浙江高考数学考试说明

合集下载

新高考数学考试试卷及试卷结构说明

新高考数学考试试卷及试卷结构说明

新高考数学考试试卷及试卷结构说明【新高考数学试卷结构】第一大题,单项选择题,共8小题,每小题5分,共40分;第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分.第三大题,填空题,共4小题,每小题5分,共20分。

第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。

每小题12分,共60分。

新高考数学交流群新高考数学交流群①新高考与之前相比,最大的不同就是增加了多项选择题部分,选择题部分由原来的12道单选题,变成了8道单选题与4道多选题。

这有利于缩小学生选择题部分成绩的差距,过去学生错一道单选题,可能就会丢掉5分,在新高考中,考生部分选对就可以得3分,在一定程度上保证了得分率。

②新高考的单项选择题部分主要考察学生的基础知识和基本运算能力,总体上难度不大,只要认真复习,一般都可以取得一个较好的成绩。

在多项选择题上,前两道较为基础,后两道难度较大,能够突出高考的选拔性功能,总体上来看,学生比以往来讲,更容易取得一个不错的成绩,但对于一些数学基础比较的好的同学来说,这些题比以往应该更有挑战性。

过去,只需要在四个选项中选一个正确答案,现在要在四个选项中,选出多个答案,比以往来说,要想准确的把正确答案全部选出来,确实有一定的难度、③新高考数学试卷的第4题,第6题和第12题都体现了创新性。

第4题,以古代知识为背景,考察同学们的立体几何知识,这体现了数学考试的价值观导向。

弘扬传统文化的同时也鼓励同学们走进传统文化。

近年来,对于这类题目也是屡见不鲜,平时也应该鼓励学生去关注一些古代的数学著作,如《九章算术》,《孙子算经》等等,通过对这些著作的了解,再遇到这类题目时,在一定程度上能够减少恐惧感与焦虑感。

第6题则体现了聚焦民生,关注社会热点。

以新冠疫情为背景,考察了指数与对数函数,这也启示我们,在未来,数学试卷将会越来越贴近我们的现实生活,平时我们对这些内容有所关注,可以减少我们的焦虑感,增强我们做题的自信心。

浙江省普通高考考试说明理科数学(2009年与2010年对照版)

浙江省普通高考考试说明理科数学(2009年与2010年对照版)

2009年与2010年对照版(红色的删除,蓝色的添加)浙江省普通高考考试说明数学(理科)Ⅰ.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试。

高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。

因此,高考应具有较高的信度、效度,必要的区分度和适当的难度。

Ⅱ.考试要求根据普通高等学校对新生文化素质的要求,依据《普通高等学校招生全国统一考试大纲》和《浙江省普通高考考试说明》公布的内容范围命题,不超出《浙江省普通高中课程实验数学学科教学指导意见》中规定的必修模块和指定选修模块(IA)的范围。

数学学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。

数学科的考试,要发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平以及进入高等学校继续学习的潜能。

一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程及选修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。

对知识的要求依次是了解、理解、掌握三个层次。

(一)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

(二)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力。

(三)掌握:要求对所列的知识内容能够推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。

二、能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

高考数学试卷考试说明范文高中数学试卷命题说明(六篇)

高考数学试卷考试说明范文高中数学试卷命题说明(六篇)

高考数学试卷考试说明范文高中数学试卷命题说明(六篇)最新高考数学试卷考试说明范文一一。

夯实解题根本功高考数学题许多源于课本,因此要依据教学大纲和考试大纲,强化根底学问的落实和稳固。

注意对课本例题、习题的演化训练,将课本内容延长、提高。

数学高考历来重视运算力量,运算要娴熟、精确,运算要简捷、快速,运算要与推理相结合,要合理,并且在复习中要有意识地养成书写标准,表达精确的良好习惯。

二。

不依靠题海取胜,注意题目的质量和处理水平由于复习的时间紧任务重,要避开题海战术,教学要细心备课,选择典型例题,使学生少走弯路。

对立意新奇、构造精致的新题予以足够的重视,要保证有相当数量的这类题目,但也不一味排斥一些典型的所谓“新题”、“热题”。

传统的好题,应足够重视,陈题新解、熟题重温可使学生获得新的感受和乐趣。

要特殊重视讲评试卷的方法和技巧。

三。

分层辅导,强化训练1.对于优生(90分以上),我们组建了培优班,由6个文科班中的数学前40-50名同学组成,培优的目的主要是能使这些优秀的学生在高考中数学成绩稳定在115分左右,局部学生能超过125分。

