初等数论竞赛训练

合集下载

高中数学联赛初等数论专题练习(带答案详解版)

高中数学联赛初等数论专题练习(带答案详解版)
则下列正确命题的序号是______________.
12.若两整数 、 除以同一个整数 ,所得余数相同,即 ,则称 、 对模 同余,用符号 表示,若 ,满足条件的 由小到大依次记为 ,则数列 的前 项和为________.
13.设 , 表示不超过 的最大整数,若存在实数 ,使得 , ,…, 同时成立,则正整数 的最大值是.
高中数学联赛初等数论专题练习(详解版)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设 ,用 表示不超过 的最大整数,则 称为高斯函数,例如: , ,已知函数 ( ),则函数 的值域为()
9.等差数列 的前 项和为 ,且 , ,记 ,其中 表示不超过 的最大整数,如 , ,则 _________.
10.已知 表示正整数 的所有因数中最大的奇数,例如:12的因数有1,2,3,4,6,12,则 ;21的因数有1,3,7,21,则 ,那么 _________.
11.用符号 表示小于 的最大整数,如 ,有下列命题:①若函数 ,则 的值域为 ;②若 ,则方程 有三个根;③若数列 是等差数列,则数列 也是等差数列;④若 ,则 的概率为 .
【解析】
【分析】
首先将函数解析式进行化简,并用换元思想,得到 ( ),研究二次函数在某个区间上的值域,求得 ,根据“高斯函数”的本质,求得结果.
【详解】
因为 ,令 ( ),
则 ( ),函数的对称轴方程为 ,
所以 ,
,所以 ,
所以 的值域为 ,
故选:B.
【点睛】
本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.

初中数学竞赛:数论的方法技巧(含例题练习及答案)

初中数学竞赛:数论的方法技巧(含例题练习及答案)

初中数学竞赛:数论的方法技巧数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(ak+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x<y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=an10n+an-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2m t,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

竞赛数论练习题

竞赛数论练习题

竞赛数论练习题在数学竞赛中,数论问题是一类相对较难但又非常有趣的问题。

这些问题涉及整数、除法、取余等概念,需要运用一定的数学技巧和推理能力来解决。

本文将为您提供一些竞赛数论练习题,希望能够帮助您提升数论问题的解题能力。

1. 问题描述:某数被3除余2,被5除余3,被7除余2。

求该数。

解题思路:题目要求找到满足三个除数条件的数。

我们可以列举出满足条件的数,从中找出规律。

首先,满足被3除余2的数有2,5,8,11等;满足被5除余3的数有3,8,13,18等;满足被7除余2的数有2,9,16,23等。

可以观察到,这些数相差15的倍数,因此我们可以将问题简化为求15的倍数。

解答:根据题目条件,我们可以列出满足条件的基本解为:x = 2 + 3m =3 + 5n = 2 + 7p。

其中,m,n,p为整数。

根据这个方程组,我们可以使用中国剩余定理来求解。

利用中国剩余定理,可以得到x = 23 +105k,其中k为整数。

因此,满足上述条件的数为23,128,233等。

2. 问题描述:求证:存在无穷多个形如11...11(n个1)的数能够被11整除。

解题思路:题目要求证明形如11...11(n个1)的数能够被11整除。

我们可以利用数学归纳法来证明这一点。

首先,对于n=1,显然11除以11余数为0,命题成立。

然后,假设对于n=k的情况,命题成立,即11k能够被11整除。

我们需要证明对于n=k+1的情况,11(k+1)也能够被11整除。

解答:根据归纳假设,我们假设11k能被11整除,即存在整数m使得11k = 11m。

那么我们可以将11(k+1)表示为11k + 11,根据归纳假设,11k能够被11整除,同时11也能够被11整除,因此11(k+1)也能被11整除。

根据数学归纳法可知,命题成立。

3. 问题描述:求证:任意一个大于1的自然数都可以表示成若干个连续奇数的和。

解题思路:题目要求证明任意一个大于1的自然数都可以表示成若干个连续奇数的和。

初中数学竞赛:数论的方法技巧(含例题练习及答案)

初中数学竞赛:数论的方法技巧(含例题练习及答案)

初中数学竞赛:数论的方法技巧数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(ak+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x<y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=an10n+an-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2m t,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

