ch6 真空中的静电场 习题及答案

合集下载

《真空中的静电场》选择题解答与分析

《真空中的静电场》选择题解答与分析

12 真空中的静电场 12.1电荷、场强公式1. 如图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,则C 点的场强的大小为(A) 4.5104(N C -1). (B) 3.25104(N C -1). 答案:(B)参考解答:根据点电荷的场强大小的公式,点电荷q 1在C 点产生的场强大小为)C (N 108.1)(4142011-⋅⨯==AC q E πε,方向向下.点电荷q 2在C 点产生的场强大小为)C (N 107.2)(4142022-⋅⨯==AC q E πε,方向向右.C 处的总场强大小为:),C (N 1025.3142221-⋅⨯=+=E E E总场强与分场强E 2的夹角为.69.33arctan 021==E E θ对于错误选择,给出下面的分析:答案(A)不对。

你将)C (N 105.410)7.28.1(14421-⋅⨯=⨯+=+=E E E 作为解答。

错误是没有考虑场强的叠加,是矢量的叠加,应该用),C (N 1025.3142221-⋅⨯=+=E E E进入下一题:2. 真空中点电荷q 的静电场场强大小为2041r qE πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E就有确定值.进入下一题: 12.2高斯定理1. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是: (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(C) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.答案:(B) 参考解答:高斯定理的表达式:∑⎰==⋅ni i q s E 101d ε .它表明:在真空中的静电场内,通过任意闭合曲面的电通量等于该闭合面所包围的电荷电量代数和的0/1ε倍。

大作业参考答案-真空中的静电场

大作业参考答案-真空中的静电场

第九章 真空中的静电场一、选择题⒈ C ; ⒉B ;⒊ C ; ⒋ B ; ⒌ B ; 6.C ; 7.E ; 8.A,D ; 9.B ;10. B,D 二、填空题 ⒈2308qb Rπε,缺口。

⒉ 0qε,< ;⒊ 半径为R 的均匀带电球面(或带电导体球); ⒋ 1221E E h h ε--; 2.21⨯10-12C/m 3; ⒌ 100N/C ;-8.85×10-9C/m 2 ; ⒍ -135V ; 45V ; ⒎006q Q R πε;0;006q Q Rπε- ;006q QR πε ; ⒏ 122204()q x R πε+;322204()qx x R πε+;2R ;432.5 V/m ; 9.有源场;无旋场 (注意不能答作“保守场”,保守场是针对保守力做功讲的)。

三、 问答题1. 答: 电场强度0E F q =是从力的角度对电场分布进行的描述,它给出了一个矢量场分布的图像;而电势V =W /q 是从能量和功的角度对电场分布进行的描述,它给出了一个标量场分布的图像。

空间任意一点的电场强度和该点的电势之间并没有一对一的关系。

二者的关系是:"0"p d grad ,d d PVE V V E l n =-=-=⋅⎰ 。

即空间任一点的场强和该点附近电势的空间变化率相联系;空间任一点的电势和该点到电势零点的整个空间的场强分布相联系。

由于电场强度是矢量,利用场叠加原理计算时,应先将各电荷元产生的电场按方向进行分解,最后再合成,即:d d d d ;x y z E E i E j E k =++, d ,d ,d x x y y z zE E E E E E ===⎰⎰⎰ 而电势是标量可以直接叠加,即:V dV =⎰。

但用这种方法求电势时,应注意电势零点的选择。

四、计算与证明题1. 证:①根据对称性分析,两段带电直线各自在O 点的电场强度大小相等,方向相反,相互抵消,所以只计算带电细线半圆形部分的电场。

电场习题及答案

电场习题及答案

真空静电场(一)一.选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元dS 的一个带电量为dS σ的电荷元,在球面内各点产生的电场强度 [ ](A ) 处处为零 (B )不一定都为零 (C )处处不为零 (D )无法判断2. 设有一“无限大”均匀带负电荷的平面,取X 轴垂直带电平面,坐标原点位于带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标X 变化的关系曲线为(规定场强方向沿X 轴方向为正,反之为负) []3. 下面列出的真空中静电场的场强公式,其中哪个是正确的? [ ](A ) 点电荷Q 的电场: 204QE r πε=(B ) 无限长均匀带电直线(线密度λ)的电场: 302E r rλπε= (C ) 无限大均匀带电平面(面密度σ)的电场:02E σε= (D ) 半径为R 的均匀带电球面(面密度σ)外的电场:230R E r r σε= 4. 将一个试验电荷Q (正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F 。

若考虑到电量Q 不是足够小,则 [ ](A) F/Q 比P 点处原先的场强数值大(B) F/Q 比P 点处原先的场强数值小(C) F/Q 与P 处原先的场强数值相等(D) F/Q 与P 处原先的场强数值关系无法确定。

5. 根据高斯定理的数学表达式0s q E dS ε=∑⎰可知下列各种说法中,正确的是 [ ] (A ) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零(B ) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零(C ) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零(D ) 闭合面上各点场强均为零时,闭合面内一定处处无电荷6. 当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心处产生的电场强度E 和电势U 将 [ ](A )E 不变,U 不变; (B )E 不变,U 改变;(C )E 改变,U 不变 (D ) E 改变,U 也改变7. 在匀强电场中,将一负电荷从A 移至B ,如图所示,则: [ ](A ) 电场力作正功,负电荷的电势能减少(B ) 电场力作正功,负电荷的电势能增加(C ) 电场力作负功,负电荷的电势能减少(D ) 电场力作负功,负电荷的电势能增加8. 真空中平行放置两块大金属平板,板面积均为S ,板间距离为d ,(d 远小于板面线度),板上分别带电量+Q 和-Q ,则两板间相互作用力为 [ ](A )2204Q d πε (B )220Q S ε (C )2205k Q S ε+ (D )2202Q S ε 二.填空题1 带有N 个电子的一个油滴,其质量为m ,电子的电量的大小为e ,在重力场中由静止开始下落(重力加速度为g ),下落中穿越一均匀电场区域,欲使油滴在该区域中匀速下落,则电场的方向为________________,大小为____________________。