培优是对重点学问内容深化,是使他们既能娴熟把握,又能敏捷应用,并在解题过程中,不断强化、固化。

同时还要培育他们的应试技巧。

2.对于中等生(65-90分,比例较大),我们组建了两个提高班。

主要针对中上等学生和只有数学单科较弱的中等学生群体,帮忙他们树立学习数学的兴趣并转变数学拖后腿的现象。

中等生的提高意味着上线率的提高,对此我们非常的重视。

提高班的主要目的是加强对“根本学问、根本技能、根本方法”力量培育,以强化解题方法、解题思路为主,讲解选择题、填空题、解答题中的根底题得分技巧。

对重点、难点、疑点、误点、弱点、考点进展强化训练。

3.对于学数学有困难的学生(主要集中在2,5,6班,数学成绩在30分以下),我们本着“不抛弃,不放弃”的原则,以课本为主,强化数学学问的概念、定理、公式、法则,加以理解,要求记忆、默写,并会简洁应用。

浙江省高中数学高考考纲

浙江省高中数学高考考纲

2019年浙江省高中数学高考考纲一、三角函数、解三角形1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2.理解正弦函数、余弦函数、正切函数的定义及其图象与性质,了解三角函数的周期性.3.理解同角三角函数的基本关系,掌握正弦、余弦、正切的诱导公式.4. 了解函数y= Asin@x+妨的实际意义,掌握y= Asin@x+妨的图象,了解参数A, 3, 0对函数图象变化的影响.5.掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式.6.掌握简单的三角函数式的化简、求值及恒等式证明.7.掌握正弦定理、余弦定理及其应用.二、立体几何1.了解多面体和旋转体的概念,理解柱、锥、台、球的结构特征.2.了解简单组合体,了解中心投影、平行投影的含义.3.了解三视图和直观图间的关系,掌握三视图所表示的空间几何体.会用斜二测画法画出它们的直观图.4.会计算柱、锥、台、球的表面积和体积.5.了解平面的含义,理解空间点、直线、平面位置关系的定义.掌握如下可以作为推理依据的公理和定理.公理 1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理 2 过不在一条直线上的三点,有且只有一个平面.公理 3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理 4 平行于同一条直线的两条直线互相平行.定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.6.理解空间线面平行、线面垂直、面面平行、面面垂直的判定定理和性质定理.(1)判定定理:①平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;②一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;③一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;④一个平面过另一个平面的垂线,则这两个平面垂直.(2)性质定理:①一条直线与一个平面平行,则过这条直线的任一个平面与此平面的交线与该直线平行;②如果两个平行平面同时和第三个平面相交,那么它们的交线平行;③垂直于同一个平面的两条直线平行;④两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.7.理解直线与平面所成角的概念,了解二面角及其平面角的概念.8.了解空间直角坐标系,会用空间直角坐标表示点的位置.9.了解空间向量的概念,了解空间向量的基本定理及其意义,了解空间向量的正交分解及其坐标表示.10.了解空间向量的加、减、数乘、数量积的定义、坐标表示的运算.11.了解空间两点间的距离公式、向量的长度公式及两向量的夹角公式.12.了解直线的方向向量与平面的法向量.13.了解求两直线夹角、直线与平面所成角、二面角的向量方法.三、集合与常用逻辑用语1.了解集合、元素的含义及其关系.2.理解集合的表示法.3.了解集合之间的包含、相等关系.4.理解全集、空集、子集的含义.5.会求简单集合间的并集、交集6.理解补集的含义并会求补集.7.了解原命题和原命题的逆命题、否命题、逆否命题的含义,及其相互之间的关系.8.理解命题的必要条件、充分条件、充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件.四、函数与基本初等函数11.了解函数、映射的概念.2.了解函数的定义域、值域及三种表示法(解析法、图象法和列表法).3.了解简单的分段函数,会用分段函数解决简单的问题.4.理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性.5•理解函数的最大(小)值的含义,会求简单函数的最大(小)值.6•了解指数幕的含义,掌握有理指数幕的运算.7•理解指数函数的概念,掌握指数函数的图象、性质及应用.8 •理解对数的概念,掌握对数的运算,会用换底公式.9•理解对数函数的概念,掌握对数函数的图象、性质及应用.10. 了解幕函数的概念.111. 掌握幕函数y=x,y=x2,y=x3,y= -,y=x2的图象和性质.X12. 了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法.13. 了解指数函数、对数函数以及幕函数的变化特征.14. 能将一些简单的实际问题转化为相应的函数问题,并给予解决.五、导数及其应用1.了解导数的概念与实际背景,理解导数的几何意义.2.会用基本初等函数的导数公式表和导数运算法则求函数的导数,并能求简单的复合函数的导数(限于形如f(ax+ b)的导数).3.了解函数单调性和导数的关系,能用导数求函数的单调区间.4. 理解函数极值的概念及函数在某点取到极值的条件,会用导数求函数的极大(小)值,会求闭区间上函数的最大(小)值.六、平面向量、复数1. 理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念.2. 掌握平面向量加法、减法、数乘的概念,并理解其几何意义.3. 理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题.4.掌握平面向量的正交分解及其坐标表示.5.掌握平面向量的加法、减法与数乘的坐标运算.6.理解平面向量数量积的概念及其几何意义.7.掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系.8.会用坐标表示平面向量的平行与垂直.9.会用向量方法解决某些简单的平面几何问题.10.了解复数的定义、复数的模和复数相等的概念.11.了解复数的加、减运算的几何意义.12.理解复数代数形式的四则运算.七、不等式1.了解不等关系,掌握不等式的基本性质.2•了解一元二次函数、一元二次方程、一元二次不等式之间的联系•会解一元二次不等式.3•了解二元一次不等式的几何意义,掌握平面区域与二元一次不等式(组)之间的关系,并会求解简单的二元线性规划问题._ a+ b4. 掌握基本不等式.abw—厂(a, b> 0)及其应用.5. 会解|x+ b|< c, |x+ b|>c, |x—a|+ |x—b|>c, |x—a| + |x—b|<c型不等式.6. 了解不等式||a|—|b||< |a+ b|w |a|+ |b|.八、数列1. 了解数列的概念和表示方法(列表、图象、公式).2. 理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前n项和公式及其应用.3. 了解等差数列与一次函数、等比数列与指数函数的关系.4.会用数列的等差关系或等比关系解决实际问题.5.会用数学归纳法证明一些简单数学问题.九、平面解析几何1.理解平面直角坐标系,理解直线的倾斜角与斜率的概念,掌握直线方程的点斜式、两点式及一般式,了解直线方程与一次函数的关系.2.能根据两条直线的斜率判定这两条直线平行或垂直.3.会求过两点的直线斜率、两直线的交点坐标、两点间的距离、点到直线的距离、两条平行直线间的距离.4.掌握圆的标准方程与一般方程.5.掌握椭圆、抛物线的定义、标准方程、几何图形及简单几何性质.6.会解决直线与圆、椭圆、抛物线的位置关系的问题,会判断圆与圆的位置关系.7.了解双曲线的定义、标准方程、几何图形及简单几何性质,了解直线与双曲线的位置关系.8.了解方程与曲线的对应关系,会求简单的曲线的方程.十、计数原理与古典概型1.理解分类加法计数原理和分步乘法计数原理.2.了解排列、组合的概念,会用排列数公式、组合数公式解决简单的实际问题.3.了解二项式定理,理解二项式系数的性质.4.了解事件、互斥事件、对立事件及独立事件的概念.5.了解概率与频率的概念.6.了解古典概型,会计算古典概型中事件的概率.7.了解取有限个值的离散型随机变量及其分布列的概念,了解两点分布,了解独立重复试验的模型及二项分布.8.了解离散型随机变量均值、方差的概念.。