初等数论在数学竞赛中的应用

初等数论在数学竞赛中的应用

初等数论在数学竞赛中的应用
初等数论是数学竞赛中的常见题型,尤其是在奥数竞赛中。

下面列举几个常见的例子:
1. 最大公约数和最小公倍数的应用:通过对给定的两个数分解质因数,求其最大公约数和最小公倍数。

2. 模运算的应用:模运算是解决很多问题的关键,比如余数、同余方程、解密等等。

3. 素数的应用:判断一个数是否为素数、找出素数的个数、进行素数分解等,都是初等数论中常见的问题。

4. 数列基本性质的应用:通过数列基本性质(通项公式、前n项和公式等)求解数列问题,如等差数列、等比数列、斐波那契数列等。

5. 奇偶性的应用:通过奇偶性进行分类讨论,求解一些数论问题,比如判断两个数的和是否为偶数,判断阶乘的末尾有几个0等。

初等数论虽然简单,但它是解决很多高阶数学问题的基础。

在数学竞赛中,初步掌握初等数论的方法和技巧,能有效提高解题的效率和准确性。

初中数学竞赛专题复习第三篇初等数论第19章整数的整除性(上半部分)试题新人教版

初中数学竞赛专题复习第三篇初等数论第19章整数的整除性(上半部分)试题新人教版

第三篇 初等数论第19章 整数的整除性§19.1整除19.1.1★证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.解析 要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.设三个连续的奇数分别为21n -、21n +、23n +(其中n 是整数),于是 ()()()()22222121231121n n n n n -+++++=++. 所以()()()22212|212123n n n ⎡⎤-++++⎣⎦. 又()2111n n n n ++=++,而n 、1n +是相邻的两个整数,必定一奇一偶,所以()1n n +是偶数,从而21n n ++是奇数,故()()()22224212123n n n ⎡⎤-++++⎣⎦Œ. 19.1.2★★若x 、y 为整数,且23x y +,95x y +之一能被17整除,那么另一个也能被17整除.解析 设23u x y =+,95x y =+.若17|u ,从上面两式中消去y ,得3517v u x -=. ①所以 17|3v .因为(17,3)=1,所以17|v 即17|95x y +.若17|v ,同样从①式可知17|5u .因为(17,5)=1,所以17|u ,即17|23x y +. 19.1.3★★设n 是奇数,求证:60|6321n n n ---.解析 因为260235=⨯⨯,22、3、5是两两互质的,所以只需证明22、3、5能整除6321n n n ---即可.由于n 是奇数,有22|62n n -,22|31n +,所以22|6231n n n ---;又有3|63n n -,3|21n +,所以3|6321n n n ---;又有5|61n -,5|32n n +,所以5|6321n n n ---.所以60|6321n n n ---.评注 我们通常把整数分成奇数和偶数两类,即被2除余数为0的是偶数,余数为1的是奇数.偶数常用2k 表示,奇数常用21k +表示,其实这就是按模2分类.又如,一个整数a 被3除时,余数只能是0、1、2这三种可能,因此,全体整数可以分为3k 、31k +、32k +这三类形式,这是按模3分类.有时为了解题方便,还常把整数按模4、模5、模6、模8等分类,但这要具体问题具体处理.19.1.4★★设n 为任意奇正整数,证明:15961000270320n n n n +--能被2006整除. 解析 因为200621759=⨯⨯,所以为证结论成立,只需证n 为奇正整数时,15961000270320n n n n +--能被2、17、59整除.显然,表达式能被2整除.应用公式,n 为奇数时,()()121n n n n n a b a b a a b b ---+=+-++L ,()()121n n n n n a b a b a a b b ----=-+++L .由于159610005944+=⨯,2703205910+=⨯,所以15961000270320n n n n +--能被59整除. 又159627013261778-==⨯,10003206801740-==⨯,所以15961000270320n n n n +--能被17整除.19.1.5★★若整数a 不被2和3整除,求证:()224|1a -.解析 因为a 既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k 、61k +、62k +、63k +、64k +、65k +这六类.由于6k 、62k +、64k +是2的倍数,63k +是3的倍数,所以a 只能具有61k +或65k +的形式,有时候为了方便起见,也常把65k +写成61k -(它们除以6余数均为5).故a 具有61k ±的形式,其中k 是整数,所以()()222161136121231a k k k k k -=±-=±=±.由于k 与31k ±为一奇一偶(若k 为奇数,则31k ±为偶数,若k 为偶数,则31k ±为奇数),所以()2|31k k ±,于是便有()224|1a -.19.1.6★★★求证:31n +(n 为正整数)能被2或22整除,但不能被2的更高次幂整除. 解析 按模2分类.若2n k =为偶数,k 为正整数,则()22313131n k n +=+=+. 由3k 是奇数,()23k 是奇数的平方,奇数的平方除以8余1,故可设()2381k l =+,于是 ()3182241n l l +=+=+,41l +是奇数,不含有2的因数,所以31n +能被2整除,但不能被2的更高次幂整除. 若21n k =+为奇数,k 为非负整数,则()()()22131313313811461n k k l l ++=+=⋅+=++=+. 由于61l +是奇数,所以此时31n +能被22整除,但不能被2的更高次幂整除.19.1.7★★设p 是质数,证明:满足22a pb =的正整数a 、b 不存在.解析 用反证法.假定存在正整数a 、b ,使得22a pb =.令() , a b d =,1a a d =,1b b d =,则()11 , 1a b =.所以222211a d pb d =,2211a pb =,所以21|p a .由于p 是质数,可知,1|p a .令12a pa =,则22221a p pb =,所以2221pa b =.同理可得,1|p b .即1a 、1b 都含有p 这个因子,这与()11 , 1a b =矛盾.19.1.8★★如果p 与2p +都是大于3的质数,那么6是1p +的约数.解析 每一整数可以写成6n 、61n -、61n +、62n -、62n +、63n +中的一种(n 为整数),其中6n 、62n -、62n +、63n +在1n ≥时都是合数,分别被6、2、2、3整除.因此,质数p 是61n -或61n +的形式.如果()611p n n =+≥,那么()263321p n n +=+=+是3的倍数,而且大于3,所以2p +不是质数.与已知条件矛盾.因此()611p n n =-≥.这时16p n +=是6的倍数.评注 本题是将整数按照除以6,所得的余数分为6类.质数一定是61n +或61n -的形式.当然,反过来,形如61n -或61n +的数并不都是质数.但可以证明形如61n -的质数有无穷多个,形如61n +的质数也有无穷多个.猜测有无穷多个正整数n ,使61n -与61n +同为质数.这是孪生质数猜测,至今尚未解决. 19.1.9★★已知a 、b 是整数,22a b +能被3整除,求证:a 和b 都能被3整除. 证 用反证法.如果a 、b 不都能被3整除,那么有如下两种情况:(1)a 、b 两数中恰有一个能被3整除,不妨设3|a ,3b Œ.令3a m =,31b n =±(m 、n 都是整数),于是()222222996133321a b m n n m n n +=+±+=+±+,不是3的倍数,矛盾.(2)a ,b 两数都不能被3整除.令31a m =±,31b n =±,则()()2222223131961961a b m n m m n n +=++±=±++±+()22333222m n m n =+±±+, 不能被3整除,矛盾.由此可知,a 、b 都是3的倍数.19.1.10★★若正整数x 、y 使得2x x y+是素数,求证:x y ≤. 解析 设2x p x y=+是素数,则()py x x p =-,所以()|p x x p -,故|p x ,或者|p x p -,故可得|p x ,且p x <.令x kp =,k 是大于1的整数,则()1y x k x =-≥.19.1.11★证明:形如abcabc 的六位数一定被7、11、13整除.解析 100171113abcabc abc abc =⨯=⨯⨯⨯. 由此可见,abcabc 被7、11、13整除.19.1.12★任给一个正整数N ,把N 的各位数字按相反的顺序写出来,得到一个新的正整数N ',试证明:N N '-被9整除.解析 N 除以9,与N 的数字和除以9,所得余数相同.N '除以9,与N '的数字和除以9,所得余数相同.N 与N '的数字完全相同,只是顺序相反,所以N 与N '的数字和相等.N 除以9与N '除以9,所得的余数相同,所以N N '-被9整除.19.1.13★19991999199919991999N =L 144424443连写个.求N 被11除所得的余数.解 显然,N 的奇数位数字和与偶数位数字和的差为()1999999119998⨯+--=⨯.19998⨯除以11的余数与88⨯除以11的余数相同,即余数为9.从而N 除以11,所得的余数为9. 19.1.14★在568后面补上三个数字,组成一个六位数,使它能被3、4、5分别整除.符合这些条件的六位数中,最小的一个是多少?解析 要命名这个六位数尽可能小,而且能被5整除,百位数字和个位数字都应选0.这样,已知的五个数位上数字之和是5+6+8+0+0=19.要使这个六位数能被3整除,十位上可填2、5、8.由能被4整除的数的特征(这个数的末两位数应该能被4整除)可知,应在十位上填2.这个六位数是568020.19.1.15★★已知四位数abcd 是11的倍数,且有b c a +=,bc 为完全平方数,求此四位数. 解析 在三个已知条件中,b c a +=说明给出b 和c ,a 就随之给定,再由11|abcd ,可定d .而bc 为完全平方数,将b 和c 的取值定在两位平方数的十位和个位数字范围中,只要从这个范围中挑选符合要求的即可. 由bc 完全平方数,只可能为16、25、36、49、64、81这六种情况.由b c a +=,此时相应的a 为7、7、9、13、10、9.其中13和10显然不可能是四位数的千位数字. 在716d 、725d 、936d 、981d ,这四种可能性中,由11|abcd ,应有()()11|d b a c +-+. ()()11|176d +-+时,d 可为1;()()11|275d +-+时,这种d 不存在;()11|396d +-+时,d 可为1;()11|891d +-+时,d 可为2.故满足条件的四位数有:7161、9361、9812.评注bc 为完全平方数,表示bc 是两位整数,0b ≠,因此,不考虑00、01、04、09这四种情况,否则还应加上1012、4048、9097这三个四位数.19.1.16★★用0,1,2,…,9这十个数字组成能被11整除的最大的十位数是多少? 解析 因为0+1+2+…+9=45.这个最大十位数若能被11整除,其奇数位上数字之和与偶数位上的数字之和的差(大减小)为0或11的倍数.由于这十个数字之和是45(奇数),所以这个差不可能是0、22、44(偶数).若这个差为33,则只能是396-,但0+1+2+3+4=10,即最小的五个数字之和都超过6,不可能.若这个差为11,()4511228+÷=,452817-=.如果偶数位为9、7、5、3、1,其和为25;奇数位为8、6、4、2、0,其和为20.交换偶数位上的1与奇数位上的4,可得偶数位上的数为9、7、5、4、3,奇数位上的数为8、6、2、1、0.19.1.17★★一个六位数88的倍数,这个数除以88所得的商是多少? 解析 设这个六位数为1234A B ,因为它是88的倍数,而88811=⨯,8与11互质,所以,这个六位数既是8的倍数,又是11的倍数.由1234A B 能被8整除,可知34B 能被8整除(一个数末三位组成的数能被8整除,这个数就能被8整除),所以B 是4.由能被11整除的数的特征(一个数奇数位数字之和与偶数位数字之和的差能被11整除,这个数就能被11整除),可知奇数位数字之和与偶数位数字之和的差()()234144A A ++-++=-能被11整除,则40A -=,即4A =.124344881413÷=.所以,这个六位数是124344的商是1413.19.1.18★★如果六位数105整除,那么,它的最后两位数是多少? 解析 因为这个六位数能被105357=⨯⨯,3、5、7这三个数两两互质,所以,这个六位数能同时被3、5、7整除.根据能被5整除的数的特征,它的个位数可以是0或5.根据能被3整除的数的特征,可知这个六位数有如下七种可能:199320,199350,199380,199305,199335,199365,199395.而能被7整除的数的特征是:这个数的末三位数字所表示的数与末三位以前的数字所表示的数的差(以大减小)能被7整除.经试算:395199196-=,196能被7整除.所以,199395能被105整除,它的最后两位数是95.19.1.19★★形如1993199319931993520n L 1442443个,且能被11整除的最小数是几? 解析 本题实质上确定n 的最小值.利用被11整除的数的特征:偶数位数字之和与奇位数字之和的差能被11整除.该数的偶数位数字之和为122n +,奇数位数字之和为105n +,两者之差为()12210523n n n +-+=-.要使()11|23n -,不难看出最小的7n =,故所求最小数为71993199319931993520L 1442443个. 19.1.20★★★是否存在100个不同的正整数,使得它们的和与它们的最小公倍数相等? 解析 存在满足条件的100个数.事实上,对任意正整数()3n ≥,下述n 个数3,23⨯,223⨯,…,223n -⨯,13n -,它们的最小公倍数为123n -⨯,和为221222132323233323233n n n n ----+⨯+⨯++⨯+=+⨯++⨯+L L 33211113232333323n n n n n -----=+⨯++⨯+==+=⨯L L .所以,这几个数的和等于它们的最小公倍数.取100n =,可知存在符合要求的19.1.21★★下面这个41位数20555L 123个2099L 23个能被7整除,问中间方格代表的数字是几? 解析 因为5555555111111=⨯,9999999111111=⨯,11111137111337=⨯⨯⨯⨯,所以555555和999999都能被7整除,那么由18个5和18个9分别组成的18位数,也能被7整除.而原数=185230555000L L 123123个个1851890999+L L 123123个个,因此右边的三个加数中,前后两个数都能被1整除,那么只要中间的能被7整除,7整除.把拆成两个数的和:5599BA B +.因为7|55300,7|399336+=.评注 记住111111能被7整除很有用.19.1.22★★一位魔术师让观众写下一个六位数a ,并将a 的各位数字相加得b ,他让观众说出a b -中的5个数字,观众报出1、3、5、7、9,魔术师便说出余下的那个数,问那个数是多少?解析 由于一个数除以9所得的余数与这个数的数字和除以9所得的余数相同,所以a b -是9的倍数.设余下的那个数为x ,则()9|13579x +++++,即 ()9|7x +,由于09x ≤≤,所以,2x =.19.1.23★★若p 、q 、21p q-、21q p -都是整数,并且1p >,1q >.求pq 的值. 解析 若p q =,则212112p p q p p--==- 不是整数,所以p q ≠.不妨设p q <,于是2121212p q q q q q--<<=≤, 而21p q-是整数,故211p q -=,即21q p =-.又 214334q p p p p--==- 是整数,所以p 只能为3,从而5q =.所以3515pq =⨯=.19.1.24★★★试求出两两互质的不同的三个正整数x 、y 、z 使得其中任意两个的和能被第三个数整除.解析 题中有三个未知数,我们设法得到一些方程,然后从中解出这些未知数.不妨设x y z <<,于是y z x +、z x y +、x y z+都是正整数.先考虑最小的一个: 12x y z z z z++<=≤, 所以1x y z+=,即z x y =+.再考虑z x y +,因为()|y z x +,即()|2y y x +,所以|2y x ,于是2212x y y y<=≤, 所以21x y=,即2y x =,从而这三个数为x 、2x 、3x .又因为这三个数两两互质,所以1x =. 所求的三个数为1、2、3.19.1.25★★★求所有的有理数a ,使得421a -≤,并且44127a A a -=为整数. 解析 由条件,可知1344a ≤≤.当14时,0A =是整数;下面考虑1344a <≤的情形,此时设p a q=,p 、q 为正整数,且() , 1p q =.则由()34427p q p A q -=为正整数和() , 1p q =可知4|4q q p -,进而|4q q p -,导致|q p ,再结合() , 1p q =,得1q =.于是()3427p p A -=,又114a p =>.故3p ≤,易知仅当3p =时A 为正整数. 综上可知,满足条件的14a =或13. 19.1.26★★设正整数x 、y 、r 、t 满足1100x y r t <<<≤≤.求x r y t+的最小值. 解析 由条件,可知11111121100100100100100100x r r y y y t y y y ++++=++=≥≥≥. 等号在()() , , , 1 , 10 , 11 , 100x y r t =时取到,因此所求的最小值为21100. 19.1.27★★已知正整数a 、b 、p 、q 、r 、s 满足条件1qr ps -=,p a r q b s<<. 证明:b q s +≥.解析 由条件,可知pb aq <,as br <,故1pb aq +≤, ①1as br +≤.② 将①s ⨯与②q ⨯,然后相加,得psb s q brq ++≤.结合1rq ps -=,可知b q s +≥.19.1.28★★★将正整数N 接写在任意一个正整数的右面(例如,将2接写在35的右面得352),如果得到的新数都能被N 整除,那么N 称为“魔术数”.问:在小于130的正整数中有多少个魔术数?解析 设P 为任意一个正整数,将魔术数()130N N <接后得PN ,下面对N 为一位数、两位数、三位数分别进行讨论.(1)当N 为一位数时,10PN P N =+,依题意|N PN ,则|10N P .由于需对任意数P 成立,故|10N .所以N =1,2,5.(2)当N 为两位数时,100PN P N =+,依题意|N PN ,则|100N P ,故|100N .所以N =10,20,25,50.(3)当N 为三位数时,1000PN P N =+,依题意|N PN ,则|1000N P ,故|1000N .所以100N =,125.综上所述,魔术数的个数为9个.评注 (1)我们可以证明:k 位魔术数一定是10k 的约数.事实上,设N 是k 位魔术数,将N 接写在正整数P 的右面得:10k PN P N =⨯+,由魔术数定义可知:|N PN ,因而10k P ⨯也能被N 整除,所以|10k N .这样我们有:一位魔术数为1,2,5;二位魔术数为10,20,25,50;三位魔术数为100,125,200,250,500;三位或三位以上的魔术数,每种个数均为5.(2)这里将问题分成几种情况去讨论,对每一种情况都增加了一个前提条件,从而降低了问题的难度,使问题较容易解决.19.1.29★★一个正整数如果从左读到右与从右到左读所得的结果相同,则称这个数为回文数.例如:1,343及2002都是回文数,但2005则不是.请问能否找到2005个不同的回文数122005 , , , n n n L ,使得122005110 , 110 , , 110n n n +++L 也都是回文数?解析 取回文数10999901n =L ,则11011000011n +=L 也是回文数.因为n 中9的数目可以任选,可取110901n =,2109901n =,…,20052005910999901n =L 14243个,因此我们可以找到2005个回文数满足题目所要求的条件.19.1.30★★将2008个同学排成一行,并从左向右编为1至2008号.再从左向右从1到11地报数,报到11的同学原地不动,其余同学出列.留下的同学再次从左向右从1到11地报数,报到11的同学留下,其余同学出列.留下的同学第三次从左向右1到11报数,报到11的同学留下,其余同学出列.问最后留下的同学有多少人?他们的编号是几号? 解 由题意,第一次报数后留下的同学,他们的编号必为11的倍数.第二次报数后留下的同学,他们的编号必为211121=的倍数.第三次报数后留下的同学,他们的编号必为3111331=的倍数.因此,最后留下的同学编号为1331的倍数,我们知道从1~2008中,1331的倍数只有一个,即1331号.所以,最后留下一位同学,编号为1331.19.1.31★★★甲、乙两人进行了下面的游戏.两人先约定一个整数N ,然后由甲开始,轮流把0、1、2、3、4、5、6、7、8、9这十个数字之一填入下面的任一方格中.□□□□□□每一方格只填一个数字,六个方格都填上数字(数字可重复)后,就形成一个六位数,如果这个六位数能被N 整除,就算乙胜;如果这六位数不能被N 整除,就算甲胜.设N 小于15,那么当N 取哪几个数时,乙才能取胜?解析 N 取偶数,甲可以在最右边方格里填一个奇数(六位数的个位),就使六位数不能被N 整除,乙不能获胜.5N =,甲可以在六位数的个位填一个不是0或5的数,甲就获胜.上面已经列出了乙不能获胜的N 的取值情况.如果1N =,很明显乙必获胜.如果3N =或9,那么乙在填最后一个数时,总是能把六个数字之和凑成3的整数倍或9的整数倍.因此乙必获胜.当7N =,11,13时是本题最困难的情况.注意到100171113=⨯⨯,乙就有一种必胜的办法.我们从左往右数这六个格子,把第一与第四,第二与第五,第三与第六配对,甲在一对格子的一格上填某一个数字后,乙就在这一对格子的另一格子上填同样的数字,这就保证所填成的六位数能被1001整除,这个六位数就能被7、11或13整除,故乙就能获胜.综合起来,使乙获胜的N 是1、3、7、9、11、13.19.1.32★★小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,问小明家原来的电话号码是多少?解析 设原来电话号码的六位数为abcdef ,则经过两次升位后电话号码的八位数为28a bcdef .根据题意,有8128abcdef a bcdef ⨯=.记43210101010x b c d e f =⨯+⨯+⨯+⨯+,于是5568110812081010a x a x ⨯⨯+=⨯+⨯+,解得()125020871x a =⨯-. 因为5010x <≤,所以()5012502087110a ⨯-<≤, 故1282087171a <≤. 因为a 为整数,所以2a =.于是()125020871282500x =⨯-⨯=.所以,小明家原来的电话号码为282500.19.1.33★★若a 是不超过1000的正整数,且247a a ++是最简分数,则a 的取值有多少个? 解析 因为2723444a a a a +=-+++,所以()4 , 231a +=,由于23是质数,所以4a +不是23的倍数即可,在5,6,…,1004中,23的倍数有43个,所以满足条件的正整数a 有100043957-=个.19.1.34★★★★在各位数码各不相同的10位数中,是11111的倍数的数共有多少个. 解析 设这个10位数为abcdefghij ,因为这10位数的各位数码各不相同,所以a 、b 、c 、d 、e 、f 、g 、h 、i 、j 是0 , 1 , 2 , , 9L 的一个排列,故45a b c d e f g h i j +++++++++=. 所以9|abcdefghij . 因为11111|abcdefghij 且(11111,9)=1,所以99999|abcdefghij ,即599999|10abcde fghij ⨯+.又99999|99999abcde ⋅,所以99999|abcde fghij +. 因为0999992abcde fghij <+<⨯,所以99999abcde fghij +=,所以9a f b g c h d i e j +=+=+=+=+=.而99081726354=+=+=+=+=+,所以,符合题意的数共有54543212432123456⨯⨯⨯⨯⨯-⨯⨯⨯⨯=(个).19.1.35★★★从1,2,…,9这九个数字中,每次取出3个不同的数字组成三位数,求其中能被3整除的三位数的和.解析 对于固定的三个不同的非零数字a 、b 、c ,任意排列,可得6个不同的三位数,它们的和为()2111a b c ++⨯. 因为()3|3|abc a b c ⇔++u u u r ,所以有以下两种情况:(1)a 、b 、c 除以3所得的余数相同,即a 、b 、c 取成{}1 , 4 , 7,或{}2 , 5 , 8,或{}3 , 6 , 9,这样得到的()332118⨯⨯⨯=个的三位数的总和为()()()21472583691119990++++++++⨯=⎡⎤⎣⎦.(2)a 、b 、c 除以3所得的余数各不相同,不妨设a 取自{}1 , 4 , 7,b 取自{}2 , 5 , 8,c 取自{}3 , 6 , 9,这种三位数共有()333321162⨯⨯⨯⨯⨯=个.对于固定的a ,易知b 、c 有339⨯=种取法,因而这162个三位数的和为()91239211189910++++⨯⨯=L .综合(1)、(2),可知,所求的满足条件的三位数总和为9990+89910=99900.19.1.36★★★证明一个正整数,当且仅当它不是2的整数幂时,可以表示成若干个(至少两个)连续正整数的和.解析 当且仅当,有两方面的意思.一方面,当一个正整数不是2的整数幂时,它可以表示成几个连续正整数的和.另一方面,如果一个正整数可以表示成几个连续正整数的和,那么它一定不是2的整数幂.设n 不是2的整数幂.这时n 可以写成2k n h =⋅,h 是大于1的奇数. ①我们可将n 写成h 个连续正整数的和.中间一个是2k ,它的两侧是21k -与21k +,再向外分别写22k -与22k +,…,直至122k h --与122k h -+(h 是奇数,所以12h -是整数),即 ()()132********k k k k k h h n --⎛⎫⎛⎫=-+-++-+++++ ⎪ ⎪⎝⎭⎝⎭L L 312222k k h h --⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭. 另一方面,设n 是()1h h >个连续正整数1k +,2k +,…,k h +的和,则()()()()()11122122k k h hn k k k h k h h +++=++++++==++L , 其中h 与21k h ++奇偶性不同,即至少有一个是大于1的奇数.所以这时n 不是2的整数幂. 评注 2的整数幂没有大于1的奇约数.所以一个整数,如果有大于1的奇约数就一定不是2的整数幂.19.1.37★★★玛丽发现将某个三位数自乘后,所得乘积的末三位数与原三位数相同.请问:满足上述性质的所有不同的三位数的和是多少? 解析 设三位数为abc ,则 21000abc k abc =+, 即()33125abc abc k -=⋅, 而() , 11abc abc -=,所以,32|abc ,且35|1abc -;或者32|1abc -,且35|abc .(1)若32|abc ,且35|1abc -,则1125abc -=,375,625,875,只有376abc =使得32|abc ,故此时376abc =满足题意.(2)若32|1abc -,且35|abc ,则125abc =,375,625,875,只有625abc =使得32|1abc -,故此时625abc =满足题意.所以,所求的和为376+625=1001.19.1.38★★★我们知道,4998约分后是12,但按下面的方法,居然也得14941:29882==.试求出所有分子和分母都是十进制两位正整数,分子的个位数与分母的十位数相同,且具有上述“奇怪”性质的真分数.解析 设真分数ab bc 具有上述性质,则ab bc <,且1ab a cbc =<,于是 1010a b a b c c+=+, 故()910ac b a c =-.若()9|10a c -,则()9|a c -,但是9a c -<,所以0a c -=,矛盾.故9不整除10a c -,所以3|b .(1)若3b =,则310ac a c =-,于是10333131a a c a a -==+++,所以()()31|3a a +-,而331a a -<+,故只能是3a =,从而3c =,矛盾.(2)若6b =,则()3210ac a c =-,于是2021263232a a c a a -==+++,当6a >时,021232a a <-<+,此时c 不是整数;当6a =时,6c =,矛盾;当6a <时,应有12232a a -+≥,所以2a ≤,而当1a =时,4c =,此时,满足题意的真分数为1664,当2a =时,5c =,此时,满足题意的真分数为2665. (3)若9b =,则10ac a c =-,于是10101011a c a a ==-++,所以,()1|10a +,故a =1,4,9.当1a =时,5c =,此时,满足题意的真分数为1995; 当4a =时,8c =,此时,满足题意的真分数为4998;当9a =时,9c =,矛盾. 综上所述,满足题意的真分数为:1664,2665,1995,4998. 19.1.39★★★在1,2,3,…,1995这1995个数中,找出所有满足下面条件的数a :()1995a +能整除1995a ⨯.解析 19951995a a+是一个整数.这个式子的分子、分母都有a ,所以应当先进行变形,使得分子不含有a .()19951995199519951995199519951995199519951995a a a a a+-⨯⨯==-+++. 根据已知,19951995a a +是整数,所以199519951995a⨯+是整数. 因为22221995199535719⨯=⨯⨯⨯,所以它的因数1995a +可以通过检验的方法定出.注意11995a ≤≤,所以199519953990a <+≤.如果1995a +不被19整除,那么它的值只能是以下两种:223573675⨯⨯=,223572205⨯⨯=.如果1995a +被19整除,而不被219整除,那么它的值只能是以下两种:237192793⨯⨯=,257193325⨯⨯=.如果1995a +被219整除,那么它的值只能是以下两种:27192527⨯=,223193249⨯=.于是满足条件的a 有6个,即从以上1995a +的6个值分别减去1995,得出的6个值: 1680,210,798,1330,532,1254.评注 形如ac a b +的式子,可以化成cb c a b-+.使得只有分母含a ,而分子不含a .这种方法有点像假分数化成带分数.19.1.40★★★在1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?解析 首先,如下61个数:11,11+33,11233+⨯,…,()1160331991+⨯=满足题设条件.另一方面,设12n a a a <<<L 是从1,2,…,2010中取出的满足题设条件的数,对于这n 个数中的任意4个数 , , , i j k m a a a a ,因为()33|i k m a a a ++,()33|j k m a a a ++,所以()33|j i a a -.因此,所取的数中任意两个之差都是33的倍数.设133i i a a d =+, 2 , 3 , , i n =L .由()12333|a a a ++,得()12333|33333a d d ++. 所以133|3a ,111|a ,即111a ≥.1201011613333n n a a d --=<≤, 故60n d ≤,所以,61n ≤.综上所述,n 的最大值为61.19.1.41★★★圆周上放有N 枚棋子,如图所示.B 点的棋子紧邻A 点的棋子.小洪首先拿走B 点的棋子,然后顺时针每隔1枚拿走2枚棋子.这样连续转了10周.9次越过A ,当将要第10次越过A 取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N 是14的倍数,请帮助小洪精确计算一下圆周上还有多少枚棋子.解析 如果在A 、B 之间再添一枚棋子,并在第一次取棋子时将它取走,那么每一次都是在相邻3枚棋子中取走2枚,所以每取一周,剩下的棋子是上一次剩下的13.B设最后剩下a 枚棋子.根据分析所说 1013N a +=, ① 即1031N a =⨯-.因为N 是14的倍数,所以N 是偶数,a 是奇数.又N 是7的倍数,而10539==(7的倍数)+52=(7的倍数)+4,所以41a -是7的倍数. 因为a 是20与29之间的奇数,将a =21,23,25,27,29代入41a -,逐一检验,只有a =23时,4191713a -==⨯是7的倍数. 所以圆周上还有23枚棋子.评注 在A 、B 之间添上一枚棋子,使得取棋子有明显的规律,从而得到①.这是一种很巧妙的想法.在计算103除以7的余数时,可以将其中7的倍数抛弃,直至出现小于7的4.这是常用的方法.19.1.42★★★★求证:对1i =,2,3,均有无穷多个正整数n ,使得n ,2n +,28n +中恰有i 个可表示为三个正整数的立方和.解析 三个整数的立方和被9除的余数不能为4或5,这是因为整数可写为3k 或31k ±(k是整数),而()33393k k =⨯,()()332319331k k k k ±=±+±.对1i =,令()33312n m =--(m 是正整数),则n 、28n +被9除的余数分别为4、5,故均不能表示为三个整数的立方和,而()()()3332313131n m m m +=-+-+-.对2i =,令()331222n m =-+(m 是正整数)被9除的余数为5,故不能表示为三个整数的立方和,而()3323126n m +=-++, ()333283155n m +=-++.对3i =,令3216n m =(m 是正整数)满足条件:()()()333345m m m m =++, ()3332611n m +=++, ()33328613n m +=++.§19.2奇数与偶数19.2.1★设有101个自然数,记为12101 , , , a a a L .已知12310123101a a a a s ++++=L 是偶数,求证:13599101a a a a a +++++L 是偶数.解析 ()1359910123451001012244100100a a a a a s a a a a a a +++++=-++++++L L 是偶数. 19.2.2★设121998 , , , x x x L 都是1+或者1-.求证:12319982319980x x x x ++++≠L . 解析()12319981351997231998351997x x x x x x x x ++++=++++L L ()241998241998x x x ++++L .因为131997 , 3 , , 1997x x x L 这999个数均为奇数,所以它们的和为奇数,于是12199821998x x x +++=L 奇数0≠.19.2.3★★设()12 , , , 4n x x x n >L 为1+或为1-,并且123423451230n x x x x x x x x x x x x +++=L . 求证:n 是4的倍数.解析 设12342345123 , , , n x x x x x x x x x x x x L 中1+有k 个,于是1-也有k 个,故2n k =为偶数.把12342345123 , , , n x x x x x x x x x x x x L 这n 个数相乘,得()()4121kn x x x =-L,所以()11k-=.故k 是偶数,从而n 是4的倍数.19.2.4★某次数学竞赛,共有40道选择题,规定答对一题得5分,不答得1分,答错倒扣1分.证明:不论有多少人参赛,全体学生的得分总和一定是偶数. 解析 我们证明每一个学生的得分都是偶数.设某个学生答对了a 道题,答错了b 道题,那么还有40a b --道题没有答.于是此人的得分是()5404240a a b b a b +---=-+,这是一个偶数.所以,不论有多少人参赛,全体学生的得分总和一定是偶数.19.2.5★把前50个正整数分成两组,使第一组内各数之和等于第二组内各数之和,能办到吗?说明你的理由.解析 不能办到.如果能办到,那么所有数加起来应该是第一组内各数之和的2倍,是偶数,但这50个数的总和为5051125025512⨯+++==⨯L是个奇数,矛盾!19.2.6★设1,2,3,…,9的任一排列为129 , , , a a a L ,求证:()()()129129a a a ---L 是一个偶数.解析 因为()()()()()()123912912391290a a a a a a a -+-+-++-=+++-+++=L L L是偶数,所以,()()()1291 , 2 , , 9a a a ---L 这9个数中必定有一个是偶数,从而可知()()()129129a a a ---L 是偶数.解析2 由于1,2,…,9中只有4个偶数,所以1a 、3a 、5a 、7a 、9a 中至少有一个是奇数,于是11a -、33a -、55a -、77a -、99a -中至少有一个是偶数,从而()()()129129a a a ---L 是偶数.19.2.7★有n 个数12 , , , n x x x L ,它们中的每一个数或者为1,或者为1-,如果 1223110n n n x x x x x x x x -++++=L , 求证:n 是4的倍数.解析 我们先证明2n k =为偶数,再证k 也是偶数.由于12 , , , n x x x L 的绝对值都是1,所以12231 , , , n x x x x x x L 的绝对值也都是1,即它们或者是为1+,或者为1-,设其中有k 个1-,由于总和为0,故1+也有k 个,从而2n k =. 下面我们来考虑()()()12231n x x x x x x ⋅⋅⋅L .一方面,有()()()()122311kn x x x x x x ⋅⋅⋅=-L ,另一方面,有()()()()212231121n n x x x x x x x x x ⋅⋅⋅==L L .所以()11k-=,故k 是偶数,从而n 是4的倍数.19.2.8★★设a 、b 是正整数,且满足关系式()()1111111111123456789a b +-=.求证:a b -是4的倍数.解析 由已知条件可得11111a +与11111b -均为奇数,所以a 、b 均为偶数,又由已知条件()111112468a b ab -=+,因为ab 是4的倍数,24684617=⨯也是4的倍数,所以()11111a b ⨯-是4的倍数,故a b -是4的倍数.19.2.9★★9999和99!(注:99!123499=⨯⨯⨯⨯⨯L ,读作99的阶乘)能否表示成为99个连续的奇数的和?解析 (1)9999能.因为()()()()999898989898999998999699299992=-+-++-+++++L L ()()989899969998+++.即9999能表示为99个连续奇数的和. (2)99!不能.因为99!12399=⨯⨯⨯⨯L 是一个偶数,而99个连续奇数之和仍为奇数,所以99!不能表示为99个连续奇数之和.评注 如果答案是肯定的,我们常常将满足题意的例子举出来或造出来,这称为构造法. 如果答案是否定的,常常采用反证法,找出其中的矛盾. 19.2.10★★代数式rvz rey suz swx tuy tvx --++-.① 中,r 、s 、t 、u 、v 、w 、x 、y 、z 可以分别取1+或1-. (1)证明:代数式的值都是偶数; (2)求这个代数式所能取到的最大值.解析 (1)①式中共有6项,每项的值都是奇数(1+或1-),所以它们的代数和为偶数.(2)显然,①式的值6≤,但它取不到6这个值,事实上,在rvz 、rwy -、suz -、swx 、tuy 、tvx -这六项中,至少有一项是1-,要证明这一点,将上面这6项相乘,积是 ()21rstuvwxyz -=-.所以六项中,至少有一项是1-,这样,六项和至多是514-=.在u 、x 、y 为1-,其他字母为1时,①式的值是4,所以①的最大值为4. 评注 本例中的代数式实际上是行列式 r s t u v w x y z的展开式,行列式是一个很有用的工具,在今后的学习中还会遇到.19.2.11★★★在n n ⨯(n 为奇数)方格表里的每一个方格中任意填上一个1+或1-,在每一列的下面写上该列所有数的乘积,在每行的右面写上该行所有数的乘积,求证:这个乘积的和不等于0.解析 设每列下面的数为12 , , , n a a a L ,每行右面的数为12 , , , n b b b L ,依题意得1i a =+或1-,1i b =+或\1-, 1 , 2 , , i n =L ,若这2n 个乘积的和为0,即12120n n a a a b b b +++++++=L L ,则这2n 个数中1+的个数与1-的个数一样多,都是n 个,但事实上,因为 1212n n a a a b b b =L L ,()21212121n n n a a a b b b a a a ==L L L .所以这2n 个数中1-的个数为偶数,即n 为偶数,矛盾.19.2.12★★在黑板上写上1,2,…,2000,2001,只要黑板上还有两个或两个以上的数,就擦去其中任意两个数a 和b ,并写上a b -,问最后黑板上剩下的数是奇数还是偶数? 解析因为a b -与a b -有相同的奇偶性,而a b -又与a b +有相同的奇偶性,因此a b-与a b +具有相同的奇偶性.所以黑板上剩下的数的奇偶性与20012002122001*********⨯+++==⨯L 的奇偶性相同,是奇数.19.2.13★★把图中的圆圈任意涂上红色或蓝色,问有没有可能使得在同一条直线上的红圈数都是奇数?请说明理由.解析 如果每条线上红圈都是奇数个,那么5条线上的红圈数相加仍是奇数.但另一方面,由于每个圈都在两条直线上,因而相加时每个红圈都被计算了两次,从而相加的总和应该是偶数.两方面的结果是矛盾的.因此,不可能使同一条线上的红圈数都是奇数.19.2.14★★围棋盘上有1919⨯个交叉点,在交叉点上已经放满了黑子与白子,并且黑子与白子相间地放,即黑子(白子)的上、下、左、右都放着白子(黑子).问能否把这些黑子全部移到原来白子的位置上,而白子也全移到原来的黑子的位置上? 解析 不能.因为1919361⨯=是奇数,所以,必有奇数个白子,偶数个黑子;或者奇数个黑子,偶数个白子.即黑、白子数必然一奇一偶.奇数不可能等于偶数,所以无法使黑子与白子的位置对调.19.2.15★★参加会议的人,有不少互相握过手.握手的次数是奇数的那部分人,人数是奇数还是偶数?为什么?解析 由于每握一次手,握手的两个人,每一个都握了一次手.因此每握一次手,两个人握手次数的和就是2次.所以,全部与会的人握手的总次数必定是偶数.我们把参加会议的人分成两类,甲类握手次数是偶数,乙类握手次数是奇数,甲类人握手的总次数显然是偶数.注意甲类人握手的总次数加上乙类人握手的总次数等于全部与会的人握手的总次数,所以乙类人握手的总次数也应当是偶数.由于乙类人每人握手的次数都是奇数,而偶数个奇数相加,和才能为偶数,因此,乙类人必为偶数个,即握手次数是奇数的那部分人,人数是偶数.19.2.16★★设标有A 、B 、C 、D 、E 、F 、G 记号的七盏灯顺次排成一行,每盏灯安装一个开关.现在A 、C 、E 、G 四盏灯开着,其余三盏灯是关的.小刚从灯A 开始,顺次拉动开关.即从A 到G ,再从A 到G ,这样拉动了1999次开关后,哪几盏灯是开的? 解析 一盏灯的开关被拉动奇数次后,改变状态,即开的变成关的,关的变成开的.一盏灯的开关被拉动偶数次后,不改变状态,即开的仍为开的,关的仍为关的.因此本题的关键是计算各盏灯被拉次数的奇偶性.由 199972854=⨯+,可知,A 、B 、C 、D 四盏灯的开关各被拉动了286次,而E 、F 、G 三盏灯的开关各被拉动了285次.所以,A 、B 、C 、D 四灯不改变状态,E 、F 、G 三灯改变状态.由于开始时A 、C 、E 、G 四灯是开着的.因此,最后A 、C 、F 三灯是开着的.19.2.17★★桌上放着七只杯子,杯口全朝上,每次翻转四个杯子.问能否经过若干次这样。