大学物理第7章真空中的静电场答案

大学物理第7章真空中的静电场答案

Q 与坐标原点0的距离为ydE方向沿轴正向。

4二;0x (x _ L )(2)如图7— 2图b ,设通过棒的端点与棒垂直上任一点• dx2 4二;°r第七章 真空中的静电场7- 1在边长为a 的正方形的四角,依次放置点电荷 q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。

解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为 一^甘4)= 4二;。

(2 a ) 5q 2,方向由q 指向-4q 。

2二;°a 7 — 2如图,均匀带电细棒,长为 L ,电荷线密度为 入。

(1) 求棒的延长线上任一点 P 的场强;(2)求通过棒的端点与棒垂直上 任一点Q 的场强。

解:(1)如图7 — 2图a ,在细棒上任取电荷元 dq ,建立如图坐标, P 与坐标原点0的距离为x ,贝U dq = ■ d ■,设棒的延长线上任一点 dE4二;0(x _ )2 4二;0(x _ )2 则整根细棒在 P 点产生的电场强度的大小为 dq 0 n_(」L 一丄x - L x习题7—2图adE y■ dx 2 4二;0rdE x 亠si n ,4 二;°r因x 二ytg pdxcos2 -习题7—2图b代入上式,则E x 二-dE xPL QE「dE「石石。

込还R S Z= 4jy y2L27— 3 一细棒弯成半径为R的半圆形,均匀分布有电荷q,求半圆中心0处的场强。

解:如图,在半环上任取dl=Rdr的线元,其上所带的电荷为dq=,Rd=对称分析E y=o。

dE x■ Rd v24二0RE = dE x sin -4二0R 02 0Rq2 二2;0R2,如图,方向沿x轴正向。

7 —4如图线电荷密度为入1的无限长均匀带电直线与另一长度为I、线电荷密度为 & 的均匀带电直线在同一平面内,二者互相垂直,求它们间的相互作用力。

第九章 真空中的静电场(答案)

第九章  真空中的静电场(答案)

一. 选择题[ B ] 1(基础训练1) 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x <0)和-λ(x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B) i a 02ελπ. (C) i a 04ελπ. (D)()j i a+π04ελ. 【提示】左侧与右侧半无限长带电直线在(0,a )处产生的场强大小E +、E -大小为:E E +-==矢量叠加后,合场强大小为:02E aλπε=合,方向如图。

[ B ] 2(基础训练2) 半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:【提示】由场分布的轴对称性,作闭合圆柱面(半径为r ,高度为L )为高斯面。

据Guass 定理:SE dS=iiq ε∑⎰r R ≤时,有:()22012rL=r E L R λππεπ⎛⎫ ⎪⎝⎭,即:20r =2E R λπε r R >时,有:()012rL=E L πλε ,即:0=2rE λπε [ C ] 3(基础训练3) 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A)06εq . (B) 012εq. (C) 024εq . (D) 048εq .【提示】添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。

则大立方体的外表面构成一个闭合的高斯面。

由Gauss 定理知,通过该高斯面的电通量为qε。

另一方面,该高斯面可看成由24个面积与侧面abcd 相等的面组成,且具有对称性。

所以,通过侧面abcd 的电场强度通量等于24εq [ D ] 4(基础训练6) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A) a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) a q 08επ-.【提示】200248P a M M aq qU E dl dr r a πεπε-===⎰⎰[ B ] 5(自测提高6)如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A)rQ Q 0214επ+. (B) 20210144R Q R Q εεπ+π. (C) 0. (D) 1014R Q επ. 【提示】根据带电球面在球内外所激发电势的公式,以及电势叠加原理即可知结果。

第九章 真空中的静电场(答案)2015(1)

第九章  真空中的静电场(答案)2015(1)

第九章 真空中的静电场一. 选择题[ B ] 1(基础训练1) 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+(x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B)i a 02 . (C)i a04 . (D) j i a 04 . 【提示】:左侧与右侧半无限长带电直线在(0,a)处产生的场强大小E +、E -大小为:22E E a矢量叠加后,合场强大小为:02E a合,方向如图。

[ C ] 2(基础训练3) 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A) 06 q . (B) 012 q . (C) 024 q . (D) 048 q.【提示】:添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。

则大立方体外围的六个正方形构成一个闭合的高斯面。

由Gauss 定理知,通过该高斯面的电通量为q。

再据对称性可知,通过侧面abcd 的电场强度通量等于24 q。

[ D ] 3(基础训练6) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为(A)a q 04 . (B) aq08 .(C)a q 04 . (D) aq08 .【提示】:220048PaM Maq q V E dl dr rav v gAbcaqaa+qPME +E -E 合+-xy (0, a ) +-xy (0, a )[ C ] 4(自测提高4)如图9-34,设有一“无限大”均匀带正电荷的平面。