2023年高考数学考试说明

2023年高考数学考试说明

2023年高考数学考试说明
2023年高考数学考试说明包括以下几个方面:
1.考试性质:高考数学考试是普通高等学校招生考试的重要组成部分,旨在考
查考生对高中数学基础知识和基本技能的掌握情况,以及运用所学知识分析问题、解决问题的能力。

2.考试目标:高考数学考试要求考生能够理解数学基本概念,掌握数学基础知
识,具备一定的计算能力、逻辑推理能力、空间想象能力和分析问题、解决问题的能力。

3.考试内容:高考数学考试内容涵盖了高中数学的所有知识点,包括代数、几
何、概率统计等。

具体包括函数与方程、数列、不等式与不等式组、排列组合与二项式定理、直线与圆、圆锥曲线、立体几何、平面解析几何、统计与概率等。

4.考试形式:高考数学一般为闭卷考试,考试时间为120分钟,满分150分。

考试形式为选择题、填空题和解答题等。

选择题一般为单选题和多选题,填空题主要考察学生对基础知识的掌握情况,解答题则主要考察学生的综合应用能力。

5.考试要求:高考数学考试要求考生能够准确理解和应用数学基本概念和基本
原理,能够运用所学知识解决实际问题,并具备良好的分析问题和解决问题的能力。

还要求考生具备严谨的思维习惯和良好的逻辑推理能力,能够准确地表达自己的思考和结论。

6.考试评价:高考数学考试的评分标准将按照解题思路的清晰度、解题过程的
严谨性、解题结果的正确性等方面进行评估。

对于考生的答题方式、书写规
范等也将进行一定的评价。

2023年高考数学考试说明旨在全面考查考生的数学基础知识和基本技能,以及运用所学知识分析问题、解决问题的能力。

考生需要全面掌握知识点,注重思维能力和表达能力的提高,以应对高考数学的挑战。

最新浙江省高中数学高考考纲

最新浙江省高中数学高考考纲

2019年浙江省高中数学高考考纲一、三角函数、解三角形1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2.理解正弦函数、余弦函数、正切函数的定义及其图象与性质,了解三角函数的周期性.3.理解同角三角函数的基本关系,掌握正弦、余弦、正切的诱导公式.4.了解函数y=A sin(ωx+φ)的实际意义,掌握y=A sin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响.5.掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式.6.掌握简单的三角函数式的化简、求值及恒等式证明.7.掌握正弦定理、余弦定理及其应用.二、立体几何1.了解多面体和旋转体的概念,理解柱、锥、台、球的结构特征.2.了解简单组合体,了解中心投影、平行投影的含义.3.了解三视图和直观图间的关系,掌握三视图所表示的空间几何体.会用斜二测画法画出它们的直观图.4.会计算柱、锥、台、球的表面积和体积.5.了解平面的含义,理解空间点、直线、平面位置关系的定义.掌握如下可以作为推理依据的公理和定理.公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.公理 3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4 平行于同一条直线的两条直线互相平行.定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.6.理解空间线面平行、线面垂直、面面平行、面面垂直的判定定理和性质定理.(1)判定定理:①平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;②一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;③一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;④一个平面过另一个平面的垂线,则这两个平面垂直.(2)性质定理:①一条直线与一个平面平行,则过这条直线的任一个平面与此平面的交线与该直线平行;②如果两个平行平面同时和第三个平面相交,那么它们的交线平行;③垂直于同一个平面的两条直线平行;④两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.7.理解直线与平面所成角的概念,了解二面角及其平面角的概念.8.了解空间直角坐标系,会用空间直角坐标表示点的位置.9.了解空间向量的概念,了解空间向量的基本定理及其意义,了解空间向量的正交分解及其坐标表示.10.了解空间向量的加、减、数乘、数量积的定义、坐标表示的运算.11.了解空间两点间的距离公式、向量的长度公式及两向量的夹角公式.12.了解直线的方向向量与平面的法向量.13.了解求两直线夹角、直线与平面所成角、二面角的向量方法.三、集合与常用逻辑用语1.