,属于中档题.(多选)10.(2022秋•庆阳期末)现代研究结果显示,饮茶温度最好不要超过60℃.一杯茶泡好后置于室内,1分钟、2分钟后测得这杯茶的温度分别为80℃,65℃,给出两个茶温T(单位:℃)关于茶泡好后置于室内时间t(单位:分钟,t∈N)的函数模型:①;②.根据所给的数据,下列结论中正确的是()(参考数据:lg2≈0.30,lg3≈0.48)A.选择函数模型①B.选择函数模型②C.该杯茶泡好后到饮用至少需要等待2分钟D.该杯茶泡好后到饮用至少需要等待2.5分钟【考点】根据实际问题选择函数类型.【专题】计算题;函数思想;综合法;函数的性质及应用;数学建模.【分析】将x=2分别代入与,从而可判断AB;解不等式可得判断CD.【解答】解:将x=2代入,得T=65;将x=2代入,得.故选择函数模型①.由,可得,故该杯茶泡好后到饮用至少需要等待2.5分.故选:AD.【点评】本题主要考查根据实际问题选择函数类型,考查函数思想与运算求解能力,属于中档题.(多选)11.(2022秋•德州期末)牛顿曾提出了物体在常温环境下温度变化的冷却模型:若物体初始温度是θ0(单位:℃),环境温度是θ1(单位:℃),其中θ0>θ1、则经过t分钟后物体的温度θ将满足θ=f(t)=θ1+(θ0﹣θ1)•e﹣kt(k∈R且k>0).现有一杯100℃的热红茶置于10℃的房间里,根据这一模型研究红茶冷却情况,下列结论正确的是()(参考数值ln2≈0.7,ln3≈1.1)A.若f(3)=40℃,则f(6)=20℃B.若,则红茶下降到55℃所需时间大约为6分钟C.5分钟后物体的温度是40℃,k约为0.22D.红茶温度从80℃下降到60°C所需的时间比从60℃下降到40℃所需的时间多【考点】根据实际问题选择函数类型.【专题】计算题;函数思想;综合法;函数的性质及应用;数学运算.【分析】由题知θ=f(t)=10+90e﹣kt,根据指对数运算和指数函数的性质依次讨论各选项求解.【解答】解:由题知θ=f(t)=10+90e﹣kt,A选项:若f(3)=40°C,即40=10+90e﹣3k,所以,则,A正确;B选项:若,则,则,两边同时取对数得,所以t=10ln2≈7,所以红茶下降到55°C所需时间大约为7分钟,B错误;C选项:5分钟后物体的温度是40°C,即10+90⋅e﹣5k=40,则,得,所以,故C正确;D选项:f(t)为指数型函数,如图,可得红茶温度从80°C下降到60°C所需的时间(t2﹣t1)比从60°C下降到40°C所需的时间(t3﹣t2)少,故D错误.故选:AC.【点评】本题主要考查函数在实际问题中的应用,考查运算求解能力,属于中档题.(多选)12.(2022秋•庐江县期末)已知函数f(x)=x﹣1,g(x)=.记max(a,b)=,则下列关于函数F(x)=max{f(x),g(x)}(x≠0)的说法正确的是()A.当x∈(0,2)时,F(x)=x﹣1B.函数F(x)的最小值为﹣2C.函数F(x)在(﹣1,0)上单调递增D.若关于x的方程F(x)=m恰有两个不相等的实数根,则﹣2<m<﹣1或m>1【考点】分段函数的应用;函数的最值及其几何意义.【专题】函数思想;数形结合法;函数的性质及应用;逻辑推理;直观想象;数学运算.【分析】得到函数F(x)=,作出其图象逐项判断.【解答】解:由题意得:F(x)=,其图象如图所示:由图象知:当x∈(0,2)时,F(x)=,故A错误;函数F(x)的最小值为﹣2,故B正确;函数F(x)在(﹣1,0)上单调递增,故C正确;方程F(x)=m恰有两个不相等的实数根,则﹣2<m<﹣1或m>1,故D正确;故选:BCD.【点评】本题考查了分段函数的应用,作出函数图象是解答本题的关键,属于中档题.三.填空题(共5小题)13.(2022秋•遂宁期末)某商场以每件30元的价格购进一种商品,根据销售经验,这种商品每天的销量m(件)与售价x(元)满足一次函数m=100﹣2x,若要每天获得最大的销售利润,则每件商品的售价应定为40元.【考点】根据实际问题选择函数类型.【专题】转化思想;转化法;函数的性质及应用;数学运算.【分析】根据题意求出某商场每天获得销售利润y关于售价x的函数关系式,再根据二次函数知识可求出结果.【解答】解:设某商场每天获得销售利润为y(元),则y=(x﹣30)m=(x﹣30)(100﹣2x)=﹣2(x﹣40)2+200,因为x>30,所以当x=40(元)时,y取得最大值为200(元).所以若要每天获得最大的销售利润,则每件商品的售价应定为40元.故答案为:40【点评】本题主要考查函数的实际应用,考查转化能力,属于中档题.14.(2022秋•遂宁期末)已知函数若f(x)恰有2个零点,则实数a的取值范围是(1,2]∪(3,+∞).【考点】函数的零点与方程根的关系.【专题】计算题;方程思想;综合法;函数的性质及应用;数学运算.【分析】先求出和x2﹣3x+2=0的根,再根据f(x)恰有2个零点,以及f(x)的解析式可得a的范围.【解答】解:由,得2x=8,得x=3;由x2﹣3x+2=0,得(x﹣1)(x﹣2)=0,得x=1或x=2,因为f(x)恰有2个零点,所以若x=1和x=2是函数f(x)的零点,则x=3不是函数f(x)的零点,则a>3;若x=1和x=3是函数f(x)的零点,则x=2不是函数f(x)的零点,则1<a≤2,若x=2和x=3是函数f(x)的零点,x=1不是函数f(x)的零点,则不存在这样的a.综上所述:a>3或1<a≤2,即实数a的取值范围是(1,2]∪(3,+∞).故答案为:(1,2]∪(3,+∞).【点评】本题主要考查函数的零点与方程根的关系,考查运算求解能力,属于中档题.15.(2023春•城区校级月考)已知函数f(x)=,若关于x的方程f(x)=a有3个不同实根,则实数a取值范围为(0,).【考点】函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;数学运算.【分析】利用导数研究分段函数f(x)的性质,作出函数图形,数形结合即可求出结果.【解答】解:因为x≥0时,f(x)=,则f′(x)=,令f′(x)=0,则x=1,所以x∈(0,1)时,f′(x)>0,则f(x)单调递增;当x∈[1,+∞)时,f′(x)<0,则f(x)单调递减;且f(0)=0,f(1)=,x→+∞时,f(x)→0;当x<0时,f(x)=3x﹣x3,则f′(x)=3﹣3x2,令f′(x)=0,则x=﹣1,所以x∈(﹣1,0)时,f′(x)>0,则f(x)单调递增;当x∈(﹣∞,﹣1)时,f′(x)<0,则f(x)单调递减;且f(0)=0,f(﹣1)=﹣4,x→﹣∞时,f(x)→+∞;作出f(x)在R上的图象,如图:由图可知要使f(x)=a有3个不同的实根,则0<a<,故答案为:(0,).【点评】本题考查了函数零点及数形结合思想的应用,作出函数的图象是解答本题的关键也是难点,属于中档题.16.(2022秋•沧州期末)若正实数x0是关于x的方程e x+x=ax+lnax的根,则=0.【考点】函数的零点与方程根的关系.【专题】计算题;转化思想;综合法;函数的性质及应用;数学运算.【分析】设f(x)=e x+x,同构变形得到e x+x=e lnax+lnax,即f(x)=f(lnax),从而得到x0=lnax0,即,从而结果.【解答】解:令f(x)=e x+x,则f(x)在(0,+∞)上单调递增,e x+x=ax+lnax,即e x+x=e lnax+lnax,故f(x)=f(lnax),∵正实数x0是方程e x+x=ax+lnax的根,∴f(x0)=f(lnax0),则x0=lnax0,得,即.故答案为:0.【点评】本题主要考查函数的零点与方程根的关系,考查运算求解能力,属于基础题.17.(2022秋•武陵区校级期末)已知函数,若f(x)﹣m=0有两个实根x1,x2(x1<x2),则的取值范围为.【考点】函数的零点与方程根的关系.【专题】计算题;数形结合;数形结合法;函数的性质及应用;数学运算.【分析】原问题等价于函数y=f(x)与直线y=m的图象有两个不同的交点,即求的值域即可.【解答】解:作出函数y=f(x)与y=m的图象,如图所示:原问题等价于函数y=f(x)与直线y=m的图象有两个不同的交点,此时f(x1)=m,,m∈(1,3),∴,由对勾函数的性质知,在上单调递减,在上单调递增,所以当m∈(1,3),,所以,则.故答案为:.【点评】本题主要考查函数的零点与方程根的关系,考查数形结合思想与运算求解能力,属于中档题.四.解答题(共5小题)18.(2022秋•沧州期末)已知函数,其中a∈R.(1)若f(1)<3,求实数a的取值范围;(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],试讨论函数g(x)的零点个数.【考点】函数的零点与方程根的关系.【专题】计算题;分类讨论;综合法;函数的性质及应用;数学运算.【分析】(1)求出f(1),根据对数函数的单调性,列出不等式,求解即可得到答案;(2)原题可转化为求方程g(x)=0根的个数,结合g(x)的定义域,求方程(a﹣4)x2+(a﹣5)x﹣1=0根的个数.对a的取值范围分类讨论,得出(a﹣4)x2+(a﹣5)x ﹣1=0根的个数,结合函数g(x)的定义域即可得出答案.【解答】解:(1)因为f(1)=log2(1+a)<3=log28,所以0<1+a<8,即﹣1<a<7,所以a的取值范围为(﹣1,7).(2)由已知可得,g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5]=.求函数g(x)零点的个数,即求方程g(x)=0根的个数,由g(x)=0,可得,即,整理可得,(a﹣4)x2+(a﹣5)x﹣1=0.①当a=4时,可化为x+1=0,解得x=﹣1,方程只有一个根,故此时函数g(x)有一个零点;②当a=3时,方程可化为x2+2x+1=0,解得x=﹣1,方程只有一个根,故此时函数g(x)有一个零点;③当a≠4且a≠3时,解方程(a﹣4)x2+(a﹣5)x﹣1=0得,x=﹣1或.令,v(x)=(a﹣4)x+2a﹣5.则u(﹣1)=v(﹣1)=a﹣1,.