初等数论练习题答案(优选.)

初等数论练习题答案(优选.)

初等数论练习题答案(优选.)初等数论练习题答案原点教育培训学校初等数论练习题⼀⼀、填空题1、d(2420)=12; ?(2420)=_880_2、设a,n 是⼤于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最⼩完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余⽅程9x+12≡0(mod 37)的解是x ≡11(mod 37)。

5、不定⽅程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。

.6、分母是正整数m 的既约真分数的个数为_?(m )_。

7、18100被172除的余数是_256。

8、??? ??10365 =-1。

9、若p 是素数,则同余⽅程x p - 1 ≡1(mod p )的解数为 p-1 。

⼆、计算题1、解同余⽅程:3x 2+11x -20 ≡ 0 (mod 105)。

解:因105 = 3?5?7,同余⽅程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余⽅程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余⽅程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余⽅程有4解。

作同余⽅程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙⼦定理得原同余⽅程的解为x ≡ 13,55,58,100 (mod 105)。

2、判断同余⽅程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(()(解:故同余⽅程x 2≡42(mod 107)有解。

中科大少年班数学考试专题练习-初等数论

中科大少年班数学考试专题练习-初等数论
即不存在两整数平方之和为 ,
7.已知 , ,求 .
【答案】
【分析】将原式变形,再讨论 的取值即可得出结果.
【详解】 ,
,
又 , 或 (舍),
, .
8.求证:对于正整数n,令 ,数列 中有无穷多个奇数和无穷多个偶数( 表示不超过实数x的最大整数).
【答案】证明见解析
【详解】在二进制中,记 ,
其中 .
用反证法,先证明数列中有无穷多个偶数.
∴20212022≡72022(mod19),而 ,
所以 (mod19),∵73≡1(mod19),∴20212022 1(mod19).
综上,n=1.
故答案为:1.
2.已知整数 满足 ,则 的正整数取值个数为___________.
【分析】由于 均为整数,
所以 为整数.
原命题即为求 小于36的不同取值的个数.
故在模 的意义下该数列的形式为1,1,4,4,7,7,10,10, ,
事实上,归纳可以证明: ,
由 ,得数列 含有模 的所有余数,
与平方数只有 个模 的余数矛盾,
这表明, 为3的幂,
令 , 为整数,满足 , ,则 ,
又 ,故
在前两种情况下得 ,在最后一种情况得 ,
于是, 或10,
下面反过来验证成立:
【分析】(1)将 代入,利用韦达定理求出两根之和和两根之积,进而求出结果.
(2)根据判别式大于零,求出 的取值范围,再根据韦达定理,化简出两个实数根的平方和,根据题意算出 的值.
(1)
解:由题知, ,所以方程可化为 ,
,所以方程有两根,不妨设为 ,
所以由韦达定理可得 ,
所以 ,
故 .
(2)
由题知,方程有两根,所以 ,

初中数学竞赛数论题

初中数学竞赛数论题

初中数学竞赛练习题集数论部分1。

求满足22282p p m m ++=-的所有素数p 和正整数m .2。

设b a 、为整数,y x 、为整数,证明:形如by ax +的正整数中,最小值),(b a by ax =+00.3。

求方程222()x y x y xy +=++的所有正整数解.4。

正整数n 满足当210≥≥k 时,有)(mod k k n 1-≡,求n 的最小值。

5。

a 是三位数,b 是一位数,且122++ab b a b a 、都是整数,求a b +的最大值与最小值。

6。

已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,且b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,求b 的值。

7。

试求出所有这样的正整数a 使得关于x 的二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根.8。

是否存在质数q p 、,使得关于x 的一元二次方程20px qx p -+=有有理数根?9.已知n m 、均为正整数,且n m >,n n m m +=+2220072006。

证明:n m -是为完全平方数。

10。

已知k 为常数,关于x 的一元二次方程0864222=+-+-x k x k k )()(的解都是整数,求k 的值.11。

已知n 为自然数,20091092+-n n 能表示为两个连续自然数之积,求n 的最大值.12.设a 是3的正整数次幂,b 是2的正整数次幂,试确定所有这样的b a 、,使得二次方程20x ax b -+=的根是整数。

13。

是否存在这样的正整数n ,使得2371n n +-能整除321n n n +++?请说明理由.14。

求使得2(1)(2)(3)12n n n n ++++可表示为2个正整数平方和的自然数n 的个数。

高中数学竞赛 数论部分

高中数学竞赛 数论部分

初等数论简介绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。

1. 请看下面的例子:(1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。

(1894年首届匈牙利 数学竞赛第一题) (2) ①设n Z ∈,证明2131n -是168的倍数。

②具有什么性质的自然数n ,能使123n ++++能整除123n ⋅⋅⋅(1956年上海首届数学竞赛第一题)(3) 证明:3231122n n n ++-对于任何正整数n 都是整数,且用3除时余2。

(1956年北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数214143n n ++不可约简。

(1956年首届国际数学奥林匹克竞赛第一题)(5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证:[][][][]()()()()22,,,,,,,,,,a b c a b c a b b c c a a b b c c a =⋅⋅(1972年美国首届奥林匹克数学竞赛第一题)这些例子说明历来数论题在命题者心目中首当其冲。

2.再看以下统计数字:(1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。

(2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占% 。

这说明:数论题在命题者心目中总是占有一定的分量。

如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。

3.请看近年来国内外重大竞赛中出现的数论题:(1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( )A 、 0B 、1C 、3D 、无穷多(2007全国初中联赛5)(2)已知,a b 都是正整数,试问关于x 的方程()2102x abx a b -++=是否有两个整数解如果有,请把它们求出来;如果没有,请给出证明。