取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):【提示】:由于电场分布具有平面对称性,可根据高斯定理求得该带电平面周围的场强为:(+0;0)2E i x x u v v “”号对应“”号对应[ B ] 5(自测提高6)如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A)r Q Q 0214 . (B) 20210144R Q R Q .(C) 0. (D)1014R Q .【提示】:根据带点球面在求内外激发电势的规律,以及电势叠加原理即可知结果。

习题一:真空中的静电场习题详解

习题一:真空中的静电场习题详解

dq = ρ ⋅ 4π r 2 dr
5
第 6 页共 6 页
1 真空中的静电场习题详解
习题册-下-1
dq 在球心处产生的电势为
dU =
dq ρr d r = 4πε 0 r ε0
整个带电球层在球心处产生的电势为
U 0 = ∫ dU 0 =
ρ ε0

R2
R1
rdr =
ρ
2ε 0
(R
2 2
− R12 )
3 a ,由点电荷的电势公式得 2
(D)
Q 。 12 πε 0 a
U=
Q Q = 4 πε 0 r 2 3 πε 0 a
二、填空题 1.真空中两平行的无限长均匀带电直线,电荷线密度分别为
+λ 2d
d d −λ
− λ 和 λ ,点P1和P2与两带电线共面,位置如图,取向右为坐
标正方向,则P1和P2两点的场强分别 为 答案: E1 = 和 。
a b r P
a b λ λ λ ln ; (B) E = ,U= ln ; 2πε 0 r 2πε 0 r 2πε 0 r b b λ λ λ ln ; (D) E = ,U= ln 。 2πε 0 a 2 πε 0 r 2πε 0 a
λ
λ ,则 P 点的电势为 2πε 0 r
U = ∫ Edr = ∫ 0dr + ∫
4πε 0 d ( L + d )
q
x O L
dq
(L+d-x) d
P dE
x
解:带电直杆的电荷线密度为 λ = q / L 。设坐标原点
O 在杆的左端,在 x 处取一电荷元 dq = λ dx = qdx / L ,它在 P 点的场强为

题解1-真空中的静电场(已修改)

题解1-真空中的静电场(已修改)

3 2 3 大小: 区:E i i i 2 0 2 0 2 0 2 0 2 区:E i i i 大小: 2 0 2 0 2 0 2 0 2、 E dS Q E 0 S a 0
大小: 2 0
i (i )
杆 0
EP dE
2
i
P
以无穷远处电势为零, P点电势为:
Ld x
U P dU

L
0
(q / L)dx (q / L) L d ln 4 0 ( L d x) 4 0 d 1
2、一电荷面密度为σ 的“无限大”平面,在距离平面 a米远处一点的场强大小的一半是由平面上的一个半径 为R的圆面积范围内的电荷产生的。试求该圆半径的大 小。 解:圆盘在其轴线上P点场强:
根据电势叠加原理,P点处的电势也与电荷在环L上的 分布状况无关,为: dq
UP
4 0 r Nq 4 0 r
L

dq

4 r
0
1
L
R dq
L
r
P

dE
Z
9、C 空间各点处的总场强为:(方法与选择题第5小题 的方法相同)
0 (r R1 ) 2 E Eer er Q1 /(4 0 r ) ( R1 r R2 ) e (Q Q ) /(4 r 2 ) (r R2 ) 2 0 r 1
'
R
dl
R
Rd

d
y
dE
θ位置处的一窄条在轴线上的一点产生的场强为:
' ' dE i sin j cos 2 0 R 2 0 R d d i sin j cos 2 2 2 0 R 2 0 R

7.真空中的静电场 大学物理习题答案

7.真空中的静电场 大学物理习题答案
0
l
xd x
2

k l a ( ln ) 4 0 a la
方向沿 x 轴正向。
7-4 一半径为 R 的绝缘半圆形细棒,其上半段均匀带电量+q,下半段均匀带电量-q,如图 7-4 所示,求半 圆中心处电场强度。 解:建立如图所示的坐标系,由对称性可知,+q 和-q 在 O 点电场强度沿 x 轴的分量之和为零。取长为 dl 的线元,其上所带电量为
大学物理练习册—真空中的静电场
库仑定律 7-1 把总电荷电量为 Q 的同一种电荷分成两部分, 一部分均匀分布在地球上, 另一部分均匀分布在月球上, 24 使它们之间的库仑力正好抵消万有引力, 已知地球的质量 M=5.98l0 kg, 月球的质量 m=7.34l022kg。 (1)求 Q 的最小值; (2)如果电荷分配与质量成正比,求 Q 的值。 解: (1)设 Q 分成 q1、q2 两部分,根据题意有 k
x
d 时 2
1 E d S 2 E1S 2 xS , E1 x 1 S 0 0
28
大学物理练习册—真空中的静电场
x
d 时 2
1 d d E d S S 2 2 E 2 S 0 2 2 S , E 2 0
r R sin , x R cos
x
d E
sin cos d 2 0
因为球面上所有环带在 O 处产生的电场强度方向相同, E 2 0

2 0
sin cos d i i 4 0
7-6 一无限大均匀带电薄平板,面电荷密度为 ,平板中部有一半径为 R 的圆孔, 如图 7-6 所示。求圆孔 中心轴线上的场强分布。 (提示:利用无穷大板和圆盘的电场及场强叠加原理) 解:利用补偿法,将圆孔看作由等量的正、负电荷重叠而成,即等效为一个 完整的带电无穷大平板和一个电荷面密度相反的圆盘叠加而成。 R 无穷大平板的电场为