(ⅰ)a>2且a≠4且a≠3,则a﹣1>0且2a﹣4>0,此时有u(﹣1)=v(﹣1)>0,,故此时函数g(x)有两个零点;(ⅱ)1<a≤2,则a﹣1>0,2a﹣4<0,则u(﹣1)=v(﹣1)>0,,即不在函数g(x)的定义域内,故此时函数g(x)有一个零点;(ⅲ)当a≤1,则a﹣1≤0,2a﹣4<0,则u(﹣1)=v(﹣1)≤0,,即此时﹣1和均不在函数g(x)的定义域内,故此时函数g(x)无零点.综上,当a∈(﹣∞,1]时,g(x)无零点;当a∈(1,2]∪{3,4}时,g(x)有一个零点;当a∈(2,3)∪(3,4)∪(4,+∞)时,g(x)恰有2个零点.【点评】本题主要考查函数的零点与方程根的关系,考查分类讨论思想与运算求解能力,属于中档题.19.(2022秋•衢州期末)已知函数.(1)若,判断f(x)的零点个数,并说明理由;(2)记,求证:对任意x∈[0,1],均有﹣M≤f(x)≤M.【考点】函数的零点与方程根的关系;函数零点的判定定理.【专题】转化思想;综合法;函数的性质及应用;逻辑推理;数学运算.【分析】(1)结合对勾函数性质,分x<﹣1和x>﹣1两种情况讨论,即得解;(2)由题得,由于f(x)在递减,在递增,所以再分,和三种情况讨论得证.【解答】解:(1)因为,,结合对勾函数性质,①1+x<0,即x<﹣1时,,此时f(x)=0无解;②1+x>0,即x>﹣1时,f(x)在上单调递减,在上单调递增,故,此时,f(x)=0有两解:综上可知,f(x)有两个零点.(2)证明:事实上,且,因为,结合a>0知f(x)在递减,在递增,①若,即a≥1时,f(x)在[0,1]递增,故f(x)≤f(1)=M成立,另一方面f(x)≥f(0),结合f(0)+f(1)>0知,f(x)≥f(0)>﹣f(1)=﹣M,故﹣M≤f(x)≤M成立.②若,即时,f(x)在[0,1]递减,故f(x)≤f(0)=M成立,另一方面f(x)≥f(1),结合f(0)+f(1)>0知,f(x)≥f(1)>﹣f(0)=﹣M,故﹣M≤f(x)≤M成立.③若,即时,f(x)在递减,在递增,故f(x)≤max{f(0),f(1)}=M成立,下面证明f(x)≥﹣M,只需证,由,(ⅰ)若f(0)≥f(1),即时,,则,注意到,由成立及成立,可知成立,即此时f(x)≥﹣M成立.(ⅱ)若f(0)<f(1),即时,,则,注意到,由成立及成立,可知,即此时f(x)≥﹣M成立.结合(ⅰ)(ⅱ)可知﹣M≤f(x)≤M成立.综上,对任意x∈[0,1],均有﹣M≤f(x)≤M.【点评】本题主要考查函数的零点与方程根的关系,考查分类讨论思想与运算求解能力,属于难题.20.(2022秋•济宁期末)流行性感冒简称流感,是流感病毒引起的急性呼吸道感染,也是一种传染性强、传播速度快的疾病.了解引起流感的某些细菌、病毒的生存条件、繁殖习性等对于预防流感的传播有极其重要的意义,某科研团队在培养基中放入一定是某种细菌进行研究.经过2分钟菌落的覆盖面积为48mm2,经过3分钟覆盖面积为64mm2,后期其蔓延速度越来越快;菌落的覆盖面积y(单位:mm2)与经过时间x(单位:min)的关系现有三个函数模型:①y=ka x(k>0,a>1),②y=log b x(b>1),③(p>0)可供选择.(参考数据:lg2≈0.301,lg3≈0.477)(1)选出你认为符合实际的函数模型,说明理由,并求出该模型的解析式;(2)在理想状态下,至少经过多少分钟培养基中菌落的覆盖面积能超过300mm2?(结果保留到整数)【考点】根据实际问题选择函数类型.【专题】计算题;函数思想;综合法;函数的性质及应用;数学建模;数学运算.【分析】(1)根据题意,分析三个函数模型的增长速度快慢,选择y=ka x,并求出解析式;(2)根据题意,,求出x的取值范围,进而得出结果.【解答】解:(1)因为y=ka x(k>0,a>1)的增长速度越来越快,y=log b x(b>1)和(p>0)的增长速度越来越慢,所以应选函数模型y=ka x(k>0,a>1).由题意得,解得,所以该函数模型为(x≥0);(2)由题意得,即,所以,又,所以至少经过9min培养基中菌落的覆盖面积能超过300mm2.【点评】本题主要考查函数在实际问题中的应用,考查运算求解能力,属于中档题.21.(2022秋•商丘期末)如图,四边形ABCD是一块长方形绿地,AB=3km,AD=2km,EF是一条直路,交BC于点E,交AB于点F,且BE=AF=1km.现在该绿地上建一个标志性建筑物,使建筑物的中心到D,E,F三个点的距离相等.以点B为坐标原点,直线BC,BA分别为x,y轴建立如图所示的直角坐标系.(1)求出建筑物的中心的坐标;(2)由建筑物的中心到直路EF要开通一条路,已知路的造价为100万元/km,求开通的这条路的最低造价.附:.【考点】根据实际问题选择函数类型.【专题】计算题;转化思想;综合法;直线与圆;数学建模;数学运算.【分析】(1)设出过点D,E,F的圆的一般方程,代入三个点的坐标,待定系数法求出圆的一般方程,化为标准方程,得到圆心,即建筑物的中心的坐标;(2)求出,由垂径定理得到点H到EF的距离,从而求出开通的这条路的最低造价.【解答】解:(1)由题可知E(1,0),F(0,2),D(2,3),由题可知经过点D,E,F的圆的圆心H即为所建建筑物的中心,设圆H的方程为x2+y2+Dx+Ey+F=0,则,解得,∴圆H的方程为x2+y2﹣3x﹣3y+2=0,即,∴建筑物的中心的坐标为.(2)因为为建筑物的中心坐标,设线段EF的中点为Q,由垂径定理得HQ的长度为点H到EF的最小距离,∵,圆H的半径为,∴点H到EF的距离为,∴开通的这条路的最低造价为(万元).【点评】本题主要考查根据实际问题选择函数类型,考查圆的方程的求法,考查运算求解能力,属于中档题.22.(2022秋•安庆期末)2022年11月20日,备受全球球迷关注的第22届世界杯足球赛如。
高考理数考前20天终极冲刺攻略: 函数的概念、性质、图象 Word版含答案
核心考点解读——函数的概念、性质、图象(基本初等函数).考查奇偶性,可以从图象和定义入手,尤其要注意抽象函数奇偶性的判1.(2017高考新课标Ⅰ,理11)设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z2.(2017高考新课标Ⅰ,理5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]3.(2016高考新课标Ⅰ,理7)函数y =2x 2–e |x |在[–2,2]的图象大致为A. B.C. D .4.(2017高考新课标Ⅲ,理15)设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是 .5.(2016高考,江苏5)函数y的定义域是 .6.(2016高考北京,理14)设函数33,()2,⎧-≤=⎨->⎩x x x af x x x a.①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________.7.(2016高考,江苏11)设()f x 是定义在R 上且周期为2的函数,在区间[1,1-)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则(5)f a 的值是 .8.(2015高考新课标Ⅰ,理13)若函数f (x)=ln(x x 为偶函数,则a =_______________.1.函数的定义域为A .B .C .D .2.已知是定义在R 上的奇函数,且满足,当时,,则等于 A .B .C .1-D .13.已知为定义在R 上的偶函数,且,当时,,记,则的大小关系为A .B .C .D .4.已知函数()()22log f x a x a =++(0a >)的最小值为8,则A .()5,6a ∈B .()7,8a ∈C .()8,9a ∈D .()9,10a ∈5. A . B .C .D .6.,若关于x 的方程有两个不同的实数解,则实数k 的取值范围为__________.1.已知()f x 满足对x ∀∈R ,()()0f x f x -+=,且0x ≥时,()e xf x m =+(m 为常数),则()ln5f -的值为A .4B .4-C .6D .6-2.函数223exx xy -=的图象大致是真题回顾:1D 【解析】令235(1)xyzk k ===>,则2log x k =,3log y k =,5log z k = ∴22lg lg3lg913lg 23lg lg8x k y k =⋅=>,则23x y >,22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D . 2D 3D4.1(,)4-+∞ 【解析】由题意得:当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+>恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即104x -<≤.综上,x 的取值范围是1(,)4-+∞. 5.[]3,1- 6.2 (,1)-∞-【解析】如图,作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2),(0,0),(1,2)A O B --,由2()33g x x '=-,知1x =是函数()g x 的极小值点,①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,由图象可知()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值(1)2f -=;只有当1a <-时,332a a a -<-,()f x 无最大值,所以所求a 的取值范围是(,1)-∞-.7.25-【解析】51911123((()()22222255f f f f a a -=-==⇒-+=-⇒=,因此32(5)(3)(1)(1)1.55f a f f f ===-=-+=-8.1【解析】由题知ln(y x =是奇函数,所以ln(ln(x x +- =22ln()ln 0a x x a +-==,解得a =1.1.【答案】D2.【答案】B 【解析】由函数满足知的周期为4,又是定义在R 上的奇函数,故,.