了解集合、元素的含义及其关系.2.理解集合的表示法.3.了解集合之间的包含、相等关系.4.理解全集、空集、子集的含义.5.会求简单集合间的并集、交集.6.理解补集的含义并会求补集.7.了解原命题和原命题的逆命题、否命题、逆否命题的含义,及其相互之间的关系.8.理解命题的必要条件、充分条件、充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件.四、函数与基本初等函数11.了解函数、映射的概念.2.了解函数的定义域、值域及三种表示法(解析法、图象法和列表法).3.了解简单的分段函数,会用分段函数解决简单的问题.4.理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性.5.理解函数的最大(小)值的含义,会求简单函数的最大(小)值.6.了解指数幂的含义,掌握有理指数幂的运算.7.理解指数函数的概念,掌握指数函数的图象、性质及应用.8.理解对数的概念,掌握对数的运算,会用换底公式.9.理解对数函数的概念,掌握对数函数的图象、性质及应用.10.了解幂函数的概念.11.掌握幂函数y=x,y=x2,y=x3,y=1x,y=x12的图象和性质.12.了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法.13.了解指数函数、对数函数以及幂函数的变化特征.14.能将一些简单的实际问题转化为相应的函数问题,并给予解决.五、导数及其应用1.了解导数的概念与实际背景,理解导数的几何意义.2.会用基本初等函数的导数公式表和导数运算法则求函数的导数,并能求简单的复合函数的导数(限于形如f(ax+b)的导数).3.了解函数单调性和导数的关系,能用导数求函数的单调区间.4.理解函数极值的概念及函数在某点取到极值的条件,会用导数求函数的极大(小)值,会求闭区间上函数的最大(小)值.六、平面向量、复数1.理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念.2.掌握平面向量加法、减法、数乘的概念,并理解其几何意义.3.理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题.4.掌握平面向量的正交分解及其坐标表示.5.掌握平面向量的加法、减法与数乘的坐标运算.6.理解平面向量数量积的概念及其几何意义.7.掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系.8.会用坐标表示平面向量的平行与垂直.9.会用向量方法解决某些简单的平面几何问题.10.了解复数的定义、复数的模和复数相等的概念.11.了解复数的加、减运算的几何意义.12.理解复数代数形式的四则运算.七、不等式1.了解不等关系,掌握不等式的基本性质.2.了解一元二次函数、一元二次方程、一元二次不等式之间的联系.会解一元二次不等式.3.了解二元一次不等式的几何意义,掌握平面区域与二元一次不等式(组)之间的关系,并会求解简单的二元线性规划问题.4.掌握基本不等式ab≤a+b2(a,b>0)及其应用.5.会解|x+b|≤c,|x+b|≥c,|x-a|+|x-b|≥c,|x-a|+|x-b|≤c型不等式.6.了解不等式||a|-|b||≤|a+b|≤|a|+|b|.八、数列1.了解数列的概念和表示方法(列表、图象、公式).2.理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前n项和公式及其应用.3.了解等差数列与一次函数、等比数列与指数函数的关系.4.会用数列的等差关系或等比关系解决实际问题.5.会用数学归纳法证明一些简单数学问题.九、平面解析几何1.理解平面直角坐标系,理解直线的倾斜角与斜率的概念,掌握直线方程的点斜式、两点式及一般式,了解直线方程与一次函数的关系.2.能根据两条直线的斜率判定这两条直线平行或垂直.3.会求过两点的直线斜率、两直线的交点坐标、两点间的距离、点到直线的距离、两条平行直线间的距离.4.掌握圆的标准方程与一般方程.5.掌握椭圆、抛物线的定义、标准方程、几何图形及简单几何性质.6.会解决直线与圆、椭圆、抛物线的位置关系的问题,会判断圆与圆的位置关系.7.了解双曲线的定义、标准方程、几何图形及简单几何性质,了解直线与双曲线的位置关系.8.了解方程与曲线的对应关系,会求简单的曲线的方程.十、计数原理与古典概型1.理解分类加法计数原理和分步乘法计数原理.2.了解排列、组合的概念,会用排列数公式、组合数公式解决简单的实际问题.3.了解二项式定理,理解二项式系数的性质.4.了解事件、互斥事件、对立事件及独立事件的概念.5.了解概率与频率的概念.6.了解古典概型,会计算古典概型中事件的概率.7.了解取有限个值的离散型随机变量及其分布列的概念,了解两点分布,了解独立重复试验的模型及二项分布.8.了解离散型随机变量均值、方差的概念.。