练习册真空中的静电场答案

练习册真空中的静电场答案

第12章 真空中的静电场 参考答案一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1). 电场强度和电势,0/q F E =,l E q W U aa⎰⋅==00d /(U 0=0).(2). ()042ε/q q +, q 1、q 2、q 3、q 4 ;(3). 0,λ / (2ε0) ; (4). σR / (2ε0) ;(5). 0 ; (6).⎪⎪⎭⎫ ⎝⎛-π00114r r qε ;(7). -2×103 V ; (8).⎪⎪⎭⎫ ⎝⎛-πa br r q q 11400ε(9). 0,pE sin α ; (10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 总场强为⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R的半圆形,Ld E O沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π 它在O 处产生场强θεεd 24d d 20220RQRq E π=π= 按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202RQE E x π== θθεθd cos 2cos d d 202RQE E y π-=-=对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =0 2022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰所以 j RQ j E i E E y x202επ-=+=3. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为θλλλd d d π=π=l R取θ位置处的一条,它在轴线上一点产生的场强为θελελd 22d d 020RRE π=π=如图所示. 它在x 、y 轴上的二个分量为:d E x=d E sin θ , d E y=-d E cos θ对各分量分别积分RRE x 02002d sin 2ελθθελππ=π=⎰0d cos 2002=π-=⎰πθθελRE y场强 i Rj E i E E y x02ελπ=+=4.实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C .(1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85×10-12 C 2·N -1·m -2)解:(1) 设电荷的平均体密度为ρ面如图(1)(侧面垂直底面,底面∆S 平行地面)底面处的场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E·S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S 高斯面S 包围的电荷∑q i =h ∆S ρ 由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 0∴ () E E h1201-=ερ=4.43×10-13 C/m 3(1)(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2)由高斯定理 ⎰⎰E·S d =∑i 01q ε-E ∆S =S ∆σε01∴ σ =-ε 0 E =-8.9×10-10 C/m35. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R ), A 为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rV π=π==⎰⎰ρ (r ≤R) 以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅得到 ()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有 0422/4εAR r E π=π⋅得到 ()20424/r AR E ε=, (r >R ) 方向沿径向,A >0时向外,A <0时向里.6. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求:(2)(1) 平板外两侧任一点P 1和P 2处的电场强度大小; (2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即 022d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧)(2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεkSb xdx kSS E E x==+'⎰得到 ⎪⎪⎭⎫⎝⎛-='22220b x k E ε (0≤x ≤b )(3) E '=0,必须是0222=-b x , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).'解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为i xx E012εσ=圆盘在该处的场强为 i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ∴ix R x E E E 220212+=+=εσ该点电势为 ()220222d 2x R R xR x x U x +-=+=⎰εσεσ8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为ρ =Ar (r ≤R ),式中A 为常量.试求: (1) 圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:⎰π=⋅S rhE S E 2d为求高斯面内的电荷,r <R 时,取一半径为r ',厚d r '、高h 的圆筒,其电荷为 r r Ah V ''π=d 2d 2ρ则包围在高斯面内的总电荷为3/2d 2d 302Ahr r r Ah V rVπ=''π=⎰⎰ρ由高斯定理得 ()033/22εAhr rhE π=π 解出 ()023/εAr E = (r ≤R )r >R 时,包围在高斯面内总电荷为:3/2d 2d 302AhR r r Ah V RV π=''π=⎰⎰ρ 由高斯定理 ()033/22εA h R r h Eπ=π 解出 ()r AR E 033/ε= (r >R )(2) 计算电势分布r ≤R 时⎰⎰⎰⋅+==l R Rrl rrrAR r r A r E U d 3d 3d 0320εε ()Rl AR r R A ln 3903330εε+-=r >R 时 rlAR r r AR r E U l rlrln 3d 3d 0303εε=⋅==⎰⎰9.一真空二极管,其主要构件是一个半径R 1=5×10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5×10-3m的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6×10-19 C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B AB A rrr E U U ελ 120ln 2R R ελπ-=得到()120/ln 2R R U U A B -=πελ, 所以()rR R U U E A B 1/ln 12⋅-=在阴极表面处电子受电场力的大小为()()11211/c R R R U U eR eE F A B ⋅-===4.37×10-14N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 2041rq E πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用. 若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而 0d d d ≠⋅'-⋅=⋅⎰⎰⎰c b a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。

ch6+真空中的静电场+习题及答案

ch6+真空中的静电场+习题及答案

第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q a q '=︒εε故 q q 33-=' (2)与三角形边长无关。

3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。

求该直线段受到的电场力。

解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε根据电荷分布的对称性知,0==z y E E23220)(41 cos R x xdqdE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹角。

⎰+=23220)(4dq R x xE x πε 232210)(24R x Rx+⋅=πλπε232201)(2R x xR +=ελ下面求直线段受到的电场力。

在直线段上取dx dq 2λ=,dq 受到的电场力大小为dq E dF x =dx R x xR 2322021)(2+=ελλ 方向沿x 轴正方向。

直线段受到的电场力大小为⎰=dF F dx R x xR l ⎰+=02322021)(ελλ2()⎥⎦⎤⎢⎣⎡+-=2/12202111R l R R ελλ2 方向沿x 轴正方向。