故选B.3.【答案】D 【解析】当时,,则在上是增函数.∵,∴的周期为2..故选D .4.【答案】A 【解析】因为()f x 在(),0-∞上单调递减,在()0,+∞上单调递增,所以()()2m i n 0l o g 8f x f a a ==+=,令()2log 8g a a a =+-,则()g a 在()0,+∞上单调递增, 又()255log 580g =+-<,()266log 680g =+->,所以存在零点()5,6a ∈.故选A. 5.【答案】D 【解析】 ,可知函数()f x 为奇函数,则图象关于原点对称,排除选项A ,C ,所以函数()f x 的图象对应选项D ,故选D .6.,当0x >时,()[)0,f x ∈+∞.则关于x 的方程有两个不同的实数解,等价于关于t 的方程在()0,+∞上有两个不同的实数解,即有两个不等的正实根,则()()2324(12)0320120k k k k --->-->->⎧⎪⎪⎨⎪⎪⎩,解得1.【答案】B 【解析】由题意知()f x 满足对x ∀∈R ,()()0f x f x -+=,即函数()f x 为奇函数,由奇函数的性质可得()00e 0,1f m m =+=∴=-,则当0x ≥时,()e 1x f x =-,ln 50>,∴()ln5f -=()()ln 5ln 5e 14f -=--=-,选B .2.【答案】A 【解析】因为223e xx x y -=有两个零点1230,2x x ==,所以排除B ;当0.1x =时,0y <,排除C ;当x →+∞时,0y →,排除D,故选A .。
2021高考数学考前20天冲刺 导数及应用(1)
2021高考数学考前20天冲刺导数及应用1.假设函数f(x)=x3-6bx +3b 在(0,1)内有极小值,那么实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)解析:选D.∵f(x)=x3-6bx +3b ,∴f ′(x)=3x2-6b ,令f′(x)=0,即3x2-6b =0,∴x =±2b(b >0),∵f(x)在(0,1)内有极小值,∴0<2b <1,∴0<b <12,∴选D. 2.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y =-13x3+81x -234,那么使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件解析:选C.∵y =-13x3+81x -234(x >0), ∴y ′=-x2+81,令y′=0,即-x2+81=0,解得:x =9或x =-9(舍),当x ∈(0,9)时,y ′>0,函数y 在(0,9)上为增函数,当x ∈(9,+∞)时,y ′<0,函数y 在(9,+∞)上为减函数,∴函数在x =9时取得极大值,又∵在(0,+∞) 上函数有唯一的极大值,∴x=9时函数取得最大值,即便该生产厂家获取最大年利润的年产量为9万件.3.假设函数f(x)=lg(x+1+x2),那么函数g(x)=xf′(x)为( ) A.R上的奇函数B.R上的偶函数C.R上的非奇非偶函数D.R上的既奇又偶函数解析:选(-x)=lg(-x+1+x2)=lg11+x2+x=-lg(x+1+x2),∴f(-x)=-f(x),∴f(x)为奇函数,那么f′(x)为偶函数,∴g(x)=x·f′(x)为奇函数.。
高考数学冲刺最后20天必备答题技巧
高考数学冲刺最后20天必备答题技巧作者--玖久教育“数学技巧老师”、湖北黄冈中学数学老师:唐海兵2021高考数学会出什么题?在考前,我们该做什么预备?今天,我们就以往年的压轴题来为同学们陈述一下,考前最后20天,我们该如何提升我们的数学技能?说这么多事实上是期望高考时处理意外的心态和方法能对大伙儿有些借鉴作用,如何说大伙儿都明白高考数学气氛依旧挺紧张的,任何一个意外都可能产生不可预知的后果,比如遇到可不能做的题、或者突然发觉自己做错了、陷入了纷杂的运算等等的,这时候该如何办?假如是我的话,一样假如前面的题两分钟没思路,果断跃过。
突然发觉做错的或者陷入复杂运算的,同样跃过,等到做到压轴题最后一问,停下来去做前面跃过去的题(因为压轴题的难度是有目共睹的,即使最后一问可不能做,只要前面全作对,好歹也能得个144左右的分),做出来之后再回去用心攻压轴题,能得多少分是多少分。
关于数列选择题,我觉得大致有以下几类吧:1.给出是“等差”或者“等比”的条件,另外,给出几项的值,让你求一些量。
这种是最差不多的考察方式,送分的。
2.给出递归关系式能够是通项的关系也可能是前N项和的关系,让你求通项。
这类一样也不难,要紧依旧用那些老生常谈的方法,或者也能够尝试下带一些特值到里面去看能不能选择出选项3.数列结合其他知识综合考察,比如加入一些“周期性”的元素,或者和“对数函数”、“指数函数”相结合,也即专门可能显现f(2021)如此的形式,这种确实是高要求的考察,一样有难度。
这次押的这道,应该归于第3类,只是难度不大,要理清关系就好。
押中机率:30%另外,给大伙儿说一个“量”(和那个题无关),尽管只是一个字符,但明白的人一看就明白,不明白的去问老师,他应该也一下就明白。
S2n-1即等差数列的前(2n-1)项和。
那个项专门专门哦,能够说是“题眼”。
这道题的难度专门适合高考,一样高考也确实是考那个难度的,因此大伙儿不要担忧,一样除了压轴题的最后一问,别的难度可不能多大。
高考理数考前20天终极冲刺攻略:数列含答案
核心考点解读——数列考纲解读里的I,II的含义如下:I:对所列知识要知道其内容及含义,并能在有关问题中识别和直接使用,即了解和认识.II:对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用,即理解和应用.(以下同)数列的概念及其通项公式(I)等差数列的通项及其前n项和(II)等比数列的通项及其前n项和(II)等差数列、等比数列的性质(II)数列求和及其求和方法(II)数列的应用(II)1.从考查的题型来看,涉及本知识点的题目主要以选择题、填空题的形式考查,利用等差数列的概念判断性质真假,利用等差数列的通项公式、前n项和公式进行相关的求值计算;利用等比数列的概念判断性质真假,利用等比数列的通项公式、前n项和公式进行相关的求值计算等.2.从考查内容来看,主要考查数列的递推关系、等差数列、等比数列的相关运算,重点在于掌握等差数列和等比数列的通项公式和前n项和公式,能够利用“错误!未找到引用源。
”和“错误!未找到引用源。
”这五个量进行相互转化,达到“知三求二”的目的.3.从考查热点来看,数列计算是高考命题的热点,要注意通项公式与求和公式的正确使用及利用数列的性质简化运算.1.数列的概念及表示(1)数列可以看作特殊的函数,数列的每一项叫做数列的项,排在第一位的数是数列的第一项,也叫首项.数列的一般形式可以写为错误!未找到引用源。
.错误!未找到引用源。
:数列的第错误!未找到引用源。
项,也叫通项公式.数列的表示方法:①通项公式:错误!未找到引用源。
;②递推公式:如错误!未找到引用源。
时,错误!未找到引用源。
型.(2)求数列通项公式的方法①观察法:已知数列的前几项,可观察数列这几项的各部分与错误!未找到引用源。
的关系,最后用不完全归纳得到通项公式.②前n项和错误!未找到引用源。
与通项错误!未找到引用源。
之间的关系:错误!未找裂项相消法的基本思想是把数列的通项错误!未找到引用源。
(Word可编辑)(20套)最新高考数学(理)考前20天冲刺精题汇总
感谢您使用本资源,本资源是由订阅号”初中英语资源库“制作并分享给广大用户,本资源制作于2020年底,是集实用性、可编辑性为一体。
本资源为成套文件,包含本年级本课的相关资源。
有教案、教学设计、学案、录音、微课等教师最需要的资源。
我们投入大量的人力、物力,聘请精英团队,从衡水中学、毛毯厂中学、昌乐中学等名校集合了一大批优秀的师资,精研中、高考,创新教学过程,将同学们喜闻乐见的内容整体教给学生。
本资源适用于教师下载后作为教学的辅助工具使用、适合于学生家长下载后打印出来作为同步练习使用、也适用于同学们自己将所学知识进行整合,整体把握进度和难度,是一个非常好的资源。
如果需要更多成套资料,请微信搜索订阅号“初中英语资源库”,在页面下方找到“资源库”,就能得到您需要的每一份资源(包括小初高12000份主题班会课课件免费赠送!)超级资源(共20套204页)2019高考数学(理)考前20天冲刺精题汇总核心考点解读——不等式二元一次不等式(组)表示的平面区域(II )简单的线性规划问题(II )利用基本不等式求最大(小)值问题(II ) 利用基本不等式求恒成立问题(II )1.从考查题型来看,涉及本知识点的题目主要以选择题、填空题的形式出现, 一般考查二元一次不等式(组)表示的平面区域问题以及简单的线性规划问题,利用基本不等式求解最小(大)值问题,以及基本不等式的实际应用等.2.从考查内容来看,线性规划重点考查不等式(组)表示的可行域的确定,目标函数的最大(小)值的计算等,重点体现数形结合的特点.基本不等式则根据其模型计算最值问题,注意取到最值时的条件是否成立.3.从考查热点来看,求最值是高考命题的热点,通过线性规划求最值体现了数形结合思想以及特殊位置求最值的思想;通过基本不等式求最值,则在于模型化求最值方法的应用.1.二元一次不等式(组)表示的平面区域(1)能够通过取特殊点,由不等式的符号来确定不等式表示的平面区域.通常情况下取(0,0),若不等式相应的直线过(0,0),则可在坐标轴上取(0,1)或(1,0).(2)能够确定不等式组表示的平面区域,并计算相应平面区域的面积.计算时要注意利用平面区域所呈现的多边形形状,利用面积公式求解. 2.简单的线性规划(1)解不含参数的线性规划问题的一般步骤:根据给定的约束条件画出相应的可行域,考察目标函数的特征,并根据其几何意义确定使其取得最值时的点的坐标,代入目标函数求最值.通常情况下,给定的约束条件多为二元一次不等式组,常见的目标函数有:z ax by c =++型的线性目标函数;ay bz cx d-=-型的斜率型目标函数;22()()z x a y b =-+-型的两点间距离型目标函数等.