浙江省高考考试说明语文数学英语

浙江省高考考试说明语文数学英语

浙江省2012高考考试说明 名师解读! 《2012年浙江省普通高考考试说明》(简称《考试说明》)正式出炉,这套堪称我省高考生的应考“宝典”,本周起将陆续送达考生手中。

本报记者也于第一时间拿到了两本散发着油墨清香的《考试说明》。

《考试说明》,由省教育考试院组织专家编写,共有2册,一册是文科,一册是理科。

据介绍,2012年,高考自主命题的科目包括语文、数学、外语、文科综合、理科综合、自选模块和技术考试。

《考试说明》根据教育部《考试大纲》,从浙江省实际出发,在《中学教学大纲》规定的考试范围内,对2012年高考语文、数学、外语、文科综合、理科综合和自选模块的考试内容、要求、形式作出具体解释,并提供参考考卷,是浙江省高考命题的主要依据。

有关负责人表示,《考试说明》细化了《考试大纲》对考试的知识内容要求和能力要求,有助于考生复习时对《考试大纲》的理解。

“越临近高考,复习的方向性越为重要,这是高考取得较好成绩的关键所在。

”一位有着丰富教学经验的高三老师说,想有效把握高考复习方向,就得认真研究《考试说明》,根据《考试说明》中的考点把握着高考复习方向。

昨天,本报特别邀请了浙江省知名高中、杭州学军中学的特级教师、教研组长、高级教师等对其进行了深入解读,并针对今后考生们的复习做出了指导性的建议。

语文 (学军中学特级教师傅岩点评) |考点变化| 今年的《考试说明》十分稳定,命题趋势也不会有大变化。

与去年相比,变化的内容有“现代文阅读”中的第10条增加“及自己的见解的提出”9个字,按照惯例,在相关部分换了一套新的参考试卷和2011年浙江省高考试卷。

|迎考建议| 1、突出常用,训练有度 在“语言文字运用”部分里的前4个必考点中,语音、文字和词语的语料是“常用”的。

病句的病因类型除了用选择题的方式考查外,也会以“修改”的方式考查。

建议考生在前3个考点的积累整理时,突出“常用”,注重基础,不宜扩大范围。

对于病句,重点是在熟悉六种病句类型的基础上,熟练运用辨析和修改的方法。

新高考数学试卷的题型说明

新高考数学试卷的题型说明

一、试卷结构新高考数学试卷分为选择题、填空题、解答题三个部分,总分150分。

试卷内容涵盖高中数学课程的知识点和能力要求,旨在全面考察学生的数学素养。

1. 选择题(共20题,每题3分,共60分)选择题分为单选题和多选题。

单选题每题只有一个正确答案,多选题有两个或两个以上正确答案。

选择题旨在考察学生对基础知识的掌握程度和逻辑推理能力。

2. 填空题(共10题,每题5分,共50分)填空题主要考察学生对基础知识的掌握和运算能力。

题目类型包括直接填空、计算填空和证明填空。

计算填空和证明填空要求学生在规定的时间内完成。

3. 解答题(共5题,每题15分,共75分)解答题分为三个层次:基础题、中等题和难题。

基础题主要考察学生对基础知识的掌握和应用能力;中等题考察学生分析问题和解决问题的能力;难题则考察学生的创新思维和综合运用知识的能力。

二、题型特点1. 选择题选择题题型多样,包括概念题、计算题、证明题等。

题目设计注重基础知识的考察,同时兼顾思维能力的培养。

部分题目涉及实际应用,引导学生关注数学与生活的联系。

2. 填空题填空题以计算为主,考察学生对基础知识的掌握和运算能力。

题目难度适中,既注重基础知识的考察,又关注学生的思维能力。

3. 解答题解答题注重考察学生的分析问题和解决问题的能力。

题目设计由易到难,层次分明。

基础题主要考察学生对基础知识的掌握和应用;中等题和难题则考察学生的创新思维和综合运用知识的能力。

三、考试要求1. 学生应掌握高中数学课程的基本知识和基本技能,具备一定的逻辑推理和空间想象能力。

2. 学生应具备良好的运算能力和解决问题的能力,能够灵活运用所学知识解决实际问题。

3. 学生应具备创新思维和综合运用知识的能力,能够在考试中充分发挥自己的潜能。

4. 学生应注重培养良好的学习习惯和考试心态,以应对新高考数学考试。

总之,新高考数学试卷题型多样,难度适中,旨在全面考察学生的数学素养。

考生在备考过程中,应注重基础知识的学习和能力的培养,以提高自己的综合素质。

数学高考浙江

数学高考浙江

数学高考浙江
数学高考是每个考生都非常重视的科目之一。

浙江省的数学高考内容丰富多样,难度适中,测试学生的数学运算能力、推理能力和应用能力。

首先,浙江省的数学高考试卷通常分为选择题和非选择题两部分。

选择题主要考查学生的基本知识掌握和计算能力。

非选择题则是考查学生综合运用所学的数学知识解决实际问题的能力。

在选择题部分,通常会包括填空题、选择题和判断题。

填空题要求考生根据题目所给的条件,计算出题目中的空白部分。

选择题则是给出几个选项,要求考生选择正确的答案。