初中数学竞赛专题复习第三篇初等数论第20章同余试题新人教版

初中数学竞赛专题复习第三篇初等数论第20章同余试题新人教版

第20章同余20. 1.1* (DiiE明:任意平方数除以4,余数为0或1; (2)证明:任意平方数除以8,余数为0、1或4. 解析(1)因为奇数'=(2R + +4« + ]三l(nκxi4),偶数2 = (2k)2 =4k2≡0(nκxi4),KmOd 4)√ι为奇数;所以, 正整数斥0(mod4)/为偶数•B(2)奇数可以表示为2jt + l,从而奇数 2=4/+4k + l = 4k(k+ 1) + 1.因为两个连续整数R、斤+ 1中必有一个是偶数,所以4⅛(⅛ + l)是8的倍数,从而奇数2=8∕ +l≡l(mod8).又,偶数j(2R)2=4疋(R为整数)・若E =偶数= 2/,贝ιJ4⅛2=16r =0(mod8).若R =奇数=2/ + 1,贝IJ4k2 =4(2/ + 1)2 =16(r +∕) +4≡4(mod8)・0( mod 8),所以,平方数≡J(mod8),4( mod 8).评注事实上,我们也可以这样来证:因为对任意整数“,有心0, ±1, 2(mod4),所以,a≡0, 1(ITlOd4):又a≡Q9±L ±2, ±3, 4(mod8),所以,/三 0, L 4(mod8).20. 1. 2*求证:一个十进制数被9除所得的余数,等于它的各位数字被9除所得的余数.解析设这个十进制数心“如…吆也.因10≡l(nκxl9),故对任何整数心有IO4≡f =l(mod9)・因此= a n×∖0n +% XlOE +…+ q xlθ + q三 5I-I +・・• + "] +⅜(mod 9)・即A被9除所得的余数等于它的各位数字之和被9除所得的余数・评注⑴特别地,一个数能被9整除的充要条件是它的各位数字之和能被9整除.(2)算术中的“弃九验算法”就是依据本题的结论.20. 1. 3*★求证:(1) 8∣(55,w+17);(2)8∣(32Λ+7);(3)17∣(19,°OO-1).解析⑴因55≡-l(mod8),所以55lw9≡-l(mod8),55,999+ 17≡-l + 17 = 16≡0(mod8),于是8∣(55,999 +17).⑵因为32=9≡l(mod8), 32π≡l(mod8),所以32Λ+7≡l +7≡0(mod8),即8∣(32π+7).⑶因为I9≡2(modl7), I94≡24=16≡-l(modl7),所以19HXM) =(194广≡(-l)25°≡l(modl7),于是17∣(19KMX,-1).20. 1. 4* ★对任意的正整数”,证明:4 = 2903"-803"-464”+261"能被1897整除. 解析1897 = 7x271, 7与271互质.因为2903 ≡ 5(InOd7), 803 ≡ 5(nιod7),464 ≡2(mod7), 261 ≡2(mod7),所以 A = 2903" -803" -464” + 261〃三5” 一5” 一T + T = 0(mod7),故 7 A 又因为2903 三 193(mod271),803≡261(nιod271)f464≡193(mod271),所以A = 2903” 一803“ 一464” + 26 I n≡ 193π -26Γ -193π+ 26Γ =0(mod271),故 271 A因(7, 271)=b所以1897整除A・20. 1. 5★证明:55552~ + 22225555能被 7 整除. 解析因为5555 ≡4(mod7) ∙ 45≡64≡l(mod7), 所以5555迪≡42222≡42.42≡≡16≡2(mod7)・因为2222≡3(mod7), 32≡2(mod7), 32≡l(mod7),所以2222W 35555353 5550. . Z AX925≡32 32-3(36)三223≡5(mod7)・于是 55552222 + 22225555≡(2+5)(mod7)≡0(mod7), 即 7155552222 + 22225555・20. 1. 6★★求最大的正整数“,使得3,024 -l能被2"整除.解析因为3,,β4 -1 =(3512 +1)(3256+,)(3,28 + 1)-..(3 + 1)(3-1),①而对于整数E,有32* +l≡(-lf +I = 2(mod4),所以,①式右边的11个括号中,(3+1)是4的倍数,其他的10个都是2的倍数,但不是4的倍数.故 n的最大值为12.20. 1. 7★求使2" -1为7的倍数的所有正整数“.解析因为23≡8≡l(mod7),所以对“按模3进行分类讨论.⑴若n = 3R,贝IJ2M-I=(23)C -1 = 8A -I≡1' -1 = 0(mod7):⑵若n = 3k + ∖9贝IJ2π-l = 2(25y-l = 28'-l≡2Λk一1 = l(mod7);⑶若n = 3k + 29贝IJ2π-l = 22.(23y-l = 4-8'-l4 V一l = 3(mod7)・所以,当且仅当3 〃时,2”-1为7的倍数・20. 1. 8★设“是正整数,求证:7不整除(4n + l).解析因为4l≡4(mod7)t 42≡2(nιod7)t 43≡l(mod7).所以当n = 3k时,4Π+1=(43);+1 = 1 + 1 = 2(nιod7):当n = 3k+↑时,4” +1 = (4〉4 +1 = 4 +1 = 5 (mod 7):当刃= 3k+2时,4” +1 = (4' j ・ 16 +1 = 16 +1 = 3 (mod 7)・所以,对一切正整数“,7不整除4"+l.20. 1. 9★今天是星期日,过3πx>天是星期几?解析33=27≡-l(mod7),所以3wo =(33广-3≡(-1)Λ3∙3 = -3≡4(mod7).因此,过天是星期四.20. 1. 10★★求(25733 +46)26被50除所得的余数.解析257 ≡ 7(mod50), 257n≡ 7n(mod50).又7'=49三-l(mod50),所以74≡l(ιnod50).753=(74)s.7≡7(mod50).即 257n≡7(mod50).从而 257幻+46≡7 + 46≡ 3(mod50).(257^+46)26≡326(mo<i50).由于 35 = 243 = -7(mod50) . 31° ≡49 ≡-1(mod50),所以320≡l(mod50).于是3" = 320・ 3'・3 ≡ (-7)・ 3 = -21 ≡ 29(mod 50).故(25733 +4626)除以50所得的余数为29.20. 1. 11★⑴求33除2hm的余数;⑵求8除72Π+I-1的余数・解析⑴先找与±l(mod33)同余的数.因为 2'=32 三—1 (mod 33),所以 2,0≡l(mod33).2,w8 = (2,°),w-25 -23≡-8≡25(mod33).故所求的余数为25.(2)因为7 ≡-l(mod8),所以72"+,≡(-l)2n+,=-l(mod8),72-÷>-i≡-2≡6(mod8).即余数为6.20. 1. 12★求15+25+35+∙..+995+100S除以 4 所得的余数.解析因为(2/?)5≡0(rYlOd4), (2π + l)5≡2n + l(mod4),所以15+25+35+∙∙∙+99S+1005≡l + 3 + 5 +∙.. + 99 = 502≡0(mod4).20. 1. 13*形如F rl=2-+∖, H=Q t 1, 2, •••的数称为费马数.证明:当"22时,你的末位数字是7.解析当n^2时,2"是4的倍数,故令2" =4/.于是=24/+1 = 16, +1 = 6,+I≡7(modl0).即你的末位数字是7.评注费马数的头几个是F n=3,F∣= 5, F z=∖l,人=257, F i = 65537 ,它们都是素数.费马便猜测:对所有的正整数“,化都是素数.然而,这一猜测是错误的.首先推翻这个猜测的是欧拉,他证明了下一个费马数尺是合数.有兴趣的读者可以自己去证明.20. 1. 14★★已知n = 19 191 919∙∙∙1 919 ,求"被9除后所得商的个位数字是多少?19I9TI9I9解析因为"19 191 9弓…1 9191919个19191919×(l + 9÷l+9)≡1919×20≡2×2≡4(mod9).所以91”-4.又π-4的个位数字是5,故"被9除后所得商的个位数字是5・20. 1. 15★★求2w9的末两位数.解析因为2,° + l≡0(mod25), 2,0≡-l(mod25),(2,0),00≡(-l),0° = l(mod25),2HxM)-I ≡0(mod25).所以2,000 -l的末两位数字只可能是00、25、50、75,即2w°0的末两位数字只可能是01、26、51、76.又2≡0是4的倍数,故2∣∞0的末两位数字只可能是76.又2洌=2HJ∞-2,所以29W的末两位数字只可能是38、88,而4 88, 4、38,故2*w的末两位数字是88.20. 1. 16★★求所有的正整数",使得3, +3n + 7是一个立方数•解析假设存在正整数加、“,使得3√+3H +7=,√,则∕√≡l(mod3),于是∕√≡l(mod3).设 m = 3jt+ l,则3k(3k2+3k + ∖) = n2+n + 2,易^n2+n + 2不能被3整除,故不存在正整数",使得3n2+3”+ 7是一个立方数.20. 1. 17★★有一列数排成一行,其中第一个数是3,第二个数是7,从第三个数开始,每个数恰好是前两个数的和,那么,第1997个数被3除,余数是多少?解析该数列是:3,7, 10, 17, 27, 44, 71, 115,186, 301, 487, 788,…除以3的余数分别是:0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1,…余数刚好是按"0, 1, 1, 2, 0, 2, 2, 1" 八个一循环.又1997≡ 5 (InOd 8),因此所求余数为0.20. 1. 18*★★求7亍的末位数字和7?』的末两位数字,英中斤是大于1的正整数.&个7解析我们知道,求一个数的末位数字就是求这个数除以10的余数,求一个数的末两位数字就是求这个数除以100的余数.为此先设法求出7 ≡ Kmod 10)中的/ ,然后求岀T =at + h(a,〃是整数)中的b.这样,问题归结为求7°被10除所得的余数.因为I2≡-l(modlO), 7Λ≡ 3(mod 10) ♦74≡l(modl0), 74m≡l(modlO),川是正整数.而7 三 3(mod4), 76≡ 36≡ (-1)6≡ l(mod4)・所以,T≡ 3(mod4)・可设f = 4m + 3.于是7? ≡74w+3≡73≡3(modl0).所以,7,的末位数字是3.考虑7,的末两位数字・这时,由72≡49(modl00), 7'三43(mod 100), 7」三1(mod 100),得74π≡l(modlOO).而 77∙'7 = 72r+,,其中t是整数且f >0.于是 77∙∙^7≡ 72,+1≡ 32,+,≡(-l)2"' ≡ 3(mod4).个7 Jt-I 个7可设7"'=4" + 3,那么个777∙7=74π+3≡73≡43(modl00).—个7所以,所求的末两位数字是43.20. 1. 19★★求n = l×3×5×∙∙∙×1997×1999 的末三位数字・解析这个积显然是5X25=125的倍数,设n=5×25×l×3×7×∙∙∙×23×27×∙∙∙×1999=125w ・由于1000=8X125,所以,我们只需求出加除以8所得的余数,进而便可求得“除以IOOO的余数.m= (1 × 3×7)×(9×11×13×15)× (17×19×21×23) × (27×29×31)×(33×35×37×39)×∙∙∙× (1985×1987×1989X1991)× (1993 × 1995×1997 X 1999)在上述乘枳中,除第一和第四个括号外,每个括号中都是四个数的乘积,这个积是(% + l)(8k + 3)(8R+5)(8k+7)≡1×3×5×7三 1 (mod8).而1x3x7 ≡5(mod8),27×29×31 ≡l(mod8)・于是zn≡5×l≡5(nκκi8)・所以,125m = 125×(8Λ + 5)≡ 125×5 = 625(modl000),即 n 的末三位数字是 625∙20. 1. 20*★ ★★如果R是大于1的整数,"是x2-kx + ∖= 0的根.对于大于10的任意正整数“,的个位数字总是7,求是的个位数字.解析首先,我们证明R的个位数字不可能是偶数•其次,根据冰+c浮与7对模10同余,从中确左E的个位数字.因为α是A∙2-ΛΛ +1= O的根,所以这方程的另一个根是丄・于是U1 Z÷ — = K ・a如果k的个位数字是偶数,那么的个位数字仍是偶数.a- +a-22 =(k2-2y f-2的个位数字也是偶数.对于/1 >10. 的个位数字也是偶数,与题设矛盾.R的末位数字不能是偶数.(1)如果R的个位数字是1或9,那么a2+cΓ2≡-l(modl0),由此得0于+*” ≡-!(modIO), n^∖.(2)如果R的个位数字是3或7,那么Cr +cΓ2≡7(modl0),由此得a1^≡7(modl0), H≥1.(3)如果k的个位数字是5,那么a2+cΓ2≡ 3(mod 10), a2+α'y≡ 7(modlθ).所以/ +π^2≡ 7( mod 10), “M2 ・综上所述,R的个位数字是3或5或7.20. 1. 21⅛⅛2005年12月15日,美国中密苏里州大学的数学家CUrtiS COOPer和SteVen BOOne教授发现了第43个麦森质数2'OIM0-I ,求这个质数的末两位数.解析因为2,0= 1024≡-l(mod25),所以23(M(>2457 =S O y(Mo T = (_])**Mo T≡-128≡-3≡22(mod25),所以,23w°2457的末两位数只能是22、47、72、97.又2≡^7≡0(mod4),所以,2“Uo如的末两位数只能是72.从而,23tMoII57-l的末两位数是71.20. 1. 22*★★求最小的正整数“,使得存在正整数“,满足2001155"+心32” .解析因为2001=3×23×29,所以,要使2OO1I55"+"∙32",只要使3l55rτ+α∙32J 23155n + U• 32”,29155”+"∙32".易知55w÷67-32w≡l÷o(-l)π(mθd3),55“ + a - 32” ≡9ιr+α∙9n≡(α + l). 9n (mod 23),55” + a - 32” ≡ (一3)” + α 丁 (InOd 29)・(1)若川是奇数,则<∕≡l(mod3),"三一l(mod23), t∕≡l(mod29),而(3, 29)=b 故u≡ 1(mod87)■令Λ=87⅛1+1=23⅛2-1,则87⅛+2≡0(mod23),所以-5⅛1+2≡0(nιod23)>即-45^+18≡0(mod23)t所以⅛1≡-18(mod23),则$能取的最小正整数是5.所以"是奇数时,α的最小正整数解是87x5 + 1=436.(2)若"是偶数,贝比三—l(mod3), <∕≡-I(mod23), 6/≡-1( mod 29),由于(3, 23)=1, (3. 29)=1,(23, 29)=1,所以^≡-l(mod3×23×29).故当“是偶数时,“的最小正整数解是3×23×29-l等于 2000 ・综上所述,满足条件的最小正整数。