(2)使目标函数取得最值的点一般是可行域边界的交点,求出交点坐标,并代入目标函数,可以快捷、准确地计算最值,但要注意可行域的边界是否是实线. (3)解含参数的线性规划问题通常有以下两种类型:i)条件不等式组中含有参数,此时不能明确可行域的形状,因此增加阶梯式画图分析的难度.求解这类问题时,要有全局观,要能够结合目标函数取得最值的情况进行逆向分析,利用目标函数取得最值时所得的直线与约束条件所对应的直线形成交点,求解参数.ii)目标函数中设置参数,旨在增加探索问题的动态性和开放性.要能够从目标函数的结论入手,多图形的动态分析,对变化过程中的相关数据准确定位,以此解决问题.3.利用基本不等式求最值问题(1)利用基本不等式求最值的主要方法:和定积最大,积定和最小.(2)注意基本不等式应用的环境及最值取到的条件:一正二定三相等.(3)常用的不等式模型:①基本不等式链:若0,0a b>>,则2221122a b a baba b++≤≤≤+,当且仅当a b=时等号成立.②若0ab>,则2b aa b+≥,当且仅当a b=时等号成立.(4)利用基本不等式求最值的注意点:i)要能够通过恒等变形及配凑,使其“和”或“积”为定值;ii)要注意在正数范围内应用基本不等式,同时等号成立的条件要验证.4.利用基本不等式解恒成立问题(1)根据条件进行参变分离,然后利用基本不等式得到最值,利用参数与最值的大小关系比较得到范围.(2)根据参数的可能变化及给定的范围,分类讨论,逐步确定参数的取值范围. 1.(2017高考新课标Ⅱ,理15)设x,y满足约束条件2330233030x yx yy+-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y=+的最小值是A.15-B.9-C.1D.92.(2017年高考新课标I,理14)设x,y 满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y=-的最小值为.3.(2016高考新课标I,理16)某高科技企业生产产品A和产品B 需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.4.(2016高考新课标III,理13)若x,y满足约束条件1020220x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩,则z=x+y的最大值为_____________.5.(2015高考新课标I,理15)若,x y满足约束条件1040xx yx y-≥⎧⎪-≤⎨⎪+-≤⎩,则yx的最大值为.6.(2015高考新课标II,理14) 若x,y满足约束条件1020,220,x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y=+的最大值为____________.1.在公比为的正项等比数列中,,则当取得最小值时, A.B.C.D.2.已知均为正实数,且,则的最小值为A.B.C.D.3.已知点O为坐标原点,A(-1,1),若点为平面区域上的一个动点,则的取值范围为A.B.C.D.4.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润7万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获得的最大利润是A.18万元B.万元C.33万元D.35万元5.记不等式组表示的区域为,点的坐标为.有下面四个命题:,;,;,;,.其中的真命题是A.,B.,C.,D.,6.已知实数满足,则目标函数的最大值为.1.若实数,,0a b c>,且()()625a c a b+⋅+=-2a b c++的最小值为A51B51C.252D.522.已知,x y满足不等式组1040xx yx y-≥-≤+-≥⎧⎪⎨⎪⎩,则目标函数3z x y=+的最小值是A .4B .6C .8D .10真题回顾:1.A 【解析】画出不等式组表示的平面区域如下图中阴影部分所示,目标函数即:2y x z =-+,其中z 表示斜率为2k =-的直线系与可行域有交点时直线的纵截距,数形结合可得目标函数在点(6,3)B --处取得最小值,min 2()3)56(1z --=⨯+=-,故选A .2.5-【解析】不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值,所以z 的最小值为3(1)215⨯--⨯=-.3.216000【解析】设生产产品A、产品B分别为x、y件,利润之和为z元,那么由题意得约束条件1.50.5150,0.390,53600,0,0.x yx yx yxy+⎧⎪+⎪⎪+⎨⎪⎪⎪⎩目标函数2100900z x y=+.约束条件等价于3300,103900,53600,0,0.x yx yx yxy+⎧⎪+⎪⎪+⎨⎪⎪⎪⎩①作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.将2100900z x y=+变形,得73900zy x=-+,作直线:73y x=-并平移,当直线73900zy x=-+经过点M时,z取得最大值.解方程组10390053600x yx y+=⎧⎨+=⎩,得M的坐标为(60,100).所以当60x=,100y=时,max210060900100216000z=⨯+⨯=.故生产产品A、产品B的利润之和的最大值为216000元.4.32【解析】作出不等式组表示的平面区域,如图中阴影部分所示.由图知,当直线z x y=+经过点A时,z取得最大值.由22020x yx y+-=⎧⎨-=⎩得112xy=⎧⎪⎨=⎪⎩,即1(1,)2A,则max 13122z =+=.5.3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.6.32【解析】画出可行域,如图所示,将目标函数变形为y x z =-+,当z 取到最大时,直线y x z =-+的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z x y =+的最大值为32.名校预测1.【答案】A 【解析】因为为正项等比数列,,所以.由基本不等式得(当且仅当时等号成立),由,解得142q =,所以.选A .2.【答案】C 【解析】因为均为正实数,所以=(当且仅当时等号成立),即的最小值为.选C.3.【答案】C【解析】画出可行域,如图中阴影部分所示.易知,.由题意得,,所以=.当过点时,取得最小值,为;当过点时,取得最大值,为.故,即的取值范围为.选C.4.【答案】C【解析】设甲、乙两种产品分别生产x件、y件,则,利润,作出可行域,如图中阴影部分所示,根据目标函数z与直线在y轴上的截距之间的关系可知,当直线过点B(3,4)时,目标函数取得最大值,为33万元,故选C.5.【答案】A【解析】根据不等式组画出可行域如图中阴影部分所示:由图可得,,,故正确,则错误;令,即,由图可得,当直线经过点时,直线在轴上的截距最大,此时最小,则,故正确,错误.6.【答案】5【解析】画出约束条件表示的可行域,如图中阴影部分所示,联立.化目标函数z =2x ﹣y 为y =2x ﹣z ,由图可知,当直线y =2x ﹣z过点A 时,直线在y 轴上的截距最小,此时z 取得最大值,为5.专家押题1.【答案】D 【解析】由基本不等式得22()()2()()26252(51)a b c a b a c a b a c ++=+++≥++=-=-()251=-,当且仅当51a b a c +=+=-时,等号成立,故选择D .2.【答案】B 【解析】画出不等式组表示的可行域,如图中阴影部分所示,平移直线3y x =-,可知当直线经过点()1,3A 时,目标函数3z x y =+取得最小值,为6.故选B .核心考点解读——导数及其简单应用(选择题、填空题)导数与函数的单调性(I ) 导数与函数的极值(II ) 导数与函数的最值(II )1.涉及本单元的题目一般以选择题、填空题的形式考查导数的几何意义,定积分,定积分的几何意义,利用图象判断函数的极值点,利用导数研究函数的单调性、极值、最值等.2.从考查难度来看,本单元的考点综合性比较高,试题难度相对较大,高考中通常利用函数的求导法则和导数的运算性质,考查函数的的基本性质等.3.从考查热点来看,利用导数研究函数的单调性、极值以及最值是高考命题的热点,要能够利用导数值的正负对函数图象的影响去分析问题、解决问题.定积分的考查重点在于计算、求曲边多边形的面积等.1.利用导数研究函数的单调性(1)首先确定所研究函数的定义域,然后对函数进行求导,最后在定义域内根据()0f x '>,则函数单调递增,()0f x '<,则函数单调递减的原则确定函数的单调性.(2)利用导数确定函数的单调区间后,可以确定函数的图象的变化趋势. 2.利用导数研究函数的极值、最值(1)对函数在定义域内进行求导,令()0f x '=,解得满足条件的(1,2,)i x i =,判断i x x =处左、右导函数的正负情况,若“左正右负”,则该点处存在极值且为极大值;若“左负右正”,则该点处存在极值且为极小值;若左、右符号相同,则该点处不存在极值.(2)利用导数判断函数()y f x =的最值通常是在给定闭区间[,]a b 内进行考查,利用导数先求出给定区间内存在的所有极值点(1,2,)i x i =,并计算端 点处的函数值,最后进行比较,取最大的为最大值;最小的为最小值,即{}max (),(),()i f a f b f x ,{}min (),(),()i f a f b f x .(3)注意函数单调性与极值、最值之间的联系.导数值为零的点的左、右两端的单调性对其极值情况的影响,单调性对函数最值的影响,都要注意结合函数的图象进行分析研究.(4)注意极值与最值之间的联系与区别,极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定. 3.导数应用问题分析(1)利用导数,根据函数的单调性研究参数的取值情况时,要注意结合函数的图象,数形结合,根据分类讨论思想或者分离参变量的思想进行判断求解. (2)函数的极值与最值问题通常结合在一起进行考查,要注意所得极值点与给定区间的位置关系,能够结合函数的单调性,利用函数的图象,从直观的角度进行分析判断. 