判断题则是要求考生根据给出的判断条件,判断给定的命题是否为真。

非选择题部分则是要求考生运用所学的数学知识解决实际问题。

这部分的题目通常会涉及到函数、方程、几何等内容。

考生需要通过分析问题、抽象问题,运用数学的方法和技巧解决问题。

浙江省的数学高考中,还会涉及到一些综合题。

这些题目通常会综合运用多个数学知识点,考查学生的综合应用能力和解决问题的能力。

总体来说,浙江省的数学高考试卷难度适中,测试的是考生对数学的掌握和应用能力。

考生除了要扎实的掌握数学基础知识外,还需要具备分析问题和解决问题的能力。

因此,复习阶段要注重基础知识的掌握,同时也要注重提高解题能力和应用能力。

名师解析浙江高考数学考试说明及复习建议

名师解析浙江高考数学考试说明及复习建议

名师解析浙江高考数学考试说明及复习建议
较为复杂的或综合性的问题。

因此,考生一定要抓基础,多做基础题,千万不要浪费时间去做考纲不作重点要求的知识模块中的难题,把握住基本得分点就可以。

《高考说明》中对知识的要求依次分为了解、理解和掌握、灵活和综合运用三个层次,二轮复习考生一定要多安排时间复习前两个层次覆盖的知识点。

通过合理安排复习,力争达到本科达线分。

就数学学科而言,比较容易抓住的部分在选择题和填空题,建议大家配备一套选择题和填空题的专项训练资料,在规定时间内完成,积累巩固一些常规的解题技巧,譬如:特殊值法、定义法、等价转换法、筛选法、数形结合法等。

再对照答案,甄别概念上的混淆,稍难一点的请教老师,区别常规题和拔高题,力争对九冲十。

因为填空题有“小大题”之称,一定要回归到教材,找到题目的原型和背景,化归为熟题或者基本题型来解决。

由于填空题没有步骤分,故解答过程一定要准确无误,那么文科生填空题得分率达80%也不是不可能的!一定要看清难题的叙述,根据题意填入相应的猜想数据、符号以及单位,力求“填空不空”!(。

浙江省普通高考考试说明数学(理)

浙江省普通高考考试说明数学(理)

2010年浙江省普通高考考试说明数学(必修+选修Ⅱ)Ⅰ. 考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试。

高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。

因此,高考应具有较高的信度、效度,必要的区分度和适当的难度。

Ⅱ. 考试要求根据普通高等学校对新生文化素质的要求,依据《普通高等学校招生全国统一考试大纲》和《浙江省普通高考考生说明》公布的内容范围命题,不超出《浙江省普通高中新课程实验数学学科指导意见》中规定的必修模块和指定选修模块(ⅠA)的范围。

数学学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。

数学学科的考试,要发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平以及进入高等学校继续学习的潜能。

一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程及选修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法。

对知识的要求依次是了解、理解、掌握三个层次。

(一)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

(二)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力。

(三)掌握:要求对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决。

二、能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据图表处理能力以及应用意识和创新意识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省2017高考考试说明数学(必修+限定选修)一、考试性质与对象数学是普通高等学校招生全国统一考试的必考科目,数学高考是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试。

高等学校根据考生的成绩,按已确定的招生计划,考试成绩及综合素质评价,择优录取。

因此,数学高考应具有较高的信度、效度,必要的区分度和适当的难度。

二、考核要求依据高校人才选拔要求和国家课程标准,科学设计命题内容,增强基础性、综合性,突出能力立意。

主要考查学生运用所学知识独立思考与分析问题、解决问题的能力。

数学学科的考试,要发挥数学作为主要基础学科的作用,既考查考生的基础知识、基本技能的掌握程度,又考查考生对数学思想方法、数学本质的理解水平以及进入高等学校继续学习的潜能。