大学物理课后习题答案 真空中的静电场

大学物理课后习题答案 真空中的静电场

第八章 真空中的静电场 1、[D] 2、[C]要使p 点的电场强度为零,有两种可能:1、在p 点的右侧放正电荷;2、在p 点的左侧放负电荷。

根据题意为负电荷,根据点电荷强度的公式:204rQ E πε=。

其中r=1,负电荷产生的电场:2442120210=⇒=r rQ r Q πεπε,该点在原点的左边。

3、[D]1、粒子作曲线运动的条件必须存在向心力。

2、粒子从A 点出发经C 点运动到B 点是速率递增,存在和运动方向一致的切向力。

3、依据粒子带正电荷,作出作用在质点上的静电力后,符合上诉1、2条件的是[D]。

4、[C]5、[B]6、[D]1、点电荷的电场强度:r e rq E204πε=;2、无限长均匀带电直导线:r rq e rq E r20022πεπε==;3、无限大均匀带电平面:r e E2εσ=4、半径为R 的均匀带电球面外的电场强度:r r R r R r e rq E r302230204414εσσππεπε=⋅==7、[C]对高斯定理的理解。

E是高斯面上各处的电场强度,它是由曲面内外所有静止点和产生的。

∑=0q 并不能说明E有任何特定的性质。

8、[A]应用高斯定理有:⎰=⋅sS d E 0,即:⎰⎰⎰⎰=∆Φ+⋅=⋅+⋅=⋅∆ses s s S d E S d E S d E S d E 0⎰∆Φ-=⋅seS d E9、[B]10、[C]依据公式:R r rQ E ≥=,420πε已知:,4,22σπR Q R r ==代入上式可得:2024444εσπεσπ==RR E11、[D]先构建成一个边长为a 的立方体,表面为高斯面,应用高斯定理,一个侧面的磁通量为: 0661εq S d E S d E ss=⋅=⋅⎰⎰12、[D]13、[D]半径为R 的均匀带电球面:R r R Q U <=,40πεR r r Q U >=,40πε半径为R 的均匀带电球体: R r r Q U >=,40πεR r RQ r R RQ U <+-=,4)(802230πεπε正点电荷: ,40rQ U πε=负点电荷: ,40rQ U πε-=14、[C]分析:先求以无限远处为电势的零点.则半径为R 电量为Q 的球面的电势: 0)(,4)(0=∞=U RQ R U πε,4)()(0RQ R U U U R πε-=-∞=∞对15、[B]利用电势的叠加来解。

《大学物理AⅠ》真空中的静电场习题、答案及解法(2012.5.2)

《大学物理AⅠ》真空中的静电场习题、答案及解法(2012.5.2)

《大学物理A Ⅰ》真空中的静电场习题、答案及解法一、选择题1、一“无限大”均匀带电平面A 的附近放一与它平行的“无限大”均匀带电平面B ,如图1所示。

已知A 上的电荷面密度为σ,B 上的电荷面密度为2σ,如果设向右为正方向,则两平面之间和平面B 外的电场强度分别为 (A )002εσεσ, (B )00εσεσ,(C )00232εσεσ,-(D )002εσεσ,-[ C ]参考答案: ()0002222εσεσεσ-=-=AB E ()00023222εσεσεσ=+=B E2、在边长为b 的正方形中心处放置一电荷为Q 的点电荷,则正方形顶角处的电场强度大小为 (A )204bQ πε (B )202bQ πε (C )203bQ πε (D )20bQπε [ C ]参考答案:()202220312241b Q b b QE πεπε=⎥⎥⎦⎤⎢⎢⎣⎡+=3、下面为真空中静电场的场强公式,正确的是[ D ] (A)点电荷q 的电场0204r r q Ε πε=(r 为点电荷到场点的距离,0r为电荷到场点的单位矢量)(B)“无限长”均匀带电直线(电荷线密度为λ)的电场302rΕπελ=(r为带电直线到场点的垂直于直线的矢量)(C)一“无限大”均匀带电平面(电荷面密度σ)的电场0εσ=Ε (D)半径为R的均匀带电球面(电荷面密度σ)外的电场0202r r R Ε εσ=(0r为球心到场点的单位矢量)解:由电场强度的定义计算知:A 错,应为0204r r q Επε=,B 不对应为002r rEπελ=,C 应为σ σ2A B图12εσ=E D 对,完整表达应为⎪⎩⎪⎨⎧〉≤=R r r r R Rr E 02020εσ 0202022002044141r rR r r R r r q E εσσππεπε===4、如图2所示,曲线表示球对称或轴对称静电场的场强大小随径向距离r 变化的关系,请指出该曲线可描述下列哪种关系(E 为电场强度的大小)(A )半径为R 的无限长均匀带电圆柱体电场的r E ~关系 (B )半径为R 的无限长均匀带电圆柱面电场的r E ~关系 (C )半径为R 的均匀带电球面电场的r E ~关系 (D )半径为R 的均匀带正电球体电场的r E ~关系 [ C ] 参考答案:柱形带电体 ⎪⎪⎩⎪⎪⎨⎧≥〈〈=R r r rR Rr r r E 02000202ερερ柱形带电面 ⎪⎩⎪⎨⎧≥〈=R r r r R R r E 000εσ球形带电面 ⎪⎩⎪⎨⎧≥〈=Rr r r Q R r E 020410πε球形带电体 ⎪⎪⎩⎪⎪⎨⎧≥〈〈=Rr r r Q Rr r R r Q E 02003041041πεπε5、如图3所示,曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下列哪方面内容(E 为电场强度的大小,U 为电势)。

真空中的静电场(含答案,大学物理作业,考研真题)

真空中的静电场(含答案,大学物理作业,考研真题)