4.定积分及其应用(1)简单定积分的计算,能够把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差,利用定积分的性质把所求的定积分化为若干个定积分的和或差,然后分别用求导公式求出()F x ,使得()()F x f x '=,利用牛顿-莱布尼兹公式求出各个定积分的值,最后求得结果.(2)微积分基本定理的应用:能够根据给出的图象情况,建立简单的积分计算式子,求值计算.理解微积分基本定理的几何意义:曲线与x 轴围成的曲边多边形的面积,可以通过对该曲线表示的函数解析式在给定区间内求其积分而得到.其一般步骤是:画出图形,确定图形的范围,通过解方程组求出交点的横坐标,定出积分的上、下限;确定被积函数,特别是注意分清被积函数的上、下位置;写出平面图形面积的定积分的表达式;运用微积分基本定理计算定积分,求出平面图形的面积.1.(2017高考新课标Ⅱ,理11)若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为 A .1-B .32e --C .35e -D .12.(2017高考新课标Ⅲ,理11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .13. (2015高考新课标Ⅰ,理12)设函数()f x =e (21)xx ax a --+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是A .[32e -,1) B .[ 32e -,34) C .[ 32e ,34)D .[32e,1) 4.(2015高考新课标Ⅱ,理12)设函数()f 'x 是奇函数()()f x x ∈R 的导函数,(1)0f -=,当0x > 时,()()0xf 'x f x -<,则使得()0f x >成立的x 的取值范围是 A .(,1)(0,1)-∞- B .(1,0)(1,)-+∞ C .(,1)(1,0)-∞--D .(0,1)(1,)+∞5.(2016高考新课标II ,理16)若直线y=kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b = .6.(2016高考新课标III ,理15)已知f (x )为偶函数,当0x <时,()ln()3f x x x =-+,则曲线y =f (x )在点(1,−3)处的切线方程是_______________.1.已知22cos d a x x ππ-=⎰,是以为周期的奇函数,且定义域为,则的值为 A . B . C .D .2.若函数在上有最小值,则的取值范围为A .B .C .D .3.已知是定义在区间上的函数,是的导函数,且,,则不等式的解集为 A . B .C .D .4.已知函数,则下面对函数的描述正确的是A .,B .,C .,D .5.已知对任意的21,e e x ⎡⎤∈⎢⎥⎣⎦,不等式恒成立(其中是自然对数的底数),则实数的取值范围是 A .e 0,2⎛⎫⎪⎝⎭B .(0,e)C .D .6.曲线在点处的切线方程为__________.1.设实数0λ>,若对任意的()0,x ∈+∞,不等式ln e 0xxλλ-≥恒成立,则λ的最小值为 A .1eB .12eC .2eD .e 32.已知函数2()ex x f x =,若对任意的12,[1,2]x x ∈-,恒有12(1)|()()|af f x f x ≥-成立,则实数a 的取值范围是 .真题回顾:1.A 【解析】由题可得12121()(2)e(1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)ex f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减,所以()f x 的极小值为11()(111)e11f -=--=-,故选A .2.C 【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11e e x x g x --+=+,则()()21111111e 1eeee ex x x x x x g x ---+----'=-=-=,当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减;当1x >时,()0g x '>,函数()g x 单调递增,当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点,即21a -⨯=-,解得12a =.故选C . 3.D 【解析】设()g x =e (21)xx -,()h x ax a =-,由题意,知存在唯一的整数0x ,使得0()g x 在直线()h x ax a =-的下方.因为()g'x =e (2+1)xx ,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以()g x 在1(,)2-∞- 上单调递减,在1(+)2-∞,上单调递增,作出()()g x h x 与 的大致图象,如图所示,故(0)(0),(1)(1),h g h g >⎧⎨-≤-⎩ 即1,32e a a <⎧⎪⎨-≤-⎪⎩, 所以312ea <≤ ,故选D .4.A 【解析】记函数()()f x g x x =,则2()()()xf 'x f x g'x x-=,因为当0x >时,()()0xf 'x f x -<,故当0x >时,()0g'x <,所以()g x 在(0,)+∞上单调递减;又因为函数()()f x x ∈R 是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞上单调递增,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A . 5.1ln2-【解析】对函数ln 2y x =+求导得1y x '=,对ln(1)y x =+求导得11y x '=+,设直线y kx b =+与曲线ln 2y x =+相切于点111(,)P x y ,与曲线ln(1)y x =+相切于点222(,)P x y ,则1122ln 2,ln(1)y x y x =+=+,由点111(,)P x y 在切线上得()1111ln 2()y x x x x -+=-,由点222(,)P x y 在切线上得2221ln(1)()1y x x x x -+=-+,这两条直线表示同一条直线,所以12221211121ln(1)ln 1xx x x x x ⎧=⎪+⎪⎨+⎪+=+⎪+⎩,解得11111,2,ln 211ln 22x k b x x =∴===+-=-.6.21y x =--【解析】当0x >时,0x -<,则()ln 3f x x x -=-.又因为()f x 为偶函数,所以()()ln 3f x f x x x =-=-,所以1()3f x x'=-,则切线斜率为(1)2f '=-,所以切线方程为32(1)y x +=--,即21y x =--.名校预测1.【答案】A 【解析】2222cos d =sin |2a x x x ππππ--==⎰.可知的周期为,,,,,.故选.2.【答案】A 【解析】∵函数,∴()()()()()22e 2e e 122x xx x x f x x x +-+==++',当时,,即函数在上为减函数;当时,,即函数在上为增函数.∴.∵函数在上有最小值,∴.故选A .3.D 令函数,则()()221()ln22()ln22()ln 2ln 2f x f x x f x f x x x x g x xx ''-⋅⋅-'===()2()ln21ln 22xf x x f x x x x '-⎛⎫> ⎪⎝⎭,,,又,函数在区间上单调递增,又e 2e 2e ln 22x xxf g ⎛⎫ ⎪⎛⎫⎝⎭= ⎪⎛⎫⎝⎭⋅ ⎪⎝⎭e 2xf x ⎛⎫⎪⎝⎭=,不等式“”等价于“e 21x f x⎛⎫ ⎪⎝⎭<”,则,又,又函数在区间上单调递增,,解得,又函数的定义域为,则,解得,故不等式的解集是,故选D .4.【答案】B 【解析】的定义域为,且,令,则在上恒成立,即在上单调递增,又,所以,使,则在上单调递减,在上单调递增,故,又,所以.故选B .5.【答案】A 【解析】由得在21,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,即12ln x ax >在21,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立. 令()2ln xf x x=,则,当1[,e)ex ∈时,,单调递增;当2(e,e ]x ∈时,,单调递减.∴,∴,∴.故实数的取值范围是e 0,2⎛⎫⎪⎝⎭.选A . 6.【答案】【解析】因为,所以在点处的切线斜率为又,所以所求的切线方程为专家押题1.【答案】A 【解析】由题设可得e ln 0x x λλ-≥,令()e ln xF x x λλ=-,则问题转化为求函数()eln xF x x λλ=-的最小值大于等于0.则()21e x F x xλλ=-',令21e 0x xλλ-=,即21e x xλλ=,设最小值点为x ,则0201e x x λλ=,所以000201lne lnln 2ln x x x x λλλλ=⇒=--,即()0min 00201e ln 2ln x F x x x x λλλλλλ=-=++,又因()min 0012ln 22ln F x x x λλλλ=++≥+(当且仅当01x λ=时取等号),故22ln 0ln 1λλ+≥⇒≥-,则1eλ≥.2.【答案】2[e ,)+∞ 【解析】由题意得22(2)()e e x xx x x x f x --'==,所以当10x -<<时,()0f x '<,()f x 单调递减;当02x <<时,()0f x '>,()f x 单调递增.