(一) 知识要求知识是指《普通高中数学课程标准(实验)》中的必修课程及限定选修课程中的数学概念、性质、法则、公式、公理、定理以及与其相关的基础知识和思想方法。

对知识的要求依次是了解、理解、掌握三个层次。

1.了解:要求对所列知识的含义有初步的、感性的认识。

知道这一知识内容是什么,能在有关的问题中加以区分。

按照一定的程序和步骤简单模仿。

2.理解:要求对所列知识内容有理性认识,知道知识间的逻辑关系。

能用数学语言对相关问题进行描述,对比较、判别、讨论的过程作出恰当的表述。

具备利用所学知识解决简单问题的能力。

3.掌握:要求对所列知识内容有深刻的理性认识,熟悉相关知识间的逻辑关系。

对所列的知识内容能够推导证明,灵活运用相关知识与思想方法进行分析、研究、讨论。

具备综合利用相关知识解决问题的能力。

“会”或“能”相当于此层次的要求。

(二)能力要求数学具有严密的逻辑性、结论的确定性和应用的广泛性等特点,在培养学生能力的过程中发挥重要的作用。

数学学科考试既要考查基础知识、基本技能、基本思想方法、基本活动经验,又要考查考生的逻辑思维能力、空间想象能力、运算求解能力、数据处理能力、综合应用能力。

(一)逻辑思维能力逻辑思维能力是指通过对事物观察、比较、判断、分析、综合进行归纳、概括、抽象、演绎、推理,准确有条理地表达自己思维过程的能力。

逻辑思维能力主要考查能正确领会题意,明确解题目标,能寻找到实现解题目标的方向和合适的解题步骤。

能通过符合逻辑的运算和推理,正确地表述解题过程的能力。

做到因果关系明晰,陈述层次清楚,推理过程有据。

(二)空间想象能力空间想象能力是指根据空间几何体的图形或几何形体的描述能想象出相应的空间形体的能力;根据想象的空间几何形体,画出相应空间几何体的图形,并能正确描述相应的空间几何形体的能力。

对已有的空间几何形体进行分解、组合,产生新的空间几体形体,能正确分析其位置关系与数量关系,并对几何形体的位置关系和数量关系进行论证与求解。

空间想象能力主要是通过考查对点、线、面、体与经过简单组合的几何形体和相互间的位置关系的理解、掌握程度,同时考查对几何形体进行分析、提取、概括来揭示其本质特征的能力,灵活运用几何形体的特性进行论证与求解的能力。

(三)运算求解能力运算求解能力是指能根据法则、公式进行正确运算、变形的能力;根据问题的条件和目标,寻找多种途径,并能比较不同途径的特点,设计较为适合的方法进行运算、变形的能力;根据要求进行估计和近似计算的能力。

运算求解能力主要考查对算式进行的计算、变形,对几何图形的几何量的计算求解,对数值的估值和近似计算等的能力。

进一步考查对条件分析、方向探究、公式选择、步骤确定等一系列过程中运算求解的能力。

(四)数据处理能力数据处理能力是指对各种形式的数据进行收集、整理、筛选、分类、计算、操作及分析的能力,能从数据中得出有用的信息,并作出合理判断。

数据处理能力主要通过考查排列、组合、概率与统计来实施,能对数据和随机数据进行提炼得出数据的数字特征,同时考查能对众多数据进行合理筛选、选择模型、综合分析数据的思维能力。

(五)综合应用能力综合应用能力指的是对所提供的信息进行归纳、整理和分类,将实际问题抽象为数学问题的能力;能对具体问题陈述的材料用数学语言正确地表述,用所学的数学知识、思想和方法解决问题的能力;能将一些具体的材料进行归纳、总结、提炼、抽象,从而形成新的认知与方法的能力。

综合应用能力主要考查对所学数学知识、方法进行综合与灵活运用的能力;对相关学科、实际生活中的问题构建适当的数学模型,并加以解决的能力。

同时考查对简单的探究性问题进行思考和研究,提出解决问题的思路,给出较为新颖的方法,解决问题并进行适当拓广、延伸的能力。

三、考查内容及要求(一) 集合与常用逻辑用语考试内容:集合及其表示、元素与集合的关系、集合间的基本关系。

集合的基本运算。

命题的四种形式,充分条件、必要条件和充要条件。

考试要求:1.了解集合、元素的含义及其关系。

2.理解全集、空集、子集的含义,及集合之间的包含、相等关系。

3.掌握集合的表示法 (列举法、描述法、Venn 图)。

4.会求简单集合的并集、交集。

5.理解补集的含义,且会求补集。

6.理解原命题和原命题的逆命题、否命题、逆否命题的含义,及其相互之间的关系。

7.了解逻辑联结词“且”、“或”、“非”的含义。

8.理解命题的必要条件、充分条件、充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件。

(二) 函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)考试内容:函数、映射的概念与函数的表示方法。