班级:
姓名:
学号:
第十章 真空中的静电场(3)
一 、选择题 1、静电场中某点电势的数值等于 (A)正试验电荷 q0 置于该点时具有的电势能; (B) 把正试验电荷 q0 从该点移到电势零点处电场力所作的功; (C) 把单位正电荷从该点移到电势零点处电场力所作的功
(D)把单位正电荷从该点移到电势零点处外力所作的功。
P(x,0) xx
[
]
3、(2010 年北京科技大学)两个带有等量同号电荷,形状相同的金属小球1和2,相互
作用力为 F,它们之间的距离远大于小球本身直径.现在用一个带有绝缘柄的原来不带电的相
同金属小球3去和小球1接触,再和小球2接触,然后移去.这样小球1和2之间的作用力变
为:
(A) F/2;
(B) F/4;
S1
S2
S3
3、(2012 年北京科技大学)两个平行的“无限大”均
+σ +2σ
匀带电平面,其电荷面密度分别为 和 2 ,如图所示,则 A、
B、C 三个区域的电场强度分别为:
EA
EB
A
B
C
EC
3
三 、计算题 1、两个无限长同轴圆柱面,半径分别为 R1 和 R2(R2>R1),带有等值异号电荷,每单位长 度的电量为λ(即电荷线密度)。试分别求(1)r < R1,(2)r > R2,(3)R1< r<R2 时,离轴线 为 r 处之电场强度。
若将 q 移至 B 点,则:
(A)、S 面上的总电通量改变,P 点的场强不变; (B)、S 面上的总电通量不变,P 点的场强改变;
P· S B·

(C)、S 面上的总电通量和 P 点的场强都不变; (D)、S 面上的总电通量和 P 点的场强都改变。

《大学物理》真空中的静电场练习题及答案解析

《大学物理》真空中的静电场练习题及答案解析

《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。

(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。

(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。

(B )通过S 面的电通量不变,P 点的电场强度变化。

(C )通过S 面的电通量改变,P 点的电场强度不变。

(D )通过S 面的电通量改变,P 点的电场强度变化。

6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。

大学物理-真空中的静电场习题课和答案解析

大学物理-真空中的静电场习题课和答案解析
真空中的静电场习 题 课
基本要求
1、掌握静电场的电场强度和电势的概念以及电场 强度和电势的叠加原理。
2、掌握静电场强度和电势的积分关系,了解场强 与电势的微分关系,能计算一些简单问题中的 场强和电势。
3、理解静电场的规律:高斯定理和环路定理。掌 握用高斯定理计算场强的条件和方法,并能熟 练应用。
1、基本概念: ① 电场强度矢量
圆环上的电荷分布对环心对称,它在环心处的场强为零。
E
E1
Q
16 0 R2
方向竖直向下。
1、在静电场中,下列说法正确的是:
A)带正电荷的导体,其电势一定是正值。 B)等势面上各点的场强一定相等。
√ C)场强为零处,电势也一定为零。 D)场强相等处,电势梯度矢量一定相等。
四、证明题(10分)
有一带电球壳,内、外半径分别为a 和b ,电荷体密度 ρ = A / r ,
解:先计算细绳上的电荷对中心产生的场强。
3R
选细绳的顶端为坐标原点O。X轴向下为正。
在x 处取一电荷元 dq dx Qdx / 3R
R
它在环心处的场强为:
R/2
dq
Qdx
dE1
4 0 (4R
x)2
12 0R(4R
x)2
整个细绳上的电荷在O点处的场强为:
3R
Qdx
Q
E1 0 12 0R(4R x)2 16 0R2
P
P0
E
d
l
P
微分关系E U
③ 电通量
de E d S
e SE d S
④ 电势能
零点
Wa q0 a E d l q0U a
⑤ 电势差 U U ab U a U b

真空中的静电场答案

真空中的静电场答案

对各分量分别求和
E x
0 4 0 R
sin cos d
0
E y
0 4 0 R
sin 2 d 0
0
8 0 R
所以
E
Exi
Ey
j
0 8 0 R
j
3.(1059)
图中虚线所示为一立方形的高斯面,已知空间的场强分布为:Ex=bx, Ey=0, Ez=0.
高斯面边长a=0.1 m,常量b=1000 N/(C·m).试求该闭合面中包含的净电荷.(真空介电
试验电荷从A点分别移动到B、C、D各点,则
(A) 从A到B,电场力作功最大.
(B) 从A到C,电场力作功最大.
(C) 从A到D,电场力作功最大. (D) 从A到各点,电场力作功相等.
[D ]
A
-q O
B
C D
二、填空题 1.(1042) A、B为真空中两个平行的“无限大”均匀带电平面,已知两平 面间的电场强度大小为E0,两平面外侧电场强度大小都为E0/3, 方向如图.则A、B两平面上的电荷面密度分别为δA=
解:选杆的左端为坐标原点,x轴沿杆的方向 .在x处取
q0
一电荷元λdx,它在点电荷所在处产生场强为:
d
E
d
4 0 d
x
x 2
d
l
d
l
整个杆上电荷在该点的场强为:
dx
q0
O
x
x
E
4 0
l dx
0d x2
l
40d d
l
d+ x
点电荷q0所受的电场力为:
F
q0l
40d d
l
=0.90
N