因此当[1,2]x ∈-时,min ()(0)0f x f ==,又因为(1)e f -=,24(2)e ef =<,所以max ()e f x =,因此不等式1(1)|()af f x ≥2()|f x -恒成立,即1|e 0|ea ⨯≥-,即2e a ≥.所以实数a 的取值范围是2[e ,)+∞.核心考点解读——导数与其他知识的综合问题(解答题)利用导数研究不等式问题(II)利用导数研究方程根的问题(II)利用导数研究恒成立、存在性问题(II)利用导数解决实际问题(最优化问题)(II)1.涉及本单元知识的考题,一般在解答题中结合函数的图象进行分类讨论,作为压轴题进行考查.2.从考查难度来看,本单元的考点综合性比较高,试题难度相对较大,高考中通常利用函数的求导法则和导数的运算性质,考查函数的的基本性质等,同时要结合其他知识进行考查,如数列、不等式等.3.从考查热点来看,利用导数研究函数的综合问题是高考命题的热点,也是难点.注意分类讨论思想、数形结合思想的综合应用.1.利用导数研究不等式问题利用导数方法研究不等式问题,主要的技巧是灵活构造函数,通过函数的性质解决不等式问题,通常要利用函数的单调性以及函数的最值.函数的单调性是研究不等式问题的有利武器之一,构造函数后,要重视对函数单调性的应用.同时要注意分类讨论思想的应用.2.利用导数研究方程的根的问题当函数具有极值点时,在这个极值点左、右两侧,函数的单调性是不同的,可以结合函数图象的变化趋势确定方程的根的情况.如果函数在定义域内有唯一的极大(小)值点,那么该极大(小)值点就是最大(小)值点,当最大(小)值点大于(小于)零且左、右两侧均出现小于(大于)0的函数值时,函数就出现两个零点,也就是说方程就有两个不同的实数根;若只出现一侧的函数值符号相反,则说明函数有一个零点,方程只有一个实数根.利用导数研究方程的根,要结合函数的极值点进行考查,同时注意函数单调性的变化趋势.3.利用导数研究恒成立问题、存在性问题,通常采用分类讨论思想或分离参变量的方法,通过函数的单调性研究函数的最值,利用最值去研究恒成立问题、存在性问题,此类问题最后都化归为与函数最值有关的问题. 4.利用导数解决实际问题(最优化问题)(1)生活中常遇到求利润最大,用料最省,效率最高等实际问题,这些问题通常称为最优化问题.(2)利用导数解决生活中的最优化问题的一般步骤:5.导数与其他知识的综合应用最后都要化归为利用导数研究函数的单调性、极值以及最值问题,因此要熟练掌握利用导数研究函数性质的一般方法,并能够进行延伸、拓展.1.(2017高考新课标Ⅰ,理21)已知函数2()e (2)e xx f x a a x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.2.(2017高考新课标III ,理21)已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.3.(2016高考新课标I ,理21)已知函数2()(2)e (1)xf x x a x =-+-有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是()f x 的两个零点,证明:122x x +<. 4.(2016高考新课标II ,理21)(1)讨论函数()2e 2xx f x x -=+的单调性,并证明当x >0时,(2)e 20x x x -++>;(2)证明:当[0,1)a ∈ 时,函数2e =(0)x ax a g x x x-->() 有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.5. (2015高考新课标Ⅱ,理21)设函数2()e mx f x x mx =+-. (1)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(2)若对于任意12,[1,1]x x ∈-,都有12|()()|e 1f x f x -≤-,求m 的取值范围.1.已知函数21()e 2xf x ax x =-+. (1)当1a >-时,试判断函数()f x 的单调性;(2)若1e a <-,求证:函数()f x 在[1,)+∞上的最小值小于12. 2.已知函数,.(1)若曲线与曲线在它们的交点处的公共切线为,求,,的值; (2)当时,若,,求的取值范围.1.已知函数1()ln 2f x x x x =-. (1)求函数()f x 的单调增区间;(2)若12,x x 是方程()f x a =的两个不同的实数解,证明:1212e()20x x x x +->.真题回顾:1.(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).2.(1)()f x 的定义域为()0∞,+. ①若0a ≤,因为11ln 2022f a ⎛⎫<⎪⎝⎭=-+,所以不满足题意; ②若a >0,由()1a x af 'x x x-=-=知,当()0x ,a ∈时,()f 'x <0;当(),+x a ∈∞时,()f 'x >0,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x =a 是()f x 在()0∞,+的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥.故a =1. (2)由(1)知当()1,x ∈+∞时,1ln 0x x -->.令112n x =+得11ln 122nn ⎛⎫+< ⎪⎝⎭.从而 221111111ln 1ln 1ln 1112222222n n n⎛⎫⎛⎫⎛⎫++++++<+++=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故2111111e 222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.而231111112222⎛⎫⎛⎫⎛⎫+++> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3.3.(1)'()(1)e 2(1)(1)(e 2)xxf x x a x x a =-+-=-+. (i )设0a =,则()(2)e xf x x =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞单调递减,在(1,)+∞单调递增.又(1)e f =-,(2)f a =,取b 满足0b <且ln2ab <,则 223()(2)(1)()022a fb b a b a b b >-+-=->,故()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若e2a ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞单调递增.又当1x ≤时()0f x <,所以()f x 不存在两个零点.若e 2a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.(2)不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于222222(2)e(1)x f x x a x --=-+-,而22222()(2)e (1)0x f x x a x =-+-=,所以222222(2)e (2)e x x f x x x --=---.设2()e(2)e xx g x x x -=---,则2'()(1)(e e )x x g x x -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从而22()(2)0g x f x =-<,故122x x +<. 4.(1)()f x 的定义域为(,2)(2,)-∞--+∞.222(1)(2)e (2)e e ()0,(2)(2)x x xx x x x f x x x -+--'==≥++ 且仅当0x =时,()0f x '=,所以()f x 在(,2),(2,)-∞--+∞单调递增,因此当(0,)x ∈+∞时,()(0)1,f x f >=-所以(2)e (2),(2)e 20x x x x x x ->-+-++>(2)33(2)e (2)2()(()),x x a x x g x f x a x x-+++'==+由(I )知,()f x a +单调递增,对任意[0,1),(0)10,(2)0,a f a a f a a ∈+=-<+=≥因此,存在唯一0(0,2],x ∈使得0()0,f x a +=即0()0g x '=,当00x x <<时,()0,()0,()f x a g x g x '+<<单调递减;当0x x >时,()0,()0,()f x a g x g x '+>>单调递增.因此()g x 在x x =处取得最小值,最小值为000000022000e (1)e +()(1)e ().2x x x a x f x x g x x x x -++===+ 于是00e ()2x h a x =+,由2e (1)e e ()0,2(2)2x x x x y x x x +'=>=+++知单调递增 所以,由0(0,2],x ∈得002201e e e e ().2022224x h a x =<=≤=+++因为e 2x y x =+单调递增,对任意21e (,],24λ∈存在唯一的0(0,2],x ∈0()[0,1),a f x =-∈使得(),h a λ=所以()h a 的值域是21e (,],24综上,当[0,1)a ∈时,()g x 有最小值()h a ,()h a 的值域是21e (,].245.(Ⅰ) ()(e 1)2mx f 'x m x =-+.若0m ≥,则当(,0)x ∈-∞时,e 10mx -≤,()0f 'x <;当(0,)x ∈+∞时,e 10mx -≥,()0f 'x >.若0m <,则当(,0)x ∈-∞时,e 10mx ->,()0f 'x <;当(0,)x ∈+∞时,e 10mx -<,()0f 'x >.所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值.