【高中数学竞赛专题大全】 竞赛专题15 初等数论(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题15 初等数论(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题15 初等数论 (50题竞赛真题强化训练)一、填空题1.(2020·浙江·高三竞赛)将1~2020的数字按顺时针方向围成一个圆圈,然后从1开始,按顺时针依次隔一个数拿走,即拿走1,3,5,…,这个过程一直进行下去,直到剩下最后一个数字,则最后剩下的数字是___________. 【答案】1992. 【解析】 【详解】在第一轮中,从1开始到拿走1991,共取走996个数,此时余下1024个数, 1991后一项偶数为1992,此后共取10次,余下的数为1992, 故答案为:1992.2.(2021·全国·高三竞赛)关于x 、y 的方程11112007x y xy ++=的正整数解(,)x y 的个数为________. 【答案】48 【解析】 【详解】解析:由11112007x y xy ++=得2007200720070xy x y ---=,整理得 32(2007)(2007)2007200823223251x y --=⨯=⨯⨯⨯,从而,原方程的正整数解有(31)(21)(11)(11)48++++=(个). 故答案为:48.3.(2021·全国·高三竞赛){}n a 为正整数列,满足112,n a a +=为213133n n a a -+的最小素因子,12,,,,n a a a ,构成集合A ,P 为所有质数构成的集合,则集合P A 的最小元素为___________. 【答案】5 【解析】由于122,3a a ==,故2,3A ∈,所以集合P A -的最小元素5≥.假设存在正整数n ,使得5(3)n a n =≥,则211513133n n a a ---+,故()21512n a -++,这不可能,因为()212n a ++除以5的余数为1,3, 所以5P A ∈-.集合P A -的最小元素为5. 故答案为:5.4.(2021·全国·高三竞赛)质数p 和正整数m 满足32(2)1p m p m p ++=++,则p m +=___________.【答案】7 【解析】 【详解】由()221(1)p p m m +-=-,易见1m ,所以1p m -.设()1m kp k N +-=∈,则()2222,,(1)p p kp k p p k k p k k +=+==-.所以2k =,2,5p m ==,7p m +=.5.(2021·浙江·高三竞赛)已知集合{}12,,,n A a a a =⋅⋅⋅,n 为正整数.若对任意的1i j n ≤≠≤,i j a a -被4整除,但不被16整除,则n 的最大值为______.【答案】4 【解析】 【分析】 【详解】 考虑同余:对任意的1,i j i j n a a ≤≠≤-被4整除,则有(mod 4)i j a a k ≡≡,其中{0,1,2,3}k ∈, 而这类型的数模16的余数至多只有4种,所以n 最大值为4. 故答案为:4.6.(2021·浙江·高二竞赛)设数列123n n n a a a +⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦,1n =,2,…,7这里[]x 表示不超过x的最大整数.若88a =,则正整数1a 有______种可能的取值情况.【解析】 【分析】根据高斯函数的性质,由88a =逐次往前求, 注意先定范围再验证,即可得到答案. 【详解】由88a =,可得710a =或11, 可得612a =或13或14; 可得515a =或16或17; 可得418a =或19或20或21; 可得322a =或23或24或25或26; 可得227a =或28或29或30或31或32;可得133a =或34或35或36或37或38或39,共7种.7.(2021·全国·高三竞赛)所有能使25n ⎡⎤⎢⎥⎣⎦为质数的正整数n 的倒数和为_________.【答案】3760【解析】 【分析】 【详解】1,2,3n =时,25n ⎡⎤⎢⎥⎣⎦都不是质数;4n =时,235n ⎡⎤=⎢⎥⎣⎦是质数;5n =时,255n ⎡⎤=⎢⎥⎣⎦是质数;6n =时,275n ⎡⎤=⎢⎥⎣⎦是质数.当8n ≥时,可设5n k r =±(其中k 为不小于2的正整数,0,1r =或2),则()22222111(5)2510(52)5555n k r k kr r k k r r =±=±+=±+, 所以2(52)5n k k r ⎡⎤=±⎢⎥⎣⎦.因为2k ≥,所以522k r ±>,所以2(52)5n k k r ⎡⎤=±⎢⎥⎣⎦不是质数.因此,能使25n ⎡⎤⎢⎥⎣⎦为质数的正整数n 只有4、5、6,它们的倒数和为1113745660++=.故答案为:3760. 8.(2021·全国·高三竞赛)若2020在p 进制下的各位数字之和为5p +,则质数p 的所有可能值为___________. 【答案】2,107 【解析】 【分析】 【详解】类似于在十进制下,我们有()()120|205p p --+⎡⎤⎣⎦, 于是()12014195|23p -=⨯⨯, 再注意p 为质数,就有2,3,107p =, 逐一验证得2p =或107p =. 故答案为:2,107.9.(2021·全国·高三竞赛)在1,2,3,4,…,1000中,能写成()221a b a N -+∈的形式,且不能被3整除的数有________个. 【答案】501. 【解析】 【详解】 设{}1,2,3,4,,1000S =,若221n a b =-+,则()3mod4n ≠.又()()2242211k k k =--+,()()2241111k k k +=+--+,()()22422121k k k +=+-+,因此,221n a b =-+当且仅当()3mod44n ≠.令(){|3mod44}A a S a =∈≡,(){|0mod3}B b S b =∈≡,则(){|3mod12}A B c S c ⋂=∈≡,因为250A =,333B =,84A B ⋂=,从而符合条件的数的个数为100025033384501--+=. 故答案为50110.(2020·浙江·高三竞赛)设a ,b ,c 为正整数,且2225548450a b c ab ac bc ++-+-=,则所有的解中a b c ++的最大值为___________. 【答案】30. 【解析】 【详解】配方得:222(22)50a c b a c ++--=(a ,c 等价). 注意到:22250017=++,22250055=++,22250345=++. 不妨设a c ≤且22b a c ≥+,(1)当22017b a c a c --=⎧⎪=⎨⎪=⎩,即1167a b c =⎧⎪=⎨⎪=⎩,此时116724a b c ++=++=.(2)当22055b ac a c --=⎧⎪=⎨⎪=⎩,即5205a b c =⎧⎪=⎨⎪=⎩,此时520530a b c ++=++=.(3)当22534b a c a c --=⎧⎪=⎨⎪=⎩,即3194a b c =⎧⎪=⎨⎪=⎩,此时319426a b c ++=++=.(4)当22435b ac a c --=⎧⎪=⎨⎪=⎩,即3205a b c =⎧⎪=⎨⎪=⎩,此时320528a b c ++=++=.(5)当22345b a c a c --=⎧⎪=⎨⎪=⎩,即4215a b c =⎧⎪=⎨⎪=⎩,此时421530a b c ++=++=.综上所述,所有的解中a b c ++的最大值为30. 故答案为:30.11.(2020·江苏·高三竞赛)设正整数a ,b ,c ,d 满足23a b =,45c d =,且303b d -=,则a c -的值为___________. 【答案】123801 【解析】 【详解】解析:由题意可得a =c =b 必为完全平方数,d 一定能开4次方.设2b n =,4d m =,则()()223101b d n m n m -=+-=⨯,且注意到3,101都是质数,则223031n m n m ⎧+=⎨-=⎩或者221013n m n m ⎧+=⎨-=⎩,解得52n =,7m =,则35123801a c n m -=-=. 故答案为:123801.12.(2020·江苏·高三竞赛)设,m n N ∈,,2m n ≥,若33333333213111213112n m n m ----⋅=++++,则m n +的值为___________. 【答案】6 【解析】 【详解】解析:因为3311(1)111(1)1n n n n n n n n --++=⋅++-+, 累乘可得原式22(1)1222(1)33(1)n n n n n n n n ++++=⋅=++,则232333323122211n n m n n m m ++==+++--, 故223232221n n n n m +-=++-, 从而可得()2326131816162(1)(2)(1)(2)n n m n n n n n n ++⎛⎫-==+=+ ⎪+--+-+⎝⎭, 则()()1218n n -+,且,2m n ≥,在()()12n n -+的值为6,9,18, 故4n =,2m =.故6m n +=. 故答案为:6.13.(2021·浙江·高三竞赛)将顺序为1,2,…,2020的2020张卡片变成1011,1,1012,2,…,2020,1010的顺序,即原先的前1010张卡片移至第2,4,…,2020张,这称为一次操作.若从顺序1,2…,2020开始操作,则至少经过______次操作可以恢复到初始顺序. 【答案】1932 【解析】 【分析】 【详解】记第1i 次调整前的位置为i a ,调整后的位置记为1i a +,初始位置记为0a ,则112,101022021,1010i i i i a a a a a +≤⎧=⎨->⎩,所以102(mod 2021)2(mod 2021)n i i n a a a a +≡⇒≡, 因20214347=⨯,所以(2021)(43)(47)1932ϕϕϕ==, 所以193221(mod 2021)≡,要恢复原样,则0n a a =, 所以1932n =. 故答案为:1932.14.(2019·广西·高三竞赛)满足y =(x ,y )有____________ 对. 【答案】6 【解析】 【详解】设2251,2019,,n x m x n N m N =+=+∈∈. 224()()19682341m n m n m n -=+-==⨯⨯,由(m +n )与(m -n )奇偶性相同,可知它们同为偶数,且(m +n )>(m -n ) 实数对(m +n ,m -n )所有可能的取值共有6对:()32341,2⨯⨯,()322341,2⨯⨯,()32341,2⨯⨯, ()3241,23⨯⨯,()22241,23⨯⨯,()3241,23⨯⨯.由有序数对(x ,y )与(m +n ,m -n )一一对应,可知所求正整数对为6对. 故答案为:6.15.(2019·四川·高三竞赛)若正整数n 使得方程33n x y z +=有正整数解(x ,y ,z ),称n 为“好数”.则不超过2019的“好数”个数是_____ . 【答案】1346 【解析】 【详解】首先易知若n 为“好数”,则n +3也是“好数”又显然1、2是“好数”,从而当1,2(mod3)n ≡时,n 均为“好数”. 由费马(Fermat )大定理知:333x y z +=无正整数解,即3不是“好数”.于是n =3k (k ∈N *)都不是“好数”.否则,存在k ∈N *,使得3k 是“好数”,即方程333k x y z +=有正整数解(x ,y ,z 0),从而333x y z +=有正整数解()000,,kx y z ,矛盾!故当且仅当n 满足1,2(mod3)n ≡时,n 为“好数”. 所以,不超过2019的“好数”个数是2201913463⨯=. 故答案为:1346. 二、解答题16.(2021·全国·高三竞赛)求证:对于正整数n ,令22n a ⎡⎡=+⎣⎣,数列{}n a 中有无穷多个奇数和无穷多个偶数([]x 表示不超过实数x 的最大整数). 【答案】证明见解析 【解析】 【详解】1212101100.101100bb c c =⋅⋅⋅=⋅⋅⋅⋅, 其中{}{}0,1,0,1i i b c ∈∈.用反证法,先证明数列中有无穷多个偶数.假设,数列中只有有限个偶数,那么存在整数N ,n N ∀>,n a 是奇数, 则存在正整数M ,使得1212101100101100M n M a bb b c c c =+,且当n M >时,{},{0,1}n n b c =,12(2)110110011N d d d ⋅∈Q ,矛盾!同理可证明数列中有无穷多个偶数.所以数列{}n a 中有无穷多个奇数和无穷多个偶数.17.(2021·全国·高三竞赛)使得A =n 为_________. 【答案】1或11##11或1 【解析】 【详解】,,,(,)1aa b a b b+=∈=N ,则222222222917647799n a a b b n n b b a b a -+=⇒==-++--. 又(,)1a b =,所以()()22222,9,1b b a b a -==,故22964b a -,所以229(3)(3){1,2,4,8,16,32,64}b a b a b a -=+-∈,229b a -模3余2,故2298b a -=或32,故3831b a b a +=⎧⎨-=⎩或3432b a b a +=⎧⎨-=⎩或33231b a b a +=⎧⎨-=⎩或31632b a b a +=⎧⎨-=⎩或3834b a b a +=⎧⎨-=⎩,所以(,)(1,1)=a b 或(7,3),因此n 为1或11. 故答案为:1或11.18.(2021·全国·高三竞赛)设n 是正整数,12,,,k d d d 是n 的全部正因数.定义1212()(1)(1)(1)k d d d k f n d d d =-+-++-,已知()f n 是2的幂次,求证:n 没有1之外的平方因数.【答案】证明见解析 【解析】 【分析】设2(1)rn s r =≥,其中1i tai i s p ==∏,利用因数和函数可得()f n 与各质因数的关系,再根据()f n 是2的幂次结合反证法可得1i a =,从而可n 没有1之外的平方因数. 【详解】用()n σ表示n 的正因数之和.如果n 是奇数,则()()0f n n σ=-<,舍去. 当n 是偶数时,设2(1)r n s r =≥,其中1i tai i s p ==∏(i p 为n 的奇质因数,i a +∈N ,3i p ≥).所以()()()111()2221()23i ta rr r i i f n s p σσ-+==+++-=-∏.其中()21i i a a i i i i p p p p σ=++++,因为()f n 是2的幂次,所以1231,1r r +-==,每个()i ai p σ是2的幂次,且i a 是奇数,又()()()12246111i i i a a a i i i i i i i i i p p p p p p p p p σ-=++++=++++++,故1246,11i a i i i i i p p p p p -++++++均为4的倍数,因为23,1(mod 4)i i p p ≥≡,所以如果1i α>,则1241,,,,i a i i i p p p -这些数的总个数是4的倍数,所以12211i a i i i p p p -++++.因为212(mod 4)i p +≡,所以121i a i i p p -+++不是2的幂次,于是1i a >不成立.所以1i a =,所以1ti i s p ==∏(i p 为互异的奇质因数),12ti i n p ==∏,可见n 没有非平凡的平方因数. 【点睛】思路点睛:竞赛中与正因数和有关的问题,多用因数和函数来分析处理,令注意利用因数分解定理把因数问题转化为即质因数的问题来处理.19.(2021·全国·高三竞赛)用()P n 表示正整数n 的各位数字之和,求所有这样的三位数n ,使得满足:1(3)()3P n P n +=.【答案】117、207、108. 【解析】 【分析】 【详解】由于(),(3)P n P n +都是正整数,则据条件,()P n 是3的倍数,因此n 与3n +都是3的倍数. 设n abc =,且数n 加3后必须产生进位,则7c ≥.(因为,如果6c ≤,则数n 加3后不会产生进位,于是(3)()3()P n P n P n +=+>,矛盾)并且b 不能是9,这是因为,若9b =,则当9a =时,99n c =,数n 加3后成为1100c ,1{0,1,2}c ∈,这时1(3)()3P n P n +<.当9a <时,9n a c =,若1113n a b c +=,则1111,0,310a a b c c =+==+-. 由3(3)()P n P n +=,得3[(1)0(310)]9a c a c ++++-=++, 即2()27a c +=,矛盾!所以9b <.今由3[(1)(310)]a b c a b c ++++-=++得9a b c ++=,其中1,7,8a c b ≥≥≤, 依次考虑c 、a 、b 的取值,得到三个数:117、207、108,验证知,它们皆合题意. 20.(2021·全国·高三竞赛)已知a 、b 、c 、d 是不同的正整数,且满足a b c da b b c c d d a+++++++是整数,求证:+++a b c d 不是质数. 【答案】证明见解析. 【解析】 【分析】 【详解】 由1a b c d a b c da b b c c d d a a b c d a b c d a b c d a b c d +++>+++=++++++++++++++++, 且a b c da b b c c d d a+++++++ 1111b c d aa b b c c d d a=-+-+-+-++++ 43b c d a a b b c c d d a ⎛⎫=-+++< ⎪++++⎝⎭,所以2a b c d a b b c c d d a+++=++++, 故2a c b d c aa b c d b c d a b c d a+=--=+++++++, 因此1111a c a b d a b c c d ⎛⎫⎛⎫-=- ⎪ ⎪++++⎝⎭⎝⎭, 所以()()()()d b d b a c a b d a b c c d --⋅=⋅++++且d b ≠, 所以()()()()a b c c d c a b d a ⋅++=⋅++,即22ac abd a c bcd +=+. 整理得()()0ac c a bd a c -+-=且a c ≠,所以ac bd =. 假设p a b c d =+++是质数,则 2()a a b c d a ab ac ad +++=+++ 2a ab bd ad =+++ ()()a b a d ap =++=,所以()p a b +或()p a d +,而,p a b p a d >+>+,矛盾. 综上+++a b c d 不是质数.21.(2021·全国·高三竞赛)解关于实数x 的方程:{}202020201arctank x x k==∑(这里{}[][],x x x x =-为不超过实数x 的最大整数) 【答案】{}0 【解析】 【分析】【详解】(1)当0x <时,{}202020201arctan 0(1,2,,2020),arctan 0k x x k x k k =<=<≤⋅⋅⋅∑,此时原方程无解.(2)当0x =时,有{}202020001arctan0k x x k===∑. (3)当01x <<时,令arct ()1)2an (0x xf x x =-<<,则211()0(01)12f x x x '=-><<+, 故()f x 在()0,1上递增.有()()00f x f >=,即arctan 2x x > 于是,此时{}202020204202020201111125arctan 2224k k k x x x xx x x k k k =====>>=>∑∑∑,即1x >,矛盾.故无解.(4)当1≥x 时,注意到111123tan(arctan arctan )112316++==-, 且由110arctan arctan arctan1arctan1232π<+<+=,知11arctan arctan 234+=π.则{}20202020202011111arctan arctan arctan1arctan arctan 1232k k x x k k π===≥>++=>∑∑,与{}202001x <<,矛盾.故此时无解.由(1)(2)(3)(4),知原方程的解集为{}0.22.(2021·全国·高三竞赛)两两不等的实数x 、y 、z 满足222(2)(2)(2)y x z y x z ⎧=-⎪=-⎨⎪=-⎩,求x y z ++.【答案】5或6. 【解析】 【分析】 【详解】由原方程变形可得到1(1)(3)1(1)(3)1(1)(3)y x x z y y x z z -=--⎧⎪-=--⎨⎪-=--⎩和4(4)4(4)4(4)y x x z y y x z z -=-⎧⎪-=-⎨⎪-=-⎩,又由x 、y 、z 两两不等知,,1,4x y z ≠, 于是()()()3331x y x xyz ---==.令,p x y z q xy yz zx =++=++,化简得39p q =+. 另一方面,原方程三式相加得2(2)412p p q p =--+, 化简得25122p p q -+=,联立就有26530p p p =-+,即5p =或6. 最后,当22224cos 744cos 784cos 7x y z ππ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时可以取到5,当2224cos 924cos 944cos 9x y z πππ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时可以取到6.23.(2021·全国·高三竞赛)若关于z 的整系数方程320z pz qz r +++=的三个复数根在复平面内恰好成为一个等腰直角三角形的三个顶点,求这个等腰直角三角形的面积的最小值. 【答案】1 【解析】 【分析】 【详解】设该等腰直角三角形斜边中点对应的复数为1z ,直角顶点对应的复数为()1220z z z +≠, 则另外两个顶点对应的复数分别为12z z i +和12z z i -,依题意有: 32121212()()()z pz qz r z z z z z z i z z z i +++=-----+,化简得223223111221112223,32,z x z p z z z z q z z z z z z r +=-++=+++=-,所以3222221223,489z z q p Z z z pq r Z =-+=-∈∈.进而122z z Q +∈,与123z z p Z +=-∈联立就有2z Q ∈.再由22223x q p Z =-∈知2z Z ∈,于是21z ≥,所以等腰直角三角形的面积最小为1.另一方面,3210z x z +++=的三个复数根恰是面积为1的等腰直角三角形的顶点. 24.(2021·全国·高三竞赛)证明:存在无穷多个奇数n ,使得!1n +是合数. 【答案】证明见解析 【解析】 【分析】 【详解】证明当奇数(3)n n ≥时,!1n +与(!)!1n n -+不均为质数即可: 用反证法,若!1n +为质数,设!1n p +=,则结合威尔逊定理可得: 111(!)!(1)!(1)!(1)(2)()(mod )n n p n p n p ----=--≡----1(1)!(1)1(mod )n n n p +≡--⋅≡--≡-,此时有(!)!1n n -+为合数,而n 奇数得!n n -也是奇数, 从而存在无穷多个奇数n ,使得!1n +是合数.25.(2019·山东·高三竞赛)已知4239n n -+是素数,求正整数n 的所有可能值 【答案】n =1,n =2 【解析】 【详解】因为()()4222393333n n n n n n -+=++-+,所以或n 2-3n +3=1,解得n =1,2.将n =1,n =2代入检验均满足题意,所以n =1,n =2为所求.26.(2021·全国·高三竞赛)求方程(31)(31)(31)34x y z xyz +++=的所有正整数解(,,)x y z . 【答案】(,,)(28,5,2),(11,7,2)x y z =或其排序,共12组解. 【解析】 【详解】 不妨设x y z ≥≥.若z >31z +<.同理,31,31x y +<+<. 三式相乘得(31)(31)(31)34x y z xyz +++<,与原方程矛盾. 于是,5z ≤<. (1)若1z =,则4(31)(31)346()20x y xy xy x y ++=⇒+++=.显然,无正整数解.(2)若2z =,则7(31)(31)68521()70(521)(521)x y xy xy x y x y ++=⇒-+-=⇒--=24762717=⨯⨯.只有47611941434=⨯=⨯,才有对应的正整数,x y ,此时(,)(28,5)x y =或(11,7). (3)若3z =,则10(31)(31)102615()50x y xy xy x y ++=⇒-+-=.两边取模3即知矛盾,故无解. (4)若4z =,则13(31)(31)1361939()130x y xy xy x y ++=⇒-+-=3(1939)(1939)176821317x y ⇒--==⨯⨯.故此时(1939)42y -≤,故39y ≤≤,逐一检验后无解. 综上,(,,)(28,5,2),(11,7,2)x y z =或其排序,共12组解.27.(2021·全国·高三竞赛)求方程||1r s p q -=的整数解,其中p 、q 是质数,r 、s 是大于1的正整数,并证明所得到的解是全部解. 【答案】证明见解析 【解析】 【详解】容易看到两个质数中肯定有一个为2,不妨假设2,21r sp q =-=,即21r s q -=±.若21r s q =+,从余数去讨论,3(mod4)q ≡,s 为奇数.()1221(1)1rss s q q qq--=+=+-++,所以121212,12,r r s s q q q --⎧+=⎨-++=⎩()1111111(1)(1)(2)2211222222sr sr s r r r s r s r r s s s s ---⎡⎤=-+=-++=-++⎣⎦,从奇偶性可以看出这种情形方程无解.若21r s q =-为偶数,注意到()1221(1)1r s s q q q q --=-=-+++,所以121212,12,r r s s q q q --⎧-=⎨+++=⎩()11111(1)21221122(1)22sr sr s r r r r s s s s --=+-=+++-+.令2u s v =,其中v 为奇数,则 ()11111(1)21221122(1)22sr sr s r r u r u r s v s v --++=+-=+++-+,观察最后一项,则v 为1,故2u s =,所以221ur q =-,故()()1122211u u r q q --=-+,故1112221212u u r r q q --⎧-=⎪⎨+=⎪⎩,所以12222r r +=,所以121,2r r ==,1u =, 所以3q =,3r =,2s =,综上,考察到对称性,原方程恰有两组解:3,2,2,3.p q r s =⎧⎪=⎪⎨=⎪⎪=⎩或2,3,3,2.p q r s =⎧⎪=⎪⎨=⎪⎪=⎩ 28.(2021·全国·高三竞赛)证明:对任意正整数N ,都存在正整数n N >和n 个互不相同的正整数12,,,n x x x ,使()222222121220202020n n x x x x x x -++++是完全平方数.【答案】证明见解析 【解析】 【详解】对于3m ≥,必存在不同的正整数12,,,m x x x 满足2221212m m x x x x x x S =++++,令{}112121max ,,,m m m x x x x x x x +=->,则有()21211212m m m m x x x x x x x x x x +=-()2121211m m x x x x x x =-+-()()2222121211m m x x x x x x S =-++++-22221211m m x x x x S +=++++-.