12章真空中的静电场答案.doc

12章真空中的静电场答案.doc

~谷娘度娘联合出品~第12章真空中的静电场一选择题CACDB二填空题1.0, -^―2.03.-2000V5.0, PE sin a 三计算题1.ooQOB解:在o点建立坐标系如图所示.半无限长直线g在O点产生的场强:半无限长直线38在O点产生的场强:4it%R' 7四分之一圆弧段在O点产生的场强:£3=^—(/+7)4冗邛' 7由场强叠加原理,O点合场强为:E = £l+E2+E3=-^-(7 + J)4TI£Q R2.解:将柱面分成许多与轴线平行的细长条,毎条可视为“无限长”均匀带电直线,英电荷线密度为A = Q>COS0它在O点产生的场强为:df =——-——=6)cos0d02n£G R2兀勺它沿X、尹轴上的二个分量为:dE t=—dEcos^=—cos2 0d。

27l£*0—dEi.=—dEsin0= ~~-—sin d) cos0d02H^0解:(l)由対称分析知,'F板外两侧场强大小处处相等、方向垂直于平面且背离'F面.设场强E r = s in0d(sin0) = 0大小为E.作•柱形高斯面垂貢于平面.其底面大小为S,如图所示.按高斯定理(E d圧二丫彳/勺,即2SE =丄fpSdx = — fxd.r =型^£<)£o 2圳得到 E = W>2/(4珂)(板外两侧)(2)过P点垂直平板作一柱形高斯而,底而为S.设该处场强为如图所示.按高斯定理有(r + E> = — r.rdr = —k ( h2}得到r =——x2——(owxwb)2% I 2 丿⑶ E'=0,必— = 0・可得x = b/-j22得& - U B -U A 2nc 0 ln(/?2 /R t ) U B -U , IF = eE (R J = U R -U A 丄 c (RJR )&解:将题中的电荷分布看作为面密度为H 內大平面和面密度为一oM |如盘巻加的 结果.选x 轴垂直于平面,坐标原点o 在恻盘中心,大平面在x 处产生的场强为E 、= --- j —7 i2q|x|该点电势为5.解:与阴极同轴作半径为r (R t <r<R 2)的单位K 度的圆柱形高斯面,设阴极上电荷线密厦为 A.按高斯定理有 2nrE = AJ得到 E= A / (2兀时) (心<r<W 2)方向沿半径拆向轴线.两极之间电势差在阴极表ifii 处电子受电场力的大小为=4.37X10 14 N 方向沿半径指向阳极. 恻盘在该处的场强为 所以。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以20220)33(π4130cos π412a q q a q '=︒εε故 q q 33-=' (2)与三角形边长无关。

3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。

求该直线段受到的电场力。

解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε根据电荷分布的对称性知,0==z y E E23220)(41cos R x xdqdE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹角。

⎰+=23220)(4dq R x xE x πε232210)(24R x Rx+⋅=πλπε232201)(2R x xR +=ελ 下面求直线段受到的电场力。

在直线段上取dx dq 2λ=,dq 受到的电场力大小为dq E dF x =dx R x xR 2322021)(2+=ελλ方向沿x 轴正方向。

直线段受到的电场力大小为⎰=dF F dx R x xR l ⎰+=02322021)(ελλ2 ()⎥⎦⎤⎢⎣⎡+-=2/12202111R l R R ελλ2 方向沿x 轴正方向。

4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。

求: (1)圆心处O 点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。

解:(1)在半圆环上取ϕλλRd l dq ==d ,它在O 点产生场强大小为20π4R dq dE ε=ϕελd R0π4= ,方向沿半径向外根据电荷分布的对称性知,0=y Eϕϕελϕd RdE dE x sin π4sin 0==Rd R E x 000π2sin π4ελϕϕελπ==⎰故 RE E x 0π2ελ==,方向沿x 轴正向。

(2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度为零。

5.如图所示,真空中一长为L 的均匀带电细直杆,总电量为q,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度。

解:建立图示坐标系。

在均匀带电细直杆上取dx Lqdx dq ==λ,dq 在P 点产生的场强大小为202044xdxx dq dE πελπε==,方向沿x 轴负方向。

故 P 点场强大小为 ⎰⎰+==L d dP x dxdE E 204πελ()L d d q+π=04ε方向沿x 轴负方向。

6. 一半径为R 的均匀带电半球面,其电荷面密度为σ,求球心处电场强度的大小。

解:建立图示坐标系。

将均匀带电半球面看成许多均匀带电细圆环,应用场强叠加原理求解。

在半球面上取宽度为dl 的细圆环,其带电量rdl dS dq πσσ2⋅=⋅=θθπσd R sin 22⋅=, dq 在O 点产生场强大小为(参见教材中均匀带电圆环轴线上的场强公式)23220)(4r x xdq dE +=πε ,方向沿x 轴负方向利用几何关系,θcos R x =,θsin R r =统一积分变量,得23220)(4r x xdq dE +=πεθθπσθπεd R R R sin 2cos 41230⋅= θθθεσd cos sin 20=因为所有的细圆环在在O 点产生的场强方向均沿为x 轴负方向,所以球心处电场强度的大小为⎰=dE E θθθεσπd cos sin 22/0⎰=4εσ=方向沿x 轴负方向。

7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ,如图所示。

试求通过小孔中心O 并与平面垂直的直线上各点的场强。

解:应用补偿法和场强叠加原理求解。

若把半径为R 的圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平面等效为一个完整的“无限大”带电平面和一个电荷面密度为σσ-='的半径为R 的带电圆盘,由场强叠加原理知,P 点的场强等效于“无限大”带电平面和带电圆盘在该处产生的场强的矢量和。