函数的单调性、奇偶性、周期性、最大(小)值。

指数函数,对数函数,幂函数。

函数与方程之间的关系。

函数的简单应用。

考试要求:1.了解函数、映射的概念,会求简单的函数的定义域和值域。

2.理解函数的三种表示法:解析法、图象法和列表法。

3.了解简单的分段函数,会用分段函数解决简单的问题。

4.理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性,了解函数的周期性。

5.理解函数的最大(小)值的含义,会求函数的最大(小)值。

6.了解指数幂的含义,掌握有理指数幂的运算。

7.理解指数函数的概念,掌握指数函数的图象、性质及应用。

8.理解对数的概念,掌握对数的运算,会用换底公式。

理解对数函数的概念,掌握对数函数的图象、性质及应用。

9.了解幂函数的概念.掌握幂函数y = x , y = x 2, y = x 3,y =x -1, 21x y = 的图象和性质。

10.理解函数零点的概念。

11.了解指数函数、对数函数以及幂函数的变化特征。

12.能将一些简单的实际问题转化为相应的函数问题,并给予解决。

(三) 基本初等函数Ⅱ(三角函数)考试内容:角的概念、角度制与弧度制,三角函数的定义。

三角函数的图象与性质,诱导公式,同角三角函数关系,函数 y =A sin (ωx +φ)。

两角和与差的三角函数公式,简单的三角恒等变换。

正弦定理和余弦定理及应用。

考试要求:1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算。

2.理解正弦函数、余弦函数、正切函数的定义及其图象与性质,了解三角函数的周期 性。

3.理解同角三角函数的基本关系,掌握正弦、余弦、正切的诱导公式。

4.了解函数y =A sin (ωx +φ) 的物理意义,掌握y =A sin (ωx +φ) 的图象,了解参数A ,ω,φ 对函数图象变化的影响。

5.掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式。

6.掌握简单的三角函数式的化简、求值及恒等式证明。

7.掌握正弦定理、余弦定理及其应用。

(四) 数列与数学归纳法考试内容:数列的概念和表示法,等差数列,等比数列。

数学归纳法。

考试要求:1.了解数列的概念和表示方法 (列表、图象、公式)。

2.理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前n 项和公式及其应用。

3.了解等差数列与一次函数、等比数列与指数函数的关系。

4.会用数列的等差关系或等比关系解决实际问题。

5.了解数学归纳原理,会用数学归纳法证明简单的数学命题。

(五) 不等式考试内容:不等关系及其性质,一元二次不等式。

二元一次不等式组与简单线性规划问题。

基本不等式、绝对值不等式及其应用。

考试要求:1.了解不等关系,掌握不等式的性质。

2.了解一元二次函数、一元二次方程、一元二次不等式之间的联系。

会解一元二次不等式。

3.了解二元一次不等式的几何意义,掌握平面区域与二元一次不等式组之间的关系,并会求解简单的二元线性规划问题。

4.掌握基本不等式ab ba ≥+2(a ,b >0)及其应用。

5. 会解|x +b |≤c ,|x +b |≥c ,|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c 型不等式。

6.掌握不等式|| a| |b||≤|a+b|≤|a|+|b|及其应用。

(六) 平面向量考试内容:平面向量的基本概念,平面向量的线性运算及几何意义,平面向量的基本定理及坐标表示,平面向量的数量积,平面向量的应用。

考试要求:1.理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念。

2.掌握向量加法、减法、数乘的概念,并理解其几何意义。

3.理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题。

4.掌握平面向量的正交分解及其坐标表示。

5.掌握平面向量的加法、减法与数乘的坐标运算。

6.理解平面向量数量积的概念及其意义,了解平面向量的数量积与向量投影的关系。

7.掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系。

8.会用坐标表示平面向量的平行与垂直。

9.会用向量方法解决某些简单的平面几何问题。

(七) 平面解析几何考试内容:平面直角坐标系,直线方程,直线倾斜角与斜率。

两直线的交点坐标,两点间的距离,点到直线的距离,两条平行直线间的距离。

两直线平行与垂直。

曲线与方程的概念,求曲线方程的基本方法。

圆的标准方程与一般方程,椭圆、双曲线、抛物线的标准方程及简单几何性质,直线与圆、椭圆、双曲线、抛物线的位置关系,圆与圆的位置关系。

数形结合思想及简单应用。

考试要求:1.理解平面直角坐标系,理解直线的倾斜角与斜率的概念,掌握直线方程的点斜式、两点式及一般式,了解直线方程与一次函数的关系。

2.能根据两条直线的斜率判定这两条直线平行或垂直。

3.会求过两点的直线斜率、两直线的交点坐标、两点间的距离、点到直线的距离、两条平行直线间的距离。

4.掌握圆的标准方程与一般方程。

5.掌握椭圆、抛物线的定义、标准方程、几何图形及简单几何性质。

6.会解决直线与圆、椭圆、抛物线的位置关系的问题,会判断圆与圆的位置关系。

7.了解双曲线的定义、标准方程、几何图形及简单几何性质,了解直线与双曲线的位置关系。

8.了解方程与曲线的对应关系和求曲线方程的基本方法。

9.理解数形结合、用代数方法处理几何问题的思想。

相关文档
最新文档