所以对于任意12,[1,1]x x ∈-,12|()()|e 1f x f x -≤-的充要条件是(1)(0)e 1,(1)(0)e 1,f f f f -≤-⎧⎨--≤-⎩即e e 1,e +e 1m m m m -⎧-≤-⎪⎨≤-⎪⎩,①,设函数()e e 1tg t t =--+,则()e 1t g't =-.当0t <时,()0g't <;当0t >时,()0g't >.故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)e 2e <0g --=+-,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0g m ≤,()0g m -≤,即①式成立.当1m >时,由()g t的单调性,()0g m >,即e e 1m m ->-;当1m <-时,()0g m ->,即e +e 1m m ->-.综上可知,m 的取值范围是[1,1]-. 【名师点睛】(Ⅰ)先求导函数()(e1)2mxf 'x m x =-+,根据m 的取值范围讨论导函数在(,0)-∞和(0,)+∞的符号即可;(Ⅱ)12()()e 1f x f x -≤-恒成立,等价于12max ()()e 1f x f x -≤-.由12,x x 是两个独立的变量,故可求研究()f x 的值域,由(Ⅰ)可得最小值为(0)1f =,最大值可能是(1)f -或(1)f ,故只需(1)(0)e 1,(1)(0)e 1,f f f f -≤-⎧⎨--≤-⎩,从而得关于m 的不等式,因不易解出,故利用导数研究其单调性和符号,从而得解.名校预测1.【解析】(1)由题可得()e xf 'x x a =-+,设()()e x x xg f 'x a ==-+,则()e 1x g x '=-,所以当0x >时()0g x '>,()f 'x 在(0,)+∞上单调递增,当0x <时()0g x '<,()f 'x 在(,0)-∞上单调递减,所以()(10)f 'f 'x a ≥=+,因为1a >-,所以10a +>,即()0f 'x >,所以函数()f x 在R 上单调递增.(2)由(1)知()f 'x 在[1,)+∞上单调递增,因为1e a <-,所以()e 110f 'a =-+<,所以存在(1,)t ∈+∞,使得()0f 't =,即e 0t t a -+=,即e t a t =-,所以函数()f x 在[1,)t 上单调递减,在(,)t +∞上单调递增,所以当[1,)x ∈+∞时222min 111()()e e (e )e (1)222t t t t f f t at t t t t t x t ==-+=-+-=-+,令21()e (1)2x h x x x =-+,1x >,则()(1e )0x h'x x =-<恒成立,所以函数()h x 在(1,)+∞上单调递减,所以211()e(11)122h x <-+⨯=,所以211e (1)22t t t -+<,即当[1,)x ∈+∞时min 1()2x f <,故函数()f x 在[1,)+∞上的最小值小于12. 2.【解析】(1)设它们的公共交点的横坐标为,则.,则,①;,则,②.由②得,由①得.将,代入得,∴,.(2)由,得,即在上恒成立,令,则,其中在上恒成立,∴在上单调递增,在上单调递减, 则,∴.故的取值范围是.专家押题1.【解析】(1)依题意,11()1(ln 1)(1ln )22f 'x x x =-+=-, 令()0f 'x >,则1ln 0x ->,解得0e x <<,故函数()f x 的单调增区间为(0,e). (2)不妨设12x x <,由()f x a =得,1ln 02x x x a --=,令1()ln 12a g x x x =+-, 令1t x =,则1()ln 12g t at t =--, 由题意,知方程1ln 102at t --=有两个根12,t t , 即方程ln 22t a t+=有两个根12,t t ,不妨设111t x =,221t x =.令t t t h 22ln )(+=,则221ln )(t t t h +-=',由0)(>'t h 可得10e t <<,由0)(<'t h 可得1e t >, 当1(0et ∈,时,()h t 是增函数,当1()e t ∈+∞,时,)(t h 是减函数.故结合已知有 1201et t >>>.要证1212e()20x x x x +->,即证12122e x x x x +>,即证12112e x x +>,即证122et t +>, 即证1221e e t t >->,即证122()()e h t h t <-.又12()()h t h t =,即证222()()eh t h t <-, 令2()=()()ex h x h x ϕ--,下面证()0x ϕ<对任意的1(0ex ∈,恒成立.。
2020年高考考前20天终极冲刺攻略
__________ 姓名:__________ 班级:__________一、选择题1.已知抛物线C :22(0)y px p =>的焦点为F ,准线为l ,点M 在第一象限的抛物线C 上,直线MFM 在直线l 上的射影为A ,且△MAF 的面积为,则p 的值为( ) A. 1B. 2C. D. 42.已知命题p :命题“01,02>+->∀x x x ”的否定是“01,00200≤+-≤∃x x x ”;命题q :在△ABC 中角A 、B 、C 的对边分别为a 、b 、c ,则“B A sin sin >”是“a>b ”的充要条件,则下列命题为真命题的是( )A.q p ∧⌝)(B.)(q p ⌝∧C.q p ∧D.)()(q p ⌝∧⌝3.已知等差数列{}n a 的前n 项和n S 有最大值,且761a a <-,则满足0n S >的最大正整数n 的值为( )A .6B .7C .11D .124.已知集合{|24}A x x =-<<,{|2}B x x =≥,则()R A C B =( )A. (2,4)B. (2,4)-C. (2,2)-D. (2,2]- 5.若a >b >0,0<c <1,则A. log a c <log b cB. log c a <log c bC. a c<b cD. c a>c b6.=⎰( )A.πB.2πC.2D.17.已知复数:12z i =-,则z =( )A.2155i -B.1155i +C.3255i -D.1355i -8.2019是( ) A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角二、解答题9.已知函数()()20f x x a x a a =-++≠ (1)当1a =时,求该函数的最小值; (2) 解不等式:()5f x a ≥. 10.(本小题12分)已知:p 1x 和2x 是方程2:20p x mx --=的两个实根,不等式21253a a x x --≥-对任意的[1,1]m ∈-恒成立,:q 关于x 的方程2210ax x ++=的解集有唯一子集,若p 或q 为真,p 且q 为假,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】如图所示,由直线MF AMF =60°.再利用抛物线的定义得出面积的表达式,解出p 即可. 【详解】如图所示,∵直线MF MFx =60°. ∴∠AMF =60°,由抛物线的定义可得:|MA |=|MF |,∴1sin 602MAF S MF MA ∆=⋅︒=得4MA MF ==,所以MAF ∆为等边三角形,∴24MA p ==,2p =, 故选B.【点睛】本题考查了抛物线的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.2.无 3.C 4.C解析:C 【解析】集合{}24A x x =-<<,{}2B x x =≥,R C B {}|2x x =< 则()()2,2R A C B ⋂=-. 故答案为:C.5.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.6.无7.无8.C解析:C【解析】【分析】=⨯+,所以角2019和角219表示终边相同的角,即可由题意,可知20193605219得到答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核心考点解读——导数与其他知识的综合问题(解答题)利用导数研究不等式问题(II)利用导数研究方程根的问题(II)利用导数研究恒成立、存在性问题(II)利用导数解决实际问题(最优化问题)(II)1.涉及本单元知识的考题,一般在解答题中结合函数的图象进行分类讨论,作为压轴题进行考查.2.从考查难度来看,本单元的考点综合性比较高,试题难度相对较大,高考中通常利用函数的求导法则和导数的运算性质,考查函数的的基本性质等,同时要结合其他知识进行考查,如数列、不等式等.3.从考查热点来看,利用导数研究函数的综合问题是高考命题的热点,也是难点.注意分类讨论思想、数形结合思想的综合应用.1.利用导数研究不等式问题利用导数方法研究不等式问题,主要的技巧是灵活构造函数,通过函数的性质解决不等式问题,通常要利用函数的单调性以及函数的最值.函数的单调性是研究不等式问题的有利武器之一,构造函数后,要重视对函数单调性的应用.同时要注意分类讨论思想的应用.2.利用导数研究方程的根的问题当函数具有极值点时,在这个极值点左、右两侧,函数的单调性是不同的,可以结合函数图象的变化趋势确定方程的根的情况.如果函数在定义域内有唯一的极大(小)值点,那么该极大(小)值点就是最大(小)值点,当最大(小)值点大于(小于)零且左、右两侧均出现小于(大于)0的函数值时,函数就出现两个零点,也就是说方程就有两个不同的实数根;若只出现一侧的函数值符号相反,则说明函数有一个零点,方程只有一个实数根.利用导数研究方程的根,要结合函数的极值点进行考查,同时注意函数单调性的变化趋势.3.利用导数研究恒成立问题、存在性问题,通常采用分类讨论思想或分离参变量的方法,通过函数的单调性研究函数的最值,利用最值去研究恒成立问题、存在性问题,此类问题最后都化归为与函数最值有关的问题.4.