“无限大”带电平面在P 点产生的场强大小为12εσ=E ,方向沿x 轴正方向 半径为R 、电荷面密度σσ-='的圆盘在P 点产生的场强大小为(参见教材中均匀带电圆盘轴线上的场强公式)022εσ=E )1(22xR x +-,方向沿x 轴负方向故 P 点的场强大小为220212xR xE E E +=-=εσ方向沿x 轴正方向。

8. (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电场强度通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电场强度通量是多少?解:(1)由高斯定理0d εqS E s⎰=⋅ 求解。

立方体六个面,当q 在立方体中心时,每个面上电通量相等,所以通过各面电通量为6εqe =Φ (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则通过边长a 2的正方形各面的电通量06εq e =Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点,则0=Φe 。

9. 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强。

解:如图所示,电荷面密度为1σ的平面产生的场强大小为12εσ=E ,方向垂直于该平面指向外侧 电荷面密度为2σ的平面产生的场强大小为22εσ=E ,方向垂直于该平面指向外侧 由场强叠加原理得两面之间,)(2121021σσε-=-=E E E ,方向垂直于平面向右 1σ面左侧,)(2121021σσε+=+=E E E ,方向垂直于平面向左 2σ面右侧,)(2121021σσε+=+=E E E ,方向垂直于平面向右 10. 如图所示,一球壳体的内外半径分别为1R 和2R ,电荷均匀地分布在壳体内,电荷体密度为ρ(0>ρ)。

试求各区域的电场强度分布。

解:电场具有球对称分布,以r 为半径作同心球面为高斯面。

由高斯定理∑⎰=⋅iSqS d E 01ε 得i q r E ∑=⋅0214επ当1R r <时,0=∑i q ,所以 0=E当21R r R <<时,)3434(313R r q i ππρ-=∑,所以203133)(r R r E ερ-=2σ1σ233 2031323)(rR R E ερ-= 11. 有两个均匀带电的同心带电球面,半径分别为1R 和2R (12R R >),若大球面的面电荷密度为σ,且大球面外的电场强度为零。

求:(1)小球面上的面电荷密度;(2)大球面内各点的电场强度。

解:(1)电场具有球对称分布,以r 为半径作同心球面为高斯面。

由高斯定理∑⎰=⋅iSqS d E 01ε 得i q r E ∑=⋅0214επ当2R r >时,0=E ,0442122=⋅'+⋅=∑R R q i πσπσ,所以σσ212)R R (-=' (2)当1R r <时,0=∑i q ,所以 0=E当21R r R <<时,222144R R q i πσπσ-=⋅'=∑,所以22)εσr R E (-= 负号表示场强方向沿径向指向球心。

12. 一厚度为d 的无限大的带电平板,平板内均匀带电,其体电荷密度为ρ,求板内外的场强。

解:电场分布具有面对称性,取同轴闭合圆柱面为高斯面,圆柱面与平板垂直,设两底面圆到平板中心的距离均为x ,底面圆的面积为S ∆。

由高斯定理∑⎰=⋅iSqS d E 01ε 得=⋅⎰SS d E i q S E S E ∑=+∆⋅+∆⋅010ε 当2dx <时(平板内部),S x q i ∆⋅⋅=∑2ρ,所以 0ερx E =2i 02ερd E =13. 半径为R 的无限长直圆柱体均匀带电,体电荷密度为ρ,求其场强分布。

解:电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r ,应用高斯定理求解。

i Sq rl E S E ∑=⋅=⋅⎰01π2d ε(1) 当R r <时,l r qi2πρ⋅=∑,所以2ερr E =(2) 当R r >时,l R q i 2πρ⋅=∑,所以rR E 022ερ=14.一半径为R 的均匀带电圆盘,电荷面密度为σ,设无穷远处为电势零点,求圆盘中心O 点的电势。

解:取半径为r 、dr 的细圆环rdr dS dq πσσ2⋅==,则dq 在O 点产生的电势为024εσπεdrrdq dV ==圆盘中心O 点的电势为dr dV V R ⎰⎰==002εσ02εσR=15. 真空中两个半径都为R 的共轴圆环,相距为l 。

两圆环均匀带电,电荷线密度分别是λ+和λ-。

取两环的轴线为x 轴,坐标原点O 离两环中心的距离均为2l,如图所示。

求x 轴上任一点的电势。

设无穷远处为电势零点。

解:在右边带电圆环上取dq ,它在x 轴上任一点P 产生的的电势为220)2/(4Rl x dqdV +-=πε右边带电圆环在P 产生的的电势为⎰⎰+-==+dq Rl x dV V 220)2/(41πε220)2/(2Rl x R+-=ελ同理,左边带电圆环在P 产生的电势为220)2/(2Rl x RV ++-=-ελ由电势叠加原理知,P 的电势为02ελR V V V =+=-+-+-22)2/(1(R l x ))2/(122Rl x ++16. 真空中一半径为R 的球形区域内均匀分布着体电荷密度为ρ的正电荷,该区域内a 点离球心的距离为R 31,b 点离球心的距离为R 32。

求a 、b 两点间的电势差ab U解:电场分布具有轴对称性,以O 为球心、作半径为r 的同心球面为高斯面。

由高斯定理∑⎰=⋅iSqS d E 01ε 得当R r <时,3023414r r E πρεπ⋅=⋅ ,所以 03ερr E =a 、b 两点间的电势差为⎰⋅=b aab r d E U 0203/23/183ερερR dr r R R ==⎰ 17.细长圆柱形电容器由同轴的内、外圆柱面构成,其半径分别为a 和a 3,两圆柱面间为真空。

相关文档
最新文档