以此类推,当504S >时,存在不同的正整数11504,,,,,m m m S x x x x ++-满足2221250412504504m S m S x x x x x x +-+-=++++.存在6N ≥,定义(1)k x k k N =≤≤,则()2221212504N N x x x x x x -+++>.由前述结论可得存在n N >使得()2221212504n n x x x x x x -+++=,此时()2222222222121212122020202020201010n n n n x x x x x x x x x x x x -++++=-+()2121010n x x x =-为完全平方数.29.(2021·浙江·高三竞赛)已知素数p ,q 满足21p q =+.证明:存在正整数m 使得mp 的十进制表示的各位数字之和是2或3. 【答案】证明见解析 【解析】 【分析】 【详解】2p =,3不合题意,若5p =则取110mp =即可.下面假设7p ≥.由费马小定理()()12101101101101p q q q p --=-=+-可知101q p +或101q p -.前者意味着取101q mp =+满足条件.若是101qp -,我们断言{}012110,10,10,,10q A -=⋅⋅⋅中的数模p 两两不同余,即有q 个不同的余数.这是因为若有()1010mod a b p ≡,(01a b q ≤<≤-)则()101mod b a p -≡,由b a -与q 互素以及裴蜀定理知存在正整数u ,v 使得()1u b a vq --=,这样 ()()()1110101010mod uvb a vq q p -+≡==⨯.这意味着1019p -=即3p =,不合题意因此{}012110,10,10,,10q A -=⋅⋅⋅中的数模p 两两不同余.设它们的余数是{}{}12,,,1,2,,1q B r r r p =⋅⋅⋅⊆⋅⋅⋅-. 我们考虑下面的52p -个余数对,它们覆盖了除了0,1,12p -,2p -,1p -之外的所有余数:()2,3p -,()3,4p -,…,31,22p p -+⎛⎫⎪⎝⎭ 若某个对子的两个余数都在B 中出现,不妨设10a k ≡,101b p k ≡--,则10101a b mp =++是p 的倍数,满足题意.若每个对子中的余数都在B 至多出现一个的话,由于12p B -=,所以0,1,12p -,2p -,1p -在B 中出现至少两个,已知1B ∈,0B ∉,其余三个余数12p -,2p -,1p -至少有一个在B 中出现. 若12p B -∈,即有某个1102a p -≡,则2101a mp =⨯+满足题意.若2p B -∈,即有某个102a p ≡-,则102a mp =+满足题意. 若1p B -∈,有某个101a p ≡-,则101a mp =+满足题意. 综上所述,存在p 的倍数的十进制数字和是2或3.30.(2021·全国·高三竞赛)设m 是一个给定的正整数,d 是它的一个正因子.已知{}0i i a ∞=和{}0i i b ∞=是两个由正整数构成的等差数列,满足:存在正整数i 、j 、k 、l ,使得()(),1,,ijkla b a b m ==.证明:存在正整数t 、s 使得(),t s a b d =.【答案】证明见解析 【解析】 【分析】 【详解】注意到m 可逐次除以它们若干素因子得到d ,这样只需证对m 的任意素因子p ,存在正整数α、β,使得(),ma b pαβ=. 由于(),k t a b m =,故k a p 、l b p 必有一项不能被m 整除.不妨设k ab不能被m 整除. 设等差数列{}i a 、{}j b 的公差分别为u 、v ,则0i a a iu =+,0j b b jv =+. 下面分两种情况:(1)若p v .令,k a k l p αβ==+.这时k l a vb b pβ=+. 注意到k m ma b p pβ、,又p v 且k a m p ,所以m b β.这说明m p 是a α、b β的公因子,且m 不是它们的公因子.设q 是a α、b β的一个不同于p 的公因子,则q a α、q b β、a qpα. 故,a q a b v p ααβ⎛⎫- ⎪⎝⎭,即(),k t q a b m =.又p q ,故mq p .故(),m a b p αβ=.(2)若p v .先证p u . (*)事实上,假设p u ,由(),k l a b m =知00,k l p a ku a p b lu b -=-=.因此,i j p a p b ,这与(),1ija b =矛盾!故(*)得证.取正整数s ,使得l s b p能被mp 整除,但不能被m 整除. 令,l sb k l p αβ=+=.这时,l kl s b a a u b b p αβ=+=. 注意到k m a p 、l m b p、lsb m p p ,所以m p 是a α与b β的公因子.又lsb m p ,且p u ,所以m a α,从而m 不是a α、b β的公因子.设质数q 是a α,b β不同于p 的公因子,则q b β,l k sbq a u a p α⎛⎫-= ⎪⎝⎭. 即(),k l q a b m =. 又q p ≠,所以mqp.这说明(),m a b p αβ=.由(1),(2)知结论成立.31.(2021·全国·高三竞赛)设多项式02()()(2)==+≥∑dii i P x a x a d 的系数为正整数.定义数列{}n b :()101,(1)n n b a b P b n +==≥.证明:对于任意的整数2n ≥,均存在质数p ,使得n p b ,且()121,1n p bb b -=.【答案】证明见解析 【解析】 【分析】 【详解】假设存在整数2n ≥,使得n b 的任意一个质因子均为某个(11)i b i n ≤≤-的因子(对于n b 的不同的质因子,i 的取值可以不同).令p 为n b 的一个质因子,且rn b p l =,其中,,(,)1r l p l +∈=N . 则110012()()(mod )dr i r n n i i b P b a p l a a b p ++===+≡=∑假设()1mod ,r n i i b b p i +++≡∈N 成立,则()()()111mod r n i n i i i b P b P b b p +++++=≡=.所以由数学归纳法知对任意的正整数i ,均有()1mod r n i i b b p ++≡.进而有()12mod r n n kn b b b p +≡≡≡,所以1r kn n p b b +-.定义()p V m 表示正整数m 的标准分解中所含的p 的幂次数, 由()p n V b r =,得()p kn V b r =.令i p b 对某个(11)i i n ≤≤-成立,同上可证()()()23p i p i p i V b V b V b ===.于是()()()p n p in p i V b V b V b r ===.从而,若p 为n b 的一个质因子,则它在n b 的中的次数等于在某个(11)i b i n ≤≤-中的次数. 所以121n n b bb b -,进而121n n b b b b -≤.由()211n n n b P b b --=>,得21kn n k n b b b --<,所以111211n i n n i nn i i b bb ---==<<∏∏,矛盾,故原命题成立.32.(2021·全国·高三竞赛)一个大于1的整数m ,如果对所有的正整数n ,都存在正整数x 、y 、z ,使得222n mx y z =--,则称m 为上数,否则称为下数.试问:是否存在无数多的上数?是否存在无数多的下数?【答案】存在无数多个上数也存在无数多个下数. 【解析】 【分析】 【详解】存在无数多个上数也存在无数多个下数.首先,存在无数多个下数.考查93m k =+,其中k 为正整数.考查不定方程2226(93)k x y z =+--,若存在解x 、y 、z 则220(mod 3)y z ≡+, 故有()0mod3y z ≡≡,所以2222(93)36(mod 9)k x y z x +--≡≡,即2(mod3)x ≡,矛盾.故无解. 即所有的93k +为下数.其次,我们证明存在无数多个上数,我们考查21c +,其中222c a b =+(a 、b 、c 为勾股数).(1)注意到22222(1)(1)21c x c x x x +---=-,可知所有的奇数1n >,均存在解. 又22211c a b =+--,可知所有奇数均存在解.(2)对于n 为偶数的情形,考查222222(1)(1)(2)4454(2)9c x cx x c x c c x c +---+-=-+-=---. 令c 为奇数,故有24(2)9x c ---可以为所有模4余2的数. (3)而对于4|n ,可以转为考查2224222n x y z m ⎛⎫⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的问题,不断转化.终会归为(1)或是(2)其中的一类.而存在无数多个勾股数a 、b 、c (a 、b 、c 互质),即存在无数多个满足题意的21c +. 即有无数多个上数.33.(2021·全国·高三竞赛)如果正整数n 满足存在正整数a 、b 、c 使得()()()()()(),,,,,,n b c a bc c a b ca a b c ab =⋅+⋅+⋅,则称n 为好数.求证:存在连续2020个正整数这2020个正整数都是好数.注:对于正整数x ,y ,(),x y 表示x ,y 的最大公因数. 【答案】证明见解析 【解析】 【分析】 【详解】取121111121,(2),1,(2)(2,3,,2020)i i i l i i l x y x x x y y x x i -===+=-⋅⋅⋅=+=∏.对2,3,,2020i =,由()()1,1,21i i i i x x x x +=++=,知,2i i x x +均与121,,,i y y y -互质,故i y 与121,,,i y y y -均互质.则122020,,,y y y 两两互质.对1,2,3,,2020i =,考查i y 的一个倍数,设为()22i i i n my mx x ==+.注意到取2,,i i i a mx b mx c x ===,则有()()()()()(),,,,,,n b c a bc c a b ca a b c ab =⋅+⋅+⋅. 故n 为好数.则由n 的任意性,知i y 的一切倍数均为好数. 注意到122020,,,y y y 两两互质,那么由中国剩余定理知关于x 的同余方程组()()mod 1,2,,2020i x i y i ≡-=有正整数解0x .这意味着对1,2,3,,2020i =,有0x i +是i y 的倍数,因此0x i +是好数. 取()01,2,,2020x i i +=即可满足题意.34.(2021·全国·高三竞赛)设函数:f N N ++→同时满足以下三个条件: (1)对任意x 、y N +∈,有()()()f xy f x f y =; (2)对任意x N +∈,有()()f f x x =; (3)()220()20f x x x ≠≤≤. 求()2f 的最小值. 【答案】1013. 【解析】 【分析】 【详解】在()()()f xy f x f y =中令1x y ==,得()11f =.①设质数p 满足()f p 不是质数,若()1f p =,则由(2)及①, 有()()()11p f f p f ===,矛盾.故()f p 为合数,设()f p xy =(x ﹐y 均为大于1的正整数), 则()()()()()p f f p f xy f x f y ===.不妨设()1f x =,则()()()11x f f x f ===,与1x >矛盾. 因此,若p 是质数,则()f p 也是质数.由(1)、(2),有()()()()()()222222f f f f f f ==, 则由()22f 是偶数以及(3),得()222022f ≥. 因为()2f 是质数,所以()21013f ≥.另一方面,设小于2020的且不等于2或1013的质数有t 个,从小到大依次为12t p p p <<⋅⋅⋅<, 大于2020的质数中,最小的t 个从小到大依次为12t q q q <<⋅⋅⋅<考虑如下定义的函数:f N N ++→:()()()()()()11,21013,10132,,1,2,,i i i i f f f f p q f q p i t ======,且对质数t p q >,有()f p p =.对于合数1i ki i y r α==∏,其中质数12k r r r <<⋯<,且12k N ααα+⋯∈、、、,12k i i α=≥∑,有1()(())i ki i f y f r α==∏. 此时,不难验证f 满足(1)、(2).且对于正整数()22020x x ≤≤,若x 为质数,显然()f x x ≠,若x 是合数,设1jlj j x s β==∏,其中质数12l s s s <<⋯<,且121,,,,2ll j j N ββββ+=∈≥∑.于是,由f 的定义知()f x 一定为至少两个,且每个均不小于1013的正整数的乘积, 故()2020f x x ≥≥,则f 满足(3). 综上,知()2f 的最小值为1013.35.(2021·全国·高三竞赛)对每个正整数n ,定义()f n 为从1到n 中所有与n 不互质的正整数的和.求证:若()()f m f n =且m n ≠,则m n -是合数. 【答案】证明见解析 【解析】 【分析】 【详解】首先计算()f n 的表达式,注意到从1到n 中所有与n 互质的正整数有()n ϕ个,并且它们是以t 和n t -的形式成对出现的,因此111()(1)()(1())222f n n n n n n n n ϕϕ=+-⋅=+-.若()()f m f n =且m n ≠,不妨设m n >,则()()()()11m m m n n n ϕϕ+-=+-.① 因为()11n n n m ϕ≤+-≤<,所以(),1m n >.若m n -不为合数,设为质数p ,则()1n kpm p k ==+﹐, ①式变为()()()()()()11111k k p k p k kp kp ϕϕ+++-+=+⎦-⎡⎤⎣.由(),11k k +=,可设()()()()()111,11k p k p lk kp kp l k ϕϕ++-+=+-=+ 其中0l p <<,相减得()()()1k p kp p l ϕϕ+-=+,1k =时, ()()21p p p l ϕ--<+不合题意,所以2k ≥,2p =时,()()()1,1l k p kp p l ϕϕ=+-=+左右奇偶性不同,所以3p ≥.注意()()()()()1,11p kp p k p ϕϕ--+,因此()()1|p p l -+.又0,3l p p <<≥,所以2l p =-,所以()()()121,23k p k p kp k p ϕϕ+=++=-+. 若|p k ,则()|p kp ϕ,所以()3|2p k p -+,所以3p =, 所以()()()12121k p k k p ϕϕ+=+<++,矛盾,同理若()1|p k +也得矛盾,所以()()1121p k k p ϕ-+=++,()()123p k k p ϕ-=-+,②所以()()12k k ϕϕ+-=,于是()1k ϕ+和()k ϕ恰有一个不是4的倍数,必模4余2,但()s ϕ模4余2当且仅当4,,2a a s q q =,这里q 是模4余3的奇质数,a 是正整数,分别代回②知都无解.综上,若()()f m f n =且m n ≠,则m n -是合数.36.(2021·全国·高三竞赛)已知正整数,1n n >,设A 为正整数满足2|1n n A ⎡⎤+⎢⎥⎣⎦,求所有A 的值.([]x 表示不超过x 的最大整数)【答案】当2n =时,3A =,或4,当2n >时,1A n =+. 【解析】 【分析】 【详解】(1)如果2A n >,则211n A ⎡⎤+=⎢⎥⎣⎦,由1n >知,2 1n n A ⎡⎤+⎢⎥⎣⎦;(2)如果2A n =,则212n A ⎡⎤+=⎢⎥⎣⎦,由21n n A ⎡⎤+⎢⎥⎣⎦∣及1n >知2n =,从而4A =;(3)如果20A n <<,则令22n n A r A ⎡⎤=+⎢⎥⎣⎦,其中20r A n ≤<<,即221()n n A A r A ⎛⎫⎡⎤=+-- ⎪⎢⎥⎣⎦⎝⎭. ①当2n A n <<时,222,11n n n n n A A A ⎡⎤⎡⎤<<+<+⎢⎥⎢⎥⎣⎦⎣⎦,由21n n A ⎡⎤+⎢⎥⎣⎦∣,可设21n nH A ⎡⎤+=⎢⎥⎣⎦, 于是1nH n <+,即()11n H -<,这样,只有1H =成立,所以21n n A ⎡⎤+=⎢⎥⎣⎦.代入①式得()2n nA A r =--,即21111n r r A n n n --==+---. 若1r ≠,则11r n --是不小于1的正整数,于是A n ≤,与A n >矛盾, 因此1r =,故1A n =+.当A n =时,211n n A ⎡⎤+=+⎢⎥⎣⎦,由n ∈+N 知211n n n A ⎡⎤+=+⎢⎥⎣⎦;当0A n <<时,由①式及21n n A ⎡⎤+⎢⎥⎣⎦∣知,n A r -∣. 又0,0A n r A n <<≤<<,从而0A r n <-<,矛盾. 综上,当2n =时,3A =,或4,当2n >时,1A n =+.37.(2021·全国·高三竞赛)证明:对任何正整数m ,存在无穷多组整数(),x y ,使得 (1),x y 互质; (2)2|x y m +; (3)2|y x m +. 【答案】证明见解析. 【解析】 【分析】 【详解】显然,当1x y ==时,符合题意.若正整数对()(),x y x y ≤满足条件,由条件(2)可设2xx y m '=+,其中x Z +'∈.下证命题:正整数对(),y x '也满足条件,且y x <'. 由等式2xx y m '=+知,2xx y yx '>≥,即x y '>. 同时还可知,2|x y m '+且()cd ,|g x y m '.若p 是()gcd ,x y '的一个质因子,则有,p m p y .结合条件(3)有2|p x m +,从而有|p x . 这与条件(1)矛盾.故()gcd ,1x y '=.最后,还需证2yx m '+∣.由于gcd(,)1x y =,等价证()22y x x m '+∣. 其中()()()2222220(mod )x x m y m x m m m x y '+=++≡+≡.命题得证,且x y x '>≥.反复利用此命题,便可得到无穷数列{}n a ,其中()212211,n n n a m a a a n a ++++===∈N . 满足1n n a a +>对2n ≥成立,且整数对()()1,n n a a n ++∈N 符合条件.38.(2021·全国·高三竞赛)正整数2n ≥,且n 的素因子个数不超过2,对于任意整数a ,若(),1n a =,则有()mod n a a n ≡成立,求证:n 是质数.【答案】证明见解析. 【解析】 【分析】 【详解】假设n p q αβ=,(其中p q 、均为质数,N αβ∈﹐). 首先证明:p q ≠,若n p γ=(p 为质数,γαβ=+).因为(),1n a =,所以取最小整数δ,使得()1mod a p δγ≡(易知δ为a 对模2p 的阶).又()111(mod )1mod n n an a p γ--≡⇔≡,所以()()1(1),(1)1p p p n p γγγδϕδδ-=--⇔-∣,所以1p δ-∣. 取()()()11111111(1)11mod p p a p p a p p p p p γγγγγγ------=--⇒≡-≡--+≡+,矛盾.所以n p p q γ≠⇒≠.任取与p q 、互质的a , 由Euler 定理知:()()1(mod ),()(1)(1)n an n p q p q ϕαβϕϕ≡==--.从而()()1|1p q δ--,又因为()|(1)|1n p q αβδδ-⇒-,所以()11111p q p q p q αβαβαβδ----+--∣.所以111111(mod )p qp q p q a n αβαβαβ----+--≡,所以()111mod p q a p αβα--≡,所以()111mod q p q a p αα--≡.同理()111mod p q aq αββ--≡.不妨设p q >,则p 一定是奇质数.因此它存在原根g ,满足()11mod q gp α-≡/.因此,一定存在整数k ,使得q kp g α+,取a kp g α=+,矛盾! 结合2n ≥,知n 只能有一个质因子,即n 是质数. 又由Fermat 小定理知,当n 为质数时,满足题意.39.(2021·全国·高三竞赛)设a ,b 为正奇数,定义数列{}n f 如下:1f a =,2f b =,当3n ≥时,n f 为12n n f f --+的最大奇因子.求证:当n 充分大时,n f 为常数,并确定出这个常数. 【答案】a ,b 的最大公约数. 【解析】 【详解】从题目条件可以知道,如果有相邻两项k f ,1k f +相等,则当n k ≥时,n f 全相等,为常数. 用反证法,如果n f 不为常数,则序列{|}n f n N ∈的任意相邻两项不等.由于1n f -,2n f -皆为奇数,则12n n f f --+为偶数.那么,有(){}12121max ,2n n n n n f f f f f ----≤+<,于是,有 {}{}{}3456max ,max ,max ,...a b f f f f >>>.显然,这无限递降正奇数数列不存在,矛盾.所以,必存在正整数k ,使得1k k f f +=,即当n k ≥时,n k f f =.设此常数为C ,由于122an n n f f f --+=,这里a 是个正整数,以及n f ,1n f -,2n f -均为奇数,可知1n f -,2n f -的最大公约数()12,n n f f --等于n f ,1n f -的最大公约数()1,n n f f -.从而,序列中任意相邻两项的最大公约数相同.那么,()(),...,C C C a b ===,即这常数为a ,b 的最大公约数.40.(2020·全国·高三竞赛)设12121,2,2,3,4,n n n a a a a a n --===+=证明:对整数5n ≥,n a ,必有一个模4余1的素因子. 【答案】证明见解析. 【解析】 【分析】不妨记11αβ==由递推式及数学归纳法得到n a 有奇素因子p ,然后对正整数进行讨论,证明也存在模4余1的素因子. 【详解】证明:记11αβ=+=-n n n a αβαβ-=-.记2n nn b αβ+=,则数列{}n b 满足122(3)n n n b b b n --=+≥ ①因121,3b b ==均为整数,故由①及数学归纳法,可知{}n b 每项均为整数.由222()22n n n n n αβαβαβαβαβ⎛⎫⎛⎫+--⎛⎫-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 可知222(1)(1)nn n b a n -=-≥ ②当1n >为奇数时,由于1a 为奇数,故由{}n a 的递推式及数学归纳法,可知n a 为大于1的奇数,所以n a 有奇素因子p .由②得21(mod )n b p ≡-,故112(1)(mod )p p n b p --≡-.又上式表明(),1n p b =,故由费马小定理得11(mod )p n b p -≡,从而12(1)1(mod )p p --≡.因2p >,故必须12(1)1p --=,因此1(mod 4)p ≡.另一方面,对正整数m ,n ,若|m n ,设n km =,则()(1)(2)(2)(1)n n m mk m k m m m k m k m n a αβαβααβαββαβαβ------==⋅++++--()0(212)(212)1(22)(22)1()(),2=(()(),21i im l i m l i m m l i lm im l i m l i m m l a k l a k l αβαβαβαβαβ=-----=---⎧⋅∑+=⎪⎨⎪⋅∑++=+⎩因2s ss b αβ+=为整数(对正整数s ),1αβ=-为整数,故由上式知n a 等于m a 与一个整数的乘积,从而|m n a a .因此,若n 有大于1的奇因子m ,则由前面已证得的结论知m a 有素因子1(mod 4)p ≡,而|m n a a ,故|n p a ,即n a 也有模4余1的素因子.最后,若n 没有大于1的奇因子,则n 是2的方幂.设2(3)l n l =≥, 因84082417a ==⨯有模4余1的素因子17,对于4l ≥,由8|2l 知82|l a a , 从而2l a 也有素因子17.证毕. 【点睛】关键点点睛:本题证明的关键是能够运用数论整除的相关知识以及费马小定理进行证明,不漏掉情况.41.(2019·江苏·高三竞赛)设k 、l 、c 均为正整数,证明:存在正整数a 、b 满足(,)b ac a b -=⋅,且()(),(,)a b l kb a a b a b ττττ⋅=⋅⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,其中(a ,b )表示a 、b 的最大公因数,()m τ表示正整数m 的所有不同正因子的个数. 【答案】见解析 【解析】 【详解】如果m 的标准分解式为1212n n n m p p p ααα=,那么()()()12()111n m τααα=+++.取定两个不同的素数p 、q 使得(pq ,c )=1.由于(p ,q )=1,利用裴蜀定理,存在正整数00,u v ,使得00k lp u q v c -=.由于(pq ,c )=1,那么0p v 且0q u . 由中国剩余定理,下列同余方程组:0001(mod )1(mod )1(mod )l kl u tq p v tp q u tq c ⎧+≡⎪+≡⎨⎪+≡⎩有正整数解t t =0. 令0000,l ku u t q v v t p =+=+,那么k l p u q v c -=,而且(u ,pqc )=1.因此(,)1,(,)1v pqc u v ==.现在取2211,k l l d p q n q v --==,则l k n c q v c p u +=+=. 从而(,)1n n c +=.令a =nd ,b =(n +c )d ,那么(a ,b )=d ,因此(,)b a cd c a b -==⋅.而且:()()2211()()(),k ll l p q va nd l l la n q v ab ττττττ-+-⋅=⋅=⋅⎛⎫⎪⎝⎭()22221k l l l k l l +==+.()()2211()(())(),kk l kp qub ncd k k k b n c p u a b ττττττ+--+⋅=⋅=⋅+⎛⎫⎪⎝⎭()22221kk l k k l k +==+.所以()()(,)(,)a b l ka b a b a b ττττ⋅=⋅⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.42.(2019·江西·高三竞赛)试求所有由互异正奇数构成的三元集{a ,b ,c },使其满足:2222019a b c ++=.【答案】7个,{1,13,43},{7,11,43},{13,25,35},{5,25,37},{}11,23,37,{17,19,37},{7,17,41}. 【解析】 【详解】据对称性,不妨设a <b <c ,由于奇平方数的末位数字只具有1、5、9形式,于是222,,a b c 的末位数字,要么是5、5、9的形式,要么是1、9、9的形式.又知,如果正整数n 是3的倍数,那么n 2必是9的倍数;如果n 不是3的倍数,那么n 2被3除余1.由于2019是3的倍数,但不是9的倍数,因此奇数a 、b 、c 皆不是3的倍数. 注意[2019]44c =,即奇数c ≤43,而222232019c a b c >++=, 即c 2>673,且c 不是3的倍数,故奇数c ≥29. 因此奇数{29,31,35,37,41,43}c ∈.。