利用导数解决实际问题(最优化问题)(1)生活中常遇到求利润最大,用料最省,效率最高等实际问题,这些问题通常称为最优化问题.(2)利用导数解决生活中的最优化问题的一般步骤:5.导数与其他知识的综合应用最后都要化归为利用导数研究函数的单调性、极值以及最值问题,因此要熟练掌握利用导数研究函数性质的一般方法,并能够进行延伸、拓展.1.(2017高考新课标Ⅰ,理21)已知函数2()e (2)e xx f x a a x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.2.(2017高考新课标III ,理21)已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L ,求m 的最小值.3.(2016高考新课标I ,理21)已知函数2()(2)e (1)xf x x a x =-+-有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是()f x 的两个零点,证明:122x x +<. 4.(2016高考新课标II ,理21)(1)讨论函数()2e 2x x f x x -=+的单调性,并证明当x >0时,(2)e 20xx x -++>; (2)证明:当[0,1)a ∈ 时,函数2e =(0)x ax a g x x x-->() 有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.5. (2015高考新课标Ⅱ,理21)设函数2()e mx f x x mx =+-. (1)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(2)若对于任意12,[1,1]x x ∈-,都有12|()()|e 1f x f x -≤-,求m 的取值范围.1.已知函数错误!未找到引用源。
.(1)当错误!未找到引用源。
时,试判断函数错误!未找到引用源。
的单调性;(2)若错误!未找到引用源。
,求证:函数错误!未找到引用源。
在错误!未找到引用源。
上的最小值小于错误!未找到引用源。
. 2.已知函数,.(1)若曲线与曲线在它们的交点处的公共切线为,求,,的值;(2)当时,若,,求的取值范围.1.已知函数1()ln 2f x x x x =-. (1)求函数()f x 的单调增区间;(2)若12,x x 是方程()f x a =的两个不同的实数解,证明:1212e()20x x x x +->.真题回顾:1.(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20nnnnf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1). 2.(1)()f x 的定义域为()0∞,+. ①若0a ≤,因为11ln 2022f a ⎛⎫<⎪⎝⎭=-+,所以不满足题意; ②若a >0,由()1a x af 'x x x-=-=知,当()0x ,a ∈时,()f 'x <0;当(),+x a ∈∞时,()f 'x >0,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x =a 是()f x 在()0∞,+的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥.故a =1. (2)由(1)知当()1,x ∈+∞时,1ln 0x x -->.令112n x =+得11ln 122nn ⎛⎫+< ⎪⎝⎭.从而 221111111ln 1ln 1ln 1112222222n n n ⎛⎫⎛⎫⎛⎫++++++<+++=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L .故2111111e 222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L .而231111112222⎛⎫⎛⎫⎛⎫+++> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 3.(1)'()(1)e 2(1)(1)(e 2)xxf x x a x x a =-+-=-+. (i )设0a =,则()(2)e xf x x =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞单调递减,在(1,)+∞单调递增.又(1)e f =-,(2)f a =,取b 满足0b <且ln2ab <,则 223()(2)(1)()022a fb b a b a b b >-+-=->,故()f x 存在两个零点. (iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若e2a ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞单调递增.又当1x ≤时()0f x <,所以()f x 不存在两个零点.若e2a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.(2)不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于222222(2)e(1)x f x x a x --=-+-,而22222()(2)e (1)0x f x x a x =-+-=,所以222222(2)e (2)e x x f x x x --=---.设2()e(2)e xx g x x x -=---,则2'()(1)(e e )x xg x x -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从而22()(2)0g x f x =-<,故122x x +<.4.(1)()f x 的定义域为(,2)(2,)-∞--+∞U .222(1)(2)e (2)e e ()0,(2)(2)x x xx x x x f x x x -+--'==≥++ 且仅当0x =时,()0f x '=,所以()f x 在(,2),(2,)-∞--+∞单调递增,因此当(0,)x ∈+∞时,()(0)1,f x f >=-所以(2)e (2),(2)e 20x x x x x x ->-+-++>(2)33(2)e (2)2()(()),x x a x x g x f x a x x-+++'==+由(I )知,()f x a +单调递增,对任意[0,1),(0)10,(2)0,a f a a f a a ∈+=-<+=≥因此,存在唯一0(0,2],x ∈使得0()0,f x a +=即0()0g x '=, 当00x x <<时,()0,()0,()f x a g x g x '+<<单调递减;当0x x >时,()0,()0,()f x a g x g x '+>>单调递增.因此()g x 在0x x =处取得最小值,最小值为000000022000e (1)e +()(1)e ().2x x x a x f x x g x x x x -++===+ 于是00e ()2x h a x =+,由2e (1)e e ()0,2(2)2x x x x y x x x +'=>=+++知单调递增 所以,由0(0,2],x ∈得002201e e e e ().2022224x h a x =<=≤=+++因为e 2x y x =+单调递增,对任意21e (,],24λ∈存在唯一的0(0,2],x ∈0()[0,1),a f x =-∈使得(),h a λ=所以()h a 的值域是21e (,],24综上,当[0,1)a ∈时,()g x 有最小值()h a ,()h a 的值域是21e (,].245.(Ⅰ) ()(e 1)2mx f 'x m x =-+.若0m ≥,则当(,0)x ∈-∞时,e 10mx -≤,()0f 'x <;当(0,)x ∈+∞时,e 10mx -≥,()0f 'x >. 若0m <,则当(,0)x ∈-∞时,e 10mx ->,()0f 'x <;当(0,)x ∈+∞时,e 10mx -<,()0f 'x >. 所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值.所以对于任意12,[1,1]x x ∈-,12|()()|e 1f x f x -≤-的充要条件是(1)(0)e 1,(1)(0)e 1,f f f f -≤-⎧⎨--≤-⎩即e e 1,e +e 1mm m m -⎧-≤-⎪⎨≤-⎪⎩,①,设函数()e e 1t g t t =--+,则()e 1tg't =-.当0t <时,()0g't <;当0t >时,()0g't >.故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)e 2e <0g --=+-,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0g m ≤,()0g m -≤,即①式成立.当1m >时,由()g t 的单调性,()0g m >,即e e 1m m ->-;当1m <-时,()0g m ->,即e +e 1m m ->-.综上可知,m 的取值范围是[1,1]-. 【名师点睛】(Ⅰ)先求导函数()(e1)2mxf 'x m x =-+,根据m 的取值范围讨论导函数在(,0)-∞和(0,)+∞的符号即可;(Ⅱ)12()()e 1f x f x -≤-恒成立,等价于12max ()()e 1f x f x -≤-.由12,x x 是两个独立的变量,故可求研究()f x 的值域,由(Ⅰ)可得最小值为(0)1f =,最大值可能是(1)f -或(1)f ,故只需(1)(0)e 1,(1)(0)e 1,f f f f -≤-⎧⎨--≤-⎩,从而得关于m 的不等式,因不易解出,故利用导数研究其单调性和符号,从而得解. 名校预测1.【解析】(1)由题可得错误!未找到引用源。