高中数学联赛真题分类汇编—初等数论

高中数学联赛真题分类汇编—初等数论

高中数学联赛真题汇编——初等数论(1978T7)证明:当n 、k 都是给定的正整数,且n >2,k >2时,n (n -1)k -1可以写成n 个连续偶数的和.解:设开始的一个偶数为2m ,则此n 个连续偶数的和为 (2m +…+2m +2n -2)×n ÷2=n (2m +n -1).令n (n -1)k -1= n (2m +n -1),则(n -1)k -1-(n -1)=2m .无论n 为偶数还是奇数,(n -1)k -1-(n -1)均为偶数,故m=12[(n -1)k -1-(n -1)]为整数.∴ 从(n -1)k -1-(n -1)开始的连续n 个偶数的和等于n (n -1)k -1.由于n 、k 给定,故(n -1)k -1-(n -1)确定.故证(1979二试5)在正整数上定义一个函数f (n )如下:当n 为偶数时,f (n )= n2,当n 为奇数时,f (n )=n +3,1° 证明:对任何一个正整数m ,数列a 0=m ,a 1=f (a 0),…,a n =f (a n -1),…中总有一项为1或3.2° 在全部正整数中,哪些m 使上述数列必然出现“3”?哪些m 使上述数列必然出现“1”?证明:1°,当a n >3时,若a n 为偶数,则a n +1=a n 2<a n ,若a n 为奇数,则a n +2=a n +32<a n ,即于是在{a n }中可以找出一个单调递减的子序列,由于该序列的每项都是正整数,故进行到某一项时序列的项≤10,此时当a n =3,6,9时,出现如下的项:9→12→6→3→6→3→…;当a n ≤10且3\|a n 时,出现如下的项:7→10→5→8→4→2→1;总之,该数列中必出现1或3.2° 当m 为3的倍数时,若m 为偶数,m2仍为3的倍数;若m 为奇时,m +3是3的倍数,总之a n 对于一切n ∈N *,都是3的倍数,于是,上述数列中必出现3,当m 不是3的倍数时,m2(若m 为偶数)与m +3(若m 为奇数)都不能是3的倍数,于是a n 不是3的倍数,故a n ≠3,此时数列中必出现1.(1979二试7)某区学生若干名参加数学竞赛,每个学生得分都是整数,总分为8250分,前三名的分数是88、85、80,最低分是30分,得同一分数的学生不超过3人,问至少有多少学生得分不低于60分(包括前三名)?解:8250-(88+85+80)=7997.(30+31+32+…+79)×3=50×109÷2×3=8175.即从30到79分每个分数都有3人得到时,共有8175分,此时及格学生数为20×3+3=63人.8175-7997=178.若减少3名及格的学生至少减去180分.故至多减去2名及格的学生.∴至少63-2=61人及格.(1982T12)已知圆x2+y2=r2(r为奇数),交x轴于点A(r,0)、B(-r,0),交y轴于C(0,-r)、D(0,r).P(u,v)是圆周上的点,u=p m,v=q n(p、q都是质数,m、n都是正整数),且u>v.点P在x轴和y轴上的射影分别为M、N.求证:|AM|、|BM|、|CN|、|DN|分别为1、9、8、2.证明:p2m+q2n=r2.若p=q,则由u>v,得m>n,于是p2n(p2(m-n)+1)=r2,这是不可能的.(因p2(m-n)与p2(m-n)+1都是完全平方数,它们相差1,故必有p2(m-n)=0,矛盾).故p≠q,于是(p,q)=1.若p、q均为奇数,则p2≡q2≡1(mod4),与r2≡0或1矛盾.故p、q必有一为偶数.即p、q必有一个=2.(或直接由r为奇数得p、q一奇一偶,其实r为奇数的条件多余)设p=2,则q2n=r2-22m=(r+2m)(r-2m).即r+2m与r-2m都是q2n的约数.设r+2m=q k,r-2m=q h,其中k>h≥1,k+h=2n.∴r= 12(qk+q h)=12qh(q k-h+1),2m=12(qk-q h)=12qh(q k-h-1),但q h是奇数,又是2m+1的约数,故h=0.r= 12(q2n+1),2m+1=q2n-1=(q n+1)(q n-1).∴q n+1=2α,q n-1=2β.(α+β=m+1,α>β),而2=2α-2β=2β(2α-β-1),从而β=1,α-β=1,α=2.∴m=2,u=4,q n=3,q=3,n=1,v=3.|OP|=5.∴|AM|=5-4=1,|BM|=5+4=9,|CN|=5+3=8,|DN|=5-3=2.若设q=2,则同法可得u=3,v=4,与u>v矛盾,舍去.又证:在得出p、q互质且其中必有一为偶数之后.由于(p m,q n)=1,故必存在互质的正整数a,b(a>b),使a2-b2= q n,2ab= p m,a2+b2=r.或a2-b2=p m,2ab=q n,a2+b2=r.若p m=2ab,得p=2,a|2m,b|2m,故a=2λ,b=2μ,由a,b互质,得μ=0,∴b=1,a=2m-1.q n=22m-2-1=(2m-1+1)(2m-1-1).故2m-1+1=qα,2m-1-1=qβ,(α+β=n,且α>β).∴2=qα-qβ=qβ(qα-β-1).由q为奇数,得β=0,2=q n-1,q n=3,从而q=3,n=1,a2=4.a=2,m=2.仍得上解.(1984二试4)设a n是12+22+32+…+n2的个位数字,n=1,2,3…,试证:0.a1a2…a n…是有理数.解由于12+22+…+n2的个位数字只与1到n的个位数字的平方和有关,故只要考虑这些数的个位数字的平方:但12≡1.22≡4,32≡9,42≡6,52≡5,62≡6,72≡9,82≡4,92≡1,02≡0(mod 10)∴a1=1,a2=5,a3=4,a4=0,a5=5,a6=1,a7=0,a8=4,a9=5,a10=5,a11=6,a12=0,a13=9,a14=5,a15=0,a16=6,a17=5,a18=9,a19=0,a20=0.由a20=0知,a20k+r=a r(k,r∈N,0≤r≤19,并记a0=0),即0.a1a2…a n…是一个循环节为20位数的循环小数,即为有理数.其一个循环节为“15405104556095065900”.(1985T9)在已知数列1,4,8,10,16,19,21,25,30,43中,相邻若干个数之和能被11整除的数组共有.解:把这些数mod 11得1,4,-3,-1,5,-3,-1,3,-3,-1.依次累加,得:1,5,2,1,6,3,2,5,2,1.其中相等的和有7对(3对1,3对2,1对5),这表示原数列中共有7组相邻数之和能被11整除.(1985二试1)在直角坐标系xoy中,点A(x1,y1)和点B(x2,y2)的坐组成的四位数x1x2y2y1=x1∙103+x2∙102+y2∙10+y1.试求出所有这样的四位数,并写出求解过程.解:x2y2-x1y1=67.x1<y1,x2>y2.且x1,y1,x2,y2都是不超过10的正整数.∴x2y2>67,⇒x2y2=72或81.但x2>y2,故x2y2=91舍去.∴x2y2=72.x2=9,y2=8.∴x1y1=72-67=5.⇒x1=1,y1=5,∴x1x2y2y1=1985.(1987T1)对任意给定的自然数n,若n6+3a为正整数的立方,其中a为正整数,则( ) A.这样的a有无穷多个B.这样的a存在,但只有有限个C.这样的a不存在D.以上A、B、C的结论都不正确解:(n2+3k)3=n6+9n4k+27n2k2+27k3=n6+3(3n4+9n2k+9k2)k.取a=(3n4+9n2k+9k2)k,(k为任意正整数),则n6+3a为正整数的立方,由于k可任意取值,且当k增大时,a也随之增大.即a有无数个.选A.(1987T7)若k是大于1的整数,α是x2-kx+1=0的一个根,对于大于10的任意自然数n,α2n+α-2n的个位数字总是7,则k的个位数字是.(河北供题)解:另一根=α-1,α+α-1=k,记α2n+α-2n≡k n(mod 10),0≤k n<10.由α2n+α-2n=(α2n-1+α-2n-1)2-2得,k n≡k n-12+8(mod 10).若k为偶数,则k n为偶数,不等于7.若k n-1≡±1(mod 10),则k n≡9,⇒k n+1≡9(mod 10);若k n-1≡±3(mod 10),则k n≡7,⇒k n+1≡7(mod 10);若k n-1≡5(mod 10),则k n≡9,⇒k n+1≡9(mod 10);故k的个位数字为3,5,7.(1989T10)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为 .解 设其小数部分为α(0<α<1),整数部分为n (n ∈N *),则得,α(n +α)=n 2, ∴ n 2<n +α<n +1.∴1-52 <n <1+52, 但n ∈N*,故n=1,得,α2+α-1=0, ∴ α=-1±52 ,由α>0,知,α=-1+52.∴ 原数为-1+52.(1989二试3)有n ×n (n ≥4)的一张空白方格表,在它的每一个方格内任意的填入+1与-1这两个数中的一个,现将表内n 个两两既不同行(横)又不同列(竖)的方格中的数的乘积称为一个基本项.试证明:按上述方式所填成的每一个方格表,它的全部基本项之和总能被4整除(即总能表示成4k 的形式,其中k ∈Z ).证明 基本项共有n !个,n >3,则基本项的个数为4的倍数,设共有4m 项. 其中每个数a ij (=±1)都要在(n -1)!个基本项中出现,故把所有基本项乘起来后,每个a ij 都乘了(n -1)!次,而n >3,故(n -1)!为偶数,于是该乘积等于1.这说明等于-1的基本项有偶数个,同样,等于+1的基本项也有偶数个.若等于-1的基本项有4l 个,则等于+1的基本项有4m -4l 个,其和为4m -4l -4l=4(m -2l )为4的倍数;若等于-1的基本项有4l -2个,则等于+1的基本项有4m -4l +2个,其和为4m -4l +2-4l +2=4(m -2l +1)为4的倍数.故证.(1991T3)设a 是正整数,a <100,并且a 3+23能被24整除,那么,这样的a 的个数为( )A .4B .5C .9D .10解:即24|a 3-1,而a ≡0,±1,±2,±3,4,则a 3≡0,±1,0,±3,0.故a -1≡0(mod 8).若a ≡0,1,2(mod 3),则a 3≡0,1,-1(mod 3),∴ a -1≡0(mod 3).即a -1≡0(mod 24).选B .(1991T10)19912000除以106,余数是 .解:19912000=(1990+1)2000=19902000+…+C 19972000×19903+C 19982000×19902+C 19992000×1990+1 ≡1000×1999×19902+2000×1990+1≡880001(mod 106).即余数为880001.(1993T10)整数⎣⎡⎦⎤10931031+3的末两位数是_______.解:令x=1031,则得x 3x +3=x 3+27-27x +3=x 2-3x +9-27x +3.由于0<27x +3<1,故所求末两位数字为09-1=08.(1994二试2)将与105互素的所有正整数从小到大排成数列,试求出这个数列的第1000项。

初中数学竞赛专题复习第三篇初等数论第19章整数的整除性(下半部分)试题新人教版

初中数学竞赛专题复习第三篇初等数论第19章整数的整除性(下半部分)试题新人教版

第19章 整数的整除性综上可知,命题成立.评注如果两个互质的正整数之积是一个完全平方数,则这两个正整数都是完全平方数.这一命题是我们证明此题的出发点.19.4.27★★★如果正整数a 、b 、c 满足222c a b =+.证明:数2c ab +和2c ab -都可以表示为两个正整数的平方和.解析 巧妙运用下述命题:如果正整数x 可表示为两个正整数的平方和,则2x 也可表示为两个整数的平方和.事实上,设22x u v =+,这里x 、u 、v 都是正整数.则()()2222222x u v u v u v =+=++-.于是,2x 可表示为两个整数u v +和u v -的平方和,命题获证.注意到,由条件有 ()()22222222c ab c a ab b c a b ±=+±+=+±. 利用已证命题,可知()()()2224c ab c a b c a b ±=+±+- . 记c a b x +±=,c a b y -= ,由222c a b =+可知x 、y 都是正整数,并且()2224c ab x y ±=+.若x 、y 不同为偶数,则由平方数0≡或()1mod 4,可知221x y +≡或()2mod 4,这是一个矛盾.所以,x 、y 都是偶数,从而22222x y c ab ⎛⎫⎛⎫±=+ ⎪ ⎪⎝⎭⎝⎭,这就是 要证的结论.评注 这里本质上只是恒等式()()()22222u v u v u v +=++-的应用,在处理竞赛问题时,代数式变形能力显得十分重要.19.4.28是否存在正整数m 、n 使得331m n a =++是完全平方数?解析 分如下三种情形讨论:(1)若m m 、n 都是偶数,则()31mod 4m ≡,()31mod4n ≡,所以()3313mod4m n a =++≡, 故此时a 不是完全平方数.(2)若m 、n 都是奇数,则()33mod4m ≡,()33mod 4n =,所以()3313mod4m n a =++≡, 故此时a 不是完全平方数.(3)若m 、n 是一奇一偶,不妨设m 是奇数,n 是偶数,则()33mod8m ≡,()31mod8n ≡,所以()3315mod8m n a =++≡,故此时a 不是完全平方数.综上所述,对于任意正整数m 、n ,正整数331m n a =++都不是完全平方数.评注 判断一个数不是完全平方数,我们也可以用“模”的方法,例如,我们知道,偶数的平方是4的倍数,奇数的平方除以4余1,所以,若一个整数同余2或者3模4,则它一定不是完全平方数;类似地,若一个整数同余2模3,则它一定不是完全平方数;一个整数同余2、3模5,则它一定不是完全平方数等等.其实,考虑末位数也是用“模”的方法,即模10.19.4.29★★★已知n 是正整数,且21n +和31n +都是完全平方数,求证:40|n . 解析 因为34025=⨯,所以,只需证明:32|n ,且5|n 即可.设221n a +=,231n b +=,其中a 、b 都是正整数.由于a 是奇数,所以,()21mod8a ≡,从而4|n ,于是,31n +是奇数,所以,()21mod8b ≡,即()311mod8n +≡,从而()0mod8n ≡. 又对于任意整数x ,有()0 , 1 , 2mod5x ≡±±,所以,()20 , 1 , 4mod5x ≡,于是()22522mod5a b n +=+≡,故只能是()221mod5a b ≡≡,所以,()211mod5n +≡,从而()0mod5n ≡.因为(8,5)=1,所以,40|n19.4.30★★★—个正整数若能表示为两个正整数的平方差,称为“智慧数”,比如221653=-,16就是一个“智慧数”,从1开始数起,第2008个“智慧数”是哪个数? 解析 1不是“智慧数”,大于1的奇正整数()()22211 1 , 2 , 3 , k k k k +=+-= ,都是“智慧数”.被4整除的偶数4k ,有()()()22411 2 , 3 , k k k k =+--= ,都是“智慧数”,而4不能表示为两个正整数的平方差,4不是“智慧数”.被4除余2的数()42 1 , 2 , k k += ,设()()2242k x y x y x y +=-=+-,其中x 、y 为正整数,当x 、y 奇偶性相同时,x y +,x y -均为偶数,()()x y x y +⋅-被4整除,而42k +不被4整除,所以x 、y 奇偶性相同的假设不可能成立;当x 、y 奇偶性不同时,x y +,x y -均为奇数,()()x y x y +-为奇数,而42k +为偶数,故x 、y 奇偶性不同的假设也不可能成立.即不存在正整数x 、y ,使2242k x y +=-,即形如42k +的数均不是“智慧数”. 综述,在正整数列中,前四个正整数中只有3为“智慧数”,之后每连续四个数中有三个“智慧数”,其中第二个数,即形如42k +的数不是智慧数.200813669=+⨯,()466912680⨯+=.因此,第2008个“智慧数”是2680. 19.4.31★★★把能表示成两个正整数平方差的这种正整数,从小到大排成一列:12 , , , , n a a a ,例如:22222222123421 3 , 32 5 , 437 , 318 , a a a a =-==-==-==-= ,求122007a a a +++ 的值.解析 当9m ≥时,若21m k =+是奇数,则()221m k k =+-,即m 能表示成两个正整数的平方差;若4m k =,则()()211m k k =+--,即m 也能表示成两个正整数的平方差;若4m k =,则()()2211m k k =+--,即m 也能表示成两个正整数的平方差;若42m k =+,则m 不能表示成两个正整数的平方差.所以,59a =,611a =,712a =,…,一般地,343k a k =+,3144k a k +=+,3245k a k +=+, 1 , 2 , k =故3132334445471216k k k a a a k k k k +++++=+++++=+,而20073669=⨯,所以()12200712312116122161266816a a a a a a +++=+++⨯++⨯+++⨯+()166866815126681626920052+=++⨯=. 19.4.32★★在二个连续的平方数之间能不能有二个完全立方数?换言之,是否存在正整数a 、b 、n 使得()22331n a b n <<<+?解析 假设存在正整数a 、b 、n ,使得()22331n a b n <<<+.因33a b <,可得()()323311a a b n <+<+≤.又因为23n a <,可得24n a <,即2n a <.故()()323221331311a a a a n n n +=+++>++>+,矛盾. 故假设不成立,即二个连续的平方数之间不能有二个完全立方数.19.4.33★★★设n 为正整数,如果存在一个完全平方数,使得在十进制表示下此完全平方数的各位数字之和为n ,那么称n 为好数(例如13是一个好数,因为2749=的各位数字之和等于13).问:在1,2,…,2007中有多少个好数?解析 首先,对()0 , 1 , 2 , 3 , 4mod9x ≡±±±±分别计算,可得()20 , 1 , 4 , 0 , 7mod9x ≡,利用十进制下一个数与它的数码和模9同余,可知满足条件的()0 , 1 , 4 , 7mod7n ≡,即()0mod9n ≡或()1mod3n ≡.其次,注意到 23333512121225m m = 个个12,因此,若存在非负整数m ,使得37n m =+,则n 为好数,又由211=,224=可知1n =,4是好数,因此,若()1mod3n ≡,则n 为好数.最后,由()2211010110210199980001m m m m m ---=-⨯+= 个9个, 可知若()0mod9n ≡,则n 是好数.综上可知,n 为好数的充要条件是()0mod9n ≡或()1mod3n ≡.依此可求得1,2,…,2007中好数的个数为669223892+-个.19.4.34★★★在黑板上依如下规则写下了若干个数:第一个数为1,以后的每一个数都等于已写数的个数加上这些已写数的平方和.证明:黑板上不可能出现除1以外的完全平方数.解析 利用相邻两个完全平方数之间的正整数都不是完全平方数这一结论. 设第n 次所写的数为n ,则11a =,22a =,并且222112n n a n a a a +=++++ ,1n ≥. ①利用递推式①,可知()22111n n a n a a -=-+++ ,2n ≥,② 由①-②,可知211n n na a a +-=+,2n ≥, 即211n n n a a a +=++,2n ≥.注意到,()22211n n n n a a a a <++<+,故2n ≥时,1n a +不是完全平方数,又2a 不是完全平方数,故命题成立.评注 用递推式表示题中的条件后,问题得以数学化,从而获得解决.用恰当的方式将问题表示,这一过程是一个数学化的过程,是处理实际问题时必要的第一步. 19.4.35★★★如果对x 的一切整数值,x 的二次三项式2ax bx c ++都是平方数(即整数的平方).证明:(1)2a 、2b 、c 都是整数;(2)a 、b 、c 都是整数,并且c 是平方数.反过来,如果(2)成立,是否对一切x 的整数值,2ax bx c ++的值都是平方数? 解析 (1)令0x =得c =平方数2l .令1x =±得2a b c m ++=,2a b c n -+=,其中m 、n 都是整数,所以2222a m n c =+-,222b m n =-都是整数.(2)如果2b 是奇数21k +(k 是整数),那么令4x =得22164a b l h ++=,其中h 是整数.由于2a 是整数,所以16a 被4整除,1641642a b a k +=++除以4余2.而()()22h l h l h l -=+-,在h 、l 的奇偶性不同时,()()h l h l +-是奇数;在h 、l 的奇偶性相同时,()()h l h l +-被4整除. 因此22164a b h l +≠-,从而2b 是偶数,b 是整数.2a m c b =--也是整数. 在(2)成立时,2ax bx c ++不一定对x 的整数值都是平方数.例如,2a =,2b =,4c =,1x =时,28ax bx c ++=不是平方数. 19.4.36★★★设n 为任意正整数,p 为正整数. 试确定正整数p ,使123p p p p n ++++ 都是某个正整数的平方. 解析 令 , 123p p p p n p S n =++++ . 首先我们知道:(1)() , 112n n n S +=,()() , 2126n n n n S ++=. 因此 2 , 13S =, 2 , 25S =均不为完全平方数. 所以1p =,2不满足所要求的条件.(2)()()222 , 31142n n n n n S ++⎛⎫== ⎪⎝⎭,对任意正整数而言,()12n n +必为整数,所以 , 3n S 必为完全平方数.(3)对任意4p ≥而言, 2 , 1221p p p p S =+=+必为奇数,但任一奇数m ,设21m k =+(k 为整数),则()()2221411m k k k =+=++. 显然2m 不可能是21p +型的数.(因为()1k k +必为一奇一偶,除1k =之外,()412p k k +≠,又4p ≥时,216p ≥,而1k =时,()418k k +=也不为2p 的数). 由(1)、(2)、(3)的讨论得知3p =是唯一使123p p p p n ++++ 恒为完全平方数的正整数.。

数学竞赛中初等数论

数学竞赛中初等数论
(第 4 届美国数学邀请赛试题)
解:将已知数列写成 3 的方幂形式:
a1 30 , a2 31, a3 31 30 , a4 32 , a5 32 30 , a6 32
易发现其项数恰好是自然数列对应形式的二进制表示: 即
1 20 ,2 21,3 21 20 ,4 22 ,5 22 20 ,6 22 2,7
即 10a b Z 即 9a Z 也就是 (a b) | 9a ;
ab
ab
若 b 0 显然适合,此种情况共有 9 种; 若 b 0,则由 a b a ,故 3 | (a b) 若 (a b) | 9 ,则显然可以,此时共有 2+8=10 个; 若( a b )9,则 a b 6 或 a b 12 ,这样的数共有
2000个 0
例 2.对正整数 n ,记 S(n) 为 n 的十进制表示中数码之 和。证明: 9 | n 的充要条件是 9 | S(n) 。
证 明 : 设 n ak 10 k a1 10 a0 ( 这 里 0 ai 9 , 且 ak 0 ) , 则 S(n) a0 a1 an , 于 是 有
的”。 另一方面,在这三个“好的”非负整数的三进制表示中,最高 位与倒数第三位完全相同,倒数第二位分别取 0,1,2。若它 使它们成为“好的”非负整数,则最后一位不相同,引理 2 得证。
将所有“好的”非负整数按从小到大的顺序排成一列,设第
2004 个 “ 好 的 ” 非 负 整 数 为 m , 根 据 引 理 1 , 得 20033 m 20043,即 6009 m 6012。 设前 m 个“好的”正整数之和为 S m ,由于前 2003 个“好的”
例 7.若 n {1,2,,100}且 n 是其各位数字和的倍数,这样的 n

竞赛数论练习题

竞赛数论练习题

《竞赛数论练习题》1、求24871与3468的最大公因数2、求[24871,3468]3、 解方程 3x +5[x ]-50=04、求证:77733337|(333777)+4、 证明对于任意整数n ,数62332n n n ++是整数.5、 证明相邻两个偶数的乘积是8的倍数.6、任意一个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.1.求24871与3468的最大公因数解: 24871=3468⨯7+5953468=595⨯5+493595=493⨯1+102493=102⨯4+85102=85⨯1+1785=17⨯5,所以,(24871,3468)=17.2.求[24871,3468]解:因为(24871,3468)=17所以[24871,3468]= 17346824871⨯ =5073684所以24871与3468的最小公倍数是5073684。

4.证明对于任意整数n ,数62332n n n ++是整数.证明: 因为62332n n n ++=)32(62n n n ++=)2)(1(61++n n n , 而且两个连续整数的乘积是2的倍数,3个连续整数的乘积是3的倍数,并且(2,3)=1, 所以从)2)(1(2++n n n 和)2)(1(3++n n n 有)2)(1(6++n n n , 即62332n n n ++是整数. 5.证明相邻两个偶数的乘积是8的倍数.证明: 设相邻两个偶数分别为)22(,2+n n所以)22(2+n n =)1(4+n n 而且两个连续整数的乘积是2的倍数 即)1(4+n n 是8的倍数.6.任意一个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.证明: 因为=-121a a a a n n 12211101010a a a a n n n n +⨯++⨯+⨯--- ,n n a a a a 121- =n n n n a a a a +⨯++⨯+⨯---10101012211 ,所以,121a a a a n n --n n a a a a 121- =).101()101(10)110(10)110(1132311------+-⨯++-⨯+-⨯n n n n n n a a a a而上面等式右边的每一项均是9的倍数, 于是所证明的结论成立.。

2020全国高中数学联赛《初等数论》专题真题汇编

2020全国高中数学联赛《初等数论》专题真题汇编

2020全国高中数学联赛《初等数论》专题真题汇编1、记集合},4,3,2,1,|7777{},6,5,4,3,2,1,0{4433221=∈+++==i T a a a a a M T i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++ B .43272767575+++ C .43274707171+++ D .43273707171+++ 【答案】C2、数码1232006,,,,a a a a L 中有奇数个9的2007位十进制数12320062a a a a L 的个数为( )A .200620061(108)2+B .200620061(108)2-C .20062006108+ D .20062006108- 【答案】B3、方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( )。

(A ) 1 (B ) 2 (C ) 3 (D ) 4【答案】B4、设p 是给定的奇质数,正整数k 使得k 2-pk 也是一个正整数,则k=【答案】14(p +1)2 【解析】设k 2-pk=n ,则(k -p 2)2-n 2=p 24,⇒(2k -p +2n )(2k -p -2n )=p 2,⇒k=14(p +1)2.5、如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列,,,,321Λa a a 若,2005=n a 则=n a 5 .∵2005是第1+7+28+28+1=65个“吉祥数”,即.200565=a 从而.3255,65==n n又,210)5(,84)4(61069====C P C P 而∑==51.330)(k k P∴从大到小最后六个五位“吉祥数”依次是:70000,61000,60100,60010,60001,52000.∴第325个“吉祥数”是52000,即.520005=n a6、方程20062420042005(1)(1)2006x x x x x +++++=L 的实数解的个数为 .【答案】17、方程2010=++z y x 满足z y x ≤≤的正整数解(x ,y ,z )的个数是 . 【答案】336675从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.8、已知=n a C ())95,,2,1(2162003200Λ=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 .【答案】159、已知他们中的任意两人至多通电话一次,他们中的任意n -2个人之间通电话的次数相等,都是3 k 次,其中k 是自然数,求n 的所有可能值. 【解析】显然n ≥5. 记n 个人为A 1,A 2, A N ,设A 1通话的次数为m 1, A i 与 A j 之间通话的数为y ij , l ≤n j i ≤, .则m i +m j – y i . j =∑=ns s m 121-k 3= c . (*)其中c 是常数 ,l ≤n j i ≤, . 根据(*)知,=-j i m m )()(s j s i m m m m +-+=sj s i y y ..-≤1 , l ≤n j i ≤, .⇒1≤-j i m m , l ≤n j i ≤,设 m i =max{m s ,1.n s ≤≤} ,m j = min{m s,1≤s ≤n.} , 则 m i +m j ≤1.若 m i +m j =1 ,则对于任意 s ,,j i ≠ 1≤s ≤n ,都有(m i +m s -y I ,s )- (m j +m s -y I ,s )=1-(y I ,s – y j ,s )=0 , 即 y I ,s – y j ,s = 1 故 y I ,s =1 , y j ,s = 0 . s ,,j i ≠ 1≤s ≤n ,因此 m i ≥ n -2 , m j ≥1 . 于是 ,m i +m j ≥n -3≥2 . 出现矛盾 ,故 m i +m j =0 ,即 m s (1≤s ≤n)恒为常数 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初等数论竞赛训练
1.(2006一试6)数码1232006,,,,a a a a 中有奇数个9的2007位十进制数12320062a a a a 的个数为 .
2.(2008一试5) 方程组0,
0,
0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩
的有理数解(,,)x y z 的个数为 .
3.(2011一试8)
已知
200200(1,2,,95)n
n
n
n a C n -=⋅
⋅= ,则数列}{n a 中整数项的个数为 .
4.(2009二试3)设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,使得C k m 与
l 互素.
5.(2010二试)设m 和n 是大于1的整数,求证:
11111112(1)().1m m n m
m
m
k k j
j m m k j i n n C n C i m -+===⎧⎫+++=+-⎨⎬+⎩⎭
∑∑∑
6.(2011二试2)证明:对任意整数4≥n ,存在一个n 次多项式
0111)(a x a x a x x f n n n ++++=--
具有如下性质:(1)110,,,-n a a a 均为正整数;(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数k r r r ,,,21 ,均有)()()()(21k r f r f r f m f ≠.
7.(2012二试2)试证明:集合{}
22,2,,2,n
A = 满足
(1)对每个a A ∈,及b N *
∈,若21b a <-,则(1)b b +一定不是2a 的倍数;
(2) 对每个a A ∈(其中A 表示A 在N 中的补集),且1a ≠,必存在b N *
∈,
21b a <-,使(1)b b +是2a 的倍数.
8.(2013二试2)给定正整数,u v .数列{}n a 定义如下:1a u v =+,对整数1m ≥, 221,
.
m m m m a a u a a v +=+⎧⎨
=+⎩
记12m m S a a a =+++ (1,2,m = ).证明:数列{}n S 中有无穷多项是完全平方数.
初等数论参考答案
4.【解析】证法一:对任意正整数t,令(!)
m k t l k
=+⋅⋅.我们证明()
C1
k
m
l=
,.
设p是l的任一素因子,只要证明:p/∣C k
m

若p/∣k!,则由
1
!C()
k
k
m
i
k m k i
=
=-+

1
[((!)]
k
i
i tl k
=
≡+

1
k
i
i
=
≡∏()1
!mod
k pα+
≡.及|!
p k
α,且pα+1/∣k!,知|!C k
m
p k
α且1
α+
p/∣!C k
m
k.从而p/∣C k
m

证法二:对任意正整数t,令2
(!)
m k t l k
=+⋅⋅,我们证明()
C1
k
m
l=
,.
设p是l的任一素因子,只要证明:p/∣C k
m
.若p/∣k!,则由
1
!C()
=
=-+
∏k
k
m
i
k m k i2
1
[((!)]
k
i
i tl k
=
≡+

1
k
i
i
=
≡∏()
!mod
k p
≡.
即p不整除上式,故p/∣C k
m

若|!
p k,设1
α≥使|!
p k
α,但1!
p k
α+Œ.12
|(!)
p k
α+.故由
1
1
!C()
k
k
m
i
k m k i
-
=
=-+
∏2
1
[((!)]
k
i
i tl k
=
≡+

1
k
i
i
=
≡∏()1
!mod
k pα+
≡,及|!
p k
α,且pα+1/∣k!,
知|!C k
m
p k
α且1
α+
p/∣!C k
m
k.从而p/∣C k
m
5.证明:
1
1
1
1)
m
m j j
m
j
q C q
+
+
+
=
+=∑
由(得到11
1
(1),
m
m m j j
m
j
q q C q
++
+
=
+-=∑
1,2,,
q n
=
分别将代入上式得:1
1
21,
m
m j
m
j
C
+
+
=
-=∑
11
1
322,
m
m m j j
m
j
C
++
+
=
-=∑ 111
(1)(1),
m
m m j j
m
j
n n C n
++
+
=
--=-

11
1
(1).
m
m m j j
m
j
n n C n
++
+
=
+-=∑
n
将上面个等式两边分别相加得到:1
1
01
(1)1(),
m n
m j j
m
j i
n C i
+
+
==
+-=∑∑
1
1
111
(1)(1)1(1),
m n n
m j j m
m
j i i
n n n C i m i
-
+
===
++-=+++
∑∑∑
()
11111112(1)().1m m n
m
m
m
k k j j m m k j i n n C n C i m -+===⎧⎫+++=+-⎨⎬+⎩⎭
∑∑∑
7.【解析】证明:对任意的a A ∈,设2,,k a k N *=∈则122,k a +=如果b 是任意一个小于
21a -的正整数,则121b a +≤-
由于b 与1b +中,一个为奇数,它不含素因子2,另一个是偶数,它含素因子2的幂的次数最多为k ,因此(1)b b +一定不是2a 的倍数;
若a A ∈,且1,a ≠设2,k a m =⋅其中k 为非负整数,m 为大于1的奇数, 则1
22k a m +=⋅
下面给出(2)的三种证明方法:
证法一:令1,12,k b mx b y +=+=消去b 得12 1.k y mx +-=
由于1
(2,)1,k m +=这方程必有整数解;1
002k x x t
y y mt +⎧=+⎪⎨=+⎪⎩其中00,(,)t z x y ∈为方程的特解.
把最小的正整数解记为(,),x y **则1
2k x *+<,故21,b mx a *=<-使(1)b b +是2a 的倍数.
证法二:由于1
(2
,)1,k m +=由中国剩余定理知,同余方程组
10(mod 2)1(mod )
k x x m m +⎧=⎨
=-⎩在区间1
(0,2)k m +上有解,x b =即存在21,b a <-使(1)b b +是2a 的倍数.。

相关文档
最新文档